Science.gov

Sample records for ideal atomic centre

  1. The virtual atomic and molecular data centre (VAMDC) consortium

    NASA Astrophysics Data System (ADS)

    Dubernet, M. L.; Antony, B. K.; Ba, Y. A.; Babikov, Yu L.; Bartschat, K.; Boudon, V.; Braams, B. J.; Chung, H.-K.; Daniel, F.; Delahaye, F.; Del Zanna, G.; de Urquijo, J.; Dimitrijević, M. S.; Domaracka, A.; Doronin, M.; Drouin, B. J.; Endres, C. P.; Fazliev, A. Z.; Gagarin, S. V.; Gordon, I. E.; Gratier, P.; Heiter, U.; Hill, C.; Jevremović, D.; Joblin, C.; Kasprzak, A.; Krishnakumar, E.; Leto, G.; Loboda, P. A.; Louge, T.; Maclot, S.; Marinković, B. P.; Markwick, A.; Marquart, T.; Mason, H. E.; Mason, N. J.; Mendoza, C.; Mihajlov, A. A.; Millar, T. J.; Moreau, N.; Mulas, G.; Pakhomov, Yu; Palmeri, P.; Pancheshnyi, S.; Perevalov, V. I.; Piskunov, N.; Postler, J.; Quinet, P.; Quintas-Sánchez, E.; Ralchenko, Yu; Rhee, Y.-J.; Rixon, G.; Rothman, L. S.; Roueff, E.; Ryabchikova, T.; Sahal-Bréchot, S.; Scheier, P.; Schlemmer, S.; Schmitt, B.; Stempels, E.; Tashkun, S.; Tennyson, J.; Tyuterev, Vl G.; Vujčić, V.; Wakelam, V.; Walton, N. A.; Zatsarinny, O.; Zeippen, C. J.; Zwölf, C. M.

    2016-04-01

    The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases. .

  2. Updates to the Virtual Atomic and Molecular Data Centre

    NASA Astrophysics Data System (ADS)

    Hill, Christian; Tennyson, Jonathan; Gordon, Iouli E.; Rothman, Laurence S.; Dubernet, Marie-Lise

    2014-06-01

    The Virtual Atomic and Molecular Data Centre (VAMDC) has established a set of standards for the storage and transmission of atomic and molecular data and an SQL-based query language (VSS2) for searching online databases, known as nodes. The project has also created an online service, the VAMDC Portal, through which all of these databases may be searched and their results compared and aggregated. Since its inception four years ago, the VAMDC e-infrastructure has grown to encompass over 40 databases, including HITRAN, in more than 20 countries and engages actively with scientists in six continents. Associated with the portal are a growing suite of software tools for the transformation of data from its native, XML-based, XSAMS format, to a range of more convenient human-readable (such as HTML) and machinereadable (such as CSV) formats. The relational database for HITRAN1, created as part of the VAMDC project is a flexible and extensible data model which is able to represent a wider range of parameters than the current fixed-format text-based one. Over the next year, a new online interface to this database will be tested, released and fully documented - this web application, HITRANonline2, will fully replace the ageing and incomplete JavaHAWKS software suite.

  3. Strategic Leadership of Teaching and Learning Centres: From Reality to Ideal

    ERIC Educational Resources Information Center

    Palmer, Stuart; Holt, Dale; Challis, Di

    2011-01-01

    This paper reports on the third phase of a study of Australian Teaching and Learning Centres to identify factors that contribute to the effective strategic leadership of Centres. Focus groups at 10 Australian universities included 66 respondents, providing a diverse range of perspectives, from students to members of the university executive.…

  4. Constructing the "Ideal" Family for Family-Centred Practice: Challenges for Delivery

    ERIC Educational Resources Information Center

    Dodd, Jenny; Saggers, Sherry; Wildy, Helen

    2009-01-01

    Family-centred practice positions families as the key decision-makers, central to and experts in the wants and needs of their child. This paper discusses how families interviewed for a Western Australian study describe their relationships with a range of allied health professionals in the paediatric disability sector. The allied health…

  5. The Ideal and Real Gas Heat Capacity of Potassium Atoms at High Temperatures

    NASA Astrophysics Data System (ADS)

    Biolsi, Louis; Biolsi, Michael

    2016-04-01

    The ideal gas heat capacity, Cp, of potassium atoms is calculated to high temperatures using statistical mechanics. Since there are a large number of electronic energy levels in the partition function (Boltzmann sum) below the first ionization potential, the partition function and Cp will become very large as the temperature increases unless the number of energy levels contributing to the partition function is constrained. Two primary categories of arguments are used to do this. First, at high temperatures, the increased size of the atoms constrains the sum (Bethe method). Second, an argument based on the existence of interacting charged species at higher temperatures is used to constrain the sum (ionization potential lowering method). When potassium atoms are assumed to constitute a real gas that obeys the virial equation of state, the lowest non-ideal contribution to Cp depends on the second derivative of the second virial coefficient, B( T), which depends on the interaction potential energy curves between two potassium atoms. When two ground-state (2{S}) atoms interact, they can follow either of the two potential energy curves. When a 2{S} atom interacts with an atom in the first electronically excited (2{P}) state, they can follow any of the eight potential energy curves. The values of B( T) for the ten states are determined, then averaged, and used to calculate the nonideal contribution to Cp.

  6. Atomic and Molecular Databases, VAMDC (Virtual Atomic and Molecular Data Centre)

    NASA Astrophysics Data System (ADS)

    Dubernet, Marie-Lise; Zwölf, Carlo Maria; Moreau, Nicolas; Awa Ba, Yaya; VAMDC Consortium

    2015-08-01

    The "Virtual Atomic and Molecular Data Centre Consortium",(VAMDC Consortium, http://www.vamdc.eu) is a Consortium bound by an Memorandum of Understanding aiming at ensuring the sustainability of the VAMDC e-infrastructure. The current VAMDC e-infrastructure inter-connects about 30 atomic and molecular databases with the number of connected databases increasing every year: some databases are well-known databases such as CDMS, JPL, HITRAN, VALD,.., other databases have been created since the start of VAMDC. About 90% of our databases are used for astrophysical applications. The data can be queried, retrieved, visualized in a single format from a general portal (http://portal.vamdc.eu) and VAMDC is also developing standalone tools in order to retrieve and handle the data. VAMDC provides software and support in order to include databases within the VAMDC e-infrastructure. One current feature of VAMDC is the constrained environnement of description of data that ensures a higher quality for distribution of data; a future feature is the link of VAMDC with evaluation/validation groups. The talk will present the VAMDC Consortium and the VAMDC e infrastructure with its underlying technology, its services, its science use cases and its etension towards other communities than the academic research community.

  7. The Ideal Gas and Real Gas Heat Capacity of Sodium Atoms

    NASA Astrophysics Data System (ADS)

    Biolsi, Louis

    2014-10-01

    The ideal gas heat capacity of sodium atoms in the vapor phase is calculated to high temperatures using statistical mechanics. Since there are, in principle, an infinite number of atomic energy levels, the partition function and the heat capacity will grow very large unless the summation over energy levels is constrained as temperature increases. At higher temperatures, the increasing size of the atoms, which is a consequence of the increased population of highly excited energy levels, is used as a mechanism for limiting the summation over energy levels. The "" and "Bethe" procedures for cutting off the summation over energy levels will be discussed, and the results obtained using the two methods will be compared. In addition, although experimental information is available about lower atomic energy levels and some theoretical calculations are available for excited energy levels, information is lacking for most individual atomic states associated with highly excited energy levels. A "fill" procedure for approximating the energy of the unknown states will be discussed. Sodium vapor will also be considered to be a real gas that obeys the virial equation of state. The first non-ideal term in the power series expansion of the heat capacity in terms of virial coefficients involves the second virial coefficient, . This depends on the interaction potential energy between two sodium atoms, i.e., the potential energy curves for the sodium dimer. Accurate interaction potential energies can be obtained from either experimental or theoretical information for the lowest ten electronic states of the sodium dimer. These are used to calculate for each state, and the averaged value of for all ten states is used to calculate the non-ideal contribution to the heat capacity of sodium atoms as a function of temperature.

  8. Atomic force microscopy analysis of nanoparticles in non-ideal conditions

    PubMed Central

    2011-01-01

    Nanoparticles are often measured using atomic force microscopy or other scanning probe microscopy methods. For isolated nanoparticles on flat substrates, this is a relatively easy task. However, in real situations, we often need to analyze nanoparticles on rough substrates or nanoparticles that are not isolated. In this article, we present a simple model for realistic simulations of nanoparticle deposition and we employ this model for modeling nanoparticles on rough substrates. Different modeling conditions (coverage, relaxation after deposition) and convolution with different tip shapes are used to obtain a wide spectrum of virtual AFM nanoparticle images similar to those known from practice. Statistical parameters of nanoparticles are then analyzed using different data processing algorithms in order to show their systematic errors and to estimate uncertainties for atomic force microscopy analysis of nanoparticles under non-ideal conditions. It is shown that the elimination of user influence on the data processing algorithm is a key step for obtaining accurate results while analyzing nanoparticles measured in non-ideal conditions. PMID:21878120

  9. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  10. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC

    NASA Astrophysics Data System (ADS)

    Endres, Christian P.; Schlemmer, Stephan; Schilke, Peter; Stutzki, Jürgen; Müller, Holger S. P.

    2016-09-01

    The Cologne Database for Molecular Spectroscopy, CDMS, was founded 1998 to provide in its catalog section line lists of mostly molecular species which are or may be observed in various astronomical sources (usually) by radio astronomical means. The line lists contain transition frequencies with qualified accuracies, intensities, quantum numbers, as well as further auxiliary information. They have been generated from critically evaluated experimental line lists, mostly from laboratory experiments, employing established Hamiltonian models. Separate entries exist for different isotopic species and usually also for different vibrational states. As of December 2015, the number of entries is 792. They are available online as ascii tables with additional files documenting information on the entries. The Virtual Atomic and Molecular Data Centre, VAMDC, was founded more than 5 years ago as a common platform for atomic and molecular data. This platform facilitates exchange not only between spectroscopic databases related to astrophysics or astrochemistry, but also with collisional and kinetic databases. A dedicated infrastructure was developed to provide a common data format in the various databases enabling queries to a large variety of databases on atomic and molecular data at once. For CDMS, the incorporation in VAMDC was combined with several modifications on the generation of CDMS catalog entries. Here we introduce related changes to the data structure and the data content in the CDMS. The new data scheme allows us to incorporate all previous data entries but in addition allows us also to include entries based on new theoretical descriptions. Moreover, the CDMS entries have been transferred into a mySQL database format. These developments within the VAMDC framework have in part been driven by the needs of the astronomical community to be able to deal efficiently with large data sets obtained with the Herschel Space Telescope or, more recently, with the Atacama Large

  11. Effects of non-idealities and quantization of the center of mass motion on symmetric and asymmetric collective states in a collective state atomic interferometer

    NASA Astrophysics Data System (ADS)

    Sarkar, Resham; Kim, May E.; Fang, Renpeng; Tu, Yanfei; Shahriar, Selim M.

    2015-09-01

    We investigate the behavior of an ensemble of ? non-interacting, identical atoms excited by a laser. In general, the ?-th atom sees a Rabi frequency ?, an initial position dependent laser phase ?, and a motion induced Doppler shift of ?. When ? or ? is distinct for each atom, the system evolves into a superposition of ? intercoupled states, of which there are ? symmetric and ? asymmetric collective states. For a collective state atomic interferometer (COSAIN), we recently proposed, it is important to understand the behavior of all the collective states under various conditions. In this paper, we show how to formulate the properties of these states under various non-idealities, and use this formulation to understand the dynamics thereof. We also consider the effect of treating the center of mass degree of freedom of the atoms quantum mechanically on the description of the collective states, illustrating that it is indeed possible to construct a generalized collective state, as needed for the COSAIN, when each atom is assumed to be in a localized wave packet. The analysis presented in this paper is important for understanding the dynamics of the COSAIN, and will help advance the analysis and optimization of spin squeezing in the presence of practically unavoidable non-idealities as well as in the domain where the center of mass motion of the atoms is quantized.

  12. Atom-Photon Coupling from Nitrogen-vacancy Centres Embedded in Tellurite Microspheres

    NASA Astrophysics Data System (ADS)

    Ruan, Yinlan; Gibson, Brant C.; Lau, Desmond W. M.; Greentree, Andrew D.; Ji, Hong; Ebendorff-Heidepriem, Heike; Johnson, Brett C.; Ohshima, Takeshi; Monro, Tanya M.

    2015-06-01

    We have developed a technique for creating high quality tellurite microspheres with embedded nanodiamonds (NDs) containing nitrogen-vacancy (NV) centres. This hybrid method allows fluorescence of the NVs in the NDs to be directly, rather than evanescently, coupled to the whispering gallery modes of the tellurite microspheres at room temperature. As a demonstration of its sensing potential, shifting of the resonance peaks is also demonstrated by coating a sphere surface with a liquid layer. This new approach is a robust way of creating cavities for use in quantum and sensing applications.

  13. Calibration of a new experimental chamber for PIXE analysis at the Accelerator Facilities Division of Atomic Energy Centre Dhaka (AECD)

    NASA Astrophysics Data System (ADS)

    Hassan, Md. Taufique; Shariff, Md. Asad; Hossein, Amzad; Abedin, Md. Joynal; Fazlul Hoque, A. K. M.; Chowdhuri, M. S.

    2015-05-01

    A new experimental chamber has been installed at the 3 MV Van de Graaff Accelerator Facilities Division in the Atomic Energy Centre, Dhaka, to perform different Ion Beam Analysis (IBA) techniques. The calibration of this new setup for Particle Induced X-ray Emission (PIXE) technique has been done using a set of thin MicroMatter standards and GUPIX (PIXE spectrum analysis software), which is explicated in this paper. The effective thicknesses of the beryllium window of the X-ray detector and of the different absorbers used were determined. For standardization, the so called instrumental constant H (product of detector solid angle and the correction factor for the setup) as function of X-ray energy were determined and stored inside the GUPIX library for further PIXE analysis.

  14. Cdms 2012: a Database Within the Framework of the Virtual Atomic and Molecular Data Centre - Recent Developments

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Endres, C. P.; Stutzki, J.; Schlemmer, S.

    2012-06-01

    The catalog section of the Cologne Database for Molecular Spectroscopy, CDMS, contains experimental and calculated transition frequencies of molecules and atoms observable by radioastronomical means with information on uncertainties, intensities and quantum numbers. Initially constructed as ascii tables, its inclusion into a database environment within the framework of the European Framework Programme 7 project Virtual Atomic and Molecular Data Centre (VAMDC) has begun in June 2008. The conversion required time because of the extensive content of the CDMS, the desire to maintain the existing functionality, the additional requisites as part of the VAMDC framework, and the sustained development of the VAMDC infrastructure. The new CDMS is scheduled to be available publicly prior to this conference; the old CDMS will be accessible for a transitional period. We will present some of the new CDMS features, provide some overview on new or updated entries from our last account three years ago as well as activities in other sections of the CDMS. Internet address: http://www.astro.uni-koeln.de/cdms/ H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser, J. Mol. Struct. 742, 215-227 (2005) H. S. P. Müller, S. Thorwirth, D. A. Roth, and G. Winnewisser, Astron. Astrophys. 370, L49-L52 (2001) Internet address: http://www.vamdc.org/ H. S. P. Müller, J. Stutzki, S. Schlemmer, contribution WH07, presented at the 64th International Symposium on Molecular Spectroscopy, Columbus, OH, USA, 2009

  15. Atomic Force Microscopy Study of an Ideally Hard Contact: The Diamond{bold (}111{bold )}/Tungsten Carbide Interface

    SciTech Connect

    Enachescu, M.; van den Oetelaar, R.J.; Carpick, R.W.; Ogletree, D.F.; Flipse, C.F.; Salmeron, M.

    1998-08-01

    A comprehensive nanotribological study of a hydrogen-terminated diamond(111)/tungsten carbide interface has been performed using ultrahigh vacuum atomic force microscopy. Both contact conductance, which is proportional to contact area, and friction have been measured as a function of applied load. We demonstrate for the first time that the load dependence of the contact area in UHV for this extremely hard single asperity contact is described by the Derjaguin-M{umlt u}ller-Toporov continuum mechanics model. Furthermore, the frictional force is found to be directly proportional to the contact area. {copyright} {ital 1998} {ital The American Physical Society}

  16. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    NASA Astrophysics Data System (ADS)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M.

    2016-05-01

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in this paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C20H42, C24H50, C26H54, and C30H62) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport can be significantly altered by how the molecules and the

  17. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten

    NASA Astrophysics Data System (ADS)

    Wang, Jiangwei; Zeng, Zhi; Weinberger, Christopher R.; Zhang, Ze; Zhu, Ting; Mao, Scott X.

    2015-06-01

    Twinning is a fundamental deformation mode that competes against dislocation slip in crystalline solids. In metallic nanostructures, plastic deformation requires higher stresses than those needed in their bulk counterparts, resulting in the ‘smaller is stronger’ phenomenon. Such high stresses are thought to favour twinning over dislocation slip. Deformation twinning has been well documented in face-centred cubic (FCC) nanoscale crystals. However, it remains unexplored in body-centred cubic (BCC) nanoscale crystals. Here, by using in situ high-resolution transmission electron microscopy and atomistic simulations, we show that twinning is the dominant deformation mechanism in nanoscale crystals of BCC tungsten. Such deformation twinning is pseudoelastic, manifested through reversible detwinning during unloading. We find that the competition between twinning and dislocation slip can be mediated by loading orientation, which is attributed to the competing nucleation mechanism of defects in nanoscale BCC crystals. Our work provides direct observations of deformation twinning as well as new insights into the deformation mechanism in BCC nanostructures.

  18. Anhydrous TEMPO-H: reactions of a good hydrogen atom donor with low-valent carbon centres.

    PubMed

    Giffin, Nick A; Makramalla, Miller; Hendsbee, Arthur D; Robertson, Katherine N; Sherren, Cody; Pye, Cory C; Masuda, Jason D; Clyburne, Jason A C

    2011-05-21

    In this paper, we report a novel synthesis of anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H). An X-ray crystal structure and full characterization of the compound are included. Compared to hydrated TEMPO-H, its anhydrous form exhibits improved stability and a differing chemical reactivity. The reactions of anhydrous TEMPO-H with a variety of low-valent carbon centres are described. For example, anhydrous TEMPO-H was reacted with 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), an unsaturated NHC. Crystals of [CHNC(6)H(2)(CH(3))(3)](2)C···HO(NC(5)H(6)(CH(3))(4)), IMes···TEMPO-H, were isolated and a crystal structure determined. The experimental structure is compared to the results of theoretical calculations on the hydrogen-bonded dimer. Anhydrous TEMPO-H was also reacted with the saturated NHC, 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr), giving the product [CH(2)Ni-Pr(2)C(6)H(3)](2)CH···O(NC(5)H(6)(CH(3))(4)). In contrast, the reaction of hydrated TEMPO-H with 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene gave small amounts of the hydrolysis product, N-(2,6-diisopropylphenyl)-N-[2-(2,6-diisopropylphenylamino)ethyl]formamide. Finally, anhydrous TEMPO-H was reacted with (triphenylphosphoranylidene)ketene to generate Ph(3)PC(H)C(=O)O(NC(5)H(6)(CH(3))(4)). A full characterization of the product, including an X-ray crystal structure, is described.

  19. Force correcting atom centred potentials for generalised gradient approximated density functional theory: Approaching hybrid functional accuracy for geometries and harmonic frequencies in small chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Anatole von Lilienfeld, O.

    2013-08-01

    Generalised gradient approximated (GGA) density functional theory (DFT) typically overestimates polarisability and bond-lengths, and underestimates force constants of covalent bonds. To overcome this problem we show that one can use empirical force correcting atom centred potentials (FCACPs), parametrised for every nuclear species. Parameters are obtained through minimisation of a penalty functional that explicitly encodes hybrid DFT forces and static polarisabilities of reference molecules. For hydrogen, fluorine, chlorine and carbon the respective reference molecules consist of H2, F2, Cl2 and CH4. The transferability of this approach is assessed for harmonic frequencies in a small set of chlorofluorocarbon molecules. Numerical evidence, gathered for CF4, CCl4, CCl3F, CCl2F2, CClF3, ClF, HF, HCl, CFH3, CF2H2, CF3H, CHCl3, CH2Cl2 and CH3Cl indicates that the GGA+FCACP level of theory yields harmonic frequencies that are significantly more consistent with hybrid DFT values, as well as slightly reduced molecular polarisability.

  20. Sex Education and Ideals

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.; Spiecker, Ben

    2008-01-01

    This article argues that sex education should include sexual ideals. Sexual ideals are divided into sexual ideals in the strict sense and sexual ideals in the broad sense. It is argued that ideals that refer to the context that is deemed to be most ideal for the gratification of sexual ideals in the strict sense are rightfully called sexual…

  1. Chalcogenide centred gold complexes.

    PubMed

    Gimeno, M Concepción; Laguna, Antonio

    2008-09-01

    Chalcogenide-centred gold complexes are an important class of compounds in which a central chalcogen is surrounded by several gold atoms or gold and other metals. They have special characteristics such as unusual geometries, electron deficiency and properties such as luminescence or non-linear optical properties. The best known species are the trinuclear [E(AuPR3)3]+, 'oxonium' type species, that have high synthetic applicability, not only in other chalcogen-centred species, but in many other organometallic derivatives. The aurophilic interactions play an important role in the stability, preference for a particular geometry and luminescence properties in this type of derivatives (critical review, 117 references).

  2. Ideals and Category Typicality

    ERIC Educational Resources Information Center

    Kim, ShinWoo; Murphy, Gregory L.

    2011-01-01

    Barsalou (1985) argued that exemplars that serve category goals become more typical category members. Although this claim has received support, we investigated (a) whether categories have a single ideal, as negatively valenced categories (e.g., cigarette) often have conflicting goals, and (b) whether ideal items are in fact typical, as they often…

  3. Ideal female brow aesthetics.

    PubMed

    Griffin, Garrett R; Kim, Jennifer C

    2013-01-01

    The concept of the ideal female eyebrow has changed over time. Modern studies examining youthful brow aesthetics are reviewed. An analysis of ideal female brow characteristics as depicted in the Western print media between 1945 and 2011 was performed. This analysis provided objective evidence that the ideal youthful brow peak has migrated laterally over time to lie at the lateral canthus. There has been a nonstatistically significant trend toward lower and flatter brows. These findings are discussed in relation to current concepts of female brow aging, with repercussions regarding endoscopic brow lift and aesthetic forehead surgery.

  4. The Ideal Academy.

    ERIC Educational Resources Information Center

    Jervis, Jane L.

    1995-01-01

    This article discusses the faculty appointment system at Evergreen State College (Washington), which does not have tenure, academic departments, or academic ranks, in light of an ideal system that might have a core of long-term faculty supplemented by short-term faculty. It considers the need to balance institutional flexibility with faculty…

  5. The Ideal Promotion Effort.

    ERIC Educational Resources Information Center

    Morris, Edward L.

    The ideal promotional effort for an educational television (ETV) station is dependent on a professional approach to the problem. This means that each ETV station should employ a public relations manager and should keep him informed about all major station decisions. The Public Broadcasting Service (PBS) has a campaign of its own to bring attention…

  6. Quaternions and ideal flows

    NASA Astrophysics Data System (ADS)

    Eshraghi, H.; Gibbon, J. D.

    2008-08-01

    After a review of some of the recent works by Holm and Gibbon on quaternions and their application to Lagrangian flows, particularly the incompressible Euler equations and the equations of ideal MHD, this paper investigates the compressible and relativistic Euler equations using these methods.

  7. Ideal Integrating Bolometer

    NASA Technical Reports Server (NTRS)

    Kogut, A.; DiPirro, M.; Moseley, S. H.

    2004-01-01

    We describe a new "ideal integrator" bolometer as a prototype for a new generation of sensitive, flexible far-IR detectors suitable for use in large arrays. The combination of a non-dissipative sensor coupled with a fast heat switch provides breakthrough capabilities in both sensitivity and operation. The bolometer temperature varies linearly with the integrated infrared power incident on the detector, and may be sampled intermittently without loss of information between samples. The sample speed and consequent dynamic range depend only on the heat switch reset cycle and can be selected in software. Between samples, the device acts as an ideal integrator with noise significantly lower than resistive bolometers. Since there is no loss of information between samples, the device is well-suited for large arrays. A single SQUID readout could process an entire column of detectors, greatly reducing the complexity, power requirements, and cost of readout electronics for large pixel arrays.

  8. Delivering ideal employee experiences.

    PubMed

    Weiss, Marjorie D; Tyink, Steve; Kubiak, Curt

    2009-05-01

    Employee-centric strategies have moved from employee satisfaction and brand awareness to employee "affinity" or "attachment." In today's marketplace, occupational health nurses understand that differentiation (i.e., the perception of uniqueness) is the direct result of superior employee interactions, which lead to better employee care, enduring employee relationships, loyal employees, and satisfied employers. What drives employees to occupational health nurse attachment? The answer is a passion for rising above the competition to create ideal employee experiences.

  9. Capturing Medical Students’ Idealism

    PubMed Central

    Smith, Janice K.; Weaver, Donna B.

    2006-01-01

    PURPOSE Students’ idealism and desire to work with underserved populations decline as they progress from preclinical training through clerkships and residency. With an increasingly diverse population and increasing health disparities, academic health centers need to incorporate changes in their curricula to train socially responsible and idealistic physicians. International electives can provide valuable learning experiences to help achieve these goals. METHODS Sixty-six preclinical medical students at the University of Texas Medical Branch participated in an international elective from 1997 to 2005. After 1 week of didactics, they spent 3 weeks as part of a multidisciplinary medical team in rural Nicaragua. Postelective questionnaires were administered. From students’ responses, we identified common learning themes and grouped them under the categories of attitudes, awareness, and skills. Limitations included a self-selection bias, lack of a control group, and limited follow-up. RESULTS After the elective, students had an increased interest in volunteerism, humanitarian efforts, and working with underserved populations both in the United States and abroad, as well as more compassion toward the underserved. Students also reported a heightened awareness of social determinants of health and public health, and a broadened global perspective, as well as increased self-awareness. CONCLUSIONS Our findings illustrate that a well-structured, mentored experience in international health can have a positive impact on preclinical students’ attitudes, including their compassion, volunteerism, and interest in serving under-served populations, all measures of idealism. PMID:17003160

  10. Traces, ideals, and arithmetic means

    PubMed Central

    Kaftal, Victor; Weiss, Gary

    2002-01-01

    This article grew out of recent work of Dykema, Figiel, Weiss, and Wodzicki (Commutator structure of operator ideals) which inter alia characterizes commutator ideals in terms of arithmetic means. In this paper we study ideals that are arithmetically mean (am) stable, am-closed, am-open, soft-edged and soft-complemented. We show that many of the ideals in the literature possess such properties. We apply these notions to prove that for all the ideals considered, the linear codimension of their commutator space (the “number of traces on the ideal”) is either 0, 1, or ∞. We identify the largest ideal which supports a unique nonsingular trace as the intersection of certain Lorentz ideals. An application to elementary operators is given. We study properties of arithmetic mean operations on ideals, e.g., we prove that the am-closure of a sum of ideals is the sum of their am-closures. We obtain cancellation properties for arithmetic means: for principal ideals, a necessary and sufficient condition for first order cancellations is the regularity of the generator; for second order cancellations, sufficient conditions are that the generator satisfies the exponential Δ2-condition or is regular. We construct an example where second order cancellation fails, thus settling an open question. We also consider cancellation properties for inclusions. And we find and use lattice properties of ideals associated with the existence of “gaps.” PMID:12032287

  11. Space Sciences and Idealism

    NASA Astrophysics Data System (ADS)

    Popov, M.

    Erwin Schrodinger suggested that " Scientific knowledge forms part of the idealistic background of human life", which exalted man from a nude and savage state to true humanity [Science and Humanism, Cambridge, 1961, p9]. Modern space sciences an space exploration are a brilliant demonstration of the validity of Schrodinger's thesis on Idealism. Moreover, Schrodingers thesis could be considered also as a basic principle for the New Educational Space Philosophical Project "TIMAEUS"."TIMAEUS" is not only an attempt to to start a new dialogue between Science, the Humanities and Religion; but also it is an origin of the cultural innovations of our so strange of globilisation. TIMAEUS, thus, can reveal Idealism as something more fundamental , more refined, more developed than is now accepted by the scientific community and the piblic. TIMAEUS has a significant cultural agenda, connected with the high orbital performance of the synthetic arts, combining a knowledge of the truly spiritual as well as the universal. In particular, classical ballet as a synthetic art can be a new and powerful perfector and re-creator of the real human, real idealistic, real complex culture in orbit. As is well known, Carlo Blasis, the most important dance theorist of the 19t h .century, made probably the first attempts to use the scientific ideas of Leonardo da Vinci and Isaac Newton for the understanding of the gravitational nature of balance and allegro in ballet. In particular Blasis's idea of the limited use of the legs in classical dance realised by the gifted pupils of Enrico Cecchetti - M.Fokine, A.Pavlova and V.Nijinsky, with thinkable purity and elegance of style. V.Nijinsky in his remarkable animation of the dance of two dimensional creatures of a Euclidean flat world (L'Apres Midi d'un Faune,1912) discovered that true classical dance has some gravitational limits. For example, Nijinsky's Faunes and Nymphs mut use running on the heels (In accordance with "Partitura" 1916); they

  12. Thermal stability of idealized folded carbyne loops

    PubMed Central

    2013-01-01

    Self-unfolding items provide a practical convenience, wherein ring-like frames are contorted into a state of equilibrium and subsequently  pop up’ or deploy when perturbed from a folded structure. Can the same process be exploited at the molecular scale? At the limiting scale is a closed chain of single atoms, used here to investigate the limits of stability of such folded ring structures via full atomistic molecular dynamics. Carbyne is a one-dimensional carbon allotrope composed of sp-hybridized carbon atoms. Here, we explore the stability of idealized carbyne loops as a function of chain length, curvature, and temperature, and delineate an effective phase diagram between folded and unfolded states. We find that while overall curvature is reduced, in addition to torsional and self-adhesive energy barriers, a local increase in curvature results in the largest impedance to unfolding. PMID:24252156

  13. Elastin: a representative ideal protein elastomer.

    PubMed Central

    Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T

    2002-01-01

    During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774

  14. Dimensional Analysis Using Toric Ideals: Primitive Invariants

    PubMed Central

    Atherton, Mark A.; Bates, Ronald A.; Wynn, Henry P.

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer matrix from the initial integer matrix holding the exponents for the derived quantities. The matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by . One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of , is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found. PMID:25436774

  15. Be Ye Perfect? Religious Ideals in Education

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.

    2006-01-01

    This article explores the meaning of "religious ideals" and their possible role in education. "Religious ideals" are defined as ideals that acquire meaning due to a belief in transcendence or a divine being. Two kinds of religious ideals are being distinguished, namely ideals that are constituted by a belief in a transcendent being and ideals that…

  16. Non-Euclidean Ideal Spectrometry

    NASA Astrophysics Data System (ADS)

    Sá Earp, Henrique N.; Sicca, Vladmir; Kyotoku, Bernardo B. C.

    2016-12-01

    We describe the mathematical scheme for an anomaly-free ideal spectrometer, based on a 2-dimensional plane medium with conical regions of bounded slope. Moreover, the construction may be realised in many different configurations.

  17. Spaces of Ideal Convergent Sequences

    PubMed Central

    Mursaleen, M.; Sharma, Sunil K.

    2014-01-01

    In the present paper, we introduce some sequence spaces using ideal convergence and Musielak-Orlicz function ℳ = (Mk). We also examine some topological properties of the resulting sequence spaces. PMID:24592143

  18. Preoccupied with the Self: Towards Self-Responsible, Enterprising, Flexible and Self-Centred Subjectivity in Education

    ERIC Educational Resources Information Center

    Brunila, Kristiina; Siivonen, Päivi

    2016-01-01

    In the neoliberal order, the ideal self is self-responsible, enterprising, flexible and self-centred. Regarding this ideal we argue that the rise of therapisation in society, and in education, particularly, links both the therapeutic and enterprising discourses. The article examines how these discourses jointly produce and legitimate the ideal,…

  19. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  20. Winnipeg Centre Project.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    The Winnipeg Centre Project is a field-based, work-study program that attempts to create more appropriate education for the inner-city child. Sponsored by the Planning and Research Branch of the Department of Colleges and Universities Affairs and administered by Brandon University in consultation with the Winnipeg School Division, the project is…

  1. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  2. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  3. Wycheproof Education Centre.

    ERIC Educational Resources Information Center

    Sweetnam and Godfrey, Melbourne (Australia).

    The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…

  4. Discovering a Discovery Centre

    ERIC Educational Resources Information Center

    McCullagh, John; Stewart, James; Greenwood, Julian

    2007-01-01

    There has recently been a growth in the popularity of "science centres" and this development provides an excellent opportunity to support the primary science curriculum. Their use is therefore well worth including within initial teacher education courses. Hence, undergraduate student teachers at Stranmillis University College Belfast may…

  5. The Iranian Documentation Centre.

    ERIC Educational Resources Information Center

    Harvey, John F.

    The purpose of the Iranian Documentation Centr (Irandoc) was to collect that portion of the world's literature which was pertinent to Iran's research interests, to organize that material, and to promote its use by Iranian researchers. Stated more succinctly, Irandoc's purpose was to obtain ready access to the world's scientific literature in order…

  6. Idealism and materialism in perception.

    PubMed

    Rose, David; Brown, Dora

    2015-01-01

    Koenderink (2014, Perception, 43, 1-6) has said most Perception readers are deluded, because they believe an 'All Seeing Eye' observes an objective reality. We trace the source of Koenderink's assertion to his metaphysical idealism, and point to two major weaknesses in his position-namely, its dualism and foundationalism. We counter with arguments from modern philosophy of science for the existence of an objective material reality, contrast Koenderink's enactivism to his idealism, and point to ways in which phenomenology and cognitive science are complementary and not mutually exclusive.

  7. Aiming for the ideal synthesis.

    PubMed

    Gaich, Tanja; Baran, Phil S

    2010-07-16

    The field of total synthesis has a rich history and a vibrant future. Landmark advances and revolutionary strides in the logic of synthesis have put the practicing chemist in the enviable position of being able to create nearly any molecule with enough time and effort. The stage is now set for organic chemists to aim for "ideality" in the way molecules are synthesized. This perspective presents a simple and informative definition of "ideality" and demonstrates its use during the self-evaluation of several syntheses from our laboratory.

  8. An ideal free-kick

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Faella, O.

    2017-01-01

    The kinematics of a free-kick is studied. As in projectile motion, the free-kick is ideal since we assume that a point-like ball moves in the absence of air resistance. We have experienced the fortunate conjuncture of a classical mechanics lecture taught right before an important football game. These types of sports events might trigger a great deal of attention from the classroom. The idealized problem is devised in such a way that students are eager to come to the end of the whole story.

  9. Dimensional analysis using toric ideals: primitive invariants.

    PubMed

    Atherton, Mark A; Bates, Ronald A; Wynn, Henry P

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.

  10. Temperature and the Ideal Gas

    ERIC Educational Resources Information Center

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  11. Chemical Laws, Idealization and Approximation

    ERIC Educational Resources Information Center

    Tobin, Emma

    2013-01-01

    This paper examines the notion of laws in chemistry. Vihalemm ("Found Chem" 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all "ceteris paribus" laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are…

  12. SPOT4 Management Centre

    NASA Technical Reports Server (NTRS)

    Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.

    1994-01-01

    In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.

  13. Elderly Care Centre

    NASA Astrophysics Data System (ADS)

    Wagiman, Aliani; Haja Bava Mohidin, Hazrina; Ismail, Alice Sabrina

    2016-02-01

    The demand for elderly centre has increased tremendously abreast with the world demographic change as the number of senior citizens rose in the 21st century. This has become one of the most crucial problems of today's era. As the world progress into modernity, more and more people are occupied with daily work causing the senior citizens to lose the care that they actually need. This paper seeks to elucidate the best possible design of an elderly care centre with new approach in order to provide the best service for them by analysing their needs and suitable activities that could elevate their quality of life. All these findings will then be incorporated into design solutions so as to enhance the living environment for the elderly especially in Malaysian context.

  14. Exotic Phases of Ultracold Atoms

    DTIC Science & Technology

    2011-11-18

    lattices". 5 10 July 2007 Henri Poincare Institute, Paris, France, Quantum Gases Program Seminar: “Some unconventional phases of cold atomic matter with or...Pittsburgh, PA. (Attended) 10. PI, Paris Program on “Quantum Gases”, Centre Emile Borel, Institut Henri Poincaré, April 23- July 20, 2007, Paris...Pittsburgh. Promoted to the rank of Associated Profes- sor, effective Sep 1, 2009. 7. Visiting Scientist, Centre Emile Borel, Institut Henri Poincaré

  15. On central ideals of finitely generated binary (-1,1)-algebras

    SciTech Connect

    Pchelintsev, S V

    2002-04-30

    In 1975 the author proved that the centre of a free finitely generated (-1,1)-algebra contains a non-zero ideal of the whole algebra. Filippov proved that in a free alternative algebra of rank {>=}4 there exists a trivial ideal contained in the associative centre. Il'tyakov established that the associative nucleus of a free alternative algebra of rank 3 coincides with the ideal of identities of the Cayley-Dickson algebra. In the present paper the above-mentioned theorem of the author is extended to free finitely generated binary (-1,1)-algebras. Theorem. The centre of a free finitely generated binary (-1,1)-algebra of rank {>=}3 over a field of characteristic distinct from 2 and 3 contains a non-zero ideal of the whole algebra. As a by-product, we shall prove that the T-ideal generated by the function (z,x,(x,x,y)) in a free binary (-1,1)-algebra of finite rank is soluble. We deduce from this that the basis rank of the variety of binary (-1,1)-algebras is infinite.

  16. Imagining the ideal dairy farm.

    PubMed

    Cardoso, Clarissa S; Hötzel, Maria José; Weary, Daniel M; Robbins, Jesse A; von Keyserlingk, Marina A G

    2016-02-01

    Practices in agriculture can have negative effects on the environment, rural communities, food safety, and animal welfare. Although disagreements are possible about specific issues and potential solutions, it is widely recognized that public input is needed in the development of socially sustainable agriculture systems. The aim of this study was to assess the views of people not affiliated with the dairy industry on what they perceived to be the ideal dairy farm and their associated reasons. Through an online survey, participants were invited to respond to the following open-ended question: "What do you consider to be an ideal dairy farm and why are these characteristics important to you?" Although participants referenced social, economic, and ecological aspects of dairy farming, animal welfare was the primary issue raised. Concern was expressed directly about the quality of life for the animals, and the indirect effect of animal welfare on milk quality. Thus participants appeared to hold an ethic for dairy farming that included concern for the animal, as well as economic, social, and environmental aspects of the dairy system.

  17. Measuring explosive non-ideality

    SciTech Connect

    Souers, P C

    1999-02-17

    The sonic reaction zone length may be measured by four methods: (1) size effect, (2) detonation front curvature, (3) crystal interface velocity and (4) in-situ gauges. The amount of data decreases exponentially from (1) to (4) with there being almost no gauge data for prompt detonation at steady state. The ease and clarity of obtaining the reaction zone length increases from (1) to (4). The method of getting the reaction zone length, , is described for the four methods. A measure of non-ideality is proposed: the reaction zone length divided by the cylinder radius. N = /R{sub o}. N = 0 for true ideality. It also decreases with increasing radius as it should. For N < 0.10, an equilibrium EOS like the JWL may be used. For N > 0.10, a time-dependent description is essential. The crystal experiment, which measures the particle velocity of an explosive-transparent material interface, is presently rising in importance. We examine the data from three experiments and apply: (1) an impedance correction that transfers the explosive C-J particle velocity to the corresponding value for the interface, and (2) multiplies the interface time by 3/4 to simulate the explosive speed of sound. The result is a reaction zone length comparable to those obtained by other means. A few explosives have reaction zones so small that the change of slope in the particle velocity is easily seen.

  18. [The primary healthcare centres].

    PubMed

    Brambilla, Antonio; Maciocco, Gavino

    2014-04-01

    The central attributes of primary care are: first contact (accessibility), longitudinality (person- focused preventive and curative care overtime), patient-oriented comprehensiveness and coordination (including navigation towards secondary and tertiary care). Besides taking care of the needs of the individuals, primary health care teams are also looking at the community, especially when addressing social determinants of health. The rationale for the benefits for primary care for health has been found in: 1) greater access to needed services; 2) better quality of care; 3) a greater focus on prevention; 4) early management of health problems; 5) organizing and delivering high quality care for chronic non-communicable diseases. This paper describes the role of primary healthcare centres in strengthening community primary services and in reducing health inequalities. Furthemore, the experiences of Regional Health Services from Tuscany and Emilia-Romagna are discussed, with a brief overview of the literature.

  19. An orthotropic source of thermal atoms

    SciTech Connect

    Dinneen, T.; Ghiorso, A.; Gould, H.

    1995-07-01

    A source of thermal atoms that emits 100% of its atoms into a narrow beam with small angular divergence is described. It uses both surface ionization and surface neutralization in conjunction with electric fields to selectively emit a highly directional (orthotropic) beam of neutral atoms. The ion recycling process can be modulated electronically and lends itself to scanning. This orthotropic source is ideal for the efficient use of rare atomic species, well suited for atomic clocks, essential in the efficient delivery of radioactive atoms to optical traps, and has potential to produce ultra high intensity beams of stable atoms.

  20. Computational Methods for Ideal Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kercher, Andrew D.

    Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency

  1. Should "Teacher Centred Teaching" Replace "Student Centred Learning"?

    ERIC Educational Resources Information Center

    Bailey, Patrick D.

    2008-01-01

    Mission statements of most HEIs across the UK support "student centred learning". In this paper, it is suggested that "teacher centred teaching" should also have a major role to play, improving the quality of the learning experience in higher education. Students are extremely diverse in their skills, weaknesses, and learning…

  2. Single atom electrochemical and atomic analytics

    NASA Astrophysics Data System (ADS)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  3. Ideal-viscoplastic extrusion model

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.; Gottlieb, J. J.

    An approximate one-dimensional analysis is presented for the extrusion of incompressible ideal-viscoplastic material through converging axisymmetric dies. The extrusion model incorporates the fundamental effects of inertia, plastic deformation, strain-rate behavior, and surface friction by employing the constitutive relations for a Bingham-type body to describe the stress-strain-rate behavior of the extrudite, an appropriate quasi-steady localy-spherical kinematically-admissible velocity field to represent the actual flowfield, and a combination Coulomb and constant-shear-factor laws to estimate the frictional forces along the die surface. Comparisons of the predictions of the theory to experimental data and finite-element computations demonstrate that it is a useful and economical tool for predicting many extrusion processes.

  4. [The ideal body: media pedagogy].

    PubMed

    Ribeiro, Rubia Guimarães; da Silva, Karen Schein; Kruse, Maria Henriqueta Luce

    2009-03-01

    We present enunciations that circulate in the media regarding the body, discussing the ways in which the speeches related with the maintenance of health and aesthetics invest in its improvement. Therefore, we used the Caderno Vida, a weekly insert of Zero Hora, for we understand it as owner of a proper speech that has the power of subjectivate people The analysis is part of Cultural Studies and it is based on the ideas of Michel Foucault. The methodological strategy used was the speech analysis of subjects about body care. The periodical questions its readers using speeches that point to beauty health and success The constructed categories were: how is the ideal body, what to do to have such body and why we must have this body Balanced feeding, practice of regular physical activities and the accomplishment of plastic surgeries are recommendations recurrently found in weekly inserts.

  5. Steady non-ideal detonations

    NASA Astrophysics Data System (ADS)

    Sharpe, Gary

    2009-06-01

    Theories for determining the velocity of detonation (VoD) in highly non-ideal explosives, e.g. commercial explosives used in mining, are discussed. Such explosives have critical charge diameters of several centimetres. An analysis of the interaction between detonations and confining materials along the explosive-confiner interface reveals there a two main types of interaction. In the first (denoted here by case 1) the detonation drives an oblique shock into the confiner. For the second (case 2), a wave propagates in the confiner ahead of the detonation in the explosive. Shock polar interactions are examined for commercial explosives and rocks, which shows that a significant proportion of problems are case 2 in mining. For case 1, numerical simulations show that for a given explosive model there is a unique relationship (valid for all charge diameters and confinements) between the VoD and the curvature of the detonation shock at the charge axis. This relationship is shown to be well predicted by a quasi-one-dimensional type analysis. A simple detonation shock dynamics method which uses this relationships predicts well the VoD even in highly non-ideal cases, provided the explosive is sufficiently confined (usually the case in mining), but which is inaccurate in the limit of an unconfined charge. Preliminary results of a novel variational method for solving the unconfined situation are also discussed. Numerical simulations are performed to investigate the coupling mechanisms in case 2 situations, including the influence on diameter effects. It is shown that, in agreement with an approximate theory, the detonation is driven up to VoDs above the confiner's sound speed, and the wave in the confiner weakly pre-compresses the explosive ahead of the detonation front.

  6. Recharging Our Sense of Idealism: Concluding Thoughts

    ERIC Educational Resources Information Center

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  7. (Re)Visioning the Centre: Education Reform and the "Ideal" Citizen of the Future

    ERIC Educational Resources Information Center

    Graham, Linda J.

    2007-01-01

    Discourses of public education reform, like that exemplified within the Queensland Government's future vision document, Queensland State Education-2010 (QSE-2010), position schooling as a panacea to pervasive social instability and a means to achieve a new consensus. However, in unravelling the many conflicting statements that conjoin to form…

  8. Comparison of real and idealized cetacean flippers

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Weber, Paul; Howle, Laurens; Fish, Frank

    2009-11-01

    We explored the consequences of the idealization process by creating exact scale models of cetacean flippers using CT scans, creating corresponding idealized versions, then determining the hydrodynamic characteristics of the models via water tunnel testing. We found that the majority of the idealized models did not exhibit fluid dynamic properties that were drastically different from those of the real models, although multiple consequences resulting from the idealization process were evident. Drag performance was significantly improved by idealization. Overall, idealization is an excellent way to capture the relevant effects of a phenomena found in nature, which spares the researcher from having to painstakingly create exact models, although we have found that there are situations where idealization may have unintended consequences such as one model that exhibited a decrease in lift performance.

  9. Ideal statistically quasi Cauchy sequences

    NASA Astrophysics Data System (ADS)

    Savas, Ekrem; Cakalli, Huseyin

    2016-08-01

    An ideal I is a family of subsets of N, the set of positive integers which is closed under taking finite unions and subsets of its elements. A sequence (xk) of real numbers is said to be S(I)-statistically convergent to a real number L, if for each ɛ > 0 and for each δ > 0 the set { n ∈N :1/n | { k ≤n :| xk-L | ≥ɛ } | ≥δ } belongs to I. We introduce S(I)-statistically ward compactness of a subset of R, the set of real numbers, and S(I)-statistically ward continuity of a real function in the senses that a subset E of R is S(I)-statistically ward compact if any sequence of points in E has an S(I)-statistically quasi-Cauchy subsequence, and a real function is S(I)-statistically ward continuous if it preserves S(I)-statistically quasi-Cauchy sequences where a sequence (xk) is called to be S(I)-statistically quasi-Cauchy when (Δxk) is S(I)-statistically convergent to 0. We obtain results related to S(I)-statistically ward continuity, S(I)-statistically ward compactness, Nθ-ward continuity, and slowly oscillating continuity.

  10. Steady Non-Ideal Detonation

    NASA Astrophysics Data System (ADS)

    Sharpe, G. J.; Luheshi, M. Y.; Braithwaite, M.; Falle, S. A. E. G.

    2009-12-01

    Highly non-ideal explosives, such as commercial ammonium nitrate based explosives used in mining and blasting, have critical charge diameters of several centimetres and relatively low detonation speeds. Shock polar match analyses between these explosives and confining inert materials give two main types of interactions. For the first type (denoted here by case I), the detonation drives an oblique shock into the confiner. For the second type (case II), a wave propagates in the confiner ahead of the detonation wave in the explosive. In case I, numerical simulations show that for a given explosive model there is a unique relationship (valid for all charge diameters and confinements) between the velocity of detonation (VoD) and the curvature of the detonation shock at the charge axis. This relationship is shown to be well predicted by a quasi-one-dimensional analysis. A simple detonation shock dynamics method which uses this relationship predicts the VoD provided the explosive is sufficiently confined (usually the case in mining), but is inaccurate in the limit of an unconfined charge. For commercial explosives confined by rocks, a significant proportion of problems are case II. Numerical simulations are performed to investigate the coupling mechanisms in these situations. It is found that, in agreement with an approximate theory, the detonation is driven up to VoDs near the confiner's sound speed, and the wave in the confiner weakly pre-compresses the explosive ahead of the detonation front.

  11. CMCC Data Distribution Centre

    NASA Astrophysics Data System (ADS)

    Aloisio, Giovanni; Fiore, Sandro; Negro, A.

    2010-05-01

    The CMCC Data Distribution Centre (DDC) is the primary entry point (web gateway) to the CMCC. It is a Data Grid Portal providing a ubiquitous and pervasive way to ease data publishing, climate metadata search, datasets discovery, metadata annotation, data access, data aggregation, sub-setting, etc. The grid portal security model includes the use of HTTPS protocol for secure communication with the client (based on X509v3 certificates that must be loaded into the browser) and secure cookies to establish and maintain user sessions. The CMCC DDC is now in a pre-production phase and it is currently used only by internal users (CMCC researchers and climate scientists). The most important component already available in the CMCC DDC is the Search Engine which allows users to perform, through web interfaces, distributed search and discovery activities by introducing one or more of the following search criteria: horizontal extent (which can be specified by interacting with a geographic map), vertical extent, temporal extent, keywords, topics, creation date, etc. By means of this page the user submits the first step of the query process on the metadata DB, then, she can choose one or more datasets retrieving and displaying the complete XML metadata description (from the browser). This way, the second step of the query process is carried out by accessing to a specific XML document of the metadata DB. Finally, through the web interface, the user can access to and download (partially or totally) the data stored on the storage device accessing to OPeNDAP servers and to other available grid storage interfaces. Requests concerning datasets stored in deep storage will be served asynchronously.

  12. Comparison of real and idealized cetacean flippers.

    PubMed

    Weber, P W; Murray, M M; Howle, L E; Fish, F E

    2009-12-01

    When a phenomenon in nature is mimicked for practical applications, it is often done so in an idealized fashion, such as representing the shape found in nature with convenient, piece-wise smooth mathematical functions. The aim of idealization is to capture the advantageous features of the natural phenomenon without having to exactly replicate it, and it is often assumed that the idealization process does in fact capture the relevant geometry. We explored the consequences of the idealization process by creating exact scale models of cetacean flippers using CT scans, creating corresponding idealized versions and then determining the hydrodynamic characteristics of the models via water tunnel testing. We found that the majority of the idealized models did not exhibit fluid dynamic properties that were drastically different from those of the real models, although multiple consequences resulting from the idealization process were evident. Drag performance was significantly improved by idealization. Overall, idealization is an excellent way to capture the relevant effects of a phenomenon found in nature, which spares the researcher from having to painstakingly create exact models, although we have found that there are situations where idealization may have unintended consequences such as one model that exhibited a decrease in lift performance.

  13. RTEMS CENTRE - Support and Maintenance CENTRE to RTEMS Operating System

    NASA Astrophysics Data System (ADS)

    Silva, H.; Constantino, A.; Mota, M.; Freitas, D.; Zulianello, M.

    2007-08-01

    Real Time Operating System for Multiprocessor Systems (RTEMS) CENTRE is a project under the ESA-Portugal Task Force aiming to develop a support and maintenance centre to RTEMS operating system. The project can be summarized in two main streams, first one related to design, development, maintenance and integration of tools to augment and sustain RTEMS operating system and second stream linked to the creation of technical competences with a support site to RTEMS operating system in Europe. RTEMS CENTRE intends to minimize the cost of the incorporation/integration of airborne and space applications in this Real Time Operating System. The centre started officially in the 15th of November 2006 and is currently in the study definition and system engineering phase.

  14. Ultracold strongly coupled gas: A near-ideal liquid

    SciTech Connect

    Gelman, Boris A.; Shuryak, Edward V.; Zahed, Ismail

    2005-10-15

    Feshbach resonances of trapped ultracold alkali-metal atoms allow to vary the atomic scattering length a. At very large values of a the system enters an universal strongly coupled regime in which its properties--the ground-state energy, pressure, etc.--become independent of a. We discuss the transport properties of such systems. In particular, the universality arguments imply that the shear viscosity of ultracold Fermi atoms at the Feschbach resonance is proportional to the particle number density n and the Plank constant ({Dirac_h}/2{pi}): {eta}=({Dirac_h}/2{pi})n{alpha}{sub {eta}}, where {alpha}{sub {eta}} is a universal constant. Using Heisenberg uncertainty principle and Einstein's relation between diffusion and viscosity we argue that the viscosity has the lower bound given by {alpha}{sub {eta}}{<=}(6{pi}){sup -1}. We relate the damping of low-frequency density oscillations of ultracold optically trapped {sup 6}Li atoms to viscosity and find that the value of the coefficient {alpha}{sub {eta}} is about 0.3. We also show that such a small viscosity cannot be explained by kinetic theory based on binary scattering. We conclude that the system of ultracold atoms near the Feshbach resonance is a near-ideal liquid.

  15. Ultracold strongly coupled gas: A near-ideal liquid

    NASA Astrophysics Data System (ADS)

    Gelman, Boris A.; Shuryak, Edward V.; Zahed, Ismail

    2005-10-01

    Feshbach resonances of trapped ultracold alkali-metal atoms allow to vary the atomic scattering length a . At very large values of a the system enters an universal strongly coupled regime in which its properties—the ground-state energy, pressure, etc.—become independent of a . We discuss the transport properties of such systems. In particular, the universality arguments imply that the shear viscosity of ultracold Fermi atoms at the Feschbach resonance is proportional to the particle number density n and the Plank constant ℏ : η=ℏnαη , where αη is a universal constant. Using Heisenberg uncertainty principle and Einstein’s relation between diffusion and viscosity we argue that the viscosity has the lower bound given by αη⩽(6π)-1 . We relate the damping of low-frequency density oscillations of ultracold optically trapped Li6 atoms to viscosity and find that the value of the coefficient αη is about 0.3. We also show that such a small viscosity cannot be explained by kinetic theory based on binary scattering. We conclude that the system of ultracold atoms near the Feshbach resonance is a near-ideal liquid.

  16. Ideal stars and General Relativity

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    2007-12-01

    We study a system of differential equations that governs the distribution of matter in the theory of General Relativity. The new element in this paper is the use of a dynamical action principle that includes all the degrees of freedom, matter as well as metric. The matter lagrangian defines a relativistic version of non-viscous, isentropic hydrodynamics. The matter fields are a scalar density and a velocity potential; the conventional, four-vector velocity field is replaced by the gradient of the potential and its scale is fixed by one of the Eulerian equations of motion, an innovation that significantly affects the imposition of boundary conditions. If the density is integrable at infinity, then the metric approaches the Schwarzschild metric at large distances. There are stars without boundary and with finite total mass; the metric shows rapid variation in the neighbourhood of the Schwarzschild radius and there is a very small core where a singularity indicates that the gas laws break down. For stars with boundary there emerges a new, critical relation between the radius and the gravitational mass, a consequence of the stronger boundary conditions. Tentative applications are suggested, to certain Red Giants, and to neutron stars, but the investigation reported here was limited to homogeneous polytropes. Comparison with the results of Oppenheimer and Volkoff on neutron cores shows a close agreement of numerical results. However, in the model the boundary of the star is fixed uniquely by the required matching of the interior metric to the external Schwarzschild metric, which is not the case in the traditional approach. There are solutions for which the metric is very close to the Schwarzshild metric everywhere outside the horizon, where the source is concentrated. The Schwarzschild metric is interpreted as the metric of an ideal, limiting configuration of matter, not as the metric of empty space.

  17. Practicing Identity: A Crafty Ideal?

    NASA Astrophysics Data System (ADS)

    Brysbaert, A.; Vetters, M.

    This paper focuses on the materialization of technological practices as a form of identity expression. Contextual analyses of a Mycenaean workshop area in the Late Bronze Age citadel of Tiryns (Argolis, Greece) are presented to investigate the interaction of different artisans under changing socio-political and economic circumstances. The case study indicates that although certain technological practices are often linked to specific crafts, they do not necessarily imply the separation of job tasks related to the working of one specific material versus another. Shared technological practices and activities, therefore, may be a factor in shaping cohesive group identities of specialized artisans. Since tracing artisans' identities is easier said than done on the basis of excavated materials alone, we employ the concepts of multiple chaînes opératoires combined with cross-craft interactions as a methodology in order to retrieve distinctive sets of both social and technological practices from the archaeological remains. These methodological concepts are not restricted to a specific set of steps in the production cycle, but ideally encompass reconstructing contexts of extraction, manufacture, distribution and discard/reuse for a range of artefacts. Therefore, these concepts reveal both technological practices, and, by contextualising these technological practices in their spatial layout, equally focus on social contacts that would have taken place during any of these actions. Our detailed contextual study demonstrates that the material remains when analysed in their entirety are complementary to textual evidence. In this case study they even form a source of information on palatial spheres of life about which the fragmentary Linear B texts, so far, remain silent.

  18. Minister unveils new nanotech centres

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2009-06-01

    Three new nanotechnology research centres are to be set up in France as part of a €70m government plan to help French companies in the sector. Researchers at the new centres, which will be located in Grenoble, Saclay (near Paris) and Toulouse, will be encouraged to collaborate with industry to develop new nanotech-based products. Dubbed NANO-INNOV, the new plan includes €46m for two new buildings at Saclay, with the rest being used to buy new equipment at the three centres and to fund grant proposals from staff to the French National Research Agency (ANR).

  19. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships

    PubMed Central

    Rodriguez, Lindsey M.; Hadden, Benjamin W.; Knee, C. Raymond

    2015-01-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one’s relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes. PMID:25821396

  20. Correlation of ideal and actual shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The relation between the ideal and actual shear strengths and friction properties of clean metals in contact with clean diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum is discussed. An estimate of the ideal shear strength for metals is obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal, and the interplanar spacing of the shearing planes. The coefficient of friction for metals is shown to be correlated with both the ideal and actual shear strength of metals. The higher the strength of the metal, the lower the coefficient of friction occurs.

  1. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.

    PubMed

    Zheng, Peng; Arantes, Guilherme M; Field, Martin J; Li, Hongbin

    2015-06-25

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions.

  2. Ideals as Anchors for Relationship Experiences

    PubMed Central

    Frye, Margaret; Trinitapoli, Jenny

    2016-01-01

    Research on young-adult sexuality in sub-Saharan Africa typically conceptualizes sex as an individual-level risk behavior. We introduce a new approach that connects the conditions surrounding the initiation of sex with subsequent relationship well-being, examines relationships as sequences of interdependent events, and indexes relationship experiences to individually held ideals. New card-sort data from southern Malawi capture young women’s relationship experiences and their ideals in a sequential framework. Using optimal matching, we measure the distance between ideal and experienced relationship sequences to (1) assess the associations between ideological congruence and perceived relationship well-being, (2) compare this ideal-based approach to other experience-based alternatives, and (3) identify individual- and couple-level correlates of congruence between ideals and experiences in the romantic realm. We show that congruence between ideals and experiences conveys relationship well-being along four dimensions: expressions of love and support, robust communication habits, perceived biological safety, and perceived relationship stability. We further show that congruence is patterned by socioeconomic status and supported by shared ideals within romantic dyads. We argue that conceiving of ideals as anchors for how sexual experiences are manifest advances current understandings of romantic relationships, and we suggest that this approach has applications for other domains of life. PMID:27110031

  3. Maintaining ideal body weight counseling sessions

    SciTech Connect

    Brammer, S.H.

    1980-10-09

    The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

  4. Ideal and Nonideal Reasoning in Educational Theory

    ERIC Educational Resources Information Center

    Jaggar, Alison M.

    2015-01-01

    The terms "ideal theory" and "nonideal theory" are used in contemporary Anglophone political philosophy to identify alternative methodological approaches for justifying normative claims. Each term is used in multiple ways. In this article Alison M. Jaggar disentangles several versions of ideal and nonideal theory with a view to…

  5. Kirkwood-Buff integrals for ideal solutions

    NASA Astrophysics Data System (ADS)

    Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.

    2010-04-01

    The Kirkwood-Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components.

  6. The digital eczema centre utrecht.

    PubMed

    van Os-Medendorp, Harmieke; van Veelen, Carien; Hover, Maaike; Eland-de Kok, Petra; Bruijnzeel-Koomen, Carla; Sonnevelt, Gert-Jan; Mensing, Geert; Pasmans, Suzanne

    2010-01-01

    The University Medical Centre Utrecht (UMC Utrecht) has developed an eczema portal that combines e-consulting, monitoring and self-management training by a dermatology nurse online for patients and parents of young children with atopic dermatitis (AD). Patient satisfaction with the portal was high. It could be extended to become a Digital Eczema Centre for multidisciplinary collaboration between health-care providers from different locations and the patient. Before starting the construction of the Digital Eczema Centre, the feasibility was examined by carrying out a business case analysis. The purposes, strength and weaknesses showed that the Digital Eczema Centre offered opportunities to improve care for patients with AD. The financial analysis resulted in a medium/best case scenario with a positive result of euro50-240,000 over a period of five years. We expect that the Digital Eczema Centre will increase the accessibility and quality of care. The web-based patient record and the digital chain-of-care promote the involvement of patients, parents and multidisciplinary teams as well as the continuity and coordination of care.

  7. The ideal strength and mechanical hardness of solids

    SciTech Connect

    Krenn, Christopher Robert

    2000-04-01

    Relationships between intrinsic mechanical hardness and atomic-scale properties are reviewed, Hardness scales closely and linearly with shear modulus for a given class of material (covalent, ionic or metallic). A two-parameter fit and a Peierls-stress model produce a more universal scaling relationship, but no model can explain differences in hardness between the transition metal carbides and nitrides. Calculations of ''ideal strength'' (defined by the limit of elastic stability of a perfect crystal) are proposed. The ideal shear strengths of fcc aluminum and copper are calculated using ab initio techniques and allowing for structural relaxation of all five strain components other than the imposed strain. The strengths of Al and Cu are similar (8-9% of the shear modulus), but the geometry of the relaxations in Al and Cu is very different. The relaxations are consistent with experimentally measured third-order elastic constants. The general thermodynamic conditions of elastic stability that set the upper limits of mechanical strength are derived. The conditions of stability are shown for cubic (hydrostatic), tetragonal (tensile) and monoclinic (shear) distortions of a cubic crystal. The implications of this stability analysis to first-principles calculations of ideal strength are discussed, and a method to detect instabilities orthogonal to the direction of the applied stress is identified. The relaxed ideal shear and tensile strengths of bcc tungsten are also calculated using ab initio techniques and are favorably compared to recent nano-indentation measurements. The {100} tensile strength (29.5 GPa) is governed by the Bain instability. The shear strengths in the weak directions on {110}, {112}, and {123} planes are very nearly equal (~ 18 GPa) and occur at approximately the same strain (17-18%). This isotropy is a function of the linear elastic isotropy for shear in directions containing <111> in bcc and of the atomic configurations of energetic saddle points

  8. Person-centred reflective practice.

    PubMed

    Devenny, Bob; Duffy, Kathleen

    Person-centred health and person-centred care have gained prominence across the UK following the publication of reports on public inquiries exploring failings in care. Self-awareness and participation in reflective practice are recognised as vital to supporting the person-centred agenda. This article presents an education framework for reflective practice, developed and used in one NHS board in Scotland, and based on the tenets of the clinical pastoral education movement. Providing an insight into the usefulness of a spiritual component in the reflective process, the framework provides an opportunity for nurses and other healthcare professionals to examine the spiritual dimensions of patient encounters, their own values and beliefs, and the effect these may have on their practice.

  9. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  10. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  11. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  12. Ideal Gas Laws: Experiments for General Chemistry

    ERIC Educational Resources Information Center

    Deal, Walter J.

    1975-01-01

    Describes a series of experiments designed to verify the various relationships implicit in the ideal gas equation and shows that the success of the Graham's law effusion experiments can be explained by elementary hydrodynamics. (GS)

  13. Medical learning curves and the Kantian ideal

    PubMed Central

    Le Morvan, P; Stock, B

    2005-01-01

    A hitherto unexamined problem for the "Kantian ideal" that one should always treat patients as ends in themselves, and never only as a means to other ends, is explored in this paper. The problem consists of a prima facie conflict between this Kantian ideal and the reality of medical practice. This conflict arises because, at least presently, medical practitioners can only acquire certain skills and abilities by practising on live, human patients, and given the inevitability and ubiquity of learning curves, this learning requires some patients to be treated only as a means to this end. A number of ways of attempting to establish the compatibility of the Kantian Ideal with the reality of medical practice are considered. Each attempt is found to be unsuccessful. Accordingly, until a way is found to reconcile them, we conclude that the Kantian ideal is inconsistent with the reality of medical practice. PMID:16131552

  14. Ideal shrinking and expansion of discrete sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1986-01-01

    Ideal methods are described for shrinking or expanding a discrete sequence, image, or image sequence. The methods are ideal in the sense that they preserve the frequency spectrum of the input up to the Nyquist limit of the input or output, whichever is smaller. Fast implementations that make use of the discrete Fourier transform or the discrete Hartley transform are described. The techniques lead to a new multiresolution image pyramid.

  15. Three special classes of Wintgen ideal submanifolds

    NASA Astrophysics Data System (ADS)

    Xie, Zhenxiao

    2017-04-01

    Wintgen ideal submanifolds in space forms are those ones attaining equality pointwise in the so-called DDVV inequality which relates the scalar curvature, the mean curvature and the normal scalar curvature. In this paper, we investigate three special classes of Wintgen ideal submanifolds: the ones with constant mean curvature, the ones with constant scalar curvature and the ones with constant normal scalar curvature. Some characterization results are given.

  16. Decomposition theorem in ideal topological spaces

    NASA Astrophysics Data System (ADS)

    AL-omeri, W.; Noorani, Mohd. Salmi; AL-Omari, A.

    2014-06-01

    We introduce new classes of sets called a* -I -open,A-β-I-open sets, A-pre* -I-open sets, strongly T-I -sets, A-β-T-I-sets, strongly BA -I -sets, BA -I -sets, and δβA -I -open sets in ideal topological spaces. Using these sets, to obtain decompositions of continuity in an ideal topological space.

  17. The Statistical Mechanics of Ideal MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  18. Guiding Center Equations for Ideal Magnetohydrodynamic Modes

    SciTech Connect

    Roscoe B. White

    2013-02-21

    Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through δ~B = ∇ X (ξ X B) however perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement ξ are derived which perserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

  19. Guiding center equations for ideal magnetohydrodynamic modes

    SciTech Connect

    White, R. B.

    2013-04-15

    Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through {delta}B-vector={nabla} Multiplication-Sign ({xi}-vector Multiplication-Sign B-vector), however, perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories, the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement {xi}-vector are derived which preserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

  20. Molecular determinants of cadherin ideal bond formation: Conformation-dependent unbinding on a multidimensional landscape

    PubMed Central

    Manibog, Kristine; Sankar, Kannan; Kim, Sun-Ae; Zhang, Yunxiang; Jernigan, Robert L.; Sivasankar, Sanjeevi

    2016-01-01

    Classical cadherin cell–cell adhesion proteins are essential for the formation and maintenance of tissue structures; their primary function is to physically couple neighboring cells and withstand mechanical force. Cadherins from opposing cells bind in two distinct trans conformations: strand-swap dimers and X-dimers. As cadherins convert between these conformations, they form ideal bonds (i.e., adhesive interactions that are insensitive to force). However, the biophysical mechanism for ideal bond formation is unknown. Here, we integrate single-molecule force measurements with coarse-grained and atomistic simulations to resolve the mechanistic basis for cadherin ideal bond formation. Using simulations, we predict the energy landscape for cadherin adhesion, the transition pathways for interconversion between X-dimers and strand-swap dimers, and the cadherin structures that form ideal bonds. Based on these predictions, we engineer cadherin mutants that promote or inhibit ideal bond formation and measure their force-dependent kinetics using single-molecule force-clamp measurements with an atomic force microscope. Our data establish that cadherins adopt an intermediate conformation as they shuttle between X-dimers and strand-swap dimers; pulling on this conformation induces a torsional motion perpendicular to the pulling direction that unbinds the proteins and forms force-independent ideal bonds. Torsional motion is blocked when cadherins associate laterally in a cis orientation, suggesting that ideal bonds may play a role in mechanically regulating cadherin clustering on cell surfaces. PMID:27621473

  1. Adjoint sensitivity study on idealized explosive cyclogenesis

    NASA Astrophysics Data System (ADS)

    Chu, Kekuan; Zhang, Yi

    2016-06-01

    The adjoint sensitivity related to explosive cyclogenesis in a conditionally unstable atmosphere is investigated in this study. The PSU/NCAR limited-area, nonhydrostatic primitive equation numerical model MM5 and its adjoint system are employed for numerical simulation and adjoint computation, respectively. To ensure the explosive development of a baroclinic wave, the forecast model is initialized with an idealized condition including an idealized two-dimensional baroclinic jet with a balanced three-dimensional moderate-amplitude disturbance, derived from a potential vorticity inversion technique. Firstly, the validity period of the tangent linear model for this idealized baroclinic wave case is discussed, considering different initial moisture distributions and a dry condition. Secondly, the 48-h forecast surface pressure center and the vertical component of the relative vorticity of the cyclone are selected as the response functions for adjoint computation in a dry and moist environment, respectively. The preliminary results show that the validity of the tangent linear assumption for this idealized baroclinic wave case can extend to 48 h with intense moist convection, and the validity period can last even longer in the dry adjoint integration. Adjoint sensitivity analysis indicates that the rapid development of the idealized baroclinic wave is sensitive to the initial wind and temperature perturbations around the steering level in the upstream. Moreover, the moist adjoint sensitivity can capture a secondary high sensitivity center in the upper troposphere, which cannot be depicted in the dry adjoint run.

  2. Rapid Service/Prediction Centre

    DTIC Science & Technology

    2009-01-01

    respect to the 05 C04 system of the IERS Earth Orientation Centre (EOC) at the Paris Observatory by way of a robust linear estimator. Statistical...of each individual data point. The software computes the spline coefficients for every data point, which are then used to interpolate the Earth ...between daily rapid solutions at each daily solution epoch for 2008 and the Earth orientation parameters available in 05 C04 series produced in March 2009

  3. National Centre for Radio Astrophysics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    India's National Centre for Radio Astrophysics (NCRA), located on the Pune University Campus, is part of the TATA INSTITUTE OF FUNDAMENTAL RESEARCH. At Khodad, 80 km from Pune, NCRA has set up the Giant Metrewave Radio Telescope (GMRT), the world's largest telescope operating at meter wavelengths. GMRT consists of 30 fully steerable dishes of 45 m diameter, spread over a 25 km area. Another meter...

  4. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  5. Reality television and the muscular male ideal.

    PubMed

    Dallesasse, Starla L; Kluck, Annette S

    2013-06-01

    Although researchers have examined the negative effects of viewing reality television (RTV) on women's body image, this research has not been extended to men. Exploring the extent to which RTV depicts men who embody the muscular ideal may enhance our understanding of the potential influence of this media genre. We explored the extent to which RTV depicted men who embodied the muscular ideal using a quantitative content analysis. Based on binomial tests, the primary male cast members of programs airing on networks popular among young adult men during the Fall 2009 broadcast season were more muscular, with lower levels of body fat, than average U.S. men. The chest-to-waist and shoulder-to-waist ratios of these cast members did not differ as a function of program type (i.e., reality drama, endurance, and romance). Young men who view RTV programs included in the present study would be exposed to an unrepresentative muscular ideal.

  6. European Centre for Disease Prevention and Control.

    PubMed

    Evans, Roger

    2014-11-04

    The European Centre for Disease Prevention and Control was set up in 2005 to strengthen Europe's defences against infectious diseases. The centre is an independent agency of the European Union and is based in Stockholm, Sweden.

  7. Numerical estimates for the bulk viscosity of ideal gases

    NASA Astrophysics Data System (ADS)

    Cramer, M. S.

    2012-06-01

    We estimate the bulk viscosity of a selection of well known ideal gases. A relatively simple formula is combined with published values of rotational and vibrational relaxation times. It is shown that the bulk viscosity can take on a wide variety of numerical values and variations with temperature. Several fluids, including common diatomic gases, are seen to have bulk viscosities which are hundreds or thousands of times larger than their shear viscosities. We have also provided new estimates for the bulk viscosity of water vapor in the range 380-1000 K. We conjecture that the variation of bulk viscosity with temperature will have a local maximum for most fluids. The Lambert-Salter correlation is used to argue that the vibrational contribution to the bulk viscosities of a sequence of fluids having a similar number of hydrogen atoms at a fixed temperature will increase with the characteristic temperature of the lowest vibrational mode.

  8. Analysis of an idealized Stirling thermocompressor

    SciTech Connect

    Kornhauser, A.A.

    1996-12-31

    A thermocompressor uses thermal energy to increase the pressure of a fluid without the intermediate production of mechanical work. The thermocompressor described here is essentially a cold-connected Gamma Stirling engine with the power cylinder replaced by inlet and discharge check valves. It is analyzed based on assumptions similar to those made in the analysis of an ideal Stirling engine. The analysis gives closed form predictions for thermocompressor thermal efficiency, volumetric efficiency, and non-dimensional heat input as functions of pressure and temperature ratio. It is also used to compare thermocompressor performance to that of an ideal Otto engine-driven mechanical compressor.

  9. Primitive ideals of C q [ SL(3)

    NASA Astrophysics Data System (ADS)

    Hodges, Timothy J.; Levasseur, Thierry

    1993-10-01

    The primitive ideals of the Hopf algebra C q [ SL(3)] are classified. In particular it is shown that the orbits in Prim C q [ SL(3)] under the action of the representation group H ≅ C *× C * are parameterized naturally by W×W, where W is the associated Weyl group. It is shown that there is a natural one-to-one correspondence between primitive ideals of C q [ SL(3)] and symplectic leaves of the associated Poisson algebraic group SL(3, C).

  10. Temperature effect on ideal shear strength of Al and Cu

    NASA Astrophysics Data System (ADS)

    Iskandarov, Albert M.; Dmitriev, Sergey V.; Umeno, Yoshitaka

    2011-12-01

    According to Frenkel’s estimation, at critical shear stress τc=G/2π, where G is the shear modulus, plastic deformation or fracture is initiated even in defect-free materials. In the past few decades it was realized that, if material strength is probed at the nanometer scale, it can be close to the theoretical limit, τc. The weakening effect of the free surface and other factors has been discussed in the literature, but the effect of temperature on the ideal strength of metals has not been addressed thus far. In the present study, we perform molecular dynamics simulations to estimate the temperature effect on the ideal shear strength of two fcc metals, Al and Cu. Shear parallel to the close-packed (111) plane along the [112¯] direction is studied at temperatures up to 800 K using embedded atom method potentials. At room temperature, the ideal shear strength of Al (Cu) is reduced by 25% (22%) compared to its value at 0 K. For both metals, the shear modulus, G, and the critical shear stress at which the stacking fault is formed, τc, decrease almost linearly with increasing temperature. The ratio G/τc linearly increases with increasing temperature, meaning that τc decreases with temperature faster than G. Critical shear strain, γc, also decreases with temperature, but in a nonlinear fashion. The combination of parameters, Gγc/τc, introduced by Ogata as a generalization of Frenkel’s formula, was found to be almost independent of temperature. We also discuss the simulation cell size effect and compare our results with the results of abinitio calculations and experimental data.

  11. Simulation of turbulent flow over idealized water waves

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter P.; McWilliams, James C.; Moeng, Chin-Hoh

    2000-02-01

    Turbulent flow over idealized water waves with varying wave slope ak and wave age c/u[low asterisk] is investigated using direct numerical simulations at a bulk Reynolds number Re = 8000. In the present idealization, the shape of the water wave and the associated orbital velocities are prescribed and do not evolve dynamically under the action of the wind. The results show that the imposed waves significantly influence the mean flow, vertical momentum fluxes, velocity variances, pressure, and form stress (drag). Compared to a stationary wave, slow (fast) moving waves increase (decrease) the form stress. At small c/u[low asterisk], waves act similarly to increasing surface roughness zo resulting in mean vertical velocity profiles with shorter buffer and longer logarithmic regions. With increasing wave age, zo decreases so that the wavy lower surface is nearly as smooth as a flat lower boundary. Vertical profiles of turbulence statistics show that the wave effects depend on wave age and wave slope but are confined to a region kz < 1 (where k is the wavenumber of the surface undulation and z is the vertical coordinate). The turbulent momentum flux can be altered by as much as 40% by the waves. A region of closed streamlines (or cat's-eye pattern) centred about the critical layer height was found to be dynamically important at low to moderate values of c/u[low asterisk]. The wave-correlated velocity and flux fields are strongly dependent on the variation of the critical layer height and to a lesser extent the surface orbital velocities. Above the critical layer zcr the positions of the maximum and minimum wave-correlated vertical velocity ww occur upwind and downwind of the peak in zcr, like a stationary surface. The wave-correlated flux uwww is positive (negative) above (below) the critical layer height.

  12. Nurse middle managers contributions to patient-centred care: A 'managerial work' analysis.

    PubMed

    Lalleman, Pcb; Smid, Gac; Dikken, J; Lagerwey, M D; Schuurmans, M J

    2017-03-21

    Nurse middle managers are in an ideal position to facilitate patient-centred care. However, their contribution is underexposed in literature due to difficulties to articulate this in practice. This paper explores how nurse middle managers contribute to patient-centred care in hospitals. A combination of time-use analysis and ethnographic work was used to disclose their contribution to patient-centred care at a micro level. Sixteen nurse managers were shadowed for over 560 hours in four hospitals. Some nurse middle managers seldom contribute to patient-centred care. Others are involved in direct patient care, but this does not result in patient-centred practices. At one hospital, the nurse middle managers did contribute to patient-centred care. Here balancing between "organizing work" and "caring work" is seen as a precondition for their patient-centeredness. Other important themes are feedback mechanisms; place matters; with whom to talk and how to frame the issues at stake; and behavioral style. Both "hands-on" and "heads-on" caring work of nurse middle managers enhances their patient-centeredness. This study is the first of its kind to obtain insight in the often difficult to articulate "doings" of nurse middle managers with regard to patient-centred care through combining time-use analysis with ethnographic work.

  13. Optimal shortcuts for atomic transport in anharmonic traps

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Muga, J. G.; Guéry-Odelin, D.; Chen, Xi

    2016-06-01

    We design fast trap trajectories to transport cold atoms in anharmonic traps, combining invariant-based inverse engineering, perturbation theory, and optimal control theory. Among the ideal trajectories for harmonic traps, we choose the ones that minimize the anharmonic energy.

  14. Maria Goeppert Mayer: atoms, molecules and nuclear shells

    SciTech Connect

    Johnson, K.E.

    1986-09-01

    The mathematical physicist's early work in atomic and molecular physics, and her unfamiliarity with the ''fashions'' in nuclear physics, gave her the ideal preparation for solving the puzzle of the nuclear ''magic numbers.''

  15. Simple correlation for predicting detonation velocity of ideal and non-ideal explosives.

    PubMed

    Keshavarz, Mohammad Hossein

    2009-07-30

    This paper describes a simple method for prediction of detonation velocity of ideal and non-ideal explosives. A non-ideal aluminized and nitrated explosive can have Chapman-Jouguet detonation velocity significantly different from that expected from existing thermodynamic computer codes for equilibrium and steady-state calculations. Detonation velocity of explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from values of a, b, c, d, e and a specific structural parameter without using any assumed detonation products, heat of formation and experimental data. Predicted detonation velocities by this procedure for ideal and non-ideal explosives show good agreement with respect to experimental values as compared to computed results of BKWR and BKWS equations of state.

  16. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed

  17. The Heat Capacity of Ideal Gases

    ERIC Educational Resources Information Center

    Scott, Robert L.

    2006-01-01

    The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…

  18. How Is the Ideal Gas Law Explanatory?

    ERIC Educational Resources Information Center

    Woody, Andrea I.

    2013-01-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight…

  19. Derivation of the Ideal Gas Law

    ERIC Educational Resources Information Center

    Laugier, Alexander; Garai, Jozsef

    2007-01-01

    Undergraduate and graduate physics and chemistry books usually state that combining the gas laws results in the ideal gas law. Leaving the derivation to the students implies that this should be a simple task, most likely a substitution. Boyle's law, Charles's law, and the Avogadro's principle are given under certain conditions; therefore, direct…

  20. Generalized summability methods of functions using ideals

    NASA Astrophysics Data System (ADS)

    Savaş, Ekrem

    2015-09-01

    In this paper, we shall make a new approach to two well known summability methods by using ideals and introduce new notions, namely, ℐ-statistical convergence and ℐ-lacunary statistical convergence by taking a nonnegative real-valued Lebesque measurable function in the interval (1, ∞) and mainly investigate their relationship and also make some observations about these classes.

  1. Water: The Ideal Early Learning Environment

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    2008-01-01

    Bathtubs and swimming pools provide the ideal learning environment for people with special needs. For young preschool children, the activities that take place through water can help them develop physical fitness, facilitate motor development, reinforce perceptual-motor ability, encourage social development, and enhance self-esteem and confidence.…

  2. Ideal light concentrators with reflector gaps

    DOEpatents

    Winston, Roland

    1980-01-01

    A cylindrical or trough-like radiant energy concentration and collection device is provided. The device includes an energy absorber, a glazing enveloping the absorber and a reflective wall. The ideal contour of the reflective wall is determined with reference to a virtual absorber and not the actual absorber cross section.

  3. Memory and Ideals in French Classrooms.

    ERIC Educational Resources Information Center

    Anderson-Levitt, Kathryn M.

    French elementary school teachers as well as the parents of their pupils remember being quiet students in teacher-dominated classrooms. Yet today both teachers and parents idealize lively classroom participation by their pupils or children. In this study, teachers and parents in an urban school district in Villefleurie, France, watched videotaped…

  4. Real vs. Ideal Self Discrepancy in Bulimics.

    ERIC Educational Resources Information Center

    Kosak, Karen

    Bulimia is an eating disorder prevalent among young women, characterized by binge eating episodes followed by purging with subsequent depressive moods and self-deprecating thoughts. To determine whether bulimic women exhibit a greater discrepancy between their perceived and ideal selves than do nonbulimics, three samples of women were assessed.…

  5. Developing Ideal Student and Residency Programs.

    ERIC Educational Resources Information Center

    Selvin, Gerald J.

    1993-01-01

    The Veterans Administration (VA) is a primary educator of optometry students, with each college of optometry being affiliated with at least one VA hospital. Ideally, fourth-year optometry students rotate through a specific VA facility for about 12 weeks. Guidelines are designed to provide optimum care in a rich learning environment. (MSE)

  6. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  7. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  8. The DEMETER Science Mission Centre

    NASA Astrophysics Data System (ADS)

    Lagoutte, D.; Brochot, J. Y.; de Carvalho, D.; Elie, F.; Harivelo, F.; Hobara, Y.; Madrias, L.; Parrot, M.; Pinçon, J. L.; Berthelier, J. J.; Peschard, D.; Seran, E.; Gangloff, M.; Sauvaud, J. A.; Lebreton, J. P.; Stverak, S.; Travnicek, P.; Grygorczuk, J.; Slominski, J.; Wronowski, R.; Barbier, S.; Bernard, P.; Gaboriaud, A.; Wallut, J. M.

    2006-04-01

    The DEMETER Scientific Mission Centre (SMC) has been developed and is operated by the Laboratoire de Physique et Chimie de l'Environnement (LPCE). The SMC commands the instruments of the scientific payload, collects and distributes DEMETER data and associated products to the DEMETER international community. The SMC has been designed to maximize scientific return and to reduce development and exploitation costs for the DEMETER project. This paper describes the SMC's data processing system, data server and methods of payload operation, and presents associated hardware and software architectures.

  9. Perceptual centres in speech - an acoustic analysis

    NASA Astrophysics Data System (ADS)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  10. Interacting ions in biophysics: real is not ideal.

    PubMed

    Eisenberg, Bob

    2013-05-07

    Ions in water are important throughout biology, from molecules to organs. Classically, ions in water were treated as ideal noninteracting particles in a perfect gas. Excess free energy of each ion was zero. Mathematics was not available to deal consistently with flows, or interactions with other ions or boundaries. Nonclassical approaches are needed because ions in biological conditions flow and interact. The concentration gradient of one ion can drive the flow of another, even in a bulk solution. A variational multiscale approach is needed to deal with interactions and flow. The recently developed energetic variational approach to dissipative systems allows mathematically consistent treatment of the bio-ions Na(+), K(+), Ca(2+), and Cl(-) as they interact and flow. Interactions produce large excess free energy that dominate the properties of the high concentration of ions in and near protein active sites, ion channels, and nucleic acids: the number density of ions is often >10 M. Ions in such crowded quarters interact strongly with each other as well as with the surrounding protein. Nonideal behavior found in many experiments has classically been ascribed to allosteric interactions mediated by the protein and its conformation changes. The ion-ion interactions present in crowded solutions-independent of conformation changes of the protein-are likely to change the interpretation of many allosteric phenomena. Computation of all atoms is a popular alternative to the multiscale approach. Such computations involve formidable challenges. Biological systems exist on very different scales from atomic motion. Biological systems exist in ionic mixtures (like extracellular and intracellular solutions), and usually involve flow and trace concentrations of messenger ions (e.g., 10(-7) M Ca(2+)). Energetic variational methods can deal with these characteristic properties of biological systems as we await the maturation and calibration of all-atom simulations of ionic mixtures

  11. Interacting Ions in Biophysics: Real is not Ideal

    PubMed Central

    Eisenberg, Bob

    2013-01-01

    Ions in water are important throughout biology, from molecules to organs. Classically, ions in water were treated as ideal noninteracting particles in a perfect gas. Excess free energy of each ion was zero. Mathematics was not available to deal consistently with flows, or interactions with other ions or boundaries. Nonclassical approaches are needed because ions in biological conditions flow and interact. The concentration gradient of one ion can drive the flow of another, even in a bulk solution. A variational multiscale approach is needed to deal with interactions and flow. The recently developed energetic variational approach to dissipative systems allows mathematically consistent treatment of the bio-ions Na+, K+, Ca2+, and Cl− as they interact and flow. Interactions produce large excess free energy that dominate the properties of the high concentration of ions in and near protein active sites, ion channels, and nucleic acids: the number density of ions is often >10 M. Ions in such crowded quarters interact strongly with each other as well as with the surrounding protein. Nonideal behavior found in many experiments has classically been ascribed to allosteric interactions mediated by the protein and its conformation changes. The ion-ion interactions present in crowded solutions—independent of conformation changes of the protein—are likely to change the interpretation of many allosteric phenomena. Computation of all atoms is a popular alternative to the multiscale approach. Such computations involve formidable challenges. Biological systems exist on very different scales from atomic motion. Biological systems exist in ionic mixtures (like extracellular and intracellular solutions), and usually involve flow and trace concentrations of messenger ions (e.g., 10−7 M Ca2+). Energetic variational methods can deal with these characteristic properties of biological systems as we await the maturation and calibration of all-atom simulations of ionic mixtures and

  12. 24 electron cluster formulas as the 'molecular' units of ideal metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, L. J.; Chen, H.; Wang, Y. M.; Qiang, J. B.; Wang, Q.; Dong, C.; Häussler, P.

    2014-08-01

    It is known that ideal metallic glasses fully complying with the Hume-Rothery stabilization mechanism can be expressed by a universal cluster formula of the form [cluster](glue atom)1 or 3. In the present work, it is shown, after a re-examination of the cluster-resonance model, that the number of electrons per unit cluster formula, e/u, is universally 24. The cluster formulas are then the atomic as well as the electronic structural units, mimicking the 'molecular' formulas for chemical substances. The origin of different electron number per atom ratios e/a is related to the total number of atoms Z in unit cluster formula, e/a = 24/Z. The 24 electron formulas are well confirmed in typical binary and ternary bulk metallic glasses.

  13. Ideal photon number amplifier and duplicator

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.

    1992-01-01

    The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

  14. Modeling of non-ideal aluminized explosives

    NASA Astrophysics Data System (ADS)

    Howard, W. M.; Fried, L. E.; Souers, P. C.

    2000-04-01

    We have implemented a Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions, while other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. Within the context of WK theory, we study the chemical interaction between Al and HMX detonation products in non-ideal explosives. We develop a kinetic rate law for the combustion of Al in a condensed detonation that depends on the pressure and the detonation product gases. We use a Murnaghan form for the equation of state of the solid and liquid Al and Al2O3. We find that we can replicate experimental detonation velocities for HMX/Al composites to within a few percent for a wide range of aluminum content. We discuss the uncertainties in our model and the implications of our results on the modeling of other non-ideal explosives ???

  15. Group analysis of an ideal plasticity model

    NASA Astrophysics Data System (ADS)

    Lamothe, Vincent

    2012-07-01

    A group analysis of a system describing an ideal plastic flow is made in order to obtain analytical solutions. The complete Lie algebra of point symmetries of this system are given. Two of the infinitesimal generators that span the Lie algebra are original to this paper. A classification into conjugacy classes of all one- and two-dimensional subalgebras is performed. Invariant and partially invariant solutions corresponding to certain conjugacy classes are obtained using the symmetry reduction method. Solutions of algebraic, trigonometric, inverse trigonometric and elliptic type are provided as illustrations and other solutions expressed in terms of one or two arbitrary functions have also been found. For some of these solutions, a physical interpretation allows one to determine the shape of feasible extrusion dies corresponding to these solutions. The corresponding tools could be used to curve rods or slabs, or to shape a ring in an ideal plastic material by an extrusion process.

  16. Non-ideal Solution Thermodynamics of Cytoplasm

    PubMed Central

    Ross-Rodriguez, Lisa U.; McGann, Locksley E.

    2012-01-01

    Quantitative description of the non-ideal solution thermodynamics of the cytoplasm of a living mammalian cell is critically necessary in mathematical modeling of cryobiology and desiccation and other fields where the passive osmotic response of a cell plays a role. In the solution thermodynamics osmotic virial equation, the quadratic correction to the linear ideal, dilute solution theory is described by the second osmotic virial coefficient. Herein we report, for the first time, intracellular solution second osmotic virial coefficients for four cell types [TF-1 hematopoietic stem cells, human umbilical vein endothelial cells (HUVEC), porcine hepatocytes, and porcine chondrocytes] and further report second osmotic virial coefficients indistinguishable from zero (for the concentration range studied) for human hepatocytes and mouse oocytes. PMID:23840923

  17. Kinetic modeling of non-ideal explosives

    SciTech Connect

    Fried, L E; Howard, W M; Souers, P C

    1999-03-01

    We have implemented a Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions, while other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. In addition, we develop an exp-6 equation of state for the product fluids that reproduces a wide range experimental shock Hugoniot and static compression data. For unreacted solids, including solid and liquid Al and Al{sub 2}O{sub 3}, we use a Murnaghan form for the equation of state. We find that we can replicate experimental detonation velocities to within a few per cent for a wide range of explosives, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  18. Variational Integrators for Ideal and Reduced Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Maj, Omar; Tassi, Emanuele; Grasso, Daniela

    2016-10-01

    Ideal and reduced magnetohydrodynamics are simplified sets of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. Discrete exterior calculus is used for the discretisation of the field variables in order to preserve their geometrical character. The resulting integrators preserve important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As these integrators are free of numerical resistivity, the magnetic field line topology is preserved and spurious reconnection is absent in the ideal case. Only when effects of finite electron mass are added, magnetic reconnection takes place. The excellent conservation properties of the methods are exemplified with numerical examples in 2D. We conclude with an outlook towards the treatment of general geometries in 3D and full magnetohydrodynamics.

  19. Localization in an Idealized Heterogeneous Elastic Sheet

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Croll, Andrew B.

    2015-03-01

    Localized deformation is ubiquitous in many natural and engineering materials. Often times such deformations are associated to non-homogeneous strain fields in the materials. In this work we demonstrate the response of idealized non-homogenous elastic sheets to uniaxial compression. The idealized/patterned surface layers are created by selective ultraviolet/ozone (UVO) treatment of the top surface of polydimethylsiloxane (PDMS) using TEM grid mask. By controlling the exposure time of the UVO, samples ranging from continuous thin films to sets of isolated small plates were created. We show how local strains vary with location in a patterned sample, leading to a complex localization process Even at low strains. We also see that continuous regions form isotropic undulations upon compression which persist to high strains, well beyond where localization is observed in the patterned regions. Despite the complexity, the localized deformation profile can be adequately described with a simple elastic model when appropriate local boundary conditions are considered.

  20. Laser Trapping of Radioactive Atoms

    NASA Astrophysics Data System (ADS)

    Lu, Zheng-Tian

    2013-04-01

    Stuart Freedman conceived the idea of laser trapping radioactive atoms for the purpose of studying beta correlation effects. ``This is really the theorist's view of a radioactive source,'' as he fondly claimed. It is ideal because the atoms form a point source, compressed in both position and momentum space, with no material walls nearby. The Berkeley group succeeded in trapping ^21Na (half-life = 22 s) atoms [Lu et al., PRL 72, 3791 (1994)], and determined its beta-neutrino correlation coefficient a=0.5502(60) to be in agreement with the Standard Model [Vetter et al., PRC 77, 035502 (2008)]. Other groups have joined this effort with searches for scalar or tensor couplings in the weak interaction. Moreover, the technique has been extended to trap very short lived ^8He (0.1 s) to study its halo structure or the very long lived ^81Kr (230,000 yr) to map the movement of groundwater.

  1. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  2. Concepts of Ideal and Nonideal Explosives.

    DTIC Science & Technology

    1981-12-01

    velocity versus porosity curves at various charge diameters 14 5 Detonation velocity of HN as a function of charge density and diameter 15 INTRODUCTION...trinitrobenzene (TATB), and the other set for other explosives, such as pentaerythritol tetranitrate ( PETN ), RDX, and 1,3,5,7-tetrani- tro-1,3,5,7...as AN, AP, and HN . It may appear that Group 2 explosives are the nonideal ones, but as we shall see, HN Is an Ideal explosive as defined originally

  3. The Ideal Man and Woman According to University Students

    ERIC Educational Resources Information Center

    Weinstein, Lawrence; Laverghetta, Antonio V.; Peterson, Scott A.

    2009-01-01

    The present study determined if the ideal man has changed over the years and who and what the ideal woman is. We asked students at Cameron University to rate the importance of character traits that define the ideal man and woman. Subjects also provided examples of famous people exemplifying the ideal, good, average, and inferior man and woman. We…

  4. Non-Ideal Behavior in Solvent Extraction

    SciTech Connect

    Peter Zalupski

    2011-09-01

    This report presents a summary of the work performed to meet FCR&D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR&D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  5. [The ideal of facial beauty: a review].

    PubMed

    Hönn, Mirjam; Göz, Gernot

    2007-01-01

    In this review article we examine the question as to which parameters of facial attraction are amenable to measurement and which tools are available to perform these measurements. The evaluation of facial images, artistic standards, cephalometry, and anthropometry are discussed. Furthermore, we consider how the attractiveness of a face is influenced by symmetry, averageness and distinguishing features such as dental esthetics or gender specific characteristics. There is a shared concept of what constitutes an "ideal" face. Anthropometric methods are preferable to cephalometric methods in determining the "ideal" face's dimensions, since anthropometric methods are valid, three-dimensional, non-invasive, suitable for a great variety of purposes, and easy to implement. Symmetry and averageness play important roles in determining the attractiveness of a face; although distinguishing features make it extraordinarily beautiful. Such features make a female face appear both child like and mature as well as expressive. Women's preferences as to what constitutes a particularly attractive male face are controversial, since female observers are greatly influenced by their menstrual cycles or their environment when responding to male faces. Finally, allowance has to be made for the fact that the ideal of beauty is subject to certain fluctuations in fashion.

  6. Demonstration of asymmetric electron conduction in pseudosymmetrical photosynthetic reaction centre proteins in an electrical circuit.

    PubMed

    Kamran, Muhammad; Friebe, Vincent M; Delgado, Juan D; Aartsma, Thijs J; Frese, Raoul N; Jones, Michael R

    2015-03-09

    Photosynthetic reaction centres show promise for biomolecular electronics as nanoscale solar-powered batteries and molecular diodes that are amenable to atomic-level re-engineering. In this work the mechanism of electron conduction across the highly tractable Rhodobacter sphaeroides reaction centre is characterized by conductive atomic force microscopy. We find, using engineered proteins of known structure, that only one of the two cofactor wires connecting the positive and negative termini of this reaction centre is capable of conducting unidirectional current under a suitably oriented bias, irrespective of the magnitude of the bias or the applied force at the tunnelling junction. This behaviour, strong functional asymmetry in a largely symmetrical protein-cofactor matrix, recapitulates the strong functional asymmetry characteristic of natural photochemical charge separation, but it is surprising given that the stimulus for electron flow is simply an externally applied bias. Reasons for the electrical resistance displayed by the so-called B-wire of cofactors are explored.

  7. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  8. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  9. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  10. Nuclear Science Centre, New Delhi

    SciTech Connect

    Mehta, G.; Potukuchi, P.; Roy, A.

    1995-08-01

    Argonne is collaborating with the Nuclear Science Centre (NSC), New Delhi, to develop a new type of superconducting accelerating structure for low-velocity heavy ions. A copper model has been evaluated and tests on the niobium prototype are currently in progress. Some technical details of this project are described in the Superconducting Linac Development section of this report. All funding for the prototype has come from the NSC, and they have also stationed two staff members at ATLAS for the past two years to gain experience and work on this project. Additional NSC personnel visited ATLAS for extended periods during 1994 for electronics and cryogenics experience and training. Two NSC staff members are scheduled to spend several months at ANL during 1995 to continue tests and developments of the prototype resonators and to initiate fabrication of the production models for their linac project.

  11. Reading and writing single-atom magnets

    NASA Astrophysics Data System (ADS)

    Natterer, Fabian D.; Yang, Kai; Paul, William; Willke, Philip; Choi, Taeyoung; Greber, Thomas; Heinrich, Andreas J.; Lutz, Christopher P.

    2017-03-01

    The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3–12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.

  12. Reading and writing single-atom magnets.

    PubMed

    Natterer, Fabian D; Yang, Kai; Paul, William; Willke, Philip; Choi, Taeyoung; Greber, Thomas; Heinrich, Andreas J; Lutz, Christopher P

    2017-03-08

    The single-atom bit represents the ultimate limit of the classical approach to high-density magnetic storage media. So far, the smallest individually addressable bistable magnetic bits have consisted of 3-12 atoms. Long magnetic relaxation times have been demonstrated for single lanthanide atoms in molecular magnets, for lanthanides diluted in bulk crystals, and recently for ensembles of holmium (Ho) atoms supported on magnesium oxide (MgO). These experiments suggest a path towards data storage at the atomic limit, but the way in which individual magnetic centres are accessed remains unclear. Here we demonstrate the reading and writing of the magnetism of individual Ho atoms on MgO, and show that they independently retain their magnetic information over many hours. We read the Ho states using tunnel magnetoresistance and write the states with current pulses using a scanning tunnelling microscope. The magnetic origin of the long-lived states is confirmed by single-atom electron spin resonance on a nearby iron sensor atom, which also shows that Ho has a large out-of-plane moment of 10.1 ± 0.1 Bohr magnetons on this surface. To demonstrate independent reading and writing, we built an atomic-scale structure with two Ho bits, to which we write the four possible states and which we read out both magnetoresistively and remotely by electron spin resonance. The high magnetic stability combined with electrical reading and writing shows that single-atom magnetic memory is indeed possible.

  13. The International Centre for Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Hussain, Faheem

    2008-07-01

    This talk traces in brief the genesis of the Abdus Salam International Centre for Theoretical Physics, Trieste, as one of Prof. Abdus Salam's major achievements. It outlines why Salam felt the necessity for establishing such a centre to help physicists in the developing world. It situates the founding of the Centre within Salam's broader vision of the causes of underdevelopment and of science as an engine for scientific, technological, economic and social development. The talk reviews the successes and failures of the ICTP and gives a brief overall view of the current status of the Centre.

  14. The ideal science student and problem solving

    NASA Astrophysics Data System (ADS)

    Sullivan, Florence R.

    2005-09-01

    The purpose of this dissertation was to examine the relationship between students' social mental models of the ideal science student, science epistemological beliefs, problem solving strategies used, and problem solving ability in a robotics environment. Participants were twenty-six academically advanced eleven and twelve year old students attending the Center for Talented Youth summer camp. Survey data was collected from the students including demographic background, views of the ideal science student, and science epistemological beliefs. Students also solved a robotics challenge. This problem solving session was videotaped and students were asked to think aloud as they solved the problem. Two social mental models were identified, a traits-based social mental model and a robust social mental model. A significant association was found between social mental model group and strategy usage. The robust social mental model group is more likely to use domain specific strategies than the traits-based group. Additionally, the robust social mental model group achieved significantly higher scores on their final solution than the traits-based social mental model group. Science epistemological beliefs do not appear to be associated with students' social mental model of the ideal science student. While students with a puzzle-solver view of science were more likely to use domain specific strategies in the planning phase of the problem solving session, there was no significant difference in problem solving ability between this group and students who have a dynamic view of the nature of science knowledge. This difference in strategy usage and problem solving performance may be due to a difference in the students' views of learning and cognition. The robust social mental model group evidenced a situative view of learning and cognition. These students made excellent use of the tools available in the task environment. The traits-based social mental model group displayed an

  15. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  16. Broken symmetry in ideal magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1993-01-01

    A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.

  17. New approach to nonrelativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Kumar, Kuldeep

    2016-07-01

    We provide a novel action principle for nonrelativistic ideal magnetohydrodynamics in the Eulerian scheme exploiting a Clebsch-type parametrisation. Both Lagrangian and Hamiltonian formulations have been considered. Within the Hamiltonian framework, two complementary approaches have been discussed using Dirac's constraint analysis. In one case the Hamiltonian is canonical involving only physical variables but the brackets have a noncanonical structure, while the other retains the canonical structure of brackets by enlarging the phase space. The special case of incompressible magnetohydrodynamics is also considered where, again, both the approaches are discussed in the Hamiltonian framework. The conservation of the stress tensor reveals interesting aspects of the theory.

  18. Hamiltonian description of the ideal fluid

    SciTech Connect

    Morrison, P.J.

    1994-01-01

    Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

  19. Ideal pre-conceptual design development

    SciTech Connect

    Gentzlinger, R.; Mendelsohn, S.; Abel, B.

    1993-12-31

    A preconceptual design has been produced for a plasma device to further divertor concepts and validate technology in support of the International Thermonuclear Experimental Reactor program. The ITER Diverter Experiment and Laboratory (IDEAL) design effort is to develop a reliable, maintainable and robust facility for steady-state divertor simulation experiments. The configuration includes a 30 meter vacuum vessel, enclosed within a set of 30 high field superconducting solenoid modules, a resistive quadrupole coil set, a radio-frequency heating system and a complement of diagnostics. It is planned to utilize existing facilities, and off-the-shelf hardware, wherever possible to maximize technological return on investment.

  20. Nonrelativisitic Ideal Gases and Lorentz Violations

    NASA Astrophysics Data System (ADS)

    Colladay, D.; McDonald, P.

    2005-04-01

    We develop statistical mechanics for a nonrelativisitic ideal gas in the presence of Lorentz violating background fields. The analysis is performed using the Standard-Model Extension (SME). We derive the corresponding laws of thermodynamics and find that, to lowest order in Lorentz violation, the scalar thermodynamic variables are corrected by a rotationally invariant combination of the Lorentz terms which can be interpreted in terms of a (frame dependent) effective mass. We find that spin couplings can induce a temperature independent polarization in the gas that is not present in the conventional case.

  1. Simple Waves in Ideal Radiation Hydrodynamics

    SciTech Connect

    Johnson, B M

    2008-09-03

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  2. Global invariants in ideal magnetohydrodynamic turbulence

    SciTech Connect

    Shebalin, John V.

    2013-10-15

    Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.

  3. Modeling of Non-Ideal Aluminized Detonations

    NASA Astrophysics Data System (ADS)

    Howard, W. Michael; Fried, Laurence E.; Souers, P. Clark

    1999-06-01

    We have implemented a Wood-Kirkwood (WK) kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions, while other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. Within the context of WK theory, we study the chemical interaction between Al and HMX detonation products in non-ideal explosives. We develop a kinetic rate law for the burning of Al in condensed detonation that depends on the surface properties of the Al grains and the detonation product gases. Moreover, we use an exp-6 equation of state for the product fluids that reproduces a wide range experimental shock hugoniot and static compression data. We use a Murnaghan form for the equation of state of the solid and liquid Al and Al_2O_3. We find that we can replicate experimental detonation velocities to within a few per cent for a wide range of aluminum content. We discuss the uncertainties in our model and the implications of our results on the modeling of other non-ideal explosives. This work was performed under the auspices of the U. S. Department of Energy under Contract No. W-7405-ENG-48.

  4. The Statistical Mechanics of Ideal Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2002-01-01

    Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.

  5. What constitutes an ideal dental restorative material?

    PubMed

    Rekow, E D; Bayne, S C; Carvalho, R M; Steele, J G

    2013-11-01

    Intense environmental concerns recently have prompted dentistry to evaluate the performance and environmental impact of existing restoration materials. Doing so entices us to explore the 'what if?' innovation in materials science to create more ideal restorative materials. Articulating a specification for our design and evaluation methods is proving to be more complicated than originally anticipated. Challenges exist not only in specifying how the material should be manipulated and perform clinically but also in understanding and incorporating implications of the skill of the operator placing the restoration, economic considerations, expectations patients have for their investment, cost-effectiveness, influences of the health care system on how and for whom restorations are to be placed, and global challenges that limit the types of materials available in different areas of the world. The quandary is to find ways to actively engage multiple stakeholders to agree on priorities and future actions to focus future directions on the creation of more ideal restorative materials that can be available throughout the world.

  6. Modeling of non-ideal aluminized explosives

    SciTech Connect

    Fried, L E; Howard, W M; Souers, P C

    1999-06-01

    We have implemented a Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions, while other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. Within the context of WK theory, we study the chemical interaction between Al and HMX detonation products in non-ideal explosives. We develop a kinetic rate law for the combustion of Al in a condensed detonation that depends on the pressure and the detonation product gases. We use a Murnaghan form for the equation of state of the solid and liquid Al and Al{sub 2}O{sub 3}. We find that we can replicate experimental detonation velocities for HMX/Al composites to within a few percent for a wide range of aluminum content. We discuss the uncertainties in our model and the implications of our results on the modeling of other non-ideal explosives.

  7. Global invariants in ideal magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    2013-10-01

    Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.

  8. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, Bruno; Chan, Wai Hong Ronald; Buie, Cullen R.

    2013-11-01

    We focus in this presentation on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchanges occur between the EDL which surrounders the particle and the bulk solution. In this situation, the velocity field, the electric potential and the ionic concentration at the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. These equations are classically considered in the limit of a weak applied field, which enables further analytical progress (Khair and Squires, Phys. Fluids, 2010). However, in the general case, the equation governing the electrophoretic motion of the particle must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, ionic concentration and velocity field in the bulk solution surrounding the particle. The numerical simulations use a pseudo-spectral which was used successfully by Chu and Bazant to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere (Physical Review E, 2006). Our numerical model also incorporates the steric model developed by Kilic et al. in 2007 to account for crowding effects in the electric double layer.

  9. Optimal forager against ideal free distributed prey.

    PubMed

    Garay, József; Cressman, Ross; Xu, Fei; Varga, Zoltan; Cabello, Tomás

    2015-07-01

    The introduced dispersal-foraging game is a combination of prey habitat selection between two patch types and optimal-foraging approaches. Prey's patch preference and forager behavior determine the prey's survival rate. The forager's energy gain depends on local prey density in both types of exhaustible patches and on leaving time. We introduce two game-solution concepts. The static solution combines the ideal free distribution of the prey with optimal-foraging theory. The dynamical solution is given by a game dynamics describing the behavioral changes of prey and forager. We show (1) that each stable equilibrium dynamical solution is always a static solution, but not conversely; (2) that at an equilibrium dynamical solution, the forager can stabilize prey mixed patch use strategy in cases where ideal free distribution theory predicts that prey will use only one patch type; and (3) that when the equilibrium dynamical solution is unstable at fixed prey density, stable behavior cycles occur where neither forager nor prey keep a fixed behavior.

  10. European guidelines for the accreditation of Sleep Medicine Centres.

    PubMed

    Pevernagie, Dirk

    2006-06-01

    This document describes guidelines for accreditation of Sleep Medicine Centres in Europe. These guidelines are the result of a consensus procedure, in which representatives of the European Sleep Research Society (ESRS) and representatives of different European National Sleep Societies (ENSS) were involved. The information obtained during different rounds of consultation was gathered and processed by the members of the Steering Committee of the ESRS. The scope of the guidelines is to define the characteristics of multidisciplinary Sleep Medicine Centres (SMCs), in terms of requirements regarding staff, operational procedures and logistic facilities. Accreditation of SMCs is proposed to be the responsibility of the individual ENSS. The Accreditation Guidelines may thus be considered an instrument for the national societies to develop new or standardize existing accreditation questionnaires, as well as procedures for visiting the site, drafting the accreditation report, and finally, granting the accreditation. The Accreditation Guidelines are meant to be a line of action, that ideally should be followed as close as possible, but that may be subject to certain exceptions, depending on local customs or regulations.

  11. Star Formation and Dynamics in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Mapelli, Michela; Gualandris, Alessia

    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ˜ 0.04 pc, while the S-stars, i.e. the ˜ 30 stars closest to the SMBH ( lesssim 0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.

  12. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  13. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  14. An ideal sealed source life-cycle

    SciTech Connect

    Tompkins, Joseph Andrew

    2009-01-01

    we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.

  15. The Press Research Centre, 1956-1976.

    ERIC Educational Resources Information Center

    Press Research Centre, Krakow (Poland).

    In 1956, the Press Research Centre was established in Cracow, Poland by a group of journalists and publishers, for the purpose of instituting press research that would have practical applications. The aims of the Centre were to conduct studies on the history of the Polish press, the contemporary press, press readership, and editorial techniques.…

  16. The Irish Centre for Talented Youth

    ERIC Educational Resources Information Center

    Gilheany, Sheila

    2005-01-01

    Conducting potency tests on penicillin, discussing rocket technology with a NASA astronaut, analysing animal bone fragments from medieval times, these are just some of the activities which occupy the time of students at The Irish Centre for Talented Youth. The Centre identifies young students with exceptional academic ability and then provides…

  17. The European standards of Haemophilia Centres

    PubMed Central

    Giangrande, Paul; Calizzani, Gabriele; Menichini, Ivana; Candura, Fabio; Mannucci, Pier Mannuccio; Makris, Michael

    2014-01-01

    Introduction The European haemophilia community of professionals and patients has agreed on the principles of haemophilia care to address comprehensive optimal delivery of care which is nowadays scattered throughout Europe. Many of the health facilities call themselves Haemophilia Centres despite their variation in size, expertise and services provided. Only a small number of countries have Haemophilia Centre accreditation systems in place. Methods In the framework of the European Haemophilia Network project, following an inclusive process of stakeholder involvement, the European Guidelines for the certification of haemophilia centres have been developed in order to set quality standards for European Haemophilia Centres and criteria for their certification. Results The Guidelines define the standards and criteria for the designation of two levels of care delivery: European Haemophilia Treatment Centres, providing local routine care, and European Haemophilia Comprehensive Care Centres, providing specialised and multi-disciplinary care and functioning as tertiary referral centres. Additionally, they define standards about general requirements, patient care, provision of an advisory service and establishment of network of clinical and specialised services. Conclusions The implementation of the European Guidelines for the certification of Haemophilia Centres will contribute to the reduction of health inequalities through the standardisation of quality of care in European Union Member States and could represent a model to be taken into consideration for other rare disease groups. PMID:24922293

  18. Promotion in Call Centres: Opportunities and Determinants

    ERIC Educational Resources Information Center

    Gorjup, Maria Tatiana; Valverde, Mireia; Ryan, Gerard

    2008-01-01

    Purpose: The purpose of this paper is to examine the quality of jobs in call centres by focusing on the opportunities for promotion in this sector. More specifically, the research questions focus on discovering whether promotion is common practise in the call centre sector and on identifying the factors that affect this.…

  19. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  20. Atomic Databases

    NASA Astrophysics Data System (ADS)

    Mendoza, Claudio

    2000-10-01

    Atomic and molecular data are required in a variety of fields ranging from the traditional astronomy, atmospherics and fusion research to fast growing technologies such as lasers, lighting, low-temperature plasmas, plasma assisted etching and radiotherapy. In this context, there are some research groups, both theoretical and experimental, scattered round the world that attend to most of this data demand, but the implementation of atomic databases has grown independently out of sheer necessity. In some cases the latter has been associated with the data production process or with data centers involved in data collection and evaluation; but sometimes it has been the result of individual initiatives that have been quite successful. In any case, the development and maintenance of atomic databases call for a number of skills and an entrepreneurial spirit that are not usually associated with most physics researchers. In the present report we present some of the highlights in this area in the past five years and discuss what we think are some of the main issues that have to be addressed.

  1. Absorption imaging of a single atom

    NASA Astrophysics Data System (ADS)

    Streed, Erik W.; Jechow, Andreas; Norton, Benjamin G.; Kielpinski, David

    2012-07-01

    Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in a vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorption imaged at near wavelength resolution with a phase Fresnel lens. The observed image contrast of 3.1 (3)% is the maximum theoretically allowed for the imaging resolution of our set-up. The absorption of photons by single atoms is of immediate interest for quantum information processing. Our results also point out new opportunities in imaging of light-sensitive samples both in the optical and X-ray regimes.

  2. Absorption imaging of a single atom.

    PubMed

    Streed, Erik W; Jechow, Andreas; Norton, Benjamin G; Kielpinski, David

    2012-07-03

    Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in a vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorption imaged at near wavelength resolution with a phase Fresnel lens. The observed image contrast of 3.1 (3)% is the maximum theoretically allowed for the imaging resolution of our set-up. The absorption of photons by single atoms is of immediate interest for quantum information processing. Our results also point out new opportunities in imaging of light-sensitive samples both in the optical and X-ray regimes.

  3. Polymeric Materials Resistant to Erosion by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Kiefer, Richard L.; Thibeault, Sheila A.

    2004-01-01

    Polymer-matrix composites are ideally suited for space vehicles because of high strength to weight ratios. The principal component of the low earth orbit (LEO) is atomic oxygen. Atomic oxygen causes surface erosion to polymeric materials. Polymer films with an organometallic additive showed greater resistance to atomic oxygen than the pure polymer in laboratory experiments and in the OPM/MIR experiment. In MISSE, the film with the organometallic additive was still intact after the pure film had completely eroded.

  4. The great galactic centre mystery

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.

    1982-01-01

    Gamma-ray observations of the center of the Galaxy show a varying positron-electron annihilation radiation emission, while at radio wavelengths a non-thermal compact source surrounded by ionized gas moving at high velocities can be seen. Line emission maps for atomic and ionized hydrogen and molecular gas suggest gas expulsion and a massive collapsed object. IR observations show that ionized gas in the central few parsecs of the Galactic center is concentrated in at least 14 small clouds. Charge-coupled device images show a pair of faint, very red sources within a few arc seconds of IRS 16 and the compact non-thermal radio source. The positron-electron annihilation line emission implies an annihilation rate of 10 to the 43rd per sec, compared with an observed luminosity at IR wavelengths of 10 to the 40 erg per sec. Some models are briefly discussed.

  5. The Canadian Astronomy Data Centre

    NASA Astrophysics Data System (ADS)

    Ball, Nicholas M.; Schade, D.; Astronomy Data Centre, Canadian

    2011-01-01

    The Canadian Astronomy Data Centre (CADC) is the world's largest astronomical data center, holding over 0.5 Petabytes of information, and serving nearly 3000 astronomers worldwide. Its current data collections include BLAST, CFHT, CGPS, FUSE, Gemini, HST, JCMT, MACHO, MOST, and numerous other archives and services. It provides extensive data archiving, curation, and processing expertise, via projects such as MegaPipe, and enables substantial day-to-day collaboration between resident astronomers and computer specialists. It is a stable, powerful, persistent, and properly supported environment for the storage and processing of large volumes of data, a condition that is now absolutely vital for their science potential to be exploited by the community. Through initiatives such as the Common Archive Observation Model (CAOM), the Canadian Virtual Observatory (CVO), and the Canadian Advanced Network for Astronomical Research (CANFAR), the CADC is at the global forefront of advancing astronomical research through improved data services. The CAOM aims to provide homogeneous data access, and hence viable interoperability between a potentially unlimited number of different data collections, at many wavelengths. It is active in the definition of numerous emerging standards within the International Virtual Observatory, and several datasets are already available. The CANFAR project is an initiative to make cloud computing for storage and data-intensive processing available to the community. It does this via a Virtual Machine environment that is equivalent to managing a local desktop. Several groups are already processing science data. CADC is also at the forefront of advanced astronomical data analysis, driven by the science requirements of astronomers both locally and further afield. The emergence of 'Astroinformatics' promises to provide not only utility items like object classifications, but to directly enable new science by accessing previously undiscovered or intractable

  6. Big Surveys, Big Data Centres

    NASA Astrophysics Data System (ADS)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  7. Ideal Spintronics in Molecule-Based Novel Organometallic Nanowires.

    PubMed

    Sun, Qilong; Dai, Ying; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2015-08-04

    With the purpose of searching for new intriguing nanomaterial for spintronics, a series of novel metalloporphyrin nanowires (M-PPNW, M = Cr, Mn, Fe, Co, Ni, Cu and Zn) and hybrid nanowires fabricated by metalloporphyrin and metal-phthalocyanine (M-PCNW) are systematically investigated by means of first-principles calculations. Our results indicate that the transition metal atoms (TMs) embedded in the frameworks distribute regularly and separately, without any trend to form clusters, thus leading to the ideally ordered spin distribution. Except for the cases embedded with Ni and Zn, the others are spin-polarized. Remarkably, the Mn-PPNW, Mn-PCNW, MnCu-PPNW, MnCr-PCNW, and MnCu-PCNW frameworks all favor the long-ranged ferromagnetic spin ordering and display half-metallic nature, which are of greatest interest and importance for electronics and spintronics. The predicted Curie temperature for the Mn-PCNW is about 150 K. In addition, it is found that the discrepancy in magnetic coupling for these materials is related to the competition mechanisms of through-bond and through-space exchange interactions. In the present work, we propose not only two novel sets of 1D frameworks with appealing magnetic properties, but also a new strategy in obtaining the half-metallic materials by the combination of different neighboring TMs.

  8. Ideal n-body correlations with massive particles

    NASA Astrophysics Data System (ADS)

    Dall, R. G.; Manning, A. G.; Hodgman, S. S.; Rugway, Wu; Kheruntsyan, K. V.; Truscott, A. G.

    2013-06-01

    In 1963 Glauber introduced the modern theory of quantum coherence, which extended the concept of first-order (one-body) correlations, describing phase coherence of classical waves, to include higher-order (n-body) quantum correlations characterizing the interference of multiple particles. Whereas the quantum coherence of photons is a mature cornerstone of quantum optics, the quantum coherence properties of massive particles remain largely unexplored. To investigate these properties, here we use a uniquely correlated source of atoms that allows us to observe n-body correlations up to the sixth-order at the ideal theoretical limit (n!). Our measurements constitute a direct demonstration of the validity of one of the most widely used theorems in quantum many-body theory--Wick's theorem--for a thermal ensemble of massive particles. Measurements involving n-body correlations may play an important role in the understanding of thermalization of isolated quantum systems and the thermodynamics of exotic many-body systems, such as Efimov trimers.

  9. Ideal Spintronics in Molecule-Based Novel Organometallic Nanowires

    PubMed Central

    Sun, Qilong; Dai, Ying; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2015-01-01

    With the purpose of searching for new intriguing nanomaterial for spintronics, a series of novel metalloporphyrin nanowires (M-PPNW, M = Cr, Mn, Fe, Co, Ni, Cu and Zn) and hybrid nanowires fabricated by metalloporphyrin and metal-phthalocyanine (M-PCNW) are systematically investigated by means of first-principles calculations. Our results indicate that the transition metal atoms (TMs) embedded in the frameworks distribute regularly and separately, without any trend to form clusters, thus leading to the ideally ordered spin distribution. Except for the cases embedded with Ni and Zn, the others are spin-polarized. Remarkably, the Mn-PPNW, Mn-PCNW, MnCu-PPNW, MnCr-PCNW, and MnCu-PCNW frameworks all favor the long-ranged ferromagnetic spin ordering and display half-metallic nature, which are of greatest interest and importance for electronics and spintronics. The predicted Curie temperature for the Mn-PCNW is about 150 K. In addition, it is found that the discrepancy in magnetic coupling for these materials is related to the competition mechanisms of through-bond and through-space exchange interactions. In the present work, we propose not only two novel sets of 1D frameworks with appealing magnetic properties, but also a new strategy in obtaining the half-metallic materials by the combination of different neighboring TMs. PMID:26239021

  10. Ideal magnetohydrodynamic stability of the spheromak configuration

    SciTech Connect

    Jardin, S.C.

    1982-01-19

    Results are presented of a parametric study of the ideal magnetohydrodynamic stability properties of the spheromak, or compact torus, configuration. In the absence of a nearby conducting wall, the spheromak is always unstable to at least one current driven mode. With a conducting wall at the surface, the spheromak can be unstable to current driven modes if the current is too peaked, i.e., q/sub o/(R/a) less than or equal to 2/3, or if the shear is too low at the origin. The Mercier criterion sets an upper limit on the pressure gradient everywhere, but configurations that are everywhere Mercier stable can be unstable to pressure driven low-n modes. Stable toroidal configurations exist with a spherical wall separated by half a minor radius, and with ..beta../sub theta/ = 30%.

  11. The Geometry of Non-Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Rajeev, S. G.

    2013-12-01

    Arnold showed that the Euler equations of an ideal fluid describe geodesies on the Lie algebra of incompressible vector fields. We generalize this to fluids with dissipation and Gaussian random forcing. The dynamics is determined by the structure constants of a Lie algebra, along with inner products defining kinetic energy, Ohmic dissipation and the covariance of the forces. This allows us to construct tractable toy models for fluid mechanics with a finite number of degrees of freedom. We solve one of them to show how symmetries can be broken spontaneously.In another direction, we derive a deterministic equation that describes the most likely path connecting two points in the phase space of a randomly forced system: this is a WKB approximation to the Fokker-Plank-Kramer equation, analogous to the instantons of quantum theory. Applied to hydrodynamics, we derive a PDE system for Navier-Stokes instantons.

  12. IDEAL Symposium on the East African Lakes

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Kelts, K.; Lehman, J. T.; Wuest, A.

    A vast array of interdisciplinary problems presented by the African Great Lakes were highlighted at the International Symposium on the Limnology, Climatology and Paleoclimatology of the East African Lakes, organized by the International Decade for the East African Lakes (IDEAL) February 17-21 in Jinja, Uganda. Approximately 125 scientists attended from North America, Europe, Africa, and New Zealand. Jinja is located on the northern shore of Lake Victoria at the head-waters of the Nile and is the site of the host institution for the symposium, the Uganda Freshwater Fisheries Research Organization (UFFRO). The conveners of the symposium were Tom Johnson of Duke University, George Kitaka of UNESCO-ROSTA, and Eric Odada of the University of Nairobi.

  13. Stability of ideal fcc twin boundaries

    NASA Astrophysics Data System (ADS)

    Wright, T. W.; Daphalapurkar, N. P.; Ramesh, K. T.

    2014-12-01

    Ideas from continuum mechanics are used to derive an elastic stability inequality for a boundary between two different materials under quasi-static, homogeneous conditions. The terms in this inequality are interpreted for the case of an ideal twinning plane between two variants of a face-centered cubic material. High quality potentials for Ni and Cu are used in molecular dynamics calculations to calibrate relevant energies and displacements near the twinning plane. It is found that in comparison with direct molecular dynamics calculations the inequality predicts the critical stress that initiates movement of the twinning plane in Ni within 1.9% and within 1.3% for Cu. Although the predicted and calculated critical stresses are only upper bounds for the more realistic case of an imperfect boundary, the calculations give considerable insight into the interplay of energies that lead to boundary motion.

  14. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  15. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  16. Engaging distortions: are we idealizing marriage?

    PubMed

    Bonds-Raacke, J M; Bearden, E S; Carriere, N J; Anderson, E M; Nicks, S D

    2001-03-01

    The present study was an investigation of the premarital status of engagement in terms of relationship satisfaction and marital expectations using the Evaluation and Nurturing Relationship Issues, Communication and Happiness (ENRICH) Marital Satisfaction Scale (EMS) and its two subscales of Idealistic Distortion (ID) and Marital Satisfaction (MS) (D. G. Fournier, D. H. Olson, & J. M. Druckman, 1983). There were 104 students (23 men and 81 women), of which 15 were married, 19 were engaged, and 70 had extended dating relationships. On average, participants had been in the relationship for 3.8 years, and the mean age was 22 years. Results demonstrated that individuals engaged to be married had significantly higher idealistic distortion scores (M = 86.89) than did either married individuals (M = 56.67) or those in extended dating relationships (M = 61.19). Finally, a negative relation was found between length of relationships and marital satisfaction subscores. Results are discussed in light of factors contributing to such idealized thinking.

  17. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  18. IDEAL: A methology for developing information systems

    NASA Technical Reports Server (NTRS)

    Evers, Ken H.; Bachert, Robert F.

    1988-01-01

    As a result of improved capabilities obtained through current computer technologies, application programs and expert systems, Enterprises are being designed or upgraded to be highly integrated and automated information systems. To design or modify Enterprises, it is necessary to first define what functions are to be performed within the Enterprise, identify which functions are potential candidates for automation, and what automated or expert systems are available, or must be developed, to accomplish the selected function. Second, it is necessary to define and analyze the informational requirements for each function along with the informational relationships among the functions so that a database structure can be established to support the Enterprise. To perform this type of system design, an integrated set of analysis tools is required to support the information analysis process. The IDEAL (Integrated Design and Engineering Analysis Languages) methodology provides this integrated set of tools and is discussed.

  19. Neem (Azadirachta indica): towards the ideal insecticide?

    PubMed

    Benelli, Giovanni; Canale, Angelo; Toniolo, Chiara; Higuchi, Akon; Murugan, Kadarkarai; Pavela, Roman; Nicoletti, Marcello

    2017-02-01

    Pesticide resistance is going to change rapidly our antibiotics and insecticides arsenal. In this scenario, plant-derived natural products are considered valuable candidates to reverse this negative trend. Growing research attention is focused on neem (Azadirachta indica, Meliaceae), exploring the utility of its products as insecticides and antibiotics. In this review, we summarised the knowledge on neem oil and neem cake by-products in arthropod pest control, with special reference to mosquito vectors of public health importance. To the best of our knowledge, neem-borne products currently showed effective and eco-friendly features, including little non-target effects, multiple mechanisms of action, low cost, easy production in countries with limited industrial facilities. In particular, the potentiality of neem cake as ideal and affordable source of mosquitocidal compounds in anopheline and aedine control programmes is outlined. Overall, we propose the employ of neem-based products as an advantageous alternative to build newer and safer arthropod control tools.

  20. Ideal magnetohydrodynamic interchanges in low density plasmas

    SciTech Connect

    Huang Yimin; Goel, Deepak; Hassam, A.B.

    2005-03-01

    The ideal magnetohydrodynamic equations are usually derived under the assumption V{sub A}<

  1. Nonlinear current sheet formation in ideal plasmas

    NASA Technical Reports Server (NTRS)

    Voge, A.; Schindler, K.; Otto, A.

    1994-01-01

    We present a numerical study of the formation of current sheets in ideal plasmas. First we confirm the development of singular current sheets in a one-dimensional model. In a second step we extend the analysis to two-dimensional equilibria. Here it is found that the resulting structures are quiet insensitive to the boundary conditions. For the special case of a magnetotail like equilibrium it will be shown that the resulting current distribution provides a possibility to understand the onset of a localized anomalous resistivity from a macroscopic point of view. Furthermore, the resulting structures provide an explanation for the dramatic decrease of the thickness of the current sheet in the magnetotail prior to the onset of geomagnetic substorms.

  2. Earthshine simulator: Idealized images of the Moon

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Gleisner, Hans

    2016-12-01

    Terrestrial albedo can be determined from observations of the relative intensity of earthshine. Images of the Moon at different lunar phases can be analyzed to derive the semi-hemispheric mean albedo of the Earth, and an important tool for doing this is simulations of the appearance of the Moon for any time. This software produces idealized images of the Moon for arbitrary times. It takes into account the libration of the Moon and the distances between Sun, Moon and the Earth, as well as the relevant geometry. The images of the Moon are produced as FITS files. User input includes setting the Julian Day of the simulation. Defaults for image size and field of view are set to produce approximately 1x1 degree images with the Moon in the middle from an observatory on Earth, currently set to Mauna Loa.

  3. Idealized simulations of sting jet cyclones

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Gray, S. L.; Clark, P. A.

    2012-04-01

    An idealized modeling study of sting-jet cyclones is presented. Sting jets are descending mesoscale jets that occur in some extratropical cyclones and produce localized regions of strong low-level winds in the frontal fracture region. Moist baroclinic lifecycle (LC1) simulations are performed with modifications to produce cyclones resembling observed sting-jet cyclones. Two jets exist in the control idealized cyclone that descend into the frontal fracture region and result in strong winds near to the top of the boundary layer; one of these satisfies the criteria for a sting jet, the other is associated with the warm front. Sensitivity experiments show that both these jets are robust features. The sting jet strength (measured by maximum low-level wind speed or descent rate) increases with the cyclone growth rate; growth rate increases with increasing basic-state zonal jet maximum or decreasing basic-state tropospheric static stability. The two cyclones with the weakest basic-state static stability have by far the strongest sting jets, with descent rates comparable to those observed. Evaporative cooling contributes up to 20% of the descent rate in these sting jets compared with up to 4% in the other sting jets. Conditional symmetric instability (CSI) release in the cloud head also contributes to the sting jet, although there is less extensive CSI than in observed cases. The robustness of the sting jets suggests that they could occur frequently in cyclones with frontal fracture; however, they are unlikely to be identified unless momentum transport through the boundary layer leads to strong surface wind gusts.

  4. Nonlinear electrophoresis of ideally polarizable particles

    NASA Astrophysics Data System (ADS)

    Figliuzzi, B.; Chan, W. H. R.; Moran, J. L.; Buie, C. R.

    2014-10-01

    We focus in this paper on the nonlinear electrophoresis of ideally polarizable particles. At high applied voltages, significant ionic exchange occurs between the electric double layer, which surrounds the particle, and the bulk solution. In addition, steric effects due to the finite size of ions drastically modify the electric potential distribution in the electric double layer. In this situation, the velocity field, the electric potential, and the ionic concentration in the immediate vicinity of the particle are described by a complicated set of coupled nonlinear partial differential equations. In the general case, these equations must be solved numerically. In this study, we rely on a numerical approach to determine the electric potential, the ionic concentration, and the velocity field in the bulk solution surrounding the particle. The numerical simulations rely on a pseudo-spectral method which was used successfully by Chu and Bazant [J. Colloid Interface Sci. 315(1), 319-329 (2007)] to determine the electric potential and the ionic concentration around an ideally polarizable metallic sphere. Our numerical simulations also incorporate the steric model developed by Kilic et al. [Phys. Rev. E 75, 021502 (2007)] to account for crowding effects in the electric double layer, advective transport, and for the presence of a body force in the bulk electrolyte. The simulations demonstrate that surface conduction significantly decreases the electrophoretic mobility of polarizable particles at high zeta potential and at high applied electric field. Advective transport in the electric double layer and in the bulk solution is also shown to significantly impact surface conduction.

  5. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  6. The Galactic Centre - A spectroscopic and imaging study with the LWS

    NASA Astrophysics Data System (ADS)

    White, G. J.; Smith, H. A.; Stacey, G. J.; Fischer, J.; Spinoglio, L.; Baluteau, J. P.; Cernicharo, J.; Bradford, C. M.

    1999-03-01

    We report observations of a fully sampled (spatially and spectrally) mapping of the central few arcminutes around the Galactic Centre, using the ISO LWS. The maps show the relative spatial distributions in about 20 different emission and absorption lines. The circumnuclear disc is clearly traced by some molecular lines, whilst the central region dominates in other atomic and ionised lines. Spectra are also be shown of several other interesting sources within the Galactic Centre cloud ensemble, including Sgr A West and the `Sickle' cluster.

  7. Why Education in Public Schools Should Include Religious Ideals

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.; Merry, Michael S.

    2009-01-01

    This article aims to open a new line of debate about religion in public schools by focusing on religious ideals. The article begins with an elucidation of the concept "religious ideals" and an explanation of the notion of reasonable pluralism, in order to be able to explore the dangers and positive contributions of religious ideals and their…

  8. Promoting Spiritual Ideals through Design Thinking in Public Schools

    ERIC Educational Resources Information Center

    Tan, Charlene; Wong, Yew-Leong

    2012-01-01

    Against a backdrop of the debates on religious education in public or state schools, we argue for the introduction of "spiritual ideals" into the public school curriculum. We distinguish our notion of spiritual ideals from "religious ideals" as conceptualised by De Ruyter and Merry. While we agree with De Ruyter and Merry that…

  9. Moral Identity as Moral Ideal Self: Links to Adolescent Outcomes

    ERIC Educational Resources Information Center

    Hardy, Sam A.; Walker, Lawrence J.; Olsen, Joseph A.; Woodbury, Ryan D.; Hickman, Jacob R.

    2014-01-01

    The purposes of this study were to conceptualize moral identity as moral ideal self, to develop a measure of this construct, to test for age and gender differences, to examine links between moral ideal self and adolescent outcomes, and to assess purpose and social responsibility as mediators of the relations between moral ideal self and outcomes.…

  10. The Ideal of Conversation in the Study of Mass Media.

    ERIC Educational Resources Information Center

    Schudson, Michael

    1978-01-01

    Examines the "ideal of conversation," and demonstrates that most actual conversation rarely achieves the "ideal." Argues that the rise of mass media is responsible for making ideal conversation more realizable, however, by making talk between men and women, and adults and children, more egalitarian and spontaneous. (PD)

  11. From the ideal market to the ideal clinic: constructing a normative standard of fairness for human subjects research.

    PubMed

    Phillips, Trisha

    2011-02-01

    Preventing exploitation in human subjects research requires a benchmark of fairness against which to judge the distribution of the benefits and burdens of a trial. This paper proposes the ideal market and its fair market price as a criterion of fairness. The ideal market approach is not new to discussions about exploitation, so this paper reviews Wertheimer's inchoate presentation of the ideal market as a principle of fairness, attempt of Emanuel and colleagues to apply the ideal market to human subjects research, and Ballantyne's criticisms of both the ideal market and the resulting benchmark of fairness. It argues that the criticism of this particular benchmark is on point, but the rejection of the ideal market is mistaken. After presenting a complete account of the ideal market, this paper proposes a new method for applying the ideal market to human subjects research and illustrates the proposal by considering a sample case.

  12. The Modified Embedded Atom Method

    SciTech Connect

    Baskes, M.I.

    1994-08-01

    Recent modifications have been made to generalize the Embedded Atom Method (EAM) to describe bonding in diverse materials. By including angular dependence of the electron density in an empirical way, the Modified Embedded Atom Method (MEAM) has been able to reproduce the basic energetic and structural properties of 45 elements. This method is ideally suited for examining the interfacial behavior of dissimilar materials. This paper explains in detail the derivation of the method, shows how the parameters of the MEAM are determined directly from experiment or first principles calculations, and examines the quality of the reproduction of the database. Materials with fcc, bcc, hcp, and diamond cubic crystal structure are discussed. A few simple examples of the application of the MEAM to surfaces and interfaces are presented. Calculations of pullout of a SiC fiber in a diamond matrix as a function of applied stress show non-uniform deformation of the fiber.

  13. Review of CERN Data Centre Infrastructure

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Bell, T.; van Eldik, J.; McCance, G.; Panzer-Steindel, B.; Coelho dos Santos, M.; Traylen and, S.; Schwickerath, U.

    2012-12-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project's motivations, current status and areas for future investigation.

  14. Planetary Radars Operating Centre PROC

    NASA Astrophysics Data System (ADS)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  15. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  16. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  17. Propping up pharma's (natural) neoliberal phallic man: pharmaceutical representations of the ideal sexuopharmaceutical user.

    PubMed

    Gurevich, Maria; Leedham, Usra; Brown-Bowers, Amy; Cormier, Nicole; Mercer, Zara

    2017-04-01

    Contemporary social theorists emphasise the cultural quest for authenticity under conditions of increasing artificiality. Within this context, the body is commonly treated as an 'unfinished' surface requiring ongoing transformation to fulfil identity obligations. In this paper, we examine one such identity authentication project in the form of marketing of men's sexuopharmaceuticals. We use online pharmaceutical advertising for four approved sexuopharmaceuticals (Viagra, Cialis, STAXYN and Stendra) to describe the ideal neoliberal consumer. These campaigns underscore the robust role of pharmaceuticals in sexual authentication projects undergirded by neoliberal consumerist and aspirationalist ideals. Penile dependability as a luxury consumerist project reinvigorates traditional sexual (masculine) authentication as yoked to phallic control, by repackaging sexual enhancement medication use as a neoliberal beacon of aspirational achievements. The ideal targeted user is increasingly younger, and consumption of sexuopharmaceuticals is represented as achieving elite status and exclusive pleasures; masculine authenticity and choice; progressive relationships and a contemporary urban, fast-paced life; and a prepared yet spontaneous romantic sexuality. Women are also increasingly used in promotional materials directed at men; their responsibility centres on coaching and coaxing potential users.

  18. Towards Human-Centred Design

    NASA Astrophysics Data System (ADS)

    Bannon, Liam J.

    The field of HCI has evolved and expanded dramatically since its origin in the early 1980’s. The HCI community embraces a large community of researchers and practitioners around the world, from a variety of disciplinary backgrounds in the human and social sciences, engineering and informatics, and more recently, the arts and design disciplines. This kaleidoscope of cultures and disciplines as seen at INTERACT Conferences provides a rich pool of resources for examining our field. Applications are increasingly exploring our full range of sensory modalities, and merging the digital and physical worlds. WiFi has opened up a huge design space for mobile applications. A focus on usability of products and services has been complemented by an emphasis on engagement, enjoyment and experience. With the advent of ubiquitous computing, and the emergence of “The Internet of Things”, new kinds of more open infrastructures make possible radically new kinds of applications. The sources of innovation have also broadened, to include human and social actors outside of the computing and design organizations. The question is to what extent is our mainstream thinking in the HCI field ready for the challenges of this Brave New World? Do the technological and social innovations that we see emerging require us to re-shape, or even, re-create, our field, or is it a case of a more gradual evolution and development of that which we already know? In this closing Keynote, I will provide a perspective on the evolution and development of the HCI field, looking backwards as well as forwards, in order to determine what are some of the changes of significance in the field. This “broad-brush” approach to what I term “ human-centred design” will be complemented by the examination of specific projects and applications, to help anchor some of the discussion. Areas such as user-centred design, participatory design, computer-supported cooperative work and learning, and interaction design, in

  19. Atoms and Molecules in Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Schmelcher, P.; Cederbaum, L. S.

    Selected topics on atoms and molecules in strong magnetic fields are reviewed. The enormous progress made for the hydrogen atom in a magnetic field and its impact on different areas like, for example, modern semi-classics and dynamics of non-integrable systems as well as laser spectroscopy are outlined. Due to the non-separability of the centre of mass and electronic motion of atoms/molecules in magnetic fields a variety of two-body phenomena can be observed in highly excited systems. Examples are the classical diffusion of the centre of mass and the giant dipole states for crossed fields. For ions energy transfer processes lead to the so-called self-ionisation process. Magnetically induced crossovers for the ground states of atoms are investigated. The increasing complexity of the ground state behaviour of magnetically dressed multi-electron atoms due to changes of the spin polarisation as well as spatial orbitals is demonstrated. For molecules, both fundamental aspects as well as the electronic structure of few-electron diatomics are reviewed.

  20. High Atom Number in Microsized Atom Traps

    DTIC Science & Technology

    2015-12-14

    cooling of some atoms in atomic beam. We have reconfigured the apparatus for applying bichromatic forces transverse to the atomic beam, as it will be...apparatus for applying bichromatic forces transverse to the atomic beam, as it will be easier to extend this to two dimensions. Research to develop

  1. Identity Theft: A Study in Contact Centres

    NASA Astrophysics Data System (ADS)

    Moir, Iain; Weir, George R. S.

    This paper explores the recent phenomenon of identity theft. In particular, it examines the contact centre environment as a mechanism for this to occur. Through a survey that was conducted amongst forty-five contact centre workers in the Glasgow area we determined that contact centres can and do provide a mechanism for identity theft. Specifically, we found a particularly high incidence of agents who had previously dealt with phone calls that they considered suspicious. Furthermore, there are agents within such environments who have previously been offered money in exchange for customers' details, or who know of fellow workers who received such offers. Lastly, we identify specific practices within contact centres that may contribute to the likelihood of identity theft.

  2. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms.

    PubMed

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-08-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult's law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult's law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult's Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa.

  3. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  4. Ideal near-field thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Molesky, Sean; Jacob, Zubin

    2015-05-01

    We ask the question, what are the ideal characteristics of a near-field thermophotovoltaic cell? Our search leads us to a reformulation of near-field radiative heat transfer in terms of the joint density of electronic states of the emitter-absorber pair in the thermophotovoltaic system. This form reveals that semiconducting materials with narrowband absorption spectra are critical to the energy-conversion efficiency. This essential feature is unavailable in conventional bulk semiconductor cells but can be obtained using low-dimensional materials. Our results show that the presence of matched van Hove singularities resulting from quantum confinement in the emitter and absorber of a thermophotovoltaic cell boosts both the magnitude and spectral selectivity of radiative heat transfer, dramatically improving energy-conversion efficiency. We provide a model near-field thermophotovoltaic system design making use of this idea by employing the van Hove singularities present in carbon nanotubes. Shockley-Queisser analysis shows that the predicted heat transfer characteristics of this model device are fundamentally better than existing thermophotovoltaic designs. Our work paves the way for the use of quantum dots, quantum wells, two-dimensional semiconductors, semiconductor nanowires, and carbon nanotubes as future materials for thermophotovoltaic cells.

  5. Theory of ideal orifice pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    David, M.; Maréchal, J.-C.; Simon, Y.; Guilpin, C.

    The main purpose of this paper is to explain the operation of the orifice pulse tube refrigerator (OPTR). An analytical model of the ideal OPT has been developed. The mechanism of heat flow at the tube ends is clearly explained as the result of the hysteretic process of the elements of gas entering and leaving the tube. The motion of the buffer gas is deduced by numerical integration and the expected balance equation for the heat flows at the hot and cold exchangers is established. A numerical calculation of the velocity profile along the pulse tube is in good agreement with hot-wire anemometry data. In working conditions, we found, for the gross refrigeration power, < q˙>, theory/experiment ratios as low as 1.2, whereas those previously reported by Storch and Radebaugh were about 3 - 5. The differences between the theory of Radebaugh et al. and our model are following: (1) Radebaugh and co-workers assume small sinusoidal oscillations of the gas pressure in the tube ( ΔP/ P¯ « 1 ) whereas we describe the gas flow in the tube for any time-dependence of the pressure oscillation P( t); (2) In our model, < q˙>, is expressed with a minimum number of independent and controlled parameters relative to the OPT. In a double inlet pulse tube configuration, our test apparatus was able to achieve a 32 K temperature limit.

  6. [Tuberculosis and the modern ideal of living].

    PubMed

    Medici, T C

    2003-08-20

    Sunlight and fresh air belong to the everyday life's myths. It has influenced our times and personal lives as much as industrialization. Today we are hardly aware of the multiple and omnipresent consequences of this myth. The modern movement with all its facets including modern architecture is barely conceivable without it. What is the link between this triad with all its effects and tuberculosis, the oldest and most important infectious disease which still claims more than 3 million deaths per year worldwide? Tuberculosis was treated by sunlight and fresh air at all times. This treatment was at its zenith during the second half of the 19th century after Hermann Brehmer had initiated this treatment within sanatoria in 1862. The sanatorium vogue lasted until the middle of the last century when streptomycin was isolated by Selman Waksman 1943. A new type of hospital was necessary for treating the patients with sunlight and fresh air: the sanatorium with its wide windows, sheltered open balconies, terraces and "Liegehallen". In return, this airy type of building was the forrunner of a new architectural style, called "Neues Bauen". The latter has profoundly influenced our modern ideal of living since Le Corbusiier built the Villa Savoye, one of the architectural highlights of the 20th century.

  7. Ideal bandpasses for type Ia supernova cosmology

    SciTech Connect

    Davis, Tamara M.; Schmidt, Brian P.; Kim, Alex G.

    2005-10-24

    To use type Ia supernovae as standard candles for cosmologywe need accurate broadband magnitudes. In practice the observed magnitudemay differ from the ideal magnitude-redshift relationship either throughintrinsic inhomogeneities in the type Ia supernova population or throughobservational error. Here we investigate how we can choose filterbandpasses to reduce the error caused by both these effects. We find thatbandpasses with large integral fluxes and sloping wings are best able tominimise several sources of observational error, and are also leastsensitive to intrinsic differences in type Ia supernovae. The mostimportant feature of a complete filter set for type Ia supernovacosmology is that each bandpass be a redshifted copy of the first. Wedesign practical sets of redshifted bandpasses that are matched totypical high resistivity CCD and HgCdTe infra-red detector sensitivities.These are designed to minimise systematic error in well observedsupernovae, final designs for specific missions should also considersignal-to-noise requirements and observing strategy. In addition wecalculate how accurately filters need to be calibrated in order toachieve the required photometric accuracy of future supernova cosmologyexperiments such as the SuperNova-Acceleration-Probe (SNAP), which is onepossible realisation of the Joint Dark-Energy mission (JDEM). We considerthe effect of possible periodic miscalibrations that may arise from theconstruction of an interference filter.

  8. Ideal glass transitions by random pinning

    PubMed Central

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  9. Activation of MHD reconnection on ideal timescales

    NASA Astrophysics Data System (ADS)

    Landi, S.; Papini, E.; Del Zanna, L.; Tenerani, A.; Pucci, F.

    2017-01-01

    Magnetic reconnection in laboratory, space and astrophysical plasmas is often invoked to explain explosive energy release and particle acceleration. However, the timescales involved in classical models within the macroscopic MHD regime are far too slow to match the observations. Here we revisit the tearing instability by performing visco-resistive two-dimensional numerical simulations of the evolution of thin current sheets, for a variety of initial configurations and of values of the Lunquist number S, up to 107. Results confirm that when the critical aspect ratio of S 1/3 is reached in the reconnecting current sheets, the instability proceeds on ideal (Alfvénic) macroscopic timescales, as required to explain observations. Moreover, the same scaling is seen to apply also to the local, secondary reconnection events triggered during the nonlinear phase of the tearing instability, thus accelerating the cascading process to increasingly smaller spatial and temporal scales. The process appears to be robust, as the predicted scaling is measured both in inviscid simulations and when using a Prandtl number P  =  1 in the viscous regime.

  10. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    NASA Astrophysics Data System (ADS)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  11. A full ranking for decision making units using ideal and anti-ideal points in DEA.

    PubMed

    Barzegarinegad, A; Jahanshahloo, G; Rostamy-Malkhalifeh, M

    2014-01-01

    We propose a procedure for ranking decision making units in data envelopment analysis, based on ideal and anti-ideal points in the production possibility set. Moreover, a model has been introduced to compute the performance of a decision making unit for these two points through using common set of weights. One of the best privileges of this method is that we can make ranking for all decision making units by solving only three programs, and also solving these programs is not related to numbers of decision making units. One of the other advantages of this procedure is to rank all the extreme and nonextreme efficient decision making units. In other words, the suggested ranking method tends to seek a set of common weights for all units to make them fully ranked. Finally, it was applied for different sets holding real data, and then it can be compared with other procedures.

  12. Perspectives on recycling centres and future developments.

    PubMed

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E

    2016-11-01

    The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist.

  13. The Imperial College Thermophysical Properties Data Centre

    NASA Astrophysics Data System (ADS)

    Angus, S.; Cole, W. A.; Craven, R.; de Reuck, K. M.; Trengove, R. D.; Wakeham, W. A.

    1986-07-01

    The IUPAC Thermodynamic Tables Project Centre in London has at its disposal considerable expertise on the production and utilization of high-accuracy equations of state which represent the thermodynamic properties of substances. For some years they have been content to propagate this information by the traditional method of book production, but the increasing use of the computer in industry for process design has shown that an additional method was needed. The setting up of the IUPAC Transport Properties Project Centre, also at Imperial College, whose products would also be in demand by industry, afforded the occasion for a new look at the problem. The solution has been to set up the Imperial College Thermophysical Properties Data Centre, which embraces the two IUPAC Project Centres, and for it to establish a link with the existing Physical Properties Data Service of the Institution of Chemical Engineers, thus providing for the dissemination of the available information without involving the Centres in problems such as those of marketing and advertising. This paper outlines the activities of the Centres and discusses the problems in bringing their products to the attention of industry in suitable form.

  14. Nonlinear filtering and limiting in high order methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee,H. C.; Sjogreen, B.

    2004-01-01

    The various filtering mechanisms and base scheme options of the newly developed adaptive numerical dissipation control in spatially high order filter schemes for the ideal and non-ideal magnetohydrodynamics (MHD) equations are investigated. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The type of spatial base scheme to be used in conjunction with our filter idea is very general. For example, spectral, compact and non-compact spatially central finite difference schemes are possible candidates. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and to leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is also very general. The objective of this paper is to investigate the performance of using compact and non-compact central base schemes in conjunction with three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD. This extended abstract shows the performance of three nonlinear filters in conjunction with a sixth-order non-compact spatial central base scheme. In the final paper, the high order compact spatial central base scheme will be illustrated and compared with the non-compact base scheme. The reason for the investigation of the high order compact spatial central base scheme over the non-compact base scheme is to evaluate if additional accuracy can be gained in regions of

  15. Translating ubuntu to Spanish: Convivencia as a framework for re-centring education as a moral enterprise

    NASA Astrophysics Data System (ADS)

    Luschei, Thomas F.

    2016-02-01

    In this essay, the author introduces the concept of " convivencia" (peaceful coexistence) as a framework for re-centring education as a moral enterprise. He discusses convivencia within the context of education and society in Colombia, paying special attention to the Colombian rural school model Escuela Nueva (New School). This discussion draws on both previous evidence and the author's own research on the implementation of the Escuela Nueva model in urban areas of Colombia. He discusses several facets of convivencia and parallels with the ideas and ideals of ubuntu. Using convivencia as an organising principle, he presents insights for educational practitioners and researchers related to re-centring education as a moral enterprise.

  16. Athletic-ideal and thin-ideal internalization as prospective predictors of body dissatisfaction, dieting, and compulsive exercise.

    PubMed

    Homan, Kristin

    2010-06-01

    Although internalization of the thin ideal has been extensively researched and is now regarded as a risk factor for eating disturbance, endorsement of the firm, athletic body ideal has received only minimal attention. This short-term longitudinal study explored whether internalization of two aspects of the current cultural ideal (thinness and athleticism) prospectively predicted three potentially deleterious outcomes: body dissatisfaction, dieting, and compulsive exercise. Undergraduate women (N=231) completed self-report measures at the beginning of the academic year and again 7 months later (N=156 at Time 2). Athletic-ideal internalization predicted change in compulsive exercise over the 7-month study period but not body dissatisfaction or dieting; thin-ideal internalization predicted change in all three outcomes. When both internalization measures were tested simultaneously, neither contributed unique variance. Results suggest that athletic-ideal internalization is not as detrimental as thin-ideal internalization.

  17. Colour centres and nanostructures on the surface of laser crystals

    NASA Astrophysics Data System (ADS)

    Kulagin, N. A.

    2012-11-01

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10-10 to 10-7 m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Men+ : [O2-]k clusters.

  18. Enhanced Schwinger pair production in many-centre systems

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Lorin, Emmanuel; Bandrauk, André D.

    2013-09-01

    Electron-positron pair production is considered for many-centre systems with multiple bare nuclei immersed in a constant electric field. It is shown that there are two distinct regimes where the pair production rate is enhanced. At small interatomic distance, the effective charge of the nuclei approaches the critical charge where the ground state dives into the negative continuum. This facilitates the transition from the negative to the positive energy states, which in turn increases the pair production rate. At larger atomic distance, the enhancement is due to the crossing of resonances and the pair production proceeds by the resonantly enhanced pair production mechanism. These processes are studied within a simple one-dimensional model. A numerical method is developed to evaluate the transmission coefficient in relativistic quantum mechanics, which is required in the calculation of the pair production rate. The latter is evaluated for systems with many (up to five) nuclei. It is shown that the production rate for many-centre systems can reach a few orders of magnitude above Schwinger’s tunnelling result in a static field.

  19. Colour centres and nanostructures on the surface of laser crystals

    SciTech Connect

    Kulagin, N A

    2012-11-30

    This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)

  20. Analysis of three idealized reactor configurations: plate, pin, and homogeneous. [LMFBR

    SciTech Connect

    McKnight, R.D.

    1983-01-01

    Detailed Monte Carlo calculations have been performed for three distinct configurations of an idealized fast critical assembly. This idealized assembly was based on the LMFBR benchmark critical assembly ZPR-6/7. In the first configuration, the entire core was loaded with the plate unit cell of ZPR-6/7. In the second configuration, the entire core was loaded with the ZPR sodium-filled pin calandria. The actual ZPR pin calandria are loaded with mixed (U,Pu) oxide pins which closely match the composition of the ZPR-6/7 plate unit cell. For the present study, slight adjustments were made in the atom concentrations and the length of the pin calandria in order to make the core boundaries and average composition for the pin-cell configuration identical to those of the plate-cell configuration. In the third configuration, the core was homogeneous, again with identical core boundaries and average composition as the plate and pin configurations.

  1. Atomic environments in iron meteorites using EXAFS

    NASA Technical Reports Server (NTRS)

    Cressey, G.; Dent, A. J.; Dobson, B.; Evans, A.; Greaves, G. N.; Henderson, C. M. B.; Hutchison, R.; Jenkins, R. N.; Thompson, S. P.; Zhu, R.

    1989-01-01

    Extended x ray absorption fine structure (EXAFS) is observed as a modulation on the high energy side of an x ray absorption edge. It occurs when the photo-ejected electron wave is scattered by neighboring atoms in a solid, and interference occurs between the outgoing and scattered waves. The result is that the absorption spectrum carries a signature that is characteristic of the identity and disposition of scattering atoms around the absorbing atom. Therefore, it may be shown that the Fourier transform of the normalized EXAFS can provide detailed information about the immediate environment of specific atoms in a solid and is ideally suited to the study of cosmic dusts. A study of cosmic dust was initiated using EXAFS and other techniques. The simplest type of cosmic material, namely iron meteorites, was investigated.

  2. Family Life and Developmental Idealism in Yazd, Iran

    PubMed Central

    Abbasi-Shavazi, Mohammad Jalal; Askari-Nodoushan, Abbas

    2012-01-01

    BACKGROUND This paper is motivated by the theory that developmental idealism has been disseminated globally and has become an international force for family and demographic change. Developmental idealism is a set of cultural beliefs and values about development and how development relates to family and demographic behavior. It holds that modern societies are causal forces producing modern families, that modern families help to produce modern societies, and that modern family change is to be expected. OBJECTIVE We examine the extent to which developmental idealism has been disseminated in Iran. We also investigate predictors of the dissemination of developmental idealism. METHODS We use survey data collected in 2007 from a sample of women in Yazd, a city in Iran. We examine the distribution of developmental idealism in the sample and the multivariate predictors of developmental idealism. RESULTS We find considerable support for the expectation that many elements of developmental idealism have been widely disseminated. Statistically significant majorities associate development with particular family attributes, believe that development causes change in families, believe that fertility reductions and age-at-marriage increases help foster development, and perceive family trends in Iran headed toward modernity. As predicted, parental education, respondent education, and income affect adherence to developmental idealism. CONCLUSIONS Developmental idealism has been widely disseminated in Yazd, Iran and is related to social and demographic factors in predicted ways. COMMENTS Although our data come from only one city, we expect that developmental idealism has been widely distributed in Iran, with important implications for family and demographic behavior. PMID:22942772

  3. Family Life and Developmental Idealism in Yazd, Iran.

    PubMed

    Abbasi-Shavazi, Mohammad Jalal; Askari-Nodoushan, Abbas

    2012-01-01

    BACKGROUND: This paper is motivated by the theory that developmental idealism has been disseminated globally and has become an international force for family and demographic change. Developmental idealism is a set of cultural beliefs and values about development and how development relates to family and demographic behavior. It holds that modern societies are causal forces producing modern families, that modern families help to produce modern societies, and that modern family change is to be expected. OBJECTIVE: We examine the extent to which developmental idealism has been disseminated in Iran. We also investigate predictors of the dissemination of developmental idealism. METHODS: We use survey data collected in 2007 from a sample of women in Yazd, a city in Iran. We examine the distribution of developmental idealism in the sample and the multivariate predictors of developmental idealism. RESULTS: We find considerable support for the expectation that many elements of developmental idealism have been widely disseminated. Statistically significant majorities associate development with particular family attributes, believe that development causes change in families, believe that fertility reductions and age-at-marriage increases help foster development, and perceive family trends in Iran headed toward modernity. As predicted, parental education, respondent education, and income affect adherence to developmental idealism. CONCLUSIONS: Developmental idealism has been widely disseminated in Yazd, Iran and is related to social and demographic factors in predicted ways. COMMENTS: Although our data come from only one city, we expect that developmental idealism has been widely distributed in Iran, with important implications for family and demographic behavior.

  4. GCSS Idealized Cirrus Model Comparison Project

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GCSS Working Group on Cirrus Cloud Systems (WG2) is conducting a systematic comparison and evaluation of cirrus cloud models. This fundamental activity seeks to support the improvement of models used for climate simulation and numerical weather prediction through assessment and improvement of the "process" models underlying parametric treatments of cirrus cloud processes in large-scale models. The WG2 Idealized Cirrus Model Comparison Project is an initial comparison of cirrus cloud simulations by a variety of cloud models for a series of idealized situations with relatively simple initial conditions and forcing. The models (16) represent the state-of-the-art and include 3-dimensional large eddy simulation (LES) models, two-dimensional cloud resolving models (CRMs), and single column model (SCM) versions of GCMs. The model microphysical components are similarly varied, ranging from single-moment bulk (relative humidity) schemes to fully size-resolved (bin) treatments where ice crystal growth is explicitly calculated. Radiative processes are included in the physics package of each model. The baseline simulations include "warm" and "cold" cirrus cases where cloud top initially occurs at about -47C and -66C, respectively. All simulations are for nighttime conditions (no solar radiation) where the cloud is generated in an ice supersaturated layer, about 1 km in depth, with an ice pseudoadiabatic thermal stratification (neutral). Continuing cloud formation is forced via an imposed diabatic cooling representing a 3 cm/s uplift over a 4-hour time span followed by a 2-hour dissipation stage with no cooling. Variations of these baseline cases include no-radiation and stable-thermal-stratification cases. Preliminary results indicated the great importance of ice crystal fallout in determining even the gross cloud characteristics, such as average vertically-integrated ice water path (IWP). Significant inter-model differences were found. Ice water fall speed is directly

  5. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  6. Ideal theory in semigroups based on intersectional soft sets.

    PubMed

    Song, Seok Zun; Kim, Hee Sik; Jun, Young Bae

    2014-01-01

    The notions of int-soft semigroups and int-soft left (resp., right) ideals are introduced, and several properties are investigated. Using these notions and the notion of inclusive set, characterizations of subsemigroups and left (resp., right) ideals are considered. Using the notion of int-soft products, characterizations of int-soft semigroups and int-soft left (resp., right) ideals are discussed. We prove that the soft intersection of int-soft left (resp., right) ideals (resp., int-soft semigroups) is also int-soft left (resp., right) ideals (resp., int-soft semigroups). The concept of int-soft quasi-ideals is also introduced, and characterization of a regular semigroup is discussed.

  7. First principle thousand atom quantum dot calculations

    SciTech Connect

    Wang, Lin-Wang; Li, Jingbo

    2004-03-30

    A charge patching method and an idealized surface passivation are used to calculate the single electronic states of IV-IV, III-V, II-VI semiconductor quantum dots up to a thousand atoms. This approach scales linearly and has a 1000 fold speed-up compared to direct first principle methods with a cost of eigen energy error of about 20 meV. The calculated quantum dot band gaps are parametrized for future references.

  8. Studying of barrier height and ideality factor relation in the nano sized Au-n type Si Schottky diodes

    NASA Astrophysics Data System (ADS)

    Yeganeh, M. A.; Mamedov, R. K.; Rahmatallahpur, Sh.

    2011-07-01

    The results of formation of the operating potential barrier height ( Φв) of inhomogeneous Schottky diodes (SD) in view of an additional electric field in the near contact region of the semiconductor and features of its dependence on the external applied voltage are presented. A correlation, between SD heterogeneity and dependence between potential barrier height ( Φв) and ideality factor ( n), is presented. Using conducting probe atomic force microscope (CP-AFM) techniques, it is shown that Au/n-Si diodes consist of sets of parallel-connected and cooperating nano diodes with the contact surfaces sizes in the order of 100-200 nm. The effective Φв and ideality factors of the SD have been obtained from the current-voltage ( I- V) characteristics, which were measured using a CP-AFM along a contact surface. It was experimentally shown that the forward and reverse part of I- V characteristics and their effective Φв and ideality factors of the identically fabricated nano-SD differ from diode to diode. The Φв for the nano-SD has ranged from 0.565 to 0.723 eV and ideality factor from 1.11 to 1.98. No correlation can be found between the Φв and ideality factor. The Φв distribution obtained from the I- V characteristics has been fitted by a Gaussian function but the ideality factor distribution could not be fitted by a Gaussian function.

  9. Extending cluster description to bimetallic nanowires: The ideal solid solution alloy case

    NASA Astrophysics Data System (ADS)

    Maras, E.; Braems, I.; Berthier, F.

    2011-12-01

    We present a comprehensive study of the equilibrium properties of two codeposited species for an alloy that forms an ideal solution, on a one-dimensional chain. By use of a cluster description we provide exact formulae of the coverages, the total density of clusters, the cluster size distribution, and the chemical composition of each cluster. These analytical results, that are proved to be in agreement with Monte Carlo simulations, strongly differ from the ones derived in the mean-field framework. Indeed, we show by depicting the codeposit at the macroscopic, mesoscopic, and atomic scales, that its features are to be related to the chemical heterogeneities at the edges of the clusters.

  10. Ideal superspin glass behaviour in a random-close-packed ensemble of maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    De Toro, J. A.; Lee, S. S.; Mathieu, R.; Normile, P. S.; Salazar, D.; Cheong, J. L.; Muñiz, P.; Riveiro, J. M.; Hillenkamp, M.; Tamion, A.; Tournus, F.; Nordblad, P.

    2014-06-01

    Highly uniform (8 nm) bare maghemite nanoparticles were pressed into a disc with a volume fraction close to the characteristic filling factor of random-close-packed ensembles of spherical particles. We review the ideal superspin glass behaviour exhibited by this material, including an onset of the absorption component of the ac susceptibility at the freezing transition as sharp (in a normalized temperature scale) as those observed in atomic spin glasses, narrow memory dips in the zero-field cooled magnetization, and a spin-glass characteristic field-dependence of the susceptibility. Critical exponents were extracted from static and dynamic scaling analysis.

  11. Converging cylindrical shocks in ideal magnetohydrodynamics

    SciTech Connect

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  12. Converging cylindrical shocks in ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  13. Ideal cardiovascular health and incident hypertension

    PubMed Central

    Zhao, Hai Yan; Liu, Xiao Xue; Wang, An Xin; Wu, Yun Tao; Zheng, Xiao Ming; Zhao, Xiao Hong; Cui, Kai; Ruan, Chun Yu; Lu, Cheng Zhi; Jonas, Jost B.; Wu, Shou Ling

    2016-01-01

    Abstract Ideal cardiovascular health (CVH) has been defined by the American Heart Association as the absence of disease and presence of 7 key health factors. Since it is unknown whether cumulative exposure to CVH reduces the risk of developing arterial hypertension, we prospectively examined the potential association between cumulative CVH (cumCVH) score (except for blood pressure metrics) and incident hypertension. Of the 101,510 participants with an age range of 18 to 98 years in this longitudinal community-based Kailuan study, our cohort included those 15,014 participants without hypertension at baseline and who had follow-up examinations 2, 4, and 6 years later. CumCVH was calculated as the summed CVH score for each examination multiplied by the time between the 2 examinations (points × year). Based on the cumCVH score, the study population was stratified into groups of <44 points, 44 to 48 points, 49 to 54 points, 55 to 59 points, and ≥60 points. Incidence of hypertension ranged from 16.76% in the lowest cumCVH category to 11.52% in the highest cumCVH category. After adjusting for age, sex, education level, income level, high-sensitivity C-reactive protein concentration, uric acid concentration, resting heart rate, parental history of hypertension at baseline, and medication usage before the third follow-up examination, participants in the highest cumCVH category had a significantly reduced risk of incident hypertension compared with those in the lowest cumCVH category (adjusted odds ratio 0.60, 95% confidence interval 0.50–0.71). For every increase in category based on the cumCVH score, the risk of hypertension decreased by approximately 2% (odds ratio 0.98, 95% confidence interval 0.97–0.98). The effect was consistent across sex and age groups. A higher cumCVH score is associated with a lower risk of incident hypertension. PMID:27977580

  14. CMS centres worldwide: A new collaborative infrastructure

    SciTech Connect

    Taylor, Lucas; Gottschalk, Erik; /Fermilab

    2010-01-01

    The CMS Experiment at the LHC is establishing a global network of inter-connected 'CMS Centres' for controls, operations and monitoring. These support: (1) CMS data quality monitoring, detector calibrations, and analysis; and (2) computing operations for the processing, storage and distribution of CMS data. We describe the infrastructure, computing, software, and communications systems required to create an effective and affordable CMS Centre. We present our highly successful operations experiences with the major CMS Centres at CERN, Fermilab, and DESY during the LHC first beam data-taking and cosmic ray commissioning work. The status of the various centres already operating or under construction in Asia, Europe, Russia, South America, and the USA is also described. We emphasise the collaborative communications aspects. For example, virtual co-location of experts in CMS Centres Worldwide is achieved using high-quality permanently-running 'telepresence' video links. Generic Web-based tools have been developed and deployed for monitoring, control, display management and outreach.

  15. The atomic orbitals of the topological atom.

    PubMed

    Ramos-Cordoba, Eloy; Salvador, Pedro; Mayer, István

    2013-06-07

    The effective atomic orbitals have been realized in the framework of Bader's atoms in molecules theory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken population analysis carried out on this basis set exactly reproduces the original QTAIM atomic populations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular value decomposition procedure.

  16. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  17. Super-Coulombic atom-atom interactions in hyperbolic media.

    PubMed

    Cortes, Cristian L; Jacob, Zubin

    2017-01-25

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  18. Super-Coulombic atom-atom interactions in hyperbolic media

    NASA Astrophysics Data System (ADS)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  19. Effective distribution coefficients of a binary ideal solid solution controlled by kink kinetics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoko; Kitamura, Masao

    2001-01-01

    Effective distribution coefficients of a binary ideal solid solution growing from dilute surroundings are derived for the steady state using a model in which atoms attach and detach only at kink sites on a (0 0 1) surface of a simple cubic crystal. A system of equations is presented to give the step-edge, terrace, and bulk compositions in terms of attachment and detachment frequencies. The total net flux of atoms from the mother phase to kink sites is also formulated as a function of these compositions and the frequencies. Numerical solutions to the system of equations show that the step-edge, terrace, and bulk compositions are different from one another and that the step-edge, terrace, and bulk distribution coefficients will all approach unity from their respective equilibrium values as the total net flux increases.

  20. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  1. Optimizing Data Centre Energy and Environmental Costs

    NASA Astrophysics Data System (ADS)

    Aikema, David Hendrik

    Data centres use an estimated 2% of US electrical power which accounts for much of their total cost of ownership. This consumption continues to grow, further straining power grids attempting to integrate more renewable energy. This dissertation focuses on assessing and reducing data centre environmental and financial costs. Emissions of projects undertaken to lower the data centre environmental footprints can be assessed and the emission reduction projects compared using an ISO-14064-2-compliant greenhouse gas reduction protocol outlined herein. I was closely involved with the development of the protocol. Full lifecycle analysis and verifying that projects exceed business-as-usual expectations are addressed, and a test project is described. Consuming power when it is low cost or when renewable energy is available can be used to reduce the financial and environmental costs of computing. Adaptation based on the power price showed 10--50% potential savings in typical cases, and local renewable energy use could be increased by 10--80%. Allowing a fraction of high-priority tasks to proceed unimpeded still allows significant savings. Power grid operators use mechanisms called ancillary services to address variation and system failures, paying organizations to alter power consumption on request. By bidding to offer these services, data centres may be able to lower their energy costs while reducing their environmental impact. If providing contingency reserves which require only infrequent action, savings of up to 12% were seen in simulations. Greater power cost savings are possible for those ceding more control to the power grid operator. Coordinating multiple data centres adds overhead, and altering at which data centre requests are processed based on changes in the financial or environmental costs of power is likely to increase this overhead. Tests of virtual machine migrations showed that in some cases there was no visible increase in power use while in others power use

  2. Nonlinear atom interferometer surpasses classical precision limit.

    PubMed

    Gross, C; Zibold, T; Nicklas, E; Estève, J; Oberthaler, M K

    2010-04-22

    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states. Extending quantum interferometry to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the 'one-axis-twisting' scheme and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2 dB (refs 11-15). The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms.

  3. An Efficient Trap of ^221Fr Atoms

    NASA Astrophysics Data System (ADS)

    Lu, Z. T.; Corwin, K. L.; Vogel, K. R.; Wieman, C. E.; Dinneen, T. P.; Maddi, J. A.; Gould, H.

    1997-04-01

    Francium, the heaviest alkali, is the ideal candidate for the next generation of experiments that study atomic parity non-conservation (PNC) effects or search for a CP-violating permanent atomic electric dipole moment (EDM). Since all francium isotopes are radioactive and have half-lives of 22 minutes or less, a highly efficient atom trap is needed to provide a sufficient sample for PNC or EDM experiments. Using an improved vapor cell magneto-optical trap, we have demonstrated an efficient trap of ^221Fr(t_1/2=5min) atoms. Over 20% of the ^221Fr atoms entering the cell are loaded into the trap. The 4cm cube cell has a geometry optimized for a high trap loading rate and its walls are coated with dryfilm to slow the loss of francium atoms to the walls (M.Stephens and C.Wieman, Phys. Rev. Lett. 72, 3787 (1994).). Produced from the decay of ^225Ac(t_1/2=10d), the francium atoms are efficiently transferred into the cell using a novel orthotropic oven (T.Dinneen, A.Ghiorso, and H.Gould, Rev. Sci. Inst. 67, 752 (1996).). Work supported by NSF, ONR,and U.S.DOE under contract number DE-AC-76SF00098.

  4. Atomic Energy Basics, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This booklet is part of the "Understanding the Atom Series," though it is a later edition and not included in the original set of 51 booklets. A basic survey of the principles of nuclear energy and most important applications are provided. These major topics are examined: matter has molecules and atoms, the atom has electrons, the nucleus,…

  5. Bureaucracy, professionalization and school centred innovation strategies

    NASA Astrophysics Data System (ADS)

    Morris, Paul

    1990-03-01

    This paper examines an attempt to promote a school centred innovation strategy within a highly centralized educational system. The School Based Curriculum Project Scheme, which was introduced into Hong Kong in 1988, is analysed in terms of a professional-bureaucratic dichotomy. It is argued that the operational details of the scheme are designed to satisfy a range of bureaucratic concerns and these are not conducive to promoting the professional work ethic which is required for school centred innovation. Finally the paper identifies the implications which arise for policies designed to promote curriculum innovation.

  6. Byurakan Astrophysical Observatory as Cultural Centre

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  7. A serial qualitative interview study of infant feeding experiences: idealism meets realism

    PubMed Central

    Craig, Leone C A; Britten, Jane; McInnes, Rhona M

    2012-01-01

    Objective To investigate the infant feeding experiences of women and their significant others from pregnancy until 6 months after birth to establish what would make a difference. Design Qualitative serial interview study. Setting Two health boards in Scotland. Participants 72 of 541 invited pregnant women volunteered. 220 interviews approximately every 4 weeks with 36 women, 26 partners, eight maternal mothers, one sister and two health professionals took place. Results The overarching theme was a clash between overt or covert infant feeding idealism and the reality experienced. This is manifest as pivotal points where families perceive that the only solution that will restore family well-being is to stop breast feeding or introduce solids. Immediate family well-being is the overriding goal rather than theoretical longer term health benefits. Feeding education is perceived as unrealistic, overly technical and rules based which can undermine women's confidence. Unanimously families would prefer the balance to shift away from antenatal theory towards more help immediately after birth and at 3–4 months when solids are being considered. Family-orientated interactive discussions are valued above breastfeeding-centred checklist style encounters. Conclusions Adopting idealistic global policy goals like exclusive breast feeding until 6 months as individual goals for women is unhelpful. More achievable incremental goals are recommended. Using a proactive family-centred narrative approach to feeding care might enable pivotal points to be anticipated and resolved. More attention to the diverse values, meanings and emotions around infant feeding within families could help to reconcile health ideals with reality. PMID:22422915

  8. Variational Perturbation Treatment of the Confined Hydrogen Atom

    ERIC Educational Resources Information Center

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  9. Atom Probe Tomography of Geomaterials

    NASA Astrophysics Data System (ADS)

    Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.

    2013-12-01

    From the electron microprobe to the secondary ion microprobe to laser-ablation ICP-MS, steady improvements in the spatial resolution and detection limits of geochemical micro-analysis have been central to generating new discoveries. Atom probe tomography (APT) is a relatively new technology that promises nm-scale spatial resolution (in three dimensions) with ppm level detection limits. The method is substantially different from traditional beam-based (electron, ion, laser) methods. In APT, the sample is shaped (usually with a dual-beam FIB) into a needle with typical dimensions of 1-2 μm height and 100-200 nm diameter. Within the atom probe, the needle is evaporated one atom (ideally) at a time by a high electric field (ten's of V per square nm at the needle tip). A femtosecond laser (12 ps pulse width) is used to assist in evaporating non-conducting samples. The two-dimensional detector locates where the atom was released from the needle's surface and so can reconstruct the positions of all detected atoms in three dimensions. It also records the time of flight of the ion, which is used to calculate the mass/charge ratio of the ion. We will discuss our results analyzing a range of geologic materials. In one case, naturally occurring platinum group alloys (PGA) from the Josephine Ophiolite have been imaged. Such alloys are of interest as recorders of the Os heterogeneity of the mantle [1,2]. Optimal ablation was achieved with a laser power of 120-240 pJ and laser pulse rates 500 kHz. Runs were stopped after 10 million atoms were imaged. An example analysis is: Pt 61(1), Fe 26.1(9), Rh 1.20(4), Ir 7.0(7), Ni 2.65(8), Ru 0.20(9), Cu 1.22(8), Co 0.00029(5). Values are in atomic %; values in parentheses are one-sigma standard deviations on five separate needles from the same FIB lift-out, which was 30 μm long. Assuming the sample is homogenous over the 30 μm from which the needle was extracted, the analyses suggest relative errors for major elements below 5% and for

  10. What Do Doctoral Students Value in Their Ideal Mentor?

    ERIC Educational Resources Information Center

    Bell-Ellison, Bethany A.; Dedrick, Robert F.

    2008-01-01

    The purpose of this study was to contribute to the construct validity of the scores from Rose's (2003) 34-item "Ideal Mentor Scale" (IMS) and to examine whether male and female doctoral students value different attributes in their ideal mentor. Two hundred and twenty-four doctoral students from colleges (Education, Public Health, Nursing, Arts and…

  11. The "Body Beautiful": English Adolescents' Images of Ideal Bodies.

    ERIC Educational Resources Information Center

    Dittmar, Helga; Lloyd, Barbara; Dugan, Shaun; Halliwell, Emma; Jacobs, Neil; Cramer, Helen

    2000-01-01

    Two studies examine qualities capturing adolescents' images of ideal bodies for both genders. Data from questionnaires and discussions of photographs indicate that body-image ideals are multidimensional, show systematic gender differences, and become more conventional with age. Adolescents' own body mass links systematically to body-image…

  12. Your Ideal Silhouette. Courseware Evaluation for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Tierney, Margaret S.; And Others

    This courseware evaluation rates the "Your Ideal Silhouette" program developed by Your Image, Inc. This program (not contained in this document) uses the computer to identify figure faults and illustrate personalized corrective style lines to achieve the ideal silhouette. Part A describes the program in terms of subject area (textiles…

  13. Assessing the quality of care for haemophilia at the Yaoundé reference treatment Centre of Cameroon.

    PubMed

    Yimlefack, Nzometia C; Tagny, Claude T; Ndoumba, Annick M; Pauline, Ngo B; Ngum, Mbanya D

    2017-03-01

    With a recently established Haemophilia Treatment Centre (HTC) in Yaoundé, Cameroon, over a hundred people living with haemophilia have been recruited and followed up at this centre. This study aimed at assessing the quality of haemophilia care provided at the HTC, in order to monitor and improve patient care. In February 2014, the HTC was assessed using recommended markers. Although few, the logistics and reagents for the diagnosis and treatment of haemophilia were available. There were seven trained workers involved with haemophilia care, but the multidisciplinary care team was incomplete. A total of 113 people living with haemophilia (all males) had been registered and regularly followed up at the HTC. This study showed that the HTC of the Yaoundé University Teaching Hospital, although not yet ideal, allows for some degree of haemophilia patient care. Hence, it may be recommended to improve the centre and make it fully established in Cameroon.

  14. Ideal ages for family formation among immigrants in Europe.

    PubMed

    Holland, Jennifer A; de Valk, Helga A G

    2013-12-01

    This paper investigates ideal ages for marriage and parenthood among immigrants from over 160 countries origins living in 25 European countries. Ideals regarding the timing of family formation are indicative of how individuals perceive the family life course and provide insight into family-life aspirations and the meaning attached to these transitions. Using data from the European Social Survey (Round 3, 2006; N=6330) and a cross-classified multilevel modeling approach, we investigate associations between the influences of the dominant family formation timing patterns in countries of origin and settlement, individual-level characteristics, and ideal ages. We make innovative use of a standard demographic measure, the singulate mean age of marriage, to measure family formation patterns. Results suggest that residential context influences are associated with the timing ideals of all migrants, but origin influences seem to be associated with the ideals of only the most recent migrants.

  15. Atomic Interferometry with Detuned Counter-Propagating Electromagnetic Pulses

    SciTech Connect

    Tsang, Ming -Yee

    2014-09-05

    Atomic fountain interferometry uses atoms cooled with optical molasses to 1 μK, which are then launched in a fountain mode. The interferometer relies on the nonlinear Raman interaction of counter-propagating visible light pulses. We present models of these key transitions through a series of Hamiltonians. Our models, which have been verified against special cases with known solutions, allow us to incorporate the effects of non-ideal pulse shapes and realistic laser frequency or wavevector jitter.

  16. [The 'ideal therapy process': testing a new approach for assessing process quality in inpatient parent-child facilities].

    PubMed

    Musekamp, G; Lukasczik, M; Gerlich, C; Saupe-Heide, M; Löbmann, R; Vogel, H; Neuderth, S

    2014-12-01

    Instruments for external quality assurance in inpatient parent-child rehabilitation and prevention facilities were developed in 2 projects. For the assessment of process quality, we sought an alternative test to the peer review procedure which also places a stronger emphasis on patient perspectives. The aim was to define an "ideal process" as a standard, to develop quantifiable criteria, and to test a multimethod approach which involves different data levels. On the basis of different sources, the "ideal process" for parent-child rehabilitation and prevention and associated criteria were defined by involving an accompanying expert group during a consensus process. Criteria were assessed on different levels: on the rehabilitation/prevention centre level, a questionnaire of process-relevant structural features was used; on the patient level, a case-related routine documentation filled in by clinic staff and an incident-related patient questionnaire were applied. Data were collected in 37 centres (prevention: 19; rehabilitation: 11; 7 offering both types of programmes). Analysis of patient-related data is based on a sample of 1 513 prevention patients and 286 rehabilitation patients. The resulting "ideal process" consists of the stages "preparation", "arrival", "treatment planning", "treatment", "completion of treatment", and "organisation", each containing specific criteria. Exemplarily, the outcomes for the stages "treatment planning" and "treatment" are presented. There is variability both between features and between clinics. The majority of the patients report that the criteria are fulfilled while there are medium to high levels of fulfillment regarding the routine documentation. The criteria of the questionnaire of process-relevant structural features are mostly fulfilled according to the clinics. Agreement between the 3 data levels can be observed. On the basis of the defined "ideal process", the methods that were tested seem to be appropriate to illustrate

  17. Moral identity as moral ideal self: links to adolescent outcomes.

    PubMed

    Hardy, Sam A; Walker, Lawrence J; Olsen, Joseph A; Woodbury, Ryan D; Hickman, Jacob R

    2014-01-01

    The purposes of this study were to conceptualize moral identity as moral ideal self, to develop a measure of this construct, to test for age and gender differences, to examine links between moral ideal self and adolescent outcomes, and to assess purpose and social responsibility as mediators of the relations between moral ideal self and outcomes. Data came from a local school sample (Data Set 1: N = 510 adolescents; 10-18 years of age) and a national online sample (Data Set 2: N = 383 adolescents; 15-18 years of age) of adolescents and their parents. All outcome measures were parent-report (Data Set 1: altruism, moral personality, aggression, and cheating; Data Set 2: environmentalism, school engagement, internalizing, and externalizing), whereas other variables were adolescent-report. The 20-item Moral Ideal Self Scale showed good reliability, factor structure, and validity. Structural equation models demonstrated that, even after accounting for moral identity internalization, in Data Set 1 moral ideal self positively predicted altruism and moral personality and negatively predicted aggression, whereas in Data Set 2 moral ideal self positively predicted environmentalism and negatively predicted internalizing and externalizing symptoms. Further, purpose and social responsibility mediated most relations between moral ideal self and the outcomes in Data Set 2. Moral ideal self was unrelated to age but differentially predicted some outcomes across age. Girls had higher levels of moral ideal self than boys, although moral identity did not differentially predict outcomes between genders. Thus, moral ideal self is a salient element of moral identity and may play a role in morally relevant adolescent outcomes.

  18. Writing Centre Tutoring Sessions: Addressing Students' Concerns

    ERIC Educational Resources Information Center

    Winder, Roger; Kathpalia, Sujata S.; Koo, Swit Ling

    2016-01-01

    The guiding principle behind university writing centres is to focus on the process of writing rather than the finished product, prioritising higher order concerns related to organisation and argumentation of texts rather than lower order concerns of grammar and punctuation. Using survey-based data, this paper examines students' concerns regarding…

  19. Person-Centred (Deictic) Expressions and Autism

    ERIC Educational Resources Information Center

    Hobson, R. Peter; Garcia-Perez, Rosa M.; Lee, Anthony

    2010-01-01

    We employed semi-structured tests to determine whether children with autism produce and comprehend deictic (person-centred) expressions such as "this"/"tilde" "here"/"there" and "come"/"go", and whether they understand atypical non-verbal gestural deixis in the form of directed head-nods to indicate location. In Study 1, most participants…

  20. Centre National d'Etudes Spatiales

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Centre National d'Etudes Spatiales (CNES) draws up, proposes and conducts France's space policy. Its role is to develop the uses of space, to meet the civilian and military needs of public bodies and of the scientific community, and to foster the development and dissemination of new applications, designed to create wealth and jobs....

  1. Crystallographic Data Centre Services and Publications.

    ERIC Educational Resources Information Center

    Cambridge Univ. (England). Chemical Lab.

    The Cambridge Crystallographic Data Centre is concerned with the retrieval, evaluation, synthesis, and dissemination of structural data based on diffraction methods. The source of input is almost entirely primary journals. Bibliographic information and numeric data on crystal and molecular structures are on magnetic tapes. The bibliographic file…

  2. Examining Whiteness in a Children's Centre

    ERIC Educational Resources Information Center

    Clarke, Verity; Watson, Debbie

    2014-01-01

    This article utilises critical whiteness theory to explore the ethnic discourses observed in a children's centre in South London. Whilst critical whiteness has been used as a framework to understand race, racism and multiculturalism in a number of settings, including education, there are few studies that have sought to understand ethnicity in…

  3. Visiting a science centre: what's on offer?

    NASA Astrophysics Data System (ADS)

    Russell, Ian

    1990-09-01

    Science centres are a valuable resource, used more frequently by family groups and primary school parties than by secondary schools. The importance of affective learning, involving attitude changes, is stressed. Provided the right approach is used, accompanying adults can help children get the most out of a visit.

  4. Cactus: The Centres of a Triangle

    ERIC Educational Resources Information Center

    Hyde, Hartley

    2009-01-01

    This is the first of two articles which describe how to use "JavaSketchPad" to explore the centres of a triangle. This introductory exercise is suggested in the GSP "Workshop Guide". Students can use "JavaSketchPad Interactive Geometry" (JSP) at home at no cost. They are likely to impress their parents with their enthusiasm for geometry and all…

  5. Oo-Za-We-Kwun Centre Incorporated

    ERIC Educational Resources Information Center

    Findlay, P. R.; And Others

    1976-01-01

    The Centre is described as being designed to help native people participate more effectively in a modern Canadian environment. The residential family program includes a five-week Life Skills course followed by a two-year transfer of learning period during which counseling, paid employment, and community activities are available. (Author/MS)

  6. Industry Restructuring: Extracts from Centre Publications.

    ERIC Educational Resources Information Center

    Hall, William C., Ed.

    This document contains excerpts from material previously published by Australia's TAFE (Technical and Further Education) National Centre for Research and Development on the subjects of industry restructuring, the reasons for restructuring, revising curricula, and providing a service to business and industry. Its contents are "Industry…

  7. Self Assessment and Student-Centred Learning

    ERIC Educational Resources Information Center

    McDonald, Betty

    2012-01-01

    This paper seeks to show how self assessment facilitates student-centred learning (SCL) and fills a gap in the literature. Two groups of students were selected from a single class in a tertiary educational institution. The control group of 25 was selected randomly by the tossing of an unbiased coin (heads = control group). They were trained in the…

  8. In the Field: The Canadian Ecology Centre.

    ERIC Educational Resources Information Center

    Magee, Clare

    2000-01-01

    The Canadian Ecology Centre (Ontario) offers year-round residential and day programs in outdoor and environmental education for secondary students, field placement and internship opportunities for college students, and ecotourism programs, while providing employment and tax revenues to the local community. Dubbed consensus environmentalism, the…

  9. Centring the Subject in Order to Educate

    ERIC Educational Resources Information Center

    Webster, R. Scott

    2007-01-01

    It is important for educators to recognise that the various calls to decentre the subject--or self--should not be interpreted as necessarily requiring the removal of the subject altogether. Through the individualism of the Enlightenment the self was centred. This highly individualistic notion of the sovereign self has now been decentred especially…

  10. Myanmar: The Community Learning Centre Experience.

    ERIC Educational Resources Information Center

    Middelborg, Jorn; Duvieusart, Baudouin, Ed.

    A community learning centre (CLC) is a local educational institution outside the formal education system, usually set up and managed by local people. CLCs were first introduced in Myanmar in 1994, and by 2001 there were 71 CLCs in 11 townships. The townships are characterized by remoteness, landlessness, unemployment, dependency on one cash crop,…

  11. Early Childhood Centre Administrator Certification. Project Report.

    ERIC Educational Resources Information Center

    Ferguson, E. Elaine

    This document presents the process for obtaining certification for the position of early childhood centre administrator (ECCA) in Nova Scotia, Canada. Following an introduction describing the development of the process and its pilot testing, Chapter 1 of the document details the four-step process: (1) application, including training in the ECCA…

  12. Ideal strength and phonon instability in single-layer MoS2

    NASA Astrophysics Data System (ADS)

    Li, Tianshu

    2012-06-01

    Ideal tensile stress strain relations for single-layer MoS2 are investigated based on first-principle calculation, for biaxial tension and uniaxial tension along zigzag and armchair directions. The predicted ideal tensile strengths and elastic moduli are in excellent agreement with the very recent experimental measurements of Bertolazzi [ACS Nano1936-085110.1021/nn203879f 5, 9703 (2011)] and Castellanos-Gomez [Adv. Mater.ADVMEW0935-964810.1002/adma.201103965 24, 772 (2012)]. It is identified that the tensile strength of single-layer MoS2 are dictated by out-of-plane soft-mode phonon instability under biaxial tension and uniaxial tension along the armchair direction. This failure mechanism, different from that of the truly two-dimensional material graphene, is attributed to the out-of-plane atomic relaxation upon tensile strain. Investigation of the electronic structures of single-layer MoS2 under tensile strain shows the material becomes an indirect semiconductor at small tensile strain (<2%) and turns into metallic before reaching the ideal tensile strength.

  13. Ideal strength of random alloys from first principles

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqing; Schönecker, Stephan; Zhao, Jijun; Johansson, Börje; Vitos, Levente

    2013-06-01

    The all-electron exact muffin-tin orbitals method in combination with the coherent-potential approximation was employed to investigate the ideal tensile strengths of elemental V and Mo solids, and V- and Mo-based random solid solutions. Under uniaxial [001] tensile loading, the ideal tensile strength of V is 11.6 GPa and the lattice fails by shear. Assuming isotropic Poisson contraction, the ideal tensile strengths are 26.7 and 37.6 GPa for V in the [111] and [110] directions, respectively. The ideal strength of Mo is 26.7 GPa in the [001] direction and decreases when a few percent of Tc is introduced in Mo. For the V-based alloys, Cr increases and Ti decreases the ideal tensile strength in all principal directions. Adding the same concentration of Cr and Ti to V leads to ternary alloys with similar ideal strength values as that of pure V. The alloying effects on the ideal strength are explained using the electronic band structure.

  14. The magnetic properties of the hollow cylindrical ideal remanence magnet

    NASA Astrophysics Data System (ADS)

    Bjørk, R.

    2016-10-01

    We consider the magnetic properties of the hollow cylindrical ideal remanence magnet. This magnet is the cylindrical permanent magnet that generates a uniform field in the cylinder bore, using the least amount of magnetic energy to do so. The remanence distribution of this magnet is derived and the generated field is compared to that of a Halbach cylinder of equal dimensions. The ideal remanence magnet is shown in most cases to generate a significantly lower field than the equivalent Halbach cylinder, although the field is generated with higher efficiency. The most efficient Halbach cylinder is shown to generate a field exactly twice as large as the equivalent ideal remanence magnet.

  15. Ideality contours and thermodynamic regularities in supercritical molecular fluids

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Margo, Abigail; Delhommelle, Jerome

    2016-08-01

    Using Expanded Wang-Landau simulations, we calculate the ideality contours for 3 molecular fluids (SF6, CO2 and H2O). We analyze how the increase in polarity, and thus, in the strength of the intermolecular interactions, impacts the contours and thermodynamic regularities. This effect results in the increase in the Boyle and H parameters, that underlie the Zeno line and the curve of ideal enthalpy. Furthermore, a detailed analysis reveals that dipole-dipole interactions lead to much larger enthalpic contributions to the Gibbs free energy. This accounts for the much higher temperatures and pressures that are necessary for supercritical H2O to achieve ideal-like thermodynamic properties.

  16. The place of the ideal observer in medical ethics.

    PubMed

    Churchill, L R

    1983-01-01

    The idea of an ideal observer is frequently employed in ethical reasoning and has recently been introduced into medical ethics. The contemporary use of this idea, however, is deeply flawed. It ignores important social and personal dimensions of ethics. By espousing a perspective of observation removed from history and community, the ideal observer notion encourages a pretense of objectivity and overlooks the distortions of distance. If taken seriously as a model for choice, the ideal observer is incoherent, as it dispenses with the concrete moral agent and the locus of choice. Adam Smith's 'impartial spectator' is examined as a more adequate statement of the need for appreciating diverse perspectives in ethical choices.

  17. Approximating Ideal Filters by Systems of Fractional Order

    PubMed Central

    Li, Ming

    2012-01-01

    The contributions in this paper are in two folds. On the one hand, we propose a general approach for approximating ideal filters based on fractional calculus from the point of view of systems of fractional order. On the other hand, we suggest that the Paley and Wiener criterion might not be a necessary condition for designing physically realizable ideal filters. As an application of the present approach, we show a case in designing ideal filters for suppressing 50-Hz interference in electrocardiogram (ECG) signals. PMID:22291851

  18. Atomic-scale sensing of the magnetic dipolar field from single atoms.

    PubMed

    Choi, Taeyoung; Paul, William; Rolf-Pissarczyk, Steffen; Macdonald, Andrew J; Natterer, Fabian D; Yang, Kai; Willke, Philip; Lutz, Christopher P; Heinrich, Andreas J

    2017-03-06

    Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r(-3.01±0.04)). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.

  19. Collaborating at a distance: operations centres, tools, and trends

    SciTech Connect

    Gottschalk, Erik E.; /Fermilab

    2009-05-01

    Successful operation of the LHC and its experiments is crucial to the future of the worldwide high-energy physics program. Remote operations and monitoring centres have been established for the CMS experiment in several locations around the world. The development of remote centres began with the LHC{at}FNAL ROC and has evolved into a unified approach with distributed centres that are collectively referred to as 'CMS Centres Worldwide'. An overview of the development of remote centres for CMS will be presented, along with a synopsis of collaborative tools that are used in these centres today and trends in the development of remote operations capabilities for high-energy physics.

  20. Neutral atom traps.

    SciTech Connect

    Pack, Michael Vern

    2008-12-01

    This report describes progress in designing a neutral atom trap capable of trapping sub millikelvin atom in a magnetic trap and shuttling the atoms across the atom chip from a collection area to an optical cavity. The numerical simulation and atom chip design are discussed. Also, discussed are preliminary calculations of quantum noise sources in Kerr nonlinear optics measurements based on electromagnetically induced transparency. These types of measurements may be important for quantum nondemolition measurements at the few photon limit.

  1. Ideal Based Cyber Security Technical Metrics for Control Systems

    SciTech Connect

    W. F. Boyer; M. A. McQueen

    2007-10-01

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  2. Susceptibility for thin ideal media and eating styles.

    PubMed

    Anschutz, Doeschka J; Engels, Rutger C M E; Van Strien, Tatjana

    2008-03-01

    This study examined the relations between susceptibility for thin ideal media and restrained, emotional and external eating, directly and indirectly through body dissatisfaction. Thin ideal media susceptibility, body dissatisfaction and eating styles were measured in a sample of 163 female students. Structural equation modelling was used for analyses, controlling for BMI. Higher susceptibility for thin ideal media was directly related to higher scores on all eating styles, and indirectly related to higher restrained and emotional eating through elevated levels of body dissatisfaction. So, thin ideal media susceptibility was not only related to restraint through body dissatisfaction, but also directly. Emotional eaters might be more vulnerable for negative affect, whereas external eaters might be more sensitive to external cues in general.

  3. Work-Life Balance and Ideal Worker Expectations for Administrators

    ERIC Educational Resources Information Center

    Wilk, Kelly E.

    2016-01-01

    This chapter explores the work-life experiences of administrators as well as whether and how the ideal worker model affects those experiences. Departmental and supervisory differences and technology complicate administrators' work-life experiences.

  4. 2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' Hot Springs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SECTIONAL BOILER '#4 IDEAL RED FLASH.' - Hot Springs National Park, Bathhouse Row, Ozark Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR

  5. Computer program for calculation of ideal gas thermodynamic data

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mc Bride, B. J.

    1968-01-01

    Computer program calculates ideal gas thermodynamic properties for any species for which molecular constant data is available. Partial functions and derivatives from formulas based on statistical mechanics are provided by the program which is written in FORTRAN 4 and MAP.

  6. Contributions of Ideal Observer Theory to Vision Research

    PubMed Central

    Geisler, Wilson S.

    2010-01-01

    An ideal observer is a hypothetical device that performs optimally in a perceptual task given the available information. The theory of ideal observers has proven to be a powerful and useful tool in vision research, which has been applied to a wide range of problems. Here I first summarize the basic concepts and logic of ideal observer analysis and then briefly describe applications in a number of different areas, including pattern detection, discrimination and estimation, perceptual grouping, shape, depth and motion perception and visual attention, with an emphasis on recent applications. Given recent advances in mathematical statistics, in computational power, and in techniques for measuring behavioral performance, neural activity and natural scene statistics, it seems certain that ideal observer theory will play an ever increasing role in basic and applied areas of vision science. PMID:20920517

  7. Nonlinear gel electrophoresis: an analogy with ideal fluid flow.

    PubMed

    Dennison, C; Phillips, A M; Nevin, J M

    1983-12-01

    The behavior of electrolytes undergoing electrophoresis in various shaped gels was investigated using bromphenol blue as a model electrolyte. The results suggest that during gel electrophoresis, small electrolytes behave in a manner analogous to the flow of ideal, irrotational fluids.

  8. Measurable Control System Security through Ideal Driven Technical Metrics

    SciTech Connect

    Miles McQueen; Wayne Boyer; Sean McBride; Marie Farrar; Zachary Tudor

    2008-01-01

    The Department of Homeland Security National Cyber Security Division supported development of a small set of security ideals as a framework to establish measurable control systems security. Based on these ideals, a draft set of proposed technical metrics was developed to allow control systems owner-operators to track improvements or degradations in their individual control systems security posture. The technical metrics development effort included review and evaluation of over thirty metrics-related documents. On the bases of complexity, ambiguity, or misleading and distorting effects the metrics identified during the reviews were determined to be weaker than necessary to aid defense against the myriad threats posed by cyber-terrorism to human safety, as well as to economic prosperity. Using the results of our metrics review and the set of security ideals as a starting point for metrics development, we identified thirteen potential technical metrics - with at least one metric supporting each ideal. Two case study applications of the ideals and thirteen metrics to control systems were then performed to establish potential difficulties in applying both the ideals and the metrics. The case studies resulted in no changes to the ideals, and only a few deletions and refinements to the thirteen potential metrics. This led to a final proposed set of ten core technical metrics. To further validate the security ideals, the modifications made to the original thirteen potential metrics, and the final proposed set of ten core metrics, seven separate control systems security assessments performed over the past three years were reviewed for findings and recommended mitigations. These findings and mitigations were then mapped to the security ideals and metrics to assess gaps in their coverage. The mappings indicated that there are no gaps in the security ideals and that the ten core technical metrics provide significant coverage of standard security issues with 87% coverage. Based

  9. User-Centred Design Using Gamestorming.

    PubMed

    Currie, Leanne

    2016-01-01

    User-centered design (UX) is becoming a standard in software engineering and has tremendous potential in healthcare. The purpose of this tutorial will be to demonstrate and provide participants with practice in user-centred design methods that involve 'Gamestorming', a form of brainstorming where 'the rules of life are temporarily suspended'. Participants will learn and apply gamestorming methods including persona development via empathy mapping and methods to translate artefacts derived from participatory design sessions into functional and design requirements.

  10. Slidable atomic layers in van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yu; Taniguchi, Takashi; Watanabe, Kenji; Maniwa, Yutaka; Miyata, Yasumitsu

    2017-04-01

    We report the preparation and manipulation of slidable atomic layers in clean, incommensurate van der Waals (vdW) heterostructures. Monolayer and multilayer WS2 grains are grown on graphite and hexagonal boron nitride (hBN) via chemical vapor deposition, and these grains can slide smoothly on graphite and hBN surfaces by manipulation with a tip. Furthermore, this sliding process allows the suspension, tearing, stacking, and connection of the atomic layers. These results demonstrate a novel approach for developing a wide variety of atomic-layer heterostructures with tunable interlayer coupling and an ideal system for studying the superlubricity of incommensurate, highly clean vdW contacts.

  11. Atomic fluorescence study of high temperature aerodynamic levitation

    NASA Technical Reports Server (NTRS)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  12. Quantum atom optics with fermions from molecular dissociation.

    PubMed

    Kheruntsyan, K V

    2006-03-24

    We study a fermionic atom optics counterpart of parametric down-conversion with photons. This can be realized through dissociation of a Bose-Einstein condensate of molecular dimers consisting of fermionic atoms. We present a theoretical model describing the quantum dynamics of dissociation and find analytic solutions for mode occupancies and atomic pair correlations, valid in the short time limit. The solutions are used to identify upper bounds for the correlation functions, which are applicable to any fermionic system and correspond to ideal particle number-difference squeezing.

  13. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    SciTech Connect

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio; Vitali, David

    2005-09-15

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.

  14. Estimation ROC curves and their corresponding ideal observers

    NASA Astrophysics Data System (ADS)

    Clarkson, Eric

    2007-03-01

    The LROC curve may be generalized in two ways. We can replace the location of the signal with an arbitrary set of parameters that we wish to estimate. We can also replace the binary function that determines whether an estimate is correct by a utility function that measures the usefulness of a particular estimate given the true parameter set. The expected utility for the true-positive detections may then be plotted versus the false-positive fraction as the detection threshold is varied to generate an estimation ROC curve (EROC). Suppose we run a 2AFC study where the observer must decide which image has the signal and then estimate the parameter set. Then the average value of the utility on those image pairs where the observer chooses the correct image is an estimate of the area under the EROC curve (AEROC). The ideal LROC observer may also be generalized to the ideal EROC observer, whose EROC curve lies above those of all other observers. When the utility function is non-negative the ideal EROC observer shares many properties with the ideal ROC observer, which can simplify the calculation of the ideal AEROC. When the utility function is concave the ideal EROC observer makes use of the posterior mean estimator. Other estimators that arise as special cases include maximum a posteriori estimators and maximum likelihood estimators. Multiple signals may be accomodated in this framework by making the number of signals one of the parameters in the set to be estimated.

  15. What sort of medical care is ideal? Differences in thoughts on medical care among residents of urban and rural/remote Japanese communities.

    PubMed

    Ikai, Tomoki; Suzuki, Tomio; Oshima, Tamiki; Kanayama, Hitomi; Kusaka, Yukinori; Hayashi, Hiroyuki; Terasawa, Hidekazu

    2015-09-27

    Studies of aspirational ideals of medical care generally focus on patients rather than on ordinary people receiving or not receiving medications at the time of interview. The literature has not accurately conveyed the distinct ideals in individual communities or undertaken inter-regional comparisons. This current qualitative study focused on ideal medical care as perceived by residents of distinct Japanese communities in their everyday lives. Between December 2011 and November 2012, one-on-one and group-based semi-structured interviews were conducted with 105 individuals, each of whom had continuously lived for 20 years or more in one of the four types of communities classified as either 'metropolitan area', 'provincial city', 'mountain/fishing village' or 'remote island' in Japan. Interviews were transcribed from digital audio recordings and then analysed (in tandem with non-verbal data including participants' appearances, attitudes and interview atmospheres) using constructivist grounded theory, in which we could get the voice and mind of the participant concerning ideal medical care. The common themes observed among the four community types included 'peace of mind because of the availability of medical care' and 'trust in medical professionals'. Themes that were characteristic of urban communities were the tendency to focus on the content of medical care, including 'high-level medical care', 'elimination of unnecessary medical care' and 'faster, cheaper medical care', whereas those that were characteristic of rural communities were the tendency to focus on lifestyle-oriented medical care such as 'support for local lifestyles', 'locally appropriate standards of medical care' and 'being free from dependence on medical care'. The sense of ideal medical care in urban communities tended to centre around the satisfaction with the content of medical care, whereas that in rural communities tended to centre around the ability to lead a secure life. By considering

  16. Atomic Particle Detection, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. The instruments used to detect both particles and electromagnetic radiation that emerge from the nucleus are described. The counters reviewed include ionization chambers,…

  17. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor…

  18. Heat dissipation in atomic-scale junctions.

    PubMed

    Lee, Woochul; Kim, Kyeongtae; Jeong, Wonho; Zotti, Linda Angela; Pauly, Fabian; Cuevas, Juan Carlos; Reddy, Pramod

    2013-06-13

    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms for testing quantum transport theories that are required to describe charge and energy transfer in novel functional nanometre-scale devices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized owing to experimental challenges. Here we use custom-fabricated scanning probes with integrated nanoscale thermocouples to investigate heat dissipation in the electrodes of single-molecule ('molecular') junctions. We find that if the junctions have transmission characteristics that are strongly energy dependent, this heat dissipation is asymmetric--that is, unequal between the electrodes--and also dependent on both the bias polarity and the identity of the majority charge carriers (electrons versus holes). In contrast, junctions consisting of only a few gold atoms ('atomic junctions') whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties, establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic--that is, without exchange of energy in the contact region. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions--an important and challenging scientific and technological goal that has remained elusive.

  19. "SeismoSAT" project results in connecting seismic data centres via satellite

    NASA Astrophysics Data System (ADS)

    Pesaresi, Damiano; Lenhardt, Wolfgang; Rauch, Markus; Živčić, Mladen; Steiner, Rudolf; Bertoni, Michele; Delazer, Heimo

    2016-04-01

    Since 2002 the OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) in Udine (Italy), the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) in Vienna (Austria), and the Agencija Republike Slovenije za Okolje (ARSO) in Ljubljana (Slovenia) are collecting, analysing, archiving and exchanging seismic data in real time. Up to now the data exchange between the seismic data centres relied on internet: this however was not an ideal condition for civil protection purposes, since internet reliability is poor. For this reason, in 2012 the Protezione Civile della Provincia Autonoma di Bolzano in Bolzano (Italy) joined OGS, ZAMG and ARSO in the Interreg IV Italia-Austria project "SeismoSAT" (Progetto SeismoSAT, 2014) aimed in connecting the seismic data centres in real time via satellite. As already presented in the past, the general technical schema of the project has been outlined, data bandwidths and monthly volumes required have been quantified, the common satellite provider has been selected and the hardware has been purchased and installed. Right before the end of its financial period, the SeismoSAT project proved to be successful guaranteeing data connection stability between the involved data centres during an internet outage.

  20. Canadian Educational Development Centre Websites: More Ebb than Flow?

    ERIC Educational Resources Information Center

    Simmons, Nicola

    2010-01-01

    This paper examines information portrayed on Canadian educational development (ED) centre websites and, in particular, whether information that corresponds to questions compiled from a literature search of ED centre practices is readily available from centre websites. This study phase is part of a larger national study of Canadian educational…

  1. Centre of the Cell: Science Comes to Life

    PubMed Central

    Balkwill, Frances; Chambers, Katie

    2015-01-01

    Centre of the Cell is a unique biomedical science education centre, a widening participation and outreach project in London’s East End. This article describes Centre of the Cell’s first five years of operation, the evolution of the project in response to audience demand, and the impact of siting a major public engagement project within a research laboratory. PMID:26340279

  2. Centre-Based Child Care Quality in Urban Australia

    ERIC Educational Resources Information Center

    Ishimine, Karin; Wilson, Rachel

    2009-01-01

    This study investigates the quality of childcare centres in urban Australian communities designated according to different bands of Centre Location Demographics (CLD). Childcare centres were assessed using the Early Childhood Environment Rating Scale- Revised Edition (ECERS-R) and the Early Childhood Environment Rating Scale-Extension (ECERS-E).…

  3. Assessment of functional incontinence in disabled living centres.

    PubMed

    Chadwick, Viv

    Disabled Living is part of the network of disabled living centres throughout Britain. These centres enable anyone to try out equipment that may help them with everyday activities of living. The centres are staffed by occupational therapists, physiotherapists, nurses, information providers, administration staff and volunteers.

  4. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected.

  5. Building a Single Atom Microscope for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Frisbie, Dustin; Johnson, Maegan; Parzuchowski, Kristen; Wenzl, Jennifer; Singh, Jaideep

    2017-01-01

    The primary research goal of this project is to develop a new technique of optical single atom detection to measure rare nuclear reactions at low energies. The 22Ne(α, n)25Mg reaction is of particular interest, as it is thought to be a primary source of neutrons in the s-process of massive stars. Nuclear reaction products are captured in a cryogenically frozen film of noble gas, which can contain a variety of guest atoms. These solids are ideal to use because they are optically transparent and simple to grow and purify. The sample is illuminated by laser light and imaged to identify fluorescing atoms. The atomic transitions of captured atoms indicate which atoms are present; only atoms which are excited at the laser wavelength will fluoresce. This offers high selectivity during experiments. We began development with Yb, a very bright guest atom, being embedded in a host of solid neon in order to study the optical properties necessary for single atom detection. In addition, we study background effects from the laser exciting contaminants in our substrates. We present data that indicates the efficiency with which we can excite and collect fluorescence light with our apparatus, and use it to propose a strategy for the development of Mg single atom detection. This work is generously supported by Michigan State University.

  6. Developmental Idealism and Cultural Models of the Family in Malawi

    PubMed Central

    Pierotti, Rachael S.; Young-DeMarco, Linda; Watkins, Susan

    2014-01-01

    This paper examines the extent to which developmental idealism has been disseminated in Malawi. Developmental idealism is a set of beliefs and values about development and the relationships between development and family structures and behavior. Developmental idealism states that attributes of societies and families defined as modern are better than attributes defined as traditional, that modern societies help produce modern families, that modern families facilitate the achievement of modern societies, and that the future will bring family change in the direction of modernity. Previous research has demonstrated that knowledge of developmental idealism is widespread in many places around the world, but provides little systematic data about it in sub-Saharan Africa or how knowledge of it is associated with certain demographic characteristics in that region. In this paper, we address this issue by examining whether ordinary people in two settings in Malawi, a sub-Saharan African country, have received and understood messages that are intended to associate development with certain types of family forms and family behaviors. We then examine associations between demographic characteristics and developmental idealism to investigate possible mechanisms linking global discourse about development to the grassroots. We analyze data collected in face-to-face surveys from two samples of Malawian men in 2009 and 2010, one rural, the other in a low-to-medium income neighborhood of a city. Our analysis of these survey data shows considerable evidence that many developmental idealism beliefs have been spread in that country and that education has positive effects on beliefs in the association between development and family attributes. We also find higher levels of developmental idealism awareness in the urban sample than we do in the rural sample, but once dissimilarities in education and wealth between the two samples are controlled, awareness levels no longer differed between

  7. Presenting the Bohr Atom.

    ERIC Educational Resources Information Center

    Haendler, Blanca L.

    1982-01-01

    Discusses the importance of teaching the Bohr atom at both freshman and advanced levels. Focuses on the development of Bohr's ideas, derivation of the energies of the stationary states, and the Bohr atom in the chemistry curriculum. (SK)

  8. A combined experimental and theoretical approach to atomic scale characterization

    SciTech Connect

    Pennycook, S.J.; Chisholm, M.F.; Yan, Y.; Duscher, G.; Pantelides, S.T.

    1998-02-01

    Recently, the scanning transmission electron microscope has become capable of forming electron probes of atomic dimensions. Through the technique of Z-contrast imaging, it is now possible to form atomic resolution images with high compositional sensitivity from which atomic column positions can be directly determined. An incoherent image of this nature also allows atomic resolution chemical analysis to be performed, by locating the probe over particular columns or planes seen in the image while electron energy loss spectra are collected. Such data represents either an ideal starting point for first principles theoretical calculations or a test of theoretical predictions. The authors present several examples where theory and experiment together give a very complete and often surprising atomic scale view of complex materials.

  9. Atoms in Action

    SciTech Connect

    2009-01-01

    This movie produced with Berkeley Lab's TEAM 0.5 microscope shows the growth of a hole and the atomic edge reconstruction in a graphene sheet. An electron beam focused to a spot on the sheet blows out the exposed carbon atoms to make the hole. The carbon atoms then reposition themselves to find a stable configuration. http://newscenter.lbl.gov/press-releases/2009/03/26/atoms-in-action/

  10. HYDROGEN ATOM THERMAL PARAMETERS.

    PubMed

    JENSEN, L H; SUNDARALINGAM, M

    1964-09-11

    Isotropic hydrogen atom thermal parameters for N,N'- hexamethylenebispropionamide have been determined. They show a definite trend and vary from approximately the same as the mean thermal parameters for atoms other than hydrogen near the center of the molecule to appreciably greater for atoms near the end. The indicated trend for this compound, along with other results, provides the basis for a possible explanation of the anomolous values that have been obtained for hydrogen atom thermal parameters.

  11. Atomizing nozzle and process

    DOEpatents

    Anderson, I.E.; Figliola, R.S.; Molnar, H.M.

    1993-07-20

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  12. Atomizing nozzle and process

    DOEpatents

    Anderson, Iver E.; Figliola, Richard S.; Molnar, Holly M.

    1992-06-30

    High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.

  13. The "Magic" of Tutorial Centres in Hong Kong: An Analysis of Media Marketing and Pedagogy in a Tutorial Centre

    ERIC Educational Resources Information Center

    Koh, Aaron

    2014-01-01

    Why do more than three-quarters of Hong Kong's senior secondary students flock to tutorial centres like moths to light? What is the "magic" that is driving the popularity of the tutorial centre enterprise? Indeed, looking at the ongoing boom of tutorial centres in Hong Kong (there are almost 1,000 of them), it is difficult not to ask…

  14. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2012-03-01

    The structural and electronic properties of the diamond lattice, leading to its outstanding mechanical properties, are discussed. These include the highest elastic moduli and fracture strength of any known material. Its extreme hardness is strongly connected with the extreme shear modulus, which even exceeds the large bulk modulus, revealing that diamond is more resistant to shear deformation than to volume changes. These unique features protect the ideal diamond lattice also against mechanical failure and fracture. Besides fast heat conduction, the fast vibrational movement of carbon atoms results in an extreme speed of sound and propagation of crack tips with comparable velocity. The ideal mechanical properties are compared with those of real diamond films, plates, and crystals, such as ultrananocrystalline (UNC), nanocrystalline, microcrystalline, and homo- and heteroepitaxial single-crystal chemical vapor deposition (CVD) diamond, produced by metastable synthesis using CVD. Ultrasonic methods have played and continue to play a dominant role in the determination of the linear elastic properties, such as elastic moduli of crystals or the Young's modulus of thin films with substantially varying impurity levels and morphologies. A surprising result of these extensive measurements is that even UNC diamond may approach the extreme Young's modulus of single-crystal diamond under optimized deposition conditions. The physical reasons for why the stiffness often deviates by no more than a factor of two from the ideal value are discussed, keeping in mind the large variety of diamond materials grown by various deposition conditions. Diamond is also known for its extreme hardness and fracture strength, despite its brittle nature. However, even for the best natural and synthetic diamond crystals, the measured critical fracture stress is one to two orders of magnitude smaller than the ideal value obtained by ab initio calculations for the ideal cubic lattice. Currently

  15. Human-centred approaches in slipperiness measurement

    PubMed Central

    Grönqvist, Raoul; Abeysekera, John; Gard, Gunvor; Hsiang, Simon M.; Leamon, Tom B.; Newman, Dava J.; Gielo-Perczak, Krystyna; Lockhart, Thurmon E.; Pai, Clive Y.-C.

    2010-01-01

    A number of human-centred methodologies—subjective, objective, and combined—are used for slipperiness measurement. They comprise a variety of approaches from biomechanically-oriented experiments to psychophysical tests and subjective evaluations. The objective of this paper is to review some of the research done in the field, including such topics as awareness and perception of slipperiness, postural and balance control, rating scales for balance, adaptation to slippery conditions, measurement of unexpected movements, kinematics of slipping, and protective movements during falling. The role of human factors in slips and falls will be discussed. Strengths and weaknesses of human-centred approaches in relation to mechanical slip test methodologies are considered. Current friction-based criteria and thresholds for walking without slipping are reviewed for a number of work tasks. These include activities such as walking on a level or an inclined surface, running, stopping and jumping, as well as stair ascent and descent, manual exertion (pushing and pulling, load carrying, lifting) and particular concerns of the elderly and mobility disabled persons. Some future directions for slipperiness measurement and research in the field of slips and falls are outlined. Human-centred approaches for slipperiness measurement do have many applications. First, they are utilized to develop research hypotheses and models to predict workplace risks caused by slipping. Second, they are important alternatives to apparatus-based friction measurements and are used to validate such methodologies. Third, they are used as practical tools for evaluating and monitoring slip resistance properties of foot wear, anti-skid devices and floor surfaces. PMID:11794763

  16. The Nature of Atoms.

    ERIC Educational Resources Information Center

    Holden, Alan

    This monograph was written for the purpose of presenting physics to college students who are not preparing for careers in physics. It deals with the nature of atoms, and treats the following topics: (1) the atomic hypothesis, (2) the chemical elements, (3) models of an atom, (4) a particle in a one-dimensional well, (5) a particle in a central…

  17. Atomic Spectra Database (ASD)

    National Institute of Standards and Technology Data Gateway

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  18. Images of Atoms.

    ERIC Educational Resources Information Center

    Wright, Tony

    2003-01-01

    Recommends using a simple image, such as the fuzzy atom ball to help students develop a useful understanding of the molecular world. Explains that the image helps students easily grasp ideas about atoms and molecules and leads naturally to more advanced ideas of atomic structure, chemical bonding, and quantum physics. (Author/NB)

  19. Hunting for hardware changes in data centres

    NASA Astrophysics Data System (ADS)

    Coelho dos Santos, M.; Steers, I.; Szebenyi, I.; Xafi, A.; Barring, O.; Bonfillou, E.

    2012-12-01

    With many servers and server parts the environment of warehouse sized data centres is increasingly complex. Server life-cycle management and hardware failures are responsible for frequent changes that need to be managed. To manage these changes better a project codenamed “hardware hound” focusing on hardware failure trending and hardware inventory has been started at CERN. By creating and using a hardware oriented data set - the inventory - with detailed information on servers and their parts as well as tracking changes to this inventory, the project aims at, for example, being able to discover trends in hardware failure rates.

  20. A formal ideal-based account of typicality.

    PubMed

    Voorspoels, Wouter; Vanpaemel, Wolf; Storms, Gert

    2011-10-01

    Inspired by Barsalou's (Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 629-654, 1985) proposal that categories can be represented by ideals, we develop and test a computational model, the ideal dimension model (IDM). The IDM is tested in its account of the typicality gradient for 11 superordinate natural language concepts and, using Bayesian model evaluation, contrasted with a standard exemplar model and a central prototype model. The IDM is found to capture typicality better than do the exemplar model and the central tendency prototype model, in terms of both goodness of fit and generalizability. The present findings challenge the dominant view that exemplar representations are most successful and present compelling evidence that superordinate natural language categories can be represented using an abstract summary, in the form of ideal representations. Supplemental appendices for this article can be downloaded from http://mc.psychonomic-journals.org/content/supplemental.

  1. An experimental test of noncontextuality without unphysical idealizations

    PubMed Central

    Mazurek, Michael D.; Pusey, Matthew F.; Kunjwal, Ravi; Resch, Kevin J.; Spekkens, Robert W.

    2016-01-01

    To make precise the sense in which nature fails to respect classical physics, one requires a formal notion of classicality. Ideally, such a notion should be defined operationally, so that it can be subject to direct experimental test, and it should be applicable in a wide variety of experimental scenarios so that it can cover the breadth of phenomena thought to defy classical understanding. Bell's notion of local causality fulfils the first criterion but not the second. The notion of noncontextuality fulfils the second criterion, but it is a long-standing question whether it can be made to fulfil the first. Previous attempts to test noncontextuality have all assumed idealizations that real experiments cannot achieve, namely noiseless measurements and exact operational equivalences. Here we show how to devise tests that are free of these idealizations. We perform a photonic implementation of one such test, ruling out noncontextual models with high confidence. PMID:27292369

  2. Perturbed Stability Analysis of External Ideal MHD Modes

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.

    2002-11-01

    Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.

  3. Quantifying ataxia: ideal trajectory analysis--a technical note

    NASA Technical Reports Server (NTRS)

    McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd

    2000-01-01

    We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (p<0.014 and 0.006, respectively), indicating that the ideal trajectory analysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.

  4. Reported Effects of Masculine Ideals on Gay Men

    PubMed Central

    Sánchez, Francisco J.; Greenberg, Stefanie T.; Liu, William Ming; Vilain, Eric

    2010-01-01

    This exploratory study used consensual qualitative research methodology (Hill et al., 2005) to analyze what gay men associate with masculinity and femininity, how they feel masculine ideals affect their self-image, and how masculine ideals affect their same-sex relationships. Written responses were collected from 547 self-identified gay men in the U.S. via an Internet-based survey. Findings supported previous reports that perceptions of gender roles among gay men appear based on masculine and feminine stereotypes. Additionally, more adverse versus positive effects on self-image and same-sex romantic relationships were reported including difficulty being emotional and affectionate, pressure to be physically attractive, and pressure to appear masculine in order to be accepted by society and to be seen as desirable by other gay men. While research on gay men’s experience with masculinity continues, psychologists should consider the possible influence of traditional masculine ideals when conceptualizing their gay male clients. PMID:20628534

  5. Body ideals for heterosexual romantic partners: gender and sociocultural influences.

    PubMed

    Murnen, Sarah K; Poinsatte, Katherine; Huntsman, Karen; Goldfarb, Jesse; Glaser, Daniel

    2015-01-01

    In the present study, heterosexual college women (N=327) and men (N=160) were asked about their body type preferences for (hypothetical) romantic partners. Participants chose a particular silhouette value as ideal for a romantic partner, and rated how important it was to them for their partner to have this ideal body type. Men placed more importance on the body silhouette they chose for a partner than women did, and men's importance ratings were positively associated with the rated sexual permissiveness of their peer group and their total media use. Consuming sports media and watching reality television were the best media predictors of men's judgments about women's bodies. Less variability was explained in women's preferences for men partners' bodies, but endorsing adversarial sexual attitudes was positively related to judging the ideals chosen for men's bodies as important. Results were interpreted within both evolutionary and sociocultural theoretical frameworks.

  6. "Virtuoso Ideal Daddy": Finnish Children's Perceptions of Good Fatherhood

    ERIC Educational Resources Information Center

    Hietanen, Riika; Määttä, Kaarina; Uusiautti, Satu

    2013-01-01

    Changes in family structures, such as the increase in the number of cohabiting couples, divorces, and blended families pose new challenges for fatherhood and research on fatherhood has been mainly adult-centred. This research studied how Finnish children perceive good fatherhood and what expectations they set for fathers. The following research…

  7. What is an ‘ideally imperfect’ crystal? Is kinematical theory appropriate?

    SciTech Connect

    Fewster, Paul F.

    2016-01-01

    The diffraction from imperfect crystals and the applicability of kinematical theory are described. Most materials are crystalline because atoms and molecules tend to form ordered arrangements, and since the interatomic distances are comparable with the wavelength of X-rays, their interaction creates diffraction patterns. The intensity in these patterns changes with crystal quality. Perfect crystals, e.g. semiconductors, fit well to dynamical theory, whereas crystals that reveal the stereochemistry of complex biological molecules, the structure of organic and inorganic molecules and powders are required to be fragmented (termed ‘ideally imperfect’) to justify the use of the simpler kinematical theory. New experimental results of perfect and imperfect crystals are interpreted with a fundamental description of diffraction, which does not need fragmented crystals but just ubiquitous defects. The distribution of the intensity is modified and can influence the interpretation of the patterns.

  8. Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared

    NASA Astrophysics Data System (ADS)

    Rozin, Matthew J.; Rosen, David A.; Dill, Tyler J.; Tao, Andrea R.

    2015-06-01

    Metasurfaces are ultrathin, two-dimensional arrays of subwavelength resonators that have been demonstrated to control the flow of light in ways that are otherwise unattainable with natural materials. These arrays are typically composed of metallic Ag or Au nanostructures shaped like split rings, nanowire pairs or nanorods (commonly referred to as meta-atoms) that are arranged to produce a collective optical response spanning an impressive range of properties, from the perfect absorption of incident light to superresolution imaging. However, metasurfaces pose major challenges in their fabrication over large areas, which can be prohibitively expensive and time consuming using conventional nanolithography techniques. Here we show that differently shaped colloidal nanocrystals can be organized into metasurface architectures using robust, scalable assembly methods. These metasurfaces exhibit extreme in-plane electromagnetic coupling that is strongly dependent on nanocrystal size, shape and spacing. Colloidal metasurfaces that display near-ideal electromagnetic absorbance can be tuned from the visible into the mid-infrared wavelengths.

  9. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  10. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    PubMed

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  11. Quantifying horizontal and vertical tracer mass fluxes in an idealized valley during daytime

    NASA Astrophysics Data System (ADS)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.

    2016-10-01

    The transport and mixing of pollution during the daytime evolution of a valley boundary layer is studied in an idealized way. The goal is to quantify horizontal and vertical tracer mass fluxes between four different valley volumes: the convective boundary layer, the slope wind layer, the stable core, and the atmosphere above the valley. For this purpose, large eddy simulations (LES) are conducted with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle and is homogeneous in the along-valley direction. The surface sensible heat flux is horizontally homogeneous and prescribed by a sine function. The initial sounding is characterized by an atmosphere at rest and a constant Brunt-Väisälä frequency. Various experiments are conducted for different combinations of surface heating amplitudes and initial stability conditions. A passive tracer is released with an arbitrary but constant rate at the valley floor and resulting tracer mass fluxes are evaluated between the aforementioned volumes.As a result of the surface heating, a convective boundary layer is established in the lower part of the valley with a stable layer on top - the so-called stable core. The height of the slope wind layer, as well as the wind speed within, decreases with height due to the vertically increasing stability. Hence, the mass flux within the slope wind layer decreases with height as well. Due to mass continuity, this along-slope mass flux convergence leads to a partial redirection of the flow from the slope wind layer towards the valley centre and the formation of a horizontal intrusion above the convective boundary layer. This intrusion is associated with a transport of tracer mass from the slope wind layer towards the valley centre. A strong static stability and/or weak forcing lead to large tracer mass fluxes associated with this phenomenon. The total export of tracer mass out of the valley

  12. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  13. WISB: Warwick Integrative Synthetic Biology Centre

    PubMed Central

    McCarthy, John

    2016-01-01

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary ‘build to apply’ and ‘build to understand’ approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. PMID:27284024

  14. KNMI Data Centre: Easy access for all

    NASA Astrophysics Data System (ADS)

    van de Vegte, John; Som de Cerff, Wim; Plieger, Maarten; de Vreede, Ernst; Sluiter, Raymond; Willem Noteboom, Jan; van der Neut, Ian; Verhoef, Hans; van Versendaal, Robert; van Binnendijk, Martin; Kalle, Henk; Knopper, Arthur; Spit, Jasper; Mastop, Joeri; Klos, Olaf; Calis, Gijs; Ha, Siu-Siu; van Moosel, Wim; Klein Ikkink, Henk-Jan; Tosun, Tuncay

    2013-04-01

    KNMI is the Dutch institute for weather, climate research and seismology. It disseminates weather information to the public at large, the government, aviation and the shipping industry in the interest of safety, the economy and a sustainable environment. To gain insight into long-term developments KNMI conducts research on climate change. Making the knowledge, data and information on hand at KNMI accessible is one core activity. A huge part of the KNMI information is from numerical models, insitu sensor networks and remote sensing satellites. This digital collection is mostly internal only available and is a collection of non searchable , non standardized file formats, lacking documentation and has no references to scientific publications. With the KNMI Data Centre (KDC) project these issues are tackled. In the project a user driven development approach with SCRUM was chosen to get maximum user involvement in a relative short development timeframe. Building on open standards and proven open source technology (which includes in-house developed software like ADAGUC WMS and Portal) resulted in a first release in December 2012 This presentation will focus on the aspects of KDC relating to its technical challenges, the development strategy and the initial usage results of the data centre.

  15. Spherical tokamaks with plasma centre-post

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2013-10-01

    The metal centre-post (MCP) in tokamaks is a structure which carries the total toroidal field current and also houses the Ohmic heating solenoid in conventional or low aspect ratio (Spherical)(ST) tokamaks. The MCP and solenoid are critical components for producing the toroidal field and for the limited Ohmic flux in STs. Constraints for a ST reactor related to these limitations lead to a minimum plasma aspect ratio of 1.4 which reduces the benefit of operation at higher betas in a more compact ST reactor. Replacing the MCP is of great interest for reactor-based ST studies since the device is simplified, compactness increased, and maintenance reduced. An experiment to show the feasibility of using a plasma centre-post (PCP) is being currently under construction and involves a high level of complexity. A preliminary study of a very simple PCP, which is ECR(Electron Cyclotron Resonance)-assisted and which includes an innovative fuelling system based on pellet injection, has recently been reported. This is highly suitable for an ultra-low aspect ratio tokamak (ULART) device. Advances on this PCP ECR-assisted concept within a ULART and the associated fuelling system are presented here, and will include the field topology for the PCP ECR-assisted scheme, pellet ablation modeling, and a possible global equilibrium simulation. VIE-ITCR, IAEA-CRP contr.17592, National Instruments-Costa Rica.

  16. Sofia University GNSS Analysis Centre (SUGAC)

    NASA Astrophysics Data System (ADS)

    Simeonov, Tzvetan; Sidorov, Dmitry; Teferle, Norman; Guerova, Guergana; Egova, Evgenia; Vassileva, Keranka; Milev, Ivo; Milev, Georgi

    2015-04-01

    The Sofia University GNSS Analysis Centre (SUGAC, suada.phys.uni-sofia.bg) is a new analysis centre established via collaboration between the Department of Meteorology and Geophysics of Sofia University, the IPOS - BuliPOS GNSS network in Bulgaria and the University of Luxembourg. In April 2014, the first processing campaign took place. One year GNSS data from 7 stations of the BuliPOS network are processed in collaboration with the University of Luxembourg. Tropospheric products (Zenith Total Delay and gradients) with 5 min temporal resolution are obtained using the NAPEOS software, developed by ESA. The tropospheric products from this campaign will be used for validation of the Weather Research and Forecasting (WRF) model as well as for case studies during intense precipitation events and fog. In this work the WRF model validation for Bulgaria will be presented. Future work will be the establishment of autonomous near real-time processing of the regional ground-based GNSS network in Southeast Europe in support of the EUMETNET E-GVAP and COST ES1206 "Advanced Global Navigation Satellite Systems for Severe Weather Events and Climate" projects.

  17. [The image of dentistry. Part 2: The ideal dentist].

    PubMed

    Ramseier, Christoph A; Wolf, Christian A

    2012-01-01

    Our second part of the publication entitled "The image of Dentistry" discusses the properties that correspond to the ideal image of dentistry or even the ideal scientist such as the management of the dental practice, the dentist-patient relationship and the appropriate handling of the patient's emotions such as anxiety or pain. The quality of treatment and the friendly, honest and compassionate attitude of the dentist can immediately affect the image of dentistry. Therefore, the dental professional must try to keep the balance between practice profit, staffing and patient well-being in order to fulfill both social and public health responsibilities.

  18. NICIL: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library

    NASA Astrophysics Data System (ADS)

    Wurster, James

    2016-08-01

    NICIL (Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library) calculates the ionization values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. Written as a standalone Fortran90 module that can be implemented in existing codes, NICIL is fully parameterizable, allowing the user to choose which processes to include and decide the values of the free parameters. The module includes both cosmic ray and thermal ionization; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionized.

  19. Towards an ideal preconditioner for linearized Navier-Stokes problems

    SciTech Connect

    Murphy, M.F.

    1996-12-31

    Discretizing certain linearizations of the steady-state Navier-Stokes equations gives rise to nonsymmetric linear systems with indefinite symmetric part. We show that for such systems there exists a block diagonal preconditioner which gives convergence in three GMRES steps, independent of the mesh size and viscosity parameter (Reynolds number). While this {open_quotes}ideal{close_quotes} preconditioner is too expensive to be used in practice, it provides a useful insight into the problem. We then consider various approximations to the ideal preconditioner, and describe the eigenvalues of the preconditioned systems. Finally, we compare these preconditioners numerically, and present our conclusions.

  20. Health care market deviations from the ideal market.

    PubMed

    Mwachofi, Ari; Al-Assaf, Assaf F

    2011-08-01

    A common argument in the health policy debate is that market forces allocate resources efficiently in health care, and that government intervention distorts such allocation. Rarely do those making such claims state explicitly that the market they refer to is an ideal in economic theory which can only exist under very strict conditions. This paper explores the strict conditions necessary for that ideal market in the context of health care as a means of examining the claim that market forces do allocate resources efficiently in health care.

  1. Kinetic modeling of non-ideal explosives with CHEETAH

    SciTech Connect

    Fried, L E; Howard, W M; Souers, P C

    1998-08-06

    We report an implementation of the Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions. Other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. We find that we can replicate experimental detonation velocities to within a few per cent, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  2. Sulfide bonded atomic radii

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Ross, N. L.; Cox, D. F.

    2017-03-01

    The bonded radius, r b(S), of the S atom, calculated for first- and second-row non-transition metal sulfide crystals and third-row transition metal sulfide molecules and crystals indicates that the radius of the sulfur atom is not fixed as traditionally assumed, but that it decreases systematically along the bond paths of the bonded atoms with decreasing bond length as observed in an earlier study of the bonded radius of the oxygen atom. When bonded to non-transition metal atoms, r b(S) decreases systematically with decreasing bond length from 1.68 Å when the S atom is bonded to the electropositive VINa atom to 1.25 Å when bonded to the more electronegative IVP atom. In the case of transition metal atoms, rb(S) likewise decreases with decreasing bond length from 1.82 Å when bonded to Cu and to 1.12 Å when bonded to Fe. As r b(S) is not fixed at a given value but varies substantially depending on the bond length and the field strength of the bonded atoms, it is apparent that sets of crystal and atomic sulfide atomic radii based on an assumed fixed radius for the sulfur atom are satisfactory in that they reproduce bond lengths, on the one hand, whereas on the other, they are unsatisfactory in that they fail to define the actual sizes of the bonded atoms determined in terms of the minima in the electron density between the atoms. As such, we urge that the crystal chemistry and the properties of sulfides be studied in terms of the bond lengths determined by adding the radii of either the atomic and crystal radii of the atoms but not in terms of existing sets of crystal and atomic radii. After all, the bond lengths were used to determine the radii that were experimentally determined, whereas the individual radii were determined on the basis of an assumed radius for the sulfur atom.

  3. Service Delivery to Parents with an Intellectual Disability: Family-Centred or Professionally Centred?

    ERIC Educational Resources Information Center

    Wade, Catherine M.; Mildon, Robyn L.; Matthews, Jan M.

    2007-01-01

    Background: Studies support the use of family-centred practices in service delivery to families where a parent has an intellectual disability. This paper examines the importance of such practices to parents. Materials and Methods: Interview responses from 32 parents with intellectual disability were coded by two independent raters as reflecting…

  4. The Curriculum Development Centre of Malaysia. Studies of Curriculum Development Centres in Asia 2.

    ERIC Educational Resources Information Center

    Oon-Chye, Yeoh; And Others

    The Curriculum Development Centre (CDC) of Malaysia became an operating agency in January 1973 and became a division of the Malaysia Ministry of Education in May 1974. Its establishment was the culmination of over a decade of curriculum development efforts by the Ministry of Education. The CDC was an outgrowth of both the First and Second Malaysia…

  5. Systematic Assessment of Game-Centred Approach Practices--The Game-Centred Approach Assessment Scaffold

    ERIC Educational Resources Information Center

    Forrest, Gregory

    2015-01-01

    Background: Game-centred approaches (GCA) have been promoted as a more meaningful way to teach games and sports due to their connections with constructivist learning principles. However, the implementation is dependant on the teacher implementing it rather than just the model. There has been little research into what it means to use a GCA well and…

  6. The obtaining relative position of lunar centre masses and centre of the figure in selenocentric catalogues

    NASA Astrophysics Data System (ADS)

    Nefedjev, Yu. A.; Valeev, S. G.; Rizvanov, N. G.; Mikeev, R. R.; Varaksina, N. Yu.

    2010-05-01

    The relative position of lunar center masses relative to center of the figure in Kazan and Kiev selenocentric catalogues was customized. The expansions by spherical harmonics N=5 degree and order of the lunar function h(λ, β) with using the package ASNI USTU were executed. Module of the expansion of the local area to surfaces to full sphere was used. The parameters of cosmic missions are given for comparison (SAI; Bills, Ferrari). The normalized coefficients from expansions for eight sources hypsometric information are obtained: - Clementine (N=40), - Kazan (N=5), - Kiev (N=5), - SAI (N=10; Chuikova (1975)), - Bills, Ferrari, - Каguуа (Selena, Japan mission), - ULCN (The Uuified Lunaz Control Network 2005). The displacements of the lunar centre figure relative to lunar centre of the masses were defined from equations (Chuikova (1975)). The results of the obtaining relative position of the lunar centre masses and centre of the figure in Kazan selenocentric catalogue give good agreement with modern cosmic mission data.

  7. Atom interferometery on ground and in space

    NASA Astrophysics Data System (ADS)

    Rasel, Ernst M.; Quantus Collaboration

    2014-05-01

    We give a brief survey on our latest activities in atom interferometry. This included the first quantum test of the principle of equivalence with two different species, namely potassium and rubidium. We have also shown that interferometers equipped with atom-chip based sources allow to realise compact quantum gravimeters for ground based measurements. These devices allow to achieve a high flux of ultra-cold atoms, extremely low expansion rates of these wave packets and make it possible to realise new interferometers. Last but not least, in 2014, we currently work on testing these devices in the catapult and on a sounding rocket mission to extend atom interferometry to unprecedented time scales. This project is supported by the German Space Agency Deutsches Zentrum für Luft- und Raumfahrt (DLR) with funds provided by the Federal Ministry of Economics and Technology (BMWI) under grant number DLR 50 WM 0346. We thank the German Research Foundation for funding the Cluster of Excellence QUEST Centre for Quantum Engineering and Space-Time Research.

  8. Atomic Force Microscopy of Biological Membranes

    PubMed Central

    Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas

    2009-01-01

    Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286

  9. Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2005-04-01

    We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.

  10. Palladium-catalysed formation of vicinal all-carbon quaternary centres via propargylation

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Wu, Shangze; Wu, Wangteng; Li, Pengbin; Fu, Chunling; Ma, Shengming

    2016-08-01

    Construction of two vicinal all-carbon quaternary carbon centres is of great importance due to the common presence of such units in natural and unnatural molecules with attractive functions. However, it remains a significant challenge. Here, we have developed a palladium-catalysed general coupling for the efficient connection of two tertiary carbon atoms: Specifically, propargylic carbonate has been treated with a fully loaded soft functionalized nucleophile to connect such two fully loaded carbon atoms with a simple palladium catalyst. It is observed that the central chirality in the optically active tertiary propargylic carbonates has been remembered and transferred into the products with very high efficiency. The triple bond and the functional groups such as ester, cyano and unsaturated C-C bonds make this method a relatively general solution for such a purpose due to their high synthetic versatility.

  11. Palladium-catalysed formation of vicinal all-carbon quaternary centres via propargylation

    PubMed Central

    Huang, Xin; Wu, Shangze; Wu, Wangteng; Li, Pengbin; Fu, Chunling; Ma, Shengming

    2016-01-01

    Construction of two vicinal all-carbon quaternary carbon centres is of great importance due to the common presence of such units in natural and unnatural molecules with attractive functions. However, it remains a significant challenge. Here, we have developed a palladium-catalysed general coupling for the efficient connection of two tertiary carbon atoms: Specifically, propargylic carbonate has been treated with a fully loaded soft functionalized nucleophile to connect such two fully loaded carbon atoms with a simple palladium catalyst. It is observed that the central chirality in the optically active tertiary propargylic carbonates has been remembered and transferred into the products with very high efficiency. The triple bond and the functional groups such as ester, cyano and unsaturated C–C bonds make this method a relatively general solution for such a purpose due to their high synthetic versatility. PMID:27558203

  12. A constructive model potential method for atomic interactions

    NASA Technical Reports Server (NTRS)

    Bottcher, C.; Dalgarno, A.

    1974-01-01

    A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.

  13. Developmental Idealism: The Cultural Foundations of World Development Programs

    PubMed Central

    Thornton, Arland; Dorius, Shawn F.; Swindle, Jeffrey

    2015-01-01

    This paper extends theory and research concerning cultural models of development beyond family and demographic matters to a broad range of additional factors, including government, education, human rights, daily social conventions, and religion. Developmental idealism is a cultural model—a set of beliefs and values—that identifies the appropriate goals of development and the ends for achieving these goals. It includes beliefs about positive cause and effect relationships among such factors as economic growth, educational achievement, health, and political governance, as well as strong values regarding many attributes, including economic growth, education, small families, gender equality, and democratic governance. This cultural model has spread from its origins among the elites of northwest Europe to elites and ordinary people throughout the world. Developmental idealism has become so entrenched in local, national, and global social institutions that it has now achieved a taken-for-granted status among many national elites, academics, development practitioners, and ordinary people around the world. We argue that developmental idealism culture has been a fundamental force behind many cultural clashes within and between societies, and continues to be an important cause of much global social change. We suggest that developmental idealism should be included as a causal factor in theories of human behavior and social change. PMID:26457325

  14. A Demonstration of Ideal Gas Principles Using a Football.

    ERIC Educational Resources Information Center

    Bare, William D.; Andrews, Lester

    1999-01-01

    Uses a true-to-life story of accusations made against a college football team to illustrate ideal gas laws. Students are asked to decide whether helium-filled footballs would increase punt distances and how to determine whether a football contained air or helium. (WRM)

  15. Electrophoretic motion of ideally polarizable particles in a microchannel.

    PubMed

    Wu, Zhemin; Gao, Yandong; Li, Dongqing

    2009-03-01

    The induced-charge electrophoretic (ICEP) motion of ideally polarizable particles in a microchannel is numerically studied in this paper. A complete 3-D multi-physics model is set up to simulate the transient ICEP motion of spherical ideally polarizable particles in a microchannel. The study shows that a non-uniform distribution of induced surface charge occurs when an ideally polarizable particle is immersed in an externally applied electric field, resulting in a varying slipping (EOF) velocity along the particle's surface and hence producing micro vortexes in the liquid. The numerical results verify that the steady-state ICEP velocity of an ideally polarizable particle does not differ from the electrophoretic velocity of a non-conducting particle, although the flow field near the particle does. A strong wall-repelling effect of ICEP is found when the polarizable particle is placed close to the channel wall. This is due to the lifting effect generated from the interaction between the induced micro vortexes and the channel wall and depends on the electric field and the particle size. The wall effects on ICEP motion can be used for focusing particles and for separation of particle by density.

  16. Gregarious Convection and Radiative Feedbacks in Idealized Worlds

    DTIC Science & Technology

    2016-08-29

    temperatures (whose formulas bristle with exponentials ) [for a crisp exposition see Betts, 1974]. The simple sum of sensible, potential, and latent...for additional idealized studies to resolve? While the various studies high- light different processes driving aggregation or VIMSE variance growth

  17. Nurturant Ethics and Academic Ideals: Convergence in the Writing Center.

    ERIC Educational Resources Information Center

    Trachsel, Mary

    1995-01-01

    Examines how and why the American academy has employed the social construct of gender in defining the writing center as a site where caring education is promoted according to a cultural ideal of "women's work." Draws on the author's encounters with feminist philosophy, academic professionalism, psycho-sociolinguistics, and child development…

  18. Developmental Idealism: The Cultural Foundations of World Development Programs.

    PubMed

    Thornton, Arland; Dorius, Shawn F; Swindle, Jeffrey

    2015-01-01

    This paper extends theory and research concerning cultural models of development beyond family and demographic matters to a broad range of additional factors, including government, education, human rights, daily social conventions, and religion. Developmental idealism is a cultural model-a set of beliefs and values-that identifies the appropriate goals of development and the ends for achieving these goals. It includes beliefs about positive cause and effect relationships among such factors as economic growth, educational achievement, health, and political governance, as well as strong values regarding many attributes, including economic growth, education, small families, gender equality, and democratic governance. This cultural model has spread from its origins among the elites of northwest Europe to elites and ordinary people throughout the world. Developmental idealism has become so entrenched in local, national, and global social institutions that it has now achieved a taken-for-granted status among many national elites, academics, development practitioners, and ordinary people around the world. We argue that developmental idealism culture has been a fundamental force behind many cultural clashes within and between societies, and continues to be an important cause of much global social change. We suggest that developmental idealism should be included as a causal factor in theories of human behavior and social change.

  19. Surface wave propagation in non-ideal plasmas

    NASA Astrophysics Data System (ADS)

    Pandey, B. P.; Dwivedi, C. B.

    2015-03-01

    The properties of surface waves in a partially ionized, compressible magnetized plasma slab are investigated in this work. The waves are affected by the non-ideal magnetohydrodynamic (MHD) effects which causes finite drift of the magnetic field in the medium. When the magnetic field drift is ignored, the characteristics of the wave propagation in a partially ionized plasma fluid is similar to the fully ionized ideal MHD except now the propagation properties depend on the fractional ionization as well as on the compressibility of the medium. The phase velocity of the sausage and kink waves increases marginally (by a few per cent) due to the compressibility of the medium in both ideal as well as Hall-diffusion-dominated regimes. However, unlike ideal regime, only waves below certain cut-off frequency can propagate in the medium in Hall dominated regime. This cut-off for a thin slab has a weak dependence on the plasma beta whereas for thick slab no such dependence exists. More importantly, since the cut-off is introduced by the Hall diffusion, the fractional ionization of the medium is more important than the plasma compressibility in determining such a cut-off. Therefore, for both compressible as well incompressible medium, the surface modes of shorter wavelength are permitted with increasing ionization in the medium. We discuss the relevance of these results in the context of solar photosphere-chromosphere.

  20. From Free Expansion to Abrupt Compression of an Ideal Gas

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Pereira, Mario G.

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…

  1. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  2. Bennett's Ideal Curriculum: How Helpful to Music Education?

    ERIC Educational Resources Information Center

    LeBlanc, Albert

    1988-01-01

    Examines William J. Bennett's recommendation in "James Madison High School: A Curriculum for American Students," that the ideal high school core curriculum should include one half year of music history. States that while the recommendation supports music education, it may not be met in many systems due to lack of funding and scheduling…

  3. Civic Engagement in Teacher Education: A Commitment to Democratic Ideals

    ERIC Educational Resources Information Center

    Heafner, Tina L.

    2011-01-01

    Civic engagement draws on the concepts of American democratic ideals such that society's interests are promulgated through the education of its citizenry. Ideas come to fruition in the form of community action, voting, involvement in the political process, and public discourse for promoting the commonwealth. Engendering in youth the commitment to…

  4. Science Ideals and Science Careers in a University Biology Department

    ERIC Educational Resources Information Center

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  5. An Exploratory Study Of Teachers' Descriptions Of The "Ideal" Pupil

    ERIC Educational Resources Information Center

    Schaefer, Charles

    1973-01-01

    Teachers at a school for emotionally disturbed children were given the IPC--i.e. they checked those characteristics that describe the "ideal" pupil and double-checked the five most important characteristics. When these teachers' responses were compared with those of fourth and fifth grade teachers in two public schools, a remarkable…

  6. An Ideal Observer Analysis of Visual Working Memory

    ERIC Educational Resources Information Center

    Sims, Chris R.; Jacobs, Robert A.; Knill, David C.

    2012-01-01

    Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around…

  7. Ideal Knowing: Logics of Knowledge in Primary School Curricula

    ERIC Educational Resources Information Center

    Macknight, Vicki

    2011-01-01

    This paper is written to draw attention to the ideal knower and the logic of knowledge embedded in curricula. New logics and new knowers, I argue, are conjured with the hope they will be capable of succeeding in curriculum designers' imagined future. I frame this discussion in terms of debates about the place of knowledge in the sociology of…

  8. Education as Immortality: Toward the Rehabilitation of an Ideal.

    ERIC Educational Resources Information Center

    Blacker, David

    1998-01-01

    Observes that immortality remains an important animating ideal for teaching and learning, despite being long neglected as theological or egoistic. Makes the case that the role of immortality in pedagogy has a long history in Western thought. Argues that individuals should recognize and address ways that longing for immortality shapes educators'…

  9. Experimental Verification of Boyle's Law and the Ideal Gas Law

    ERIC Educational Resources Information Center

    Ivanov, Dragia Trifonov

    2007-01-01

    Two new experiments are offered concerning the experimental verification of Boyle's law and the ideal gas law. To carry out the experiments, glass tubes, water, a syringe and a metal manometer are used. The pressure of the saturated water vapour is taken into consideration. For educational purposes, the experiments are characterized by their…

  10. On Ideal Stability of Cylindrical Localized Interchange Modes

    SciTech Connect

    Umansky, M V

    2007-05-15

    Stability of cylindrical localized ideal pressure-driven interchange plasma modes is revisited. Converting the underlying eigenvalue problem into the form of the Schroedinger equation gives a new simple way of deriving the Suydam stability criterion and calculating the growth rates of unstable modes. Near the marginal stability limit the growth rate is exponentially small and the mode has a double-peak structure.

  11. Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator

    ERIC Educational Resources Information Center

    Thomchick, John; McKelvey, J. P.

    1978-01-01

    Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)

  12. Implicit beliefs about ideal body image predict body image dissatisfaction

    PubMed Central

    Heider, Niclas; Spruyt, Adriaan; De Houwer, Jan

    2015-01-01

    We examined whether implicit measures of actual and ideal body image can be used to predict body dissatisfaction in young female adults. Participants completed two Implicit Relational Assessment Procedures (IRAPs) to examine their implicit beliefs concerning actual (e.g., I am thin) and desired ideal body image (e.g., I want to be thin). Body dissatisfaction was examined via self-report questionnaires and rating scales. As expected, differences in body dissatisfaction exerted a differential influence on the two IRAP scores. Specifically, the implicit belief that one is thin was lower in participants who exhibited a high degree of body dissatisfaction than in participants who exhibited a low degree of body dissatisfaction. In contrast, the implicit desire to be thin (i.e., thin ideal body image) was stronger in participants who exhibited a high level of body dissatisfaction than in participants who were less dissatisfied with their body. Adding further weight to the idea that both IRAP measures captured different underlying constructs, we also observed that they correlated differently with body mass index, explicit body dissatisfaction, and explicit measures of actual and ideal body image. More generally, these findings underscore the advantage of using implicit measures that incorporate relational information relative to implicit measures that allow for an assessment of associative relations only. PMID:26500567

  13. Idealized Visions from behind Bars: Prisoners' Perspectives on School Change

    ERIC Educational Resources Information Center

    Carr-Chellman, Alison A.; Beabout, Brian; Almeida, Louis; Gursoy, Hursa

    2009-01-01

    This article presents findings of a qualitative exploration of prisoners' perspectives on ideal schools. Based on the foundation of systems theory, it suggests that many voices are unheard in the school reform dialogue. The results of interviews with maximum-security prisoners pointed to a need for increased relationships among teachers and…

  14. Idealized Visions from Outside: Homeless Perspectives on School Change

    ERIC Educational Resources Information Center

    Magolis, David; Carr-Chellman, Alison A.

    2013-01-01

    This article presents findings from a qualitative exploration of homeless individuals' experiences and their perspectives on ideal designs of schools. The article is part of a larger research project titled "Unheard Voices," which explores marginalized individuals' (homeless, prisoners, working poor, and migrant workers) visions of ideal…

  15. Analysis of Contingency Tables by Ideal Point Discriminant Analysis.

    ERIC Educational Resources Information Center

    Takane, Yoshio

    1987-01-01

    Ideal point discriminant analysis (IPDA) is proposed for the analysis of contingency tables of cross-classified data. Several data sets illustrate IPDA, which combines log-linear and dual scaling models to provide a spatial representation of row and column categories and allow statistical evaluation of various structural hypotheses about…

  16. Idealization in Chemistry: Pure Substance and Laboratory Product

    ERIC Educational Resources Information Center

    Fernández-González, Manuel

    2013-01-01

    This article analyzes the concept of idealization in chemistry and the role played by pure substance and laboratory product. This topic has evident repercussions in the educational contexts that are applied to the science classroom, which are highlighted throughout the text. A common structure for knowledge construction is proposed for both…

  17. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    ERIC Educational Resources Information Center

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  18. Image of Ideal Teachers among Turkish Young Teacher Candidates

    ERIC Educational Resources Information Center

    Budak, Yusuf

    2011-01-01

    The aim of the current study is to determine the perception of teacher candidates concerning ideal teachers and to determine the perception of qualitative teachers that teacher candidates have and put a light on the selection of teacher candidates and the development of teacher-training programs. In the study, quantitative and qualitative…

  19. Stochastic Flux-Freezing for Non-Ideal Hydromagnetic Plasmas

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory

    2009-11-01

    Non-ideal (viscous and resistive) magnetohydrodynamic plasmas are shown to possess stochastic versions of ideal flux-freezing laws. The magnetic field at a point is equal to the average of an infinite ensemble of field-lines advected to that point by the plasma velocity perturbed with a random white-noise (stochastic Lundquist formula). This implies a stochastic Alfv'en theorem, valid for any value of the magnetic Prandtl number. At unit Prandtl number there is also a random version of the generalized Kelvin theorem derived by Bekenstein-Oron for ideal MHD. These stochastic conservation laws are not only consequences of the non-ideal MHD equations, but are in fact equivalent to those equations. Similar results hold for Hall magnetohydrodynamics and the two-fluid plasma model. We argue that flux-conservation remains stochastic for turbulent MHD plasmas in the limit of infinite Reynolds numbers. Infinitely-many field lines are advected to each point by turbulent Richardson diffusion. The reconnection speed for pairs of field lines is the relative velocity of the turbulent fluid at their initial locations. Small-scale turbulent dynamo effect is rigorously related to angular correlation of the individual field vectors before reconnection.

  20. The Transformation of Academic Ideals: An Australian Analysis

    ERIC Educational Resources Information Center

    Cannizzo, Fabian

    2016-01-01

    This article explores the role that universities play in shaping the relationship between academics and their work. Drawing on Miller and Rose's interpretation of our present era as being characterised by "Advanced Liberal" governance, this article demonstrates how discourses seeking to govern academic labour enrol ideals about the…

  1. Coupling Ideality of Integrated Planar High-Q Microresonators

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  2. Model of non-ideal detonation of condensed high explosives

    NASA Astrophysics Data System (ADS)

    Smirnov, E. B.; Kostitsin, O. V.; Koval, A. V.; Akhlyustin, I. A.

    2016-11-01

    The Zeldovich-Neumann-Doering theory of ideal detonation allows one to describe adequately the detonation of charges with near-critical diameter. For smaller diameters, detonation velocity can differ significantly from an ideal value expected based on equilibrium chemical thermodynamics. This difference is quite evident when using non-ideal explosives; in certain cases, this value can be up to one third of ideal detonation velocity. Numerical simulation of these systems is a very labor-consuming process because one needs to compute the states inside the chemical reaction zone, as well as to obtain data on the equation of state of high-explosive detonation products mixture and on the velocity of chemical reaction; however, these characteristics are poorly studied today. For practical purposes, one can use the detonation shock dynamics model based on interrelation between local velocity of the front and its local curvature. This interrelation depends on both the equation of state of explosion products, and the reaction velocity; but the explicit definition of these characteristics is not needed. In this paper, experimental results are analyzed. They demonstrate interrelation between the local curvature of detonation front and the detonation velocity. Equation of detonation front shape is found. This equation allows us to predict detonation velocity and shape of detonation wave front in arbitrary geometry by integrating ordinary differential equation for the front shape with a boundary condition at the charge edge. The results confirm that the model of detonation shock dynamics can be used to describe detonation processes in non-ideal explosives.

  3. Influence of non-ideality on condensation to aerosol

    NASA Astrophysics Data System (ADS)

    Compernolle, S.; Ceulemans, K.; Müller, J.-F.

    2009-02-01

    Secondary organic aerosol (SOA) is a complex mixture of water and organic molecules. Its composition is determined by the presence of semi-volatile or non-volatile compounds, their saturation vapor pressure and activity coefficient. The activity coefficient is a non-ideality effect and is a complex function of SOA composition. In a previous publication, the detailed chemical mechanism (DCM) for α-pinene oxidation and subsequent aerosol formation BOREAM was presented. In this work, we investigate with this DCM the impact of non-ideality by simulating smog chamber experiments for α-pinene degradation and aerosol formation and taking the activity coefficient into account of all molecules in the aerosol phase. Several versions of the UNIFAC method are tested for this purpose, and missing parameters for e.g. hydroperoxides and nitrates are inferred from fittings to activity coefficient data generated using the SPARC model. Alternative approaches to deal with these missing parameters are also tested, as well as an activity coefficient calculation method based on Hansen solubility parameters (HSP). It turns out that for most experiments, non-ideality has only a limited impact on the interaction between the organic molecules, and therefore on SOA yields and composition, when water uptake is ignored. The reason is that often, the activity coefficient is on average close to 1 and, specifically for high-VOC experiments, partitioning is not very sensitive on the activity coefficient because the equilibrium is shifted strongly towards condensation. Still, for ozonolysis experiments with low amounts of volatile organic carbon (low-VOC), the UNIFAC parameterization of Raatikainen et al. leads to significantly higher SOA yields (by up to a factor 1.6) compared to the ideal case and to other parameterizations. Water uptake is model dependent, in the order: ideal > UNIFAC-Raatikainen > UNIFAC-Peng > UNIFAC-Hansen ≍ UNIFAC-Magnussen ≍ UNIFAC-Ming. In the absence of salt

  4. Children's Centre "3 in 1 - together"

    NASA Astrophysics Data System (ADS)

    Gancheva, Hristina

    2013-04-01

    "There are only two ways to life your live. One is as though nothing is a miracle. The other is as though everything is a miracle." Albert Einstein Children's Centre "3 in 1" is an extracurricular unit linked to the High School of Zlatartitsa, St. Cyril and St. Methodius, accomplished with the help of the municipality and many volunteers from the local community. With its activity it forms in children patriotic spirit, love for nature, active citizenship, and an impulse for a healthy life through communication with nature, saving the traditions and history, insurance of equality of the kids of the local five ethnicities and participation in activities in the sphere of science, art, sport and tourism. The educational work is mainly directed towards kids with difficulties with communication, hyperactivity, aggression, problems in their families, or those deprived of parental care. For a few years in the Children's Centre there have been clubs of interests: "Gardeners" - kids cultivate a garden. They plow, dig, plant, put in, irrigate and weed under the watch of Ms Stafka Nikolova, parents, and volunteers of the local community. The ecologically clean products - vegetables and fruits, kids use to cook delicious meals, sell, or give away. Weeds are also utilized; they are making herbarium out of them. "Cooks" - "What to have for lunch, when mom is out?". One can learn a lot of wonderful recipes from the club "Cooks". Products are own made, raised with love. In 2010, on the on the annual traditional holiday of the garden soup in Zlataritsa, the little cooks won third prize for making a delicious vegetable soup. On the same day, the 26 years old Nadezhda Savova, Cultural and Social Anthropology PhD in Princeton, founded the second community bakery in Bulgaria in Children's Centre "3 in1". Nadezhda Savova was declared traveler of 2012 by National Geographic. After the baking house in Gabrovo and Zlataritsa, Nadezhda also founded such projects in Sofia, Varna and Ruse

  5. Initial experience with an Underwater Manifold Centre

    SciTech Connect

    Osborne, J.M.

    1984-10-01

    In July 1983 comingled production from the first two completed wells of the Shell/Esso Underwater Manifold Centre (the UMC), reached the Cormorant Alpha platform. This moment was the culmination of design and development effort which had begun as early as the spring of 1975. But being both the largest subsea system to become operational in the North Sea, and the first designed to the production of several subsea wells, whilst injecting into others, how would the UMC continue to perform. This paper details the operational experience gained to date with the UMC, tracing its brief history since it was first powered up in September 1982 to the present. This is discussed in the main body of the paper under the headings: Commissioning Experience; Operating Experience; Reliability and Maintenance.

  6. PRICE: primitive centred schemes for hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Siviglia, A.

    2003-08-01

    We present first- and higher-order non-oscillatory primitive (PRI) centred (CE) numerical schemes for solving systems of hyperbolic partial differential equations written in primitive (or non-conservative) form. Non-conservative systems arise in a variety of fields of application and they are adopted in that form for numerical convenience, or more importantly, because they do not posses a known conservative form; in the latter case there is no option but to apply non-conservative methods. In addition we have chosen a centred, as distinct from upwind, philosophy. This is because the systems we are ultimately interested in (e.g. mud flows, multiphase flows) are exceedingly complicated and the eigenstructure is difficult, or very costly or simply impossible to obtain. We derive six new basic schemes and then we study two ways of extending the most successful of these to produce second-order non-oscillatory methods. We have used the MUSCL-Hancock and the ADER approaches. In the ADER approach we have used two ways of dealing with linear reconstructions so as to avoid spurious oscillations: the ADER TVD scheme and ADER with ENO reconstruction. Extensive numerical experiments suggest that all the schemes are very satisfactory, with the ADER/ENO scheme being perhaps the most promising, first for dealing with source terms and secondly, because higher-order extensions (greater than two) are possible. Work currently in progress includes the application of some of these ideas to solve the mud flow equations. The schemes presented are generic and can be applied to any hyperbolic system in non-conservative form and for which solutions include smooth parts, contact discontinuities and weak shocks. The advantage of the schemes presented over upwind-based methods is simplicity and efficiency, and will be fully realized for hyperbolic systems in which the provision of upwind information is very costly or is not available.

  7. Distant Operational Care Centre: Design Project Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The goal of this project is to outline the design of the Distant Operational Care Centre (DOCC), a modular medical facility to maintain human health and performance in space, that is adaptable to a range of remote human habitats. The purpose of this project is to outline a design, not to go into a complete technical specification of a medical facility for space. This project involves a process to produce a concise set of requirements, addressing the fundamental problems and issues regarding all aspects of a space medical facility for the future. The ideas presented here are at a high level, based on existing, researched, and hypothetical technologies. Given the long development times for space exploration, the outlined concepts from this project embodies a collection of identified problems, and corresponding proposed solutions and ideas, ready to contribute to future space exploration efforts. In order to provide a solid extrapolation and speculation in the context of the future of space medicine, the extent of this project's vision is roughly within the next two decades. The Distant Operational Care Centre (DOCC) is a modular medical facility for space. That is, its function is to maintain human health and performance in space environments, through prevention, diagnosis, and treatment. Furthermore, the DOCC must be adaptable to meet the environmental requirements of different remote human habitats, and support a high quality of human performance. To meet a diverse range of remote human habitats, the DOCC concentrates on a core medical capability that can then be adapted. Adaptation would make use of the DOCC's functional modularity, providing the ability to replace, add, and modify core functions of the DOCC by updating hardware, operations, and procedures. Some of the challenges to be addressed by this project include what constitutes the core medical capability in terms of hardware, operations, and procedures, and how DOCC can be adapted to different remote

  8. Common Myna Roosts Are Not Recruitment Centres

    PubMed Central

    Sarangi, Manaswini; Arvind, Chiti; Lakshman, Abhilash; Vidya, T. N. C.

    2014-01-01

    We studied communal roosting in the Common Myna (Acridotheres tristis) in the light of the recruitment centre hypothesis and predation at the roost. The number and sizes of flocks departing from and arriving at focal roosts were recorded over a two year period. We also recorded the sizes and behaviour of foraging flocks. We found that flock sizes of birds departing from roosts at sunrise were larger than those at the feeding site, suggesting that there was no recruitment from the roosts. Flocks entering the roosts during sunset were larger on average than those leaving the following sunrise, suggesting no consolidation of flocks in the morning. Flocks entering the roosts at sunset were also larger on average than those that had left that sunrise, although there was no recruitment at the feeding site. There was no effect of group size on the proportion of time spent feeding. Contrary to expectation, single birds showed lower apparent vigilance than birds that foraged in pairs or groups, possibly due to scrounging tactics being used in the presence of feeding companions. Thus, the recruitment centre hypothesis did not hold in our study population of mynas. Predation at dawn and dusk were also not important to communal roosting: predators near the roosts did not result in larger flocks, and resulted in larger durations of arrival/departure contrary to expectation. Since flock sizes were smallest at the feeding site and larger in the evening than in the morning, but did not coincide with predator activity, information transfer unrelated to food (such as breeding opportunities) may possibly give rise to the evening aggregations. PMID:25122467

  9. Atom Trap, Krypton-81, and Saharan Water

    SciTech Connect

    Lu, Zheng-Tian

    2005-08-24

    Since radiocarbon dating was first demonstrated in 1949, the field of trace analyses of long-lived cosmogenic isotopes has seen steady growth in both analytical methods and applicable isotopes. The impact of such analyses has reached a wide range of scientific and technological areas. A new method, named Atom Trap Trace Analysis (ATTA), was developed by our group and used to analyze {sup 81}Kr (t{sub 1/2} = 2.3 x 10{sup 5} years, isotopic abundance {approx} 1 x 10{sup -12}) in environmental samples. In this method, individual {sup 81}Kr atoms are selectively captured and detected with a laser-based atom trap. {sup 81}Kr is produced by cosmic rays in the upper atmosphere. It is the ideal tracer for dating ice and groundwater in the age range of 10{sup 4}-10{sup 6} years. As the first real-world application of ATTA, we have determined the mean residence time of the old groundwater in the Nubian Aquifer located underneath the Sahara Desert. Moreover, this method of capturing and probing atoms of rare isotopes is also applied to experiments that study exotic nuclear structure and test fundamental symmetries.

  10. Optimal control of complex atomic quantum systems

    PubMed Central

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-01-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688

  11. Optimal control of complex atomic quantum systems

    NASA Astrophysics Data System (ADS)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  12. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  13. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  14. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  15. Electrochemical Atomic Layer Processing

    DTIC Science & Technology

    1994-06-25

    where an atomic layer of an element is deposited , or removed, in a surface limited reaction. The potentials used are referred to as underpotentials in...the electrochemical literature. The atomic layer deposition process is referred to as underpotential deposition (UPD). 14. SUBJECT TERMS 15, NUMBER OF...reaction. The potentials used are referred to as underpotentials in the electrochemical literature. The atomic layer deposition process is referred to as

  16. The Software Atom

    NASA Astrophysics Data System (ADS)

    Javanainen, Juha

    2017-03-01

    By putting together an abstract view on quantum mechanics and a quantum-optics picture of the interactions of an atom with light, we develop a corresponding set of C++ classes that set up the numerical analysis of an atom with an arbitrary set of angular-momentum degenerate energy levels, arbitrary light fields, and an applied magnetic field. As an example, we develop and implement perturbation theory to compute the polarizability of an atom in an experimentally relevant situation.

  17. Atomicity in Electronic Commerce,

    DTIC Science & Technology

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  18. Advances in atomic physics

    PubMed Central

    El-Sherbini, Tharwat M.

    2013-01-01

    In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research – an overview is provided of the milestones in the fascinating landscape of atomic physics. PMID:26425356

  19. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  20. A Complete 2D Stability Analysis of Fast MHD Shocks in an Ideal Gas

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    An algorithm of numerical testing of the uniform Lopatinski condition for linearized stability problems for 1-shocks is suggested. The algorithm is used for finding the domains of uniform stability, neutral stability, and instability of planar fast MHD shocks. A complete stability analysis of fast MHD shock waves is first carried out in two space dimensions for the case of an ideal gas. Main results are given for the adiabatic constant γ=5/3 (mono-atomic gas), that is most natural for the MHD model. The cases γ=7/5 (two-atomic gas) and γ>5/3 are briefly discussed. Not only the domains of instability and linear (in the usual sense) stability, but also the domains of uniform stability, for which a corresponding linearized stability problem satisfies the uniform Lopatinski condition, are numerically found for different given angles of inclination of the magnetic field behind the shock to the planar shock front. As is known, uniform linearized stability implies the nonlinear stability, that is local existence of discontinuous shock front solutions of a quasilinear system of hyperbolic conservation laws.

  1. Ideal for Whom? A Cultural Analysis of Ideal Worker Norms in Higher Education and Student Affairs Graduate Programs

    ERIC Educational Resources Information Center

    Sallee, Margaret W.

    2016-01-01

    This chapter explores the consequences of ideal worker norms for graduate student-parents in higher education and student affairs programs. Using Schein's (2004) levels of culture as a conceptual lens, this chapter considers the ways that programmatic structures and interactions with faculty and peers reflect and reproduce a culture across…

  2. The Centre of Mass of a Triangular Plate

    ERIC Educational Resources Information Center

    Slusarenko, Viktor; Rojas, Roberto; Fuster, Gonzalo

    2008-01-01

    We present a derivation for the coordinates of the centre of mass--or centre of gravity--of a homogeneous triangular plate by using scaling and symmetry. We scale the triangular plate by a factor of 2 and divide its area into four plates identical to the original. By symmetry, we assert that the centre of mass of two identical masses lies at the…

  3. Complex Modelling Scheme Of An Additive Manufacturing Centre

    NASA Astrophysics Data System (ADS)

    Popescu, Liliana Georgeta

    2015-09-01

    This paper presents a modelling scheme sustaining the development of an additive manufacturing research centre model and its processes. This modelling is performed using IDEF0, the resulting model process representing the basic processes required in developing such a centre in any university. While the activities presented in this study are those recommended in general, changes may occur in specific existing situations in a research centre.

  4. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  5. Reaction centres: the structure and evolution of biological solar power.

    PubMed

    Heathcote, Peter; Fyfe, Paul K; Jones, Michael R

    2002-02-01

    Reaction centres are complexes of pigment and protein that convert the electromagnetic energy of sunlight into chemical potential energy. They are found in plants, algae and a variety of bacterial species, and vary greatly in their composition and complexity. New structural information has highlighted features that are common to the different types of reaction centre and has provided insights into some of the key differences between reaction centres from different sources. New ideas have also emerged on how contemporary reaction centres might have evolved and on the possible origin of the first chlorophyll-protein complexes to harness the power of sunlight.

  6. A Moist Idealized Test Case for Atmospheric General Circulation Models

    NASA Astrophysics Data System (ADS)

    Thatcher, D.; Jablonowski, C.; Zarzycki, C.

    2013-12-01

    The vast array of dynamical and physical processes within atmospheric general circulation models (GCMs) makes it difficult to correctly distinguish the sources of error within a model. Therefore, simplified test cases are important in testing the accuracy of individual model components, such as the fluid flow component in the dynamical core. Typically, dynamical cores are coupled to complex subgrid-scale physical parameterization packages, and the nonlinear interactions mask the causes and effects of atmospheric phenomena. Idealized tests are a computationally efficient method for analyzing the underlying numerical techniques of dynamical cores. The newly proposed test case is based on the widely-used Held and Suarez (1994) (HS) test for dry dynamical cores. The latter replaces the full physical parameterization package with a Newtonian temperature relaxation and Rayleigh damping of low-level winds on a flat planet. However, the impact of moisture, a crucial physics-dynamics coupling process, is missing from the HS test. Here we present a moist variant of the HS test case to create a test case of intermediate complexity with idealized moisture feedbacks. It uses simplified physical processes to model large-scale condensation, boundary layer turbulence, and surface fluxes of horizontal momentum, latent heat, and sensible heat between the atmosphere and an ocean-covered planet (Reed and Jablonowski, 2012). We apply this test to four dynamical cores within NCAR's Community Atmosphere Model version 5.3, including the Finite Volume, Eulerian spectral transform, semi-Lagrangian spectral transform, and Spectral Element dynamical cores. We analyze the kinetic energy spectra, general circulation, and precipitation of this new moist idealized test case across all four dynamical cores. Simulations of the moist idealized test case are compared to aqua-planet experiments with complex physical parameterizations. The moist idealized test case successfully reproduces many features

  7. Optical laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre

    NASA Astrophysics Data System (ADS)

    Lakkala, Kaisa; Suokanerva, Hanne; Matti Karhu, Juha; Aarva, Antti; Poikonen, Antti; Karppinen, Tomi; Ahponen, Markku; Hannula, Henna-Reetta; Kontu, Anna; Kyrö, Esko

    2016-07-01

    This paper describes the laboratory facilities at the Finnish Meteorological Institute - Arctic Research Centre (FMI-ARC, http://fmiarc.fmi.fi). They comprise an optical laboratory, a facility for biological studies, and an office. A dark room has been built, in which an optical table and a fixed lamp test system are set up, and the electronics allow high-precision adjustment of the current. The Brewer spectroradiometer, NILU-UV multifilter radiometer, and Analytical Spectral Devices (ASD) spectroradiometer of the FMI-ARC are regularly calibrated or checked for stability in the laboratory. The facilities are ideal for responding to the needs of international multidisciplinary research, giving the possibility to calibrate and characterize the research instruments as well as handle and store samples.

  8. The development and operation of Edinburgh Parallel Computing Centre`s summer scholarship programme

    SciTech Connect

    Wilson, G.V.; MacDonald, N.B.; Thornborrow, C.; Brough, C.M.

    1994-12-31

    Between 1987 and 1994, more than 100 students in a broad range of disciplines worked as summer scholars at Edinburgh Parallel Computing Centre. Many of these students have since taken their parallel computing skills into graduate work and industry, and over a quarter of EPCC`s technical staff are alumni of the Programme. This report describes the evolution and present operation of the Summer Scholarship Programme, and its costs and benefits.

  9. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  10. Evanescent Wave Atomic Mirror

    NASA Astrophysics Data System (ADS)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  11. Electron - Atom Bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Kim, Longhuan

    In this work we study the features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point Coulomb potential and screened potentials are obtained using a classical numerical method. The results agree with exact quantum mechanical partial wave results for low incident electron energies in both the point Coulomb and screened potentials. In the screened potential the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. We also studied the scaling properties of bremsstrahlung spectra and energy losses. It is found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T(,1)/Z('2). This scaling is exact in the case of the point Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. We also studied bremsstrahlung from atoms in hot dense plasmas, describing the atomic potentials by the temperature-and-density dependent Thomas - Fermi model. Gaunt factors are obtained with the relativistic partial wave method for atoms in plasmas of various densities and temperatures. Features of the bremsstrahlung from atoms in such environments are discussed. The dependence of predicted bremsstrahlung spectra on the choice of potential from various average atom potential models for strongly coupled plasmas are also studied. For the energy range and plasma densities were considered, the choice of potential model among the elaborate atomic potentials is less important than the choice of the method of calculation. The use of a detailed configuration accounting method for bremsstrahlung processes in dense plasmas is less important than for some other atomic processes. We justify the usefulness

  12. ACTRIS Data Centre: An atmospheric data portal

    NASA Astrophysics Data System (ADS)

    Myhre, C. Lund; Fahre Vik, A.; Logna, R.; Torseth, K.; Linné, H.; O'Connor, E.

    2012-04-01

    ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network) is a European Project aiming at integrating European ground-based stations equipped with advanced instrumentation for studying aerosols, clouds, and short-lived gas-phase species. The ACTRIS activities result in improved atmospheric measurements data made at more than 60 European sites, from numerous instruments and includes variables measured by ground based in situ and remote sensing technologies. Core variables are in situ aerosol optical, physical and chemical properties, short-lived trace gases (volatile organic carbon and nitrogen oxides), aerosol scattering and extinction profiles, and cloud properties. The ACTRIS data centre (ACTRIS DC) is giving free and open access to all data resulting from the activities of the infrastructure network, complemented with data from other relevant networks and data bases. The overall goal is to facilitate scientists and other user groups access to atmospheric observational data, and to provide mature products for analysis and interpretation of atmospheric composition change. The ACTRIS DC aims at substantially increasing the number of high-quality data by providing long-term observational data relevant to climate and air quality research produced with standardized or comparable procedures throughout the network. The backbone of the ACTRIS DC is the three core data bases: - EARLINET Data Base hosting aerosol lidar data from more than 30 European sites - EBAS hosting ground based atmospheric in situ data from more than 1000 sites globally - Cloudnet hosting remote sensing cloud data and products from 5 European sites Furthermore, a joint portal is developed combining information from various data sources to gain new information not presently available from standalone databases or networks. The data centre will provide tools and services to facilitate the use of measurements for broad user communities. Higher level and integrated products will be

  13. Normal freezing of ideal ternary systems of the pseudobinary type

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  14. THE MAKING OF FAMILY VALUES: DEVELOPMENTAL IDEALISM IN GANSU, CHINA

    PubMed Central

    Lai, Qing; Thornton, Arland

    2014-01-01

    This paper examines the role of developmental thinking in the making of family values. We analyze survey data collected from Gansu Province in China with regular and multilevel logit models. The results show that individuals’ endorsement of neolocal residence, self-choice marriage, gender egalitarianism, late marriage for women, and low fertility depends on the conjunction of preference for development and beliefs in its association with those family attributes, which we term developmental idealism associational evaluation. Furthermore, such impact of developmental thinking on family values holds robust in the presence of indigenous ideational forces, in this case Islamic religion. Although Islam influences family values in the opposite direction than developmental ideas do, the effect of Developmental Idealism associational evaluation does not differ significantly between Muslims and non-Muslims. PMID:25769860

  15. Measuring Love: Sexual Minority Male Youths' Ideal Romantic Characteristics.

    PubMed

    Bauermeister, José A; Johns, Michelle M; Pingel, Emily; Eisenberg, Anna; Santana, Matt Leslie; Zimmerman, Marc

    2011-04-01

    Research examining how sexual minorities characterize love within same-sex relationships is scarce. In this study, we examined the validity of Sternberg's Triangular Theory of Love in a sample of sexual minority male youth (N = 447). To test the adequacy of the theory for our population, we examined the psychometric properties of the Triadic Love Scale (TLS) and tested whether the three underlying constructs of the theory (Intimacy, Passion, and Commitment) emerged when participants were asked to consider their ideal relationship with another man. Using confirmatory factor analysis (CFA), we found support for the three-factor solution to characterize sexual minority male youths' ideal romantic relationship, after minimizing item cross-loadings and adapting the content of the Passion subscale. We discuss the implications of our findings regarding the measurement of the TLS among sexual minority male youth and propose ways to enhance its measurement in future research.

  16. Achieving the ideal strength in annealed molybdenum nanopillars

    SciTech Connect

    Lowry, M. B.; Kiener, D.; LeBlanc, M. M.; Chisholm, Claire; Florando, Jeff; Morris, J. W.; Minor, Andrew

    2010-01-01

    The theoretical strength of a material is the stress required to deform an infinite, defect-free crystal. Achieving the theoretical strength of a material experimentally is hindered by the ability to create and mechanically test an absolutely defect-free material. Here we show that through annealing it is possible to employ the versatility of the focused ion beam (FIB) but recover a mechanically pristine limited volume. Starting with FIB-milled molybdenum pillars, we anneal them in situ in a transmission electron microscope (TEM) producing a molybdenum pillar with a spherical cap. This geometry allows for the maximum stress to occur in the interior of the spherical cap and is ideally suited for experimentally achieving the ideal strength. During in situ compression testing in the TEM the annealed pillars show initial elastic loading followed by catastrophic failure at, or very near, the calculated theoretical strength of molybdenum. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  17. Collisionless Spectral Kinetic Simulation of Ideal Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Gong, Junbo; Wilczek, Sebastian; Szeremley, Daniel; Oberrath, Jens; Eremin, Denis; Dobrygin, Wladislaw; Schilling, Christian; Friedrichs, Michael; Brinkmann, Ralf Peter

    2016-09-01

    Active Plasma Resonance Spectroscopy denotes a class of industry-compatible plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. One particular realization of APRS with a high degree of geometric and electric symmetry is the Multipole Resonance Probe (MRP). The Ideal MRP(IMRP) is an even more symmetric idealization which is suited for theoretical investigations. In this work, a spectral kinetic scheme is presented to investigate the behavior of the IMRP in the low pressure regime. However, due to the velocity difference, electrons are treated as particles whereas ions are only considered as stationary background. In the scheme, the particle pusher integrates the equations of motion for the studied particles, the Poisson solver determines the electric field at each particle position. The proposed method overcomes the limitation of the cold plasma model and covers kinetic effects like collisionless damping.

  18. Study on Product Innovative Design Process Driven by Ideal Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Fuying; Lu, Ximei; Wang, Ping; Liu, Hui

    Product innovative design in companies today relies heavily on individual members’ experience and creative ideation as well as their skills of integrating creativity and innovation tools with design methods agilely. Creative ideation and inventive ideas generation are two crucial stages in product innovative design process. Ideal solution is the desire final ideas for given problem, and the striving reaching target for product design. In this paper, a product innovative design process driven by ideal solution is proposed. This design process encourages designers to overcome their psychological inertia, to foster creativity in a systematic way for acquiring breakthrough creative and innovative solutions in a reducing sphere of solution-seeking, and results in effective product innovative design rapidly. A case study example is also presented to illustrate the effectiveness of the proposed design process.

  19. The making of family values: developmental idealism in Gansu, China.

    PubMed

    Lai, Qing; Thornton, Arland

    2015-05-01

    This paper examines the role of developmental thinking in the making of family values. We analyze survey data collected from Gansu Province in China with regular and multilevel logit models. The results show that individuals' endorsement of neolocal residence, self-choice marriage, gender egalitarianism, late marriage for women, and low fertility depends on the conjunction of preference for development and beliefs in its association with those family attributes, which we term developmental idealism associational evaluation. Furthermore, such impact of developmental thinking on family values holds robust in the presence of indigenous ideational forces, in this case Islamic religion. Although Islam influences family values in the opposite direction than developmental ideas do, the effect of Developmental Idealism associational evaluation does not differ significantly between Muslims and non-Muslims.

  20. Shock formation and the ideal shape of ramp compression waves

    SciTech Connect

    Swift, D C; Kraus, R G; Loomis, E; Hicks, D G; McNaney, J M; Johnson, R P

    2008-05-29

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long duration ramps are desired.

  1. Maximal rectification ratios for idealized bi-segment thermal rectifiers

    PubMed Central

    Shih, Tien-Mo; Gao, Zhaojing; Guo, Ziquan; Merlitz, Holger; Pagni, Patrick J.; Chen, Zhong

    2015-01-01

    Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such rectification ratios, which are partially validated by numerical simulations, experiments, and micro-scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (κ) are linear with the temperature, this limit is simply a numerical value of 3. For those whose conductivities are nonlinear with temperatures, the maxima equal κmax/κmin, where two extremes denote values of the solid segment materials that can be possibly found or fabricated within a reasonable temperature range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment thermal rectifiers. PMID:26238970

  2. Symmetry group analysis of an ideal plastic flow

    NASA Astrophysics Data System (ADS)

    Lamothe, Vincent

    2012-03-01

    In this paper, we study a finite-dimensional Lie point symmetry group of a system describing an ideal plastic plane flow in two dimensions in order to find analytical solutions. The infinitesimal generators that span this Lie algebra are given. We completely classify the subalgebras of codimension up to two into conjugacy classes under the action of the symmetry group. Based on invariant forms, we use Ansätze to compute symmetry reductions in such a way that the obtained solutions simultaneously cover many invariant and partially invariant solutions. We calculate solutions of algebraic, trigonometric, inverse trigonometric and elliptic type. Some solutions depending on one or two arbitrary functions of one variable have also been found. In some cases, the shape of a potentially feasible extrusion die corresponding to the solution is deduced. These tools could be used to thin, curve, undulate or shape a ring in an ideal plastic material.

  3. Understanding the ideal cooperative characteristic between two humans

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Shahriman; Ikeura, Ryojun; Salleh, Ahmad Faizal; Yano, Takemi

    2010-01-01

    Observing current lifestyles and human growth performance in these past decades we can make a deduction that human workforce going to be reduced until a serious level. We believed that in critical field such as health industries, robots that cooperated with human to handle human patient will provide the help needed to fill the gap. In order to design human cooperative robot that will be able to act and react with human-like features so that the robot can replace the human counterparts, we need to understand how human communicates with human first. This paper discussed the ideal characteristic of how two humans cooperate to complete a cooperative task. The cooperative task experiment involved carrying experiment object in several direction and varying the information available to the experiment subjects. We calculated the smoothness during the cooperative task to understand the ideal cooperative characteristic between two humans.

  4. Understanding the ideal cooperative characteristic between two humans

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Shahriman; Ikeura, Ryojun; Salleh, Ahmad Faizal; Yano, Takemi

    2009-12-01

    Observing current lifestyles and human growth performance in these past decades we can make a deduction that human workforce going to be reduced until a serious level. We believed that in critical field such as health industries, robots that cooperated with human to handle human patient will provide the help needed to fill the gap. In order to design human cooperative robot that will be able to act and react with human-like features so that the robot can replace the human counterparts, we need to understand how human communicates with human first. This paper discussed the ideal characteristic of how two humans cooperate to complete a cooperative task. The cooperative task experiment involved carrying experiment object in several direction and varying the information available to the experiment subjects. We calculated the smoothness during the cooperative task to understand the ideal cooperative characteristic between two humans.

  5. Ideal Magnetohydrodynamics Stability Spectrum with a Resistive Wall

    SciTech Connect

    S. P. Smith; Jardin, S. C.

    2008-05-01

    We show that the eigenvalue equations describing a cylindrical ideal magnetophydrodynamicsw (MHD) plasma interacting with a thin resistive wall can be put into the standard mathematical form: Α•χ = λΒ• χ. This is accomplished by using a finite element basis for the plasma, and by adding an extra degree of freedom corresponding to the electrical current in the thin wall. The standard form allows the use of linear eigenvalue solvers, without additional interations, to compute the complete spectrum of plasma modes in the presence of a surrounding restrictive wall at arbitrary separation. We show that our method recovers standard results in the limits of (1) an infinitely resistive wall (no wall), and (2) a zero resistance wall (ideal wall).

  6. Conditions for achieving ideal and Lambertian symmetrical solar concentrators

    SciTech Connect

    Luque, A.; Lorenzo, E.

    1982-10-15

    Symmetrical bidimensional concentrators are discussed, and it is proven that for a given source's angular extension a curve exists that divides the plane into two regions. No ideal concentrator can be found with its edges on the outer region and no Lambertian concentrator can be found with its edges on the inner region. A consequence of this theorem is that a concentrator is forced to cast some of the incident energy outside the collector to ensure its obtaining the maximum power.

  7. Noether's Theorem of Relativistic-Electromagnetic Ideal Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Gaspar Elsas, J. H.; Koide, T.; Kodama, T.

    2015-06-01

    We present a variational approach for relativistic ideal hydrodynamics interacting with electromagnetic fields. The momentum of fluid is introduced as the canonical conjugate variable of the position of a fluid element, which coincides with the conserved quantity derived from Noether's theorem. We further show that our formulation can reproduce the usual electromagnetic hydrodynamics which is obtained so as to satisfy the conservation of the inertia of fluid motion.

  8. Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2004-01-01

    Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.

  9. Mixing of relativistic ideal gases with relative relativistic velocities

    NASA Astrophysics Data System (ADS)

    Gonzalez-Narvaez, R. E.; Ares de Parga, A. M.; Ares de Parga, G.

    2017-01-01

    The Redefined Relativistic Thermodynamics is tested by means of mixing two ideal gases at different temperatures and distinct velocities. The conservation of the 4-vector energy-momentum leads to a tremendous increment of the temperature. This phenomenon can be used in order to describe the heating of a cold clump with shocked jets material. A prediction for improving the ignition of a Tokamak is proposed. The compatibility of the Redefined Relativistic Thermodynamics with the Thermodynamical Field Theory is analyzed.

  10. Insulating behavior of a trapped ideal Fermi gas.

    PubMed

    Pezzè, L; Pitaevskii, L; Smerzi, A; Stringari, S; Modugno, G; de Mirandes, E; Ferlaino, F; Ott, H; Roati, G; Inguscio, M

    2004-09-17

    We investigate theoretically and experimentally the center-of-mass motion of an ideal Fermi gas in a combined periodic and harmonic potential. We find a crossover from a conducting to an insulating regime as the Fermi energy moves from the first Bloch band into the band gap of the lattice. The conducting regime is characterized by an oscillation of the cloud about the potential minimum, while in the insulating case the center of mass remains on one side of the potential.

  11. Dynamics of Gas Near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Binney, J.

    1994-10-01

    We simulate the flow of gas in the Binney et al. model of the bar at the centre of the Milky Way. We argue that the flow of a clumpy interstellar medium is most realistically simulated by a sticky-particle scheme, and investigate two such schemes. In both schemes orbits close to the cusped orbit rapidly become depopulated. This depopulation places a lower limit on the pattern speed since it implies that in the (1, v) plane the cusped orbit lies significantly inside the peak of the Hi terminal-velocity envelope at 1 20. We find that the size of the central molecular disc and the magnitudes of the observed forbidden velocities constrain the eccentricity of the Galactic bar to values similar to that arbitrarily assumed by Binney et al. We study the accretion by the nuclear disc of matter shed by dying bulge stars. We estimate that mass loss by the bulge can replenish the Hi in the nuclear disc within two bar rotation periods, in good agreement with the predictions of the simulations. When accretion of gas from the bulge is included, fine-scale irregular structure persists in the nuclear disc. This structure gives rise to features in longitude-velocity plots which depend significantly on viewing angle, and consequently give rise to asymmetries in longitude. These asymmetries are, however, much less pronounced than those in the observational plots. We conclude that the addition of hydrodynamics to the Binney et al. model does not resolve some important discrepancies between theory and observation. The model's basic idea does, however, have high a priori probability and has enjoyed some significant successes, while a number of potentially important physical processes - most notably the self-gravity of interstellar gas - are neglected in the present simulations. In view of the deficiencies of our simulations and interesting parallels we do observe between simulated and observational longitude-velocity plots, we believe it would be premature to reject the Binney et al

  12. Atomic Power Safety.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: What is Atomic Power?; What Does Safety Depend On?; Control of Radioactive Material During Operation; Accident Prevention; Containment in the Event of an Accident; Licensing and…

  13. When Atoms Want

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  14. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  15. Atom Interferometer Modeling Tool

    DTIC Science & Technology

    2011-08-08

    a specific value at each timestep . LiveAtom will reflect the specified current sources in the visualization through a plot that is brighter at 6...Carlo (DSMC) modeling feature, users can simulate the behavior of cold, thermal atoms in a dynamic magnetic potential. This could be used, for example

  16. Greek Atomic Theory.

    ERIC Educational Resources Information Center

    Roller, Duane H. D.

    1981-01-01

    Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)

  17. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  18. Modified Embedded Atom Method

    SciTech Connect

    Rudd, R. E.

    2012-08-01

    Interatomic force and energy calculation subroutine to be used with the molecular dynamics simulation code LAMMPS (Ref a.). The code evaluated the total energy and atomic forces (energy gradient) according to a cubic spline-based variant (Ref b.) of the Modified Embedded Atom Method (MEAM) with a additional Stillinger-Weber (SW) contribution.

  19. Spontaneous magnetization of an ideal ferromagnet: Beyond Dyson's analysis

    SciTech Connect

    Hofmann, Christoph P.

    2011-08-01

    Using the low-energy effective field theory for magnons, we systematically evaluate the partition function of the O(3) ferromagnet up to three loops. Dyson, in his pioneering microscopic analysis of the Heisenberg model, showed that the spin-wave interaction starts manifesting itself in the low-temperature expansion of the spontaneous magnetization of an ideal ferromagnet only at order T{sup 4}. Although several authors tried to go beyond Dyson's result, to the best of our knowledge, a fully systematic and rigorous investigation of higher-order terms induced by the spin-wave interaction has never been achieved. As we demonstrate in the present paper, it is straightforward to evaluate the partition function of an ideal ferromagnet beyond Dyson's analysis, using effective Lagrangian techniques. In particular, we show that the next-to-leading contribution to the spontaneous magnetization resulting from the spin-wave interaction already sets in at order T{sup 9/2}--in contrast to all claims that have appeared before in the literature. Remarkably, the corresponding coefficient is completely determined by the leading-order effective Lagrangian and is thus independent of the anisotropies of the cubic lattice. We also consider even higher-order corrections and thereby solve--once and for all--the question of how the spin-wave interaction in an ideal ferromagnet manifests itself in the spontaneous magnetization beyond the Dyson term.

  20. Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?

    NASA Astrophysics Data System (ADS)

    Wurster, James; Price, Daniel J.; Bate, Matthew R.

    2016-03-01

    We investigate whether or not the low ionization fractions in molecular cloud cores can solve the `magnetic braking catastrophe', where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.

  1. Idealized textile composites for experimental/analytical correlation

    NASA Technical Reports Server (NTRS)

    Adams, Daniel O.

    1994-01-01

    Textile composites are fiber reinforced materials produced by weaving, braiding, knitting, or stitching. These materials offer possible reductions in manufacturing costs compared to conventional laminated composites. Thus, they are attractive candidate materials for aircraft structures. To date, numerous experimental studies have been performed to characterize the mechanical performance of specific textile architectures. Since many materials and architectures are of interest, there is a need for analytical models to predict the mechanical properties of a specific textile composite material. Models of varying sophistication have been proposed based on mechanics of materials, classical laminated plate theory, and the finite element method. These modeling approaches assume an idealized textile architecture and generally consider a single unit cell. Due to randomness of the textile architectures produced using conventional processing techniques, experimental data obtained has been of limited use for verifying the accuracy of these analytical approaches. This research is focused on fabricating woven textile composites with highly aligned and accurately placed fiber tows that closely represent the idealized architectures assumed in analytical models. These idealized textile composites have been fabricated with three types of layer nesting configurations: stacked, diagonal, and split-span. Compression testing results have identified strength variations as a function of nesting. Moire interferometry experiments are being used to determine localized deformations for detailed correlation with model predictions.

  2. Generalized Hall effect as a modification of ideal magnetohydrodynamics

    SciTech Connect

    Goodman, M.L.

    1986-01-01

    The generalized Hall effect (GHE) in the generalized Hall model (GHM) is studied as a correction to ideal magnetohydrodynamics (MHD) in the context of how it affects the linear stability of cylindrically symmetric equilibria and how it changes helically symmetric equilibria. The GHM differs from what is usually called the Hall model by including the electron pressure in the electron-momentum equations. This gives the GHM some aspects of a two-fluid model, whereas the Hall model is a one-fluid model. In both cases of cylindrical and helical symmetry, the presence of the electron pressure gradient as part of the GHE gives rise to an electric field tangent to the boundary of the plasma. This introduces an additional boundary condition in the case of a perfectly conducting plasma boundary. In the case of helical symmetry, the equilibrium equations are a generalization of the Grad-Shafranov equation to equilibria with flow and GHE. In the case of cylindrical symmetry, a class of Alfven-wave solutions that do not exist in ideal MHD is obtained and the accumulation point, with respect to large radial wavenumber, of the slow magnetoacoustic wave is shown to be changed from a finite nonzero value in ideal MHD to infinity by the GHE>

  3. An apparent paradox concerning the field of an ideal dipole

    NASA Astrophysics Data System (ADS)

    Parker, Edward

    2017-03-01

    The electric or magnetic field of an ideal dipole is known to have a Dirac delta function at the origin. The usual textbook derivation of this delta function is rather ad hoc and cannot be used to calculate the delta-function structure for higher multipole moments. Moreover, a naive application of Gauss’s law to the ideal dipole field appears to give an incorrect expression for the dipole’s effective charge density. We derive a general result for the delta-function structure at the origin of an arbitrary ideal multipole field without using any advanced techniques from distribution theory. We find that the divergence of a singular vector field can contain a derivative of a Dirac delta function even if the field itself does not contain a delta function. We also argue that a physical interpretation of the delta function in the dipole field previously given in the literature is perhaps misleading and may require clarification. Both the explanation of and the resolution to this ‘paradox’ should be accessible to someone who has taken a graduate- or advanced undergraduate-level course in classical electrodynamics.

  4. New ideally absorbing Au plasmonic nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zakomirnyi, Vadim I.; Rasskazov, Ilia L.; Karpov, Sergey V.; Polyutov, Sergey P.

    2017-01-01

    In this paper a new set of plasmonic nanostructures operating at the conditions of an ideal absorption (Grigoriev et al., 2015 [1]) was proposed for novel biomedical applications. We consider spherical x/Au nanoshells and Au/x/Au nanomatryoshkas, where 'x' changes from conventional Si and SiO2 to alternative plasmonic materials (Naik and Shalaev, 2013 [2]), such as zinc oxide doped with aluminum, gallium and indium tin oxide. The absorption peak of proposed nanostructures lies within 700-1100 nm wavelength region and corresponds to the maximal optical transparency of hemoglobin and melanin as well as to the radiation frequency of available pulsed medical lasers. It was shown that the ideal absorption takes place in a given wavelength region for Au coatings with thickness less than 12 nm. In this case finite quantum size effects for metallic nanoshells play a significant role. The mathematical model for the search of the ideal absorption conditions was modified by taking into account the finite quantum size effects.

  5. An Ideal Observer Analysis of Visual Working Memory

    PubMed Central

    Sims, Chris R.; Jacobs, Robert A.; Knill, David C.

    2013-01-01

    Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744

  6. Atom Recombination on Surface

    NASA Astrophysics Data System (ADS)

    Kim, Young Chai

    Upon high speed re-entry of the Space Shuttle Orbiter (SSO) through the earth's atmosphere, oxygen and nitrogen atoms produced in the shock wave in front of the SSO recombine on the surface of the SSO, releasing heat. To minimize the rise of surface temperature due to the reaction, surface material of the SSO should have a low recombination probability, gamma, of atoms impinging on it. To design such material, it is necessary to understand the mechanism of atom recombination. With this in mind, gamma values were measured for recombination of O, N, and H atoms in a diffusion tube reactor between 700 and 1250 K (HT), 300 and 700 K (MT), and at 194 K (LT) on silica. The rate of recombination was first order with respect to the atom concentration from LT to HT. The Arrhenius plots, gamma vs. 1/T, were very complex. All observations are explained by assuming a surface with a small fraction of active sites that irreversibly bind chemisorbed atoms. Everything happens as if the active sites were surrounded by collection zones within which all atoms striking the surface are adsorbed reversibly with an assumed sticking probability of unity. These atoms then diffuse on the surface. Some of them reach the active sites where they can recombine with the chemisorbed atoms. At LT, all atoms striking the surface reach the active sites. As a result of desorption at MT, the collection zones shrink with increasing temperature. At HT, only atoms striking active sites directly from the gas phase lead to recombination. An analytical solution of the diffusion-reaction problem obtained for a model where the active sites are distributed uniformly fits with the experimental data from LT to HT. The two novel features of this work are the identification of the active sites on silica for recombination of H on silica at HT as surface OH groups and the suggestion that another kind of active site is responsible for recombination of O and N atoms at HT as well as for H atoms at LT and MT. Although

  7. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  8. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  9. The young centre of the Earth

    NASA Astrophysics Data System (ADS)

    Uggerhøj, U. I.; Mikkelsen, R. E.; Faye, J.

    2016-05-01

    We treat, as an illustrative example of gravitational time dilation in relativity, the observation that the centre of the Earth is younger than the surface by an appreciable amount. Richard Feynman first made this insightful point and presented an estimate of the size of the effect in a talk; a transcription was later published in which the time difference is quoted as ‘one or two days’. However, a back-of-the-envelope calculation shows that the result is in fact a few years. In this paper we present this estimate alongside a more elaborate analysis yielding a difference of two and a half years. The aim is to provide a fairly complete solution to the relativity of the ‘aging’ of an object due to differences in the gravitational potential. This solution—accessible at the undergraduate level—can be used for educational purposes, as an example in the classroom. Finally, we also briefly discuss why exchanging ‘years’ for ‘days’—which in retrospect is a quite simple, but significant, mistake—has been repeated seemingly uncritically, albeit in a few cases only. The pedagogical value of this discussion is to show students that any number or observation, no matter who brought it forward, must be critically examined.

  10. The Charles Perkins Centre's Twins Research Node.

    PubMed

    Ferreira, Lucas C; Craig, Jeffrey M; Hopper, John L; Carrick, Susan E

    2016-08-01

    Twins can help researchers disentangle the roles of genes from those of the environment on human traits, health, and diseases. To realize this potential, the Australian Twin Registry (ATR), University of Melbourne, and the Charles Perkins Centre (CPC), University of Sydney, established a collaboration to form the Twins Research Node, a highly interconnected research facility dedicated specifically to research involving twins. This collaboration aims to foster the adoption of twin designs as important tools for research in a range of health-related domains. The CPC hosted their Twins Research Node's launch seminar entitled 'Double the power of your research with twin studies', in which experienced twin researchers described how twin studies are supporting scientific discoveries and careers. The launch also featured twin pairs who have actively participated in research through the ATR. Researchers at the CPC were surveyed before the event to gauge their level of understanding and interest in utilizing twin research. This article describes the new Twins Research Node, discusses the survey's main results and reports on the launch seminar.

  11. Radio polarimetry of Galactic Centre pulsars

    NASA Astrophysics Data System (ADS)

    Schnitzeler, D. H. F. M.; Eatough, R. P.; Ferrière, K.; Kramer, M.; Lee, K. J.; Noutsos, A.; Shannon, R. M.

    2016-07-01

    To study the strength and structure of the magnetic field in the Galactic Centre (GC), we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A⋆. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ˜ 16 and 33 μG; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (˜12°). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsars. If these pulsars lie behind the Radio Arc or G0.11-0.11 then this proves that low-scattering corridors with lengths ≳100 pc must exist in the GC. This also suggests that future, sensitive observations will be able to detect additional pulsars in the GC. Finally, we show that the GC component in our most accurate electron density model oversimplifies structure in the GC.

  12. Environmental Studies at the Guiana Space Centre

    NASA Astrophysics Data System (ADS)

    Richard, Sandrine

    2013-09-01

    The Environmental Commitment of the French Space Agency at the Guiana Space Centre (CNES / CSG) specifies that the environmental protection is a major stake. Consequently, CNES participates in numerous space programs that contribute significantly to a better knowledge, management and protection of our environment at a global scale.The studies and researches that are done at CNES / CSG meet several objectives:* Assessment of safety and environmental effects and risk related to the effects overflowing due to a pollution caused by ground and flight activities* Improvement of the studies related to the knowledge of the environment (flora and fauna monitoring).* Risk assessment and management which may affect the safety of people , property, and protection of public health and environment * Verification of the compliance of the results of impact studies of launch vehicle in flight phase provided by the launch operator (Technical Regulation) with the French Safety Operational Acts.In this note, study and research programs are presented. They allow a better knowledge of the surrounding environment and of impacts caused by the industrial activities done in Guiana Space Center.

  13. Transitional and Transformational Spaces: Mentoring Young Academics through Writing Centres

    ERIC Educational Resources Information Center

    Archer, Arlene; Parker, Shabnam

    2016-01-01

    The effectiveness of writing centre interventions on student writing in higher education has been well-documented in academic literacies studies. This paper changes the focus of investigation from student to consultant and, consequently, explores the way in which an academic writing centre can function as a mentoring environment for young…

  14. Research Informed Science Enrichment Programs at the Gravity Discovery Centre

    ERIC Educational Resources Information Center

    Venville, Grady; Blair, David; Coward, David; Deshon, Fred; Gargano, Mark; Gondwe, Mzamose; Heary, Auriol; Longnecker, Nancy; Pitts, Marina; Zadnik, Marjan

    2012-01-01

    Excursions to museums and science centres generally are great fun for students and teachers. The potential educational benefits beyond enjoyment, however, are rarely realised or analysed for their efficacy. The purpose of this paper is to describe four educational enrichment programs delivered at the Gravity Discovery Centre (GDC), near Gingin,…

  15. Is "Object-Centred Neglect" a Homogeneous Entity?

    ERIC Educational Resources Information Center

    Gainotti, Guido; Ciaraffa, Francesca

    2013-01-01

    The nature of object-centred (allocentric) neglect and the possibility of dissociating it from egocentric (subject-centred) forms of neglect are controversial. Originally, allocentric neglect was described by and in patients who reproduced all the elements of a multi-object scene, but left unfinished the left side of one or more of them. More…

  16. Girls' Groups and Boys' Groups at a Municipal Technology Centre

    ERIC Educational Resources Information Center

    Salminen-Karlsson, Minna

    2007-01-01

    This article describes the Swedish initiative of municipal technology centres from a gender point of view. These centres provide after-school technology education for children aged 6-16. By means of an ethnographic study, the effects of the use of single-sex groups in increasing the interest of girls and boys in technical activities have been…

  17. Family-Centred Practice: Collaboration, Competency and Evidence

    ERIC Educational Resources Information Center

    Espe-Sherwindt, Marilyn

    2008-01-01

    In the 1990s, the developing field of early intervention with young children with disabilities and their families adopted family-centred practice as its philosophical foundation. Family-centred practice includes three key elements: (1) an emphasis on strengths, not deficits; (2) promoting family choice and control over desired resources; and (3)…

  18. Problems and Prospects of Education Resource Centres in Nigeria

    ERIC Educational Resources Information Center

    Ekanem, Johnson Efiong

    2015-01-01

    Nigeria has good policies on Education and one of such policies is the establishment of Education Resource Centres in every State of the Federation, including the Federal Capital Territory, Abuja. The need is clearly articulated in the National Policy on Education. Despite the lofty plan, most of the centres are not fulfilling the need for their…

  19. Science Centres: A Resource for School and Community

    ERIC Educational Resources Information Center

    Pilo, Miranda; Mantero, Alfonso; Marasco, Antonella

    2011-01-01

    We present a science centre established in Genoa on an agreement between Municipality of Genoa and Department of Physics of University of Genoa. The aim is to offer children, young people and community an opportunity to approach science in a playful way. The centre staffs guide the visitors through the exhibits, attracting their interests towards…

  20. Design Considerations for an Intensive Autism Treatment Centre

    ERIC Educational Resources Information Center

    Deochand, Neil; Conway, Alissa A.; Fuqua, R. Wayne

    2015-01-01

    Individuals with autistic spectrum disorder (ASD) who display severe and challenging behaviour sometimes require centre-based intensive applied behaviour analysis (ABA) therapy to meet their health, safety and educational needs. Unfortunately, despite the need for centre-based treatment, there is a paucity of empirical research on building and…

  1. Investigating Teachers' Views of Student-Centred Learning Approach

    ERIC Educational Resources Information Center

    Seng, Ernest Lim Kok

    2014-01-01

    Conventional learning is based on low levels of students' participation where students are rarely expected to ask questions or to challenge the theories of the academic. A paradigm shift in curriculum has resulted in implementing student-centred learning (SCL) approach, putting students as the centre of the learning process. This mode of…

  2. Low-Income Parents' Adult Interactions at Childcare Centres

    ERIC Educational Resources Information Center

    Reid, Jeanne L.; Martin, Anne; Brooks-Gunn, Jeanne

    2017-01-01

    Little is known about the extent and nature of low-income parents' interactions with other parents and staff at childcare centres, despite the potential for these interactions to provide emotional, informational, and instrumental support. This study interviewed 51 parents at three childcare centres in low-income neighbourhoods in New York City.…

  3. A Comprehensive Placement Test Tool for Language Centres

    ERIC Educational Resources Information Center

    Jaime Pastor, Asuncion; Perez Guillot, Cristina; Candel-Mora, Miguel A.

    2012-01-01

    One of the main problems relating to language courses offered at language centres is measuring the students' entry-level skills in a fast, efficient and reliable way. This problem is particularly acute in language centres with large numbers of students, especially at the beginning of the academic year, as a mechanism has to be implemented which…

  4. Leading an Effective Improvement and Development Programme for Children's Centres

    ERIC Educational Resources Information Center

    Weston, Gill; Tyler, Mary

    2015-01-01

    This article reviews the process and achievements of leadership of an improvement and development programme for children's centres in the context of public value and Ofsted inspection. It analyses how the capacity has been developed of children's centre managers to work more strategically and collectively. Distributed leadership theory is applied…

  5. Evaluation of the Training Centre Infrastructure Fund (TCIF). Final Report

    ERIC Educational Resources Information Center

    Human Resources and Skills Development Canada, 2009

    2009-01-01

    The Training Centre Infrastructure Fund (TCIF) was initially announced in Budget 2004 and represented an immediate measure of the broader Workplace Skills Strategy. TCIF was a three-year $25 million pilot project, designed to address the growing need for union-employer training centres to replace aging equipment and simulators that were not up to…

  6. Centre Computer Base for Visually Handicapped Children, Students and Adults.

    ERIC Educational Resources Information Center

    Spencer, S.; And Others

    1987-01-01

    The Centre Computer Base is a list of hardware which can effectively operate the software of the Research Centre for the Education of the Visually Handicapped. Essential hardware contained on the list is described, along with a variety of "add-on" devices such as joysticks, touch-screens, speech synthesizers, braille embossers, etc.…

  7. Examination and Evaluation of Websites of Science Centres in Turkey

    ERIC Educational Resources Information Center

    Bozdogan, Aykut Emre; Bozdogan, Kerem

    2016-01-01

    Science centres which have a considerable importance and functions in developed countries are intended to be popularized in Turkey. At this point considering the fact that the first contact between science centres and visitors is usually provided with websites, it is quite important that the content of these websites should be designed and…

  8. Reducing cooling energy consumption in data centres and critical facilities

    NASA Astrophysics Data System (ADS)

    Cross, Gareth

    Given the rise of our everyday reliance on computers in all walks of life, from checking the train times to paying our credit card bills online, the need for computational power is ever increasing. Other than the ever-increasing performance of home Personal Computers (PC's) this reliance has given rise to a new phenomenon in the last 10 years ago. The data centre. Data centres contain vast arrays of IT cabinets loaded with servers that perform millions of computational equations every second. It is these data centres that allow us to continue with our reliance on the internet and the PC. As more and more data centres become necessary due to the increase in computing processing power required for the everyday activities we all take for granted so the energy consumed by these data centres rises. Not only are more and more data centres being constructed daily, but operators are also looking at ways to squeeze more processing from their existing data centres. This in turn leads to greater heat outputs and therefore requires more cooling. Cooling data centres requires a sizeable energy input, indeed to many megawatts per data centre site. Given the large amounts of money dependant on the successful operation of data centres, in particular for data centres operated by financial institutions, the onus is predominantly on ensuring the data centres operate with no technical glitches rather than in an energy conscious fashion. This report aims to investigate the ways and means of reducing energy consumption within data centres without compromising the technology the data centres are designed to house. As well as discussing the individual merits of the technologies and their implementation technical calculations will be undertaken where necessary to determine the levels of energy saving, if any, from each proposal. To enable comparison between each proposal any design calculations within this report will be undertaken against a notional data facility. This data facility will

  9. Stromal networking: cellular connections in the germinal centre.

    PubMed

    Denton, Alice E; Linterman, Michelle A

    2017-03-17

    Secondary lymphoid organs are organized into distinct zones, governed by different types of mesenchymal stromal cells. These stromal cell subsets are critical for the generation of protective humoral immunity because they direct the migration of, and interaction between, multiple immune cell types to form the germinal centre. The germinal centre response generates long-lived antibody-secreting plasma cells and memory B cells which can provide long-term protection against re-infection. Stromal cell subsets mediate this response through control of immune cell trafficking, activation, localization and antigen access within the secondary lymphoid organ. Further, distinct populations of stromal cells underpin the delicate spatial organization of immune cells within the germinal centre. Because of this, the interactions between immune cells and stromal cells in secondary lymphoid organs are fundamental to the germinal centre response. Herein we review how this unique relationship leads to effective germinal centre responses.

  10. Electromagnetically Induced Grating via Coherently Driven Four-Level Atoms in a N-Type Configuration

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Li, Jia-Yu; Liu, Ming

    2015-03-01

    We propose a scheme to generate an electromagnetically induced grating via coherently driven four-level atoms in a N-type configuration in the presence of a standing signal field, a coupling field and a probe field. We show that a nearly ideal phase grating can be realized by adjusting the frequency detuning of signal field, the interaction length of atomic medium, and the ratio of the intensity between the signal field and the coupling field. The first-order diffraction efficiency of the grating is about 29.9 %, which is close to that of an ideal sinusoidal phase grating.

  11. The perioperative surgical home: An innovative, patient-centred and cost-effective perioperative care model.

    PubMed

    Desebbe, Olivier; Lanz, Thomas; Kain, Zeev; Cannesson, Maxime

    2016-02-01

    Contrary to the intraoperative period, the current perioperative environment is known to be fragmented and expensive. One of the potential solutions to this problem is the newly proposed perioperative surgical home (PSH) model of care. The PSH is a patient-centred micro healthcare system, which begins at the time the decision for surgery is made, is continuous through the perioperative period and concludes 30 days after discharge from the hospital. The model is based on multidisciplinary involvement: coordination of care, consistent application of best evidence/best practice protocols, full transparency with continuous monitoring and reporting of safety, quality, and cost data to optimize and decrease variation in care practices. To reduce said variation in care, the entire continuum of the perioperative process must evolve into a unique care environment handled by one perioperative team and coordinated by a leader. Anaesthesiologists are ideally positioned to lead this new model and thus significantly contribute to the highest standards in transitional medicine. The unique characteristics that place Anaesthesiologists in this framework include their systematic role in hospitals (as coordinators between patients/medical staff and institutions), the culture of safety and health care metrics innate to the specialty, and a significant role in the preoperative evaluation and counselling process, making them ideal leaders in perioperative medicine.

  12. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic Electric Company... Power Company (Maine Yankee), Connecticut Yankee Atomic Power Company (Connecticut Yankee), and the Yankee Atomic Electric Company (Yankee Atomic) (together, ``licensees'' or ``the Yankee Companies'')...

  13. Many-body physics using cold atoms

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh

    Advances in experiments on dilute ultracold atomic gases have given us access to highly tunable quantum systems. In particular, there have been substantial improvements in achieving different kinds of interaction between atoms. As a result, utracold atomic gases oer an ideal platform to simulate many-body phenomena in condensed matter physics, and engineer other novel phenomena that are a result of the exotic interactions produced between atoms. In this dissertation, I present a series of studies that explore the physics of dilute ultracold atomic gases in different settings. In each setting, I explore a different form of the inter-particle interaction. Motivated by experiments which induce artificial spin-orbit coupling for cold fermions, I explore this system in my first project. In this project, I propose a method to perform universal quantum computation using the excitations of interacting spin-orbit coupled fermions, in which effective p-wave interactions lead to the formation of a topological superfluid. Motivated by experiments which explore the physics of exotic interactions between atoms trapped inside optical cavities, I explore this system in a second project. I calculate the phase diagram of lattice bosons trapped in an optical cavity, where the cavity modes mediates effective global range checkerboard interactions between the atoms. I compare this phase diagram with one that was recently measured experimentally. In two other projects, I explore quantum simulation of condensed matter phenomena due to spin-dependent interactions between particles. I propose a method to produce tunable spin-dependent interactions between atoms, using an optical Feshbach resonance. In one project, I use these spin-dependent interactions in an ultracold Bose-Fermi system, and propose a method to produce the Kondo model. I propose an experiment to directly observe the Kondo effect in this system. In another project, I propose using lattice bosons with a large hyperfine spin

  14. First principles study of the C/Si ratio effect on the ideal shear strength of β-SiC

    NASA Astrophysics Data System (ADS)

    Su, Wen; Li, Yingying; Nie, Chu; Xiao, Wei; Yan, Liqin

    2016-07-01

    The effect of the C/Si atomic ratio on the ideal shear strength of β-SiC is investigated with first principles calculations. β -SiC samples with different C/Si ratios are generated by Monte Carlo (MC) simulations with empirical inter-atomic SiC potential. Each SiC sample is sheared along the < 100> direction and the stress-strain curve is calculated from first principles. The results show that the ideal shear strength of SiC decreases with the increase of C/Si ratio. For a non-stoichiometric SiC sample, a C-C bond inside a large carbon cluster breaks first under shear strain condition due to the internal strain around the carbon clusters. Because the band gap is narrowed under shear strain conditions, a local maximum stress appears in the elastic region of the stress-strain curve for each SiC sample at certain strain condition. The yield strength may increase with the increase of C/Si ratio.

  15. Change of Energy of the Cubic Subnanocluster of Iron Under Influence of Interstitial and Substitutional Atoms.

    PubMed

    Nedolya, Anatoliy V; Bondarenko, Natalya V

    2016-12-01

    Energy change of an iron face-centred cubic subnanocluster was evaluated using molecular mechanics method depending on the position of a carbon interstitial atom and substitutional atoms of nickel. Calculations of all possible positions of impurity atoms show that the energy change of the system are discrete and at certain positions of the atoms are close to continuous.In terms of energy, when all impurity atoms are on the same edge of an atomic cluster, their positions are more advantageous. The presence of nickel atoms on the edge of a cubic cluster resulted in decrease of potential barrier for a carbon atom and decrease in energy in the whole cluster. A similar drift of a carbon atom from central octahedral interstitial site to the surface in the direction <011> occurred under the influence of surface factors.Such configuration corresponds to decreasing symmetry and increasing the number of possible energy states of a subnanocluster, and it corresponds to the condition of spontaneous crystallization process in an isolated system.Taking into account accidental positions of the nickel atom in the iron cluster, such behaviour of the carbon atom can explain the mechanism of growth of a new phase and formation of new clusters in the presence of other kind of atoms because of surface influence.

  16. Epitaxy: Programmable Atom Equivalents Versus Atoms.

    PubMed

    Wang, Mary X; Seo, Soyoung E; Gabrys, Paul A; Fleischman, Dagny; Lee, Byeongdu; Kim, Youngeun; Atwater, Harry A; Macfarlane, Robert J; Mirkin, Chad A

    2017-01-24

    The programmability of DNA makes it an attractive structure-directing ligand for the assembly of nanoparticle (NP) superlattices in a manner that mimics many aspects of atomic crystallization. However, the synthesis of multilayer single crystals of defined size remains a challenge. Though previous studies considered lattice mismatch as the major limiting factor for multilayer assembly, thin film growth depends on many interlinked variables. Here, a more comprehensive approach is taken to study fundamental elements, such as the growth temperature and the thermodynamics of interfacial energetics, to achieve epitaxial growth of NP thin films. Both surface morphology and internal thin film structure are examined to provide an understanding of particle attachment and reorganization during growth. Under equilibrium conditions, single crystalline, multilayer thin films can be synthesized over 500 × 500 μm(2) areas on lithographically patterned templates, whereas deposition under kinetic conditions leads to the rapid growth of glassy films. Importantly, these superlattices follow the same patterns of crystal growth demonstrated in atomic thin film deposition, allowing these processes to be understood in the context of well-studied atomic epitaxy and enabling a nanoscale model to study fundamental crystallization processes. Through understanding the role of epitaxy as a driving force for NP assembly, we are able to realize 3D architectures of arbitrary domain geometry and size.

  17. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  18. Atomic and molecular supernovae

    NASA Technical Reports Server (NTRS)

    Liu, Weihong

    1997-01-01

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  19. Rediscovering the Teacher within Indian Child-Centred Pedagogy: Implications for the Global Child-Centred Approach

    ERIC Educational Resources Information Center

    Smail, Amy

    2014-01-01

    The Child-Centred Approach (CCA) is increasingly promoted within India and internationally as a response to the challenge of delivering quality education. From identifying and examining Indian indigenous and global concepts of CCA within traditional and contemporary child-centred pedagogic discourse, this paper reveals the complexities of…

  20. Direct comparison of 3-centre and 4-centre HBr elimination pathways in methyl-substituted vinyl bromides.

    PubMed

    Pandit, Shubhrangshu; Hornung, Balázs; Orr-Ewing, Andrew J

    2016-10-12

    Elimination of HBr from UV-photoexcited vinyl bromides can occur through both 3-centre and 4-centre transition states (TSs). The competition between these pathways is examined using velocity map imaging of HBr (v = 0-2, J) photofragments. The three vinyl bromides chosen for study have methyl substituents that block either the 3-centre or the 4-centre TS, or leave both pathways open. The kinetic energy distributions extracted from velocity map images of HBr from 193 nm photolysis of the three vinyl bromide compounds are approximately described by a statistical model of energy disposal among the degrees of freedom of the photoproducts, and are attributed to dissociation on the lowest electronic state of the molecule after internal conversion. Dissociation via the 4-centre TS gives greater average kinetic energy release than for the 3-centre TS pathway. The resonance enhanced multi-photon ionization (REMPI) schemes used to detect HBr restrict measurements to J ≤ 7 for v = 2 and J ≤ 15 for v = 0. Within this spectroscopic range, the HBr rotational temperature is colder for the 4-centre than for the 3-centre elimination pathway. Calculations of the intrinsic reaction coordinates and RRKM calculations of HBr elimination rate coefficients provide mechanistic insights into the competition between the pathways.