Sample records for ideal experimental model

  1. Esophageal aerodynamics in an idealized experimental model of tracheoesophageal speech

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Hemsing, Frank S.

    2016-03-01

    Flow behavior is investigated in the esophageal tract in an idealized experimental model of tracheoesophageal speech. The tracheoesophageal prosthesis is idealized as a first-order approximation using a straight, constant diameter tube. The flow is scaled according to Reynolds, Strouhal, and Euler numbers to ensure dynamic similarity. Flow pulsatility is produced by a driven orifice that approximates the kinematics of the pharyngoesophageal segment during tracheoesophageal speech. Particle image velocimetry data are acquired in three orthogonal planes as the flow exits the model prosthesis and enters the esophageal tract. Contrary to prior investigations performed in steady flow with the prosthesis oriented in-line with the flow direction, the fluid dynamics are shown to be highly unsteady, suggesting that the esophageal pressure field will be similarly complex. A large vortex ring is formed at the inception of each phonatory cycle, followed by the formation of a persistent jet. This vortex ring appears to remain throughout the entire cycle due to the continued production of vorticity resulting from entrainment between the prosthesis jet and the curved esophageal walls. Mean flow in the axial direction of the esophagus produces significant stretching of the vortex throughout the phonatory cycle. The stagnation point created by the jet impinging on the esophageal wall varies throughout the cycle due to fluctuations in the jet trajectory, which most likely arises due to flow separation within the model prosthesis. Applications to tracheoesophageal speech, including shortcomings of the model and proposed future plans, are discussed.

  2. Experimental characterization of powered Fontan hemodynamics in an idealized total cavopulmonary connection model

    NASA Astrophysics Data System (ADS)

    Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun

    2013-08-01

    A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.

  3. Kinetic modeling of non-ideal explosives with CHEETAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L E; Howard, W M; Souers, P C

    1998-08-06

    We report an implementation of the Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions. Other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. We find that we can replicate experimental detonation velocities to within a few per cent, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  4. A moral house divided: How idealized family models impact political cognition.

    PubMed

    Feinberg, Matthew; Wehling, Elisabeth

    2018-01-01

    People's political attitudes tend to fall into two groups: progressive and conservative. Moral Politics Theory asserts that this ideological divide is the product of two contrasting moral worldviews, which are conceptually anchored in individuals' cognitive models about ideal parenting and family life. These models, here labeled the strict and nurturant models, serve as conceptual templates for how society should function, and dictate whether one will endorse more conservative or progressive positions. According to Moral Politics Theory, individuals map their parenting ideals onto the societal domain by engaging the nation-as-family metaphor, which facilitates reasoning about the abstract social world (the nation) in terms of more concrete world experience (family life). In the present research, we conduct an empirical examination of these core assertions of Moral Politics Theory. In Studies 1-3, we experimentally test whether family ideals directly map onto political attitudes while ruling out alternative explanations. In Studies 4-5, we use both correlational and experimental methods to examine the nation-as-family metaphor's role in facilitating the translation of family beliefs into societal beliefs and, ultimately, political attitudes. Overall, we found consistent support for Moral Politics Theory's assertions that family ideals directly impact political judgment, and that the nation-as-family metaphor serves a mediating role in this phenomenon.

  5. A moral house divided: How idealized family models impact political cognition

    PubMed Central

    Feinberg, Matthew; Wehling, Elisabeth

    2018-01-01

    People’s political attitudes tend to fall into two groups: progressive and conservative. Moral Politics Theory asserts that this ideological divide is the product of two contrasting moral worldviews, which are conceptually anchored in individuals’ cognitive models about ideal parenting and family life. These models, here labeled the strict and nurturant models, serve as conceptual templates for how society should function, and dictate whether one will endorse more conservative or progressive positions. According to Moral Politics Theory, individuals map their parenting ideals onto the societal domain by engaging the nation-as-family metaphor, which facilitates reasoning about the abstract social world (the nation) in terms of more concrete world experience (family life). In the present research, we conduct an empirical examination of these core assertions of Moral Politics Theory. In Studies 1–3, we experimentally test whether family ideals directly map onto political attitudes while ruling out alternative explanations. In Studies 4–5, we use both correlational and experimental methods to examine the nation-as-family metaphor’s role in facilitating the translation of family beliefs into societal beliefs and, ultimately, political attitudes. Overall, we found consistent support for Moral Politics Theory’s assertions that family ideals directly impact political judgment, and that the nation-as-family metaphor serves a mediating role in this phenomenon. PMID:29641618

  6. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  7. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  8. Numerical modelling of underwater detonation of non-ideal condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikolaos

    2015-01-01

    The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.

  9. Experimental Verification of Boyle's Law and the Ideal Gas Law

    ERIC Educational Resources Information Center

    Ivanov, Dragia Trifonov

    2007-01-01

    Two new experiments are offered concerning the experimental verification of Boyle's law and the ideal gas law. To carry out the experiments, glass tubes, water, a syringe and a metal manometer are used. The pressure of the saturated water vapour is taken into consideration. For educational purposes, the experiments are characterized by their…

  10. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. [RESEARCH PROGRESS OF EXPERIMENTAL ANIMAL MODELS OF AVASCULAR NECROSIS OF FEMORAL HEAD].

    PubMed

    Yu, Kaifu; Tan, Hongbo; Xu, Yongqing

    2015-12-01

    To summarize the current researches and progress on experimental animal models of avascular necrosis of the femoral head. Domestic and internation literature concerning experimental animal models of avascular necrosis of the femoral head was reviewed and analyzed. The methods to prepare the experimental animal models of avascular necrosis of the femoral head can be mainly concluded as traumatic methods (including surgical, physical, and chemical insult), and non-traumatic methods (including steroid, lipopolysaccharide, steroid combined with lipopolysaccharide, steroid combined with horse serum, etc). Each method has both merits and demerits, yet no ideal methods have been developed. There are many methods to prepare the experimental animal models of avascular necrosis of the femoral head, but proper model should be selected based on the aim of research. The establishment of ideal experimental animal models needs further research in future.

  12. A Generalized Deduction of the Ideal-Solution Model

    ERIC Educational Resources Information Center

    Leo, Teresa J.; Perez-del-Notario, Pedro; Raso, Miguel A.

    2006-01-01

    A new general procedure for deriving the Gibbs energy of mixing is developed through general thermodynamic considerations, and the ideal-solution model is obtained as a special particular case of the general one. The deduction of the Gibbs energy of mixing for the ideal-solution model is a rational one and viewed suitable for advanced students who…

  13. Fitting measurement models to vocational interest data: are dominance models ideal?

    PubMed

    Tay, Louis; Drasgow, Fritz; Rounds, James; Williams, Bruce A

    2009-09-01

    In this study, the authors examined the item response process underlying 3 vocational interest inventories: the Occupational Preference Inventory (C.-P. Deng, P. I. Armstrong, & J. Rounds, 2007), the Interest Profiler (J. Rounds, T. Smith, L. Hubert, P. Lewis, & D. Rivkin, 1999; J. Rounds, C. M. Walker, et al., 1999), and the Interest Finder (J. E. Wall & H. E. Baker, 1997; J. E. Wall, L. L. Wise, & H. E. Baker, 1996). Item response theory (IRT) dominance models, such as the 2-parameter and 3-parameter logistic models, assume that item response functions (IRFs) are monotonically increasing as the latent trait increases. In contrast, IRT ideal point models, such as the generalized graded unfolding model, have IRFs that peak where the latent trait matches the item. Ideal point models are expected to fit better because vocational interest inventories ask about typical behavior, as opposed to requiring maximal performance. Results show that across all 3 interest inventories, the ideal point model provided better descriptions of the response process. The importance of specifying the correct item response model for precise measurement is discussed. In particular, scores computed by a dominance model were shown to be sometimes illogical: individuals endorsing mostly realistic or mostly social items were given similar scores, whereas scores based on an ideal point model were sensitive to which type of items respondents endorsed.

  14. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  15. Sharp Truncation of an Electric Field: An Idealized Model that Warrants Caution

    NASA Astrophysics Data System (ADS)

    Tu, Hong; Zhu, Jiongming

    2016-03-01

    In physics, idealized models are often used to simplify complex situations. The motivation of the idealization is to make the real complex system tractable by adopting certain simplifications. In this treatment some unnecessary, negligible aspects are stripped away (so-called Aristotelian idealization), or some deliberate distortions are involved (so-called Galilean idealization). The most important principle in using an idealized model is to make sure that all the neglected aspects do not affect our analysis or result. Point charges, rigid bodies, simple pendulums, frictionless planes, and isolated systems are all frequently used idealized models. However, when they are applied to certain uncommon models, extra precautions should be taken. The possibilities and necessities of adopting the idealizations have to be considered carefully. Sometimes some factors neglected or ignored in the idealization could completely change the result, even make the treatment unphysical and conclusions unscientific.

  16. Media effects of experimental presentation of the ideal physique on eating disorder symptoms: a meta-analysis of laboratory studies.

    PubMed

    Hausenblas, Heather A; Campbell, Anna; Menzel, Jessie E; Doughty, Jessica; Levine, Michael; Thompson, J Kevin

    2013-02-01

    Older meta-analyses of the effects of the media's portrayal of the ideal physique have found small effects revealing that exposure to the ideal physique increases body image concerns. These meta-analyses also included correlational, quasi-experimental, and experimental studies, with limited examination of moderators and other relevant outcomes besides body image. We conducted a systematic literature search and identified 33 experimental (i.e., pre and post data for both experimental and control groups) laboratory studies examining the effects of acute exposure to the media's portrayal of the ideal physique on eating disorder symptoms (i.e., body image, positive affect, negative affect, self-esteem, anger, anxiety and depression) and the mechanisms that moderate this effect. Fourteen separate meta-analyses revealed a range of small to moderate effect sizes for change in outcomes from pre to post for both experimental and control groups. Exposure to images of the ideal physique resulted in small effect sizes for increased depression and anger and decreased self-esteem and positive affect. Moderator analyses revealed moderate effect sizes for increased depression and body dissatisfaction among high-risk participants. This meta-analysis makes it clear that media exposure of the ideal physique results in small changes in eating disorder symptoms, particularly with participants at high risk for developing an eating disorder. Further research is needed to examine the longitudinal effects of media exposure of eating disorder symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Ideal walking dynamics via a gauged NJL model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  18. Ideal walking dynamics via a gauged NJL model

    DOE PAGES

    Rantaharju, Jarno; Pica, Claudio; Sannino, Francesco

    2017-07-25

    According to the ideal walking technicolor paradigm, large mass anomalous dimensions arise in gauged Nambu–Jona-Lasinio (NJL) models when the four-fermion coupling is sufficiently strong to induce spontaneous symmetry breaking in an otherwise conformal gauge theory. Therefore, we study the SU(2) gauged NJL model with two adjoint fermions using lattice simulations. The model is in an infrared conformal phase at small NJL coupling while it displays a chirally broken phase at large NJL couplings. In the infrared conformal phase, we find that the mass anomalous dimension varies with the NJL coupling, reaching γm ~ 1 close to the chiral symmetry breakingmore » transition, de facto making the present model the first explicit realization of the ideal walking scenario.« less

  19. Model of superconductivity formation on ideal crystal lattice defect–twin or twin boundary (MSC-TB)

    NASA Astrophysics Data System (ADS)

    Chizhov, V. A.; Zaitsev, F. S.; Bychkov, V. L.

    2018-03-01

    The report provides a review of the experimental material on superconductivity (SP) accumulated by 2017, a critical analysis of the Bardeen-Cooper-Schrieffer theory (BCS) has been given, and a new model of the super-conductivity effect proposed in works of V.A. Chizhov has been presented. The new model allows to understand the mechanism of the SP formation and to explain many experimental facts on the basis of the theory of pro-cesses occurring in the ideal defect of the crystal lattice – the twinning boundary (MSC-TB). Specific materials, including new ones, are described, which, in accordance with the theory of MSC-TB, should have improved properties of SC, promising directions for further research are formulated.

  20. A Multidimensional Ideal Point Item Response Theory Model for Binary Data

    ERIC Educational Resources Information Center

    Maydeu-Olivares, Albert; Hernandez, Adolfo; McDonald, Roderick P.

    2006-01-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model…

  1. Analytical and Experimental Performance Evaluation of BLE Neighbor Discovery Process Including Non-Idealities of Real Chipsets

    PubMed Central

    Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio

    2017-01-01

    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage. PMID:28273801

  2. Analytical and Experimental Performance Evaluation of BLE Neighbor Discovery Process Including Non-Idealities of Real Chipsets.

    PubMed

    Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio

    2017-03-03

    The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.

  3. Effect of solution non-ideality on erythrocyte volume regulation.

    PubMed

    Levin, R L; Cravalho, E G; Huggins, C E

    1977-03-01

    A non-ideal, hydrated, non-dilute pseudo-binary salt-protein-water solution model of the erythrocyte intracellular solution is presented to describe the osmotic behavior of human erythrocytes. Existing experimental activity data for salts and proteins in aqueous solutions are used to formulate van Laar type expressions for the solvent and solute activity coefficients. Reasonable estimates can therefore be made of the non-ideality of the erythrocyte intracellular solution over a wide range of osmolalities. Solution non-ideality is shown to affect significantly the degree of solute polarization within the erythrocyte intracellular solution during freezing. However, the non-ideality has very little effect upon the amount of water retained within erythrocytes cooled at sub-zero temperatures.

  4. Sharp Truncation of an Electric Field: An Idealized Model That Warrants Caution

    ERIC Educational Resources Information Center

    Tu, Hong; Zhu, Jiongming

    2016-01-01

    In physics, idealized models are often used to simplify complex situations. The motivation of the idealization is to make the real complex system tractable by adopting certain simplifications. In this treatment some unnecessary, negligible aspects are stripped away (so-called Aristotelian idealization), or some deliberate distortions are involved…

  5. Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Fried, L; Glaesemann, K

    2006-06-20

    We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for speciesmore » coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.« less

  6. Generic Science Skills Enhancement of Students through Implementation of IDEAL Problem Solving Model on Genetic Information Course

    NASA Astrophysics Data System (ADS)

    Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.

    2018-04-01

    This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with of 20,93%. Based on result for each indicator, showed that there are indicators of generic science skills classified in the high category.

  7. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  8. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  9. Use, misuse and extensions of "ideal gas" models of animal encounter.

    PubMed

    Hutchinson, John M C; Waser, Peter M

    2007-08-01

    Biologists have repeatedly rediscovered classical models from physics predicting collision rates in an ideal gas. These models, and their two-dimensional analogues, have been used to predict rates and durations of encounters among animals or social groups that move randomly and independently, given population density, velocity, and distance at which an encounter occurs. They have helped to separate cases of mixed-species association based on behavioural attraction from those that simply reflect high population densities, and to detect cases of attraction or avoidance among conspecifics. They have been used to estimate the impact of population density, speeds of movement and size on rates of encounter between members of the opposite sex, between gametes, between predators and prey, and between observers and the individuals that they are counting. One limitation of published models has been that they predict rates of encounter, but give no means of determining whether observations differ significantly from predictions. Another uncertainty is the robustness of the predictions when animal movements deviate from the model's assumptions in specific, biologically relevant ways. Here, we review applications of the ideal gas model, derive extensions of the model to cover some more realistic movement patterns, correct several errors that have arisen in the literature, and show how to generate confidence limits for expected rates of encounter among independently moving individuals. We illustrate these results using data from mangabey monkeys originally used along with the ideal gas model to argue that groups avoid each other. Although agent-based simulations provide a more flexible alternative approach, the ideal gas model remains both a valuable null model and a useful, less onerous, approximation to biological reality.

  10. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships.

    PubMed

    Rodriguez, Lindsey M; Hadden, Benjamin W; Knee, C Raymond

    2015-03-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one's relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes.

  11. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships

    PubMed Central

    Rodriguez, Lindsey M.; Hadden, Benjamin W.; Knee, C. Raymond

    2015-01-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one’s relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes. PMID:25821396

  12. Idealness and similarity in goal-derived categories: a computational examination.

    PubMed

    Voorspoels, Wouter; Storms, Gert; Vanpaemel, Wolf

    2013-02-01

    The finding that the typicality gradient in goal-derived categories is mainly driven by ideals rather than by exemplar similarity has stood uncontested for nearly three decades. Due to the rather rigid earlier implementations of similarity, a key question has remained--that is, whether a more flexible approach to similarity would alter the conclusions. In the present study, we evaluated whether a similarity-based approach that allows for dimensional weighting could account for findings in goal-derived categories. To this end, we compared a computational model of exemplar similarity (the generalized context model; Nosofsky, Journal of Experimental Psychology. General 115:39-57, 1986) and a computational model of ideal representation (the ideal-dimension model; Voorspoels, Vanpaemel, & Storms, Psychonomic Bulletin & Review 18:1006-114, 2011) in their accounts of exemplar typicality in ten goal-derived categories. In terms of both goodness-of-fit and generalizability, we found strong evidence for an ideal approach in nearly all categories. We conclude that focusing on a limited set of features is necessary but not sufficient to account for the observed typicality gradient. A second aspect of ideal representations--that is, that extreme rather than common, central-tendency values drive typicality--seems to be crucial.

  13. Microeconomics of the ideal gas like market models

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.; Chakrabarti, Bikas K.

    2009-10-01

    We develop a framework based on microeconomic theory from which the ideal gas like market models can be addressed. A kinetic exchange model based on that framework is proposed and its distributional features have been studied by considering its moments. Next, we derive the moments of the CC model (Eur. Phys. J. B 17 (2000) 167) as well. Some precise solutions are obtained which conform with the solutions obtained earlier. Finally, an output market is introduced with global price determination in the model with some necessary modifications.

  14. Experimental Verification of Modeled Thermal Distribution Produced by a Piston Source in Physiotherapy Ultrasound

    PubMed Central

    Lopez-Haro, S. A.; Leija, L.

    2016-01-01

    Objectives. To present a quantitative comparison of thermal patterns produced by the piston-in-a-baffle approach with those generated by a physiotherapy ultrasonic device and to show the dependency among thermal patterns and acoustic intensity distributions. Methods. The finite element (FE) method was used to model an ideal acoustic field and the produced thermal pattern to be compared with the experimental acoustic and temperature distributions produced by a real ultrasonic applicator. A thermal model using the measured acoustic profile as input is also presented for comparison. Temperature measurements were carried out with thermocouples inserted in muscle phantom. The insertion place of thermocouples was monitored with ultrasound imaging. Results. Modeled and measured thermal profiles were compared within the first 10 cm of depth. The ideal acoustic field did not adequately represent the measured field having different temperature profiles (errors 10% to 20%). Experimental field was concentrated near the transducer producing a region with higher temperatures, while the modeled ideal temperature was linearly distributed along the depth. The error was reduced to 7% when introducing the measured acoustic field as the input variable in the FE temperature modeling. Conclusions. Temperature distributions are strongly related to the acoustic field distributions. PMID:27999801

  15. GCSS Idealized Cirrus Model Comparison Project

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GCSS Working Group on Cirrus Cloud Systems (WG2) is conducting a systematic comparison and evaluation of cirrus cloud models. This fundamental activity seeks to support the improvement of models used for climate simulation and numerical weather prediction through assessment and improvement of the "process" models underlying parametric treatments of cirrus cloud processes in large-scale models. The WG2 Idealized Cirrus Model Comparison Project is an initial comparison of cirrus cloud simulations by a variety of cloud models for a series of idealized situations with relatively simple initial conditions and forcing. The models (16) represent the state-of-the-art and include 3-dimensional large eddy simulation (LES) models, two-dimensional cloud resolving models (CRMs), and single column model (SCM) versions of GCMs. The model microphysical components are similarly varied, ranging from single-moment bulk (relative humidity) schemes to fully size-resolved (bin) treatments where ice crystal growth is explicitly calculated. Radiative processes are included in the physics package of each model. The baseline simulations include "warm" and "cold" cirrus cases where cloud top initially occurs at about -47C and -66C, respectively. All simulations are for nighttime conditions (no solar radiation) where the cloud is generated in an ice supersaturated layer, about 1 km in depth, with an ice pseudoadiabatic thermal stratification (neutral). Continuing cloud formation is forced via an imposed diabatic cooling representing a 3 cm/s uplift over a 4-hour time span followed by a 2-hour dissipation stage with no cooling. Variations of these baseline cases include no-radiation and stable-thermal-stratification cases. Preliminary results indicated the great importance of ice crystal fallout in determining even the gross cloud characteristics, such as average vertically-integrated ice water path (IWP). Significant inter-model differences were found. Ice water fall speed is directly

  16. A Multidimensional Ideal Point Item Response Theory Model for Binary Data.

    PubMed

    Maydeu-Olivares, Albert; Hernández, Adolfo; McDonald, Roderick P

    2006-12-01

    We introduce a multidimensional item response theory (IRT) model for binary data based on a proximity response mechanism. Under the model, a respondent at the mode of the item response function (IRF) endorses the item with probability one. The mode of the IRF is the ideal point, or in the multidimensional case, an ideal hyperplane. The model yields closed form expressions for the cell probabilities. We estimate and test the goodness of fit of the model using only information contained in the univariate and bivariate moments of the data. Also, we pit the new model against the multidimensional normal ogive model estimated using NOHARM in four applications involving (a) attitudes toward censorship, (b) satisfaction with life, (c) attitudes of morality and equality, and (d) political efficacy. The normal PDF model is not invariant to simple operations such as reverse scoring. Thus, when there is no natural category to be modeled, as in many personality applications, it should be fit separately with and without reverse scoring for comparisons.

  17. Experimental Oral Candidiasis in Animal Models

    PubMed Central

    Samaranayake, Yuthika H.; Samaranayake, Lakshman P.

    2001-01-01

    Oral candidiasis is as much the final outcome of the vulnerability of the host as of the virulence of the invading organism. We review here the extensive literature on animal experiments mainly appertaining to the host predisposing factors that initiate and perpetuate these infections. The monkey, rat, and mouse are the choice models for investigating oral candidiasis, but comparisons between the same or different models appear difficult, because of variables such as the study design, the number of animals used, their diet, the differences in Candida strains, and the duration of the studies. These variables notwithstanding, the following could be concluded. (i) The primate model is ideal for investigating Candida-associated denture stomatitis since both erythematous and pseudomembranous lesions have been produced in monkeys with prosthetic plates; they are, however, expensive and difficult to obtain and maintain. (ii) The rat model (both Sprague-Dawley and Wistar) is well proven for observing chronic oral candidal colonization and infection, due to the ease of breeding and handling and their ready availability. (iii) Mice are similar, but in addition there are well characterized variants simulating immunologic and genetic abnormalities (e.g., athymic, euthymic, murine-acquired immune deficiency syndrome, and severe combined immunodeficient models) and hence are used for short-term studies relating the host immune response and oral candidiasis. Nonetheless, an ideal, relatively inexpensive model representative of the human oral environment in ecological and microbiological terms is yet to be described. Until such a model is developed, researchers should pay attention to standardization of the experimental protocols described here to obtain broadly comparable and meaningful data. PMID:11292645

  18. The effect of priming materialism on women's responses to thin-ideal media.

    PubMed

    Ashikali, Eleni-Marina; Dittmar, Helga

    2012-12-01

    Consumer culture is characterized by two prominent ideals: the 'body perfect' and the material 'good life'. Although the impact of these ideals has been investigated in separate research literatures, no previous research has examined whether materialism is linked to women's responses to thin-ideal media. Data from several studies confirm that the internalization of materialistic and body-ideal values is positively linked in women. After developing a prime for materialism (N = 50), we present an experimental examination (N = 155) of the effects of priming materialism on women's responses to thin-ideal media, using multiple outcome measures of state body dissatisfaction. Priming materialism affects women's body dissatisfaction after exposure to thin media models, but differently depending on the dimension of body image measured. The two main novel findings are that (1) priming materialism heightens the centrality of appearance to women's self-concept and (2) priming materialism influences the activation of body-related self-discrepancies (BRSDs), particularly for highly materialistic women. Exposure to materialistic media has a clear influence on women's body image, with trait materialism a further vulnerability factor for negative exposure effects in response to idealized, thin media models. ©2011 The British Psychological Society.

  19. [The impact of exposure to images of ideally thin models on body dissatisfaction in young French and Italian women].

    PubMed

    Rodgers, R; Chabrol, H

    2009-06-01

    The thin-ideal of feminine beauty has a strong impact on body image and plays a central part in eating disorders. This ideal is widely promoted by the media images that flood western societies. Although the harmful effects of exposure to thin-ideal media images have been repeatedly demonstrated experimentally in English-speaking western countries, no such studies exist in southern Europe. There is evidence to suggest that the use of average-size models could reduce these negative effects. This study investigates body image amongst French and Italian students following exposure to media images of thin or average-size models, with a neutral or supportive slogan. The data were gathered in three locations: the psychology departments of the Universities of Padua, Italy, and Toulouse, France, and lastly high schools in the Toulouse area. A total of 299 girls took part in the study; their average age was 19.9 years old (S.D.=2.54) In order to investigate the effects of media images, we created three fake advertisements, allegedly promoting body-cream. The first advertisement displayed an ideally-thin model accompanied by a neutral slogan. In the second, the model was average-size with the same neutral slogan. The last advertisement also contained the average-size model, but with a supportive slogan designed to convey acceptance of deviations from the social norms of thinness. The participants first graded themselves on a VAS of body dissatisfaction (0 to 10). On the basis of this score, we created a first group containing girls reporting body dissatisfaction (VAS>or=5), the second with those reporting no body dissatisfaction (VAS<5). Participants were then randomly exposed to one of the three advertisements, after which they filled in the body dissatisfaction sub-scale of the Eating Disorders Inventory (EDI-2). The results showed that girls with initial body dissatisfaction reported higher body dissatisfaction after being exposed to images of ideally thin models than

  20. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  1. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations.

    PubMed

    Takeshita, Kazutaka; Kikuchi, Yoshitomo

    2017-04-01

    A number of insects establish symbiotic associations with beneficial microorganisms in various manners. The bean bug Riptortus pedestris and allied stink bugs possess an environmentally acquired Burkholderia symbiont in their midgut crypts. Unlike other insect endosymbionts, the Burkholderia symbiont is easily culturable and genetically manipulatable outside the host. In conjunction with the experimental advantages of the host insect, the Riptortus-Burkholderia symbiosis is an ideal model system for elucidating the molecular bases underpinning insect-microbe symbioses, which opens a new window in the research field of insect symbiosis. This review summarizes current knowledge of this system and discusses future perspectives. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet

    NASA Astrophysics Data System (ADS)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2017-11-01

    This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.

  3. The J-S model versus a non-ideal MHD theory

    NASA Astrophysics Data System (ADS)

    Franchi, Franca; Lazzari, Barbara; Nibbi, Roberta

    2015-07-01

    A new non-ideal electromagnetic interpretation of the J-S type viscoelastic model for polymeric fluids is given and a generalized resisto-elastic magnetohydrodynamic scenario for collisionless plasmas is proposed. The influence of the new theory on the incompressible transverse Alfvén waves is thoroughly investigated.

  4. Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.

    ERIC Educational Resources Information Center

    Chang, On-Kok

    1983-01-01

    A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)

  5. Experimental and Numerical Investigation of Adsorption/Desorption in Packed Sorption Beds Under Ideal and Non-Ideal Flows

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, H.; Knox, J. C.; Smith, James E.

    1999-01-01

    The importance of the wall effect on packed beds in the adsorption and desorption of carbon dioxide, nitrogen, and water on molecular sieve 5A of 0.127 cm in radius is examined experimentally and with one-dimensional computer simulations. Experimental results are presented for a 22.5-cm long by 4.5-cm diameter cylindrical column with concentration measurements taken at various radial locations. The set of partial differential equations are solved using finite differences and Newman's method. Comparison of test data with the axial-dispersed, non-isothermal, linear driving force model suggests that a two-dimensional model (submitted to Separation Science and Technology) is required for accurate simulation of the average column breakthrough concentration. Additional comparisons of test data with the model provided information on the interactive effects of carrier gas coadsorption with CO2, as well as CO2-H2O interactions.

  6. Performance analysis on free-piston Stirling cryocooler based on an idealized mathematical model

    NASA Astrophysics Data System (ADS)

    Guo, Y. X.; Chao, Y. J.; Gan, Z. H.; Li, S. Z.; Wang, B.

    2017-12-01

    Free-piston Stirling cryocoolers have extensive applications for its simplicity in structure and decrease in mass. However, the elimination of the motor and the crankshaft has made its thermodynamic characteristic different from that of Stirling cryocoolers with displacer driving mechanism. Therefore, an idealized mathematical model has been established, and with this model, an attempt has been made to analyse the thermodynamic characteristic and the performance of free-piston Stirling cryocooler. To certify this mathematical model, a comparison has been made between the model and a numerical model. This study reveals that due to the displacer damping force necessary for the production of cooling capacity, the free-piston Stirling cryocooler is inherently less efficient than Stirling cryocooler with displacer driving mechanism. Viscous flow resistance and incomplete heat transfer in the regenerator are the two major causes of the discrepancy between the results of the idealized mathematical model and the numerical model.

  7. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  8. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  9. Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of required coefficients.

    PubMed

    Zielinski, Michal W; McGann, Locksley E; Nychka, John A; Elliott, Janet A W

    2014-10-01

    Thermodynamic solution theories allow the prediction of chemical potentials in solutions of known composition. In cryobiology, such models are a critical component of many mathematical models that are used to simulate the biophysical processes occurring in cells and tissues during cryopreservation. A number of solution theories, both thermodynamically ideal and non-ideal, have been proposed for use with cryobiological solutions. In this work, we have evaluated two non-ideal solution theories for predicting water chemical potential (i.e. osmolality) in multi-solute solutions relevant to cryobiology: the Elliott et al. form of the multi-solute osmotic virial equation, and the Kleinhans and Mazur freezing point summation model. These two solution theories require fitting to only single-solute data, although they can make predictions in multi-solute solutions. The predictions of these non-ideal solution theories were compared to predictions made using ideal dilute assumptions and to available literature multi-solute experimental osmometric data. A single, consistent set of literature single-solute solution data was used to fit for the required solute-specific coefficients for each of the non-ideal models. Our results indicate that the two non-ideal solution theories have similar overall performance, and both give more accurate predictions than ideal models. These results can be used to select between the non-ideal models for a specific multi-solute solution, and the updated coefficients provided in this work can be used to make the desired predictions. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. IDENTIFICATION OF AN IDEAL REACTOR MODEL IN A SECONDARY COMBUSTION CHAMBER

    EPA Science Inventory

    Tracer analysis was applied to a secondary combustion chamber of a rotary kiln incinerator simulator to develop a computationally inexpensive networked ideal reactor model and allow for the later incorporation of detailed reaction mechanisms. Tracer data from sulfur dioxide trace...

  11. Fitting IRT Models to Dichotomous and Polytomous Data: Assessing the Relative Model-Data Fit of Ideal Point and Dominance Models

    ERIC Educational Resources Information Center

    Tay, Louis; Ali, Usama S.; Drasgow, Fritz; Williams, Bruce

    2011-01-01

    This study investigated the relative model-data fit of an ideal point item response theory (IRT) model (the generalized graded unfolding model [GGUM]) and dominance IRT models (e.g., the two-parameter logistic model [2PLM] and Samejima's graded response model [GRM]) to simulated dichotomous and polytomous data generated from each of these models.…

  12. Media-portrayed idealized images, self-objectification, and eating behavior.

    PubMed

    Monro, Fiona J; Huon, Gail F

    2006-11-01

    This study examined the effects of media-portrayed idealized images on young women's eating behavior. The study compared the effects for high and low self-objectifiers. 72 female university students participated in this experiment. Six magazine advertisements featuring idealized female models were used as the experimental stimuli, and the same six advertisements with the idealized body digitally removed became the control stimuli. Eating behavior was examined using a classic taste test that involved both sweet and savory food. Participants' restraint status was assessed. We found that total food intake after exposure was the same in the body present and absent conditions. There were also no differences between high and low self-objectifiers' total food intake. However, for the total amount of food consumed and for sweet food there were significant group by condition interaction effects. High self-objectifiers ate more food in the body present than the body absent condition. In contrast, low self-objectifiers ate more food in the body absent than in the body present condition. Restraint status was not found to moderate the relationship between exposure to idealized images the amount of food consumed. Our results indicate that exposure to media-portrayed idealized images can lead to changes in eating behavior and highlight the complexity of the association between idealized image exposure and eating behavior. These results are discussed in terms of their implications for the prevention of dieting-related disorders.

  13. Determination of performance of non-ideal aluminized explosives.

    PubMed

    Keshavarz, Mohammad Hossein; Mofrad, Reza Teimuri; Poor, Karim Esmail; Shokrollahi, Arash; Zali, Abbas; Yousefi, Mohammad Hassan

    2006-09-01

    Non-ideal explosives can have Chapman-Jouguet (C-J) detonation pressure significantly different from those expected from existing thermodynamic computer codes, which usually allows finding the parameters of ideal detonation of individual high explosives with good accuracy. A simple method is introduced by which detonation pressure of non-ideal aluminized explosives with general formula C(a)H(b)N(c)O(d)Al(e) can be predicted only from a, b, c, d and e at any loading density without using any assumed detonation products and experimental data. Calculated detonation pressures show good agreement with experimental values with respect to computed results obtained by complicated computer code. It is shown here how loading density and atomic composition can be integrated into an empirical formula for predicting detonation pressure of proposed aluminized explosives.

  14. Approximations, idealizations and 'experiments' at the physics-biology interface.

    PubMed

    Rowbottom, Darrell P

    2011-06-01

    This paper, which is based on recent empirical research at the University of Leeds, the University of Edinburgh, and the University of Bristol, presents two difficulties which arise when condensed matter physicists interact with molecular biologists: (1) the former use models which appear to be too coarse-grained, approximate and/or idealized to serve a useful scientific purpose to the latter; and (2) the latter have a rather narrower view of what counts as an experiment, particularly when it comes to computer simulations, than the former. It argues that these findings are related; that computer simulations are considered to be undeserving of experimental status, by molecular biologists, precisely because of the idealizations and approximations that they involve. The complexity of biological systems is a key factor. The paper concludes by critically examining whether the new research programme of 'systems biology' offers a genuine alternative to the modelling strategies used by physicists. It argues that it does not. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  16. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less

  17. Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model

    ERIC Educational Resources Information Center

    Ding, Cody

    2016-01-01

    The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.

  18. Examples for Non-Ideal Solution Thermodynamics Study

    ERIC Educational Resources Information Center

    David, Carl W.

    2004-01-01

    A mathematical model of a non-ideal solution is presented, where it is shown how and where the non-ideality manifests itself in the standard thermodynamics tableau. Examples related to the non-ideal solution thermodynamics study are also included.

  19. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  20. Adding thin-ideal internalization and impulsiveness to the cognitive-behavioral model of bulimic symptoms.

    PubMed

    Schnitzler, Caroline E; von Ranson, Kristin M; Wallace, Laurel M

    2012-08-01

    This study evaluated the cognitive-behavioral (CB) model of bulimia nervosa and an extension that included two additional maintaining factors - thin-ideal internalization and impulsiveness - in 327 undergraduate women. Participants completed measures of demographics, self-esteem, concern about shape and weight, dieting, bulimic symptoms, thin-ideal internalization, and impulsiveness. Both the original CB model and the extended model provided good fits to the data. Although structural equation modeling analyses suggested that the original CB model was most parsimonious, hierarchical regression analyses indicated that the additional variables accounted for significantly more variance. Additional analyses showed that the model fit could be improved by adding a path from concern about shape and weight, and deleting the path from dieting, to bulimic symptoms. Expanding upon the factors considered in the model may better capture the scope of variables maintaining bulimic symptoms in young women with a range of severity of bulimic symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Ideal glass transitions in thin films: An energy landscape perspective

    NASA Astrophysics Data System (ADS)

    Truskett, Thomas M.; Ganesan, Venkat

    2003-07-01

    We introduce a mean-field model for the potential energy landscape of a thin fluid film confined between parallel substrates. The model predicts how the number of accessible basins on the energy landscape and, consequently, the film's ideal glass transition temperature depend on bulk pressure, film thickness, and the strength of the fluid-fluid and fluid-substrate interactions. The predictions are in qualitative agreement with the experimental trends for the kinetic glass transition temperature of thin films, suggesting the utility of landscape-based approaches for studying the behavior of confined fluids.

  2. A Comparison of Analytical and Experimental Data for a Magnetic Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Bloodgood, V. Dale, Jr.

    2000-01-01

    Theoretical and experimental force-displacement and force-current data are compared for two configurations of a simple horseshoe, or bipolar, magnetic actuator. One configuration utilizes permanent magnet wafers to provide a bias flux and the other configuration has no source of bias flux. The theoretical data are obtained from two analytical models of each configuration. One is an ideal analytical model which is developed under the following assumptions: (1) zero fringing and leakage flux, (2) zero actuator coil mmf loss, and (3) infinite permeability of the actuator core and suspended element flux return path. The other analytical model, called the extended model, is developed by adding loss and leakage factors to the ideal model. The values of the loss and leakage factors are calculated from experimental data. The experimental data are obtained from a magnetic actuator test fixture, which is described in detail. Results indicate that the ideal models for both configurations do not match the experimental data very well. However, except for the range around zero force, the extended models produce a good match. The best match is produced by the extended model of the configuration with permanent magnet flux bias.

  3. Experimental Models to Study the Role of Microbes in Host-Parasite Interactions.

    PubMed

    Hahn, Megan A; Dheilly, Nolwenn M

    2016-01-01

    Until recently, parasitic infections have been primarily studied as interactions between the parasite and the host, leaving out crucial players: microbes. The recent realization that microbes play key roles in the biology of all living organisms is not only challenging our understanding of host-parasite evolution, but it also provides new clues to develop new therapies and remediation strategies. In this paper we provide a review of promising and advanced experimental organismal systems to examine the dynamic of host-parasite-microbe interactions. We address the benefits of developing new experimental models appropriate to this new research area and identify systems that offer the best promises considering the nature of the interactions among hosts, parasites, and microbes. Based on these systems, we identify key criteria for selecting experimental models to elucidate the fundamental principles of these complex webs of interactions. It appears that no model is ideal and that complementary studies should be performed on different systems in order to understand the driving roles of microbes in host and parasite evolution.

  4. A complete equation of state for non-ideal condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. D.; Braithwaite, M.; Nikiforakis, N.; Michael, L.

    2017-12-01

    The objective of this work is to improve the robustness and accuracy of numerical simulations of both ideal and non-ideal explosives by introducing temperature dependence in mechanical equations of state for reactants and products. To this end, we modify existing mechanical equations of state to appropriately approximate the temperature in the reaction zone. Mechanical equations of state of the Mie-Grüneisen form are developed with extensions, which allow the temperature to be evaluated appropriately and the temperature equilibrium condition to be applied robustly. Furthermore, the snow plow model is used to capture the effect of porosity on the reactant equation of state. We apply the methodology to predict the velocity of compliantly confined detonation waves. Once reaction rates are calibrated for unconfined detonation velocities, simulations of confined rate sticks and slabs are performed, and the experimental detonation velocities are matched without further parameter alteration, demonstrating the predictive capability of our simulations. We apply the same methodology to both ideal (PBX9502, a high explosive with principal ingredient TATB) and non-ideal (EM120D, an ANE or ammonium nitrate based emulsion) explosives.

  5. The Role of Idealization in Science and Its Implications for Science Education

    NASA Astrophysics Data System (ADS)

    Niaz, Mansoor

    1999-06-01

    The main objective of this article is to study the role of empirical evidence in the interpretation of psychological and epistemological aspects of Piagetian theory. According to Galilean methodology, after having asked the right question, a scientist could experimentally vary one impediment, and observe what happens to the dependent variable, as it approaches the ideal limiting case. Following Galileo's idealization, scientific laws being epistemological constructions do not describe the behavior of actual bodies. It is plausible to suggest that just as Galileo's ideal law can be observed only when all the impediment variables approach zero, similarly individuals in the real world have various `impediments' and it is only when these impediments are gradually removed by experimental manipulation that the real performance of individuals can approximate the competence of Piaget's epistemic subject (ideal knower). Finally, evidence is presented to the effect that by experimentally manipulating the impediment variables (e.g., Pascual-Leone's M-demand and Witkin's perceptual field effect of a task), performance of the real subjects approximates the competence of the ideal epistemic subject, which leads to the construction of a neo-Piagetian epistemological theory.

  6. Idealized cultural beliefs about gender: implications for mental health.

    PubMed

    Mahalingam, Ramaswami; Jackson, Benita

    2007-12-01

    In this paper, we examined the relationship between culture-specific ideals (chastity, masculinity, caste beliefs) and self-esteem, shame and depression using an idealized cultural model proposed by Mahalingam (2006, In: Mahalingam R (ed) Cultural psychology of immigrants. Lawrence Erlbaum, Mahwah, NJ, pp 1-14). Participants were from communities with a history of extreme male-biased sex ratios in Tamilnadu, India (N = 785). We hypothesized a dual-process model of self-appraisals suggesting that achieving idealized cultural identities would increase both self-esteem and shame, with the latter leading to depression, even after controlling for key covariates. We tested this using structural equation modeling. The proposed idealized cultural identities model had an excellent fit (CFI = 0.99); the effect of idealized identities on self-esteem, shame and depression differed by gender. Idealized beliefs about gender relate to psychological well-being in gender specific ways in extreme son preference communities. We discuss implications of these findings for future research and community-based interventions.

  7. An Idealized Cognitive Model Analysis of Metaphors in American Economic News Report

    NASA Astrophysics Data System (ADS)

    Qin, Yang

    2018-03-01

    On the basis of the theoretical framework of Lakoff’s Conceptual Metaphor, the paper researches into the cognitive model of conceptual metaphors in American Economic News Reports. Moreover, the paper tries to analyze economic discourse by the application of Idealized Cognitive Model of its metaphorical thinking combined with cultural model and reflect the ideology of the media. It aims to help English learners ponder the implied meaning the economic news reports conveyed and take a new look at metaphors between the lines.

  8. The impact of exposure to images of ideally thin models in TV commercials on eating behavior: an experimental study with women diagnosed with bulimia nervosa.

    PubMed

    Rühl, Ilka; Legenbauer, Tanja; Hiller, Wolfgang

    2011-09-01

    This study investigates whether eating behavior in women with diagnosed bulimia nervosa is influenced by prior exposure to images of ideally thin models. Twenty-six participants diagnosed with bulimia nervosa (BN) and 30 normal controls (NC) were exposed to body-related and neutral TV commercials; then food that typically triggers binge eating was provided, and the amount of food eaten was measured. No significant difference for food intake between NC and BN could be found, but food intake for BN was predicted by the degree of thoughts related to eating behaviors during exposure to the thin ideal. No impact of general body image or eating pathology on food intake could be found. The results emphasize the importance of action-relevance of dysfunctional cognitions for the maintenance of eating-disordered behaviors in women with bulimia nervosa, when exposed to eating-disorder-specific triggers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Professional hazards? The impact of models' body size on advertising effectiveness and women's body-focused anxiety in professions that do and do not emphasize the cultural ideal of thinness.

    PubMed

    Dittmar, Helga; Howard, Sarah

    2004-12-01

    Previous experimental research indicates that the use of average-size women models in advertising prevents the well-documented negative effect of thin models on women's body image, while such adverts are perceived as equally effective (Halliwell & Dittmar, 2004). The current study extends this work by: (a) seeking to replicate the finding of no difference in advertising effectiveness between average-size and thin models (b) examining level of ideal-body internalization as an individual, internal factor that moderates women's vulnerability to thin media models, in the context of (c) comparing women in professions that differ radically in their focus on, and promotion of, the sociocultural ideal of thinness for women--employees in fashion advertising (n = 75) and teachers in secondary schools (n = 75). Adverts showing thin, average-size and no models were perceived as equally effective. High internalizers in both groups of women felt worse about their body image after exposure to thin models compared to other images. Profession affected responses to average-size models. Teachers reported significantly less body-focused anxiety after seeing average-size models compared to no models, while there was no difference for fashion advertisers. This suggests that women in professional environments with less focus on appearance-related ideals can experience increased body-esteem when exposed to average-size models, whereas women in appearance-focused professions report no such relief.

  10. Computational Modeling and Experimental Validation of Shock Induced Damage in Woven E-Glass/Vinylester Laminates

    NASA Astrophysics Data System (ADS)

    Hufner, D. R.; Augustine, M. R.

    2018-05-01

    A novel experimental method was developed to simulate underwater explosion pressure pulses within a laboratory environment. An impact-based experimental apparatus was constructed; capable of generating pressure pulses with basic character similar to underwater explosions, while also allowing the pulse to be tuned to different intensities. Having the capability to vary the shock impulse was considered essential to producing various levels of shock-induced damage without the need to modify the fixture. The experimental apparatus and test method are considered ideal for investigating the shock response of composite material systems and/or experimental validation of new material models. One such test program is presented herein, in which a series of E-glass/Vinylester laminates were subjected to a range of shock pulses that induced varying degrees of damage. Analysis-test correlations were performed using a rate-dependent constitutive model capable of representing anisotropic damage and ultimate yarn failure. Agreement between analytical predictions and experimental results was considered acceptable.

  11. Non-Ideal Compressible-Fluid Dynamics of Fast-Response Pressure Probes for Unsteady Flow Measurements in Turbomachinery

    NASA Astrophysics Data System (ADS)

    Gori, G.; Molesini, P.; Persico, G.; Guardone, A.

    2017-03-01

    The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.

  12. Ideal flow theory for the double - shearing model as a basis for metal forming design

    NASA Astrophysics Data System (ADS)

    Alexandrov, S.; Trung, N. T.

    2018-02-01

    In the case of Tresca’ solids (i.e. solids obeying the Tresca yield criterion and its associated flow rule) ideal flows have been defined elsewhere as solenoidal smooth deformations in which an eigenvector field associated everywhere with the greatest principal stress (and strain rate) is fixed in the material. Under such conditions all material elements undergo paths of minimum plastic work, a condition which is often advantageous for metal forming processes. Therefore, the ideal flow theory is used as the basis of a procedure for the preliminary design of such processes. The present paper extends the theory of stationary planar ideal flow to pressure dependent materials obeying the double shearing model and the double slip and rotation model. It is shown that the original problem of plasticity reduces to a purely geometric problem. The corresponding system of equations is hyperbolic. The characteristic relations are integrated in elementary functions. In regions where one family of characteristics is straight, mapping between the principal lines and Cartesian coordinates is determined by linear ordinary differential equations. An illustrative example is provided.

  13. Breakthrough behavior of granular ferric hydroxide (GFH) fixed-bed adsorption filters: modeling and experimental approaches.

    PubMed

    Sperlich, Alexander; Werner, Arne; Genz, Arne; Amy, Gary; Worch, Eckhard; Jekel, Martin

    2005-03-01

    Breakthrough curves (BTC) for the adsorption of arsenate and salicylic acid onto granulated ferric hydroxide (GFH) in fixed-bed adsorbers were experimentally determined and modeled using the homogeneous surface diffusion model (HSDM). The input parameters for the HSDM, the Freundlich isotherm constants and mass transfer coefficients for film and surface diffusion, were experimentally determined. The BTC for salicylic acid revealed a shape typical for trace organic compound adsorption onto activated carbon, and model results agreed well with the experimental curves. Unlike salicylic acid, arsenate BTCs showed a non-ideal shape with a leveling off at c/c0 approximately 0.6. Model results based on the experimentally derived parameters over-predicted the point of arsenic breakthrough for all simulated curves, lab-scale or full-scale, and were unable to catch the shape of the curve. The use of a much lower surface diffusion coefficient D(S) for modeling led to an improved fit of the later stages of the BTC shape, pointing on a time-dependent D(S). The mechanism for this time dependence is still unknown. Surface precipitation was discussed as one possible removal mechanism for arsenate besides pure adsorption interfering the determination of Freundlich constants and D(S). Rapid small-scale column tests (RSSCT) proved to be a powerful experimental alternative to the modeling procedure for arsenic.

  14. Investigation of mucus transport in an idealized lung airway model using multiphase CFD analysis

    NASA Astrophysics Data System (ADS)

    Rajendran, Rahul; Banerjee, Arindam

    2015-11-01

    Mucus, a Bingham fluid is transported in the pulmonary airways by consistent beating of the cilia and exhibits a wide range of physical properties in response to the core air flow and various pathological conditions. A better understanding of the interfacial instability is required as it plays a crucial role in gas transport, mixing, mucus clearance and drug delivery. In the current study, mucus is modelled as a Newtonian fluid and the two phase gas-liquid flow in the airways is investigated using an inhomogeneous Eulerian-Eulerian approach. The complex interface between the phases is tracked using the conventional VOF (Volume of Fluid) method. Results from our CFD simulations which are performed in idealized single and double bifurcation geometries will be presented and the influence of airflow rate, mucus layer thickness, mucus viscosity, airway geometry (branching & diameter) and surface tension on mucus flow behavior will be discussed. Mean mucus layer thickness, pressure drop due to momentum transfer & increased airway resistance, mucus transport speed and the flow morphology will be compared to existing experimental and theoretical data.

  15. A stationary bulk planar ideal flow solution for the double shearing model

    NASA Astrophysics Data System (ADS)

    Lyamina, E. A.; Kalenova, N. V.; Date, P. P.

    2018-04-01

    This paper provides a general ideal flow solution for the double shearing model of pressure-dependent plasticity. This new solution is restricted to a special class of stationary planar flows. A distinguished feature of this class of solutions is that one family of characteristic lines is straight. The solution is analytic. The mapping between Cartesian and principal lines based coordinate systems is given in parametric form with characteristic coordinates being the parameters. A simple relation that connects the scale factor for one family of coordinate curves of the principal lines based coordinate system and the magnitude of velocity is derived. The original ideal flow theory is widely used as the basis for inverse methods for the preliminary design of metal forming processes driven by minimum plastic work. The new theory extends this area of application to granular materials.

  16. Developmental Idealism and Cultural Models of the Family in Malawi

    PubMed Central

    Pierotti, Rachael S.; Young-DeMarco, Linda; Watkins, Susan

    2014-01-01

    This paper examines the extent to which developmental idealism has been disseminated in Malawi. Developmental idealism is a set of beliefs and values about development and the relationships between development and family structures and behavior. Developmental idealism states that attributes of societies and families defined as modern are better than attributes defined as traditional, that modern societies help produce modern families, that modern families facilitate the achievement of modern societies, and that the future will bring family change in the direction of modernity. Previous research has demonstrated that knowledge of developmental idealism is widespread in many places around the world, but provides little systematic data about it in sub-Saharan Africa or how knowledge of it is associated with certain demographic characteristics in that region. In this paper, we address this issue by examining whether ordinary people in two settings in Malawi, a sub-Saharan African country, have received and understood messages that are intended to associate development with certain types of family forms and family behaviors. We then examine associations between demographic characteristics and developmental idealism to investigate possible mechanisms linking global discourse about development to the grassroots. We analyze data collected in face-to-face surveys from two samples of Malawian men in 2009 and 2010, one rural, the other in a low-to-medium income neighborhood of a city. Our analysis of these survey data shows considerable evidence that many developmental idealism beliefs have been spread in that country and that education has positive effects on beliefs in the association between development and family attributes. We also find higher levels of developmental idealism awareness in the urban sample than we do in the rural sample, but once dissimilarities in education and wealth between the two samples are controlled, awareness levels no longer differed between

  17. Idealized model of polar cap currents, fields, and auroras

    NASA Technical Reports Server (NTRS)

    Cornwall, J. M.

    1985-01-01

    During periods of northward Bz, the electric field applied to the magnetosphere is generally opposite to that occurring during southward Bz and complicated patterns of convection result, showing some features reversed in comparison with the southward Bz case. A study is conducted of a simple generalization of early work on idealized convection models, which allows for coexistence of sunward convection over the central polar cap and antisunward convection elsewhere in the cap. The present model, valid for By approximately 0, has a four-cell convection pattern and is based on the combination of ionospheric current conservation with a relation between parallel auroral currents and parallel potential drops. Global magnetospheric issues involving, e.g., reconnection are not considered. The central result of this paper is an expression giving the parallel potential drop for polar cap auroras (with By approximately 0) in terms of the polar cap convection field profile.

  18. Determination of JWL Parameters for Non-Ideal Explosive

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Kato, Y.; Itoh, S.

    2004-07-01

    JWL equation of state is widely used in numerical simulation of detonation phenomena. JWL parameters are determined by cylinder test. Detonation characteristics of non-ideal explosive depend strongly on confinement, and JWL parameters determined by cylinder test do not represent the state of detonation products in many applications. We developed a method to determine JWL parameters from the underwater explosion test. JWL parameters were determined through a method of characteristics applied to the configuration of the underwater shock waves of cylindrical explosives. The numerical results obtained using JWL parameters determined by the underwater explosion test and those obtained using JWL parameters determined by cylinder test were compared with experimental results for typical non-ideal explosive; emulsion explosive. Good agreement was confirmed between the results obtained using JWL parameters determined by the underwater explosion test and experimental results.

  19. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer.

    PubMed

    Yu, Sungryul; Kim, Taemook; Yoo, Kyung Hyun; Kang, Keunsoo

    2017-05-06

    Cell lines are often used as in vitro tools to mimic certain types of in vivo system; several cell lines, including MCF-7 and T47D, have been widely used in breast cancer studies without investigating the cell lines' characteristics. In this study, we compared the genome-wide binding profiles of ERα, PR, and P300, and the gene expression changes between MCF-7 and T47D cell lines that represent the luminal A subtype of breast cancer. Surprisingly, several thousand genes were differentially expressed under estrogenic condition. In addition, ERα, PR, and P300 binding to regulatory elements showed distinct genomic landscapes between MCF-7 and T47D cell lines in the same hormonal states. In particular, the T47D cell line was markedly susceptible to progesterone, whereas the MCF-7 cell line did not respond to progesterone in the presence of estrogen. Consistently, changes in the expression level of the PR-target gene, STAT5A, were only observed in the T47D cell line, not the MCF-7 cell line, when treated with progesterone. Overall, the results highlight the importance of selecting appropriate cell lines for breast cancer studies and suggest that T47D cell lines can be an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Modeling, design, fabrication and experimentation of a GaN-based, 63Ni betavoltaic battery

    NASA Astrophysics Data System (ADS)

    E Munson, C., IV; Gaimard, Q.; Merghem, K.; Sundaram, S.; Rogers, D. J.; de Sanoit, J.; Voss, P. L.; Ramdane, A.; Salvestrini, J. P.; Ougazzaden, A.

    2018-01-01

    GaN is a durable, radiation hard and wide-bandgap semiconductor material, making it ideal for usage with betavoltaic batteries. This paper describes the design, fabrication and experimental testing of 1 cm2 GaN-based betavoltaic batteries (that achieve an output power of 2.23 nW) along with a full model that accurately simulates the device performance which is the highest to date (to the best of our knowledge) for GaN-based devices with a 63Ni source.

  1. Sex Education and Ideals

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.; Spiecker, Ben

    2008-01-01

    This article argues that sex education should include sexual ideals. Sexual ideals are divided into sexual ideals in the strict sense and sexual ideals in the broad sense. It is argued that ideals that refer to the context that is deemed to be most ideal for the gratification of sexual ideals in the strict sense are rightfully called sexual…

  2. Genetic and environmental influences on thin-ideal internalization.

    PubMed

    Suisman, Jessica L; O'Connor, Shannon M; Sperry, Steffanie; Thompson, J Kevin; Keel, Pamela K; Burt, S Alexandra; Neale, Michael; Boker, Steven; Sisk, Cheryl; Klump, Kelly L

    2012-12-01

    Current research on the etiology of thin-ideal internalization focuses on psychosocial influences (e.g., media exposure). The possibility that genetic influences also account for variance in thin-ideal internalization has never been directly examined. This study used a twin design to estimate genetic effects on thin-ideal internalization and examine if environmental influences are primarily shared or nonshared in origin. Participants were 343 postpubertal female twins (ages: 12-22 years; M = 17.61) from the Michigan State University Twin Registry. Thin-ideal internalization was assessed using the Sociocultural Attitudes toward Appearance Questionnaire-3. Twin modeling suggested significant additive genetic and nonshared environmental influences on thin-ideal internalization. Shared environmental influences were small and non-significant. Although prior research focused on psychosocial factors, genetic influences on thin-ideal internalization were significant and moderate in magnitude. Research is needed to investigate possible interplay between genetic and nonshared environmental factors in the development of thin-ideal internalization. Copyright © 2012 Wiley Periodicals, Inc.

  3. Contributions to Future Stratospheric Climate Change: An Idealized Chemistry-Climate Model Sensitivity Study

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Within the framework of an idealized model sensitivity study, three of the main contributors to future stratospheric climate change are evaluated: increases in greenhouse gas concentrations, ozone recovery, and changing sea surface temperatures (SSTs). These three contributors are explored in combination and separately, to test the interactions between ozone and climate; the linearity of their contributions to stratospheric climate change is also assessed. In a simplified chemistry-climate model, stratospheric global mean temperature is most sensitive to CO2 doubling, followed by ozone depletion, then by increased SSTs. At polar latitudes, the Northern Hemisphere (NH) stratosphere is more sensitive to changes in CO2, SSTs and O3 than is the Southern Hemisphere (SH); the opposing responses to ozone depletion under low or high background CO2 concentrations, as seen with present-day SSTs, are much weaker and are not statistically significant under enhanced SSTs. Consistent with previous studies, the strength of the Brewer-Dobson circulation is found to increase in an idealized future climate; SSTs contribute most to this increase in the upper troposphere/lower stratosphere (UT/LS) region, while CO2 and ozone changes contribute most in the stratosphere and mesosphere.

  4. New integrable models and analytical solutions in f (R ) cosmology with an ideal gas

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos

    2018-01-01

    In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.

  5. An ideal-typical model for comparing interprofessional relations and skill mix in health care.

    PubMed

    Schönfelder, Walter; Nilsen, Elin Anita

    2016-11-08

    Comparisons of health system performance, including the regulations of interprofessional relations and the skill mix between health professions are challenging. National strategies for regulating interprofessional relations vary widely across European health care systems. Unambiguously defined and generally accepted performance indicators have to remain generic, with limited power for recognizing the organizational structures regulating interprofessional relations in different health systems. A coherent framework for in-depth comparisons of different models for organizing interprofessional relations and the skill mix between professional groups is currently not available. This study aims to develop an ideal-typical framework for categorizing skill mix and interprofessional relations in health care, and to assess the potential impact for different ideal types on care coordination and integrated service delivery. A document analysis of the Health Systems in Transition (HiT) reports published by the European Observatory on Health Systems and Policies was conducted. The HiT reports to 31 European health systems were analyzed using a qualitative content analysis and a process of meaning condensation. The educational tracks available to nurses have an impact on the professional autonomy for nurses, the hierarchy between professional groups, the emphasis given to negotiating skill mix, interdisciplinary teamwork and the extent of cooperation across the health and social service interface. Based on the results of the document analysis, three ideal types for regulating interprofessional relations and skill mix in health care are delimited. For each ideal type, outcomes on service coordination and holistic service delivery are described. Comparisons of interprofessional relations are necessary for proactive health human resource policies. The proposed ideal-typical framework provides the means for in-depth comparisons of interprofessional relations in the health care

  6. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool

    NASA Astrophysics Data System (ADS)

    Lynch, Cheryl L.; Graham, Geoff M.; Popovic, Milos R.

    2011-08-01

    Functional electrical stimulation (FES) applications are frequently evaluated in simulation prior to testing in human subjects. Such simulations are usually based on the typical muscle responses to electrical stimulation, which may result in an overly optimistic assessment of likely real-world performance. We propose a novel method for simulating FES applications that includes non-ideal muscle behaviour during electrical stimulation resulting from muscle fatigue, spasms and tremors. A 'non-idealities' block that can be incorporated into existing FES simulations and provides a realistic estimate of real-world performance is described. An implementation example is included, showing how the non-idealities block can be incorporated into a simulation of electrically stimulated knee extension against gravity for both a proportional-integral-derivative controller and a sliding mode controller. The results presented in this paper illustrate that the real-world performance of a FES system may be vastly different from the performance obtained in simulation using nominal muscle models. We believe that our non-idealities block should be included in future simulations that involve muscle response to FES, as this tool will provide neural engineers with a realistic simulation of the real-world performance of FES systems. This simulation strategy will help engineers and organizations save time and money by preventing premature human testing. The non-idealities block will become available free of charge at www.toronto-fes.ca in late 2011.

  7. Experimental Control of Simple Pendulum Model

    ERIC Educational Resources Information Center

    Medina, C.

    2004-01-01

    This paper conveys information about a Physics laboratory experiment for students with some theoretical knowledge about oscillatory motion. Students construct a simple pendulum that behaves as an ideal one, and analyze model assumption incidence on its period. The following aspects are quantitatively analyzed: vanishing friction, small amplitude,…

  8. Quantum cryptography with an ideal local relay

    NASA Astrophysics Data System (ADS)

    Spedalieri, Gaetana; Ottaviani, Carlo; Braunstein, Samuel L.; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.; Pirandola, Stefano

    2015-10-01

    We consider two remote parties connected to a relay by two quantum channels. To generate a secret key, they transmit coherent states to the relay, where the states are subject to a continuous-variable (CV) Bell detection. We study the ideal case where Alice's channel is lossless, i.e., the relay is locally in her lab and the Bell detection is perfomed with unit efficiency. This configuration allows us to explore the optimal performances achievable by CV measurement-device-independent quantum key distribution. This corresponds to the limit of a trusted local relay, where the detection loss can be re-scaled. Our theoretical analysis is confirmed by an experimental simulation where 10-4 secret bits per use can potentially be distributed at 170km assuming ideal reconciliation.

  9. Idealized numerical modeling of polar mesocyclones dynamics diagnosed by energy budget

    NASA Astrophysics Data System (ADS)

    Sergeev, Dennis; Stepanenko, Victor

    2014-05-01

    Polar mesocyclones (MC) refer to a wide class of mesoscale vortices occuring poleward of the main polar front [1]. Their subtype - polar low - is commonly known for its intensity, that can result in windstorm damage of infrastructure in high latitudes. The observational data sparsity and the small size of polar MCs are major limitations for the clear understanding and numerical prediction of the evolution of these objects. The origin of polar MCs is still a matter of uncertainty, though the recent numerical investigations have exposed a strong dependence of the polar mesocyclone development upon the magnitude of baroclinicity and upon the water vapor concentration in the atmosphere. However, most of the previous studies focused on the individual polar low (the so-called case studies), with too many factors affecting it simultaneously and none of them being dominant in polar MC generation. This study focuses on the early stages of polar MC development within an idealized numerical experiments with mesoscale atmospheric model, where it is possible to look deeper into each single physical process. Our aim is to explain the role of such mechanisms as baroclinic instability or diabatic heating by comparing their contribution to the structure and dynamics of the vortex. The baroclinic instability, as reported by many researchers [2], can be a crucial factor in a MC's life cycle, especially in polar regions. Besides the baroclinic instability several diabatic processes can contribute to the energy generation that fuels a polar mesocyclone. One of the key energy sources in polar regions is surface heat fluxes. The other is the moisture content in the atmosphere that can affect the development of the disturbance by altering the latent heat release. To evaluate the relative importance of the diabatic and baroclinic energy sources for the development of the polar mesocyclone we apply energy diagnostics. In other words, we examine the rate of change of the kinetic energy (that

  10. The ideal subject distance for passport pictures.

    PubMed

    Verhoff, Marcel A; Witzel, Carsten; Kreutz, Kerstin; Ramsthaler, Frank

    2008-07-04

    In an age of global combat against terrorism, the recognition and identification of people on document images is of increasing significance. Experiments and calculations have shown that the camera-to-subject distance - not the focal length of the lens - can have a significant effect on facial proportions. Modern passport pictures should be able to function as a reference image for automatic and manual picture comparisons. This requires a defined subject distance. It is completely unclear which subject distance, in the taking of passport photographs, is ideal for the recognition of the actual person. We show here that the camera-to-subject distance that is perceived as ideal is dependent on the face being photographed, even if the distance of 2m was most frequently preferred. So far the problem of the ideal camera-to-subject distance for faces has only been approached through technical calculations. We have, for the first time, answered this question experimentally with a double-blind experiment. Even if there is apparently no ideal camera-to-subject distance valid for every face, 2m can be proposed as ideal for the taking of passport pictures. The first step would actually be the determination of a camera-to-subject distance for the taking of passport pictures within the standards. From an anthropological point of view it would be interesting to find out which facial features allow the preference of a shorter camera-to-subject distance and which allow the preference of a longer camera-to-subject distance.

  11. Effect of compositional heterogeneity on dissolution of non-ideal LNAPL mixtures

    NASA Astrophysics Data System (ADS)

    Vasudevan, M.; Johnston, C. D.; Bastow, T. P.; Lekmine, G.; Rayner, J. L.; Nambi, I. M.; Suresh Kumar, G.; Ravi Krishna, R.; Davis, G. B.

    2016-11-01

    The extent of dissolution of petroleum hydrocarbon fuels into groundwater depends greatly on fuel composition. Petroleum fuels can consist of thousands of compounds creating different interactions within the non-aqueous phase liquid (NAPL), thereby affecting the relative dissolution of the components and hence a groundwater plume's composition over long periods. Laboratory experiments were conducted to study the variability in the effective solubilities and activity coefficients for common constituents of gasoline fuels (benzene, toluene, p-xylene and 1,2,4-trimethylbenzene) (BTX) in matrices with an extreme range of molar volumes and chemical affinities. Four synthetic mixtures were investigated comprising BTX with the bulk of the NAPL mixtures made up of either, ethylbenzene (an aromatic like BTX with similar molar volume); 1,3,5-trimethylbenzene (an aromatic with a greater molar volume); n-hexane (an aliphatic with a low molar volume); and n-decane (an aliphatic with a high molar volume). Equilibrium solubility values for the constituents were under-predicted by Raoult's law by up to 30% (higher experimental concentrations) for the mixture with n-hexane as a filler and over-predicted by up to 12% (lower experimental concentrations) for the aromatic mixtures with ethylbenzene and 1,3,5-trimethylbenzene as fillers. Application of PP-LFER (poly-parameter linear free energy relationship) model for non-ideal mixtures also resulted in poor correlation between experimentally measured and predicted concentrations, indicating that differences in chemical affinities can be the major cause of deviation from ideal behavior. Synthetic mixtures were compared with the dissolution behavior of fresh and naturally weathered unleaded gasoline. The presence of lighter aliphatic components in the gasoline had a profound effect on estimating effective solubility due to chemical affinity differences (estimated at 0.0055 per percentage increase in the molar proportion of aliphatic) as

  12. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A non-ideal MHD model for structure formation

    NASA Astrophysics Data System (ADS)

    Karmakar, Pralay Kumar; Sarma, Pankaj

    2018-02-01

    The evolutionary initiation dynamics of triggered planetary structure formation is indeed a complex process yet to be well understood. We herein develop a theoretical classical model to see the gravitational fragmentation kinetics of the viscoelastic non-ideal magneto-hydro-dynamic (MHD) fabric. The inhomogeneous planetary disk is primarily composed of heavier dust grains (strongly correlated) together with relatively lighter electrons, ions and neutrals (weakly correlated) in a mean-fluidic approximation. A normal harmonic mode analysis results in a quadratic dispersion relation of a unique shape. It is demonstrated that the growth rate of the MHD fluctuations (magnetosonic) contributing to the planet formation rate, apart from the wave vector and its projection orientation, has a pure explicit dependency on the viscoelastic parameters. The analysis specifically shows that the effective generalized viscosity (χ) , viscoelastic relaxation time (τm) , and K-orientation (θ) play as destabilizing agencies against the non-local gravitational disk collapse. The relevancy is briefly indicated in the real astronomical context of bounded planetary structure formation and evolution.

  14. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  15. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.

    PubMed

    Baule, A; Evans, R M L; Olmsted, P D

    2006-12-01

    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena, Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

  16. Robotic kidney transplantation with regional hypothermia: evolution of a novel procedure utilizing the IDEAL guidelines (IDEAL phase 0 and 1).

    PubMed

    Menon, Mani; Abaza, Ronney; Sood, Akshay; Ahlawat, Rajesh; Ghani, Khurshid R; Jeong, Wooju; Kher, Vijay; Kumar, Ramesh K; Bhandari, Mahendra

    2014-05-01

    Surgical innovation is essential for progress of surgical science, but its implementation comes with potential harms during the learning phase. The Balliol Collaboration has recommended a set of guidelines (Innovation, Development, Exploration, Assessment, Long-term study [IDEAL]) that permit innovation while minimizing complications. To utilize the IDEAL model of surgical innovation in the development of a novel surgical technique, robotic kidney transplantation (RKT) with regional hypothermia, and describe the process of discovery and development. Phase 0 (simulation) studies included the establishment of techniques for pelvic cooling, graft placement in a robotic prostatectomy model, and simulation of the RKT procedure in a cadaveric model. Phase 1 (innovation) studies began in January 2013 and involved treatment of a highly selective small group of patients (n=7), using the principles utilized in the phase 0 studies, at a tertiary referral center. IDEAL model implementation in the development of RKT with regional hypothermia. For phase 0 studies, the outcomes evaluated included pelvic and body temperature measurements, and technical feasibility assessment. The primary outcome during phase 1 was post-transplant graft function. Other outcomes measured were operative and ischemic times, perioperative complications, and intracorporeal graft surface temperature. Phase 0 (simulation phase): Pelvic cooling to 15-20(o)C was achieved reproducibly. Using the surgical approach developed for robotic radical prostatectomy, vascular and ureterovesical anastomoses could be done without redocking the robot. Phase 1 (innovation phase): All patients underwent live-donor RKT in the lithotomy position. All grafts functioned immediately. Mean console, anastomotic, and warm ischemia times were 154 min, 29 min, and 2 min, respectively. One patient was re-explored on postoperative day 1. Adherence to the IDEAL guidelines put forth by the Balliol Collaboration provided a practical

  17. Susceptibility for thin ideal media and eating styles.

    PubMed

    Anschutz, Doeschka J; Engels, Rutger C M E; Van Strien, Tatjana

    2008-03-01

    This study examined the relations between susceptibility for thin ideal media and restrained, emotional and external eating, directly and indirectly through body dissatisfaction. Thin ideal media susceptibility, body dissatisfaction and eating styles were measured in a sample of 163 female students. Structural equation modelling was used for analyses, controlling for BMI. Higher susceptibility for thin ideal media was directly related to higher scores on all eating styles, and indirectly related to higher restrained and emotional eating through elevated levels of body dissatisfaction. So, thin ideal media susceptibility was not only related to restraint through body dissatisfaction, but also directly. Emotional eaters might be more vulnerable for negative affect, whereas external eaters might be more sensitive to external cues in general.

  18. The IDEALL Approach to Learning Development: A Model for Fostering Improved Literacy and Learning Outcomes for Students.

    ERIC Educational Resources Information Center

    Skillen, Jan; Merten, Margaret; Trivett, Neil; Percy, Alisa

    A model of assisting students in the transition to university education is presented that takes a developmental approach. This Integrated Development of English Language and Academic Literacy and Learning (IDEALL) model recognizes that all students need to develop new or more sophisticated academic skills for the new environment and that the most…

  19. Ideals versus reality: Are weight ideals associated with weight change in the population?

    PubMed

    Kärkkäinen, Ulla; Mustelin, Linda; Raevuori, Anu; Kaprio, Jaakko; Keski-Rahkonen, Anna

    2016-04-01

    To quantify weight ideals of young adults and to examine whether the discrepancy between actual and ideal weight is associated with 10-year body mass index (BMI) change in the population. This study comprised 4,964 adults from the prospective population-based FinnTwin16 study. They reported their actual and ideal body weight at age 24 (range 22-27) and 10 years later (attrition 24.6%). The correlates of discrepancy between actual and ideal body weight and the impact on subsequent BMI change were examined. The discrepancy between actual and ideal weight at 24 years was on average 3.9 kg (1.4 kg/m(2) ) among women and 1.2 kg (0.4 kg/m(2) ) among men. On average, participants gained weight during follow-up irrespective of baseline ideal weight: women ¯x = +4.8 kg (1.7 kg/m(2) , 95% CI 1.6-1.9 kg/m(2) ), men ¯x = +6.3 kg (2.0 kg/m(2) , 95% CI 1.8-2.1 kg/m(2) ). Weight ideals at 24 years were not correlated with 10-year weight change. At 34 years, just 13.2% of women and 18.9% of men were at or below the weight they had specified as their ideal weight at 24 years. Women and men adjusted their ideal weight upward over time. Irrespective of ideal weight at baseline, weight gain was nearly universal. Weight ideals were shifted upward over time. © 2016 The Obesity Society.

  20. Exposure to thin-ideal media affect most, but not all, women: Results from the Perceived Effects of Media Exposure Scale and open-ended responses.

    PubMed

    Frederick, David A; Daniels, Elizabeth A; Bates, Morgan E; Tylka, Tracy L

    2017-12-01

    Findings conflict as to whether thin-ideal media affect women's body satisfaction. Meta-analyses of experimental studies reveal small or null effects, but many women endorse appearance-related media pressure in surveys. Using a novel approach, two samples of women (Ns=656, 770) were exposed to bikini models, fashion models, or control conditions and reported the effects of the images their body image. Many women reported the fashion/bikini models made them feel worse about their stomachs (57%, 64%), weight (50%, 56%), waist (50%, 56%), overall appearance (50%, 56%), muscle tone (46%, 52%), legs (45%, 48%), thighs (40%, 49%), buttocks (40%, 43%), and hips (40%, 46%). In contrast, few women (1-6%) reported negative effects of control images. In open-ended responses, approximately one-third of women explicitly described negative media effects on their body image. Findings revealed that many women perceive negative effects of thin-ideal media in the immediate aftermath of exposures in experimental settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    NASA Technical Reports Server (NTRS)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  2. Yeast: An Experimental Organism for Modern Biology.

    ERIC Educational Resources Information Center

    Botstein, David; Fink, Gerald R.

    1988-01-01

    Discusses the applicability and advantages of using yeasts as popular and ideal model systems for studying and understanding eukaryotic biology at the cellular and molecular levels. Cites experimental tractability and the cooperative tradition of the research community of yeast biologists as reasons for this success. (RT)

  3. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  4. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  5. The developmental effects of media-ideal internalization and self-objectification processes on adolescents' negative body-feelings, dietary restraint, and binge eating.

    PubMed

    Dakanalis, Antonios; Carrà, Giuseppe; Calogero, Rachel; Fida, Roberta; Clerici, Massimo; Zanetti, Maria Assunta; Riva, Giuseppe

    2015-08-01

    Despite accumulated experimental evidence of the negative effects of exposure to media-idealized images, the degree to which body image, and eating related disturbances are caused by media portrayals of gendered beauty ideals remains controversial. On the basis of the most up-to-date meta-analysis of experimental studies indicating that media-idealized images have the most harmful and substantial impact on vulnerable individuals regardless of gender (i.e., "internalizers" and "self-objectifiers"), the current longitudinal study examined the direct and mediated links posited in objectification theory among media-ideal internalization, self-objectification, shame and anxiety surrounding the body and appearance, dietary restraint, and binge eating. Data collected from 685 adolescents aged between 14 and 15 at baseline (47 % males), who were interviewed and completed standardized measures annually over a 3-year period, were analyzed using a structural equation modeling approach. Results indicated that media-ideal internalization predicted later thinking and scrutinizing of one's body from an external observer's standpoint (or self-objectification), which then predicted later negative emotional experiences related to one's body and appearance. In turn, these negative emotional experiences predicted subsequent dietary restraint and binge eating, and each of these core features of eating disorders influenced each other. Differences in the strength of these associations across gender were not observed, and all indirect effects were significant. The study provides valuable information about how the cultural values embodied by gendered beauty ideals negatively influence adolescents' feelings, thoughts and behaviors regarding their own body, and on the complex processes involved in disordered eating. Practical implications are discussed.

  6. Perceptual thresholds for non-ideal diffuse field reverberation.

    PubMed

    Romblom, David; Guastavino, Catherine; Depalle, Philippe

    2016-11-01

    The objective of this study is to understand listeners' sensitivity to directional variations in non-ideal diffuse field reverberation. An ABX discrimination test was conducted using a semi-spherical 28-loudspeaker array; perceptual thresholds were estimated by systematically varying the level of a segment of loudspeakers for lateral, height, and frontal conditions. The overall energy was held constant using a gain compensation scheme. When compared to an ideal diffuse field, the perceptual threshold for detection is -2.5 dB for the lateral condition, -6.8 dB for the height condition, and -3.2 dB for the frontal condition. Measurements of the experimental stimuli were analyzed using a Head and Torso Simulator as well as with opposing cardioid microphones aligned on the three Cartesian axes. Additionally, opposing cardioid measurements made in an acoustic space demonstrate that level differences corresponding to the perceptual thresholds can be found in practice. These results suggest that non-ideal diffuse field reverberation may be a previously unrecognized component of spatial impression.

  7. Comparison of Theoretical Stresses and Deflections of Multicell Wings with Experimental Results Obtained from Plastic Models

    NASA Technical Reports Server (NTRS)

    Zender, George W

    1956-01-01

    The experimental deflections and stresses of six plastic multicell-wing models of unswept, delta, and swept plan form are presented and compared with previously published theoretical results obtained by the electrical analog method. The comparisons indicate that the theory is reliable except for the evaluation of stresses in the vicinity of the leading edge of delta wings and the leading and trailing edges of swept wings. The stresses in these regions are questionable, apparently because of simplifications employed in idealizing the actual structure for theoretical purposes and because of local effects of concentrated loads.

  8. Experimental salt marsh islands: A model system for novel metacommunity experiments

    NASA Astrophysics Data System (ADS)

    Balke, Thorsten; Lõhmus, Kertu; Hillebrand, Helmut; Zielinski, Oliver; Haynert, Kristin; Meier, Daniela; Hodapp, Dorothee; Minden, Vanessa; Kleyer, Michael

    2017-11-01

    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly.

  9. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, P.J.

    1996-07-01

    A new reactive flow model for highly non-ideal explosives and propellants is presented. These compositions, which contain large amounts of metal, upon explosion have reaction kinetics that are characteristic of both fast detonation and slow metal combustion chemistry. A reaction model for these systems was incorporated into the two-dimensional, finite element, Lagrangian hydrodynamic code, DYNA2D. A description of how to determine the model parameters is given. The use of the model and variations are applied to AP, Al, and nitramine underwater explosive and propellant systems.

  10. Bayesian Ideal Types: Integration of Psychometric Data for Visually Impaired Persons.

    ERIC Educational Resources Information Center

    Jones, W. P.

    1991-01-01

    A model is proposed for the clinical synthesis of data from psychological tests of persons with visual impairments. The model integrates the concepts of the ideal type and Bayesian probability and compares actual test scores with ideal scores through use of a pattern similarity coefficient. A pilot study with Business Enterprise Program operators…

  11. Considering RNAi experimental design in parasitic helminths.

    PubMed

    Dalzell, Johnathan J; Warnock, Neil D; McVeigh, Paul; Marks, Nikki J; Mousley, Angela; Atkinson, Louise; Maule, Aaron G

    2012-04-01

    Almost a decade has passed since the first report of RNA interference (RNAi) in a parasitic helminth. Whilst much progress has been made with RNAi informing gene function studies in disparate nematode and flatworm parasites, substantial and seemingly prohibitive difficulties have been encountered in some species, hindering progress. An appraisal of current practices, trends and ideals of RNAi experimental design in parasitic helminths is both timely and necessary for a number of reasons: firstly, the increasing availability of parasitic helminth genome/transcriptome resources means there is a growing need for gene function tools such as RNAi; secondly, fundamental differences and unique challenges exist for parasite species which do not apply to model organisms; thirdly, the inherent variation in experimental design, and reported difficulties with reproducibility undermine confidence. Ideally, RNAi studies of gene function should adopt standardised experimental design to aid reproducibility, interpretation and comparative analyses. Although the huge variations in parasite biology and experimental endpoints make RNAi experimental design standardization difficult or impractical, we must strive to validate RNAi experimentation in helminth parasites. To aid this process we identify multiple approaches to RNAi experimental validation and highlight those which we deem to be critical for gene function studies in helminth parasites.

  12. Aggregation work at polydisperse micellization: ideal solution and "dressed micelle" models comparing to molecular dynamics simulations.

    PubMed

    Burov, S V; Shchekin, A K

    2010-12-28

    General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.

  13. Complex blood flow patterns in an idealized left ventricle: A numerical study

    NASA Astrophysics Data System (ADS)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  14. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy

    PubMed Central

    Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807

  15. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Chatterjee, Sayandev; Pence, Natasha K.

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficientsmore » of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO 3) 3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO 3) 3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO 3) 3 activity coefficients for the binary Ln(NO 3) 3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO 3) 3 activity coefficients in the ternary Nd(NO 3) 3/HNO 3/H2O, Eu(NO 3) 3/HNO 3/H 2O, and Eu(NO 3) 3/NaNO 3/H 2O

  16. The effects of the ideal of female beauty on mood and body satisfaction.

    PubMed

    Pinhas, L; Toner, B B; Ali, A; Garfinkel, P E; Stuckless, N

    1999-03-01

    The present study examined changes in women's mood states resulting from their viewing pictures in fashion magazines of models who represent a thin ideal. Female university students completed the Profile of Mood States (POMS), the Body Parts Satisfaction Scale (BPSS), and the Eating Disorder Inventory (EDI). They were then exposed to 20 slides; the experimental group (N = 51) viewed images of female fashion models and a control group (N = 67) viewed slides containing no human figures. All subjects then completed the POMS and the BPSS again. Women were more depressed (R2 = 0.745, p < .05) and more angry (R2 = 0.73, p < .01) following exposure to slides of female fashion models. Viewing images of female fashion models had an immediate negative effect on women's mood. This study, therefore, supports the hypothesis that media images do play a role in disordered eating.

  17. Investigating synoptic-scale monsoonal disturbances in an idealized moist model

    NASA Astrophysics Data System (ADS)

    Clark, S.; Ming, Y.

    2017-12-01

    Recent studies have highlighted the potential utility of a theory for a "moisture-dynamical" instability in explaining the time and spatial scales of intra-seasonal variability associated with the Indian summer monsoon. These studies suggest that a localized region in the subtropics with mean low-level westerly winds and mean temperature increasing poleward will allow the formation of westward propagating precipitation anomalies associated with moist Rossby-like waves. Here we test this theory in an idealized moist model with realistic radiative transfer by inducing a local poleward-increasing temperature gradient by placing a continent with simplified hydrology in the subtropics. We experiment with different treatments of land-surface hydrology, ranging from the extreme (treating land as having the same heat capacity as the slab ocean used in the model, and turning off evaporation completely over land) to the more realistic (bucket hydrology, with a decreased heat capacity over land), and different continental shapes, ranging from a zonally-symmetric continent, to Earth-like continental geometry. Precipitation rates produced by the simulations are analyzed using space-time spectral analysis, and connected to variability in the winds through regression analysis. The observed behavior is discussed with respect to predictions from the theory.

  18. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    PubMed

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  19. Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Alexander, M. Joan; Stephan, Claudia

    2015-04-01

    In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional

  20. The Place of Ideals in Teaching.

    ERIC Educational Resources Information Center

    Hansen, David T.

    This paper examines whether ideals and idealism have a role to play in teaching, identifying some ambiguities and problems associated with ideals and arguing that ideals figure importantly in teaching, but they are ideals of character or personhood as much as they are ideals of educational purpose. The first section focuses on the promise and…

  1. Moist Baroclinic Life Cycles in an Idealized Model with Varying Hydrostasy

    NASA Astrophysics Data System (ADS)

    Hsieh, T. L.; Garner, S.; Held, I.

    2016-12-01

    Baroclinic life cycles are simulated in a limited-area model having varying degrees of hydrostasy to examine their interaction with explicitly resolved moist convection. The life cycles are driven by an idealized sea surface temperature field in an f-plane channel, and no convective parameterization is used. The hydrostasy is controlled by rescaling the model equations following the hypohydrostatic rescaling and by changing the resolution. In experiments having the same ratio between the grid spacing and the rescaling factor, the simulated convection is shown to have the same hydrostasy, suggesting that the low resolution models have been rescaled to be as nonhydrostatic as the high resolution model without additional computational cost. The nonhydrostatic convective cells in the rescaled models are found to be wider and slower than those in the unscaled models, consistent with predictions of the similarity theory. For the same resolution, although the wider cells in the rescaled models have better resolved structure, the total latent heating is insensitive to the rescaling factor. This is because latent heating is constrained by long-wave cooling which is found to be insensitive to the model hydrostasy, requiring a non-similarity in the frequency and distribution of convection. Consequently, the resolved nonhydrostatic convection maintains the same stability profile as the unresolved hydrostatic convection, so the statistics of the life cycles are also insensitive to the rescaling factor. The findings suggest that the mean climate and internal variability would be unaffected by the hypohydrostatic rescaling when the self-organization of convection is not important.

  2. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  3. Medical ethics and more: ideal theories, non-ideal theories and conscientious objection.

    PubMed

    Luna, Florencia

    2015-01-01

    Doing 'good medical ethics' requires acknowledgment that it is often practised in non-ideal circumstances! In this article I present the distinction between ideal theory (IT) and non-ideal theory (NIT). I show how IT may not be the best solution to tackle problems in non-ideal contexts. I sketch a NIT framework as a useful tool for bioethics and medical ethics and explain how NITs can contribute to policy design in non-ideal circumstances. Different NITs can coexist and be evaluated vis-à-vis the IT. Additionally, I address what an individual doctor ought to do in this non-ideal context with the view that knowledge of NITs can facilitate the decision-making process. NITs help conceptualise problems faced in the context of non-compliance and scarcity in a better and more realistic way. Deciding which policy is optimal in such contexts may influence physicians' decisions regarding their patients. Thus, this analysis-usually identified only with policy making-may also be relevant to medical ethics. Finally, I recognise that this is merely a first step in an unexplored but fundamental theoretical area and that more work needs to be done. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Experimental models of demyelination and remyelination.

    PubMed

    Torre-Fuentes, L; Moreno-Jiménez, L; Pytel, V; Matías-Guiu, J A; Gómez-Pinedo, U; Matías-Guiu, J

    2017-08-29

    Experimental animal models constitute a useful tool to deepen our knowledge of central nervous system disorders. In the case of multiple sclerosis, however, there is no such specific model able to provide an overview of the disease; multiple models covering the different pathophysiological features of the disease are therefore necessary. We reviewed the different in vitro and in vivo experimental models used in multiple sclerosis research. Concerning in vitro models, we analysed cell cultures and slice models. As for in vivo models, we examined such models of autoimmunity and inflammation as experimental allergic encephalitis in different animals and virus-induced demyelinating diseases. Furthermore, we analysed models of demyelination and remyelination, including chemical lesions caused by cuprizone, lysolecithin, and ethidium bromide; zebrafish; and transgenic models. Experimental models provide a deeper understanding of the different pathogenic mechanisms involved in multiple sclerosis. Choosing one model or another depends on the specific aims of the study. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Numerical Studies of Thermal Conditions in Cities - Systematic Model Simulations of Idealized Urban Domains

    NASA Astrophysics Data System (ADS)

    Heene, V.; Buchholz, S.; Kossmann, M.

    2016-12-01

    Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.

  6. Developmental Idealism in China

    PubMed Central

    Thornton, Arland; Xie, Yu

    2016-01-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20th century, substantial numbers of Chinese had reacted to the country’s defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today. PMID:28316833

  7. Developmental Idealism in China.

    PubMed

    Thornton, Arland; Xie, Yu

    2016-10-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19 th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20 th century, substantial numbers of Chinese had reacted to the country's defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today.

  8. A Darker Shade of Love: Machiavellianism and Positive Assortative Mating Based on Romantic Ideals

    PubMed Central

    Ináncsi, Tamás; Láng, András; Bereczkei, Tamás

    2016-01-01

    Machiavellianism is a personality trait that is characterized by manipulative and exploitative attitude toward others, lack of empathy, and a cynical view of human nature. In itself or as part of the Dark Triad it has been the target of several studies investigating romantic relations. Nevertheless, the relationship between Machiavellianism and romantic ideals has not been revealed yet. An undergraduate sample of 143 (92 females) with an average age of 19.83 years (SD = 1.51 years) filled out self-report measures of Machiavellianism (Mach-IV Scale) and romantic ideals (Ideal Standards Scale and NEO-FFI-IDEAL). According to our results, Machiavellianism correlated negatively with the importance of partner’s warmth-trustworthiness, extraversion, openness, agreeableness, and with the importance of intimacy and loyalty in their ideal relationships. Machiavellianism correlated positively with the ideal partner’s possession over status and resources. Explorative factor analysis revealed three components of ideal partner’s characteristics. Machiavellianism loaded significantly on two out of three components. Results are discussed with regard to Ideal Standards Model and the Big Five model of personality. PMID:27247697

  9. A Numerical Study of the Non-Ideal Behavior, Parameters, and Novel Applications of an Electrothermal Plasma Source

    NASA Astrophysics Data System (ADS)

    Winfrey, A. Leigh

    Electrothermal plasma sources have numerous applications including hypervelocity launchers, fusion reactor pellet injection, and space propulsion systems. The time evolution of important plasma parameters at the source exit is important in determining the suitability of the source for different applications. In this study a capillary discharge code has been modified to incorporate non-ideal behavior by using an exact analytical model for the Coulomb logarithm in the plasma electrical conductivity formula. Actual discharge currents from electrothermal plasma experiments were used and code results for both ideal and non-ideal plasma models were compared to experimental data, specifically the ablated mass from the capillary and the electrical conductivity as measured by the discharge current and the voltage. Electrothermal plasma sources operating in the ablation-controlled arc regime use discharge currents with pulse lengths between 100 micros to 1 ms. Faster or longer or extended flat-top pulses can also be generated to satisfy various applications of ET sources. Extension of the peak current for up to an additional 1000 micros was tested. Calculations for non-ideal and ideal plasma models show that extended flattop pulses produce more ablated mass, which scales linearly with increased pulse length while other parameters remain almost constant. A new configuration of the PIPE source has been proposed in order to investigate the formation of plasmas from mixed materials. The electrothermal segmented plasma source can be used for studies related to surface coatings, surface modification, ion implantation, materials synthesis, and the physics of complex mixed plasmas. This source is a capillary discharge where the ablation liner is made from segments of different materials instead of a single sleeve. This system should allow for the modeling and characterization of the growth plasma as it provides all materials needed for fabrication through the same method. An

  10. "The part of me that you bring out": ideal similarity and the Michelangelo phenomenon.

    PubMed

    Rusbult, Caryl E; Kumashiro, Madoka; Kubacka, Kaska E; Finkel, Eli J

    2009-01-01

    This work examines the Michelangelo phenomenon, an interpersonal model of the means by which people move closer to (vs. further from) their ideal selves. The authors propose that partner similarity--similarity to the ideal self, in particular--plays an important role in this process. Across 4 studies employing diverse designs and measurement techniques, they observed consistent evidence that when partners possess key elements of one another's ideal selves, each person affirms the other by eliciting important aspects of the other's ideals, each person moves closer to his or her ideal self, and couple well-being is enhanced. Partner similarity to the actual self also accounts for unique variance in key elements of this model. The associations of ideal similarity and actual similarity with couple well-being are fully attributable to the Michelangelo process, to partner affirmation and target movement toward the ideal self. The authors also performed auxiliary analyses to rule out several alternative interpretations of these findings.

  11. An ideal observer analysis of visual working memory.

    PubMed

    Sims, Chris R; Jacobs, Robert A; Knill, David C

    2012-10-01

    Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around rate-distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in 2 empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (e.g., how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis-one that allows variability in the number of stored memory representations but does not assume the presence of a fixed item limit-provides an excellent account of the empirical data and further offers a principled reinterpretation of existing models of VWM. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  12. An Ideal Observer Analysis of Visual Working Memory

    PubMed Central

    Sims, Chris R.; Jacobs, Robert A.; Knill, David C.

    2013-01-01

    Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744

  13. Idealized models of the joint probability distribution of wind speeds

    NASA Astrophysics Data System (ADS)

    Monahan, Adam H.

    2018-05-01

    The joint probability distribution of wind speeds at two separate locations in space or points in time completely characterizes the statistical dependence of these two quantities, providing more information than linear measures such as correlation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maximum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distributions from distributions of the components will not be practical for more complicated dependence structure or more than two speed variables.

  14. Non-ideal Solution Thermodynamics of Cytoplasm

    PubMed Central

    Ross-Rodriguez, Lisa U.; McGann, Locksley E.

    2012-01-01

    Quantitative description of the non-ideal solution thermodynamics of the cytoplasm of a living mammalian cell is critically necessary in mathematical modeling of cryobiology and desiccation and other fields where the passive osmotic response of a cell plays a role. In the solution thermodynamics osmotic virial equation, the quadratic correction to the linear ideal, dilute solution theory is described by the second osmotic virial coefficient. Herein we report, for the first time, intracellular solution second osmotic virial coefficients for four cell types [TF-1 hematopoietic stem cells, human umbilical vein endothelial cells (HUVEC), porcine hepatocytes, and porcine chondrocytes] and further report second osmotic virial coefficients indistinguishable from zero (for the concentration range studied) for human hepatocytes and mouse oocytes. PMID:23840923

  15. Numerical simulation of double front detonations in a non-ideal explosive with varying aluminum concentration

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-Cheol; Yoh, Jack; Seoul National University Team

    2017-06-01

    The performance characteristics of aluminized HMX are considered by varying the aluminum (Al) concentration in a hybrid non-ideal detonation model. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al concentration and a double front detonation (DFD) feature when aerobic Al reaction occurs behind the front. While experimental studies have been reported on the effect of Al concentration on both gas-phase and solid-phase detonations, the numerical investigations were limited to only gas-phase detonation for the varying Al concentration. In the current study, a two-phase model is utilized for understanding the volumetric effects of Al concentration in the condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterizing the performance of aluminized HMX with a maximum Al concentration of 50%. The simulated results are compared with the experimental data for 5%-25% concentrations, and the formation of DFD structure under varying Al concentration (0%-50%) in HMX is investigated.

  16. Developmental Idealism: The Cultural Foundations of World Development Programs

    PubMed Central

    Thornton, Arland; Dorius, Shawn F.; Swindle, Jeffrey

    2015-01-01

    This paper extends theory and research concerning cultural models of development beyond family and demographic matters to a broad range of additional factors, including government, education, human rights, daily social conventions, and religion. Developmental idealism is a cultural model—a set of beliefs and values—that identifies the appropriate goals of development and the ends for achieving these goals. It includes beliefs about positive cause and effect relationships among such factors as economic growth, educational achievement, health, and political governance, as well as strong values regarding many attributes, including economic growth, education, small families, gender equality, and democratic governance. This cultural model has spread from its origins among the elites of northwest Europe to elites and ordinary people throughout the world. Developmental idealism has become so entrenched in local, national, and global social institutions that it has now achieved a taken-for-granted status among many national elites, academics, development practitioners, and ordinary people around the world. We argue that developmental idealism culture has been a fundamental force behind many cultural clashes within and between societies, and continues to be an important cause of much global social change. We suggest that developmental idealism should be included as a causal factor in theories of human behavior and social change. PMID:26457325

  17. Development of a Three-Dimensional Spectral Element Model for NWP: Idealized Simulations on the Sphere

    NASA Astrophysics Data System (ADS)

    Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.

    2016-12-01

    NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP

  18. The place of the ideal observer in medical ethics.

    PubMed

    Churchill, L R

    1983-01-01

    The idea of an ideal observer is frequently employed in ethical reasoning and has recently been introduced into medical ethics. The contemporary use of this idea, however, is deeply flawed. It ignores important social and personal dimensions of ethics. By espousing a perspective of observation removed from history and community, the ideal observer notion encourages a pretense of objectivity and overlooks the distortions of distance. If taken seriously as a model for choice, the ideal observer is incoherent, as it dispenses with the concrete moral agent and the locus of choice. Adam Smith's 'impartial spectator' is examined as a more adequate statement of the need for appreciating diverse perspectives in ethical choices.

  19. Ideal affect in daily life: implications for affective experience, health, and social behavior.

    PubMed

    Tsai, Jeanne L

    2017-10-01

    Over the last decade, researchers have increasingly demonstrated that ideal affect-the affective states that people value and ideally want to feel-shapes different aspects of daily life. Here I briefly review Affect Valuation Theory (AVT), which integrates ideal affect into existing models of affect and emotion by identifying the causes and consequences of variation in ideal affect. I then describe recent research that applies AVT to the valuation of negative states as well as more complex states, examines how ideal affect shapes momentary affective experience, suggests that ideal affect has both direct and indirect effects on health, and illustrates that people's ideal affect shapes how they judge and respond to others. Finally, I discuss the implications of cultural and individual differences in ideal affect for clinical, educational, work, and leisure settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Do the Particles of an Ideal Gas Collide?

    ERIC Educational Resources Information Center

    Lesk, Arthur M.

    1974-01-01

    Describes the collisional properties as a logically essential component of the ideal gas model since an actual intraparticle process cannot support observable anisotropic velocity distributions without collisions taken into account. (CC)

  1. Permutation tests for goodness-of-fit testing of mathematical models to experimental data.

    PubMed

    Fişek, M Hamit; Barlas, Zeynep

    2013-03-01

    This paper presents statistical procedures for improving the goodness-of-fit testing of theoretical models to data obtained from laboratory experiments. We use an experimental study in the expectation states research tradition which has been carried out in the "standardized experimental situation" associated with the program to illustrate the application of our procedures. We briefly review the expectation states research program and the fundamentals of resampling statistics as we develop our procedures in the resampling context. The first procedure we develop is a modification of the chi-square test which has been the primary statistical tool for assessing goodness of fit in the EST research program, but has problems associated with its use. We discuss these problems and suggest a procedure to overcome them. The second procedure we present, the "Average Absolute Deviation" test, is a new test and is proposed as an alternative to the chi square test, as being simpler and more informative. The third and fourth procedures are permutation versions of Jonckheere's test for ordered alternatives, and Kendall's tau(b), a rank order correlation coefficient. The fifth procedure is a new rank order goodness-of-fit test, which we call the "Deviation from Ideal Ranking" index, which we believe may be more useful than other rank order tests for assessing goodness-of-fit of models to experimental data. The application of these procedures to the sample data is illustrated in detail. We then present another laboratory study from an experimental paradigm different from the expectation states paradigm - the "network exchange" paradigm, and describe how our procedures may be applied to this data set. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. New experimental model for single liver lobe hyperthermia in small animals using non-directional microwaves.

    PubMed

    Tudorancea, Ionuț; Porumb, Vlad; Trandabăţ, Alexandru; Neaga, Decebal; Tamba, Bogdan; Iliescu, Radu; Dimofte, Gabriel M

    2017-01-01

    Our aim was to develop a new experimental model for in vivo hyperthermia using non-directional microwaves, applicable to small experimental animals. We present an affordable approach for targeted microwave heat delivery to an isolated liver lobe in rat, which allows rapid, precise and stable tissue temperature control. A new experimental model is proposed. We used a commercial available magnetron generating 2450 MHz, with 4.4V and 14A in the filament and 4500V anodic voltage. Modifications were required in order to adjust tissue heating such as to prevent overheating and to allow for fine adjustments according to real-time target temperature. The heating is controlled using a virtual instrument application implemented in LabView® and responds to 0.1° C variations in the target. Ten healthy adult male Wistar rats, weighing 250-270 g were used in this study. The middle liver lobe was the target for controlled heating, while the rest of the living animal was protected. In vivo microwave delivery using our experimental setting is safe for the animals. Target tissue temperature rises from 30°C to 40°C with 3.375°C / second (R2 = 0.9551), while the increment is lower it the next two intervals (40-42°C and 42-44°C) with 0.291°C/ s (R2 = 0.9337) and 0.136°C/ s (R2 = 0.7894) respectively, when testing in sequences. After reaching the desired temperature, controlled microwave delivery insures a very stable temperature during the experiments. We have developed an inexpensive and easy to manufacture system for targeted hyperthermia using non-directional microwave radiation. This system allows for fine and stable temperature adjustments within the target tissue and is ideal for experimental models testing below or above threshold hyperthermia.

  3. Moral identity as moral ideal self: links to adolescent outcomes.

    PubMed

    Hardy, Sam A; Walker, Lawrence J; Olsen, Joseph A; Woodbury, Ryan D; Hickman, Jacob R

    2014-01-01

    The purposes of this study were to conceptualize moral identity as moral ideal self, to develop a measure of this construct, to test for age and gender differences, to examine links between moral ideal self and adolescent outcomes, and to assess purpose and social responsibility as mediators of the relations between moral ideal self and outcomes. Data came from a local school sample (Data Set 1: N = 510 adolescents; 10-18 years of age) and a national online sample (Data Set 2: N = 383 adolescents; 15-18 years of age) of adolescents and their parents. All outcome measures were parent-report (Data Set 1: altruism, moral personality, aggression, and cheating; Data Set 2: environmentalism, school engagement, internalizing, and externalizing), whereas other variables were adolescent-report. The 20-item Moral Ideal Self Scale showed good reliability, factor structure, and validity. Structural equation models demonstrated that, even after accounting for moral identity internalization, in Data Set 1 moral ideal self positively predicted altruism and moral personality and negatively predicted aggression, whereas in Data Set 2 moral ideal self positively predicted environmentalism and negatively predicted internalizing and externalizing symptoms. Further, purpose and social responsibility mediated most relations between moral ideal self and the outcomes in Data Set 2. Moral ideal self was unrelated to age but differentially predicted some outcomes across age. Girls had higher levels of moral ideal self than boys, although moral identity did not differentially predict outcomes between genders. Thus, moral ideal self is a salient element of moral identity and may play a role in morally relevant adolescent outcomes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Blanco, Luis H.; Romero, Carmen M.

    1995-10-01

    A set of experiments that examines each one of the terms of the ideal gas equation is described. Boyle's Law, Charles-Gay Lussac's Law, Amonton's Law, the number of moles or Molecular Weight, and the Gas Constant are studied. The experiments use very simple, easy to obtain equipment and common gases, mainly air. The results gathered by General Chemistry College students are satisfactory.

  5. A combustion model for studying the effects of ideal gas properties on jet noise

    NASA Astrophysics Data System (ADS)

    Jacobs, Jerin; Tinney, Charles

    2016-11-01

    A theoretical combustion model is developed to simulate the influence of ideal gas effects on various aeroacoustic parameters over a range of equivalence ratios. The motivation is to narrow the gap between laboratory and full-scale jet noise testing. The combustion model is used to model propane combustion in air and kerosene combustion in air. Gas properties from the combustion model are compared to real lab data acquired at the National Center for Physical Acoustics at the University of Mississippi as well as outputs from NASA's Chemical Equilibrium Analysis code. Different jet properties are then studied over a range of equivalence ratios and pressure ratios for propane combustion in air, kerosene combustion in air and heated air. The findings reveal negligible differences between the three constituents where the density and sound speed ratios are concerned. Albeit, the area ratio required for perfectly expanded flow is shown to be more sensitive to gas properties, relative to changes in the temperature ratio.

  6. Exploring exomoon atmospheres with an idealized general circulation model

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Heller, René

    2018-06-01

    Recent studies have shown that large exomoons can form in the accretion disks around super-Jovian extrasolar planets. These planets are abundant at about 1 AU from Sun-like stars, which makes their putative moons interesting for studies of habitability. Technological advances could soon make an exomoon discovery with Kepler or the upcoming CHEOPS and PLATO space missions possible. Exomoon climates might be substantially different from exoplanet climates because the day-night cycles on moons are determined by the moon's synchronous rotation with its host planet. Moreover, planetary illumination at the top of the moon's atmosphere and tidal heating at the moon's surface can be substantial, which can affect the redistribution of energy on exomoons. Using an idealized general circulation model with simplified hydrologic, radiative, and convective processes, we calculate surface temperature, wind speed, mean meridional circulation, and energy transport on a 2.5 Mars-mass moon orbiting a 10-Jupiter-mass at 1 AU from a Sun-like star. The strong thermal irradiation from a young giant planet causes the satellite's polar regions to warm, which remains consistent with the dynamically-driven polar amplification seen in Earth models that lack ice-albedo feedback. Thermal irradiation from young, luminous giant planets onto water-rich exomoons can be strong enough to induce water loss on a planet, which could lead to a runaway greenhouse. Moons that are in synchronous rotation with their host planet and do not experience a runaway greenhouse could experience substantial polar melting induced by the polar amplification of planetary illumination and geothermal heating from tidal effects.

  7. Experimentally validated computational modeling of organic binder burnout from green ceramic compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewsuk, K.G.; Cochran, R.J.; Blackwell, B.F.

    The properties and performance of a ceramic component is determined by a combination of the materials from which it was fabricated and how it was processed. Most ceramic components are manufactured by dry pressing a powder/binder system in which the organic binder provides formability and green compact strength. A key step in this manufacturing process is the removal of the binder from the powder compact after pressing. The organic binder is typically removed by a thermal decomposition process in which heating rate, temperature, and time are the key process parameters. Empirical approaches are generally used to design the burnout time-temperaturemore » cycle, often resulting in excessive processing times and energy usage, and higher overall manufacturing costs. Ideally, binder burnout should be completed as quickly as possible without damaging the compact, while using a minimum of energy. Process and computational modeling offer one means to achieve this end. The objective of this study is to develop an experimentally validated computer model that can be used to better understand, control, and optimize binder burnout from green ceramic compacts.« less

  8. GOBF-ARMA based model predictive control for an ideal reactive distillation column.

    PubMed

    Seban, Lalu; Kirubakaran, V; Roy, B K; Radhakrishnan, T K

    2015-11-01

    This paper discusses the control of an ideal reactive distillation column (RDC) using model predictive control (MPC) based on a combination of deterministic generalized orthonormal basis filter (GOBF) and stochastic autoregressive moving average (ARMA) models. Reactive distillation (RD) integrates reaction and distillation in a single process resulting in process and energy integration promoting green chemistry principles. Improved selectivity of products, increased conversion, better utilization and control of reaction heat, scope for difficult separations and the avoidance of azeotropes are some of the advantages that reactive distillation offers over conventional technique of distillation column after reactor. The introduction of an in situ separation in the reaction zone leads to complex interactions between vapor-liquid equilibrium, mass transfer rates, diffusion and chemical kinetics. RD with its high order and nonlinear dynamics, and multiple steady states is a good candidate for testing and verification of new control schemes. Here a combination of GOBF-ARMA models is used to catch and represent the dynamics of the RDC. This GOBF-ARMA model is then used to design an MPC scheme for the control of product purity of RDC under different operating constraints and conditions. The performance of proposed modeling and control using GOBF-ARMA based MPC is simulated and analyzed. The proposed controller is found to perform satisfactorily for reference tracking and disturbance rejection in RDC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Should women be "All About That Bass?": Diverse body-ideal messages and women's body image.

    PubMed

    Betz, Diana E; Ramsey, Laura R

    2017-09-01

    While most body image research emphasizes the thin ideal, a wider variety of body-ideal messages pervade U.S. popular culture today, including those promoting athleticism or curves. Two studies assessed women's reactions to messages conveying thin, athletic, and curvy ideals, compared to a control message that emphasized accepting all body types. Study 1 (N=192) surveyed women's responses to these messages and found they perceived body-acceptance and athletic messages most favorably, curvy messages more negatively, and thin messages most negatively. Further, greatest liking within each message category came from women who identified with that body type. Study 2 (N=189) experimentally manipulated exposure to these messages, then measured self-objectification and body satisfaction. Messages promoting a body-ideal caused more self-objectification than body-acceptance messages. Also, athletic messages caused more body dissatisfaction than thin messages. Together, these findings reveal the complexity of women's responses to diverse messages they receive about ideal bodies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    PubMed

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  11. Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Reed, K. A.; Jablonowski, C.

    2011-02-01

    This paper explores the impact of the physical parameterization suite on the evolution of an idealized tropical cyclone within the National Center for Atmospheric Research's (NCAR) Community Atmosphere Model (CAM). The CAM versions 3.1 and 4 are used to study the development of an initially weak vortex in an idealized environment over a 10-day simulation period within an aqua-planet setup. The main distinction between CAM 3.1 and CAM 4 lies within the physical parameterization of deep convection. CAM 4 now includes a dilute plume Convective Available Potential Energy (CAPE) calculation and Convective Momentum Transport (CMT). The finite-volume dynamical core with 26 vertical levels in aqua-planet mode is used at horizontal grid spacings of 1.0°, 0.5° and 0.25°. It is revealed that CAM 4 produces stronger and larger tropical cyclones by day 10 at all resolutions, with a much earlier onset of intensification when compared to CAM 3.1. At the highest resolution CAM 4 also accounts for changes in the storm's vertical structure, such as an increased outward slope of the wind contours with height, when compared to CAM 3.1. An investigation concludes that the new dilute CAPE calculation in CAM 4 is largely responsible for the changes observed in the development, strength and structure of the tropical cyclone.

  12. Spiral blood flows in an idealized 180-degree curved artery model

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Kulkarni, Varun; Plesniak, Michael W.

    2017-11-01

    Understanding of cardiovascular flows has been greatly advanced by the Magnetic Resonance Velocimetry (MRV) technique and its potential for three-dimensional velocity encoding in regions of anatomic interest. The MRV experiments were performed on a 180-degree curved artery model using a Newtonian blood analog fluid at the Richard M. Lucas Center at Stanford University employing a 3 Tesla General Electric (Discovery 750 MRI system) whole body scanner with an eight-channel cardiac coil. Analysis in two regions of the model-artery was performed for flow with Womersley number=4.2. In the entrance region (or straight-inlet pipe) the unsteady pressure drop per unit length, in-plane vorticity and wall shear stress for the pulsatile, carotid artery-based flow rate waveform were calculated. Along the 180-degree curved pipe (curvature ratio =1/7) the near-wall vorticity and the stretching of the particle paths in the vorticity field are visualized. The resultant flow behavior in the idealized curved artery model is associated with parameters such as Dean number and Womersley number. Additionally, using length scales corresponding to the axial and secondary flow we attempt to understand the mechanisms leading to the formation of various structures observed during the pulsatile flow cycle. Supported by GW Center for Biomimetics and Bioinspired Engineering (COBRE), MRV measurements in collaboration with Prof. John K. Eaton and, Dr. Chris Elkins at Stanford University.

  13. Genomic Sequence and Experimental Tractability of a New Decapod Shrimp Model, Neocaridina denticulata

    PubMed Central

    Kenny, Nathan J.; Sin, Yung Wa; Shen, Xin; Zhe, Qu; Wang, Wei; Chan, Ting Fung; Tobe, Stephen S.; Shimeld, Sebastian M.; Chu, Ka Hou; Hui, Jerome H. L.

    2014-01-01

    The speciose Crustacea is the largest subphylum of arthropods on the planet after the Insecta. To date, however, the only publically available sequenced crustacean genome is that of the water flea, Daphnia pulex, a member of the Branchiopoda. While Daphnia is a well-established ecotoxicological model, previous study showed that one-third of genes contained in its genome are lineage-specific and could not be identified in any other metazoan genomes. To better understand the genomic evolution of crustaceans and arthropods, we have sequenced the genome of a novel shrimp model, Neocaridina denticulata, and tested its experimental malleability. A library of 170-bp nominal fragment size was constructed from DNA of a starved single adult and sequenced using the Illumina HiSeq2000 platform. Core eukaryotic genes, the mitochondrial genome, developmental patterning genes (such as Hox) and microRNA processing pathway genes are all present in this animal, suggesting it has not undergone massive genomic loss. Comparison with the published genome of Daphnia pulex has allowed us to reveal 3750 genes that are indeed specific to the lineage containing malacostracans and branchiopods, rather than Daphnia-specific (E-value: 10−6). We also show the experimental tractability of N. denticulata, which, together with the genomic resources presented here, make it an ideal model for a wide range of further aquacultural, developmental, ecotoxicological, food safety, genetic, hormonal, physiological and reproductive research, allowing better understanding of the evolution of crustaceans and other arthropods. PMID:24619275

  14. Setting the bar: divergent sociocultural norms for women's and men's ideal appearance in real-world contexts.

    PubMed

    Buote, Vanessa M; Wilson, Anne E; Strahan, Erin J; Gazzola, Stephanie B; Papps, Fiona

    2011-09-01

    Research suggests that exposure to sociocultural norms for idealized appearance can reduce both women's and men's body satisfaction. Despite comparable effects for both genders in the lab, in the "real-world" women's body satisfaction is chronically lower than men's. Real-world gender differences may arise from discrepancies in men's and women's everyday exposure to norms. Across eight studies using a variety of content analysis, survey, and experimental methods, we examine differences in sociocultural norms for ideal appearance pertaining to women and men in "daily life" contexts. We demonstrate that appearance norms encountered by women in daily life are more rigid, homogenous and pervasive than those for men, and that more messages implying the attainability of the ideal appearance are directed at women. Finally, experimental results show that homogeneous, rigid norms (like those typically encountered by women) are more harmful to body image than heterogeneous, flexible norms (like those typically encountered by men). Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Undergraduate Teaching of Ideal and Real Fluid Flows: The Value of Real-World Experimental Projects

    ERIC Educational Resources Information Center

    Baldock, Tom E.; Chanson, Hubert

    2006-01-01

    This paper describes the pedagogical impact of real-world experimental projects undertaken as part of an advanced undergraduate fluid mechanics subject at an Australian university. The projects have been organized to complement traditional lectures and introduce students to the challenges of professional design, physical modelling, data collection…

  16. Mutual optical intensity propagation through non-ideal mirrors

    DOE PAGES

    Meng, Xiangyu; Shi, Xianbo; Wang, Yong; ...

    2017-08-18

    The mutual optical intensity (MOI) model is extended to include the propagation of partially coherent radiation through non-ideal mirrors. The propagation of the MOI from the incident to the exit plane of the mirror is realised by local ray tracing. The effects of figure errors can be expressed as phase shifts obtained by either the phase projection approach or the direct path length method. Using the MOI model, the effects of figure errors are studied for diffraction-limited cases using elliptical cylinder mirrors. Figure errors with low spatial frequencies can vary the intensity distribution, redistribute the local coherence function and distortmore » the wavefront, but have no effect on the global degree of coherence. The MOI model is benchmarked againstHYBRIDand the multi-electronSynchrotron Radiation Workshop(SRW) code. The results show that the MOI model gives accurate results under different coherence conditions of the beam. Other than intensity profiles, the MOI model can also provide the wavefront and the local coherence function at any location along the beamline. The capability of tuning the trade-off between accuracy and efficiency makes the MOI model an ideal tool for beamline design and optimization.« less

  17. Mediators of the relationship between thin-ideal internalization and body dissatisfaction in the natural environment.

    PubMed

    Fitzsimmons-Craft, Ellen E; Bardone-Cone, Anna M; Crosby, Ross D; Engel, Scott G; Wonderlich, Stephen A; Bulik, Cynthia M

    2016-09-01

    Social comparisons (i.e., body, eating, exercise) and body surveillance were tested as mediators of the thin-ideal internalization-body dissatisfaction relationship using ecological momentary assessment (EMA). Participants were 232 college women who completed a 2-week EMA protocol, responding to questions three times per day. Multilevel path analysis was used to examine a 2-1-1 mediation model (thin-ideal internalization assessed as trait; between-person effects examined) and a 1-1-1 model (component of thin-ideal internalization [thin-ideal importance] assessed momentarily; within- and between-person effects examined). For the 2-1-1 model, only body comparison and body surveillance were significant specific mediators of the between-person effect. For the 1-1-1 model, all four variables were significant specific mediators of the within-person effect. Only body comparison was a significant specific mediator of the between-person effect. At the state level, many processes explain the thin-ideal internalization-body dissatisfaction relationship. However, at the trait level, body comparison and body surveillance are more important explanatory factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Mediators of the Relationship Between Thin-Ideal Internalization and Body Dissatisfaction in the Natural Environment

    PubMed Central

    Fitzsimmons-Craft, Ellen E.; Bardone-Cone, Anna M.; Crosby, Ross D.; Engel, Scott G.; Wonderlich, Stephen A.; Bulik, Cynthia M.

    2016-01-01

    Social comparisons (i.e., body, eating, exercise) and body surveillance were tested as mediators of the thin-ideal internalization-body dissatisfaction relationship using ecological momentary assessment (EMA). Participants were 232 college women who completed a 2-week EMA protocol, responding to questions three times per day. Multilevel path analysis was used to examine a 2-1-1 mediation model (thin-ideal internalization assessed as trait; between-person effects examined) and a 1-1-1 model (component of thin-ideal internalization [thin-ideal importance] assessed momentarily; within- and between-person effects examined). For the 2-1-1 model, only body comparison and body surveillance were significant specific mediators of the between-person effect. For the 1-1-1 model, all four variables were significant specific mediators of the within-person effect. Only body comparison was a significant specific mediator of the between-person effect. At the state level, many processes explain the thin-ideal internalization-body dissatisfaction relationship. However, at the trait level, body comparison and body surveillance are more important explanatory factors. PMID:27391791

  19. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    PubMed

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  20. Idealized Computational Models for Auditory Receptive Fields

    PubMed Central

    Lindeberg, Tony; Friberg, Anders

    2015-01-01

    We present a theory by which idealized models of auditory receptive fields can be derived in a principled axiomatic manner, from a set of structural properties to (i) enable invariance of receptive field responses under natural sound transformations and (ii) ensure internal consistency between spectro-temporal receptive fields at different temporal and spectral scales. For defining a time-frequency transformation of a purely temporal sound signal, it is shown that the framework allows for a new way of deriving the Gabor and Gammatone filters as well as a novel family of generalized Gammatone filters, with additional degrees of freedom to obtain different trade-offs between the spectral selectivity and the temporal delay of time-causal temporal window functions. When applied to the definition of a second-layer of receptive fields from a spectrogram, it is shown that the framework leads to two canonical families of spectro-temporal receptive fields, in terms of spectro-temporal derivatives of either spectro-temporal Gaussian kernels for non-causal time or a cascade of time-causal first-order integrators over the temporal domain and a Gaussian filter over the logspectral domain. For each filter family, the spectro-temporal receptive fields can be either separable over the time-frequency domain or be adapted to local glissando transformations that represent variations in logarithmic frequencies over time. Within each domain of either non-causal or time-causal time, these receptive field families are derived by uniqueness from the assumptions. It is demonstrated how the presented framework allows for computation of basic auditory features for audio processing and that it leads to predictions about auditory receptive fields with good qualitative similarity to biological receptive fields measured in the inferior colliculus (ICC) and primary auditory cortex (A1) of mammals. PMID:25822973

  1. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures.

    PubMed

    Yang, Biao; Guo, Qinghua; Tremain, Ben; Liu, Rongjuan; Barr, Lauren E; Yan, Qinghui; Gao, Wenlong; Liu, Hongchao; Xiang, Yuanjiang; Chen, Jing; Fang, Chen; Hibbins, Alastair; Lu, Ling; Zhang, Shuang

    2018-03-02

    Weyl points are the crossings of linearly dispersing energy bands of three-dimensional crystals, providing the opportunity to explore a variety of intriguing phenomena such as topologically protected surface states and chiral anomalies. However, the lack of an ideal Weyl system in which the Weyl points all exist at the same energy and are separated from any other bands poses a serious limitation to the further development of Weyl physics and potential applications. By experimentally characterizing a microwave photonic crystal of saddle-shaped metallic coils, we observed ideal Weyl points that are related to each other through symmetry operations. Topological surface states exhibiting helicoidal structure have also been demonstrated. Our system provides a photonic platform for exploring ideal Weyl systems and developing possible topological devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL.

    PubMed

    Doganay, Ozkan; Wade, Trevor; Hegarty, Elaine; McKenzie, Charles; Schulte, Rolf F; Santyr, Giles E

    2016-08-01

    To implement and optimize a single-shot spiral encoding strategy for rapid 2D IDEAL projection imaging of hyperpolarized (Hp) (129) Xe in the gas phase, and in the pulmonary tissue (PT) and red blood cells (RBCs) compartments of the rat lung, respectively. A theoretical and experimental point spread function analysis was used to optimize the spiral k-space read-out time in a phantom. Hp (129) Xe IDEAL images from five healthy rats were used to: (i) optimize flip angles by a Bloch equation analysis using measured kinetics of gas exchange and (ii) investigate the feasibility of the approach to characterize the exchange of Hp (129) Xe. A read-out time equal to approximately 1.8 × T2* was found to provide the best trade-off between spatial resolution and signal-to-noise ratio (SNR). Spiral IDEAL approaches that use the entire dissolved phase magnetization should give an SNR improvement of a factor of approximately three compared with Cartesian approaches with similar spatial resolution. The IDEAL strategy allowed imaging of gas, PT, and RBC compartments with sufficient SNR and temporal resolution to permit regional gas exchange measurements in healthy rats. Single-shot spiral IDEAL imaging of gas, PT and RBC compartments and gas exchange is feasible in rat lung using Hp (129) Xe. Magn Reson Med 76:566-576, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  3. Impacts of exposure to images of ideal bodies on male body dissatisfaction: a review.

    PubMed

    Blond, Anna

    2008-09-01

    Research suggests that young men's body dissatisfaction increases when they see images of attractive muscular men. This article provides the first extensive review of experimental studies exposing men to advertisements or commercials featuring idealized male bodies. Impacts on body dissatisfaction were evaluated by calculating and analyzing effect sizes from 15 studies. The effect sizes indicate that exposure to images of idealized male bodies has a small but statistically significant negative impact on men's body dissatisfaction. Three studies suggest that young men who are dissatisfied with their bodies are at increased risk for negative self-evaluations when exposed to idealized images. Two studies suggest that men who are satisfied with their bodies may be protected against negative impacts from seeing such images.

  4. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.

    PubMed

    Ene-Iordache, Bogdan; Remuzzi, Andrea

    2017-09-01

    Although our understanding of the failure mechanism of vascular access for hemodialysis has increased substantially, this knowledge has not translated into successful therapies. Despite advances in technology, it is recognized that vascular access is difficult to maintain, due to complications such as intimal hyperplasia. Computational studies have been used to estimate hemodynamic changes induced by vascular access creation. Due to the heterogeneity of patient-specific geometries, and difficulties with obtaining reliable models of access vessels, idealized models were often employed. In this review we analyze the knowledge gained with the use of computational such simplified models. A review of the literature was conducted, considering studies employing a computational fluid dynamics approach to gain insights into the flow field phenotype that develops in idealized models of vascular access. Several important discoveries have originated from idealized model studies, including the detrimental role of disturbed flow and turbulent flow, and the beneficial role of spiral flow in intimal hyperplasia. The general flow phenotype was consistent among studies, but findings were not treated homogeneously since they paralleled achievements in cardiovascular biomechanics which spanned over the last two decades. Computational studies in idealized models are important for studying local blood flow features and evaluating new concepts that may improve the patency of vascular access for hemodialysis. For future studies we strongly recommend numerical modelling targeted at accurately characterizing turbulent flows and multidirectional wall shear disturbances.

  5. From the ideal market to the ideal clinic: constructing a normative standard of fairness for human subjects research.

    PubMed

    Phillips, Trisha

    2011-02-01

    Preventing exploitation in human subjects research requires a benchmark of fairness against which to judge the distribution of the benefits and burdens of a trial. This paper proposes the ideal market and its fair market price as a criterion of fairness. The ideal market approach is not new to discussions about exploitation, so this paper reviews Wertheimer's inchoate presentation of the ideal market as a principle of fairness, attempt of Emanuel and colleagues to apply the ideal market to human subjects research, and Ballantyne's criticisms of both the ideal market and the resulting benchmark of fairness. It argues that the criticism of this particular benchmark is on point, but the rejection of the ideal market is mistaken. After presenting a complete account of the ideal market, this paper proposes a new method for applying the ideal market to human subjects research and illustrates the proposal by considering a sample case.

  6. Structural arrest in an ideal gas.

    PubMed

    van Ketel, Willem; Das, Chinmay; Frenkel, Daan

    2005-04-08

    We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints. The crosses have random but fixed orientation. The static properties of this system are those of an ideal gas, and its collision frequency can be computed analytically. For number densities NL(3)/V>1, the single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering functions collapse onto master curves that depend only on the wave vector.

  7. Ideal Cardiovascular Health and Arterial Stiffness in Spanish Adults-The EVIDENT Study.

    PubMed

    García-Hermoso, Antonio; Martínez-Vizcaíno, Vicente; Gomez-Marcos, Manuel Ángel; Cavero-Redondo, Iván; Recio-Rodriguez, José Ignacio; García-Ortiz, Luis

    2018-05-01

    Studies concerning ideal cardiovascular (CV) health and its relationship with arterial stiffness are lacking. This study examined the association between arterial stiffness with ideal CV health as defined by the American Heart Association, across age groups and gender. The cross-sectional study included 1365 adults. Ideal CV health was defined as meeting ideal levels of the following components: 4 behaviors (smoking, body mass index, physical activity, and Mediterranean diet adherence) and 3 factors (total cholesterol, blood pressure, and glycated hemoglobin). Patients were grouped into 3 categories according to their number of ideal CV health metrics: ideal (5-7 metrics), intermediate (3-4 metrics), and poor (0-2 metrics). We analyzed the pulse wave velocity (PWV), the central and radial augmentation indexes, and the ambulatory arterial stiffness index (AASI). The ideal CV health profile was inversely associated with lower arterial radial augmentation index and AASI in both genders, particularly in middle-aged (45-65 years) and in elderly subjects (>65 years). Also in elderly subjects, adjusted models showed that adults with at least 3 health metrics at ideal levels had significantly lower PWV than those with 2 or fewer ideal health metrics. An association was found between a favorable level of ideal CV health metrics and lower arterial stiffness across age groups. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  8. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    PubMed

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  9. Bayesian Modal Estimation of the Four-Parameter Item Response Model in Real, Realistic, and Idealized Data Sets.

    PubMed

    Waller, Niels G; Feuerstahler, Leah

    2017-01-01

    In this study, we explored item and person parameter recovery of the four-parameter model (4PM) in over 24,000 real, realistic, and idealized data sets. In the first analyses, we fit the 4PM and three alternative models to data from three Minnesota Multiphasic Personality Inventory-Adolescent form factor scales using Bayesian modal estimation (BME). Our results indicated that the 4PM fits these scales better than simpler item Response Theory (IRT) models. Next, using the parameter estimates from these real data analyses, we estimated 4PM item parameters in 6,000 realistic data sets to establish minimum sample size requirements for accurate item and person parameter recovery. Using a factorial design that crossed discrete levels of item parameters, sample size, and test length, we also fit the 4PM to an additional 18,000 idealized data sets to extend our parameter recovery findings. Our combined results demonstrated that 4PM item parameters and parameter functions (e.g., item response functions) can be accurately estimated using BME in moderate to large samples (N ⩾ 5, 000) and person parameters can be accurately estimated in smaller samples (N ⩾ 1, 000). In the supplemental files, we report annotated [Formula: see text] code that shows how to estimate 4PM item and person parameters in [Formula: see text] (Chalmers, 2012 ).

  10. Differential molar heat capacities to test ideal solubility estimations.

    PubMed

    Neau, S H; Bhandarkar, S V; Hellmuth, E W

    1997-05-01

    Calculation of the ideal solubility of a crystalline solute in a liquid solvent requires knowledge of the difference in the molar heat capacity at constant pressure of the solid and the supercooled liquid forms of the solute, delta Cp. Since this parameter is not usually known, two assumptions have been used to simplify the expression. The first is that delta Cp can be considered equal to zero; the alternate assumption is that the molar entropy of fusion, delta Sf, is an estimate of delta Cp. Reports claiming the superiority of one assumption over the other, on the basis of calculations done using experimentally determined parameters, have appeared in the literature. The validity of the assumptions in predicting the ideal solubility of five structurally unrelated compounds of pharmaceutical interest, with melting points in the range 420 to 470 K, was evaluated in this study. Solid and liquid heat capacities of each compound near its melting point were determined using differential scanning calorimetry. Linear equations describing the heat capacities were extrapolated to the melting point to generate the differential molar heat capacity. Linear data were obtained for both crystal and liquid heat capacities of sample and test compounds. For each sample, ideal solubility at 298 K was calculated and compared to the two estimates generated using literature equations based on the differential molar heat capacity assumptions. For the compounds studied, delta Cp was not negligible and was closer to delta Sf than to zero. However, neither of the two assumptions was valid for accurately estimating the ideal solubility as given by the full equation.

  11. Ideals as Anchors for Relationship Experiences

    PubMed Central

    Frye, Margaret; Trinitapoli, Jenny

    2016-01-01

    Research on young-adult sexuality in sub-Saharan Africa typically conceptualizes sex as an individual-level risk behavior. We introduce a new approach that connects the conditions surrounding the initiation of sex with subsequent relationship well-being, examines relationships as sequences of interdependent events, and indexes relationship experiences to individually held ideals. New card-sort data from southern Malawi capture young women’s relationship experiences and their ideals in a sequential framework. Using optimal matching, we measure the distance between ideal and experienced relationship sequences to (1) assess the associations between ideological congruence and perceived relationship well-being, (2) compare this ideal-based approach to other experience-based alternatives, and (3) identify individual- and couple-level correlates of congruence between ideals and experiences in the romantic realm. We show that congruence between ideals and experiences conveys relationship well-being along four dimensions: expressions of love and support, robust communication habits, perceived biological safety, and perceived relationship stability. We further show that congruence is patterned by socioeconomic status and supported by shared ideals within romantic dyads. We argue that conceiving of ideals as anchors for how sexual experiences are manifest advances current understandings of romantic relationships, and we suggest that this approach has applications for other domains of life. PMID:27110031

  12. Ideals and Category Typicality

    ERIC Educational Resources Information Center

    Kim, ShinWoo; Murphy, Gregory L.

    2011-01-01

    Barsalou (1985) argued that exemplars that serve category goals become more typical category members. Although this claim has received support, we investigated (a) whether categories have a single ideal, as negatively valenced categories (e.g., cigarette) often have conflicting goals, and (b) whether ideal items are in fact typical, as they often…

  13. Ideal AFROC and FROC observers.

    PubMed

    Khurd, Parmeshwar; Liu, Bin; Gindi, Gene

    2010-02-01

    Detection of multiple lesions in images is a medically important task and free-response receiver operating characteristic (FROC) analyses and its variants, such as alternative FROC (AFROC) analyses, are commonly used to quantify performance in such tasks. However, ideal observers that optimize FROC or AFROC performance metrics have not yet been formulated in the general case. If available, such ideal observers may turn out to be valuable for imaging system optimization and in the design of computer aided diagnosis techniques for lesion detection in medical images. In this paper, we derive ideal AFROC and FROC observers. They are ideal in that they maximize, amongst all decision strategies, the area, or any partial area, under the associated AFROC or FROC curve. Calculation of observer performance for these ideal observers is computationally quite complex. We can reduce this complexity by considering forms of these observers that use false positive reports derived from signal-absent images only. We also consider a Bayes risk analysis for the multiple-signal detection task with an appropriate definition of costs. A general decision strategy that minimizes Bayes risk is derived. With particular cost constraints, this general decision strategy reduces to the decision strategy associated with the ideal AFROC or FROC observer.

  14. Reconstructing the ideal results of a perturbed analog quantum simulator

    NASA Astrophysics Data System (ADS)

    Schwenk, Iris; Reiner, Jan-Michael; Zanker, Sebastian; Tian, Lin; Leppäkangas, Juha; Marthaler, Michael

    2018-04-01

    Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful quantum simulations. So far there are only limited means to understand the effect of perturbation on the results of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of the correlator 〈Ôi(t ) Ôj(0 ) 〉 from the simulated system, where Ôi are the operators which couple the system to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge of the environment, if any n -time correlator of operators Ôi of the ideal system can be written as products of two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum simulations with systems subjected to environmental noise without adding an overhead to the quantum system.

  15. Modeling NAPL dissolution from pendular rings in idealized porous media

    NASA Astrophysics Data System (ADS)

    Huang, Junqi; Christ, John A.; Goltz, Mark N.; Demond, Avery H.

    2015-10-01

    The dissolution rate of nonaqueous phase liquid (NAPL) often governs the remediation time frame at subsurface hazardous waste sites. Most formulations for estimating this rate are empirical and assume that the NAPL is the nonwetting fluid. However, field evidence suggests that some waste sites might be organic wet. Thus, formulations that assume the NAPL is nonwetting may be inappropriate for estimating the rates of NAPL dissolution. An exact solution to the Young-Laplace equation, assuming NAPL resides as pendular rings around the contact points of porous media idealized as spherical particles in a hexagonal close packing arrangement, is presented in this work to provide a theoretical prediction for NAPL-water interfacial area. This analytic expression for interfacial area is then coupled with an exact solution to the advection-diffusion equation in a capillary tube assuming Hagen-Poiseuille flow to provide a theoretical means of calculating the mass transfer rate coefficient for dissolution at the NAPL-water interface in an organic-wet system. A comparison of the predictions from this theoretical model with predictions from empirically derived formulations from the literature for water-wet systems showed a consistent range of values for the mass transfer rate coefficient, despite the significant differences in model foundations (water wetting versus NAPL wetting, theoretical versus empirical). This finding implies that, under these system conditions, the important parameter is interfacial area, with a lesser role played by NAPL configuration.

  16. Negotiated media effects. Peer feedback modifies effects of media's thin-body ideal on adolescent girls.

    PubMed

    Veldhuis, Jolanda; Konijn, Elly A; Seidell, Jacob C

    2014-02-01

    The present study introduces a theoretical framework on negotiated media effects. Specifically, we argue that feedback of peers on thin-body ideal media images and individual dispositions guide effects on adolescent girls' psychosocial responses to media exposure. Therefore, we examined the thin-body ideal as portrayed in media and peers' feedback on such thin-ideal images in their combined effects on adolescent girls' body dissatisfaction, objectified body consciousness, and social comparison with media models. Hence, media models and peer comments were systematically combined as incorporated entities in YouTube-formats. Hypotheses were tested in a 3 (media models: extremely thin vs. thin vs. normal weight)×3 (peer comments: 6kg-underweight vs. 3kg-underweight vs. normal-weight)×2 (appearance schematicity: lower vs. higher) between-subjects design (N=216). Results showed that peer comments indicating that a media model was 'only 3kg-underweight' exerted most negative responses, particularly in girls who strongly process appearance relevant information. Peer feedback interacts with media models in guiding perceptions of what is considered an 'ideal' body shape. Results highlight the important role of peers as well as individual predispositions in view of understanding how thin-ideal media images may impact adolescent girls' body image concerns. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A new modelling and identification scheme for time-delay systems with experimental investigation: a relay feedback approach

    NASA Astrophysics Data System (ADS)

    Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit

    2017-07-01

    In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.

  18. An Idealized Test of the Response of the Community Atmosphere Model to Near-Grid-Scale Forcing Across Hydrostatic Resolutions

    NASA Astrophysics Data System (ADS)

    Herrington, A. R.; Reed, K. A.

    2018-02-01

    A set of idealized experiments are developed using the Community Atmosphere Model (CAM) to understand the vertical velocity response to reductions in forcing scale that is known to occur when the horizontal resolution of the model is increased. The test consists of a set of rising bubble experiments, in which the horizontal radius of the bubble and the model grid spacing are simultaneously reduced. The test is performed with moisture, through incorporating moist physics routines of varying complexity, although convection schemes are not considered. Results confirm that the vertical velocity in CAM is to first-order, proportional to the inverse of the horizontal forcing scale, which is consistent with a scale analysis of the dry equations of motion. In contrast, experiments in which the coupling time step between the moist physics routines and the dynamical core (i.e., the "physics" time step) are relaxed back to more conventional values results in severely damped vertical motion at high resolution, degrading the scaling. A set of aqua-planet simulations using different physics time steps are found to be consistent with the results of the idealized experiments.

  19. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  20. The Decisions of Elementary School Principals: A Test of Ideal Type Methodology.

    ERIC Educational Resources Information Center

    Greer, John T.

    Interviews with 25 Georgia elementary school principals provided data that could be used to test an application of Max Weber's ideal type methodology to decision-making. Alfred Schuetz's model of the rational act, based on one of Weber's ideal types, was analyzed and translated into describable acts and behaviors. Interview procedures were…

  1. Idealized digital models for conical reed instruments, with focus on the internal pressure waveform.

    PubMed

    Kergomard, J; Guillemain, P; Silva, F; Karkar, S

    2016-02-01

    Two models for the generation of self-oscillations of reed conical woodwinds are presented. The models use the fewest parameters (of either the resonator or the exciter), whose influence can be quickly explored. The formulation extends iterated maps obtained for lossless cylindrical pipes without reed dynamics. It uses spherical wave variables in idealized resonators, with one parameter more than for cylinders: the missing length of the cone. The mouthpiece volume equals that of the missing part of the cone, and is implemented as either a cylindrical pipe (first model) or a lumped element (second model). Only the first model adds a length parameter for the mouthpiece and leads to the solving of an implicit equation. For the second model, any shape of nonlinear characteristic can be directly considered. The complex characteristic impedance for spherical waves requires sampling times smaller than a round trip in the resonator. The convergence of the two models is shown when the length of the cylindrical mouthpiece tends to zero. The waveform is in semi-quantitative agreement with experiment. It is concluded that the oscillations of the positive episode of the mouthpiece pressure are related to the length of the missing part, not to the reed dynamics.

  2. Anharmonic Vibrations of an "Ideal" Hooke's Law Oscillator

    ERIC Educational Resources Information Center

    Thomchick, John; McKelvey, J. P.

    1978-01-01

    Presents a model describing the vibrations of a mass connected to fixed supports by "ideal" Hooke's law springs which may serve as a starting point in the study of the properties of irons in a crystal undergoing soft mode activated transition. (SL)

  3. Work-Life Balance and Ideal Worker Expectations for Administrators

    ERIC Educational Resources Information Center

    Wilk, Kelly E.

    2016-01-01

    This chapter explores the work-life experiences of administrators as well as whether and how the ideal worker model affects those experiences. Departmental and supervisory differences and technology complicate administrators' work-life experiences.

  4. Charge-Trapping-Induced Non-Ideal Behaviors in Organic Field-Effect Transistors.

    PubMed

    Un, Hio-Ieng; Cheng, Peng; Lei, Ting; Yang, Chi-Yuan; Wang, Jie-Yu; Pei, Jian

    2018-05-01

    Organic field-effect transistors (OFETs) with impressively high hole mobilities over 10 cm 2 V -1 s -1 and electron mobilities over 1 cm 2 V -1 s -1 have been reported in the past few years. However, significant non-ideal electrical characteristics, e.g., voltage-dependent mobilities, have been widely observed in both small-molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor-unrelated, charge-trapping-induced non-ideality in OFETs is reported, and a revised model for the non-ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping-induced non-ideality exists in OFETs with different types of charge carriers (p-type or n-type), different types of dielectric materials (inorganic and organic) that contain different functional groups (OH, NH 2 , COOH, etc.). As fas as it is known, this is the first report for the non-ideal transport behaviors in OFETs caused by semiconductor-independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non-ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The equivalence of a human observer and an ideal observer in binary diagnostic tasks

    NASA Astrophysics Data System (ADS)

    He, Xin; Samuelson, Frank; Gallas, Brandon D.; Sahiner, Berkman; Myers, Kyle

    2013-03-01

    The Ideal Observer (IO) is "ideal" for given data populations. In the image perception process, as the raw images are degraded by factors such as display and eye optics, there is an equivalent IO (EIO). The EIO uses the statistical information that exits the perception/cognitive degradations as the data. We assume a human observer who received sufficient training, e.g., radiologists, and hypothesize that such a human observer can be modeled as if he is an EIO. To measure the likelihood ratio (LR) distributions of an EIO, we formalize experimental design principles that encourage rationality based on von Neumann and Morgenstern's (vNM) axioms. We present examples to show that many observer study design refinements, although motivated by empirical principles explicitly, implicitly encourage rationality. Our hypothesis is supported by a recent review paper on ROC curve convexity by Pesce, Metz, and Berbaum. We also provide additional evidence based on a collection of observer studies in medical imaging. EIO theory shows that the "sub-optimal" performance of a human observer can be mathematically formalized in the form of an IO, and measured through rationality encouragement.

  6. Does Media Literacy Mitigate Risk for Reduced Body Satisfaction Following Exposure to Thin-Ideal Media?

    PubMed

    McLean, Siân A; Paxton, Susan J; Wertheim, Eleanor H

    2016-08-01

    Exposure to thin-ideal media can contribute to increased body dissatisfaction in adolescent girls. Understanding the factors that may prevent or exacerbate the negative effects of media exposure on body dissatisfaction is important to facilitate prevention of these problems. This study evaluated the effects of exposure to thin-ideal media images on body image in three instructional set experimental conditions: appearance comparison, peer norms, and control. An important aim was to examine baseline levels of media literacy as a protective factor and trait thin-ideal internalization and trait upward appearance comparison as risk factors. Early adolescent girls (N = 246) completed baseline measures and 1 week later viewed thin-ideal media images, before and after which they rated their state body satisfaction. Participants in the appearance comparison instruction but not peer norms instruction condition had significantly reduced body satisfaction. Media literacy, particularly high levels of critical thinking, mitigated the negative effects of trait thin-ideal internalization and trait upward appearance comparison on body satisfaction outcomes. These findings provide evidence for the role of media literacy as a protective factor against the negative effects on body satisfaction of exposure to thin-ideal media images, and also provide evidence to support the development and implementation of media literacy-based body image interventions.

  7. New experimental model for single liver lobe hyperthermia in small animals using non-directional microwaves

    PubMed Central

    Iliescu, Radu; Dimofte, Gabriel M.

    2017-01-01

    Purpose Our aim was to develop a new experimental model for in vivo hyperthermia using non-directional microwaves, applicable to small experimental animals. We present an affordable approach for targeted microwave heat delivery to an isolated liver lobe in rat, which allows rapid, precise and stable tissue temperature control. Materials and methods A new experimental model is proposed. We used a commercial available magnetron generating 2450 MHz, with 4.4V and 14A in the filament and 4500V anodic voltage. Modifications were required in order to adjust tissue heating such as to prevent overheating and to allow for fine adjustments according to real-time target temperature. The heating is controlled using a virtual instrument application implemented in LabView® and responds to 0.1° C variations in the target. Ten healthy adult male Wistar rats, weighing 250–270 g were used in this study. The middle liver lobe was the target for controlled heating, while the rest of the living animal was protected. Results In vivo microwave delivery using our experimental setting is safe for the animals. Target tissue temperature rises from 30°C to 40°C with 3.375°C / second (R2 = 0.9551), while the increment is lower it the next two intervals (40–42°C and 42–44°C) with 0.291°C/ s (R2 = 0.9337) and 0.136°C/ s (R2 = 0.7894) respectively, when testing in sequences. After reaching the desired temperature, controlled microwave delivery insures a very stable temperature during the experiments. Conclusions We have developed an inexpensive and easy to manufacture system for targeted hyperthermia using non-directional microwave radiation. This system allows for fine and stable temperature adjustments within the target tissue and is ideal for experimental models testing below or above threshold hyperthermia PMID:28934251

  8. A theoretical study on hot charge-transfer states and dimensional effects of organic photocells based on an ideal diode model.

    PubMed

    Shimazaki, Tomomi; Nakajima, Takahito

    2017-05-21

    This paper discusses an ideal diode model with hot charge-transfer (CT) states to analyze the power conversion efficiency of an organic photocell. A free carrier generation mechanism via sunlight in an organic photocell consists of four microscopic processes: photon absorption, exciton dissociation, CT, and charge separation. The hot CT state effect has been actively investigated to understand the charge separation process. We previously reported a theoretical method to calculate the efficiency of the charge separation process via a hot CT state (T. Shimazaki et al., Phys. Chem. Chem. Phys., 2015, 17, 12538 and J. Chem. Phys., 2016, 144, 234906). In this paper, we integrate the simulation method into the ideal photocell diode model and calculate several properties such as short circuit current, open circuit voltage, and power conversion efficiency. Our results highlight that utilizing the dimensional (entropy) effect together with the hot CT state can play an essential role in developing more efficient organic photocell devices.

  9. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling

    NASA Astrophysics Data System (ADS)

    Gupta, Sunit K.; Wahi, Pankaj

    2018-01-01

    We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.

  10. An experimental animal model for percutaneous procedures used in trigeminal neuralgia.

    PubMed

    Herta, Johannes; Wang, Wei-Te; Höftberger, Romana; Breit, Sabine; Kneissl, Sibylle; Bergmeister, Helga; Ferraz-Leite, Heber

    2017-07-01

    This study describes an experimental rabbit model that allows the reproduction of percutaneous operations that are used in patients with trigeminal neuralgia (TN). Attention was given to an exact anatomical description of the rabbit's middle cranial fossa as well as the establishment of conditions for a successful procedure. Morphometric measurements were taken from 20 rabbit skulls and CT scans. The anatomy of the trigeminal nerve, as well as its surrounding structures, was assessed by bilateral dissection of 13 New Zealand white rabbits (NWR). An ideal approach of placing a needle through the foramen ovale to reach the TG was sought. Validation of correct placement was realized by fluoroscopy and confirmed by dissection. Precise instructions for successful reproduction of percutaneous procedures in NWR were described. According to morphological measurements, for balloon compression of the trigeminal ganglion (TG) the maximal diameter of an introducing cannula is 1.85 mm. The diameter of an empty balloon catheter should not exceed 1.19 mm, and the length of the inflatable part of the balloon can range up to 4 mm. For thermocoagulation the needle electrodes must not exceed an external diameter of 1.39, mm and the length of the non-insolated tip can range up to 4 mm. Glycerol rhizolysis can be achieved because the trigeminal cistern in the NWR is a closed space that allows a long dwelling time (>10 min) of the contrast agent. An experimental NWR model intended for the reproduction of percutaneous procedures on the TG has been meticulously described. This provides a tool that enables further standardized animal research in the field of surgical treatment of TN.

  11. Experimental and Numerical Investigation of Two Dimensional CO2 Adsorption/Desorption in Packed Sorption Beds under Non-Ideal Flows

    NASA Technical Reports Server (NTRS)

    Mohamadinejad, H.; Knox, J. C.; Smith, J. E.; Croomes, Scott (Technical Monitor)

    2001-01-01

    The experimental results of CO2 adsorption and desorption in a packed column indicated that the concentration wave front at the center of the packed column differs from those which are close to the wall of column filled with adsorbent material even though the ratio of column diameter to the particle size is greater than 20. The comparison of the experimental results with one dimensional model of packed column shows that in order to simulate the average breakthrough in a packed column a two dimensional (radial and axial) model of packed column is needed. In this paper the mathematical model of a non-slip flow through a packed column with 2 inches in diameter and 18 inches in length filled with 5A zeolite pellets is presented. The comparison of experimental results of CO2 absorption and desorption for the mixed and central breakthrough of the packed column with numerical results is also presented.

  12. C4MIP - The Coupled Climate-Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; Bopp, Laurent; Brovkin, Victor; Dunne, John; Graven, Heather; Hoffman, Forrest; Ilyina, Tatiana; John, Jasmin G.; Jung, Martin; Kawamiya, Michio; Koven, Charlie; Pongratz, Julia; Raddatz, Thomas; Randerson, James T.; Zaehle, Sönke

    2016-08-01

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks are potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate-carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate-carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will respond to

  13. Comparing fluid mechanics models with experimental data.

    PubMed Central

    Spedding, G R

    2003-01-01

    The art of modelling the physical world lies in the appropriate simplification and abstraction of the complete problem. In fluid mechanics, the Navier-Stokes equations provide a model that is valid under most circumstances germane to animal locomotion, but the complexity of solutions provides strong incentive for the development of further, more simplified practical models. When the flow organizes itself so that all shearing motions are collected into localized patches, then various mathematical vortex models have been very successful in predicting and furthering the physical understanding of many flows, particularly in aerodynamics. Experimental models have the significant added convenience that the fluid mechanics can be generated by a real fluid, not a model, provided the appropriate dimensionless groups have similar values. Then, analogous problems can be encountered in making intelligible but independent descriptions of the experimental results. Finally, model predictions and experimental results may be compared if, and only if, numerical estimates of the likely variations in the tested quantities are provided. Examples from recent experimental measurements of wakes behind a fixed wing and behind a bird in free flight are used to illustrate these principles. PMID:14561348

  14. Idealized Experiments for Optimizing Model Parameters Using a 4D-Variational Method in an Intermediate Coupled Model of ENSO

    NASA Astrophysics Data System (ADS)

    Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang

    2018-04-01

    Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.

  15. Kirkwood–Buff integrals for ideal solutions

    PubMed Central

    Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.

    2010-01-01

    The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282

  16. Prediction of hip joint load and translation using musculoskeletal modelling with force-dependent kinematics and experimental validation.

    PubMed

    Zhang, Xuan; Chen, Zhenxian; Wang, Ling; Yang, Wenjian; Li, Dichen; Jin, Zhongmin

    2015-07-01

    Musculoskeletal lower limb models are widely used to predict the resultant contact force in the hip joint as a non-invasive alternative to instrumented implants. Previous musculoskeletal models based on rigid body assumptions treated the hip joint as an ideal sphere with only three rotational degrees of freedom. An musculoskeletal model that considered force-dependent kinematics with three additional translational degrees of freedom was developed and validated in this study by comparing it with a previous experimental measurement. A 32-mm femoral head against a polyethylene cup was considered in the musculoskeletal model for calculating the contact forces. The changes in the main modelling parameters were found to have little influence on the hip joint forces (relative deviation of peak value < 10 BW%, mean trial deviation < 20 BW%). The centre of the hip joint translation was more sensitive to the changes in the main modelling parameters, especially muscle recruitment type (relative deviation of peak value < 20%, mean trial deviation < 0.02 mm). The predicted hip contact forces showed consistent profiles, compared with the experimental measurements, except in the lateral-medial direction. The ratio-average analysis, based on the Bland-Altman's plots, showed better limits of agreement in climbing stairs (mean limits of agreement: -2.0 to 6.3 in walking, mean limits of agreement: -0.5 to 3.1 in climbing stairs). Better agreement of the predicted hip contact forces was also found during the stance phase. The force-dependent kinematics approach underestimated the maximum hip contact force by a mean value of 6.68 ± 1.75% BW compared with the experimental measurements. The predicted maximum translations of the hip joint centres were 0.125 ± 0.03 mm in level walking and 0.123 ± 0.005 mm in climbing stairs. © IMechE 2015.

  17. Foraging behaviour in tadpoles of the bronze frog Rana temporalis: experimental evidence for the ideal free distribution.

    PubMed

    Veeranagoudar, Dheeraj K; Shanbhag, Bhagyashri A; Saidapur, Srinivas K

    2004-06-01

    The ability of bronze frog Rana temporalis tadpoles (pure or mixed parental lines) to assess the profitability of food habitats and distribute themselves accordingly was tested experimentally using a rectangular choice tank with a non- continuous input design. Food (boiled spinach) was placed at two opposite ends of the choice tank in a desired ratio (1 : 1, 1 : 2 or 1 : 4) to create habitat A and B. The tadpoles in Gosner stage 28-33, pre-starved for 24 h, were introduced in an open ended mesh cylinder placed in the center of the choice tank, held for 4 min (for acclimation) and then released to allow free movement and habitat selection. The number of tadpoles foraging at each habitat was recorded at 10, 15, 20, 25 and 30 min time intervals. The actual suitability, Si (the food available in a habitat after colonization of tadpoles) of each habitat was obtained from the equation Si = Bi - fi (di) where Bi is basic suitability (amount of food provided at each habitat before release of tadpoles), fi is the rate of depletion of food (lowering effect) with introduction of each tadpole, and di is the density of tadpoles in habitat i. The expected number of tadpoles at each habitat was derived from the actual suitability. With no food in the choice tank, movement of the tadpoles in the test arena was random indicating no bias towards any end of the choice tank or the procedure. In tests with a 1 : 1 food ratio, the observed ratio of tadpoles (11.71 : 12.28) was comparable with the expected 12 : 12 ratio. The observed number of tadpoles in the habitats with a 1 : 2 food ratio was 8.71 : 15.29 and 7.87 : 16.13 for pure and mixed parental lines respectively. In both cases, the observed ratios were close to the expected values (7 : 17). Likewise, in experiments with a 1 : 4 food ratio, the observed number of tadpoles in the two habitats (10.78 : 37.22) did not differ significantly from the expected ratio of 7 : 41. In all tests, the number of R. temporalis tadpoles matched

  18. Modelling Short-Term Maximum Individual Exposure from Airborne Hazardous Releases in Urban Environments. Part ΙI: Validation of a Deterministic Model with Wind Tunnel Experimental Data.

    PubMed

    Efthimiou, George C; Bartzis, John G; Berbekar, Eva; Hertwig, Denise; Harms, Frank; Leitl, Bernd

    2015-06-26

    The capability to predict short-term maximum individual exposure is very important for several applications including, for example, deliberate/accidental release of hazardous substances, odour fluctuations or material flammability level exceedance. Recently, authors have proposed a simple approach relating maximum individual exposure to parameters such as the fluctuation intensity and the concentration integral time scale. In the first part of this study (Part I), the methodology was validated against field measurements, which are governed by the natural variability of atmospheric boundary conditions. In Part II of this study, an in-depth validation of the approach is performed using reference data recorded under truly stationary and well documented flow conditions. For this reason, a boundary-layer wind-tunnel experiment was used. The experimental dataset includes 196 time-resolved concentration measurements which detect the dispersion from a continuous point source within an urban model of semi-idealized complexity. The data analysis allowed the improvement of an important model parameter. The model performed very well in predicting the maximum individual exposure, presenting a factor of two of observations equal to 95%. For large time intervals, an exponential correction term has been introduced in the model based on the experimental observations. The new model is capable of predicting all time intervals giving an overall factor of two of observations equal to 100%.

  19. Ideal regularization for learning kernels from labels.

    PubMed

    Pan, Binbin; Lai, Jianhuang; Shen, Lixin

    2014-08-01

    In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Intuitionistic fuzzy n-fold KU-ideal of KU-algebra

    NASA Astrophysics Data System (ADS)

    Mostafa, Samy M.; Kareem, Fatema F.

    2018-05-01

    In this paper, we apply the notion of intuitionistic fuzzy n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionistic fuzzy closed ideal and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, a few results of intuitionistic fuzzy n-fold KU-ideals of a KU-algebra under homomorphism are discussed.

  1. Ideal Magnetic Dipole Scattering

    NASA Astrophysics Data System (ADS)

    Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.

    2017-04-01

    We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.

  2. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.

    The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less

  3. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

    DOE PAGES

    Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...

    2017-03-28

    The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less

  4. An experimental investigation of a psychoeducational strategy designed to reduce men's endorsement of societal ideals of women's attractiveness.

    PubMed

    Yamamiya, Yuko; Thompson, J Kevin

    2009-01-01

    The current study evaluated whether a psychoeducational manipulation, focused on reducing an unrealistic view of women's attractiveness, might affect men's ratings of the attractiveness of females. The participants were 159 male undergraduate students who were randomly assigned to four conditions: psychoeducational message (beauty ideals; marketing strategies) and photo exposure (attractive females; household products). The results indicated that males pre-exposed to attractive female images subsequently evaluated average females as less attractive than those exposed to household products. However, a psychoeducational information condition designed to challenge "beauty ideals" did not reduce the adverse exposure effect and was comparable in effectiveness to the "marketing strategies" manipulation. The limitations of the findings are discussed and avenues for future research in this area offered.

  5. Determination of some pure compound ideal-gas enthalpies of formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W. V.; Chirico, R. D.; Nguyen, A.

    1989-06-01

    The results of a study aimed at improvement of group-additivity methodology for estimation of thermodynamic properties of organic substances are reported. Specific weaknesses where ring corrections were unknown or next-nearest-neighbor interactions were only estimated because of lack of experimental data are addressed by experimental studies of enthalpies of combustion in the condensed- phase and vapor pressure measurements. Ideal-gas enthalpies of formation are reported for acrylamide, succinimide, ..gamma..-butyrolactone, 2-pyrrolidone, 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, 1,3-cyclohexadiene, 1,4-cyclohexadiene, and 1-methyl-1-phenylhydrazine. Ring corrections, group terms, and next-nearest-neighbor interaction terms useful in the application of group additivity correlations are derived. 44 refs., 2 figs., 59 tabs.

  6. Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500C. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO2 and SOx).« less

  7. Predictors of vulnerability to reduced body image satisfaction and psychological wellbeing in response to exposure to idealized female media images in adolescent girls.

    PubMed

    Durkin, Sarah J; Paxton, Susan J

    2002-11-01

    Predictors of change in body satisfaction, depressed mood, anxiety and anger, were examined following exposure to idealized female advertising images in Grades 7 and 10 girls. Stable body dissatisfaction, physical appearance comparison tendency, internalization of thin ideal, self-esteem, depression, identity confusion and body mass index (BMI) were assessed. One week later, participants viewed magazine images, before and after which they completed assessments of state body satisfaction, state depression, state anxiety and state anger. Participants were randomly allocated to view either images of idealized females (experimental condition) or fashion accessories (control condition). For both grades, there was a significant decrease in state body satisfaction and a significant increase in state depression attributable to viewing the female images. In Grade 7 girls in the experimental condition, decrease in state body satisfaction was predicted by stable body dissatisfaction and BMI, while significant predictors of decreases in the measures of negative affect included internalization of the thin-ideal and appearance comparison. In Grade 10 girls, reduction in state body satisfaction and increase in state depression was predicted by internalization of the thin-ideal, appearance comparison and stable body dissatisfaction. These findings indicate the importance of individual differences in short-term reaction to viewing idealized media images. Copyright 2002 Elsevier Science Inc.

  8. Improved Classification of Mammograms Following Idealized Training

    PubMed Central

    Hornsby, Adam N.; Love, Bradley C.

    2014-01-01

    People often make decisions by stochastically retrieving a small set of relevant memories. This limited retrieval implies that human performance can be improved by training on idealized category distributions (Giguère & Love, 2013). Here, we evaluate whether the benefits of idealized training extend to categorization of real-world stimuli, namely classifying mammograms as normal or tumorous. Participants in the idealized condition were trained exclusively on items that, according to a norming study, were relatively unambiguous. Participants in the actual condition were trained on a representative range of items. Despite being exclusively trained on easy items, idealized-condition participants were more accurate than those in the actual condition when tested on a range of item types. However, idealized participants experienced difficulties when test items were very dissimilar from training cases. The benefits of idealization, attributable to reducing noise arising from cognitive limitations in memory retrieval, suggest ways to improve real-world decision making. PMID:24955325

  9. Improved Classification of Mammograms Following Idealized Training.

    PubMed

    Hornsby, Adam N; Love, Bradley C

    2014-06-01

    People often make decisions by stochastically retrieving a small set of relevant memories. This limited retrieval implies that human performance can be improved by training on idealized category distributions (Giguère & Love, 2013). Here, we evaluate whether the benefits of idealized training extend to categorization of real-world stimuli, namely classifying mammograms as normal or tumorous. Participants in the idealized condition were trained exclusively on items that, according to a norming study, were relatively unambiguous. Participants in the actual condition were trained on a representative range of items. Despite being exclusively trained on easy items, idealized-condition participants were more accurate than those in the actual condition when tested on a range of item types. However, idealized participants experienced difficulties when test items were very dissimilar from training cases. The benefits of idealization, attributable to reducing noise arising from cognitive limitations in memory retrieval, suggest ways to improve real-world decision making.

  10. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will

  11. C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6

    DOE PAGES

    Jones, Chris D.; Arora, Vivek; Friedlingstein, Pierre; ...

    2016-08-25

    Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupled Model Intercomparison Project (CMIP6) has grown significantly in scope with the design and documentation of individual simulations delegated to individual climate science communities. The Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) takes responsibility for design, documentation, and analysis of carbon cycle feedbacks and interactions in climate simulations. These feedbacks aremore » potentially large and play a leading-order contribution in determining the atmospheric composition in response to human emissions of CO 2 and in the setting of emissions targets to stabilize climate or avoid dangerous climate change. For over a decade, C4MIP has coordinated coupled climate–carbon cycle simulations, and in this paper we describe the C4MIP simulations that will be formally part of CMIP6. While the climate–carbon cycle community has created this experimental design, the simulations also fit within the wider CMIP activity, conform to some common standards including documentation and diagnostic requests, and are designed to complement the CMIP core experiments known as the Diagnostic, Evaluation and Characterization of Klima (DECK). C4MIP has three key strands of scientific motivation and the requested simulations are designed to satisfy their needs: (1) pre-industrial and historical simulations (formally part of the common set of CMIP6 experiments) to enable model evaluation, (2) idealized coupled and partially coupled simulations with 1 % per year increases in CO 2 to enable diagnosis of feedback strength and its components, (3) future scenario simulations to project how the Earth system will

  12. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  13. An ideal free-kick

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Faella, O.

    2017-01-01

    The kinematics of a free-kick is studied. As in projectile motion, the free-kick is ideal since we assume that a point-like ball moves in the absence of air resistance. We have experienced the fortunate conjuncture of a classical mechanics lecture taught right before an important football game. These types of sports events might trigger a great deal of attention from the classroom. The idealized problem is devised in such a way that students are eager to come to the end of the whole story.

  14. Tripolar-cuff deviation from ideal model: assessment by bioelectric field simulations and saline-bath experiments.

    PubMed

    Triantis, Iasonas F; Demosthenous, Andreas

    2008-06-01

    Ideally, interference in neural measurements due to signals from nearby muscles can be completely eliminated with the use of tripolar cuffs, in combination with appropriate amplifier configurations, such as the quasi-tripole (QT) and the true-tripole (TT). The operation of these amplifiers, is based on the theoretical property of the nerve cuff to produce a linear relationship of potential versus distance along its length, internally, when external potentials appear between its ends. Thus, in principle, electroneurogram (ENG) recordings from an ideal tripolar cuff would be free from electromyogram (EMG) interference generated by nearby muscles. However, in practice the cuff exhibits non-ideal behaviour leading to "cuff imbalance". The main focus of this paper is to investigate the causes of cuff imbalance, to demonstrate that it should be incorporated as a main parameter in the theoretical ENG-recording cuff electrode model. In addition to cuff asymmetry and tissue growth, the proximity of the interference source to the cuff is shown to result in cuff imbalance. The influence of proximity imbalance on the performance of the QT and TT amplifiers is also considered. Proximity imbalance is studied using bioelectric field simulations and saline-bath experiments. Variation is observed with both distance (40 mm and 70 mm was examined) and orientation (0-180 degrees), with the latter causing a more severe effect especially when the source dipole and the cuff are vertical to each other. The simulations and measurements are in close agreement. Tissue growth imbalance and asymmetry imbalance are also investigated in vitro. Finally, the signal-to-interference ratio (SIR; ENG/EMG) of the QT and TT amplifiers is examined in the presence of cuff imbalance. It is shown that proximity imbalance results in their SIR to peak only at certain cuff orientation values. This important finding offers an insight as to why in practice ENG recordings using these amplifiers have been widely

  15. Ideal hydrodynamics and elliptic flow at CERN Super Proton Synchrotron (SPS) energies: Importance of the initial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Hannah; Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main; Bleicher, Marcus

    2009-05-15

    The elliptic flow excitation function calculated in a full (3+1) dimensional hybrid Boltzmann approach with an intermediate hydrodynamic stage for heavy ion reactions from GSI Schwerionen Synchrotron to the highest CERN Super Proton Synchrotron (SPS) energies is discussed in the context of the experimental data. In this study, we employ a hadron gas equation of state to investigate the differences in the dynamics and viscosity effects. The specific event-by-event setup with initial conditions and freeze-out from a nonequilibrium transport model allows for a direct comparison between ideal fluid dynamics and transport simulations. At higher SPS energies, where the pure transportmore » calculation cannot account for the high elliptic flow values, the smaller mean free path in the hydrodynamic evolution leads to higher elliptic flow values. In contrast to previous studies within pure hydrodynamics, the more realistic initial conditions employed here and the inclusion of a sequential final state hadronic decoupling provides results that are in line with the experimental data almost over the whole energy range from E{sub lab}=2-160A GeV. Thus, this new approach leads to a substantially different shape of the v{sub 2}/{epsilon} scaling curve as a function of (1/SdN{sub ch}/dy) in line with the experimental data compared to previous ideal hydrodynamic calculations. This hints at a strong influence of the initial conditions for the hydrodynamic evolution on the finally observed v{sub 2} values, thus questioning the standard interpretation that the hydrodynamic limit is only reached at BNL Relativistic Heavy Ion Collider energies.« less

  16. Experimental Concepts for Testing Seismic Hazard Models

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Jordan, T. H.

    2015-12-01

    Seismic hazard analysis is the primary interface through which useful information about earthquake rupture and wave propagation is delivered to society. To account for the randomness (aleatory variability) and limited knowledge (epistemic uncertainty) of these natural processes, seismologists must formulate and test hazard models using the concepts of probability. In this presentation, we will address the scientific objections that have been raised over the years against probabilistic seismic hazard analysis (PSHA). Owing to the paucity of observations, we must rely on expert opinion to quantify the epistemic uncertainties of PSHA models (e.g., in the weighting of individual models from logic-tree ensembles of plausible models). The main theoretical issue is a frequentist critique: subjectivity is immeasurable; ergo, PSHA models cannot be objectively tested against data; ergo, they are fundamentally unscientific. We have argued (PNAS, 111, 11973-11978) that the Bayesian subjectivity required for casting epistemic uncertainties can be bridged with the frequentist objectivity needed for pure significance testing through "experimental concepts." An experimental concept specifies collections of data, observed and not yet observed, that are judged to be exchangeable (i.e., with a joint distribution independent of the data ordering) when conditioned on a set of explanatory variables. We illustrate, through concrete examples, experimental concepts useful in the testing of PSHA models for ontological errors in the presence of aleatory variability and epistemic uncertainty. In particular, we describe experimental concepts that lead to exchangeable binary sequences that are statistically independent but not identically distributed, showing how the Bayesian concept of exchangeability generalizes the frequentist concept of experimental repeatability. We also address the issue of testing PSHA models using spatially correlated data.

  17. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  18. Optimal Experimental Design for Model Discrimination

    PubMed Central

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it possible to determine these values, and thereby identify an optimal experimental design. After describing the method, it is demonstrated in two content areas in cognitive psychology in which models are highly competitive: retention (i.e., forgetting) and categorization. The optimal design is compared with the quality of designs used in the literature. The findings demonstrate that design optimization has the potential to increase the informativeness of the experimental method. PMID:19618983

  19. The influence of materialism and ideal body internalization on body-dissatisfaction and body-shaping behaviors of young men and women: support for the Consumer Culture Impact Model.

    PubMed

    Guðnadóttir, Unnur; Garðarsdóttir, Ragna B

    2014-04-01

    Exposure to media images of the 'body-perfect' ideal has been partly blamed for the pursuit of thinness among women and muscularity among men. Research has largely overlooked the materialistic messages frequently associated with these images. We present findings from two studies with Icelandic students aged 18-21, one focusing on young women (n = 303) and one on young men (n = 226), which test associations of materialistic and body-perfect ideals with body dissatisfaction and excessive body shaping behaviors. In both studies, the internalization of materialistic values is strongly linked to the internalization of body-perfect ideals: the thin-ideal for young women, and the muscular-ideal for young men. A materialist value orientation also predicted body dissatisfaction in both studies, and was linked to body shaping behaviors, albeit differently for young women and men. Thus, the research identifies materialism as a further correlate of both body dissatisfaction and excessive body-shaping behaviors. The findings support Dittmar's (2008) Consumer Culture Impact Model, which proposes that the body-perfect and 'material good life' ideals jointly impact well-being. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  20. Ultrasonic density measurement cell design and simulation of non-ideal effects.

    PubMed

    Higuti, Ricardo Tokio; Buiochi, Flávio; Adamowski, Júlio Cezar; de Espinosa, Francisco Montero

    2006-07-01

    This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used.

  1. The European Ideal of a University: Portugal's Views from the 1950s and 1960s

    ERIC Educational Resources Information Center

    Brandão, Tiago

    2015-01-01

    This study stems from research on the "Standing Conferences of Rectors and Vice-Chancellors of the European Universities" (1948-), an experimental initiative for co-operation among European universities, emphasising the reformative ideal that appeared in international circles in the years following the Second World War. These conceptions…

  2. Recharging Our Sense of Idealism: Concluding Thoughts

    ERIC Educational Resources Information Center

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  3. Ideal gender identity related to parent images and locus of control: Jungian and social learning perspectives.

    PubMed

    Shimoda, Hiroko; Keskinen, Soili

    2004-06-01

    In this research, we wanted to clarify how gender images are different or invariant and related to parents, attributes, and the attitude of controlling life (locus of control) in two cultural contexts, Japan and Finland. For this purpose, students' ideal gender images, consisting of ideal mother, female, father and male images, and parents' similarity to the four ideal gender images were studied in 135 Japanese and 119 Finnish university students. Major findings were (a) Japanese students' ideal gender images were more stereotypic than those of Finnish students; (b) students' ideal mother image and parents' similarity to the ideal mother image were related only to their sex, which supports Jung's theory; (c) students socially learned other ideal gender images, but these did not fit with expectation from social learning theory; (d) Japanese students' mothers are models or examples of gender images, but Finnish male students did not seem to base their ideal gender images on their parents. Implication of measures was discussed.

  4. Experimental and Modeling Studies of the Combustion Characteristics of Conventional and Alternative Jet Fuels. Final Report

    NASA Technical Reports Server (NTRS)

    Meeks, Ellen; Naik, Chitral V.; Puduppakkam, Karthik V.; Modak, Abhijit; Egolfopoulos, Fokion N.; Tsotsis, Theo; Westbrook, Charles K.

    2011-01-01

    The objectives of this project have been to develop a comprehensive set of fundamental data regarding the combustion behavior of jet fuels and appropriately associated model fuels. Based on the fundamental study results, an auxiliary objective was to identify differentiating characteristics of molecular fuel components that can be used to explain different fuel behavior and that may ultimately be used in the planning and design of optimal fuel-production processes. The fuels studied in this project were Fischer-Tropsch (F-T) fuels and biomass-derived jet fuels that meet certain specifications of currently used jet propulsion applications. Prior to this project, there were no systematic experimental flame data available for such fuels. One of the key goals has been to generate such data, and to use this data in developing and verifying effective kinetic models. The models have then been reduced through automated means to enable multidimensional simulation of the combustion characteristics of such fuels in real combustors. Such reliable kinetic models, validated against fundamental data derived from laminar flames using idealized flow models, are key to the development and design of optimal combustors and fuels. The models provide direct information about the relative contribution of different molecular constituents to the fuel performance and can be used to assess both combustion and emissions characteristics.

  5. Alzheimer’s Disease: Experimental Models and Reality

    PubMed Central

    Drummond, Eleanor

    2017-01-01

    Experimental models of Alzheimer’s disease (AD) are critical to gaining a better understanding of pathogenesis and to assess the potential of novel therapeutic approaches. The most commonly used experimental animal models are transgenic mice that overexpress human genes associated with familial AD (FAD) that result in the formation of amyloid plaques. However, AD is defined by the presence and interplay of both amyloid plaques and neurofibrillary tangle pathology. The track record of success in AD clinical trials thus far has been very poor. In part, this high failure rate has been related to the premature translation of highly successful results in animal models that mirror only limited aspects of AD pathology to humans. A greater understanding of the strengths and weakness of each of the various models and the use of more than one model to evaluate potential therapies would help enhance the success of therapy translation from preclinical studies to patients. In this review we summarize the pathological features and limitations of the major experimental models of AD including transgenic mice, transgenic rats, various physiological models of sporadic AD and in vitro human cell culture models. PMID:28025715

  6. Multiple climate regimes in an idealized lake-ice-atmosphere model

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the

  7. Asymmetry in convection and restratification in the Nordic Seas: an idealized model study

    NASA Astrophysics Data System (ADS)

    Ypma, Stefanie L.; Brüggemann, Nils; Pietrzak, Julie D.; Katsman, Caroline A.

    2017-04-01

    The Nordic Seas are an important production region for dense water masses that feed the lower limb of the Atlantic Meridional Overturning Circulation. They display a pronounced hydrographic asymmetry, with a warm eastern basin, and a cold western basin. Previous studies have shown that this asymmetry is set by the interplay between large eddies shed near the coast of Norway where the continental slope steepens, and the Mohn-Knipovich ridge that separates the Lofoten Basin in the east from the Greenland Basin in the west. While it is known from earlier studies that eddies play a crucial role for the yearly cycle of wintertime convection and summertime restratification in marginal seas like the Labrador Sea, the situation in the Nordic Seas is different as the large eddies can only restratify the eastern part of the Nordic Seas due to the presence of the ridge. Possibly due to this asymmetry in eddy activity and a weaker stratification as a result, the western basin is more sensitive for intense deep convection. The question remains how this area is restratified after a deep convection event in the absence of large eddies and how the dense water is able to leave the basin. An high resolution, idealized model configuration of the MITgcm is used that reproduces the main characteristics of the Nordic Seas, including a warm cyclonic boundary current, a strong eddy field in the east and the hydrographic asymmetry between east and west. The idealized approach enables multiple sensitivity studies to changes in the eddy field and the boundary current and provides the possibility to investigate cause and effect, while keeping the set-up simple. We will present results of tracer studies where the sensitivity of the spreading and the restratification of dense water to the formation location in both basins is studied.

  8. Genetic and environmental influences on thin-ideal internalization across puberty and preadolescent, adolescent, and young adult development.

    PubMed

    Suisman, Jessica L; Thompson, J Kevin; Keel, Pamela K; Burt, S Alexandra; Neale, Michael; Boker, Steven; Sisk, Cheryl; Klump, Kelly L

    2014-11-01

    Mean-levels of thin-ideal internalization increase during adolescence and pubertal development, but it is unknown whether these phenotypic changes correspond to developmental changes in etiological (i.e., genetic and environmental) risk. Given the limited knowledge on risk for thin-ideal internalization, research is needed to guide the identification of specific types of risk factors during critical developmental periods. The present twin study examined genetic and environmental influences on thin-ideal internalization across adolescent and pubertal development. Participants were 1,064 female twins (ages 8-25 years) from the Michigan State University Twin Registry. Thin-ideal internalization and pubertal development were assessed using self-report questionnaires. Twin moderation models were used to examine if age and/or pubertal development moderate genetic and environmental influences on thin-ideal internalization. Phenotypic analyses indicated significant increases in thin-ideal internalization across age and pubertal development. Twin models suggested no significant differences in etiologic effects across development. Nonshared environmental influences were most important in the etiology of thin-ideal internalization, with genetic, shared environmental, and nonshared environmental accounting for approximately 8%, 15%, and 72%, respectively, of the total variance. Despite mean-level increases in thin-ideal internalization across development, the relative influence of genetic versus environmental risk did not differ significantly across age or pubertal groups. The majority of variance in thin-ideal internalization was accounted for by environmental factors, suggesting that mean-level increases in thin-ideal internalization may reflect increases in the magnitude/strength of environmental risk across this period. Replication is needed, particularly with longitudinal designs that assess thin-ideal internalization across key developmental phases. © 2014 Wiley

  9. Individual deals within teams: Investigating the role of relative i-deals for employee performance.

    PubMed

    Vidyarthi, Prajya R; Singh, Satvir; Erdogan, Berrin; Chaudhry, Anjali; Posthuma, Richard; Anand, Smriti

    2016-11-01

    The authors extend i-deals theory to an individual-within-a-team context. Drawing upon social comparison theory, they contend that individuals will react to their own i-deals within the context of group members' i-deals. Therefore, they examine the role of relative i-deals (an individual's i-deals relative to the team's average) in relation to employee performance. Furthermore, integrating social comparison theory with social identity theory the authors assert that the behavioral outcomes of relative i-deals are influenced by the team's social and structural attributes of team orientation and task interdependence. Finally, they contend that the perceptions of one's relative standing with the leader, or leader-member exchange social comparison (LMXSC), mediate the i-deals-outcome relationship in groups with low team orientation and task interdependence. Results of multilevel modeling using time-lagged data from 321 employees nested in 46 teams demonstrated that the positive relationship between relative i-deals and employee performance was stronger in groups with low team orientation and task interdependence, and the mediation effect of LMXSC was stronger in teams with low rather than high team orientation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ' Microstructures.

    PubMed

    Prakash, Aruna; Bitzek, Erik

    2017-01-23

    Single-crystal Ni-base superalloys, consisting of a two-phase γ / γ ' microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ ' phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ / γ ' microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ ' particles with planar γ / γ ' interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples-the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.

  11. Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi

    2016-02-01

    A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.

  12. Sociocultural pressures, thin-ideal internalization, self-objectification, and body dissatisfaction: could feminist beliefs be a moderating factor?

    PubMed

    Myers, Taryn A; Crowther, Janis H

    2007-09-01

    Theory and research suggest that sociocultural pressures, thin-ideal internalization, and self-objectification are associated with body dissatisfaction, while feminist beliefs may serve a protective function. This research examined thin-ideal internalization and self-objectification as mediators and feminist beliefs as a moderator in the relationship between sociocultural pressures to meet the thin-ideal and body dissatisfaction. Female undergraduate volunteers (N=195) completed self-report measures assessing sociocultural influences, feminist beliefs, thin-ideal internalization, self-objectification, and body dissatisfaction. Multisample structural equation modeling showed that feminist beliefs moderate the relationship between media awareness and thin-ideal internalization, but not the relationship between social influence and thin-ideal internalization. Research and clinical implications of these findings are discussed.

  13. The Statistical Mechanics of Ideal Homogeneous Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2002-01-01

    Plasmas, such as those found in the space environment or in plasma confinement devices, are often modeled as electrically conducting fluids. When fluids and plasmas are energetically stirred, regions of highly nonlinear, chaotic behavior known as turbulence arise. Understanding the fundamental nature of turbulence is a long-standing theoretical challenge. The present work describes a statistical theory concerning a certain class of nonlinear, finite dimensional, dynamical models of turbulence. These models arise when the partial differential equations describing incompressible, ideal (i.e., nondissipative) homogeneous fluid and magnetofluid (i.e., plasma) turbulence are Fourier transformed into a very large set of ordinary differential equations. These equations define a divergenceless flow in a high-dimensional phase space, which allows for the existence of a Liouville theorem, guaranteeing a distribution function based on constants of the motion (integral invariants). The novelty of these particular dynamical systems is that there are integral invariants other than the energy, and that some of these invariants behave like pseudoscalars under two of the discrete symmetry transformations of physics, parity, and charge conjugation. In this work the 'rugged invariants' of ideal homogeneous turbulence are shown to be the only significant scalar and pseudoscalar invariants. The discovery that pseudoscalar invariants cause symmetries of the original equations to be dynamically broken and induce a nonergodic structure on the associated phase space is the primary result presented here. Applicability of this result to dissipative turbulence is also discussed.

  14. Dynamics and stability of a 2D ideal vortex under external strain

    NASA Astrophysics Data System (ADS)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-11-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.

  15. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  16. Weight-related actual and ideal self-states, discrepancies, and shame, guilt, and pride: examining associations within the process model of self-conscious emotions.

    PubMed

    Castonguay, Andree L; Brunet, Jennifer; Ferguson, Leah; Sabiston, Catherine M

    2012-09-01

    The aim of this study was to examine the associations between women's actual:ideal weight-related self-discrepancies and experiences of weight-related shame, guilt, and authentic pride using self-discrepancy (Higgins, 1987) and self-conscious emotion (Tracy & Robins, 2004) theories as guiding frameworks. Participants (N=398) completed self-report questionnaires. Main analyses involved polynomial regressions, followed by the computation and evaluation of response surface values. Actual and ideal weight self-states were related to shame (R2 = .35), guilt (R2 = .25), and authentic pride (R2 = .08). When the discrepancy between actual and ideal weights increased, shame and guilt also increased, while authentic pride decreased. Findings provide partial support for self-discrepancy theory and the process model of self-conscious emotions. Experiencing weight-related self-discrepancies may be important cognitive appraisals related to shame, guilt, and authentic pride. Further research is needed exploring the relations between self-discrepancies and a range of weight-related self-conscious emotions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Family Life and Developmental Idealism in Yazd, Iran

    PubMed Central

    Abbasi-Shavazi, Mohammad Jalal; Askari-Nodoushan, Abbas

    2012-01-01

    BACKGROUND This paper is motivated by the theory that developmental idealism has been disseminated globally and has become an international force for family and demographic change. Developmental idealism is a set of cultural beliefs and values about development and how development relates to family and demographic behavior. It holds that modern societies are causal forces producing modern families, that modern families help to produce modern societies, and that modern family change is to be expected. OBJECTIVE We examine the extent to which developmental idealism has been disseminated in Iran. We also investigate predictors of the dissemination of developmental idealism. METHODS We use survey data collected in 2007 from a sample of women in Yazd, a city in Iran. We examine the distribution of developmental idealism in the sample and the multivariate predictors of developmental idealism. RESULTS We find considerable support for the expectation that many elements of developmental idealism have been widely disseminated. Statistically significant majorities associate development with particular family attributes, believe that development causes change in families, believe that fertility reductions and age-at-marriage increases help foster development, and perceive family trends in Iran headed toward modernity. As predicted, parental education, respondent education, and income affect adherence to developmental idealism. CONCLUSIONS Developmental idealism has been widely disseminated in Yazd, Iran and is related to social and demographic factors in predicted ways. COMMENTS Although our data come from only one city, we expect that developmental idealism has been widely distributed in Iran, with important implications for family and demographic behavior. PMID:22942772

  18. Simplified and quick electrical modeling for dye sensitized solar cells: An experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    de Andrade, Rocelito Lopes; de Oliveira, Matheus Costa; Kohlrausch, Emerson Cristofer; Santos, Marcos José Leite

    2018-05-01

    This work presents a new and simple method for determining IPH (current source dependent on luminance), I0 (reverse saturation current), n (ideality factor), RP and RS, (parallel and series resistance) to build an electrical model for dye sensitized solar cells (DSSCs). The electrical circuit parameters used in the simulation and to generate theoretical curves for the single diode electrical model were extracted from I-V curves of assembled DSSCs. Model validation was performed by assembling five different types of DSSCs and evaluating the following parameters: effect of a TiO2 blocking/adhesive layer, thickness of the TiO2 layer and the presence of a light scattering layer. In addition, irradiance, temperature, series and parallel resistance, ideality factor and reverse saturation current were simulated.

  19. Shock wave structure in an ideal dissociating gas

    NASA Technical Reports Server (NTRS)

    Liu, K. H.

    1975-01-01

    Composition changes within the shock layer due to chemical reactions are considered. The Lighthill ideal dissociating gas model was used in an effort to describe the oxygen type molecule. First, the two limiting cases, when the chemical reaction rates are very slow and very fast in comparison to local convective rates, are investigated. Then, the problem is solved for arbitrary chemical reaction rates.

  20. Ideal Cardiovascular Health and Incident Cardiovascular Events

    PubMed Central

    Ommerborn, Mark J.; Blackshear, Chad T.; Hickson, DeMarc A.; Griswold, Michael E.; Kwatra, Japneet; Djousse, Luc; Clark, Cheryl R.

    2016-01-01

    Introduction The epidemiology of American Heart Association ideal cardiovascular health (CVH) metrics has not been fully examined in African Americans. This study examines associations of CVH metrics with incident cardiovascular disease (CVD) in the Jackson Heart Study, a longitudinal cohort study of CVD in African Americans. Methods Jackson Heart Study participants without CVD (N=4,702) were followed prospectively between 2000 and 2011. Incidence rates and Cox proportional hazard ratios estimated risks for incident CVD (myocardial infarction, stroke, cardiac procedures, and CVD mortality) associated with seven CVH metrics by sex. Analyses were performed in 2015. Results Participants were followed for a median 8.3 years; none had ideal health on all seven CVH metrics. The prevalence of ideal health was low for nutrition, physical activity, BMI, and blood pressure metrics. The age-adjusted CVD incidence rate (IR) per 1,000 person years was highest for individuals with the least ideal health metrics: zero to one (IR=12.5, 95% CI=9.7, 16.1), two (IR=8.2, 95% CI=6.5, 10.4), three (IR=5.7, 95% CI=4.2, 7.6), and four or more (IR=3.4, 95% CI=2.0, 5.9). Adjusting for covariates, individuals with four or more ideal CVH metrics had lower risks of incident CVD compared with those with zero or one ideal CVH metric (hazard ratio, 0.29; 95% CI=0.17, 0.52; p<0.001). Conclusions African Americans with more ideal CVH metrics have lower risks of incident CVD. Comprehensive preventive behavioral and clinical supports should be intensified to improve CVD risk for African Americans with few ideal CVH metrics. PMID:27539974

  1. Experimental study of near-field light collection efficiency of aperture fiber probe at near-infrared wavelengths.

    PubMed

    Tsumori, Nobuhiro; Takahashi, Motoki; Sakuma, Yoshiki; Saiki, Toshiharu

    2011-10-10

    We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6 μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths. © 2011 Optical Society of America

  2. Experimental Diabetes Mellitus in Different Animal Models

    PubMed Central

    Al-awar, Amin; Veszelka, Médea; Szűcs, Gergő; Attieh, Zouhair; Murlasits, Zsolt; Török, Szilvia; Pósa, Anikó; Varga, Csaba

    2016-01-01

    Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans. PMID:27595114

  3. Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.

    2015-08-01

    We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.

  4. An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model

    NASA Technical Reports Server (NTRS)

    Fukumori, Ichiro; Malanotte-Rizzoli, Paola

    1995-01-01

    A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kalman filter based on approximation of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.

  5. An approximate Kalman filter for ocean data assimilation: An example with an idealized Gulf Stream model

    NASA Astrophysics Data System (ADS)

    Fukumori, Ichiro; Malanotte-Rizzoli, Paola

    1995-04-01

    A practical method of data assimilation for use with large, nonlinear, ocean general circulation models is explored. A Kaiman filter based on approximations of the state error covariance matrix is presented, employing a reduction of the effective model dimension, the error's asymptotic steady state limit, and a time-invariant linearization of the dynamic model for the error integration. The approximations lead to dramatic computational savings in applying estimation theory to large complex systems. We examine the utility of the approximate filter in assimilating different measurement types using a twin experiment of an idealized Gulf Stream. A nonlinear primitive equation model of an unstable east-west jet is studied with a state dimension exceeding 170,000 elements. Assimilation of various pseudomeasurements are examined, including velocity, density, and volume transport at localized arrays and realistic distributions of satellite altimetry and acoustic tomography observations. Results are compared in terms of their effects on the accuracies of the estimation. The approximate filter is shown to outperform an empirical nudging scheme used in a previous study. The examples demonstrate that useful approximate estimation errors can be computed in a practical manner for general circulation models.

  6. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  7. Model Selection in Systems Biology Depends on Experimental Design

    PubMed Central

    Silk, Daniel; Kirk, Paul D. W.; Barnes, Chris P.; Toni, Tina; Stumpf, Michael P. H.

    2014-01-01

    Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis. PMID:24922483

  8. Model selection in systems biology depends on experimental design.

    PubMed

    Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Stumpf, Michael P H

    2014-06-01

    Experimental design attempts to maximise the information available for modelling tasks. An optimal experiment allows the inferred models or parameters to be chosen with the highest expected degree of confidence. If the true system is faithfully reproduced by one of the models, the merit of this approach is clear - we simply wish to identify it and the true parameters with the most certainty. However, in the more realistic situation where all models are incorrect or incomplete, the interpretation of model selection outcomes and the role of experimental design needs to be examined more carefully. Using a novel experimental design and model selection framework for stochastic state-space models, we perform high-throughput in-silico analyses on families of gene regulatory cascade models, to show that the selected model can depend on the experiment performed. We observe that experimental design thus makes confidence a criterion for model choice, but that this does not necessarily correlate with a model's predictive power or correctness. Finally, in the special case of linear ordinary differential equation (ODE) models, we explore how wrong a model has to be before it influences the conclusions of a model selection analysis.

  9. EXPERIMENTAL MODELLING OF AORTIC ANEURYSMS

    PubMed Central

    Doyle, Barry J; Corbett, Timothy J; Cloonan, Aidan J; O’Donnell, Michael R; Walsh, Michael T; Vorp, David A; McGloughlin, Timothy M

    2009-01-01

    A range of silicone rubbers were created based on existing commercially available materials. These silicones were designed to be visually different from one another and have distinct material properties, in particular, ultimate tensile strengths and tear strengths. In total, eleven silicone rubbers were manufactured, with the materials designed to have a range of increasing tensile strengths from approximately 2-4MPa, and increasing tear strengths from approximately 0.45-0.7N/mm. The variations in silicones were detected using a standard colour analysis technique. Calibration curves were then created relating colour intensity to individual material properties. All eleven materials were characterised and a 1st order Ogden strain energy function applied. Material coefficients were determined and examined for effectiveness. Six idealised abdominal aortic aneurysm models were also created using the two base materials of the study, with a further model created using a new mixing technique to create a rubber model with randomly assigned material properties. These models were then examined using videoextensometry and compared to numerical results. Colour analysis revealed a statistically significant linear relationship (p<0.0009) with both tensile strength and tear strength, allowing material strength to be determined using a non-destructive experimental technique. The effectiveness of this technique was assessed by comparing predicted material properties to experimentally measured methods, with good agreement in the results. Videoextensometry and numerical modelling revealed minor percentage differences, with all results achieving significance (p<0.0009). This study has successfully designed and developed a range of silicone rubbers that have unique colour intensities and material strengths. Strengths can be readily determined using a non-destructive analysis technique with proven effectiveness. These silicones may further aid towards an improved understanding of the

  10. Improving the physiological realism of experimental models.

    PubMed

    Vinnakota, Kalyan C; Cha, Chae Y; Rorsman, Patrik; Balaban, Robert S; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A; Jeneson, Jeroen A L

    2016-04-06

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.

  11. Threat of the thin-ideal body image and body malleability beliefs: effects on body image self-discrepancies and behavioral intentions.

    PubMed

    Arciszewski, Thomas; Berjot, Sophie; Finez, Lucie

    2012-06-01

    This study examined the effect of the threat aroused by the perception of thin-ideal images combined with beliefs about the malleability of the body on perceived/objective, ideal/objective and ought/objective body image self-discrepancies. An experimental computer program enabled women (N=82) to artificially increase or decrease the shape of their own body (previously photographed) in response to questions about their "actual", "ideal" and "ought" body self-perceptions. As predicted, results showed that women had greater body self-discrepancies when confronted with threatening thin ideals, regardless of their body mass index. The size of this trend depended on the way they were made to think of their body (malleable vs. fixed). Findings also suggested a possible relationship between body self-representations and eating behaviors or intentions. The impact of thin-ideal threats and body malleability beliefs on body perception is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The Statistical Mechanics of Ideal MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  13. Genetic and Environmental Influences on Thin-Ideal Internalization across Puberty and Pre-Adolescent, Adolescent, and Young Adult Development

    PubMed Central

    Suisman, Jessica L.; Thompson, J. Kevin; Keel, Pamela K.; Burt, S. Alexandra; Neale, Michael; Boker, Steven; Sisk, Cheryl; Klump, Kelly L.

    2014-01-01

    Objective Mean-levels of thin-ideal internalization increase during adolescence and pubertal development, but it is unknown whether these phenotypic changes correspond to developmental changes in etiological (i.e., genetic and environmental) risk. Given the limited knowledge on risk for thin-ideal internalization, research is needed to guide the identification of specific types of risk factors during critical developmental periods. The present twin study examined genetic and environmental influences on thin-ideal internalization across adolescent and pubertal development. Method Participants were 1,064 female twins (ages 8–25 years) from the Michigan State University Twin Registry. Thin-ideal internalization and pubertal development were assessed using self-report questionnaires. Twin moderation models were used to examine if age and/or pubertal development moderate genetic and environmental influences on thin-ideal internalization. Results Phenotypic analyses indicated significant increases in thin-ideal internalization across age and pubertal development. Twin models suggested no significant differences in etiologic effects across development. Nonshared environmental influences were most important in the etiology of thin-ideal internalization, with genetic, shared environmental, and nonshared environmental accounting for approximately 8%, 15%, and 72%, respectively, of the total variance. Discussion Despite mean-level increases in thin-ideal internalization across development, the relative influence of genetic versus environmental risk did not differ significantly across age or pubertal groups. The majority of variance in thin-ideal internalization was accounted for by environmental factors, suggesting that mean-level increases in thin-ideal internalization may reflect increases in the magnitude/strength of environmental risk across this period. Replication is needed, particularly with longitudinal designs that assess thin-ideal internalization across key

  14. In silico simulations of experimental protocols for cardiac modeling.

    PubMed

    Carro, Jesus; Rodriguez, Jose Felix; Pueyo, Esther

    2014-01-01

    A mathematical model of the AP involves the sum of different transmembrane ionic currents and the balance of intracellular ionic concentrations. To each ionic current corresponds an equation involving several effects. There are a number of model parameters that must be identified using specific experimental protocols in which the effects are considered as independent. However, when the model complexity grows, the interaction between effects becomes increasingly important. Therefore, model parameters identified considering the different effects as independent might be misleading. In this work, a novel methodology consisting in performing in silico simulations of the experimental protocol and then comparing experimental and simulated outcomes is proposed for parameter model identification and validation. The potential of the methodology is demonstrated by validating voltage-dependent L-type calcium current (ICaL) inactivation in recently proposed human ventricular AP models with different formulations. Our results show large differences between ICaL inactivation as calculated from the model equation and ICaL inactivation from the in silico simulations due to the interaction between effects and/or to the experimental protocol. Our results suggest that, when proposing any new model formulation, consistency between such formulation and the corresponding experimental data that is aimed at being reproduced needs to be first verified considering all involved factors.

  15. Thin Images Reflected in the Water: Narcissism and Girls' Vulnerability to the Thin-Ideal.

    PubMed

    Thomaes, Sander; Sedikides, Constantine

    2016-10-01

    The purpose of this research is to test how adolescent girls' narcissistic traits-characterized by a need to impress others and avoid ego-threat-influence acute adverse effects of thin-ideal exposure. Participants (11-15 years; total N = 366; all female) reported their narcissistic traits. Next, in two experiments, they viewed images of either very thin or average-sized models, reported their wishful identification with the models (Experiment 2), and tasted high-calorie foods in an alleged taste test (both experiments). Narcissism kept girls from wishfully identifying with thin models, which is consistent with the view that narcissistic girls are prone to disengage from thin-ideal exposure. Moreover, narcissism protected vulnerable girls (those who experience low weight-esteem) from inhibiting their food intake, and led other girls (those who consider their appearance relatively unimportant) to increase their food intake. These effects did not generalize to conceptually related traits of self-esteem and perfectionism, and were not found for a low-calorie foods outcome, attesting to the specificity of findings. These experiments demonstrate the importance of narcissism at reducing girls' thin-ideal vulnerability. Girls high in narcissism disengage self-protectively from threats to their self-image, a strategy that renders at least subsets of them less vulnerable to the thin-ideal. © 2015 Wiley Periodicals, Inc.

  16. Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>

    NASA Astrophysics Data System (ADS)

    Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.

    2005-04-01

    We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.

  17. Improving the physiological realism of experimental models

    PubMed Central

    Vinnakota, Kalyan C.; Cha, Chae Y.; Rorsman, Patrik; Balaban, Robert S.; La Gerche, Andre; Wade-Martins, Richard; Beard, Daniel A.

    2016-01-01

    The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease. PMID:27051507

  18. Ideal Theory in Semigroups Based on Intersectional Soft Sets

    PubMed Central

    Song, Seok Zun; Jun, Young Bae

    2014-01-01

    The notions of int-soft semigroups and int-soft left (resp., right) ideals are introduced, and several properties are investigated. Using these notions and the notion of inclusive set, characterizations of subsemigroups and left (resp., right) ideals are considered. Using the notion of int-soft products, characterizations of int-soft semigroups and int-soft left (resp., right) ideals are discussed. We prove that the soft intersection of int-soft left (resp., right) ideals (resp., int-soft semigroups) is also int-soft left (resp., right) ideals (resp., int-soft semigroups). The concept of int-soft quasi-ideals is also introduced, and characterization of a regular semigroup is discussed. PMID:25101310

  19. Theoretical and experimental studies of error in square-law detector circuits

    NASA Technical Reports Server (NTRS)

    Stanley, W. D.; Hearn, C. P.; Williams, J. B.

    1984-01-01

    Square law detector circuits to determine errors from the ideal input/output characteristic function were investigated. The nonlinear circuit response is analyzed by a power series expansion containing terms through the fourth degree, from which the significant deviation from square law can be predicted. Both fixed bias current and flexible bias current configurations are considered. The latter case corresponds with the situation where the mean current can change with the application of a signal. Experimental investigations of the circuit arrangements are described. Agreement between the analytical models and the experimental results are established. Factors which contribute to differences under certain conditions are outlined.

  20. Examining the Process of Responding to Circumplex Scales of Interpersonal Values Items: Should Ideal Point Scoring Methods Be Considered?

    PubMed

    Ling, Ying; Zhang, Minqiang; Locke, Kenneth D; Li, Guangming; Li, Zonglong

    2016-01-01

    The Circumplex Scales of Interpersonal Values (CSIV) is a 64-item self-report measure of goals from each octant of the interpersonal circumplex. We used item response theory methods to compare whether dominance models or ideal point models best described how people respond to CSIV items. Specifically, we fit a polytomous dominance model called the generalized partial credit model and an ideal point model of similar complexity called the generalized graded unfolding model to the responses of 1,893 college students. The results of both graphical comparisons of item characteristic curves and statistical comparisons of model fit suggested that an ideal point model best describes the process of responding to CSIV items. The different models produced different rank orderings of high-scoring respondents, but overall the models did not differ in their prediction of criterion variables (agentic and communal interpersonal traits and implicit motives).

  1. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures

    PubMed Central

    Prakash, Aruna; Bitzek, Erik

    2017-01-01

    Single-crystal Ni-base superalloys, consisting of a two-phase γ/γ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/γ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ′ particles with planar γ/γ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions. PMID:28772453

  2. Longitudinal relationships among internalization of the media ideal, peer social comparison, and body dissatisfaction: implications for the tripartite influence model.

    PubMed

    Rodgers, Rachel F; McLean, Siân A; Paxton, Susan J

    2015-05-01

    Sociocultural theory of body dissatisfaction posits that internalization of the media ideal and appearance comparison are predictors of body dissatisfaction, a key risk factor for eating disorders. However, no data exist regarding the longitudinal relationships between these variables. The aim of this study was to explore longitudinal relationships among internalization of the media-ideal, social appearance comparison, and body dissatisfaction. A sample of 277 Grade 7 school girls (M age = 12.77 years, SD = 0.44) completed measures of internalization of the media ideal, social appearance comparison, and body dissatisfaction at baseline, 8 months, and 14 months. Path analyses indicated that baseline internalization of the media ideal predicted social appearance comparison and body dissatisfaction at 8 months, and social appearance comparison at 8 months predicted body dissatisfaction at 14 months. A reciprocal effect emerged with body dissatisfaction at 8 months predicting internalization of the media ideal at 14 months. The findings inform sociocultural theory of body dissatisfaction, suggesting that internalization of the media ideal precedes and predicts appearance comparison and that body image interventions that target internalization of the media ideal, and social appearance comparison as well as body dissatisfaction are likely to be effective. (c) 2015 APA, all rights reserved).

  3. The effect of experimental presentation of thin media images on body satisfaction: a meta-analytic review.

    PubMed

    Groesz, Lisa M; Levine, Michael P; Murnen, Sarah K

    2002-01-01

    The effect of experimental manipulations of the thin beauty ideal, as portrayed in the mass media, on female body image was evaluated using meta-analysis. Data from 25 studies (43 effect sizes) were used to examine the main effect of mass media images of the slender ideal, as well as the moderating effects of pre-existing body image problems, the age of the participants, the number of stimulus presentations, and the type of research design. Body image was significantly more negative after viewing thin media images than after viewing images of either average size models, plus size models, or inanimate objects. This effect was stronger for between-subjects designs, participants less than 19 years of age, and for participants who are vulnerable to activation of a thinness schema. Results support the sociocultural perspective that mass media promulgate a slender ideal that elicits body dissatisfaction. Implications for prevention and research on social comparison processes are considered. Copyright 2002 by John Wiley & Sons, Inc.

  4. Optimizing Experimental Design for Comparing Models of Brain Function

    PubMed Central

    Daunizeau, Jean; Preuschoff, Kerstin; Friston, Karl; Stephan, Klaas

    2011-01-01

    This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work. PMID:22125485

  5. Insights on multivariate updates of physical and biogeochemical ocean variables using an Ensemble Kalman Filter and an idealized model of upwelling

    NASA Astrophysics Data System (ADS)

    Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.

    2018-06-01

    Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an

  6. Maximizing overall liking results in a superior product to minimizing deviations from ideal ratings: an optimization case study with coffee-flavored milk

    PubMed Central

    Li, Bangde; Hayes, John E.; Ziegler, Gregory R.

    2015-01-01

    In just-about-right (JAR) scaling and ideal scaling, attribute delta (i.e., “Too Little” or “Too Much”) reflects a subject’s dissatisfaction level for an attribute relative to their hypothetical ideal. Dissatisfaction (attribute delta) is a different construct from consumer acceptability, operationalized as liking. Therefore, we hypothesized minimizing dissatisfaction and maximizing liking would yield different optimal formulations. The objective of this research was to compare product optimization strategies, i.e. maximizing liking vis-à-vis minimizing dissatisfaction. Coffee-flavored dairy beverages (n = 20) were formulated using a fractional mixture design that constrained the proportions of coffee extract, milk, sucrose, and water. Participants (n = 388) were randomly assigned to one of three research conditions, where they evaluated 4 of the 20 samples using an incomplete block design. Samples were rated for overall liking and for intensity of the attributes sweetness, milk flavor, thickness and coffee flavor. Where appropriate, measures of overall product quality (Ideal_Delta and JAR_Delta) were calculated as the sum of the absolute values of the four attribute deltas. Optimal formulations were estimated by: a) maximizing liking; b) minimizing Ideal_Delta; or c) minimizing JAR_Delta. A validation study was conducted to evaluate product optimization models. Participants indicated a preference for a coffee-flavored dairy beverage with more coffee extract and less milk and sucrose in the dissatisfaction model compared to the formula obtained by maximizing liking. That is, when liking was optimized, participants generally liked a weaker, milkier and sweeter coffee-flavored dairy beverage. Predicted liking scores were validated in a subsequent experiment, and the optimal product formulated to maximize liking was significantly preferred to that formulated to minimize dissatisfaction by a paired preference test. These findings are consistent with the view

  7. Maintaining ideal body weight counseling sessions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brammer, S.H.

    The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

  8. The Ideal Man and Woman According to University Students

    ERIC Educational Resources Information Center

    Weinstein, Lawrence; Laverghetta, Antonio V.; Peterson, Scott A.

    2009-01-01

    The present study determined if the ideal man has changed over the years and who and what the ideal woman is. We asked students at Cameron University to rate the importance of character traits that define the ideal man and woman. Subjects also provided examples of famous people exemplifying the ideal, good, average, and inferior man and woman. We…

  9. Constitutive Model Calibration via Autonomous Multiaxial Experimentation (Postprint)

    DTIC Science & Technology

    2016-09-17

    test machine. Experimental data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain...data is reduced and finite element simulations are conducted in parallel with the test based on experimental strain conditions. Optimization methods...be used directly in finite element simulations of more complex geometries. Keywords Axial/torsional experimentation • Plasticity • Constitutive model

  10. Evulvalution: the portrayal of women's external genitalia and physique across time and the current barbie doll ideals.

    PubMed

    Schick, Vanessa R; Rima, Brandi N; Calabrese, Sarah K

    2011-01-01

    Media images of the female body commonly represent reigning appearance ideals of the era in which they are published. To date, limited documentation of the genital appearance ideals in mainstream media exists. Analysis 1 sought to describe genital appearance ideals (i.e., mons pubis and labia majora visibility, labia minora size and color, and pubic hair style) and general physique ideals (i.e., hip, waist, and bust size, height, weight, and body mass index [BMI]) across time based on 647 Playboy Magazine centerfolds published between 1953 and 2007. Analysis 2 focused exclusively on the genital appearance ideals embodied by models in 185 Playboy photographs published between 2007 and 2008. Taken together, results suggest the perpetuation of a "Barbie Doll" ideal characterized by a low BMI, narrow hips, a prominent bust, and hairless, undefined genitalia resembling those of a prepubescent female.

  11. The predictive validity of ideal partner preferences: a review and meta-analysis.

    PubMed

    Eastwick, Paul W; Luchies, Laura B; Finkel, Eli J; Hunt, Lucy L

    2014-05-01

    A central element of interdependence theory is that people have standards against which they compare their current outcomes, and one ubiquitous standard in the mating domain is the preference for particular attributes in a partner (ideal partner preferences). This article reviews research on the predictive validity of ideal partner preferences and presents a new integrative model that highlights when and why ideals succeed or fail to predict relational outcomes. Section 1 examines predictive validity by reviewing research on sex differences in the preference for physical attractiveness and earning prospects. Men and women reliably differ in the extent to which these qualities affect their romantic evaluations of hypothetical targets. Yet a new meta-analysis spanning the attraction and relationships literatures (k = 97) revealed that physical attractiveness predicted romantic evaluations with a moderate-to-strong effect size (r = ∼.40) for both sexes, and earning prospects predicted romantic evaluations with a small effect size (r = ∼.10) for both sexes. Sex differences in the correlations were small (r difference = .03) and uniformly nonsignificant. Section 2 reviews research on individual differences in ideal partner preferences, drawing from several theoretical traditions to explain why ideals predict relational evaluations at different relationship stages. Furthermore, this literature also identifies alternative measures of ideal partner preferences that have stronger predictive validity in certain theoretically sensible contexts. Finally, a discussion highlights a new framework for conceptualizing the appeal of traits, the difference between live and hypothetical interactions, and the productive interplay between mating research and broader psychological theories.

  12. Improving the ideal and human observer consistency: a demonstration of principles

    NASA Astrophysics Data System (ADS)

    He, Xin

    2017-03-01

    In addition to being rigorous and realistic, the usefulness of the ideal observer computational tools may also depend on whether they serve the empirical purpose for which they are created, e.g. to identify desirable imaging systems to be used by human observers. In SPIE 10136-35, I have shown that the ideal and the human observers do not necessarily prefer the same system as the optimal or better one due to their different objectives in both hardware and software optimization. In this work, I attempt to identify a necessary but insufficient condition under which the human and the ideal observer may rank systems consistently. If corroborated, such a condition allows a numerical test on the ideal/human consistency without routine human observer studies. I reproduced data from Abbey et al. JOSA 2001 to verify the proposed condition (i.e., not a rigorous falsification study due to the lack of specificity in the proposed conjecture. A roadmap for more falsifiable conditions is proposed). Via this work, I would like to emphasize the reality of practical decision making in addition to the realism in mathematical modeling. (Disclaimer: the views expressed in this work do not necessarily represent those of the FDA.)

  13. Distillation-based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions

    DOE PAGES

    Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert; ...

    2017-03-28

    In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, withmore » non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.« less

  14. Distillation-based Droplet Modeling of Non-Ideal Oxygenated Gasoline Blends: Investigating the Role of Droplet Evaporation on PM Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, Stephen C.; Ratcliff, Matthew; McCormick, Robert

    In some studies, a relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from vehicles equipped with spark ignition engines. The fundamental cause of the PM increase seen for moderate ethanol concentrations is not well understood. Ethanol features a greater heat of vaporization (HOV) than gasoline and also influences vaporization by altering the liquid and vapor composition throughout the distillation process. A droplet vaporization model was developed to explore ethanol's effect on the evaporation of aromatic compounds known to be PM precursors. The evolving droplet composition is modeled as a distillation process, withmore » non-ideal interactions between oxygenates and hydrocarbons accounted for using UNIFAC group contribution theory. Predicted composition and distillation curves were validated by experiments. Detailed hydrocarbon analysis was applied to fuel samples and to distillate fractions, and used as input for the initial droplet composition. With composition calculated throughout the distillation, the changing HOV and other physical properties can be found using reference data. The droplet can thus be modeled in terms of energy transfer, which in turn provides the transient mass transfer, droplet temperature, and droplet diameter. Model predictions suggest that non-ideal vapor-liquid equilibrium along with an increase in HOV can alter the droplet composition evolution. Results predict that the presence of ethanol causes enrichment of the higher boiling fractions (T90+) in the aromatic components as well as lengthens the droplet lifetime. A simulation of the evaporation process in a transient environment as experienced within an engine cylinder predicts a decrease in mixing time of the heaviest fractions of the fuel prior to spark initiation, possibly explaining observations linking ethanol to PM.« less

  15. Quantized vortices in the ideal bose gas: a physical realization of random polynomials.

    PubMed

    Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro

    2006-02-03

    We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.

  16. Experimental modeling of swirl flows in power plants

    NASA Astrophysics Data System (ADS)

    Shtork, S. I.; Litvinov, I. V.; Gesheva, E. S.; Tsoy, M. A.; Skripkin, S. G.

    2018-03-01

    The article presents an overview of the methods and approaches to experimental modeling of various thermal and hydropower units - furnaces of pulverized coal boilers and flow-through elements of hydro turbines. The presented modeling approaches based on a combination of experimentation and rapid prototyping of working parts may be useful in optimizing energy equipment to improve safety and efficiency of industrial energy systems.

  17. Experimental and Modeling Study of the Burning of an Ethanol Droplet in Microgravity

    NASA Technical Reports Server (NTRS)

    Kazakov, Andrei; Conley, Jordan; Dryer, Frederick L.; Ferkul, Paul (Technical Monitor)

    2000-01-01

    The microgravity ethanol droplet combustion experiments were performed aboard the STS-94/MSL-1 Shuttle mission within the Fiber-Supported Droplet Combustion-2 (FSDC-2) program. The burning histories and flame standoffs for pure ethanol and ethanol/water droplets were obtained from the images recorded with two 8 mm videocameras. The obtained results show that average gasification rate is related to the initial droplet size in a manner similar to n-alkanes and methanol and consistent with the results of Hara and Kumagai and the data taken recently in the NASA-Lewis 2.2 s droptower. A transient, moving finite-element chemically reacting flow model applied previously to sphero-symmetric combustion of methanol, methanol/water, n-alkane, and n-alkane binary mixture droplets was adopted for the problem of ethanol droplet combustion. The model includes detailed description of gas-phase reaction chemistry and transport, a simplified description of liquid phase transport, and non-luminous radiative heat transfer. Gas-phase chemistry was described with the detailed reaction mechanism of Norton and Dryer, which consists of 142 reversible elementary reactions of 33 species. Another recently published reaction mechanism of high-temperature ethanol oxidation was also considered. The model predictions were found to compare favorably with the experimental data. The model analysis also indicates that water condensation in the case of ethanol has smaller effect on average droplet gasification rate as compared with previously studied methanol cases. This effect is explained by non-ideal (azeotropic) behavior of binary ethanol-water mixtures. Further analysis of computational results and ethanol droplet radiative extinction behavior will be discussed.

  18. Idealism and materialism in perception.

    PubMed

    Rose, David; Brown, Dora

    2015-01-01

    Koenderink (2014, Perception, 43, 1-6) has said most Perception readers are deluded, because they believe an 'All Seeing Eye' observes an objective reality. We trace the source of Koenderink's assertion to his metaphysical idealism, and point to two major weaknesses in his position-namely, its dualism and foundationalism. We counter with arguments from modern philosophy of science for the existence of an objective material reality, contrast Koenderink's enactivism to his idealism, and point to ways in which phenomenology and cognitive science are complementary and not mutually exclusive.

  19. Simplifications and Idealizations in High School Physics in Mechanics: A Study of Slovenian Curriculum and Textbooks

    ERIC Educational Resources Information Center

    Forjan, Matej; Sliško, Josip

    2014-01-01

    This article presents the results of an analysis of three Slovenian textbooks for high school physics, from the point of view of simplifications and idealizations in the field of mechanics. In modeling of physical systems, making simplifications and idealizations is important, since one ignores minor effects and focuses on the most important…

  20. Brain activation upon ideal-body media exposure and peer feedback in late adolescent girls.

    PubMed

    van der Meulen, Mara; Veldhuis, Jolanda; Braams, Barbara R; Peters, Sabine; Konijn, Elly A; Crone, Eveline A

    2017-08-01

    Media's prevailing thin-body ideal plays a vital role in adolescent girls' body image development, but the co-occurring impact of peer feedback is understudied. The present study used functional magnetic resonance imaging (fMRI) to test media imagery and peer feedback combinations on neural activity related to thin-body ideals. Twenty-four healthy female late adolescents rated precategorized body sizes of bikini models (too thin or normal), directly followed by ostensible peer feedback (too thin or normal). Consistent with prior studies on social feedback processing, results showed increased brain activity in the dorsal medial prefrontal cortex (dmPFC)/anterior cingulate cortex (ACC) and bilateral insula in incongruent situations: when participants rated media models' body size as normal while peer feedback indicated the models as too thin (or vice versa). This effect was stronger for girls with lower self-esteem. A subsequent behavioral study (N = 34 female late adolescents, separate sample) demonstrated that participants changed behavior in the direction of the peer feedback: precategorized normal sized models were rated as too thin more often after receiving too thin peer feedback. This suggests that the neural responses upon peer feedback may influence subsequent choice. Our results show that media-by-peer interactions have pronounced effects on girls' body ideals.

  1. An Experimental and Numerical Comparison of the Rupture Locations of an Abdominal Aortic Aneurysm

    PubMed Central

    Doyle, Barry J.; Corbett, Timothy J.; Callanan, Anthony; Walsh, Michael T.; Vorp, David A.; McGloughlin, Timothy M.

    2009-01-01

    Purpose: To identify the rupture locations of idealized physical models of abdominal aortic aneurysm (AAA) using an in-vitro setup and to compare the findings to those predicted numerically. Methods: Five idealized AAAs were manufactured using Sylgard 184 silicone rubber, which had been mechanically characterized from tensile tests, tear tests, and finite element analysis. The models were then inflated to the point of rupture and recorded using a high-speed camera. Numerical modeling attempted to confirm these rupture locations. Regional variations in wall thickness of the silicone models was also quantified and applied to numerical models. Results: Four of the 5 models tested ruptured at inflection points in the proximal and distal regions of the aneurysm sac and not at regions of maximum diameter. These findings agree with high stress regions computed numerically. Wall stress appears to be independent of wall thickness, with high stress occurring at regions of inflection regardless of wall thickness variations. Conclusion: According to these experimental and numerical findings, AAAs experience higher stresses at regions of inflection compared to regions of maximum diameter. Ruptures of the idealized silicone models occurred predominantly at the inflection points, as numerically predicted. Regions of inflection can be easily identified from basic 3-dimensional reconstruction; as ruptures appear to occur at inflection points, these findings may provide a useful insight into the clinical significance of inflection regions. This approach will be applied to patient-specific models in a future study. PMID:19642790

  2. Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

    DOE PAGES

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven; ...

    2016-01-13

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  3. Zeolitic Imidazolate Framework-8 Membrane for H2/CO2 Separation: Experimental and Modeling

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Yeong, Y. F.; Lau, K. K.; Azmi, M. S.; Chew, T. L.

    2018-03-01

    In this work, ZIF-8 membrane synthesized through solvent evaporation secondary seeded growth was tested for single gas permeation and binary gases separation of H2 and CO2. Subsequently, a modified mathematical modeling combining the effects of membrane and support layers was applied to represent the gas transport properties of ZIF-8 membrane. Results showed that, the membrane has exhibited H2/CO2 ideal selectivity of 5.83 and separation factor of 3.28 at 100 kPa and 303 K. Besides, the experimental results were fitted well with the simulated results by demonstrating means absolute error (MAE) values ranged from 1.13 % to 3.88 % for single gas permeation and 10.81 % to 21.22 % for binary gases separation. Based on the simulated data, most of the H2 and CO2 gas molecules have transported through the molecular pores of membrane layer, which was up to 70 %. Thus, the gas transport of the gases is mainly dominated by adsorption and diffusion across the membrane.

  4. Segmented Polynomial Models in Quasi-Experimental Research.

    ERIC Educational Resources Information Center

    Wasik, John L.

    1981-01-01

    The use of segmented polynomial models is explained. Examples of design matrices of dummy variables are given for the least squares analyses of time series and discontinuity quasi-experimental research designs. Linear combinations of dummy variable vectors appear to provide tests of effects in the two quasi-experimental designs. (Author/BW)

  5. Experimental and Modeling Studies of Massif Anorthosites

    NASA Technical Reports Server (NTRS)

    Longhi, John

    1999-01-01

    This termination report covers the latter part of a single research effort spanning several grant cycles. During this time there was a single title, "Experimental and Modeling Studies of Massif Anorthosites", but there were several contract numbers as the mode and location of NASA contract administration changed. Initially, the project was funded as an increment to the PI's other grant, "Early Differentiation of the Moon: Experimental and Modeling Studies", but subsequently it became an independent grant. Table 1 contains a brief summary of the dates and contract numbers.

  6. Medical learning curves and the Kantian ideal.

    PubMed

    Le Morvan, P; Stock, B

    2005-09-01

    A hitherto unexamined problem for the "Kantian ideal" that one should always treat patients as ends in themselves, and never only as a means to other ends, is explored in this paper. The problem consists of a prima facie conflict between this Kantian ideal and the reality of medical practice. This conflict arises because, at least presently, medical practitioners can only acquire certain skills and abilities by practising on live, human patients, and given the inevitability and ubiquity of learning curves, this learning requires some patients to be treated only as a means to this end. A number of ways of attempting to establish the compatibility of the Kantian Ideal with the reality of medical practice are considered. Each attempt is found to be unsuccessful. Accordingly, until a way is found to reconcile them, we conclude that the Kantian ideal is inconsistent with the reality of medical practice.

  7. Medical learning curves and the Kantian ideal

    PubMed Central

    Le Morvan, P; Stock, B

    2005-01-01

    A hitherto unexamined problem for the "Kantian ideal" that one should always treat patients as ends in themselves, and never only as a means to other ends, is explored in this paper. The problem consists of a prima facie conflict between this Kantian ideal and the reality of medical practice. This conflict arises because, at least presently, medical practitioners can only acquire certain skills and abilities by practising on live, human patients, and given the inevitability and ubiquity of learning curves, this learning requires some patients to be treated only as a means to this end. A number of ways of attempting to establish the compatibility of the Kantian Ideal with the reality of medical practice are considered. Each attempt is found to be unsuccessful. Accordingly, until a way is found to reconcile them, we conclude that the Kantian ideal is inconsistent with the reality of medical practice. PMID:16131552

  8. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Seth, Ajay; Pouya, Soha; Dembia, Christopher L.; Hicks, Jennifer L.; Delp, Scott L.

    2016-01-01

    Tools have been used for millions of years to augment the capabilities of the human body, allowing us to accomplish tasks that would otherwise be difficult or impossible. Powered exoskeletons and other assistive devices are sophisticated modern tools that have restored bipedal locomotion in individuals with paraplegia and have endowed unimpaired individuals with superhuman strength. Despite these successes, designing assistive devices that reduce energy consumption during running remains a substantial challenge, in part because these devices disrupt the dynamics of a complex, finely tuned biological system. Furthermore, designers have hitherto relied primarily on experiments, which cannot report muscle-level energy consumption and are fraught with practical challenges. In this study, we use OpenSim to generate muscle-driven simulations of 10 human subjects running at 2 and 5 m/s. We then add ideal, massless assistive devices to our simulations and examine the predicted changes in muscle recruitment patterns and metabolic power consumption. Our simulations suggest that an assistive device should not necessarily apply the net joint moment generated by muscles during unassisted running, and an assistive device can reduce the activity of muscles that do not cross the assisted joint. Our results corroborate and suggest biomechanical explanations for similar effects observed by experimentalists, and can be used to form hypotheses for future experimental studies. The models, simulations, and software used in this study are freely available at simtk.org and can provide insight into assistive device design that complements experimental approaches. PMID:27656901

  9. Understanding Leadership: An Experimental-Experiential Model

    ERIC Educational Resources Information Center

    Hole, George T.

    2014-01-01

    Books about leadership are dangerous to readers who fantasize about being leaders or apply leadership ideas as if they were proven formulas. As an antidote, I offer an experimental framework in which any leadership-management model can be tested to gain experiential understanding of the model. As a result one can gain reality-based insights about…

  10. Towards an acoustic model-based poroelastic imaging method: II. experimental investigation.

    PubMed

    Berry, Gearóid P; Bamber, Jeffrey C; Miller, Naomi R; Barbone, Paul E; Bush, Nigel L; Armstrong, Cecil G

    2006-12-01

    Soft biological tissue contains mobile fluid. The volume fraction of this fluid and the ease with which it may be displaced through the tissue could be of diagnostic significance and may also have consequences for the validity with which strain images can be interpreted according to the traditional idealizations of elastography. In a previous paper, under the assumption of frictionless boundary conditions, the spatio-temporal behavior of the strain field inside a compressed cylindrical poroelastic sample was predicted (Berry et al. 2006). In this current paper, experimental evidence is provided to confirm these predictions. Finite element modeling was first used to extend the previous predictions to allow for the existence of contact friction between the sample and the compressor plates. Elastographic techniques were then applied to image the time-evolution of the strain inside cylindrical samples of tofu (a suitable poroelastic material) during sustained unconfined compression. The observed experimental strain behavior was found to be consistent with the theoretical predictions. In particular, every sample studied confirmed that reduced values of radial strain advance with time from the curved cylindrical surface inwards towards the axis of symmetry. Furthermore, by fitting the predictions of an analytical model to a time sequence of strain images, parametric images of two quantities, each related to one or more of three poroelastic material constants were produced. The two parametric images depicted the Poisson's ratio (nu(s)) of the solid matrix and the product of the aggregate modulus (H(A)) of the solid matrix with the permeability (k) of the solid matrix to the pore fluid. The means of the pixel values in these images, nu(s) = 0.088 (standard deviation 0.023) and H(A)k = 1.449 (standard deviation 0.269) x 10(-7) m(2) s(-1), were in agreement with values derived from previously published data for tofu (Righetti et al. 2005). The results provide the first

  11. [The style of leadership idealized by nurses].

    PubMed

    Higa, Elza de Fátima Ribeiro; Trevizan, Maria Auxiliadora

    2005-01-01

    This study focuses on nursing leadership on the basis of Grid theories. According to the authors, these theories are an alternative that allows for leadership development in nursing. The research aimed to identify and analyze the style of leadership idealized by nurses, according to their own view, and to compare the styles of leadership idealized by nurses between the two research institutions. Study subjects were 13 nurses. The results show that nurses at both institutions equally mention they idealize style 9.9, followed by 5.5 and 1.9, with a tendency to reject styles 9.1 and 1.1.

  12. An ideal clamping analysis for a cross-ply laminate

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.

    1988-01-01

    Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.

  13. Experimental Building Information Models

    DTIC Science & Technology

    2011-09-01

    ER D C/ CE RL C R- 11 -2 Experimental Building Information Models Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra to ry...Foundations, floor slabs , framing, stairs and elevators. • Mechanical: Heating, ventilating, and air conditioning equipment, thermostats, ducts, and...Single Flush .rvt Other standards and considerations – In a traditional cad environment, drawing layers are used to organize drawing objects and

  14. Concepts of Ideal and Nonideal Explosives.

    DTIC Science & Technology

    1981-12-01

    Akst and J. Hershkowitz, "Explosive Performance Modification by Cosolidifaction of Ammonium Nitrate with Fuels ," Technical Report 4987, Picatinny...explosives Equations of state Diameter effect Ammonium nitrate 20. ASSrRACr (ca’mes r w re t N netwezy ad identity by block number) The purpose of...this report is to stimulate discussion on the nonideality of ammonium nitrate and its composite explosives. The concept of ideal and non- ideal

  15. Experimental Models of Ocular Infection with Toxoplasma Gondii

    PubMed Central

    Dukaczewska, Agata; Tedesco, Roberto; Liesenfeld, Oliver

    2015-01-01

    Ocular toxoplasmosis is a vision-threatening disease and the major cause of posterior uveitis worldwide. In spite of the continuing global burden of ocular toxoplasmosis, many critical aspects of disease including the therapeutic approach to ocular toxoplasmosis are still under debate. To assist in addressing many aspects of the disease, numerous experimental models of ocular toxoplasmosis have been established. In this article, we present an overview on in vitro, ex vivo, and in vivo models of ocular toxoplasmosis available to date. Experimental studies on ocular toxoplasmosis have recently focused on mice. However, the majority of murine models established so far are based on intraperitoneal and intraocular infection with Toxoplasma gondii. We therefore also present results obtained in an in vivo model using peroral infection of C57BL/6 and NMRI mice that reflects the natural route of infection and mimics the disease course in humans. While advances have been made in ex vivo model systems or larger animals to investigate specific aspects of ocular toxoplasmosis, laboratory mice continue to be the experimental model of choice for the investigation of ocular toxoplasmosis. PMID:26716018

  16. Experimental Animal Models for Studies on the Mechanisms of Blast-Induced Neurotrauma

    PubMed Central

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments

  17. A sEMG model with experimentally based simulation parameters.

    PubMed

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  18. Ideal strength of bcc molybdenum and niobium

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.

    2002-09-01

    The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211}<111> and {011}<111> slip systems and the ideal tensile strength in the <100> direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along <100>, it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in <100> becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.

  19. Collisionless Spectral Kinetic Simulation of Ideal Multipole Resonance Probe

    NASA Astrophysics Data System (ADS)

    Gong, Junbo; Wilczek, Sebastian; Szeremley, Daniel; Oberrath, Jens; Eremin, Denis; Dobrygin, Wladislaw; Schilling, Christian; Friedrichs, Michael; Brinkmann, Ralf Peter

    2016-09-01

    Active Plasma Resonance Spectroscopy denotes a class of industry-compatible plasma diagnostic methods which utilize the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. One particular realization of APRS with a high degree of geometric and electric symmetry is the Multipole Resonance Probe (MRP). The Ideal MRP(IMRP) is an even more symmetric idealization which is suited for theoretical investigations. In this work, a spectral kinetic scheme is presented to investigate the behavior of the IMRP in the low pressure regime. However, due to the velocity difference, electrons are treated as particles whereas ions are only considered as stationary background. In the scheme, the particle pusher integrates the equations of motion for the studied particles, the Poisson solver determines the electric field at each particle position. The proposed method overcomes the limitation of the cold plasma model and covers kinetic effects like collisionless damping.

  20. Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model.

    PubMed

    Takahashi, Ikufumi; Matsuzaki, Taro; Kuroki, Hiroshi; Hoso, Masahiro

    2018-01-01

    This study aimed to investigate the histopathological changes in the patellofemoral joint using a rat model of osteoarthritis that was induced using monosodium iodoacetate, and to establish a novel model of patellofemoral osteoarthritis in a rat model using histopathological analysis. Sixty male rats were used. Osteoarthritis was induced through a single intra-articular injection of monosodium iodoacetate in both knee joints. Animals were equally divided into two experimental groups based on the monosodium iodoacetate dose: 0.2 mg and 1.0 mg. Histopathological changes in the articular cartilage of the patellofemoral joint and the infrapatellar fat pad were examined at 3 days, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks after the monosodium iodoacetate injection. In the 1.0-mg group, the representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint over time. Additionally, the Osteoarthritis Research Society International scores of the patellofemoral joint increased over time. The synovitis scores of the infrapatellar fat pad in both groups were highest at 3 days, and then the values decreased over time. The fibrosis score of the infrapatellar fat pad in the 1.0-mg group increased with time, whereas the fibrosis score in the 0.2-mg group remained low. Representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint in a rat model of osteoarthritis induced using monosodium iodoacetate. With appropriate selection, this model may be regarded as an ideal patellofemoral osteoarthritis model.

  1. Definitive Ideal-Gas Thermochemical Functions of the H216O Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Hrubý, Jan; Kyuberis, Aleksandra A.; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Császár, Attila G.

    2016-12-01

    A much improved temperature-dependent ideal-gas internal partition function, Qint(T), of the H216O molecule is reported for temperatures between 0 and 6000 K. Determination of Qint(T) is principally based on the direct summation technique involving all accurate experimental energy levels known for H216O (almost 20 000 rovibrational energies including an almost complete list up to a relative energy of 7500 cm-1), augmented with a less accurate but complete list of first-principles computed rovibrational energy levels up to the first dissociation limit, about 41 000 cm-1 (the latter list includes close to one million bound rovibrational energy levels up to J = 69, where J is the rotational quantum number). Partition functions are developed for ortho- and para-H216O as well as for their equilibrium mixture. Unbound rovibrational states of H216O above the first dissociation limit are considered using an approximate model treatment. The effect of the excited electronic states on the thermochemical functions is neglected, as their contribution to the thermochemical functions is negligible even at the highest temperatures considered. Based on the high-accuracy Qint(T) and its first two moments, definitive results, in 1 K increments, are obtained for the following thermochemical functions: Gibbs energy, enthalpy, entropy, and isobaric heat capacity. Reliable uncertainties (approximately two standard deviations) are estimated as a function of temperature for each quantity determined. These uncertainties emphasize that the present results are the most accurate ideal-gas thermochemical functions ever produced for H216O. It is recommended that the new value determined for the standard molar enthalpy increment at 298.15 K, 9.904 04 ± 0.000 01 kJ mol-1, should replace the old CODATA datum, 9.905 ± 0.005 kJ mol-1.

  2. Ideal and Nonideal Reasoning in Educational Theory

    ERIC Educational Resources Information Center

    Jaggar, Alison M.

    2015-01-01

    The terms "ideal theory" and "nonideal theory" are used in contemporary Anglophone political philosophy to identify alternative methodological approaches for justifying normative claims. Each term is used in multiple ways. In this article Alison M. Jaggar disentangles several versions of ideal and nonideal theory with a view to…

  3. THE MAKING OF FAMILY VALUES: DEVELOPMENTAL IDEALISM IN GANSU, CHINA

    PubMed Central

    Lai, Qing; Thornton, Arland

    2014-01-01

    This paper examines the role of developmental thinking in the making of family values. We analyze survey data collected from Gansu Province in China with regular and multilevel logit models. The results show that individuals’ endorsement of neolocal residence, self-choice marriage, gender egalitarianism, late marriage for women, and low fertility depends on the conjunction of preference for development and beliefs in its association with those family attributes, which we term developmental idealism associational evaluation. Furthermore, such impact of developmental thinking on family values holds robust in the presence of indigenous ideational forces, in this case Islamic religion. Although Islam influences family values in the opposite direction than developmental ideas do, the effect of Developmental Idealism associational evaluation does not differ significantly between Muslims and non-Muslims. PMID:25769860

  4. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  5. Dynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Ruban, V. P.

    Vortex line and magnetic line representations are introduced for description of flows in ideal hydrodynamics and MHD, respectively. For incompressible fluids it is shown that the equations of motion for vorticity φ and magnetic field with the help of this transformation follow from the variational principle. By means of this representation it is possible to integrate the system of hydrodynamic type with the Hamiltonian H=|φ|dr. It is also demonstrated that these representations allow to remove from the noncanonical Poisson brackets, defined on the space of divergence-free vector fields, degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD a new Weber type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent this transformation coincides with the Clebsch representation analog introduced in [1].

  6. A serial mediation model testing early adversity, self-concept clarity, and thin-ideal internalization as predictors of body dissatisfaction.

    PubMed

    Vartanian, Lenny R; Froreich, Franzisca V; Smyth, Joshua M

    2016-12-01

    This study examined the associations among early family adversity (e.g., family violence, neglect), self-concept clarity (i.e., having a clear and coherent sense of one's own personal identity), thin-ideal internalization, and body dissatisfaction. Female university students in Australia (n=323) and adult female community members in the United States (n=371) completed self-report measures of the relevant constructs. In both samples, serial mediation analysis revealed that early family adversity was negatively associated with self-concept clarity, self-concept clarity was negatively associated with thin-ideal internalization, and thin-ideal internalization was positively associated with body dissatisfaction. These findings suggest that early adverse experiences might impair individuals' self-concept clarity, and that low self-concept clarity might increase the risk of internalization of the thin ideal (as a means of defining the self) and consequently body dissatisfaction. These findings also suggest possible avenues for prevention and intervention efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effects of objectifying gaze on female cognitive performance: The role of flow experience and internalization of beauty ideals.

    PubMed

    Guizzo, Francesca; Cadinu, Mara

    2017-06-01

    Although previous research has demonstrated that objectification impairs female cognitive performance, no research to date has investigated the mechanisms underlying such decrement. Therefore, we tested the role of flow experience as one mechanism leading to performance decrement under sexual objectification. Gaze gender was manipulated by having male versus female experimenters take body pictures of female participants (N = 107) who then performed a Sustained Attention to Response Task. As predicted, a moderated mediation model showed that under male versus female gaze, higher internalization of beauty ideals was associated with lower flow, which in turn decreased performance. The implications of these results are discussed in relation to objectification theory and strategies to prevent sexually objectifying experiences. © 2016 The British Psychological Society.

  8. Idealized Cloud-System Resolving Modeling for Tropical Convection Studies

    NASA Astrophysics Data System (ADS)

    Anber, Usama M.

    A three-dimensional limited-domain Cloud-Resolving Model (CRM) is used in idealized settings to study the interaction between tropical convection and the large scale dynamics. The model domain is doubly periodic and the large-scale circulation is parameterized using the Weak Temperature Gradient (WTG) Approximation and Damped Gravity Wave (DGW) methods. The model simulations fall into two main categories: simulations with a prescribed radiative cooling profile, and others in which radiative cooling profile interacts with clouds and water vapor. For experiments with a prescribed radiative cooling profile, radiative heating is taken constant in the vertical in the troposphere. First, the effect of turbulent surface fluxes and radiative cooling on tropical deep convection is studied. In the precipitating equilibria, an increment in surface fluxes produces a greater increase in precipitation than an equal increment in column-integrated radiative heating. The gross moist stability remains close to constant over a wide range of forcings. With dry initial conditions, the system exhibits hysteresis, and maintains a dry state with for a wide range of net energy inputs to the atmospheric column under WTG. However, for the same forcings the system admits a rainy state when initialized with moist conditions, and thus multiple equilibria exist under WTG. When the net forcing is increased enough that simulations, which begin dry, eventually develop precipitation. DGW, on the other hand, does not have the tendency to develop multiple equilibria under the same conditions. The effect of vertical wind shear on tropical deep convection is also studied. The strength and depth of the shear layer are varied as control parameters. Surface fluxes are prescribed. For weak wind shear, time-averaged rainfall decreases with shear and convection remains disorganized. For larger wind shear, rainfall increases with shear, as convection becomes organized into linear mesoscale systems. This non

  9. Internalization of the ultra-thin ideal: positive implicit associations with underweight fashion models are associated with drive for thinness in young women.

    PubMed

    Ahern, Amy L; Bennett, Kate M; Hetherington, Marion M

    2008-01-01

    This study examined whether young women who make implicit associations between underweight models and positive attributes report elevated eating disorder symptoms. Ninety nine female undergraduates completed a weight based implicit association test (IAT) and self report measures of body dissatisfaction, thin-ideal internalization and eating disorder symptoms. IAT scores were associated with drive for thinness (r = -0.26, p < 0.05). This relationship was moderated by attitude importance. The relationship between drive for thinness and IAT scores was stronger (r = 0.34; p < 0.02) in participants who report that the media is an important source of information about fashion and being attractive. The IAT used in the current study is sensitive enough to discriminate between participants on drive for thinness. Women who have developed cognitive schemas that associate being underweight with positive attributes report higher eating disorder symptoms. Attitude importance is highlighted as a key construct in thin ideal internalization.

  10. Medulloblastoma: experimental models and reality.

    PubMed

    Neumann, Julia E; Swartling, Fredrik J; Schüller, Ulrich

    2017-11-01

    Medulloblastoma is the most frequent malignant brain tumor in childhood, but it may also affect infants, adolescents, and young adults. Recent advances in the understanding of the disease have shed light on molecular and clinical heterogeneity, which is now reflected in the updated WHO classification of brain tumors. At the same time, it is well accepted that preclinical research and clinical trials have to be subgroup-specific. Hence, valid models have to be generated specifically for every medulloblastoma subgroup to properly mimic molecular fingerprints, clinical features, and responsiveness to targeted therapies. This review summarizes the availability of experimental medulloblastoma models with a particular focus on how well these models reflect the actual disease subgroup. We further describe technical advantages and disadvantages of the models and finally point out how some models have successfully been used to introduce new drugs and why some medulloblastoma subgroups are extraordinary difficult to model.

  11. Promoting Spiritual Ideals through Design Thinking in Public Schools

    ERIC Educational Resources Information Center

    Tan, Charlene; Wong, Yew-Leong

    2012-01-01

    Against a backdrop of the debates on religious education in public or state schools, we argue for the introduction of "spiritual ideals" into the public school curriculum. We distinguish our notion of spiritual ideals from "religious ideals" as conceptualised by De Ruyter and Merry. While we agree with De Ruyter and Merry that…

  12. Experimental animal models of encapsulating peritoneal sclerosis.

    PubMed

    Hoff, Catherine M

    2005-04-01

    Encapsulating peritoneal sclerosis (EPS) is an infrequent, but extremely serious complication of long-term peritoneal dialysis. The cause of EPS is unclear, but the low incidence suggests that it is most likely multifactorial. The elucidation of developmental pathways and predictive markers of EPS would facilitate the identification and management of high-risk patients. Animal models are often used to define pathways of disease progression and to test strategies for treatment and prevention in the patient population. Ideally such models could help to define the cause of EPS and its developmental pathways, to facilitate the identification of contributing factors and predictive markers, and to provide a system to test therapeutic strategies. Researchers have studied several rodent models of EPS that rely on chronic chemical irritation (for example, bleach, low-pH solution, chlorhexidine gluconate) to induce peritoneal sclerosis and abdominal encapsulation. Development in all models is progressive, with inflammation giving way to peritoneal fibrosis or sclerosis with accumulating membrane damage, culminating in cocoon formation. Microscopic findings are similar to those proposed as diagnostic criteria for clinical EPS: an initial inflammatory infiltrate and submesothelial thickening, collagen deposition, and activation and proliferation of peritoneal fibroblasts. The potential to block progression of peritoneal sclerosis in these models by anti-inflammatory, antifibrotic, and anti-angiogenic agents, and by inhibitors of the renin-angiotensin system have been demonstrated. Animal models based on clinically relevant risk factors (for example, uremia, peritonitis, and long-term exposure to dialysis solutions) now represent the next step in model development.

  13. Einstein's idealism and a new kind of space research

    NASA Astrophysics Data System (ADS)

    Popov, M. A.

    present time in Cosmology, the Cognitive Dark Matter is Kant-like superphenomental, or transcendental "noumental process" (Noumena). To describe Transcendental Dark Matter by methods of experimental idealism is, probably, the most sursprising and profound task for new space discipline ("Space Idealism"). We may await also that some fundamental characteristics of physical Dark Matter, discovered by Ostiker, Steinhardt, Krauss and Turner (1955), can be explained by our hypothethis, because it is not impossible that the Dark Matter is a part of the Cognitive Dark Matter, contained an observer's impact, which cannot be neglected after Special Relativity.

  14. Application of ideal pressure distribution in development process of automobile seats.

    PubMed

    Kilincsoy, U; Wagner, A; Vink, P; Bubb, H

    2016-07-19

    In designing a car seat the ideal pressure distribution is important as it is the largest contact surface between the human and the car. Because of obstacles hindering a more general application of the ideal pressure distribution in seating design, multidimensional measuring techniques are necessary with extensive user tests. The objective of this study is to apply and integrate the knowledge about the ideal pressure distribution in the seat design process for a car manufacturer in an efficient way. Ideal pressure distribution was combined with pressure measurement, in this case pressure mats. In order to integrate this theoretical knowledge of seating comfort in the seat development process for a car manufacturer a special user interface was defined and developed. The mapping of the measured pressure distribution in real-time and accurately scaled to actual seats during test setups directly lead to design implications for seat design even during the test situation. Detailed analysis of the subject's feedback was correlated with objective measurements of the subject's pressure distribution in real time. Therefore existing seating characteristics were taken into account as well. A user interface can incorporate theoretical and validated 'state of the art' models of comfort. Consequently, this information can reduce extensive testing and lead to more detailed results in a shorter time period.

  15. Childhood Lifestyle and Clinical Determinants of Adult Ideal

    PubMed Central

    Laitinen, Tomi T.; Pahkala, Katja; Venn, Alison; Woo, Jessica G; Oikonen, Mervi; Dwyer, Terence; Mikkilä, Vera; Hutri-Kähönen, Nina; Smith, Kylie J.; Gall, Seana L.; Morrison, John A.; Viikari, Jorma S.A.; Raitakari, Olli T.; Magnussen, Costan G.; Juonala, Markus

    2013-01-01

    Background The American Heart Association recently defined ideal cardiovascular health by simultaneous presence of seven health behaviors and factors. The concept is associated with cardiovascular disease incidence, and cardiovascular disease and all-cause mortality. To effectively promote ideal cardiovascular health already early in life, childhood factors predicting future ideal cardiovascular health should be investigated. Our aim was thus to comprehensively explore childhood determinants of adult ideal cardiovascular health in population based cohorts from three continents. Methods The sample comprised a total of 4409 participants aged 3–19 years at baseline from the Cardiovascular Risk in Young Finns Study (YFS; N=1883) from Finland, Childhood Determinants of Adult Health Study (CDAH; N=1803) from Australia and Princeton Follow-up Study (PFS; N=723) from the United States. Participants were re-examined 19–31 years later when aged 30–48 years. Results In multivariable analyses, independent childhood predictors of adult ideal cardiovascular health were family socioeconomic status (P<0.01; direct association) and BMI (P<0.001; inverse association) in all cohorts. In addition, blood pressure (P=0.007), LDL-cholesterol (P<0.001) and parental smoking (P=0.006) in the YFS, and own smoking (P=0.001) in CDAH were inversely associated with future ideal cardiovascular health. Conclusions Among several lifestyle and clinical indicators studied, higher family socioeconomic status and non-smoking (parental/own) in childhood independently predict ideal cardiovascular health in adulthood. As atherosclerotic cardiovascular diseases are rooted in childhood, our findings suggest that special attention could be paid to children who are from low socioeconomic status families, and who smoke or whose parents smoke, to prevent cardiovascular disease morbidity and mortality. PMID:24075574

  16. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  17. Thermoelectric Generation Using Counter-Flows of Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2017-08-01

    Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.

  18. Introducing a New Experimental Islet Transplantation Model using Biomimetic Hydrogel and a Simple High Yield Islet Isolation Technique.

    PubMed

    Mohammadi Ayenehdeh, Jamal; Niknam, Bahareh; Hashemi, Seyed Mahmoud; Rahavi, Hossein; Rezaei, Nima; Soleimani, Masoud; Tajik, Nader

    2017-07-01

    Islet transplantation could be an ideal alternative treatment to insulin therapy for type 1 diabetes Mellitus (T1DM). This clinical and experimental field requires a model that covers problems such as requiring a large number of functional and viable islets, the optimal transplantation site, and the prevention of islet dispersion. Hence, the methods of choice for isolation of functional islets and transplantation are crucial. The present study has introduced an experimental model that overcomes some critical issues in islet transplantation, including in situ pancreas perfusion by digestive enzymes through common bile duct. In comparison with conventional methods, we inflated the pancreas in Petri dishes with only 1 ml collagenase type XI solution, which was followed by hand-picking isolation or Ficoll gradient separation to purify the islets. Then we used a hydrogel composite in which the islets were embedded and transplanted into the peritoneal cavity of the streptozotocin-induced diabetic C57BL/6 mice. As compared to the yield of the classical methods, in our modified technique, the mean yield of isolation was about 130-200 viable islets/mouse pancreas. In vitro glucose-mediated insulin secretion assay indicated an appropriate response in isolated islets. In addition, data from in vivo experiments revealed that the allograft remarkably maintained blood glucose levels under 400 mg/dl and hydrogel composite prevents the passage of immune cells. In the model presented here, the rapid islet isolation technique and the application of biomimetic hydrogel wrapping of islets could facilitate islet transplantation procedures.

  19. Protein solubility modeling

    NASA Technical Reports Server (NTRS)

    Agena, S. M.; Pusey, M. L.; Bogle, I. D.

    1999-01-01

    A thermodynamic framework (UNIQUAC model with temperature dependent parameters) is applied to model the salt-induced protein crystallization equilibrium, i.e., protein solubility. The framework introduces a term for the solubility product describing protein transfer between the liquid and solid phase and a term for the solution behavior describing deviation from ideal solution. Protein solubility is modeled as a function of salt concentration and temperature for a four-component system consisting of a protein, pseudo solvent (water and buffer), cation, and anion (salt). Two different systems, lysozyme with sodium chloride and concanavalin A with ammonium sulfate, are investigated. Comparison of the modeled and experimental protein solubility data results in an average root mean square deviation of 5.8%, demonstrating that the model closely follows the experimental behavior. Model calculations and model parameters are reviewed to examine the model and protein crystallization process. Copyright 1999 John Wiley & Sons, Inc.

  20. On the union of graded prime ideals

    NASA Astrophysics Data System (ADS)

    Uregen, Rabia Nagehan; Tekir, Unsal; Hakan Oral, Kursat

    2016-01-01

    In this paper we investigate graded compactly packed rings, which is defined as; if any graded ideal I of R is contained in the union of a family of graded prime ideals of R, then I is actually contained in one of the graded prime ideals of the family. We give some characterizations of graded compactly packed rings. Further, we examine this property on h - Spec(R). We also define a generalization of graded compactly packed rings, the graded coprimely packed rings. We show that R is a graded compactly packed ring if and only if R is a graded coprimely packed ring whenever R be a graded integral domain and h - dim R = 1.

  1. Noise Production of an Idealized Two-Dimensional Fish School

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2017-11-01

    The analysis of quiet bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid-solid dynamics of swimmers and their wakes with the resulting noise generation. Such a framework is presented for two-dimensional flows, where the fluid motion is modeled by an unsteady boundary element method with a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. A diamond arrangement of four airfoils are subjected to traveling wave kinematics representing a known idealized pattern for a school of fish, and the airfoil motion and inflow values are derived from the range of Strouhal values common to many natural swimmers. The coupled flow-acoustic solver estimates and analyzes the hydrodynamic performance and noise production of the idealized school of swimmers.

  2. Why Education in Public Schools Should Include Religious Ideals

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.; Merry, Michael S.

    2009-01-01

    This article aims to open a new line of debate about religion in public schools by focusing on religious ideals. The article begins with an elucidation of the concept "religious ideals" and an explanation of the notion of reasonable pluralism, in order to be able to explore the dangers and positive contributions of religious ideals and their…

  3. Mutant mice: experimental organisms as materialised models in biomedicine.

    PubMed

    Huber, Lara; Keuck, Lara K

    2013-09-01

    Animal models have received particular attention as key examples of material models. In this paper, we argue that the specificities of establishing animal models-acknowledging their status as living beings and as epistemological tools-necessitate a more complex account of animal models as materialised models. This becomes particularly evident in animal-based models of diseases that only occur in humans: in these cases, the representational relation between animal model and human patient needs to be generated and validated. The first part of this paper presents an account of how disease-specific animal models are established by drawing on the example of transgenic mice models for Alzheimer's disease. We will introduce an account of validation that involves a three-fold process including (1) from human being to experimental organism; (2) from experimental organism to animal model; and (3) from animal model to human patient. This process draws upon clinical relevance as much as scientific practices and results in disease-specific, yet incomplete, animal models. The second part of this paper argues that the incompleteness of models can be described in terms of multi-level abstractions. We qualify this notion by pointing to different experimental techniques and targets of modelling, which give rise to a plurality of models for a specific disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Experimental models of hepatotoxicity related to acute liver failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maes, Michaël; Vinken, Mathieu, E-mail: mvinken@vub.ac.be; Jaeschke, Hartmut

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposuremore » or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. - Highlights: • The murine APAP model is very close to what is observed in patients. • The Gal/ET model is useful to study TNFα-mediated apoptotic signaling mechanisms. • Fas receptor activation is an effective model of apoptosis and secondary necrosis. • The ConA model is a relevant model of auto-immune hepatitis and viral hepatitis. • Multiple time point evaluation needed in experimental models of acute liver injury.« less

  5. Idealization of the analyst by the young adult.

    PubMed

    Chused, J F

    1987-01-01

    Idealization is an intrapsychic process that serves many functions. In addition to its use defensively and for gratification of libidinal and aggressive drive derivatives, it can contribute to developmental progression, particularly during late adolescence and young adulthood. During an analysis, it is important to recognize all the determinants of idealization, including those related to the reworking of developmental conflicts. If an analyst understands idealization solely as a manifestation of pathology, he may interfere with his patient's use of it for the development of autonomous functioning.

  6. Modeling of Receptor Tyrosine Kinase Signaling: Computational and Experimental Protocols.

    PubMed

    Fey, Dirk; Aksamitiene, Edita; Kiyatkin, Anatoly; Kholodenko, Boris N

    2017-01-01

    The advent of systems biology has convincingly demonstrated that the integration of experiments and dynamic modelling is a powerful approach to understand the cellular network biology. Here we present experimental and computational protocols that are necessary for applying this integrative approach to the quantitative studies of receptor tyrosine kinase (RTK) signaling networks. Signaling by RTKs controls multiple cellular processes, including the regulation of cell survival, motility, proliferation, differentiation, glucose metabolism, and apoptosis. We describe methods of model building and training on experimentally obtained quantitative datasets, as well as experimental methods of obtaining quantitative dose-response and temporal dependencies of protein phosphorylation and activities. The presented methods make possible (1) both the fine-grained modeling of complex signaling dynamics and identification of salient, course-grained network structures (such as feedback loops) that bring about intricate dynamics, and (2) experimental validation of dynamic models.

  7. An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity.

    PubMed

    Li, Bin; Cui, Xili; O'Nolan, Daniel; Wen, Hui-Min; Jiang, Mengdie; Krishna, Rajamani; Wu, Hui; Lin, Rui-Biao; Chen, Yu-Sheng; Yuan, Daqiang; Xing, Huabin; Zhou, Wei; Ren, Qilong; Qian, Guodong; Zaworotko, Michael J; Chen, Banglin

    2017-12-01

    Realization of ideal molecular sieves, in which the larger gas molecules are completely blocked without sacrificing high adsorption capacities of the preferred smaller gas molecules, can significantly reduce energy costs for gas separation and purification and thus facilitate a possible technological transformation from the traditional energy-intensive cryogenic distillation to the energy-efficient, adsorbent-based separation and purification in the future. Although extensive research endeavors are pursued to target ideal molecular sieves among diverse porous materials, over the past several decades, ideal molecular sieves for the separation and purification of light hydrocarbons are rarely realized. Herein, an ideal porous material, SIFSIX-14-Cu-i (also termed as UTSA-200), is reported with ultrafine tuning of pore size (3.4 Å) to effectively block ethylene (C 2 H 4 ) molecules but to take up a record-high amount of acetylene (C 2 H 2 , 58 cm 3 cm -3 under 0.01 bar and 298 K). The material therefore sets up new benchmarks for both the adsorption capacity and selectivity, and thus provides a record purification capacity for the removal of trace C 2 H 2 from C 2 H 4 with 1.18 mmol g -1 C 2 H 2 uptake capacity from a 1/99 C 2 H 2 /C 2 H 4 mixture to produce 99.9999% pure C 2 H 4 (much higher than the acceptable purity of 99.996% for polymer-grade C 2 H 4 ), as demonstrated by experimental breakthrough curves. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel R.; Walker, Ian J.; Wiggs, Giles F. S.

    2004-04-01

    A Computational Fluid Dynamics (CFD) model (PHOENICS™ 3.5) previously validated for wind tunnel measurements is used to simulate the streamwise and vertical velocity flow fields over idealized transverse dunes of varying height ( h) and stoss slope basal length ( L). The model accurately reproduced patterns of: flow deceleration at the dune toe; stoss flow acceleration; vertical lift in the crest region; lee-side flow separation, re-attachment and reversal; and flow recovery distance. Results indicate that the flow field over transverse dunes is particularly sensitive to changes in dune height, with an increase in height resulting in flow deceleration at the toe, streamwise acceleration and vertical lift at the crest, and an increase in the extent of, and strength of reversed flows within, the lee-side separation cell. In general, the length of the separation zone varied from 3 to 15 h from the crest and increased over taller, steeper dunes. Similarly, the flow recovery distance ranged from 45 to >75 h and was more sensitive to changes in dune height. For the range of dune shapes investigated in this study, the differing effects of height and stoss slope length raise questions regarding the applicability of dune aspect ratio as a parameter for explaining airflow over transverse dunes. Evidence is also provided to support existing research on: streamline curvature and the maintenance of sand transport in the toe region; vertical lift in the crest region and its effect on grainfall delivery; relations between the turbulent shear layer and downward forcing of flow re-attachment; and extended flow recovery distances beyond the separation cell. Field validation is required to test these findings in natural settings. Future applications of the model will characterize turbulence and shear stress fields, examine the effects of more complex isolated dune forms and investigate flow over multiple dunes.

  9. Women's empowerment and ideal family size: an examination of DHS empowerment measures in Sub-Saharan Africa.

    PubMed

    Upadhyay, Ushma D; Karasek, Deborah

    2012-06-01

    The Demographic and Health Survey (DHS) program collects data on women's empowerment, but little is known about how these measures perform in Sub-Saharan African countries. It is important to understand whether women's empowerment is associated with their ideal number of children and ability to limit fertility to that ideal number in the Sub-Saharan African context. The analysis used couples data from DHS surveys in four Sub-Saharan African countries: Guinea, Mali, Namibia and Zambia. Women's empowerment was measured by participation in household decision making, attitudes toward wife beating and attitudes toward refusing sex with one's husband. Multivariable linear regression was used to model women's ideal number of children, and multivariable logistic regression was used to model women's odds of having more children than their ideal. In Guinea and Zambia, negative attitudes toward wife beating were associated with having a smaller ideal number of children (beta coefficients, -0.5 and -0.3, respectively). Greater household decision making was associated with a smaller ideal number of children only in Guinea (beta coefficient, -0.3). Additionally, household decision making and positive attitudes toward women's right to refuse sex were associated with elevated odds of having more children than desired in Namibia and Zambia, respectively (odds ratios, 2.3 and 1.4); negative attitudes toward wife beating were associated with reduced odds of the outcome in Mali (0.4). Women's empowerment--as assessed using currently available measures--is not consistently associated with a desire for smaller families or the ability to achieve desired fertility in these Sub-Saharan African countries. Further research is needed to determine what measures are most applicable for these contexts.

  10. The ideal ear position in Caucasian females.

    PubMed

    Broer, P Niclas; Thiha, Aung; Ehrl, Denis; Sinno, Sammy; Juran, Sabrina; Szpalski, Caroline; Ng, Reuben; Ninkovic, Milomir; Prantl, Lukas; Heidekrueger, Paul I

    2018-03-01

    Ear position contributes significantly to facial appearance. However, while objective measurements remain the foundation for esthetic evaluations, little is known about how an ear should ideally be positioned regarding its rotational axis. This study aimed to further evaluate whether there exists a universally applicable ideal ear axis, and how sociodemographic factors impact such preferences. An interactive online survey was designed, enabling participants to change the axis of a female model's ear in terms of its forward and backward rotation. The questionnaire was sent out internationally to plastic surgeons and the general public. Demographic data were collected and analysis of variance was used to investigate respective preferences. A total of 1016 responses from 35 different countries (response rate: 18.5%) were gathered. Overall, 60% of survey takers chose the minus 10 or 5° angles to be most attractive. Significant differences were found regarding sex, ethnicity, country of residence, profession and respective ear axis preferences. Across multiple countries and ethnicities, an ear position in slight reclination of minus 5-10° is considered most pleasing in Caucasian females. However, sociodemographic factors significantly impact individual ear axis preferences and should be taken into consideration when performing reconstructive ear surgery. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. The Ideal and the Reality: Teaching Interpersonal Communication within the Walls.

    ERIC Educational Resources Information Center

    Meussling, Vonne

    Teaching interpersonal values in an "ideal" setting, such as a college classroom, differs greatly from teaching in a "real" setting, in this case a maximum security prison for males. The practice of prison indoctrination dehumanizes inmates, diminishes their self-esteem, and deprives them of positive role models. The nature of the collective…

  12. Analysis of Viking infrared thermal mapping data of Mars. The effects of non-ideal surfaces on the derived thermal properties of Mars

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Jakosky, B. M.

    1979-01-01

    The thermal interia of the surface of Mars varies spatially by a factor of eight. This is attributable to changes in the average particle size of the fine material, the surface elevation, the atmospheric opacity due to dust, and the fraction of the surface covered by rocks and fine material. The effects of these non-ideal properties on the surface temperatures and derived thermal inertias are modeled, along with the the effects of slopes, CO2 condensed onto the surface, and layering of fine material upon solid rock. The non-ideal models are capable of producing thermal behavior similar to that observed by the Viking Infrared Thermal Mapper, including a morning delay in the post-dawn temperature rise and an enhanced cooling in the afternoon relative to any ideal, homogeneous model. The enhanced afternoon cooling observed at the Viking-1 landing site is reproduced by the non-ideal models while that atop Arsia Mons volcano is not, but may be attributed to the observing geometry.

  13. The updated experimental proteinoid model

    NASA Technical Reports Server (NTRS)

    Fox, S. W.; Nakashima, T.; Przybylski, A.; Syren, R. M.

    1982-01-01

    The experimental proteinoid model includes new results indicating that polymers sufficiently rich in basic amino acid catalyze the synthesis of peptides from ATP and amino acids and of oligonucleotides from ATP. The need for simulation syntheses of amino acids yielding significant proportions of basic amino acids is now in focus. The modeled simultaneous protocellular synthesis of peptides and polynucleotides is part of a more comprehensive proposal for the origin of the coded genetic mechanism. The finding of membrane and action potentials in proteinoid microspheres, with or without added lecithin, is reported. The crucial nature of a nonrandom matrix for protocells is developed.

  14. Detonation failure characterization of non-ideal explosives

    NASA Astrophysics Data System (ADS)

    Janesheski, Robert S.; Groven, Lori J.; Son, Steven

    2012-03-01

    Non-ideal explosives are currently poorly characterized, hence limiting the modeling of them. Current characterization requires large-scale testing to obtain steady detonation wave characterization for analysis due to the relatively thick reaction zones. Use of a microwave interferometer applied to small-scale confined transient experiments is being implemented to allow for time resolved characterization of a failing detonation. The microwave interferometer measures the position of a failing detonation wave in a tube that is initiated with a booster charge. Experiments have been performed with ammonium nitrate and various fuel compositions (diesel fuel and mineral oil). It was observed that the failure dynamics are influenced by factors such as chemical composition and confiner thickness. Future work is planned to calibrate models to these small-scale experiments and eventually validate the models with available large scale experiments. This experiment is shown to be repeatable, shows dependence on reactive properties, and can be performed with little required material.

  15. Fragon: rapid high-resolution structure determination from ideal protein fragments.

    PubMed

    Jenkins, Huw T

    2018-03-01

    Correctly positioning ideal protein fragments by molecular replacement presents an attractive method for obtaining preliminary phases when no template structure for molecular replacement is available. This has been exploited in several existing pipelines. This paper presents a new pipeline, named Fragon, in which fragments (ideal α-helices or β-strands) are placed using Phaser and the phases calculated from these coordinates are then improved by the density-modification methods provided by ACORN. The reliable scoring algorithm provided by ACORN identifies success. In these cases, the resulting phases are usually of sufficient quality to enable automated model building of the entire structure. Fragon was evaluated against two test sets comprising mixed α/β folds and all-β folds at resolutions between 1.0 and 1.7 Å. Success rates of 61% for the mixed α/β test set and 30% for the all-β test set were achieved. In almost 70% of successful runs, fragment placement and density modification took less than 30 min on relatively modest four-core desktop computers. In all successful runs the best set of phases enabled automated model building with ARP/wARP to complete the structure.

  16. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  17. A critical review of RHIC experimental results

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2014-07-01

    The relativistic heavy-ion collider (RHIC) was constructed to achieve an asymptotic state of nuclear matter in heavy-ion collisions, a near-ideal gas of deconfined quarks and gluons denoted quark-gluon plasma or QGP. RHIC collisions are indeed very different from the hadronic processes observed at the Bevalac and AGS, but high-energy elementary-collision mechanisms are also non-hadronic. The two-component model (TCM) combines measured properties of elementary collisions with the Glauber eikonal model to provide an alternative asymptotic limit for A-A collisions. RHIC data have been interpreted to indicate formation of a strongly-coupled QGP (sQGP) or "perfect liquid". In this review, I consider the experimental evidence that seems to support such conclusions and alternative evidence that may conflict with those conclusions and suggest different interpretations.

  18. Ideal relaxation of the Hopf fibration

    NASA Astrophysics Data System (ADS)

    Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk

    2017-07-01

    Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.

  19. Breaking the cycle: The effects of role model performance and ideal leadership self-concepts on abusive supervision spillover.

    PubMed

    Tu, Min-Hsuan; Bono, Joyce E; Shum, Cass; LaMontagne, Liva

    2018-03-19

    Building on identity theories and social learning theory, we test the notion that new leaders will model the abusive behaviors of their superiors only under certain conditions. Specifically, we hypothesize that new leaders will model abusive supervisory behaviors when (a) abusive superiors are perceived to be competent, based on the performance of their teams and (b) new leaders' ideal leadership self-concepts are high on tyranny or low on sensitivity. Results of an experiment in which we manipulated abusive supervisory behaviors using a professional actor, and created a role change where 93 individuals moved from team member to team leader role, generally support our hypotheses. We found the strongest association between abuse exposure and new leader abuse under conditions where the abusive superior's team performed well and the new team leaders' self-concepts showed low concern for others. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  20. Experimentally validated finite element model of electrocaloric multilayer ceramic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, N. A. S., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Correia, T. M., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk; Rokosz, M. K., E-mail: nadia.smith@npl.co.uk, E-mail: maciej.rokosz@npl.co.uk, E-mail: tatiana.correia@npl.co.uk

    2014-07-28

    A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to supportmore » the design of optimised electrocaloric units and operating conditions.« less

  1. [Challenges and risks in the development of the ego ideal in adolescence].

    PubMed

    Helbing-Tietze, Brigitte

    2003-11-01

    The author proposes to speak of representations concerning the ideal self, the ideal relationship, the ideal society instead of ego ideal. An active self develops ideals and uses them as standards for orientation, to regulate the affects, and to fulfill needs. The different ideals often do not fit together and are therefore difficult to realize. Adolescents normally refuse their parents' ideals and create new ones with the help of their peers. This developmental step is full of challenges and risks as will be explained in this article.

  2. Non-Ideal Detonation Properties of Ammonium Nitrate and Activated Carbon Mixtures

    NASA Astrophysics Data System (ADS)

    Miyake, Atsumi; Echigoya, Hiroshi; Kobayashi, Hidefumi; Ogawa, Terushige; Katoh, Katsumi; Kubota, Shiro; Wada, Yuji; Ogata, Yuji

    To obtain a better understanding of detonation properties of ammonium nitrate (AN) and activated carbon (AC) mixtures, steel tube tests with several diameters were carried out for various compositions of powdered AN and AC mixtures and the influence of the charge diameter on the detonation velocity was investigated. The results showed that the detonation velocity increased with the increase of the charge diameter. The experimentally observed values were far below the theoretically predicted values made by the thermodynamic CHEETAH code and they showed so-called non-ideal detonation. The extrapolated detonation velocity of stoichiometric composition to the infinite diameter showed a good agreement with the theoretical value.

  3. A sub-ensemble theory of ideal quantum measurement processes

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.

    2017-01-01

    In order to elucidate the properties currently attributed to ideal measurements, one must explain how the concept of an individual event with a well-defined outcome may emerge from quantum theory which deals with statistical ensembles, and how different runs issued from the same initial state may end up with different final states. This so-called "measurement problem" is tackled with two guidelines. On the one hand, the dynamics of the macroscopic apparatus A coupled to the tested system S is described mathematically within a standard quantum formalism, where " q-probabilities" remain devoid of interpretation. On the other hand, interpretative principles, aimed to be minimal, are introduced to account for the expected features of ideal measurements. Most of the five principles stated here, which relate the quantum formalism to physical reality, are straightforward and refer to macroscopic variables. The process can be identified with a relaxation of S + A to thermodynamic equilibrium, not only for a large ensemble E of runs but even for its sub-ensembles. The different mechanisms of quantum statistical dynamics that ensure these types of relaxation are exhibited, and the required properties of the Hamiltonian of S + A are indicated. The additional theoretical information provided by the study of sub-ensembles remove Schrödinger's quantum ambiguity of the final density operator for E which hinders its direct interpretation, and bring out a commutative behaviour of the pointer observable at the final time. The latter property supports the introduction of a last interpretative principle, needed to switch from the statistical ensembles and sub-ensembles described by quantum theory to individual experimental events. It amounts to identify some formal " q-probabilities" with ordinary frequencies, but only those which refer to the final indications of the pointer. The desired properties of ideal measurements, in particular the uniqueness of the result for each individual

  4. Induction of osteoarthritis by injecting monosodium iodoacetate into the patellofemoral joint of an experimental rat model

    PubMed Central

    Matsuzaki, Taro; Kuroki, Hiroshi

    2018-01-01

    This study aimed to investigate the histopathological changes in the patellofemoral joint using a rat model of osteoarthritis that was induced using monosodium iodoacetate, and to establish a novel model of patellofemoral osteoarthritis in a rat model using histopathological analysis. Sixty male rats were used. Osteoarthritis was induced through a single intra-articular injection of monosodium iodoacetate in both knee joints. Animals were equally divided into two experimental groups based on the monosodium iodoacetate dose: 0.2 mg and 1.0 mg. Histopathological changes in the articular cartilage of the patellofemoral joint and the infrapatellar fat pad were examined at 3 days, 1 week, 2 weeks, 4 weeks, 8 weeks, and 12 weeks after the monosodium iodoacetate injection. In the 1.0-mg group, the representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint over time. Additionally, the Osteoarthritis Research Society International scores of the patellofemoral joint increased over time. The synovitis scores of the infrapatellar fat pad in both groups were highest at 3 days, and then the values decreased over time. The fibrosis score of the infrapatellar fat pad in the 1.0-mg group increased with time, whereas the fibrosis score in the 0.2-mg group remained low. Representative histopathological findings of osteoarthritis were observed in the articular cartilage of the patellofemoral joint in a rat model of osteoarthritis induced using monosodium iodoacetate. With appropriate selection, this model may be regarded as an ideal patellofemoral osteoarthritis model. PMID:29698461

  5. Sensitivity of finite helical axis parameters to temporally varying realistic motion utilizing an idealized knee model.

    PubMed

    Johnson, T S; Andriacchi, T P; Erdman, A G

    2004-01-01

    Various uses of the screw or helical axis have previously been reported in the literature in an attempt to quantify the complex displacements and coupled rotations of in vivo human knee kinematics. Multiple methods have been used by previous authors to calculate the axis parameters, and it has been theorized that the mathematical stability and accuracy of the finite helical axis (FHA) is highly dependent on experimental variability and rotation increment spacing between axis calculations. Previous research has not addressed the sensitivity of the FHA for true in vivo data collection, as required for gait laboratory analysis. This research presents a controlled series of experiments simulating continuous data collection as utilized in gait analysis to investigate the sensitivity of the three-dimensional finite screw axis parameters of rotation, displacement, orientation and location with regard to time step increment spacing, utilizing two different methods for spatial location. Six-degree-of-freedom motion parameters are measured for an idealized rigid body knee model that is constrained to a planar motion profile for the purposes of error analysis. The kinematic data are collected using a multicamera optoelectronic system combined with an error minimization algorithm known as the point cluster method. Rotation about the screw axis is seen to be repeatable, accurate and time step increment insensitive. Displacement along the axis is highly dependent on time step increment sizing, with smaller rotation angles between calculations producing more accuracy. Orientation of the axis in space is accurate with only a slight filtering effect noticed during motion reversal. Locating the screw axis by a projected point onto the screw axis from the mid-point of the finite displacement is found to be less sensitive to motion reversal than finding the intersection of the axis with a reference plane. A filtering effect of the spatial location parameters was noted for larger time

  6. Determination of ideal-gas enthalpies of formation for key compounds:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.; Chirico, R.D.; Nguyen, A.

    1991-10-01

    The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic and organosilicon substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (d.s.c.) heat-capacity measurements. Ideal-gas enthalpies of formation of ({plus minus})-butan-2-ol, tetradecan-1-ol, hexan-1,6-diol, methacrylamide, benzoyl formic acid, naphthalene-2,6-dicarboxylic acid dimethyl ester, and tetraethylsilane are reported. A crystalline-phase enthalpy of formation at 298.15 K was determined for naphthalene-2,6-dicarboxylic acid, which decomposed at 695 Kmore » before melting. The combustion calorimetry of tetraethylsilane used the proven fluorine-additivity methodology. Critical temperature and critical density were determined for tetraethylsilane with differential scanning calorimeter and the critical pressure was derived. Group-additivity parameters useful in the application of group- contribution correlations are derived. 112 refs., 13 figs., 19 tabs.« less

  7. Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence

    NASA Technical Reports Server (NTRS)

    Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor

    2010-01-01

    We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.

  8. Spaces of ideal convergent sequences.

    PubMed

    Mursaleen, M; Sharma, Sunil K

    2014-01-01

    In the present paper, we introduce some sequence spaces using ideal convergence and Musielak-Orlicz function ℳ = (M(k)). We also examine some topological properties of the resulting sequence spaces.

  9. Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2

    NASA Astrophysics Data System (ADS)

    Senior, Catherine A.; Andrews, Timothy; Burton, Chantelle; Chadwick, Robin; Copsey, Dan; Graham, Tim; Hyder, Pat; Jackson, Laura; McDonald, Ruth; Ridley, Jeff; Ringer, Mark; Tsushima, Yoko

    2016-06-01

    Idealized climate change simulations with a new physical climate model, HadGEM3-GC2 from The Met Office Hadley Centre are presented and contrasted with the earlier MOHC model, HadGEM2-ES. The role of atmospheric resolution is also investigated. The Transient Climate Response (TCR) is 1.9 K/2.1 K at N216/N96 and Effective Climate Sensitivity (ECS) is 3.1 K/3.2 K at N216/N96. These are substantially lower than HadGEM2-ES (TCR: 2.5 K; ECS: 4.6 K) arising from a combination of changes in the size of climate feedbacks. While the change in the net cloud feedback between HadGEM3 and HadGEM2 is relatively small, there is a change in sign of its longwave and a strengthening of its shortwave components. At a global scale, there is little impact of the increase in atmospheric resolution on the future climate change signal and even at a broad regional scale, many features are robust including tropical rainfall changes, however, there are some significant exceptions. For the North Atlantic and western Europe, the tripolar pattern of winter storm changes found in most CMIP5 models is little impacted by resolution but for the most intense storms, there is a larger percentage increase in number at higher resolution than at lower resolution. Arctic sea-ice sensitivity shows a larger dependence on resolution than on atmospheric physics.

  10. Comparison of Realistic and Idealized Breathing Patterns in Computational Models of Airflow and Vapor Dosimetry in the Rodent Upper Respiratory Tract

    PubMed Central

    Jacob, Richard E.; Kuprat, Andrew P.; Einstein, Daniel R.; Corley, Richard A.

    2016-01-01

    Context Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically-based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing, and combinations of both as flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory, and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration, and the time spent sniffing, the use of realistic breathing profiles—including sniffing—could become an important modulator for local tissue dose predictions. PMID:26986954

  11. Dynamo Effects in Magnetized Ideal Plasma Cosmologies

    NASA Astrophysics Data System (ADS)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas

    The excitation of cosmological perturbations in an anisotropic cosmological model and in the presence of a homogeneous magnetic field has been studied, using the ideal magnetohydrodynamic (MHD) equations. In this case, the system of partial differential equations which governs the evolution of the magnetized cosmological perturbations can be solved analytically. Our results verify that fast-magnetosonic modes propagating normal to the magnetic field, are excited. But, what is most important, is that, at late times, the magnetic-induction contrast (δB/B) grows, resulting in the enhancement of the ambient magnetic field. This process can be particularly favored by condensations, formed within the plasma fluid due to gravitational instabilities.

  12. Modeling and experimental result analysis for high-power VECSELs

    NASA Astrophysics Data System (ADS)

    Zakharian, Aramais R.; Hader, Joerg; Moloney, Jerome V.; Koch, Stephan W.; Lutgen, Stephan; Brick, Peter; Albrecht, Tony; Grotsch, Stefan; Luft, Johann; Spath, Werner

    2003-06-01

    We present a comparison of experimental and microscopically based model results for optically pumped vertical external cavity surface emitting semiconductor lasers. The quantum well gain model is based on a quantitative ab-initio approach that allows calculation of a complex material susceptibility dependence on the wavelength, carrier density and lattice temperature. The gain model is coupled to the macroscopic thermal transport, spatially resolved in both the radial and longitudinal directions, with temperature and carrier density dependent pump absorption. The radial distribution of the refractive index and gain due to temperature variation are computed. Thermal managment issues, highlighted by the experimental data, are discussed. Experimental results indicate a critical dependence of the input power, at which thermal roll-over occurs, on the thermal resistance of the device. This requires minimization of the substrate thickness and optimization of the design and placement of the heatsink. Dependence of the model results on the radiative and non-radiative carrier recombination lifetimes and cavity losses are evaluated.

  13. Media-portrayed idealized images, body shame, and appearance anxiety.

    PubMed

    Monro, Fiona; Huon, Gail

    2005-07-01

    This study was designed to determine the effects of media-portrayed idealized images on young women's body shame and appearance anxiety, and to establish whether the effects depend on advertisement type and on participant self-objectification. Participants were 39 female university students. Twenty-four magazine advertisements comprised 12 body-related and 12 non-body-related products, one half of each with, and the other one half without, idealized images. Preexposure and post exposure body shame and appearance anxiety measures were recorded. Appearance anxiety increased after viewing advertisements featuring idealized images. There was also a significant interaction between self-objectification level and idealized body (presence vs. absence). No differences emerged for body-related compared with non-body-related product advertisements. The only result for body shame was a main effect for time. Participants' body shame increased after exposure to idealized images, irrespective of advertisement type. Although our findings reveal that media-portrayed idealized images detrimentally affect the body image of young women, they highlight the individual differences in vulnerability and the different effects for different components of body image. These results are discussed in terms of their implications for the prevention and early intervention of body image and dieting-related disorders. ( Copyright 2005 by Wiley Periodicals, Inc

  14. Numerical investigation of compaction of deformable particles with bonded-particle model

    NASA Astrophysics Data System (ADS)

    Dosta, Maksym; Costa, Clara; Al-Qureshi, Hazim

    2017-06-01

    In this contribution, a novel approach developed for the microscale modelling of particles which undergo large deformations is presented. The proposed method is based on the bonded-particle model (BPM) and multi-stage strategy to adjust material and model parameters. By the BPM, modelled objects are represented as agglomerates which consist of smaller ideally spherical particles and are connected with cylindrical solid bonds. Each bond is considered as a separate object and in each time step the forces and moments acting in them are calculated. The developed approach has been applied to simulate the compaction of elastomeric rubber particles as single particles or in a random packing. To describe the complex mechanical behaviour of the particles, the solid bonds were modelled as ideally elastic beams. The functional parameters of solid bonds as well as material parameters of bonds and primary particles were estimated based on the experimental data for rubber spheres. Obtained results for acting force and for particle deformations during uniaxial compression are in good agreement with experimental data at higher strains.

  15. Non-ideal magnetohydrodynamic simulations of the two-stage fragmentation model for cluster formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: N.Bailey@leeds.ac.uk, E-mail: basu@uwo.ca

    2014-01-01

    We model molecular cloud fragmentation with thin-disk, non-ideal magnetohydrodynamic simulations that include ambipolar diffusion and partial ionization that transitions from primarily ultraviolet-dominated to cosmic-ray-dominated regimes. These simulations are used to determine the conditions required for star clusters to form through a two-stage fragmentation scenario. Recent linear analyses have shown that the fragmentation length scales and timescales can undergo a dramatic drop across the column density boundary that separates the ultraviolet- and cosmic-ray-dominated ionization regimes. As found in earlier studies, the absence of an ionization drop and regular perturbations leads to a single-stage fragmentation on pc scales in transcritical clouds, somore » that the nonlinear evolution yields the same fragment sizes as predicted by linear theory. However, we find that a combination of initial transcritical mass-to-flux ratio, evolution through a column density regime in which the ionization drop takes place, and regular small perturbations to the mass-to-flux ratio is sufficient to cause a second stage of fragmentation during the nonlinear evolution. Cores of size ∼0.1 pc are formed within an initial fragment of ∼pc size. Regular perturbations to the mass-to-flux ratio also accelerate the onset of runaway collapse.« less

  16. Identification of ideal resuscitation pressure with concurrent traumatic brain injury in a rat model of hemorrhagic shock.

    PubMed

    Hu, Yi; Wu, Yue; Tian, Kunlun; Lan, Dan; Chen, Xiangyun; Xue, Mingying; Liu, Liangming; Li, Tao

    2015-05-01

    Traumatic brain injury (TBI) is often associated with uncontrolled hemorrhagic shock (UHS), which contributes significantly to the mortality of severe trauma. Studies have demonstrated that permissive hypotension resuscitation improves the survival for uncontrolled hemorrhage. What the ideal target mean arterial pressure (MAP) is for TBI with UHS remains unclear. With the rat model of TBI in combination with UHS, we investigated the effects of a series of target resuscitation pressures (MAP from 50-90 mm Hg) on animal survival, brain perfusion, and organ function before hemorrhage controlled. Rats in 50-, 60-, and 70-mm Hg target MAP groups had less blood loss and less fluid requirement, a better vital organ including mitochondrial function and better cerebral blood flow, and animal survival (8, 6, and 7 of 10, respectively) than 80- and 90-mm Hg groups. The 70-mm Hg group had a better cerebral blood flow and cerebral mitochondrial function than in 50- and 60-mm Hg groups. In contrast, 80- and 90-mm Hg groups resulted in an excessive hemodilution, a decreased blood flow, an increased brain water content, and more severe cerebral edema. A 50-mm Hg target MAP is not suitable for the resuscitation of TBI combined with UHS. A 70 mm Hg of MAP is the ideal target resuscitation pressure for this trauma, which can keep sufficient perfusion to the brain and keep good organ function including cerebral mitochondrial function. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Coupling Ideality of Integrated Planar High-Q Microresonators

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  18. Evaluation of the accuracy of an offline seasonally-varying matrix transport model for simulating ideal age

    DOE PAGES

    Bardin, Ann; Primeau, Francois; Lindsay, Keith; ...

    2016-07-21

    Newton-Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton’s method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earthmore » System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. As a result, for many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run.« less

  19. Modeling the Structure of Helical Assemblies with Experimental Constraints in Rosetta.

    PubMed

    André, Ingemar

    2018-01-01

    Determining high-resolution structures of proteins with helical symmetry can be challenging due to limitations in experimental data. In such instances, structure-based protein simulations driven by experimental data can provide a valuable approach for building models of helical assemblies. This chapter describes how the Rosetta macromolecular package can be used to model homomeric protein assemblies with helical symmetry in a range of modeling scenarios including energy refinement, symmetrical docking, comparative modeling, and de novo structure prediction. Data-guided structure modeling of helical assemblies with experimental information from electron density, X-ray fiber diffraction, solid-state NMR, and chemical cross-linking mass spectrometry is also described.

  20. Models for Experimental High Density Housing

    NASA Astrophysics Data System (ADS)

    Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia

    2017-10-01

    The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.

  1. An ideal sealed source life-cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompkins, Joseph Andrew

    2009-01-01

    system they we have today. This regulation created a new regulatory framework seen as promising at the time. However, now they recognize that, despite the good intentions, the NIJWP/85 has not solved any source disposition problems. The answer to these sealed source disposition problems is to adopt a philosophy to correct these regulatory issues, determine an interim solution, execute that solution until there is a minimal backlog of sources to deal with, and then let the mechanisms they have created solve this problem into the foreseeable future. The primary philosophical tenet of the ideal sealed source life cycle follows. You do not allow the creation (or importation) of any source whose use cannot be justified, which cannot be affordably shipped, or that does not have a well-delinated and affordable disposition pathway. The path forward dictates that we fix the problem by embracing the Ideal Source Life cycle. In figure 1, we can see some of the elements of the ideal source life cycle. The life cycle is broken down into four portions, manufacture, use, consolidation, and disposition. These four arbitrary elements allow them to focus on the ideal life cycle phases that every source should go through between manufacture and final disposition. As we examine the various phases of the sealed source life cycle, they pick specific examples and explore the adoption of the ideal life cycle model.« less

  2. Contractor's STTR Phase I Final Report- Experimental Analysis and Model Development of Pyrolysis/Combustion of Coal/Biomass in a Bench Scale Spouted Bed Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Benjamin; Loebick, Codruta; Roychoudhury, Subir

    During Phase I both experimental evaluation and computational validation of an advanced Spouted Bed Reactor (SBR) approach for biomass and coal combustion was completed. All Phase I objectives were met and some exceeded. Comprehensive insight on SBR operation was achieved via design, fabrication, and testing of a small demonstration unit with pulverized coal and biomass as feedstock at University of Connecticut (UCONN). A scale-up and optimization tool for the next generation of coal and biomass co-firing for reducing GHG emissions was also developed. The predictive model was implemented with DOE’s MFIX computational model and was observed to accurately mimic evenmore » unsteady behavior. An updated Spouted Bed Reactor was fabricated, based on model feedback, and experimentally displayed near ideal behavior. This predictive capability based upon first principles and experimental correlation allows realistic simulation of mixed fuel combustion in these newly proposed power boiler designs. Compared to a conventional fluidized bed the SBR facilitates good mixing of coal and biomass, with relative insensitivity to particle size and densities, resulting in improved combustion efficiency. Experimental data with mixed coal and biomass fuels demonstrated complete oxidation at temperatures as low as 500ºC. This avoids NOx formation and residual carbon in the waste ash. Operation at stoichiometric conditions without requiring cooling or sintering of the carrier was also observed. Oxygen-blown operation were tested and indicated good performance. This highlighted the possibility of operating the SBR at a wide range of conditions suitable for power generation and partial oxidation byproducts. It also supports the possibility of implementing chemical looping (for readily capturing CO 2 and SO x).« less

  3. Non-ideal magnetohydrodynamics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  4. The Land Use Model Intercomparison Project (LUMIP) Contribution to CMIP6: Rationale and Experimental Design

    NASA Astrophysics Data System (ADS)

    Lawrence, D. M.; Hurtt, G. C.; Arneth, A.; Brovkin, V.; Calvin, K. V.; Jones, A. D.; Jones, C.; Lawrence, P.; De Noblet-Ducoudré, N.; Pongratz, J.; Seneviratne, S. I.; Shevliakova, E.

    2016-12-01

    Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the questions: (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy and (3) Are there regional land-management strategies with promise to help mitigate against climate change? LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. Foci will include separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land-use, the unique impacts of land-cover change versus land management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent that CO2 fertilization is modulated by past and future land use. LUMIP involves three sets of activities: (1) development of an updated and expanded historical and future land-use dataset, (2) an experimental protocol for LUMIP experiments, and (3) definition of metrics that quantify model performance with respect to LULCC. LUMIP experiments are designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate. LUMIP also includes simulations that allow quantification of the historic impact of land use and the potential for future land management decisions

  5. Integrating the glioblastoma microenvironment into engineered experimental models

    PubMed Central

    Xiao, Weikun; Sohrabi, Alireza; Seidlits, Stephanie K

    2017-01-01

    Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion – both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed. PMID:28883992

  6. Interferograms, schlieren, and shadowgraphs constructed from real- and ideal-gas, two- and three-dimensional computed flowfields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  7. Interferograms, Schlieren, and Shadowgraphs Constructed from Real- and Ideal-Gas, Two- and Three-Dimensional Computed Flowfields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method for constructing these images from both ideal- and real-gas, two- and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, the sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  8. Experimental investigation and model verification for a GAX absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, S.C.; Christensen, R.N.

    1996-12-31

    In the ammonia-water generator-absorber heat exchange (GAX) absorption heat pump, the heat and mass transfer processes which occur between the generator and absorber are the most crucial in assuring that the heat pump will achieve COPs competitive with those of current technologies. In this study, a model is developed for the heat and mass transfer processes that occur in a counter-current vertical fluted tube absorber (VFTA) with inserts. Correlations for heat and mass transfer in annuli are used to model the processes in the VTA. Experimental data is used to validate the model for three different insert geometries. Comparison ofmore » model results with experimental data provides insight into model corrections necessary to bring the model into agreement with the physical phenomena observed in the laboratory.« less

  9. Active machine learning-driven experimentation to determine compound effects on protein patterns.

    PubMed

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-02-03

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance.

  10. Active machine learning-driven experimentation to determine compound effects on protein patterns

    PubMed Central

    Naik, Armaghan W; Kangas, Joshua D; Sullivan, Devin P; Murphy, Robert F

    2016-01-01

    High throughput screening determines the effects of many conditions on a given biological target. Currently, to estimate the effects of those conditions on other targets requires either strong modeling assumptions (e.g. similarities among targets) or separate screens. Ideally, data-driven experimentation could be used to learn accurate models for many conditions and targets without doing all possible experiments. We have previously described an active machine learning algorithm that can iteratively choose small sets of experiments to learn models of multiple effects. We now show that, with no prior knowledge and with liquid handling robotics and automated microscopy under its control, this learner accurately learned the effects of 48 chemical compounds on the subcellular localization of 48 proteins while performing only 29% of all possible experiments. The results represent the first practical demonstration of the utility of active learning-driven biological experimentation in which the set of possible phenotypes is unknown in advance. DOI: http://dx.doi.org/10.7554/eLife.10047.001 PMID:26840049

  11. Impact of an Exhaust Throat on Semi-Idealized Rotating Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2016-01-01

    A computational fluid dynamic (CFD) model of a rotating detonation engine (RDE) is used to examine the impact of an exhaust throat (i.e. a constriction) on performance. The model simulates an RDE which is premixed, adiabatic, inviscid, and which contains an inlet valve that prevents backflow from the high pressure region directly behind the rotating detonation. Performance is assessed in terms of ideal net specific impulse which is computed on the assumption of lossless expansion of the working fluid to the ambient pressure through a notional diverging nozzle section downstream of the throat. Such a semi-idealized analysis, while not real-world, allows the effect of the throat to be examined in isolation from, rather than coupled to (as it actually is) various loss mechanisms. For the single Mach 1.4 flight condition considered, it is found that the addition of a throat can yield a 9.4 percent increase in specific impulse. However, it is also found that when the exit throat restriction gets too small, an unstable type of operation ensues which eventually leads to the detonation failing. This behavior is found to be somewhat mitigated by the addition of an RDE inlet restriction across which there is an aerodynamic loss. Remarkably, this loss is overcome by the benefits of the further exhaust restrictions allowed. The end result is a configuration with a 10.3 percent improvement in ideal net specific thrust.

  12. Impact of an Exhaust Throat on Semi-Idealized Rotating Detonation Engine Performance

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2016-01-01

    A computational fluid dynamic (CFD) model of a rotating detonation engine (RDE) is used to examine the impact of an exhaust throat (i.e., a constriction) on performance. The model simulates an RDE which is premixed, adiabatic, inviscid, and which contains an inlet valve that prevents backflow from the high pressure region directly behind the rotating detonation. Performance is assessed in terms of ideal net specific impulse which is computed on the assumption of lossless expansion of the working fluid to the ambient pressure through a notional diverging nozzle section downstream of the throat. Such a semi-idealized analysis, while not real-world, allows the effect of the throat to be examined in isolation from, rather than coupled to (as it actually is) various loss mechanisms. For the single Mach 1.4 flight condition considered, it is found that the addition of a throat can yield a 9.4 percent increase in specific impulse. However, it is also found that when the exit throat restriction gets too small, an unstable type of operation ensues which eventually leads to the detonation failing. This behavior is found to be somewhat mitigated by the addition of an RDE inlet restriction across which there is an aerodynamic loss. Remarkably, this loss is overcome by the benefits of the further exhaust restrictions allowed. The end result is a configuration with a 10.3 percent improvement in ideal net specific thrust.

  13. Experimental models of developmental hypothyroidism.

    PubMed

    Argumedo, G S; Sanz, C R; Olguín, H J

    2012-02-01

    Hypothyroidism is a systemic disease resulting from either thyroid gland's anatomical and functional absence or lack of hypophyseal stimulation, both of which can lead to deficiency in thyroid hormone (TH) production. TH is essential for human and animal development, growth, and function of multiple organs. Children with deficient TH can develop alterations in central nervous system (CNS), striated muscle, bone tissue, liver, bone marrow, and cardiorespiratory system. Among the clinical outlook are signs like breathing difficulty, cardiac insufficiency, dysphagia, and repeated bronchial aspiration, constipation, muscle weakness, cognitive alterations, cochlear dysfunction, reduced height, defects in temperature regulation, anaemia, jaundice, susceptibility to infection, and others. Experimental and clinical studies have shown that TH is very essential for normal brain development. Other research work based on mice pointed out that a reduced level of TH in pregnant mother leads to congenital hypothyroidism in animal models and it is associated with mental retardation, deep neurologic deficiency that impacts on cognitive, learning, and memory functions. The principal experimental model studies that have focused on hypothyroidism are reviewed in this study. This is important on considering the fact that almost all animal species require thyroid hormones for their metabolism. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Optimal Experimental Design for Model Discrimination

    ERIC Educational Resources Information Center

    Myung, Jay I.; Pitt, Mark A.

    2009-01-01

    Models of a psychological process can be difficult to discriminate experimentally because it is not easy to determine the values of the critical design variables (e.g., presentation schedule, stimulus structure) that will be most informative in differentiating them. Recent developments in sampling-based search methods in statistics make it…

  15. The idealized self and the situated self as predictors of employee work behaviors.

    PubMed

    Farmer, Steven M; Van Dyne, Linn

    2010-05-01

    This article presents a model integrating research on idealized and situated selves. Our key premise is that identity-relevant behaviors are most likely to occur in the workplace when identities are psychologically central and activating forces make those identities salient. Analysis of matched data from 278 employees, supervisors, and organizational records generally supported our model. Helping identity and industrious work identity were positively associated with related role behaviors only when time-based occupancy in the role of organization member was high. Industrious work identity was positively associated with role behaviors only when reflected appraisals from coworkers were consistent with that identity. In contrast, reflected appraisal of helping identity had an independent relationship with identity-relevant role behaviors. Results demonstrate the importance of theory linking the idealized self and the situated self to understanding identity relations with work performances. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  16. Diverging Narratives: Evaluating the Uses of the Ideal-Typical Sequence of Transport Network Development

    ERIC Educational Resources Information Center

    Weber, Joe

    2004-01-01

    The development of new transport systems has been an important and highly visible component of economic development and spatial reorganization in the past two centuries. The Ideal-Typical Sequence of network development has been a widely used model of transport development. This paper shows that this model has been used in several different ways,…

  17. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  18. Positron kinetics in an idealized PET environment

    PubMed Central

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  19. Optimal Lifestyle Components in Young Adulthood Are Associated With Maintaining the Ideal Cardiovascular Health Profile Into Middle Age.

    PubMed

    Gooding, Holly C; Shay, Christina M; Ning, Hongyan; Gillman, Matthew W; Chiuve, Stephanie E; Reis, Jared P; Allen, Norrina B; Lloyd-Jones, Donald M

    2015-10-29

    Middle-aged adults with ideal blood pressure, cholesterol, and glucose levels exhibit substantially lower cardiovascular mortality than those with unfavorable levels. Four healthy lifestyle components-optimal body weight, diet, physical activity, and not smoking-are recommended for cardiovascular health (CVH). This study quantified associations between combinations of healthy lifestyle components measured in young adulthood and loss of the ideal CVH profile into middle age. Analyses included 2164 young adults in the Coronary Artery Risk Development in Young Adults study with the ideal CVH profile (defined as untreated blood pressure <120/80 mm Hg, total cholesterol <200 mg/dL, fasting blood glucose <100 mg/dL, and absence of cardiovascular disease) at baseline. Cox proportional hazards regression models estimated hazard ratios for loss of the ideal CVH profile over 25 years according to 4 individual and 16 combinations of optimal healthy lifestyle components measured in young adulthood: body mass index, physical activity, nonsmoking status, and diet quality. Models were adjusted for age, sex, race, education, study center, and baseline blood pressure, cholesterol, and glucose. Eighty percent (n=1737) of participants lost the ideal CVH profile by middle age; loss was greatest for young adults with no optimal healthy lifestyle components at baseline. Relative to young adults with no optimal healthy lifestyle components, those with all 4 were less likely to lose the ideal CVH profile (hazard ratio 0.59, 95% CI 0.44-0.80). Combinations that included optimal body mass index and nonsmoking status were each associated with lower risk. Optimal body mass index and not smoking in young adulthood were protective against loss of the ideal CVH profile through middle age. Importance of diet and physical activity may be included through their effects on healthy weight. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  20. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    NASA Astrophysics Data System (ADS)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  1. Moral Identity as Moral Ideal Self: Links to Adolescent Outcomes

    ERIC Educational Resources Information Center

    Hardy, Sam A.; Walker, Lawrence J.; Olsen, Joseph A.; Woodbury, Ryan D.; Hickman, Jacob R.

    2014-01-01

    The purposes of this study were to conceptualize moral identity as moral ideal self, to develop a measure of this construct, to test for age and gender differences, to examine links between moral ideal self and adolescent outcomes, and to assess purpose and social responsibility as mediators of the relations between moral ideal self and outcomes.…

  2. Comparative development of Taenia solium in experimental models.

    PubMed

    Maravilla, P; Avila, G; Cabrera, V; Aguilar, L; Flisser, A

    1998-10-01

    Various mammals were evaluated as experimental models of adult Taenia solium. Suppressed and nonsuppressed hosts were used as experimental models. Infections were performed per os with cysticerci obtained from pigs; immunosuppression was induced with methyl prednisolone acetate at intervals of 10-14 days after infection. Tapeworms developed in hamsters, gerbils, and chinchillas but failed to develop in rabbits, cats, pigs, and rhesus monkeys. In infectable animals, treatment with the steroid facilitated maintenance and development of the parasite, and more tapeworms were obtained. Mature and some pregravid proglottids were recovered from hamsters and gerbils, whereas a gravid T. solium was obtained from a chinchilla at 12 wk postinfection. Eggs recovered from the chinchilla transformed into cysticerci in a pig 12 wk after oral infection. The T. solium-chinchilla experimental system seems to be an alternative definitive host for this parasite and thus the basis for a great diversity of studies.

  3. When and why do ideal partner preferences affect the process of initiating and maintaining romantic relationships?

    PubMed

    Eastwick, Paul W; Finkel, Eli J; Eagly, Alice H

    2011-11-01

    Three studies explored how the traits that people ideally desire in a romantic partner, or ideal partner preferences, intersect with the process of romantic relationship initiation and maintenance. Two attraction experiments in the laboratory found that, when participants evaluated a potential romantic partner's written profile, they expressed more romantic interest in a partner whose traits were manipulated to match (vs. mismatch) their idiosyncratic ideals. However, after a live interaction with the partner, the match vs. mismatch manipulation was no longer associated with romantic interest. This pattern appeared to have emerged because participants reinterpreted the meaning of the traits as they applied to the partner, a context effect predicted by classic models of person perception (S. E. Asch, 1946). Finally, a longitudinal study of middle-aged adults demonstrated that participants evaluated a current romantic partner (but not a partner who was merely desired) more positively to the extent that the partner matched their overall pattern of ideals across several traits; the match in level of ideals (i.e., high vs. low ratings) was not relevant to participants' evaluations. In general, the match between ideals and a partner's traits may predict relational outcomes when participants are learning about a partner in the abstract and when they are actually in a relationship with the partner, but not when considering potential dating partners they have met in person.

  4. Morphofunctional analysis of experimental model of esophageal achalasia in rats.

    PubMed

    Sabirov, A G; Raginov, I S; Burmistrov, M V; Chelyshev, Y A; Khasanov, R Sh; Moroshek, A A; Grigoriev, P N; Zefirov, A L; Mukhamedyarov, M A

    2010-10-01

    We carried out a detailed analysis of rat model of esophageal achalasia previously developed by us. Manifest morphological and functional disorders were observed in experimental achalasia: hyperplasia of the squamous epithelium, reduced number of nerve fibers, excessive growth of fibrous connective tissue in the esophageal wall, high contractile activity of the lower esophageal sphincter, and reduced motility of the longitudinal muscle layer. Changes in rat esophagus observed in experimental achalasia largely correlate with those in esophageal achalasia in humans. Hence, our experimental model can be used for the development of new methods of disease treatment.

  5. Current Experimental Basis for Modeling Ice Accretions on Swept Wings

    NASA Technical Reports Server (NTRS)

    Vargas, Mario

    2005-01-01

    This work presents a review of the experimental basis for modeling ice accretions on swept wings. Experimental work related to ice accretion physics on swept wings conducted between 1954 and 2004 is reviewed. Proposed models or explanations of scallop formations are singled out and discussed. Special emphasis is placed on reviewing the work done to determine the basic macroscopic mechanisms of scallop formation. The role of feather growth and its connection to scallop growth is discussed. Conceptual steps in modeling scallop formations are presented. Research elements needed for modeling are discussed.

  6. Comparison of realistic and idealized breathing patterns in computational models of airflow and vapor dosimetry in the rodent upper respiratory tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Sean M.; Kabilan, Senthil; Jacob, Richard E.

    Abstract Context: Computational fluid dynamics (CFD) simulations of airflows coupled with physiologically based pharmacokinetic (PBPK) modeling of respiratory tissue doses of airborne materials have traditionally used either steady-state inhalation or a sinusoidal approximation of the breathing cycle for airflow simulations despite their differences from normal breathing patterns. Objective: Evaluate the impact of realistic breathing patterns, including sniffing, on predicted nasal tissue concentrations of a reactive vapor that targets the nose in rats as a case study. Materials and methods: Whole-body plethysmography measurements from a free-breathing rat were used to produce profiles of normal breathing, sniffing and combinations of both asmore » flow inputs to CFD/PBPK simulations of acetaldehyde exposure. Results: For the normal measured ventilation profile, modest reductions in time- and tissue depth-dependent areas under the curve (AUC) acetaldehyde concentrations were predicted in the wet squamous, respiratory and transitional epithelium along the main airflow path, while corresponding increases were predicted in the olfactory epithelium, especially the most distal regions of the ethmoid turbinates, versus the idealized profile. The higher amplitude/frequency sniffing profile produced greater AUC increases over the idealized profile in the olfactory epithelium, especially in the posterior region. Conclusions: The differences in tissue AUCs at known lesion-forming regions for acetaldehyde between normal and idealized profiles were minimal, suggesting that sinusoidal profiles may be used for this chemical and exposure concentration. However, depending upon the chemical, exposure system and concentration and the time spent sniffing, the use of realistic breathing profiles, including sniffing, could become an important modulator for local tissue dose predictions.« less

  7. Compact modeling of nanoscale triple-gate junctionless transistors covering drift-diffusion to quasi-ballistic carrier transport

    NASA Astrophysics Data System (ADS)

    Oproglidis, T. A.; Karatsori, T. A.; Barraud, S.; Ghibaudo, G.; Dimitriadis, C. A.

    2018-04-01

    In this work, we extend our analytical compact model for nanoscale junctionless triple-gate (JL TG) MOSFETs, capturing carrier transport from drift-diffusion to quasi-ballistic regime. This is based on a simple formulation of the low-field mobility extracted from experimental data using the Y-function method, taking into account the ballistic carrier motion and an increased carrier scattering in process-induced defects near the source/drain regions. The case of a Schottky junction in non-ideal ohmic contact at the drain side was also taken into account by modifying the threshold voltage and ideality factor of the JL transistor. The model is validated with experimental data for n-channel JL TG MOSFETs with channel length varying from 95 down to 25 nm. It can be easily implemented as a compact model for use in Spice circuit simulators.

  8. Effects of Erdosteine on Experimental Acute Pancreatitis Model.

    PubMed

    Karapolat, Banu; Karapolat, Sami; Gurleyik, Emin; Yasar, Mehmet

    2017-10-01

    To create acute pancreatitis condition experimentally in rats using cerulein, and to reveal histopathological effects in pancreatic tissue with erdosteine. An experimental study. Department of General Surgery, Duzce University, Turkey, from June to October 2014. Thirty male Wistar albino rats were divided into three groups. No procedures were applied to Group 1. The rats in Group 2 and Group 3 were injected cerulein, to establish an experimental pancreatitis model and the blood amylase and lipase values were examined. The rats in Group 3 were given 10 mg/kg erdosteine. This treatment was continued for another 2 days and the rats were sacrificed. The pancreatic tissues were examined histopathologically for edema, inflammation, acinar necrosis, fat necrosis, and vacuolization. The lipase and amylase values and the histopathological examination of pancreatic tissues evidenced that the experimental acute pancreatitis model was established and edema, inflammation, acinar necrosis, fat necrosis, and vacuolization were observed in the pancreatic tissues. The statistical results suggest that erdosteine can decrease the edema, inflammation, acinar necrosis, fat necrosis and vacuolization scores in the tissues. The severity of acute pancreatitis, induced by cerulein in rats, is reduced with the use of erdosteine.

  9. Jung's Red Book and its relation to aspects of German idealism.

    PubMed

    Bishop, Paul

    2012-06-01

    The late nineteenth century saw a renaissance of interest in the thought of the German Romantic philosopher, F.W.J. Schelling. This paper takes Jung's engagement with Schelling and his awareness of Schellingian ideas and interests (notably, the mysterious Kabeiroi worshipped at Samothrace) as its starting-point. It goes on to argue that a key set of problematics in German Idealism - the relation between freedom and necessity, between science and art, and ultimately between realism and idealism - offers a useful conceptual framework within which to approach Jung's Red Book. For the problem of the ideal is central to this work, which can be read as a journey from eternal ideals to the ideal of eternity. (Although the term 'idealism' has at least four distinct meanings, their distinct senses can be related in different ways to Jung's thinking.) The eloquent embrace of idealism by F.T. Vischer in a novel, Auch Einer, for which Jung had the highest praise, reminds us of the persistence of this tradition, which is still contested and debated in the present day. © 2012, The Society of Analytical Psychology.

  10. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    USGS Publications Warehouse

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL < 1, leading to more trapping for the faster settling classes. Sensitivity studies show that including stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  11. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao; Zhang, Wenjuan; Meng, Qing

    2017-10-01

    A three-dimensional charge-discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge-discharge model is available. The results show that the vertical air motion at the lightning initiation sites ( W ini) has a cubic polynomial correlation with the maximum updraft of the storm cell ( W cell-max), with the adjusted regression coefficient R 2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites ( q g-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell ( q g-cell-max) and the initiation height ( z ini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of q g-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of q ice (ice crystal mixing ratio) to q g (graupel mixing ratio) illustrates an exponential relationship to q g-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.

  12. Focusing on media body ideal images triggers food intake among restrained eaters: a test of restraint theory and the elaboration likelihood model.

    PubMed

    Boyce, Jessica A; Kuijer, Roeline G

    2014-04-01

    Although research consistently shows that images of thin women in the media (media body ideals) affect women negatively (e.g., increased weight dissatisfaction and food intake), this effect is less clear among restrained eaters. The majority of experiments demonstrate that restrained eaters - identified with the Restraint Scale - consume more food than do other participants after viewing media body ideal images; whereas a minority of experiments suggest that such images trigger restrained eaters' dietary restraint. Weight satisfaction and mood results are just as variable. One reason for these inconsistent results might be that different methods of image exposure (e.g., slideshow vs. film) afford varying levels of attention. Therefore, we manipulated attention levels and measured participants' weight satisfaction and food intake. We based our hypotheses on the elaboration likelihood model and on restraint theory. We hypothesised that advertent (i.e., processing the images via central routes of persuasion) and inadvertent (i.e., processing the images via peripheral routes of persuasion) exposure would trigger differing degrees of weight dissatisfaction and dietary disinhibition among restrained eaters (cf. restraint theory). Participants (N = 174) were assigned to one of four conditions: advertent or inadvertent exposure to media or control images. The dependent variables were measured in a supposedly unrelated study. Although restrained eaters' weight satisfaction was not significantly affected by either media exposure condition, advertent (but not inadvertent) media exposure triggered restrained eaters' eating. These results suggest that teaching restrained eaters how to pay less attention to media body ideal images might be an effective strategy in media-literary interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Near-optimal experimental design for model selection in systems biology.

    PubMed

    Busetto, Alberto Giovanni; Hauser, Alain; Krummenacher, Gabriel; Sunnåker, Mikael; Dimopoulos, Sotiris; Ong, Cheng Soon; Stelling, Jörg; Buhmann, Joachim M

    2013-10-15

    Biological systems are understood through iterations of modeling and experimentation. Not all experiments, however, are equally valuable for predictive modeling. This study introduces an efficient method for experimental design aimed at selecting dynamical models from data. Motivated by biological applications, the method enables the design of crucial experiments: it determines a highly informative selection of measurement readouts and time points. We demonstrate formal guarantees of design efficiency on the basis of previous results. By reducing our task to the setting of graphical models, we prove that the method finds a near-optimal design selection with a polynomial number of evaluations. Moreover, the method exhibits the best polynomial-complexity constant approximation factor, unless P = NP. We measure the performance of the method in comparison with established alternatives, such as ensemble non-centrality, on example models of different complexity. Efficient design accelerates the loop between modeling and experimentation: it enables the inference of complex mechanisms, such as those controlling central metabolic operation. Toolbox 'NearOED' available with source code under GPL on the Machine Learning Open Source Software Web site (mloss.org).

  14. R-IDEAL: A Framework for Systematic Clinical Evaluation of Technical Innovations in Radiation Oncology.

    PubMed

    Verkooijen, Helena M; Kerkmeijer, Linda G W; Fuller, Clifton D; Huddart, Robbert; Faivre-Finn, Corinne; Verheij, Marcel; Mook, Stella; Sahgal, Arjun; Hall, Emma; Schultz, Chris

    2017-01-01

    The pace of innovation in radiation oncology is high and the window of opportunity for evaluation narrow. Financial incentives, industry pressure, and patients' demand for high-tech treatments have led to widespread implementation of innovations before, or even without, robust evidence of improved outcomes has been generated. The standard phase I-IV framework for drug evaluation is not the most efficient and desirable framework for assessment of technological innovations. In order to provide a standard assessment methodology for clinical evaluation of innovations in radiotherapy, we adapted the surgical IDEAL framework to fit the radiation oncology setting. Like surgery, clinical evaluation of innovations in radiation oncology is complicated by continuous technical development, team and operator dependence, and differences in quality control. Contrary to surgery, radiotherapy innovations may be used in various ways, e.g., at different tumor sites and with different aims, such as radiation volume reduction and dose escalation. Also, the effect of radiation treatment can be modeled, allowing better prediction of potential benefits and improved patient selection. Key distinctive features of R-IDEAL include the important role of predicate and modeling studies (Stage 0), randomization at an early stage in the development of the technology, and long-term follow-up for late toxicity. We implemented R-IDEAL for clinical evaluation of a recent innovation in radiation oncology, the MRI-guided linear accelerator (MR-Linac). MR-Linac combines a radiotherapy linear accelerator with a 1.5-T MRI, aiming for improved targeting, dose escalation, and margin reduction, and is expected to increase the use of hypofractionation, improve tumor control, leading to higher cure rates and less toxicity. An international consortium, with participants from seven large cancer institutes from Europe and North America, has adopted the R-IDEAL framework to work toward coordinated, evidence

  15. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  16. Application of iterative robust model-based optimal experimental design for the calibration of biocatalytic models.

    PubMed

    Van Daele, Timothy; Gernaey, Krist V; Ringborg, Rolf H; Börner, Tim; Heintz, Søren; Van Hauwermeiren, Daan; Grey, Carl; Krühne, Ulrich; Adlercreutz, Patrick; Nopens, Ingmar

    2017-09-01

    The aim of model calibration is to estimate unique parameter values from available experimental data, here applied to a biocatalytic process. The traditional approach of first gathering data followed by performing a model calibration is inefficient, since the information gathered during experimentation is not actively used to optimize the experimental design. By applying an iterative robust model-based optimal experimental design, the limited amount of data collected is used to design additional informative experiments. The algorithm is used here to calibrate the initial reaction rate of an ω-transaminase catalyzed reaction in a more accurate way. The parameter confidence region estimated from the Fisher Information Matrix is compared with the likelihood confidence region, which is not only more accurate but also a computationally more expensive method. As a result, an important deviation between both approaches is found, confirming that linearization methods should be applied with care for nonlinear models. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1278-1293, 2017. © 2017 American Institute of Chemical Engineers.

  17. No longer just a pretty face: fashion magazines' depictions of ideal female beauty from 1959 to 1999.

    PubMed

    Sypeck, Mia Foley; Gray, James J; Ahrens, Anthony H

    2004-11-01

    The print media's depiction of the ideal of feminine beauty as presented to American women was examined for the years 1959-1999. Trends were investigated through an analysis of cover models appearing on the four most popular American fashion magazines. Body size for fashion models decreased significantly during the 1980s and 1990s. There was also a dramatic increase in the frequency with which the media depicted the entire bodies of the models from the 1960s to the 1990s. Both the increasingly thin images and the striking increase in full-body portrayals suggest an increase in the value placed by American society on a thin ideal for women, a change that is concurrent with the increase in disturbed eating patterns among American women.

  18. Seismo-acoustic ray model benchmarking against experimental tank data.

    PubMed

    Camargo Rodríguez, Orlando; Collis, Jon M; Simpson, Harry J; Ey, Emanuel; Schneiderwind, Joseph; Felisberto, Paulo

    2012-08-01

    Acoustic predictions of the recently developed traceo ray model, which accounts for bottom shear properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic Parabolic Equation Experiment) experiments. Both experiments are representative of signal propagation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where significant interaction of the signal with the bottom can be expected. The benchmarks show, in particular, that the ray model can be as accurate as a parabolic approximation model benchmarked in similar conditions. The results of benchmarking are important, on one side, as a preliminary experimental validation of the model and, on the other side, demonstrates the reliability of the ray approach for seismo-acoustic applications.

  19. Experimental and mathematical modeling of flow in headboxes

    NASA Astrophysics Data System (ADS)

    Shariati, Mohammad Reza

    The fluid flow patterns in a paper-machine headbox have a strong influence on the quality of the paper produced by the machine. Due to increasing demand for high quality paper there is a need to investigate the details of the fluid flow in the paper machine headbox. The objective of this thesis is to use experimental and computational methods of modeling the flow inside a typical headbox in order to evaluate and understand the mean flow patterns and turbulence created there. In particular, spatial variations of the mean flow and of the turbulence quantities and the turbulence generated secondary flows are studied. In addition to the flow inside the headbox, the flow leaving the slice is also modeled both experimentally and computationally. Comparison of the experimental and numerical results indicated that streamwise mean components of the velocities in the headbox are predicted well by all the turbulence models considered in this study. However, the standard k-epsilon model and the algebraic turbulence models fail to predict the turbulence quantities accurately. Standard k-epsilon-model also fails to predict the direction and magnitude of the secondary flows. Significant improvements in the k-epsilon model predictions were achieved when the turbulence production term was artificially set to zero. This is justified by observations of the turbulent velocities from the experiments and by a consideration of the form of the kinetic energy equation. A better estimation of the Reynolds normal stress distribution and the degree of anisotropy of turbulence was achieved using the Reynolds stress turbulence model. Careful examination of the measured turbulence velocity results shows that after the initial decay of the turbulence in the headbox, there is a short region close to the exit, but inside the headbox, where the turbulent kinetic energy actually increases as a result of the distortion imposed by the contraction. The turbulence energy quickly resumes its decay in the

  20. Optimization of energy window and evaluation of scatter compensation methods in MPS using the ideal observer with model mismatch

    NASA Astrophysics Data System (ADS)

    Ghaly, Michael; Links, Jonathan M.; Frey, Eric

    2015-03-01

    In this work, we used the ideal observer (IO) and IO with model mismatch (IO-MM) applied in the projection domain and an anthropomorphic Channelized Hotelling Observer (CHO) applied to reconstructed images to optimize the acquisition energy window width and evaluate various scatter compensation methods in the context of a myocardial perfusion SPECT defect detection task. The IO has perfect knowledge of the image formation process and thus reflects performance with perfect compensation for image-degrading factors. Thus, using the IO to optimize imaging systems could lead to suboptimal parameters compared to those optimized for humans interpreting SPECT images reconstructed with imperfect or no compensation. The IO-MM allows incorporating imperfect system models into the IO optimization process. We found that with near-perfect scatter compensation, the optimal energy window for the IO and CHO were similar; in its absence the IO-MM gave a better prediction of the optimal energy window for the CHO using different scatter compensation methods. These data suggest that the IO-MM may be useful for projection-domain optimization when model mismatch is significant, and that the IO is useful when followed by reconstruction with good models of the image formation process.

  1. Dynamic characterization and modeling of potting materials for electronics assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant S.; Lee, Gilbert F.; Santiago, Jaime R.

    2017-01-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling, which in turn needs both static and dynamic characterization of individual electronic components and encapsulation material to generate reliable material parameters for a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, difficulty arises in capturing one of the critical features characteristic of the loading environment in a high velocity impact: multiple loading events coupled with multi-axial stress states. Hence, potting materials need to be characterized well to understand its damping capacity at different frequencies and strain rates. An encapsulation scheme to protect electronic boards consists of multiple layers of filled as well as unfilled polymeric materials like Sylgard 184 and Trigger bond Epoxy # 20-3001. A combination of experiments conducted for characterization of materials used Split Hopkinson Pressure Bar (SHPB), and dynamic material analyzer (DMA). For material which behaves in an ideal manner, a master curve can be fitted to Williams-Landel-Ferry (WLF) model. To verify the applicability of WLF model, a new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor with experimental incremental shift factor. Deviations can be readily observed by comparison of experimental data with the model fit to determine if model parameters reflect the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests can readily indicate deviations from experimental high strain rate data. Experimental results for different materials used for mitigating impact, and ways to combine data from DMA and Hopkinson bar together with modeling refinements are presented.

  2. Generic features of the wealth distribution in ideal-gas-like markets.

    PubMed

    Mohanty, P K

    2006-07-01

    We provide an exact solution to the ideal-gas-like models studied in econophysics to understand the microscopic origin of Pareto law. In these classes of models the key ingredient necessary for having a self-organized scale-free steady-state distribution is the trading or collision rule where agents or particles save a definite fraction of their wealth or energy and invest the rest for trading. Using a Gibbs ensemble approach we could obtain the exact distribution of wealth in this model. Moreover we show that in this model (a) good savers are always rich and (b) every agent poor or rich invests the same amount for trading. Nonlinear trading rules could alter the generic scenario observed here.

  3. Ideal-Magnetohydrodynamic-Stable Tilting in Field-Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Ishida, Akio; Steinhauer, Loren

    1995-02-01

    The tilting mode in field-reversed configurations (FRC) is examined using ideal-magnetohydrodynamic stability theory. Tilting, a global mode, is the greatest threat for disruption of FRC confinement. Previous studies uniformly found tilting to be unstable in ideal theory: the objective here is to ascertain if stable equilibria were overlooked in past work. Solving the variational problem with the Rayleigh-Ritz technique, tilting-stable equilibria are found for sufficiently hollow current profile and sufficient racetrackness of the separatrix shape. Although these equilibria were not examined previously, the present conclusion is quite surprising. Consequently checks of the method are offered. Even so it cannot yet be claimed with complete certainty that stability has been proved: absolute confirmation of ideal-stable tilting awaits the application of more complete methods.

  4. Artificial neural network implementation of a near-ideal error prediction controller

    NASA Technical Reports Server (NTRS)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    responses be known for a particular input and modeled plant. These responses are used in the error prediction controller. An analysis was done on the general dynamic behavior that results from including a digital error predictor in a control loop and these were compared to those including the near-ideal Neural Network error predictor. This analysis was done for a second and third order system.

  5. Primitive ideals of C q [ SL(3)

    NASA Astrophysics Data System (ADS)

    Hodges, Timothy J.; Levasseur, Thierry

    1993-10-01

    The primitive ideals of the Hopf algebra C q [ SL(3)] are classified. In particular it is shown that the orbits in Prim C q [ SL(3)] under the action of the representation group H ≅ C *× C * are parameterized naturally by W×W, where W is the associated Weyl group. It is shown that there is a natural one-to-one correspondence between primitive ideals of C q [ SL(3)] and symplectic leaves of the associated Poisson algebraic group SL(3, C).

  6. Teaching Thermodynamics of Ideal Solutions: An Entropy-Based Approach to Help Students Better Understand and Appreciate the Subtleties of Solution Models

    ERIC Educational Resources Information Center

    Tomba, J. Pablo

    2015-01-01

    The thermodynamic formalism of ideal solutions is developed in most of the textbooks postulating a form for the chemical potential of a generic component, which is adapted from the thermodynamics of ideal gas mixtures. From this basis, the rest of useful thermodynamic properties can be derived straightforwardly without further hypothesis. Although…

  7. An exact solution for ideal dam-break floods on steep slopes

    USGS Publications Warehouse

    Ancey, C.; Iverson, R.M.; Rentschler, M.; Denlinger, R.P.

    2008-01-01

    The shallow-water equations are used to model the flow resulting from the sudden release of a finite volume of frictionless, incompressible fluid down a uniform slope of arbitrary inclination. The hodograph transformation and Riemann's method make it possible to transform the governing equations into a linear system and then deduce an exact analytical solution expressed in terms of readily evaluated integrals. Although the solution treats an idealized case never strictly realized in nature, it is uniquely well-suited for testing the robustness and accuracy of numerical models used to model shallow-water flows on steep slopes. Copyright 2008 by the American Geophysical Union.

  8. Temperature and the Ideal Gas

    ERIC Educational Resources Information Center

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  9. Ideal photon number amplifier and duplicator

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.

    1992-01-01

    The photon number-amplification and number-duplication mechanism are analyzed in the ideal case. The search for unitary evolutions leads to consider also a number-deamplification mechanism, the symmetry between amplification and deamplification being broken by the integer-value nature of the number operator. Both transformations, amplification and duplication, need an auxiliary field which, in the case of amplification, turns out to be amplified in the inverse way. Input-output energy conservation is accounted for using a classical pump or through frequency-conversion of the fields. Ignoring one of the fields is equivalent to considering the amplifier as an open system involving entropy production. The Hamiltonians of the ideal devices are given and compared with those of realistic systems.

  10. Innovation in neurosurgery: less than IDEAL? A systematic review.

    PubMed

    Muskens, I S; Diederen, S J H; Senders, J T; Zamanipoor Najafabadi, A H; van Furth, W R; May, A M; Smith, T R; Bredenoord, A L; Broekman, M L D

    2017-10-01

    Surgical innovation is different from the introduction of novel pharmaceuticals. To help address this, in 2009 the IDEAL Collaboration (Idea, Development, Exploration, Assessment, Long-term follow-up) introduced the five-stage framework for surgical innovation. To evaluate the framework feasibility for novel neurosurgical procedure introduction, two innovative surgical procedures were examined: the endoscopic endonasal approach for skull base meningiomas (EEMS) and the WovenEndobridge (WEB device) for endovascular treatment of intracranial aneurysms. The published literature on EEMS and WEB devices was systematically reviewed. Identified studies were classified according to the IDEAL framework stage. Next, studies were evaluated for possible categorization according to the IDEAL framework. Five hundred seventy-six papers describing EEMS were identified of which 26 papers were included. No prospective studies were identified, and no studies reported on ethical approval or patient informed consent for the innovative procedure. Therefore, no clinical studies could be categorized according to the IDEAL Framework. For WEB devices, 6229 articles were screened of which 21 were included. In contrast to EEMS, two studies were categorized as 2a and two as 2b. The results of this systematic review demonstrate that both EEMS and WEB devices were not introduced according to the (later developed in the case of EEMS) IDEAL framework. Elements of the framework such as informed consent, ethical approval, and rigorous outcomes reporting are important and could serve to improve the quality of neurosurgical research. Alternative study designs and the use of big data could be useful modifications of the IDEAL framework for innovation in neurosurgery.

  11. Experimental animal modelling for TB vaccine development.

    PubMed

    Cardona, Pere-Joan; Williams, Ann

    2017-03-01

    Research for a novel vaccine to prevent tuberculosis is an urgent medical need. The current vaccine, BCG, has demonstrated a non-homogenous efficacy in humans, but still is the gold standard to be improved upon. In general, the main indicator for testing the potency of new candidates in animal models is the reduction of the bacillary load in the lungs at the acute phase of the infection. Usually, this reduction is similar to that induced by BCG, although in some cases a weak but significant improvement can be detected, but none of candidates are able to prevent establishment of infection. The main characteristics of several laboratory animals are reviewed, reflecting that none are able to simulate the whole characteristics of human tuberculosis. As, so far, no surrogate of protection has been found, it is important to test new candidates in several models in order to generate convincing evidence of efficacy that might be better than that of BCG in humans. It is also important to investigate the use of "in silico" and "ex vivo" models to better understand experimental data and also to try to replace, or at least reduce and refine experimental models in animals. Copyright © 2017. Published by Elsevier Ltd.

  12. Elastin: a representative ideal protein elastomer.

    PubMed Central

    Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T

    2002-01-01

    During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774

  13. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    NASA Astrophysics Data System (ADS)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; Brovkin, Victor; Calvin, Kate V.; Jones, Andrew D.; Jones, Chris D.; Lawrence, Peter J.; de Noblet-Ducoudré, Nathalie; Pongratz, Julia; Seneviratne, Sonia I.; Shevliakova, Elena

    2016-09-01

    complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.

  14. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut

    designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.« less

  15. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design

    DOE PAGES

    Lawrence, David M.; Hurtt, George C.; Arneth, Almut; ...

    2016-09-02

    designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.« less

  16. Ideal heat transfer conditions for tubular solar receivers with different design constraints

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez

    2017-06-01

    The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.

  17. Topological photonic crystal with ideal Weyl points

    NASA Astrophysics Data System (ADS)

    Wang, Luyang; Jian, Shao-Kai; Yao, Hong

    Weyl points in three-dimensional photonic crystals behave as monopoles of Berry flux in momentum space. Here, based on symmetry analysis, we show that a minimal number of symmetry-related Weyl points can be realized in time-reversal invariant photonic crystals. We propose to realize these ``ideal'' Weyl points in modified double-gyroid photonic crystals, which is confirmed by our first-principle photonic band-structure calculations. Photonic crystals with ideal Weyl points are qualitatively advantageous in applications such as angular and frequency selectivity, broadband invisibility cloaking, and broadband 3D-imaging.

  18. Microstructural Characterization of Metal Foams: An Examination of the Applicability of the Theoretical Models for Modeling Foams. Revision 1

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2011-01-01

    Establishing the geometry of foam cells is useful in developing microstructure-based acoustic and structural models. Since experimental data on the geometry of the foam cells are limited, most modeling efforts use an idealized three-dimensional, space-filling Kelvin tetrakaidecahedron. The validity of this assumption is investigated in the present paper. Several FeCrAlY foams with relative densities varying between 3 and 15 percent and cells per mm (c.p.mm.) varying between 0.2 and 3.9 c.p.mm. were microstructurally evaluated. The number of edges per face for each foam specimen was counted by approximating the cell faces by regular polygons, where the number of cell faces measured varied between 207 and 745. The present observations revealed that 50 to 57 percent of the cell faces were pentagonal while 24 to 28 percent were quadrilateral and 15 to 22 percent were hexagonal. The present measurements are shown to be in excellent agreement with literature data. It is demonstrated that the Kelvin model, as well as other proposed theoretical models, cannot accurately describe the FeCrAlY foam cell structure. Instead, it is suggested that the ideal foam cell geometry consists of 11 faces with three quadrilateral, six pentagonal faces and two hexagonal faces consistent with the 3-6-2 Matzke cell. A compilation of 90 years of experimental data reveals that the average number of cell faces decreases linearly with the increasing ratio of quadrilateral to pentagonal faces. It is concluded that the Kelvin model is not supported by these experimental data.

  19. Stochastic modeling of experimental chaotic time series.

    PubMed

    Stemler, Thomas; Werner, Johannes P; Benner, Hartmut; Just, Wolfram

    2007-01-26

    Methods developed recently to obtain stochastic models of low-dimensional chaotic systems are tested in electronic circuit experiments. We demonstrate that reliable drift and diffusion coefficients can be obtained even when no excessive time scale separation occurs. Crisis induced intermittent motion can be described in terms of a stochastic model showing tunneling which is dominated by state space dependent diffusion. Analytical solutions of the corresponding Fokker-Planck equation are in excellent agreement with experimental data.

  20. Choosing a physician depends on how you want to feel: the role of ideal affect in health-related decision making.

    PubMed

    Sims, Tamara; Tsai, Jeanne L; Koopmann-Holm, Birgit; Thomas, Ewart A C; Goldstein, Mary K

    2014-02-01

    When given a choice, how do people decide which physician to select? Although significant research has demonstrated that how people actually feel (their "actual affect") influences their health care preferences, how people ideally want to feel (their "ideal affect") may play an even greater role. Specifically, we predicted that people trust physicians whose affective characteristics match their ideal affect, which leads people to prefer those physicians more. Consistent with this prediction, the more participants wanted to feel high arousal positive states on average (ideal HAP; e.g., excited), the more likely they were to select a HAP-focused physician. Similarly, the more people wanted to feel low arousal positive states on average (ideal LAP; e.g., calm), the more likely they were to select a LAP-focused physician. Also as predicted, these links were mediated by perceived physician trustworthiness. Notably, while participants' ideal affect predicted physician preference, actual affect (how much people actually felt HAP and LAP on average) did not. These findings suggest that people base serious decisions on how they want to feel, and highlight the importance of considering ideal affect in models of decision making preferences. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  1. Actual and Idealized Crystal Field Parameterizations for the Uranium Ions in UF 4

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Mulak, J.; Krupa, J. C.

    1993-12-01

    The crystal field parameters for the actual coordination symmetries of the uranium ions in UF 4, C2 and C1, and for their idealizations to D2, C2 v , D4, D4 d , and the Archimedean antiprism point symmetries are given. They have been calculated by means of both the perturbative ab initio model and the angular overlap model and are referenced to the recent results fitted by Carnall's group. The equivalency of some different sets of parameters has been verified with the standardization procedure. The adequacy of several idealized approaches has been tested by comparison of the corresponding splitting patterns of the 3H 4 ground state. Our results support the parameterization given by Carnall. Furthermore, the parameterization of the crystal field potential and the splitting diagram for the symmetryless uranium ion U( C1) are given. Having at our disposal the crystal field splittings for the two kinds of uranium ions in UF 4, U( C2) and U( C1), we calculate the model plots of the paramagnetic susceptibility χ( T) and the magnetic entropy associated with the Schottky anomaly Δ S( T) for UF 4.

  2. Evaluating cloud processes in large-scale models: Of idealized case studies, parameterization testbeds and single-column modelling on climate time-scales

    NASA Astrophysics Data System (ADS)

    Neggers, Roel

    2016-04-01

    Boundary-layer schemes have always formed an integral part of General Circulation Models (GCMs) used for numerical weather and climate prediction. The spatial and temporal scales associated with boundary-layer processes and clouds are typically much smaller than those at which GCMs are discretized, which makes their representation through parameterization a necessity. The need for generally applicable boundary-layer parameterizations has motivated many scientific studies, which in effect has created its own active research field in the atmospheric sciences. Of particular interest has been the evaluation of boundary-layer schemes at "process-level". This means that parameterized physics are studied in isolated mode from the larger-scale circulation, using prescribed forcings and excluding any upscale interaction. Although feedbacks are thus prevented, the benefit is an enhanced model transparency, which might aid an investigator in identifying model errors and understanding model behavior. The popularity and success of the process-level approach is demonstrated by the many past and ongoing model inter-comparison studies that have been organized by initiatives such as GCSS/GASS. A red line in the results of these studies is that although most schemes somehow manage to capture first-order aspects of boundary layer cloud fields, there certainly remains room for improvement in many areas. Only too often are boundary layer parameterizations still found to be at the heart of problems in large-scale models, negatively affecting forecast skills of NWP models or causing uncertainty in numerical predictions of future climate. How to break this parameterization "deadlock" remains an open problem. This presentation attempts to give an overview of the various existing methods for the process-level evaluation of boundary-layer physics in large-scale models. This includes i) idealized case studies, ii) longer-term evaluation at permanent meteorological sites (the testbed approach

  3. Ideal MHD stability and characteristics of edge localized modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  4. Experimental validation of Swy-2 clay standard's PHREEQC model

    NASA Astrophysics Data System (ADS)

    Szabó, Zsuzsanna; Hegyfalvi, Csaba; Freiler, Ágnes; Udvardi, Beatrix; Kónya, Péter; Székely, Edit; Falus, György

    2017-04-01

    One of the challenges of the present century is to limit the greenhouse gas emissions for the mitigation of climate change which is possible for example by a transitional technology, CCS (Carbon Capture and Storage) and, among others, by the increase of nuclear proportion in the energy mix. Clay minerals are considered to be responsible for the low permeability and sealing capacity of caprocks sealing off stored CO2 and they are also the main constituents of bentonite in high level radioactive waste disposal facilities. The understanding of clay behaviour in these deep geological environments is possible through laboratory batch experiments of well-known standards and coupled geochemical models. Such experimentally validated models are scarce even though they allow deriving more precise long-term predictions of mineral reactions and rock and bentonite degradation underground and, therefore, ensuring the safety of the above technologies and increase their public acceptance. This ongoing work aims to create a kinetic geochemical model of Na-montmorillonite standard Swy-2 in the widely used PHREEQC code, supported by solution and mineral composition results from batch experiments. Several four days experiments have been carried out in 1:35 rock:water ratio at atmospheric conditions, and with inert and CO2 supercritical phase at 100 bar and 80 ⁰C relevant for the potential Hungarian CO2 reservoir complex. Solution samples have been taken during and after experiments and their compositions were measured by ICP-OES. The treated solid phase has been analysed by XRD and ATR-FTIR and compared to in-parallel measured references (dried Swy-2). Kinetic geochemical modelling of the experimental conditions has been performed by PHREEQC version 3 using equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). The visualization of experimental and numerous modelling results has been automatized by R. Experiments and models show very fast

  5. Love as a regulative ideal in surrogate decision making.

    PubMed

    Stonestreet, Erica Lucast

    2014-10-01

    This discussion aims to give a normative theoretical basis for a "best judgment" model of surrogate decision making rooted in a regulative ideal of love. Currently, there are two basic models of surrogate decision making for incompetent patients: the "substituted judgment" model and the "best interests" model. The former draws on the value of autonomy and responds with respect; the latter draws on the value of welfare and responds with beneficence. It can be difficult to determine which of these two models is more appropriate for a given patient, and both approaches may seem inadequate for a surrogate who loves the patient. The proposed "best judgment" model effectively draws on the values incorporated in each of the traditional standards, but does so because these values are important to someone who loves a patient, since love responds to the patient as the specific person she is. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The Robust Relationship Between Extreme Precipitation and Convective Organization in Idealized Numerical Modeling Simulations

    NASA Astrophysics Data System (ADS)

    Bao, Jiawei; Sherwood, Steven C.; Colin, Maxime; Dixit, Vishal

    2017-10-01

    The behavior of tropical extreme precipitation under changes in sea surface temperatures (SSTs) is investigated with the Weather Research and Forecasting Model (WRF) in three sets of idealized simulations: small-domain tropical radiative-convective equilibrium (RCE), quasi-global "aquapatch", and RCE with prescribed mean ascent from the tropical band in the aquapatch. We find that, across the variations introduced including SST, large-scale circulation, domain size, horizontal resolution, and convective parameterization, the change in the degree of convective organization emerges as a robust mechanism affecting extreme precipitation. Higher ratios of change in extreme precipitation to change in mean surface water vapor are associated with increases in the degree of organization, while lower ratios correspond to decreases in the degree of organization. The spread of such changes is much larger in RCE than aquapatch tropics, suggesting that small RCE domains may be unreliable for assessing the temperature-dependence of extreme precipitation or convective organization. When the degree of organization does not change, simulated extreme precipitation scales with surface water vapor. This slightly exceeds Clausius-Clapeyron (CC) scaling, because the near-surface air warms 10-25% faster than the SST in all experiments. Also for simulations analyzed here with convective parameterizations, there is an increasing trend of organization with SST.

  7. Media exposure, internalization of the thin ideal, and body dissatisfaction: comparing Asian American and European American college females.

    PubMed

    Nouri, Mahsa; Hill, Laura G; Orrell-Valente, Joan K

    2011-09-01

    Internalization of the thin ideal mediates the media exposure-body dissatisfaction relation in young adult European American females. There is little related research on Asian Americans. We used structural equations modeling to test: (1) whether media exposure was associated with body dissatisfaction in Asian American young adult females, (2) internalization of the thin ideal mediated any such association, and (3) whether the mediational model provided equivalent fit for European American and Asian American samples. Participants were 287 college females (154 Asian Americans, 133 European Americans). Internalization of the thin ideal explained the media exposure-body dissatisfaction association equally well for both groups. Results suggest that Asian Americans may be employing unhealthy weight control behaviors, and may be prone to developing eating disorders, at rates similar to European American young adult females. Clinicians need to screen carefully for body dissatisfaction, unhealthy weight control behaviors, and eating disorders in Asian American females. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Prevalence of ideal cardiovascular health in European adolescents: The HELENA study.

    PubMed

    Henriksson, Pontus; Henriksson, Hanna; Gracia-Marco, Luis; Labayen, Idoia; Ortega, Francisco B; Huybrechts, Inge; España-Romero, Vanesa; Manios, Yannis; Widhalm, Kurt; Dallongeville, Jean; González-Gross, Marcela; Marcos, Ascensión; Moreno, Luis A; Castillo, Manuel J; Ruiz, Jonatan R

    2017-08-01

    The ideal cardiovascular health (iCVH) construct consists of 4 health behaviours and 3 health factors and is strongly related to later cardiovascular disease. However, the prevalence of iCVH in European adolescents is currently unknown. The Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study is a cross-sectional, multicentre study conducted in 9 European countries during 2006-2007 and included 3528 adolescents (1683 boys and 1845 girls) between 12.5 and 17.5years of age. Status (ideal vs. non-ideal) for the health behaviours (smoking status, body mass index, physical activity and diet) and health factors (total cholesterol, blood pressure and fasting glucose) were determined. Overall, the prevalence of ideal health behaviours was low; non-smoking (60.9% ideal), body mass index (76.8%), physical activity (62.1%), and diet (1.7%). The prevalence of ideal health factors was; total cholesterol (65.8%), blood pressure (62.0%) and plasma glucose (88.8%). The low prevalence of iCVH behaviours, especially diet and physical activity, identified in European adolescents is likely to influence later cardiovascular health which strongly motivates efforts to increase ideal health behaviours in this population. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    NASA Astrophysics Data System (ADS)

    Kammer, Daniel C.; Allen, Mathew S.; Mayes, Randy L.

    2015-12-01

    Experimental-analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. The method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinates to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig-Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. These modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.

  10. Cardiorespiratory fitness and ideal cardiovascular health in European adolescents.

    PubMed

    Ruiz, Jonatan R; Huybrechts, Inge; Cuenca-García, Magdalena; Artero, Enrique G; Labayen, Idoia; Meirhaeghe, Aline; Vicente-Rodriguez, German; Polito, Angela; Manios, Yannis; González-Gross, Marcela; Marcos, Ascensión; Widhalm, Kurt; Molnar, Denes; Kafatos, Anthony; Sjöström, Michael; Moreno, Luis A; Castillo, Manuel J; Ortega, Francisco B

    2015-05-15

    We studied in European adolescents (i) the association between cardiorespiratory fitness and ideal cardiovascular health as defined by the American Heart Association and (ii) whether there is a cardiorespiratory fitness threshold associated with a more favourable cardiovascular health profile. Participants included 510 (n=259 girls) adolescents from 9 European countries. The 20 m shuttle run test was used to estimate cardiorespiratory fitness. Ideal cardiovascular health was defined as meeting ideal levels of the following components: four behaviours (smoking, body mass index, physical activity and diet) and three factors (total cholesterol, blood pressure and glucose). Higher levels of cardiorespiratory fitness were associated with a higher number of ideal cardiovascular health components in both boys and girls (both p for trend ≤0.001). Levels of cardiorespiratory fitness were significantly higher in adolescents meeting at least four ideal components (13% higher in boys, p<0.001; 6% higher in girls, p=0.008). Receiver operating characteristic curve analyses showed a significant discriminating accuracy of cardiorespiratory fitness in identifying the presence of at least four ideal cardiovascular health components (43.8 mL/kg/min in boys and 34.6 mL/kg/min in girls, both p<0.001). The results suggest a hypothetical cardiorespiratory fitness level associated with a healthier cardiovascular profile in adolescents. The fitness standards could be used in schools as part of surveillance and/or screening systems to identify youth with poor health behaviours who might benefit from intervention programmes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Ideal Standards, Acceptance, and Relationship Satisfaction: Latitudes of Differential Effects

    PubMed Central

    Buyukcan-Tetik, Asuman; Campbell, Lorne; Finkenauer, Catrin; Karremans, Johan C.; Kappen, Gesa

    2017-01-01

    We examined whether the relations of consistency between ideal standards and perceptions of a current romantic partner with partner acceptance and relationship satisfaction level off, or decelerate, above a threshold. We tested our hypothesis using a 3-year longitudinal data set collected from heterosexual newlywed couples. We used two indicators of consistency: pattern correspondence (within-person correlation between ideal standards and perceived partner ratings) and mean-level match (difference between ideal standards score and perceived partner score). Our results revealed that pattern correspondence had no relation with partner acceptance, but a positive linear/exponential association with relationship satisfaction. Mean-level match had a significant positive association with actor’s acceptance and relationship satisfaction up to the point where perceived partner score equaled ideal standards score. Partner effects did not show a consistent pattern. The results suggest that the consistency between ideal standards and perceived partner attributes has a non-linear association with acceptance and relationship satisfaction, although the results were more conclusive for mean-level match. PMID:29033876

  12. Using an experimental model for the study of therapeutic touch.

    PubMed

    dos Santos, Daniella Soares; Marta, Ilda Estéfani Ribeiro; Cárnio, Evelin Capellari; de Quadros, Andreza Urba; Cunha, Thiago Mattar; de Carvalho, Emilia Campos

    2013-02-01

    to verify whether the Paw Edema Model can be used in investigations about the effects of Therapeutic Touch on inflammation by measuring the variables pain, edema and neutrophil migration. this is a pilot and experimental study, involving ten male mice of the same genetic strain and divided into experimental and control group, submitted to the chemical induction of local inflammation in the right back paw. The experimental group received a daily administration of Therapeutic Touch for 15 minutes during three days. the data showed statistically significant differences in the nociceptive threshold and in the paw circumference of the animals from the experimental group on the second day of the experiment. the experiment model involving animals can contribute to study the effects of Therapeutic Touch on inflammation, and adjustments are suggested in the treatment duration, number of sessions and experiment duration.

  13. Handgrip Strength and Ideal Cardiovascular Health among Colombian Children and Adolescents.

    PubMed

    Ramírez-Vélez, Robinson; Tordecilla-Sanders, Alejandra; Correa-Bautista, Jorge Enrique; Peterson, Mark D; Garcia-Hermoso, Antonio

    2016-12-01

    To evaluate the association between handgrip strength and ideal cardiovascular health (CVH) in Colombian children and adolescents. During the 2014-2015 school years, we examined a cross-sectional component of the FUPRECOL (Association for Muscular Strength with Early Manifestation of Cardiovascular Disease Risk Factors among Colombian Children and Adolescents) study. Participants included 1199 (n = 627 boys) youths from Bogota (Colombia). Handgrip strength was measured with a standard adjustable hand held dynamometer and expressed relative to body mass (handgrip/body mass) and as absolute values in kilograms. Ideal CVH, as defined by the American Heart Association, was determined as meeting ideal levels of the following components: 4 behaviors (smoking status, body mass index, cardiorespiratory fitness, and diet) and 3 factors (total cholesterol, blood pressure, and glucose). Higher levels of handgrip strength (both absolute and relative values) were associated with a higher frequency of ideal CVH metrics in both sexes (P for trend ≤ .001). Also, higher levels of handgrip strength were associated with a greater number of ideal health behaviors (P for trend < .001 in both boys and girls), and with a higher number of ideal health factors in boys (P for trend < .001). Finally, levels of handgrip strength were similar between ideal versus nonideal glucose or total cholesterol groups in girls. Handgrip strength was strongly associated with ideal CVH in Colombian children and adolescents, and thus supports the relevance of early targeted interventions to promote strength adaptation and preservation as part of primordial prevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Experimental Characterization and Micromechanical Modeling of Woven Carbon/Copper Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Pauly, Christopher C.; Pindera, Marek-Jerzy

    1997-01-01

    The results of an extensive experimental characterization and a preliminary analytical modeling effort for the elastoplastic mechanical behavior of 8-harness satin weave carbon/copper (C/Cu) composites are presented. Previous experimental and modeling investigations of woven composites are discussed, as is the evolution of, and motivation for, the continuing research on C/Cu composites. Experimental results of monotonic and cyclic tension, compression, and Iosipescu shear tests, and combined tension-compression tests, are presented. With regard to the test results, emphasis is placed on the effect of strain gauge size and placement, the effect of alloying the copper matrix to improve fiber-matrix bonding, yield surface characterization, and failure mechanisms. The analytical methodology used in this investigation consists of an extension of the three-dimensional generalized method of cells (GMC-3D) micromechanics model, developed by Aboudi (1994), to include inhomogeneity and plasticity effects on the subcell level. The extension of the model allows prediction of the elastoplastic mechanical response of woven composites, as represented by a true repeating unit cell for the woven composite. The model is used to examine the effects of refining the representative geometry of the composite, altering the composite overall fiber volume fraction, changing the size and placement of the strain gauge with respect to the composite's reinforcement weave, and including porosity within the infiltrated fiber yarns on the in-plane elastoplastic tensile, compressive, and shear response of 8-harness satin C/Cu. The model predictions are also compared with the appropriate monotonic experimental results.

  15. SHEEP AS AN EXPERIMENTAL MODEL FOR BIOMATERIAL IMPLANT EVALUATION

    PubMed Central

    SARTORETTO, SUELEN CRISTINA; UZEDA, MARCELO JOSÉ; MIGUEL, FÚLVIO BORGES; NASCIMENTO, JHONATHAN RAPHAELL; ASCOLI, FABIO; CALASANS-MAIA, MÔNICA DIUANA

    2016-01-01

    ABSTRACT Objective: Based on a literature review and on our own experience, this study proposes sheep as an experimental model to evaluate the bioactive capacity of bone substitute biomaterials, dental implant systems and orthopedics devices. The literature review covered relevant databases available on the Internet from 1990 until to date, and was supplemented by our own experience. Methods: For its resemblance in size and weight to humans, sheep are quite suitable for use as an experimental model. However, information about their utility as an experimental model is limited. The different stages involving sheep experiments were discussed, including the care during breeding and maintenance of the animals obtaining specimens for laboratory processing, and highlighting the unnecessary euthanasia of animals at the end of study, in accordance to the guidelines of the 3Rs Program. Results: All experiments have been completed without any complications regarding the animals and allowed us to evaluate hypotheses and explain their mechanisms. Conclusion: The sheep is an excellent animal model for evaluation of biomaterial for bone regeneration and dental implant osseointegration. From an ethical point of view, one sheep allows for up to 12 implants per animal, permitting to keep them alive at the end of the experiments. Level of Evidence II, Retrospective Study. PMID:28149193

  16. Optimality models in the age of experimental evolution and genomics.

    PubMed

    Bull, J J; Wang, I-N

    2010-09-01

    Optimality models have been used to predict evolution of many properties of organisms. They typically neglect genetic details, whether by necessity or design. This omission is a common source of criticism, and although this limitation of optimality is widely acknowledged, it has mostly been defended rather than evaluated for its impact. Experimental adaptation of model organisms provides a new arena for testing optimality models and for simultaneously integrating genetics. First, an experimental context with a well-researched organism allows dissection of the evolutionary process to identify causes of model failure--whether the model is wrong about genetics or selection. Second, optimality models provide a meaningful context for the process and mechanics of evolution, and thus may be used to elicit realistic genetic bases of adaptation--an especially useful augmentation to well-researched genetic systems. A few studies of microbes have begun to pioneer this new direction. Incompatibility between the assumed and actual genetics has been demonstrated to be the cause of model failure in some cases. More interestingly, evolution at the phenotypic level has sometimes matched prediction even though the adaptive mutations defy mechanisms established by decades of classic genetic studies. Integration of experimental evolutionary tests with genetics heralds a new wave for optimality models and their extensions that does not merely emphasize the forces driving evolution.

  17. Irradiation Design for an Experimental Murine Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  18. Chemical Laws, Idealization and Approximation

    NASA Astrophysics Data System (ADS)

    Tobin, Emma

    2013-07-01

    This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.

  19. The ideal imaging AR waveguide

    NASA Astrophysics Data System (ADS)

    Grey, David J.

    2017-06-01

    Imaging waveguides are a key development that are helping to create the Augmented Reality revolution. They have the ability to use a small projector as an input and produce a wide field of view, large eyebox, full colour, see-through image with good contrast and resolution. WaveOptics is at the forefront of this AR technology and has developed and demonstrated an approach which is readily scalable. This paper presents our view of the ideal near-to-eye imaging AR waveguide. This will be a single-layer waveguide which can be manufactured in high volume and low cost, and is suitable for small form factor applications and all-day wear. We discuss the requirements of the waveguide for an excellent user experience. When enhanced (AR) viewing is not required, the waveguide should have at least 90% transmission, no distracting artifacts and should accommodate the user's ophthalmic prescription. When enhanced viewing is required, additionally, the waveguide requires excellent imaging performance, this includes resolution to the limit of human acuity, wide field of view, full colour, high luminance uniformity and contrast. Imaging waveguides are afocal designs and hence cannot provide ophthalmic correction. If the user requires this correction then they must wear either contact lenses, prescription spectacles or inserts. The ideal imaging waveguide would need to cope with all of these situations so we believe it must be capable of providing an eyebox at an eye relief suitable for spectacle wear which covers a significant range of population inter-pupillary distances. We describe the current status of our technology and review existing imaging waveguide technologies against the ideal component.

  20. An Experimental Device for Generating High Frequency Perturbations in Supersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Ibrahim, Mounir B.

    1996-01-01

    This paper describes the analytical study of a device that has been proposed as a mechanism for generating gust-like perturbations in supersonic wind tunnels. The device is envisioned as a means to experimentally validate dynamic models and control systems designed for high-speed inlets. The proposed gust generator is composed of two flat trapezoidal plates that modify the properties of the flow ingested by the inlet. One plate may be oscillated to generate small perturbations in the flow. The other plate is held stationary to maintain a constant angle-of-attack. Using an idealized approach, design equations and performance maps for the new device were developed from the compressible flow relations. A two-dimensional CFD code was used to confirm the correctness of these results. The idealized approach was then used to design and evaluate a new gust generator for a 3.05-meter by 3.05-meter (10-foot by 10-foot) supersonic wind tunnel.

  1. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant.

    PubMed

    Marco, Miguel; Giner, Eugenio; Larraínzar-Garijo, Ricardo; Caeiro, José Ramón; Miguélez, María Henar

    2017-10-01

    Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

  2. Experimental Flow Models for SSME Flowfield Characterization

    NASA Technical Reports Server (NTRS)

    Abel, L. C.; Ramsey, P. E.

    1989-01-01

    Full scale flow models with extensive instrumentation were designed and manufactured to provide data necessary for flow field characterization in rocket engines of the Space Shuttle Main Engine (SSME) type. These models include accurate flow path geometries from the pre-burner outlet through the throat of the main combustion chamber. The turbines are simulated with static models designed to provide the correct pressure drop and swirl for specific power levels. The correct turbopump-hot gas manifold interfaces were designed into the flow models to permit parametric/integration studies for new turbine designs. These experimental flow models provide a vehicle for understanding the fluid dynamics associated with specific engine issues and also fill the more general need for establishing a more detailed fluid dynamic base to support development and verification of advanced math models.

  3. Identification of Computational and Experimental Reduced-Order Models

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.

    2003-01-01

    The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.

  4. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.

    PubMed

    Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  5. Symmetry breaking in optimal timing of traffic signals on an idealized two-way street

    NASA Astrophysics Data System (ADS)

    Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.

    2013-09-01

    Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.

  6. Formation of Ideal Rashba States on Layered Semiconductor Surfaces Steered by Strain Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Wenmei; Wang, Z. F.; Zhou, Miao

    2015-12-10

    Spin splitting of Rashba states in two-dimensional electron system provides a mechanism of spin manipulation for spintronics applications. However, Rashba states realized experimentally to date are often outnumbered by spin-degenerated substrate states at the same energy range, hindering their practical applications. Here, by density functional theory calculation, we show that Au one monolayer film deposition on a layered semiconductor surface β-InSe(0001) can possess “ideal” Rashba states with large spin splitting, which are completely situated inside the large band gap of the substrate. The position of the Rashba bands can be tuned over a wide range with respect to the substratemore » band edges by experimentally accessible strain. Furthermore, our nonequilibrium Green’s function transport calculation shows that this system may give rise to the long-sought strong current modulation when made into a device of Datta-Das transistor. Similar systems may be identified with other metal ultrathin films and layered semiconductor substrates to realize ideal Rashba states.« less

  7. Just-About-Right and ideal scaling provide similar insights into the influence of sensory attributes on liking.

    PubMed

    Li, Bangde; Hayes, John E; Ziegler, Gregory R

    2014-10-01

    Just-about-right (JAR) scaling is criticized for measuring attribute intensity and acceptability simultaneously. Using JAR scaling, an attribute is evaluated for its appropriateness relative to one's hypothetical ideal level that is pre-defined at the middle of a continuum. Alternatively, ideal scaling measures these two constructs separately. Ideal scaling allows participants to rate their ideal freely on the scale (i.e., without assuming the "Too Little" and "Too Much" regions are equal in size). We hypothesized that constraining participants' ideal to the center point, as is done in the JAR scale, may cause a scaling bias and, thereby, influence the magnitude of "Too Little" and "Too Much". Furthermore, we hypothesized that the magnitude of "Too Little" and "Too Much" would influence liking to different extents. Coffee-flavored dairy beverages (n=20) were formulated using a fractional, constrained-mixture design that varied the ratio of water, milk, coffee extract, and sucrose. Participants tasted 4 of 20 prototypes that were served in a monadic sequential order using a balanced incomplete block design. Data reported here are for participants randomly assigned to one of two research conditions: ideal scaling (n=129) or JAR scaling (n=132). For both conditions, participants rated overall liking using a 9-point hedonic scale. Four attributes ( sweetness, milk flavor, coffee flavor and thickness ) were evaluated. The reliability of an individual participant's ideal rating for an attribute was evaluated using the standard deviation of their ideal ratings (n=4). All data from a participant were eliminated from further analyses when his/her standard deviation of the ideal ratings for any of the four rated attributes was identified as a statistical outlier. This resulted in the elimination of 15 of 129 (12 %) of participants in the ideal scaling group. Multiple linear regression was employed to model liking as a function of "Too Little" or "Too Much" attribute

  8. Numerical modelling and experimental study of liquid evaporation during gel formation

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Khramtsov, D. P.

    2017-11-01

    Gels are promising materials in biotechnology and medicine as a medium for storing cells for bioprinting applications. Gel is a two-phase system consisting of solid medium and liquid phase. Understanding of a gel structure evolution and gel aging during liquid evaporation is a crucial step in developing new additive bioprinting technologies. A numerical and experimental study of liquid evaporation was performed. In experimental study an evaporation process of an agarose gel layer located on Petri dish was observed and mass difference was detected using electronic scales. Numerical model was based on a smoothed particle hydrodynamics method. Gel in a model was represented as a solid-liquid system and liquid evaporation was modelled due to capillary forces and heat transfer. Comparison of experimental data and numerical results demonstrated that model can adequately represent evaporation process in agarose gel.

  9. Investigation of approximate models of experimental temperature characteristics of machines

    NASA Astrophysics Data System (ADS)

    Parfenov, I. V.; Polyakov, A. N.

    2018-05-01

    This work is devoted to the investigation of various approaches to the approximation of experimental data and the creation of simulation mathematical models of thermal processes in machines with the aim of finding ways to reduce the time of their field tests and reducing the temperature error of the treatments. The main methods of research which the authors used in this work are: the full-scale thermal testing of machines; realization of various approaches at approximation of experimental temperature characteristics of machine tools by polynomial models; analysis and evaluation of modelling results (model quality) of the temperature characteristics of machines and their derivatives up to the third order in time. As a result of the performed researches, rational methods, type, parameters and complexity of simulation mathematical models of thermal processes in machine tools are proposed.

  10. Probability theory for 3-layer remote sensing in ideal gas law environment.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2013-08-26

    We extend the probability model for 3-layer radiative transfer [Opt. Express 20, 10004 (2012)] to ideal gas conditions where a correlation exists between transmission and temperature of each of the 3 layers. The effect on the probability density function for the at-sensor radiances is surprisingly small, and thus the added complexity of addressing the correlation can be avoided. The small overall effect is due to (a) small perturbations by the correlation on variance population parameters and (b) cancellation of perturbation terms that appear with opposite signs in the model moment expressions.

  11. Quantifying ataxia: ideal trajectory analysis--a technical note

    NASA Technical Reports Server (NTRS)

    McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd

    2000-01-01

    We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (p<0.014 and 0.006, respectively), indicating that the ideal trajectory analysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.

  12. A general model-based design of experiments approach to achieve practical identifiability of pharmacokinetic and pharmacodynamic models.

    PubMed

    Galvanin, Federico; Ballan, Carlo C; Barolo, Massimiliano; Bezzo, Fabrizio

    2013-08-01

    The use of pharmacokinetic (PK) and pharmacodynamic (PD) models is a common and widespread practice in the preliminary stages of drug development. However, PK-PD models may be affected by structural identifiability issues intrinsically related to their mathematical formulation. A preliminary structural identifiability analysis is usually carried out to check if the set of model parameters can be uniquely determined from experimental observations under the ideal assumptions of noise-free data and no model uncertainty. However, even for structurally identifiable models, real-life experimental conditions and model uncertainty may strongly affect the practical possibility to estimate the model parameters in a statistically sound way. A systematic procedure coupling the numerical assessment of structural identifiability with advanced model-based design of experiments formulations is presented in this paper. The objective is to propose a general approach to design experiments in an optimal way, detecting a proper set of experimental settings that ensure the practical identifiability of PK-PD models. Two simulated case studies based on in vitro bacterial growth and killing models are presented to demonstrate the applicability and generality of the methodology to tackle model identifiability issues effectively, through the design of feasible and highly informative experiments.

  13. An Ideal Remedial Reading Program.

    ERIC Educational Resources Information Center

    Boettcher, Judith A.

    An ideal secondary level remedial reading program would be based on the philosophy that both freedom and structure are required, that learning demands involvement and feedback, and that success breeds success. Such programs should be structured (i.e., based on clearly defined content and a clearly designated mode of presentation). There are many…

  14. Epileptogenesis in experimental models.

    PubMed

    Pitkänen, Asla; Kharatishvili, Irina; Karhunen, Heli; Lukasiuk, Katarzyna; Immonen, Riikka; Nairismägi, Jaak; Gröhn, Olli; Nissinen, Jari

    2007-01-01

    Epileptogenesis refers to a phenomenon in which the brain undergoes molecular and cellular alterations after a brain-damaging insult, which increase its excitability and eventually lead to the occurrence of recurrent spontaneous seizures. Common epileptogenic factors include traumatic brain injury (TBI), stroke, and cerebral infections. Only a subpopulation of patients with any of these brain insults, however, will develop epilepsy. Thus, there are two great challenges: (1) identifying patients at risk, and (2) preventing and/or modifying the epileptogenic process. Target identification for antiepileptogenic treatments is difficult in humans because patients undergoing epileptogenesis cannot currently be identified. Animal models of epileptogenesis are therefore necessary for scientific progress. Recent advances in the development of experimental models of epileptogenesis have provided tools to investigate the molecular and cellular alterations and their temporal appearance, as well as the epilepsy phenotype after various clinically relevant epileptogenic etiologies, including TBI and stroke. Studying these models will lead to answers to critical questions such as: Do the molecular mechanisms of epileptogenesis depend on the etiology? Is the spectrum of network alterations during epileptogenesis the same after various clinically relevant etiologies? Is the temporal progression of epileptogenesis similar? Work is ongoing, and answers to these questions will facilitate the identification of molecular targets for antiepileptogenic treatments, the design of treatment paradigms, and the determination of whether data from one etiology can be extrapolated to another.

  15. Gravity wave generation from jets and fronts: idealized and real-case simulations

    NASA Astrophysics Data System (ADS)

    Plougonven, Riwal; Arsac, Antonin; Hertzog, Albert; Guez, Lionel; Vial, François

    2010-05-01

    The generation of gravity waves from jets and fronts remains an outstanding issue in the dynamics of the atmosphere. It is important to explain and quantify this emission because of the several impacts of these waves, in particular the induced momentum fluxes towards the middle atmosphere, and their contribution to turbulence and mixing, e.g. in the region of the tropopause. Yet, the mechanisms at the origin of these waves have been difficult to identify, the fundamental reason for this being the separation between the time scales of balanced motions and gravity waves. Recent simulations of idealized baroclinic life cycles and of dipoles have provided insights into the mechanisms determining the characteristics and the amplitude of gravity waves emitted by jets. It has been shown in particular that the environmental strain and shear play a crucial role in determining the characteristics and location of the emitted waves, emphasizing jet exit regions for the appearance of coherent low-frequency waves. It has also been shown how advection of relatively small-scales allow to overcome the separation of time scales alluded to above. Recent results, remaining open questions and ongoing work on these idealized simulations will be briefly summarized. Nevertheless, unavoidable shortcomings of such idealized simulations include the sensitivity of the emitted waves to model setup (resolution, diffusion, parameterizations) and uncertainty regarding the realism of this aspect of the simulations. Hence, it is necessary to compare simulations with observations in order to assess their relevance. Such comparison has been undertaken using the dataset from the Vorcore campaign (Sept. 2005 - Feb. 2006, Hertzog, J. Atmos. Ocean. Techno. 2007) during which 27 superpressure balloons drifted as quasi-Lagrangian tracers in the lower stratosphere above Antarctica and the Southern Ocean. High-resolution simulations (dx = 20 km) have been carried out using the Weather Research and Forecast

  16. Experimental investigation of nozzle/plume aerodynamics at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc; Papadopoulos, Perikles

    1994-01-01

    Much of the work involved the Ames 16-Inch Shock Tunnel facility. The facility was reactivated and upgraded, a data acquisition system was configured and upgraded several times, several facility calibrations were performed and test entries with a wedge model with hydrogen injection and a full scramjet combustor model, with hydrogen injection, were performed. Extensive CFD modeling of the flow in the facility was done. This includes modeling of the unsteady flow in the driver and driven tubes and steady flow modeling of the nozzle flow. Other modeling efforts include simulations of non-equilibrium flows and turbulence, plasmas, light gas guns and the use of non-ideal gas equations of state. New experimental techniques to improve the performance of gas guns, shock tubes and tunnels and scramjet combustors were conceived and studied computationally. Ways to improve scramjet engine performance using steady and pulsed detonation waves were also studied computationally. A number of studies were performed on the operation of the ram accelerator, including investigations of in-tube gasdynamic heating and the use of high explosives to raise the velocity capability of the device.

  17. Experimental validation of flexible robot arm modeling and control

    NASA Technical Reports Server (NTRS)

    Ulsoy, A. Galip

    1989-01-01

    Flexibility is important for high speed, high precision operation of lightweight manipulators. Accurate dynamic modeling of flexible robot arms is needed. Previous work has mostly been based on linear elasticity with prescribed rigid body motions (i.e., no effect of flexible motion on rigid body motion). Little or no experimental validation of dynamic models for flexible arms is available. Experimental results are also limited for flexible arm control. Researchers include the effects of prismatic as well as revolute joints. They investigate the effect of full coupling between the rigid and flexible motions, and of axial shortening, and consider the control of flexible arms using only additional sensors.

  18. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  19. Development and Experimental Verification of Surface Effects in a Fluidic Model

    DTIC Science & Technology

    2006-01-01

    FROM A HE PLASMA INSIDE A POLYSTYRENE MICROCHANNEL. 43 FIGURE 30: THE EMISSION SPECTRA FROM A MIXED HEXAFLUOROETHYLENE/HE PLASMA INSIDE THE...MICROCHANNEL 47 FIGURE 35: THE ADSORPTION OF GLUCOSE OXIDASE TO DIFFERENT POLYMER SURFACES WAS SHOWN TO HAVE A SIGNIFICANT EFFECT ON ELECTROOSMOTIC FLOW...approach involves neglecting non-ideal (convective-diffusive) effects 5 by assuming well- mixed protein in contact with an idealized surface. Coupled

  20. Using a tracer technique to identify the extent of non-ideal flows in the continuous mixing of non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Patel, D.; Ein-Mozaffari, F.; Mehrvar, M.

    2013-05-01

    The identification of non-ideal flows in a continuous-flow mixing of non-Newtonian fluids is a challenging task for various chemical industries: plastic manufacturing, water and wastewater treatment, and pulp and paper manufacturing. Non-ideal flows such as channelling, recirculation, and dead zones significantly affect the performance of continuous-flow mixing systems. Therefore, the main objective of this paper was to develop an identification protocol to measure non-ideal flows in the continuous-flow mixing system. The extent of non-ideal flows was quantified using a dynamic model that incorporated channelling, recirculation, and dead volume in the mixing vessel. To estimate the dynamic model parameters, the system was excited using a frequency-modulated random binary input by injecting the saline solution (as a tracer) into the fresh feed stream prior to being pumped into the mixing vessel. The injection of the tracer was controlled by a computer-controlled on-off solenoid valve. Using the trace technique, the extent of channelling and the effective mixed volume were successfully determined and used as mixing quality criteria. Such identification procedures can be applied at various areas of chemical engineering in order to improve the mixing quality.

  1. Analyzing Hydraulic Conductivity Sampling Schemes in an Idealized Meandering Stream Model

    NASA Astrophysics Data System (ADS)

    Stonedahl, S. H.; Stonedahl, F.

    2017-12-01

    Hydraulic conductivity (K) is an important parameter affecting the flow of water through sediments under streams, which can vary by orders of magnitude within a stream reach. Measuring heterogeneous K distributions in the field is limited by time and resources. This study investigates hypothetical sampling practices within a modeling framework on a highly idealized meandering stream. We generated three sets of 100 hydraulic conductivity grids containing two sands with connectivity values of 0.02, 0.08, and 0.32. We investigated systems with twice as much fast (K=0.1 cm/s) sand as slow sand (K=0.01 cm/s) and the reverse ratio on the same grids. The K values did not vary with depth. For these 600 cases, we calculated the homogenous K value, Keq, that would yield the same flux into the sediments as the corresponding heterogeneous grid. We then investigated sampling schemes with six weighted probability distributions derived from the homogenous case: uniform, flow-paths, velocity, in-stream, flux-in, and flux-out. For each grid, we selected locations from these distributions and compared the arithmetic, geometric, and harmonic means of these lists to the corresponding Keq using the root-mean-square deviation. We found that arithmetic averaging of samples outperformed geometric or harmonic means for all sampling schemes. Of the sampling schemes, flux-in (sampling inside the stream in an inward flux-weighted manner) yielded the least error and flux-out yielded the most error. All three sampling schemes outside of the stream yielded very similar results. Grids with lower connectivity values (fewer and larger clusters) showed the most sensitivity to the choice of sampling scheme, and thus improved the most with the flux-insampling. We also explored the relationship between the number of samples taken and the resulting error. Increasing the number of sampling points reduced error for the arithmetic mean with diminishing returns, but did not substantially reduce error

  2. Chemical Laws, Idealization and Approximation

    ERIC Educational Resources Information Center

    Tobin, Emma

    2013-01-01

    This paper examines the notion of laws in chemistry. Vihalemm ("Found Chem" 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all "ceteris paribus" laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are…

  3. Experimental Model for the Study of Periodontal Wound Healing

    DTIC Science & Technology

    1991-05-01

    the soft tissue over the submerged root may occur. Models that communicate with the oral cavity (i.e., experimentally produced and naturally...membranes have been successfully utilized to demonstrate regeneration of periodontal tissues . Membranes made of collagen (Pitaru etal., 1987, 1988 a & b...1988. Progenitor cell kinetics during guided tissue regeneration in experimental periodontal wounds. J Periodont Res 23:107. Isidor, F., Karring, T

  4. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-03-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  5. Experimental Basis for IED Particle Model

    NASA Astrophysics Data System (ADS)

    Zheng-Johansson, J.

    2009-05-01

    The internally electrodynamic (IED) particle model is built on three experimental facts: a) electric charges present in all matter particles, b) an accelerated charge generates electromagnetic (EM) waves by Maxwell's equations and Planck energy equation, and c) source motion gives Doppler effect. A set of well-kwon basic particle equations have been predicted based on first-principles solutions for IED particle (e.g. arxiv:0812.3951, J Phys CS128, 012019, 2008); the equations are long experimentally validated. A critical review of the key experiments suggests that the IED process underlies these equations not just sufficiently but also necessarily. E.g.: 1) A free IED electron solution is a plane wave ψ= Ce^i(kdX-φT) requisite for producing the diffraction fringe in a Davisson-Germer experiment, and of also all basic point-like attributes facilitated by a linear momentum kd and the model structure. It needs not further be a wave packet which produces not a diffraction fringe. 2)The radial partial EM waves, hence the total ψ, of an IED electron will, on both EM theory and experiment basis -not by assumption, enter two slits at the same time, as is requisite for an electron to interfere with itself as shown in double slit experiments. 3) On annihilation, an electron converts (from mass m) to a radiation energy φ without an acceleration which is externally observable and yet requisite by EM theory. So a charge oscillation of frequency φ and its EM waves must regularly present internal of a normal electron, whence the IED model.

  6. An Experimental Itch Model in Monkeys

    PubMed Central

    Ko, M. C. Holden; Naughton, Norah N.

    2007-01-01

    Background The most common side effect of spinal opioid administration is pruritus, which has been treated with a variety of agents with variable success. Currently, there are few animal models developed to study this side effect. The aim of this study was to establish a nonhuman primate model to pharmacologically characterize the effects of intrathecal administration of morphine. Methods Eight adult rhesus monkeys were used. Scratching responses were videotaped and counted by observers who were blinded to experimental conditions. Antinociception was measured by a warm-water (50°C) tail-withdrawal assay. The dose-response of intrathecal morphine (1-320 μg) for both scratching and antinociception in all subjects was established. An opioid antagonist, nalmefene, was administered either intravenously or subcutaneously to assess its efficacy against intrathecal morphine. Results Intrathecal morphine (1-32 μg) increased scratching in a dose-dependent manner. Higher doses of intrathecal morphine (10-100 μg) produced thermal antinociception in a dose-dependent manner. On the other hand, nalmefene (10-32 μg/kg intravenously) attenuated maximum scratching responses among subjects. Pretreatment with nalmefene (32μg/kg subcutaneously) produced approximately 10-fold rightward shifts of intrathecal morphine dose-response curves for both behavioral effects. Conclusions These data indicate that intrathecal morphine-induced scratching and antinociception are mediated by opioid receptors. The magnitude of nalmefene antagonism of intrathecal morphine is consistent with μ opioid receptor mediation. This experimental itch model is useful for evaluating different agents that may suppress scratching without interfering with antinociception. It may also facilitate the clarification of mechanisms underlying these phenomena. PMID:10719958

  7. Fitness Promotion for Adolescent Girls: The Impact and Effectiveness of Promotional Material which Emphasizes the Slim Ideal.

    ERIC Educational Resources Information Center

    Shaw, Susan M.; Kemeny, Lidia

    1989-01-01

    Looked at techniques for promoting fitness participation among adolescent girls, in particular those which emphasize the slim ideal. Relative effectiveness of posters using different models (slim, average, overweight) and different messages (slimness, activity, health) was tested using 627 female high school students. Found slim model to be most…

  8. Delivering ideal employee experiences.

    PubMed

    Weiss, Marjorie D; Tyink, Steve; Kubiak, Curt

    2009-05-01

    Employee-centric strategies have moved from employee satisfaction and brand awareness to employee "affinity" or "attachment." In today's marketplace, occupational health nurses understand that differentiation (i.e., the perception of uniqueness) is the direct result of superior employee interactions, which lead to better employee care, enduring employee relationships, loyal employees, and satisfied employers. What drives employees to occupational health nurse attachment? The answer is a passion for rising above the competition to create ideal employee experiences.

  9. Reduction of intensity variations on the absorbers of ideal flux concentrators

    NASA Technical Reports Server (NTRS)

    Greenman, P.

    1980-01-01

    Large nonuniformities occur in the instantaneous distribution of flux on the absorber of an ideal light concentrator when it is illuminated by a point source such as the sun. These nonuniformities may be reduced by texturing the reflecting surface with small distortions. Such distortions will also be effective if used in the primary reflector of a two-stage concentrator. Data on a model compound parabolic concentrator are presented. The suitability of such concentrators for use by spacecraft is mentioned.

  10. Caste and Choice: The Influence of Developmental Idealism on Marriage Behavior

    PubMed Central

    Allendorf, Keera; Thornton, Arland

    2015-01-01

    Is young people’s marriage behavior determined by their socioeconomic characteristics or their endorsement of developmental idealism? This article addresses this question using a unique, longitudinal data set from Nepal and provides the first individual-level test of developmental idealism theory. We find that unmarried individuals with greater endorsement of developmental idealism in 2008 were more likely by 2012 to choose their own spouse, including a spouse of a different caste, rather than have an arranged marriage. Those with salaried work experience were also less likely to have arranged marriages, but urban proximity and education were not significant. We conclude that both developmental idealism and socioeconomic characteristics influence marriage and their influences are largely independent. PMID:26430712

  11. Neurocultural evidence that ideal affect match promotes giving

    PubMed Central

    Park, BoKyung; Blevins, Elizabeth; Knutson, Brian

    2017-01-01

    Abstract Why do people give to strangers? We propose that people trust and give more to those whose emotional expressions match how they ideally want to feel (“ideal affect match”). European Americans and Koreans played multiple trials of the Dictator Game with recipients who varied in emotional expression (excited, calm), race (White, Asian) and sex (male, female). Consistent with their culture’s valued affect, European Americans trusted and gave more to excited than calm recipients, whereas Koreans trusted and gave more to calm than excited recipients. These findings held regardless of recipient race and sex. We then used fMRI to probe potential affective and mentalizing mechanisms. Increased activity in the nucleus accumbens (associated with reward anticipation) predicted giving, as did decreased activity in the right temporo-parietal junction (rTPJ; associated with reduced belief prediction error). Ideal affect match decreased rTPJ activity, suggesting that people may trust and give more to strangers whom they perceive to share their affective values. PMID:28379542

  12. Reported Effects of Masculine Ideals on Gay Men.

    PubMed

    Sánchez, Francisco J; Greenberg, Stefanie T; Liu, William Ming; Vilain, Eric

    2009-01-01

    This exploratory study used consensual qualitative research methodology (Hill et al., 2005) to analyze what gay men associate with masculinity and femininity, how they feel masculine ideals affect their self-image, and how masculine ideals affect their same-sex relationships. Written responses were collected from 547 self-identified gay men in the U.S. via an Internet-based survey. Findings supported previous reports that perceptions of gender roles among gay men appear based on masculine and feminine stereotypes. Additionally, more adverse versus positive effects on self-image and same-sex romantic relationships were reported including difficulty being emotional and affectionate, pressure to be physically attractive, and pressure to appear masculine in order to be accepted by society and to be seen as desirable by other gay men. While research on gay men's experience with masculinity continues, psychologists should consider the possible influence of traditional masculine ideals when conceptualizing their gay male clients.

  13. Reported Effects of Masculine Ideals on Gay Men

    PubMed Central

    Sánchez, Francisco J.; Greenberg, Stefanie T.; Liu, William Ming; Vilain, Eric

    2010-01-01

    This exploratory study used consensual qualitative research methodology (Hill et al., 2005) to analyze what gay men associate with masculinity and femininity, how they feel masculine ideals affect their self-image, and how masculine ideals affect their same-sex relationships. Written responses were collected from 547 self-identified gay men in the U.S. via an Internet-based survey. Findings supported previous reports that perceptions of gender roles among gay men appear based on masculine and feminine stereotypes. Additionally, more adverse versus positive effects on self-image and same-sex romantic relationships were reported including difficulty being emotional and affectionate, pressure to be physically attractive, and pressure to appear masculine in order to be accepted by society and to be seen as desirable by other gay men. While research on gay men’s experience with masculinity continues, psychologists should consider the possible influence of traditional masculine ideals when conceptualizing their gay male clients. PMID:20628534

  14. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE PAGES

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    2015-09-26

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  15. Formulation of an experimental substructure model using a Craig-Bampton based transmission simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammer, Daniel C.; Allen, Matthew S.; Mayes, Randall L.

    An experimental–analytical substructuring is attractive when there is motivation to replace one or more system subcomponents with an experimental model. This experimentally derived substructure can then be coupled to finite element models of the rest of the structure to predict the system response. The transmission simulator method couples a fixture to the component of interest during a vibration test in order to improve the experimental model for the component. The transmission simulator is then subtracted from the tested system to produce the experimental component. This method reduces ill-conditioning by imposing a least squares fit of constraints between substructure modal coordinatesmore » to connect substructures, instead of directly connecting physical interface degrees of freedom. This paper presents an alternative means of deriving the experimental substructure model, in which a Craig–Bampton representation of the transmission simulator is created and subtracted from the experimental measurements. The corresponding modal basis of the transmission simulator is described by the fixed-interface modes, rather than free modes that were used in the original approach. Moreover, these modes do a better job of representing the shape of the transmission simulator as it responds within the experimental system, leading to more accurate results using fewer modes. The new approach is demonstrated using a simple finite element model based example with a redundant interface.« less

  16. Regression Model Optimization for the Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2009-01-01

    A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.

  17. Embryonated chicken eggs: An experimental model for Pythium insidiosum infection.

    PubMed

    Verdi, Camila M; Jesus, Francielli P K; Kommers, Glaucia; Ledur, Pauline C; Azevedo, Maria I; Loreto, Erico S; Tondolo, Juliana S M; Andrade, Eduardo N C; Schlemmer, Karine B; Alves, Sydney H; Santurio, Janio M

    2018-02-01

    Pythiosis is a severe disease caused by Pythium insidiosum. Currently, the research on the treatment of pythiosis uses rabbits as an experimental infection model. To reduce the use of animals in scientific experimentation, alternative models are increasingly necessary options. The objective of this study was to establish a new experimental infection model for pythiosis using embryonated chicken eggs. First, we tested the inoculation of 4 zoospore concentrations into the egg allantoic cavity at 3 embryonic days. We observed that increased zoospore concentration causes a decrease in survival time, and at a later embryonic day (the 14th) of infection, embryos showed delayed mortality. To confirm the reproducibility of the model, we chose the 14th embryonic day for the inoculation of 50 zoospores/egg, and the experiment was repeated twice. Mortality began with 30% embryos 48 hours after inoculation, and 95% embryos died within 72 hours. There was no mortality in the uninfected control group. The infection was confirmed by culture, PCR and histopathology. Immunohistochemistry confirmed the presence of hyphae in blood vessels in the umbilical cords in 95% of embryos and only 1 liver (5%). Our results suggest that embryonated eggs can be a very useful alternative infection model to study pythiosis. © 2017 Blackwell Verlag GmbH.

  18. Tempting Fate or Inviting Happiness? Unrealistic idealization prevents the decline of marital satisfaction

    PubMed Central

    Murray, Sandra L.; Griffin, Dale W.; Derrick, Jaye L.; Harris, Brianna; Aloni, Maya; Leder, Sadie

    2014-01-01

    The authors examine whether unrealistically viewing a romantic partner as the image of one’s ideal partner accelerates or slows declines in marital satisfaction among newlyweds. A longitudinal study linked unrealistic idealization at the point of marriage to changes in satisfaction over the first three years of marriage. Overall, satisfaction declined markedly, consistent with past research. However, seeing a less-than-ideal partner as a reflection of one’s ideals predicted a certain level of immunity to the corrosive effects of time: People who initially idealized their partner highly experienced no declines in satisfaction. The obtained benefits of idealization remained in analyses that separately controlled for the positivity of partner perceptions and the possibility that better adjusted people might be in better relationships. PMID:21467549

  19. The Predicting Model of E-commerce Site Based on the Ideas of Curve Fitting

    NASA Astrophysics Data System (ADS)

    Tao, Zhang; Li, Zhang; Dingjun, Chen

    On the basis of the idea of the second multiplication curve fitting, the number and scale of Chinese E-commerce site is analyzed. A preventing increase model is introduced in this paper, and the model parameters are solved by the software of Matlab. The validity of the preventing increase model is confirmed though the numerical experiment. The experimental results show that the precision of preventing increase model is ideal.

  20. Critical Thinking and Educational Ideal

    ERIC Educational Resources Information Center

    Liu, Qian

    2007-01-01

    Critical thinking, as an educational trend, has been much discussed and proposed nowadays. In this paper, an analysis is made on the gap between our present educational practice and educational ideal from three different aspects, that is, the content, the manner and the one-sidedness of our teaching. It's observed that there is still a long way to…

  1. Computations of ideal and real gas high altitude plume flows

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  2. ``Ideal glassformers'' vs ``ideal glasses'': Studies of crystal-free routes to the glassy state by ``potential tuning'' molecular dynamics, and laboratory calorimetry

    NASA Astrophysics Data System (ADS)

    Kapko, Vitaliy; Zhao, Zuofeng; Matyushov, Dmitry V.; Austen Angell, C.

    2013-03-01

    The ability of some liquids to vitrify during supercooling is usually seen as a consequence of the rates of crystal nucleation (and/or crystal growth) becoming small [D. R. Uhlmann, J. Non-Cryst. Solids 7, 337 (1972), 10.1016/0022-3093(72)90269-4] - and thus a matter of kinetics. However, there is evidence dating back to the empirics of coal briquetting for maximum trucking efficiency [D. Frenkel, Physics 3, 37 (2010), 10.1103/Physics.3.37] that some object shapes find little advantage in self-assembly to ordered structures - meaning random packings prevail. Noting that key studies of non-spherical object packing have never been followed from hard ellipsoids [A. Donev, F. H. Stillinger, P. M. Chaikin, and S. Torquato, Phys. Rev. Lett. 92, 255506 (2004), 10.1103/PhysRevLett.92.255506; A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990 (2004), 10.1126/science.1093010] or spherocylinders [S. R. Williams and A. P. Philipse, Phys. Rev. E 67, 051301 (2003), 10.1103/PhysRevE.67.051301] (diatomics excepted [S.-H. Chong, A. J. Moreno, F. Sciortino, and W. Kob, Phys. Rev. Lett. 94, 215701 (2005), 10.1103/PhysRevLett.94.215701] into the world of molecules with attractive forces, we have made a molecular dynamics study of crystal melting and glass formation on the Gay-Berne (G-B) model of ellipsoidal objects [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981), 10.1063/1.441483] across the aspect ratio range of the hard ellipsoid studies. Here, we report that in the aspect ratio range of maximum ellipsoid packing efficiency, various G-B crystalline states that cannot be obtained directly from the liquid, disorder spontaneously near 0 K and transform to liquids without any detectable enthalpy of fusion. Without claiming to have proved the existence of single component examples, we use the present observations, together with our knowledge of non-ideal mixing effects, to discuss the probable existence

  3. Physics of human cooperation: experimental evidence and theoretical models

    NASA Astrophysics Data System (ADS)

    Sánchez, Angel

    2018-02-01

    In recent years, many physicists have used evolutionary game theory combined with a complex systems perspective in an attempt to understand social phenomena and challenges. Prominent among such phenomena is the issue of the emergence and sustainability of cooperation in a networked world of selfish or self-focused individuals. The vast majority of research done by physicists on these questions is theoretical, and is almost always posed in terms of agent-based models. Unfortunately, more often than not such models ignore a number of facts that are well established experimentally, and are thus rendered irrelevant to actual social applications. I here summarize some of the facts that any realistic model should incorporate and take into account, discuss important aspects underlying the relation between theory and experiments, and discuss future directions for research based on the available experimental knowledge.

  4. Selecting Models for Measuring Change When True Experimental Conditions Do Not Exist.

    ERIC Educational Resources Information Center

    Fortune, Jim C.; Hutson, Barbara A.

    1984-01-01

    Measuring change when true experimental conditions do not exist is a difficult process. This article reviews the artifacts of change measurement in evaluations and quasi-experimental designs, delineates considerations in choosing a model to measure change under nonideal conditions, and suggests ways to organize models to facilitate selection.…

  5. Turboprop IDEAL: a motion-resistant fat-water separation technique.

    PubMed

    Huo, Donglai; Li, Zhiqiang; Aboussouan, Eric; Karis, John P; Pipe, James G

    2009-01-01

    Suppression of the fat signal in MRI is very important for many clinical applications. Multi-point water-fat separation methods, such as IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares estimation), can robustly separate water and fat signal, but inevitably increase scan time, making separated images more easily affected by patient motions. PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) and Turboprop techniques offer an effective approach to correct for motion artifacts. By combining these techniques together, we demonstrate that the new TP-IDEAL method can provide reliable water-fat separation with robust motion correction. The Turboprop sequence was modified to acquire source images, and motion correction algorithms were adjusted to assure the registration between different echo images. Theoretical calculations were performed to predict the optimal shift and spacing of the gradient echoes. Phantom images were acquired, and results were compared with regular FSE-IDEAL. Both T1- and T2-weighted images of the human brain were used to demonstrate the effectiveness of motion correction. TP-IDEAL images were also acquired for pelvis, knee, and foot, showing great potential of this technique for general clinical applications.

  6. Universal ideal behavior and macroscopic work relation of linear irreversible stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ma, Yi-An; Qian, Hong

    2015-06-01

    We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic ‘equation of state’ of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.

  7. Hybrid normed ideal perturbations of n-tuples of operators I

    NASA Astrophysics Data System (ADS)

    Voiculescu, Dan-Virgil

    2018-06-01

    In hybrid normed ideal perturbations of n-tuples of operators, the normed ideal is allowed to vary with the component operators. We begin extending to this setting the machinery we developed for normed ideal perturbations based on the modulus of quasicentral approximation and an adaptation of our non-commutative generalization of the Weyl-von Neumann theorem. For commuting n-tuples of hermitian operators, the modulus of quasicentral approximation remains essentially the same when Cn- is replaced by a hybrid n-tuple Cp1,…- , … , Cpn- , p1-1 + ⋯ + pn-1 = 1. The proof involves singular integrals of mixed homogeneity.

  8. Health care market deviations from the ideal market.

    PubMed

    Mwachofi, Ari; Al-Assaf, Assaf F

    2011-08-01

    A common argument in the health policy debate is that market forces allocate resources efficiently in health care, and that government intervention distorts such allocation. Rarely do those making such claims state explicitly that the market they refer to is an ideal in economic theory which can only exist under very strict conditions. This paper explores the strict conditions necessary for that ideal market in the context of health care as a means of examining the claim that market forces do allocate resources efficiently in health care.

  9. Umbilical hernia repair with mesh: identifying effectors of ideal outcomes.

    PubMed

    Colavita, Paul D; Belyansky, Igor; Walters, Amanda L; Zemlyak, Alla Y; Lincourt, Amy E; Heniford, B Todd; Augenstein, Vedra A

    2014-09-01

    Quality of life has become an important focus for improvement in hernia repair. The International Hernia Mesh Registry was queried. The Carolinas Comfort Scale quantitated quality of life at 1-month, 6-month, and annual follow-up. Scores of 0 (completely asymptomatic) in all categories without recurrence defined an ideal outcome. The analysis consisted of 363 umbilical hernia repairs; 18.7% were laparoscopic. Demographics included age of 51.5 ± 13.8 years, 24.5% were female, and the average body mass index was 30.63 ± 5.9 kg/m(2). Mean defect size was 4.3 ± 3.1 cm(2). Mean follow-up was 18.2 months. Absent/minimal preoperative symptoms were predictive of ideal outcome at all time points and increasing age was predictive at 6 months and 1 year. At 6 months, the use of fixation sutures alone versus tacks (odds ratio 14.1) predicted ideal outcome. Ideal outcomes are dependent on both patient-specific and operative factors. The durable, ideal outcome in umbilical hernia repair is most likely in an older, asymptomatic patient who undergoes mesh fixation with permanent suture. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Personality traits and appearance-ideal internalization: Differential associations with body dissatisfaction and compulsive exercise.

    PubMed

    Martin, Shelby J; Racine, Sarah E

    2017-12-01

    Thin-ideal internalization is a robust risk factor for body dissatisfaction and eating pathology. Conversely, athletic-ideal internalization is often unrelated to body dissatisfaction, but predicts compulsive exercise (i.e., rigid, rule-driven exercise that is continued despite adverse consequences). Distinct personality traits could relate to internalization of different appearance ideals, which may be associated with divergent eating disorder outcomes. Past research has shown that neuroticism is related to body dissatisfaction, whereas extraversion and conscientiousness have been associated with regular and problematic exercise. The current study examined associations among personality traits (i.e., neuroticism, extraversion, conscientiousness), appearance-ideal internalization (i.e., thin- and athletic-ideal), and eating disorder cognitions/behaviors (i.e., body dissatisfaction, compulsive exercise) among 531 college men and women. Moreover, we tested whether appearance-ideal internalization mediated the relationships between personality traits with body dissatisfaction and compulsive exercise. As expected, body dissatisfaction was positively related to neuroticism, and compulsive exercise was positively associated with extraversion. Thin-ideal internalization positively correlated with neuroticism, athletic-ideal internalization positively correlated with conscientiousness, and both thin- and athletic-ideal internalization were positively related to extraversion. After controlling for gender, body mass index, the other appearance-ideal internalization, and the remaining personality traits, the indirect effects of both neuroticism and extraversion on body dissatisfaction through thin-ideal internalization were significant. Extraversion and conscientiousness were indirectly related to compulsive exercise through athletic-ideal internalization, whereas the indirect effect of neuroticism was dependent on covariates. As such, personality traits may be related to

  11. Just-About-Right and ideal scaling provide similar insights into the influence of sensory attributes on liking

    PubMed Central

    Li, Bangde; Hayes, John E.; Ziegler, Gregory R.

    2014-01-01

    Just-about-right (JAR) scaling is criticized for measuring attribute intensity and acceptability simultaneously. Using JAR scaling, an attribute is evaluated for its appropriateness relative to one’s hypothetical ideal level that is pre-defined at the middle of a continuum. Alternatively, ideal scaling measures these two constructs separately. Ideal scaling allows participants to rate their ideal freely on the scale (i.e., without assuming the “Too Little” and “Too Much” regions are equal in size). We hypothesized that constraining participants’ ideal to the center point, as is done in the JAR scale, may cause a scaling bias and, thereby, influence the magnitude of “Too Little” and “Too Much”. Furthermore, we hypothesized that the magnitude of “Too Little” and “Too Much” would influence liking to different extents. Coffee-flavored dairy beverages (n=20) were formulated using a fractional, constrained-mixture design that varied the ratio of water, milk, coffee extract, and sucrose. Participants tasted 4 of 20 prototypes that were served in a monadic sequential order using a balanced incomplete block design. Data reported here are for participants randomly assigned to one of two research conditions: ideal scaling (n=129) or JAR scaling (n=132). For both conditions, participants rated overall liking using a 9-point hedonic scale. Four attributes (sweetness, milk flavor, coffee flavor and thickness) were evaluated. The reliability of an individual participant’s ideal rating for an attribute was evaluated using the standard deviation of their ideal ratings (n=4). All data from a participant were eliminated from further analyses when his/her standard deviation of the ideal ratings for any of the four rated attributes was identified as a statistical outlier. This resulted in the elimination of 15 of 129 (12 %) of participants in the ideal scaling group. Multiple linear regression was employed to model liking as a function of “Too Little

  12. Experimental and modeling study of the uranium (VI) sorption on goethite.

    PubMed

    Missana, Tiziana; García-Gutiérrez, Miguel; Maffiotte, Cesar

    2003-04-15

    Acicular goethite was synthesized in the laboratory and its main physicochemical properties (composition, microstructure, surface area, and surface charge) were analyzed as a previous step to sorption experiments. The stability of the oxide, under the conditions used in sorption studies, was also investigated. The sorption of U(VI) onto goethite was studied under O(2)- and CO(2)-free atmosphere and in a wide range of experimental conditions (pH, ionic strength, radionuclide, and solid concentration), in order to assess the validity of different surface complexation models available for the interpretation of sorption data. Three different models were used to fit the experimental data. The first two models were based on the diffuse double layer concept. The first one (Model 1) considered two different monodentate complexes with the goethite surface and the second (Model 2) a single binuclear bidentate complex. A nonelectrostatic (NE) approach was used as a third model and, in that case, the same species considered in Model 1 were used. The results showed that all the models are able to describe the sorption behavior fairly well as a function of pH, electrolyte concentration, and U(VI) concentration. However, Model 2 fails in the description of the uranium sorption behavior as a function of the sorbent concentration. This demonstrates the importance of checking the validity of any surface complexation model under the widest possible range of experimental conditions.

  13. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation.

    PubMed

    Bordones, Alifer D; Leroux, Matthew; Kheyfets, Vitaly O; Wu, Yu-An; Chen, Chia-Yuan; Finol, Ender A

    2018-05-21

    Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.

  14. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    PubMed

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions.

  15. Teachers' Ethnotheories of the "Ideal Student" in Five Western Cultures

    ERIC Educational Resources Information Center

    Harkness, Sara; Blom, Marjolijn; Oliva, Alfredo; Moscardino, Ughetta; Zylicz, Piotr Olaf; Bermudez, Moises Rios; Feng, Xin; Carrasco-Zylicz, Agnieszka; Axia, Giovanna; Super, Charles M.

    2007-01-01

    This paper explores teachers' ethnotheories of the "ideal student" in five western societies: Italy, The Netherlands, Poland, Spain, and the US. Quantitative and qualitative methods are used to derive culture-specific profiles of the "ideal student" as described by kindergarten and primary school teachers in semi-structured…

  16. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    PubMed

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  17. Quantification of non-ideal explosion violence with a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Hill, Larry G

    There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distancemore » from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.« less

  18. Self-esteem, social support, collectivism, and the thin-ideal in Latina undergraduates.

    PubMed

    Cordero, Elizabeth D

    2011-01-01

    Thin-ideal internalization (TII) reflects agreement that thinness equates with beauty. TII is a risk factor for body dissatisfaction and eating pathology; this phenomenon and its correlates, however, are just beginning to be studied in Latina undergraduates. This study examined the ability of self-esteem, social support, and collectivism to predict TII in 279 Latina undergraduates. It was hypothesized that higher levels of self-esteem, social support, and collectivism would predict lower levels of TII. Cross-sectional data were analyzed using multiple regression; the model was significant, p<.01. Although both self-esteem and social support negatively correlated with thin-ideal internalization, only self-esteem accounted for a significant amount of variance. Results indicate that investigations of self-esteem as a protective factor against TII in Latina undergraduates would be fruitful, as would how self-esteem and social support affect the relationship between TII and other variables. Implications and limitations are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Ideal and resistive plasma resistive wall modes and control: linear and nonlinear

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2004-11-01

    Our recent work* on control of linear and nonlinear resistive wall modes (RWM) showed that if there is an ideal plasma mode and a resistive plasma mode, and if the beta limit for the latter is lower (as is typical), then nonlinear resistive wall modes behave basically as nonlinear tearing-like modes locked to the wall. We investigate here the effect of plasma rotation sufficient to stabilize the resistive-plasma RWM but not the ideal plasma RWM. We also review results** showing the effect of normal and poloidal magnetic field sensing, and describe a simple model which is amenable to analytic solution, and which makes previously obtained simulation results transparent. *J. Finn and L. Chacon, 'Control of linear and nonlinear resistive wall modes', Phys. Plas 11, 1866 (2004). **J. Finn, 'Control of resistive wall modes in a cylindrical tokamak with radial and poloidal magnetic field sensors', to appear in Phys. Plasmas, 2004.

  20. Health Care Market Deviations from the Ideal Market

    PubMed Central

    Mwachofi, Ari; Al-Assaf, Assaf F.

    2011-01-01

    A common argument in the health policy debate is that market forces allocate resources efficiently in health care, and that government intervention distorts such allocation. Rarely do those making such claims state explicitly that the market they refer to is an ideal in economic theory which can only exist under very strict conditions. This paper explores the strict conditions necessary for that ideal market in the context of health care as a means of examining the claim that market forces do allocate resources efficiently in health care. PMID:22087373