Sample records for ideal stability boundaries

  1. Boundary layers and global stability of laboratory quasi-Keplerian flow

    NASA Astrophysics Data System (ADS)

    Edlund, E. M.; Ji, H.

    2013-11-01

    Studies in the HTX device at PPPL, a modified Taylor-Couette experiment, have demonstrated a robust stability of astrophysically relevant, quasi-Keplerian flows. Independent rings on the axial boundary can be used to fine tune the rotation profile, allowing ideal Couette rotation to be achieved over nearly the entire radial gap. Fluctuation levels in these flows are observed to be at nearly the noise floor of the laser Doppler velocimetry (LDV) diagnostic, in agreement with prior studies under similar conditions. Deviations from optimal operating parameters illustrate the importance of centrifugally unstable boundary layers in Taylor-Couette devices of the classical configuration where the axial boundaries rotate with the outer cylinder. The global stability of nearly ideal-Couette flows, with implications for astrophysical systems, will be discussed in light of the global stability of these flows with respect to externally applied perturbations of large magnitude.

  2. Dynamics and stability of a 2D ideal vortex under external strain

    NASA Astrophysics Data System (ADS)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-11-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.

  3. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  4. Defects, Entropy, and the Stabilization of Alternative Phase Boundary Orientations in Battery Electrode Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Tae Wook; Tang, Ming; Chen, Long-Qing

    Using a novel statistical approach that efficiently explores the space of possible defect configurations, our present study investigates the chemomechanical coupling between interfacial structural defects and phase boundary alignments within phase-separating electrode particles. Applied to the battery cathode material Li XFePO 4 as an example, the theoretical analysis reveals that small, defect-induced deviations from an ideal interface can lead to dramatic shifts in the orientations of phase boundaries between Li-rich and Li-lean phases, stabilizing otherwise unfavorable orientations. Significantly, this stabilization arises predominantly from configurational entropic factors associated with the presence of the interfacial defects rather than from absolute energetic considerations.more » The specific entropic factors pertain to the diversity of defect configurations and their contributions to rotational/orientational rigidity of phase boundaries. Comparison of the predictions with experimental observations indicates that the additional entropy contributions indeed play a dominant role under actual cycling conditions, leading to the conclusion that interfacial defects must be considered when analyzing the stability and evolution kinetics of the internal phase microstructure of strongly phase-separating systems. Possible implications for tuning the kinetics of (de)lithiation based on selective defect incorporation are discussed. Ultimately, this understanding can be generalized to the chemomechanics of other defective solid phase boundaries.« less

  5. Defects, Entropy, and the Stabilization of Alternative Phase Boundary Orientations in Battery Electrode Particles

    DOE PAGES

    Heo, Tae Wook; Tang, Ming; Chen, Long-Qing; ...

    2016-01-04

    Using a novel statistical approach that efficiently explores the space of possible defect configurations, our present study investigates the chemomechanical coupling between interfacial structural defects and phase boundary alignments within phase-separating electrode particles. Applied to the battery cathode material Li XFePO 4 as an example, the theoretical analysis reveals that small, defect-induced deviations from an ideal interface can lead to dramatic shifts in the orientations of phase boundaries between Li-rich and Li-lean phases, stabilizing otherwise unfavorable orientations. Significantly, this stabilization arises predominantly from configurational entropic factors associated with the presence of the interfacial defects rather than from absolute energetic considerations.more » The specific entropic factors pertain to the diversity of defect configurations and their contributions to rotational/orientational rigidity of phase boundaries. Comparison of the predictions with experimental observations indicates that the additional entropy contributions indeed play a dominant role under actual cycling conditions, leading to the conclusion that interfacial defects must be considered when analyzing the stability and evolution kinetics of the internal phase microstructure of strongly phase-separating systems. Possible implications for tuning the kinetics of (de)lithiation based on selective defect incorporation are discussed. Ultimately, this understanding can be generalized to the chemomechanics of other defective solid phase boundaries.« less

  6. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  7. Stability of an oscillating boundary layer

    NASA Technical Reports Server (NTRS)

    Levchenko, V. Y.; Solovyev, A. S.

    1985-01-01

    Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.

  8. Ideal MHD stability of double transport barrier plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.

    2008-01-01

    The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.

  9. Stability boundaries for command augmentation systems

    NASA Technical Reports Server (NTRS)

    Shrivastava, P. C.

    1987-01-01

    The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.

  10. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  11. Stability of spatially developing boundary layers

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama

    1993-07-01

    A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.

  12. Work-Family Boundary Strategies: Stability and Alignment between Preferred and Enacted Boundaries

    ERIC Educational Resources Information Center

    Ammons, Samantha K.

    2013-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability.…

  13. Incompressible boundary-layer stability analysis of LFC experimental data for sub-critical Mach numbers. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Berry, S. A.

    1986-01-01

    An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.

  14. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  15. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  16. Ideal MHD stability and characteristics of edge localized modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  17. Work-family boundary strategies: Stability and alignment between preferred and enacted boundaries.

    PubMed

    Ammons, Samantha K

    2013-02-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability. In this study, 23 respondents employed at a large Fortune 500 company were interviewed about their work-family boundaries before and after their teams underwent a cultural change initiative that sought to loosen workplace norms and allow employees more autonomy to decide when and where they performed their job tasks. Four distinct boundary strategies emerged from the data, with men and parents of young children having better alignment between preferred and enacted boundaries than women and those without these caregiving duties. Implications for boundary theory and research are discussed.

  18. Work-family boundary strategies: Stability and alignment between preferred and enacted boundaries

    PubMed Central

    Ammons, Samantha K.

    2015-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability. In this study, 23 respondents employed at a large Fortune 500 company were interviewed about their work-family boundaries before and after their teams underwent a cultural change initiative that sought to loosen workplace norms and allow employees more autonomy to decide when and where they performed their job tasks. Four distinct boundary strategies emerged from the data, with men and parents of young children having better alignment between preferred and enacted boundaries than women and those without these caregiving duties. Implications for boundary theory and research are discussed. PMID:25620801

  19. Stability of hyperbolic-parabolic mixed type equations with partial boundary condition

    NASA Astrophysics Data System (ADS)

    Zhan, Huashui; Feng, Zhaosheng

    2018-06-01

    In this paper, we are concerned with the hyperbolic-parabolic mixed type equations with the non-homogeneous boundary condition. If it is degenerate on the boundary, the part of the boundary whose boundary value should be imposed, is determined by the entropy condition from the convection term. If there is no convection term in the equation, we show that the stability of solutions can be proved without any boundary condition. If the equation is completely degenerate, we show that the stability of solutions can be established just based on the partial boundary condition.

  20. Effects of forebody geometry on subsonic boundary-layer stability

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1990-01-01

    As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.

  1. Insight into the grain boundary effect on the ionic transport of yttria-stabilized zirconia at elevated temperatures from a molecular modeling perspective

    NASA Astrophysics Data System (ADS)

    Chang, Kai-Shiun; Lin, Yi-Feng; Tung, Kuo-Lun

    A molecular dynamics (MD) simulation is used to reveal the grain boundary effect on the ionic transport of yttria-stabilized zirconia (YSZ). The oxygen ion displacements and diffusivities of the ideal and grain boundary-inserted YSZ models are analyzed at elevated temperatures. An optimized Y 2O 3 concentration within YSZ for the best ionic conductivity is achieved by balancing the trade-off between the increased vacancies and the decreased accessible free space. The mass transfer resistance of the grain boundary in YSZ can be more easily found at higher temperatures by observing the oxygen ion diffusivities or traveling trajectories. At lower temperatures, the grain interior and the grain boundary control the ionic transport. In contrast, the grain boundary effect on the diffusion barrier is gradually eliminated at elevated temperatures. The modeled results in this work agree well with previous experimental data.

  2. The effect of boundary shape and minima selection on single limb stance postural stability.

    PubMed

    Cobb, Stephen C; Joshi, Mukta N; Bazett-Jones, David M; Earl-Boehm, Jennifer E

    2012-11-01

    The effect of time-to-boundary minima selection and stability limit definition was investigated during eyes open and eyes closed condition single-limb stance postural stability. Anteroposterior and mediolateral time-to-boundary were computed using the mean and standard deviation (SD) of all time-to-boundary minima during a trial, and the mean and SD of only the 10 absolute time-to-boundary minima. Time-to-boundary with rectangular, trapezoidal, and multisegmented polygon defined stability limits were also calculated. Spearman's rank correlation coefficient test results revealed significant medium-large correlations between anteroposterior and mediolateral time-to-boundary scores calculated using both the mean and SD of the 10 absolute time-to-boundary minima and of all the time-to-boundary minima. Friedman test results revealed significant mediolateral time-to-boundary differences between boundary shape definitions. Follow-up Wilcoxon signed rank test results revealed significant differences between the rectangular boundary shape and both the trapezoidal and multisegmented polygon shapes during the eyes open and eyes closed conditions when both the mean and the SD of the time-to-boundary minima were used to represent postural stability. Significant differences were also revealed between the trapezoidal and multisegmented polygon definitions during the eyes open condition when the SD of the time-to-boundary minima was used to represent postural stability. Based on these findings, the overall results (i.e., stable versus unstable participants or groups) of studies computing postural stability using different minima selection can be compared. With respect to boundary shape, the trapezoid or multisegmented polygon shapes may be more appropriate than the rectangular shape as they more closely represent the anatomical shape of the stance foot.

  3. A molecular dynamics study of the effect of thermal boundary conductance on thermal transport of ideal crystal of n-alkanes with different number of carbon atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rastgarkafshgarkolaei, Rouzbeh; Zeng, Yi; Khodadadi, J. M., E-mail: khodajm@auburn.edu

    2016-05-28

    Phase change materials such as n-alkanes that exhibit desirable characteristics such as high latent heat, chemical stability, and negligible supercooling are widely used in thermal energy storage applications. However, n-alkanes have the drawback of low thermal conductivity values. The low thermal conductivity of n-alkanes is linked to formation of randomly oriented nano-domains of molecules in their solid structure that is responsible for excessive phonon scattering at the grain boundaries. Thus, understanding the thermal boundary conductance at the grain boundaries can be crucial for improving the effectiveness of thermal storage systems. The concept of the ideal crystal is proposed in thismore » paper, which describes a simplified model such that all the nano-domains of long-chain n-alkanes are artificially aligned perfectly in one direction. In order to study thermal transport of the ideal crystal of long-chain n-alkanes, four (4) systems (C{sub 20}H{sub 42}, C{sub 24}H{sub 50}, C{sub 26}H{sub 54}, and C{sub 30}H{sub 62}) are investigated by the molecular dynamics simulations. Thermal boundary conductance between the layers of ideal crystals is determined using both non-equilibrium molecular dynamics (NEMD) and equilibrium molecular dynamics (EMD) simulations. Both NEMD and EMD simulations exhibit no significant change in thermal conductance with the molecular length. However, the values obtained from the EMD simulations are less than the values from NEMD simulations with the ratio being nearly three (3) in most cases. This difference is due to the nature of EMD simulations where all the phonons are assumed to be in equilibrium at the interface. Thermal conductivity of the n-alkanes in three structures including liquid, solid, and ideal crystal is investigated utilizing NEMD simulations. Our results exhibit a very slight rise in thermal conductivity values as the number of carbon atoms of the chain increases. The key understanding is that thermal transport

  4. Formation flying design and applications in weak stability boundary regions.

    PubMed

    Folta, David

    2004-05-01

    Weak stability regions serve as superior locations for interferomertric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observation efficiency. Designs of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of weak stability boundary solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in weak stability boundary regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numeric methods to attain constrained formation geometries and control their dynamical evolution. This paper presents a survey of formation missions in the weak stability boundary regions and a brief description of formation design using numerical and dynamical techniques.

  5. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  6. A Wind-Tunnel Parametric Investigation of Tiltrotor Whirl-Flutter Stability Boundaries

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Kvaternik, Raymond G.; Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Bennett, Richard L.; Brown, Ross K.

    2001-01-01

    A wind-tunnel investigation of tiltrotor whirl-flutter stability boundaries has been conducted on a 1/5-size semispan tiltrotor model known as the Wing and Rotor Aeroelastic Test System (WRATS) in the NASA-Langley Transonic Dynamics Tunnel as part of a joint NASA/Army/Bell Helicopter Textron, Inc. (BHTI) research program. The model was first developed by BHTI as part of the JVX (V-22) research and development program in the 1980's and was recently modified to incorporate a hydraulically-actuated swashplate control system for use in active controls research. The modifications have changed the model's pylon mass properties sufficiently to warrant testing to re-establish its baseline stability boundaries. A parametric investigation of the effect of rotor design variables on stability was also conducted. The model was tested in both the on-downstop and off-downstop configurations, at cruise flight and hover rotor rotational speeds, and in both air and heavy gas (R-134a) test mediums. Heavy gas testing was conducted to quantify Mach number compressibility effects on tiltrotor stability. Experimental baseline stability boundaries in air are presented with comparisons to results from parametric variations of rotor pitch-flap coupling and control system stiffness. Increasing the rotor pitch-flap coupling (delta(sub 3) more negative) was found to have a destabilizing effect on stability, while a reduction in control system stiffness was found to have little effect on whirl-flutter stability. Results indicate that testing in R-134a, and thus matching full-scale tip Mach number, has a destabilizing effect, which demonstrates that whirl-flutter stability boundaries in air are unconservative.

  7. Method for transition prediction in high-speed boundary layers, phase 2

    NASA Astrophysics Data System (ADS)

    Herbert, T.; Stuckert, G. K.; Lin, N.

    1993-09-01

    The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.

  8. Effects of shock on hypersonic boundary layer stability

    NASA Astrophysics Data System (ADS)

    Pinna, F.; Rambaud, P.

    2013-06-01

    The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.

  9. On the scaling analysis of the solute boundary layer in idealized growth configurations

    NASA Astrophysics Data System (ADS)

    Garandet, J. P.; Duffar, T.; Favier, J. J.

    1990-11-01

    A scaling procedure is applied to the equation governing chemical transport in idealized Czochralski and horizontal Bridgman growth experiments. Our purpose is to get a fair estimate of the solute boundary layer in front of the solidification interface. The results are very good in the Czochralski type configuration, the maximum error with respect to the semi-analytical solution of Burton, Prim and Schlichter being of the order of 20%. In the Bridgman type configuration, our predictions compare well with the values of the numerical simulations; however, more data would be needed for a definite conclusion to be drawn.

  10. Stability of hypersonic boundary-layer flows with chemistry

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.; Stuckert, Gregory K.; Haynes, Timothy S.

    1993-01-01

    The effects of nonequilibrium chemistry and three dimensionality on the stability characteristics of hypersonic flows are discussed. In two-dimensional (2-D) and axisymmetric flows, the inclusion of chemistry causes a shift of the second mode of Mack to lower frequencies. This is found to be due to the increase in size of the region of relative supersonic flow because of the lower speeds of sound in the relatively cooler boundary layers. Although this shift in frequency is present in both the equilibrium and nonequilibrium air results, the equilibrium approximation predicts modes which are not observed in the nonequilibrium calculations (for the flight conditions considered). These modes are superpositions of incoming and outgoing unstable disturbances which travel supersonically relative to the boundary-layer edge velocity. Such solutions are possible because of the finite shock stand-off distance. Their corresponding wall-normal profiles exhibit an oscillatory behavior in the inviscid region between the boundary-layer edge and the bow shock. For the examination of three-dimensional (3-D) effects, a rotating cone is used as a model of a swept wing. An increase of stagnation temperature is found to be only slightly stabilizing. The correlation of transition location (N = 9) with parameters describing the crossflow profile is discussed. Transition location does not correlate with the traditional crossflow Reynolds number. A new parameter that appears to correlate for boundary-layer flow was found. A verification with experiments on a yawed cone is provided.

  11. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  12. Edge states at phase boundaries and their stability

    NASA Astrophysics Data System (ADS)

    Asorey, M.; Balachandran, A. P.; Pérez-Pardo, J. M.

    2016-10-01

    We analyze the effects of Robin-like boundary conditions on different quantum field theories of spin 0, 1/2 and 1 on manifolds with boundaries. In particular, we show that these conditions often lead to the appearance of edge states. These states play a significant role in physical phenomena like quantum Hall effect and topological insulators. We prove in a rigorous way the existence of spectral lower bounds on the kinetic term of different Hamiltonians, even in the case of Abelian gauge fields where it is a non-elliptic differential operator. This guarantees the stability and consistency of massive field theories with masses larger than the lower bound of the kinetic term. Moreover, we find an upper bound for the deepest edge state. In the case of Abelian gauge theories, we analyze a generalization of Robin boundary conditions. For Dirac fermions, we analyze the cases of Atiyah-Patodi-Singer and chiral bag boundary conditions. The explicit dependence of the bounds on the boundary conditions and the size of the system is derived under general assumptions.

  13. Fully three-dimensional ideal magnetohydrodynamic stability analysis of low- n modes and Mercier modes in stellarators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, G.Y.; Cooper, W.A.; Gruber, R.

    1992-06-01

    The TERPSICHORE three-dimensional linear ideal magnetohydrodynamic (MHD) stability code ({ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Chexbres, Switzerland, 1988 (Editrice Compositori, Bologna, Italy, 1989), p. 93; {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Proceedings of the 17th European Conference, Amsterdam, The Netherlands (European Physical Society, Petit-Lancy, Switzerland, 1990), Vol. 14B, Part II, p. 931; {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Valla Monastero, Varenna, Italy, 1990 (Editrice Compositori, Bologna, Italy, 1990), p. 655) has been extended to the full MHD equations.more » The new code is used to calculate the physical growth rates of nonlocal low-{ital n} modes for {ital l}=2 torsatron configurations. A comprehensive investigation of the relation between the Mercier modes and the low-{ital n} modes has been performed. The unstable localized low-{ital n} modes are found to be correlated with the Mercier criterion. Finite growth rates of the low-{ital n} modes correspond to finite values of the Mercier criterion parameter. Near the Mercier marginal stability boundary, the low-{ital n} modes tend to be weakly unstable with very small growth rates. However, the stability of global-type low-{ital n} modes is found to be decorrelated from that of Mercier modes. The low-{ital n} modes with global radial structures can be more stable or more unstable than Mercier modes.« less

  14. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1985-01-01

    New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditins, thus generalizing many special cases studied in recent literature.

  15. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1983-01-01

    New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditions, thus generalizing many special cases studied in recent literature.

  16. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  17. Stability Of Oscillatory Rotating-Disk Boundary Layers

    NASA Astrophysics Data System (ADS)

    Morgan, Scott; Davies, Christopher

    2017-11-01

    The rotating disk boundary layer has long been considered as an archetypal model for studying the stability of three-dimensional boundary-layer flows. It is one of the few truly three-dimensional configurations for which there is an exact similarity solution of the Navier-Stokes equations. Due to a crossflow inflexion point instability, the investigation of strategies for controlling the behaviour of disturbances that develop in the rotating disk flow may prove to be helpful for the identification and assessment of aerodynamical technologies that have the potential to maintain laminar flow over swept wings. We will consider the changes in the stability behaviour which arise when the base-flow is altered by imposing a periodic modulation in the rotation rate of the disk surface. Following similar work by Thomas et al., preliminary results indicate that this modification can lead to significant stabilising effects. Current work encompasses linearised DNS, complemented by a local in time analysis made possible by imposing an artificial frozen flow approximation. This is deployed together with a more exact global treatment based upon Floquet theory, which avoids the need for any simplification of the temporal dependency of the base-flow.

  18. Some theoretical aspects of boundary layer stability theory

    NASA Technical Reports Server (NTRS)

    Hall, Philip

    1990-01-01

    Increased understanding in recent years of boundary layer transition has been made possible by the development of strongly nonlinear stability theories. After some twenty or so years when nonlinear stability theory was restricted to the application of the Stuart-Watson method (or less formal amplitude expansion procedures), there now exist strongly nonlinear theories which can describe processes which have an 0(1) effect on the basic state. These strongly nonlinear theories and their possible role in pushing theoretical understanding of transition ever further into the nonlinear regime are discussed.

  19. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  20. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether triazine greater than polyphenylether greater than C-ether greater than fluorinated polyether.

  1. Boundary lubrication, thermal and oxidative stability of a fluorinated polyether and a perfluoropolyether triazine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Snyder, C. E., Jr.

    1979-01-01

    Boundary lubricating characteristics, thermal stability, and oxidation-corrosion stability were determined for a fluorinated polyether and a perfluoropolyether triazine. A ball-on-disk apparatus, a tensimeter, and oxidation-corrosion apparatus were used. Results were compared to data for a polyphenyl ether and a C-ether. The polyether and triazine yielded better boundary lubricating characteristics than either the polyphenyl ether or C-ether. The polyphenyl ether had the greatest thermal stability (443 C) while the other fluids had stabilities in the range 389 to 397 C. Oxidation-corrosion results indicated the following order of stabilities: perfluoropolyether trizine greater than polyphenyl ether greater than C-ether greater than fluorinated polyether.

  2. Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Balakumar, P.

    1993-01-01

    In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.

  3. Uniform stabilization of wave equation with localized internal damping and acoustic boundary condition with viscoelastic damping

    NASA Astrophysics Data System (ADS)

    Frota, Cícero Lopes; Vicente, André

    2018-06-01

    In this paper, we deal with the uniform stabilization to the mixed problem for a nonlinear wave equation and acoustic boundary conditions on a non-locally reacting boundary. The main purpose is to study the stability when the internal damping acts only over a subset ω of the domain Ω and the boundary damping is of the viscoelastic type.

  4. Stability of a diffuse linear pinch with axial boundaries

    NASA Technical Reports Server (NTRS)

    Einaudi, G.; Van Hoven, G.

    1981-01-01

    A formulation of the stability behavior of a finite-length pinch is presented. A general initial perturbation is expressed as a uniformly convergent sum over a complete discrete k set. A variational calculation is then performed, based on the energy principle, in which the end-boundary conditions appear as constraints. The requisite Lagrange multipliers mutually couple the elemental periodic excitations. The resulting extended form of delta-W still admits a proper second-variation treatment so that the minimization and stability considerations of Newcomb remain applicable. Comparison theorems are discussed as is the relevance of this end-effect model to the stability of solar coronal loops.

  5. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: An eigenvalue analysis

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1986-01-01

    A hyperbolic initial-boundary-value problem can be approximated by a system of ordinary differential equations (ODEs) by replacing the spatial derivatives by finite-difference approximations. The resulting system of ODEs is called a semidiscrete approximation. A complication is the fact that more boundary conditions are required for the spatially discrete approximation than are specified for the partial differential equation. Consequently, additional numerical boundary conditions are required and improper treatment of these additional conditions can lead to instability. For a linear initial-boundary-value problem (IBVP) with homogeneous analytical boundary conditions, the semidiscrete approximation results in a system of ODEs of the form du/dt = Au whose solution can be written as u(t) = exp(At)u(O). Lax-Richtmyer stability requires that the matrix norm of exp(At) be uniformly bounded for O less than or = t less than or = T independent of the spatial mesh size. Although the classical Lax-Richtmyer stability definition involves a conventional vector norm, there is no known algebraic test for the uniform boundedness of the matrix norm of exp(At) for hyperbolic IBVPs. An alternative but more complicated stability definition is used in the theory developed by Gustafsson, Kreiss, and Sundstrom (GKS). The two methods are compared.

  6. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  7. Sensitivity of boundary-layer stability to base-state distortions at high Mach numbers

    NASA Astrophysics Data System (ADS)

    Park, Junho; Zaki, Tamer

    2017-11-01

    The stability diagram of high-speed boundary layers has been established by evaluating the linear instability modes of the similarity profile, over wide ranges of Reynolds and Mach numbers. In real flows, however, the base state can deviate from the similarity profile. Both the base velocity and temperature can be distorted, for example due to roughness and thermal wall treatments. We review the stability problem of high-speed boundary layer, and derive a new formulation of the sensitivity to base-state distortion using forward and adjoint parabolized stability equations. The new formulation provides qualitative and quantitative interpretations on change in growth rate due to modifications of mean-flow and mean-temperature in heated high-speed boundary layers, and establishes the foundation for future control strategies. This work has been funded by the Air Force Office of Scientific Research (AFOSR) Grant: FA9550-16-1-0103.

  8. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less

  9. Stability of DIII-D high-performance, negative central shear discharges

    DOE PAGES

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...

    2017-03-20

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  10. Stability of DIII-D high-performance, negative central shear discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  11. Determination of Stability and Translation in a Boundary Layer

    NASA Technical Reports Server (NTRS)

    Crepeau, John; Tobak, Murray

    1996-01-01

    Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.

  12. Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone

    NASA Technical Reports Server (NTRS)

    Kara, K.; Balakumar, P.; Kandil, O. A.

    2007-01-01

    Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.

  13. The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    van Stratum, Bart J. H.; Stevens, Bjorn

    2015-06-01

    The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.

  14. Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator.

    PubMed

    Defoort, M; Lulla, K J; Crozes, T; Maillet, O; Bourgeois, O; Collin, E

    2014-09-26

    We measure the interaction between ⁴He gas at 4.2 K and a high-quality nanoelectromechanical string device for its first three symmetric modes (resonating at 2.2, 6.7, and 11 MHz with quality factor Q>0.1×10⁶) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost ideal monoatomic and inert gas of which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free path is of the order of the distance between the suspended nanomechanical probe and the bottom of the trench, we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and direct simulation Monte Carlo methods).

  15. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  16. Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.

    2012-01-01

    Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.

  17. Three dimensional boundary displacement due to stable ideal kink modes excited by external n = 2 magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Willensdorfer, M.; Strumberger, E.; Suttrop, W.; Dunne, M.; Fischer, R.; Birkenmeier, G.; Brida, D.; Cavedon, M.; Denk, S. S.; Igochine, V.; Giannone, L.; Kirk, A.; Kirschner, J.; Medvedeva, A.; Odstrčil, T.; Ryan, D. A.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    In low-collisionality (ν\\star) scenarios exhibiting mitigation of edge localized mode (ELMs), stable ideal kink modes at the edge are excited by externally applied magnetic perturbation (MP)-fields. In ASDEX Upgrade these modes can cause three-dimensional (3D) boundary displacements up to the centimeter range. These displacements have been measured using toroidally localized high resolution diagnostics and rigidly rotating n=2 MP-fields with various applied poloidal mode spectra. These measurements are compared to non-linear 3D ideal magnetohydrodynamics (MHD) equilibria calculated by VMEC. Comprehensive comparisons have been conducted, which consider for instance plasma movements due to the position control system, attenuation due to internal conductors and changes in the edge pressure profiles. VMEC accurately reproduces the amplitude of the displacement and its dependencies on the applied poloidal mode spectra. Quantitative agreement is found around the low field side (LFS) midplane. The response at the plasma top is qualitatively compared. The measured and predicted displacements at the plasma top maximize when the applied spectra is optimized for ELM-mitigation. The predictions from the vacuum modeling generally fails to describe the displacement at the LFS midplane as well as at the plasma top. When the applied mode spectra is set to maximize the displacement, VMEC and the measurements clearly surpass the predictions from the vacuum modeling by a factor of four. Minor disagreements between VMEC and the measurements are discussed. This study underlines the importance of the stable ideal kink modes at the edge for the 3D boundary displacement in scenarios relevant for ELM-mitigation.

  18. Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1980-01-01

    A compressible linear stability theory is presented for nonparallel three-dimensional boundary-layer flows, taking into account the normal velocity component as well as the streamwise and spanwise variations of the basic flow. The method of multiple scales is used to account for the nonparallelism of the basic flow, and equations are derived for the spatial evolution of the disturbance amplitude and wavenumber. The numerical procedure for obtaining the solution of the nonparallel problem is outlined.

  19. On the effect of boundary layer growth on the stability of compressible flows

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1981-01-01

    The method of multiple scales is used to describe a formally correct method based on the nonparallel linear stability theory, that examines the two and three dimensional stability of compressible boundary layer flows. The method is applied to the supersonic flat plate layer at Mach number 4.5. The theoretical growth rates are in good agreement with experimental results. The method is also applied to the infinite-span swept wing transonic boundary layer with suction to evaluate the effect of the nonparallel flow on the development of crossflow disturbances.

  20. Stability of DIII-D high-performance, negative central shear discharges

    NASA Astrophysics Data System (ADS)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  1. Stability and modal analysis of shock/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio

    2017-02-01

    The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).

  2. The elastic stability, bifurcation and ideal strength of gold under hydrostatic stress: an ab initio calculation.

    PubMed

    Wang, Hao; Li, Mo

    2009-11-11

    In this paper, we employ an ab initio density functional theory calculation to investigate the elastic stability of face-centered cubic Au under hydrostatic deformation. We identify the elastic stiffness constant B(ijkl) as the coefficient in the stress-strain relation for an arbitrary deformed state, and use it to test the stability condition. We show that this criterion bears the same physics as that proposed earlier by Frenkel and Orowan and agrees with the Born-Hill criterion. The results from those two approaches agree well with each other. We show that the stability limit, or instability, of the perfect Au crystal under hydrostatic expansion is not associated with the bulk stiffness modulus as predicted in the previous work; rather it is caused by a shear instability associated with the vanishing rhombohedral shear stiffness modulus. The deviation of the deformation mode from the primary hydrostatic loading path signals a bifurcation or symmetry breaking in the ideal crystal. The corresponding ideal hydrostatic strength for Au is 19.2 GPa at the Lagrangian expansion strain of ∼0.06. In the case of compression, Au remains stable over the entire pressure range in our calculation.

  3. On the stability of an infinite swept attachment line boundary layer

    NASA Technical Reports Server (NTRS)

    Hall, P.; Mallik, M. R.; Poll, D. I. A.

    1984-01-01

    The instability of an infinite swept attachment line boundary layer is considered in the linear regime. The basic three dimensional flow is shown to be susceptible to travelling wave disturbances which propagate along the attachment line. The effect of suction on the instability is discussed and the results suggest that the attachment line boundary layer on a swept wing can be significantly stabilized by extremely small amounts of suction. The results obtained are in excellent agreement with the available experimental observations.

  4. Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones

    NASA Technical Reports Server (NTRS)

    Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.

    2011-01-01

    The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.

  5. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    NASA Astrophysics Data System (ADS)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  6. Model of superconductivity formation on ideal crystal lattice defect–twin or twin boundary (MSC-TB)

    NASA Astrophysics Data System (ADS)

    Chizhov, V. A.; Zaitsev, F. S.; Bychkov, V. L.

    2018-03-01

    The report provides a review of the experimental material on superconductivity (SP) accumulated by 2017, a critical analysis of the Bardeen-Cooper-Schrieffer theory (BCS) has been given, and a new model of the super-conductivity effect proposed in works of V.A. Chizhov has been presented. The new model allows to understand the mechanism of the SP formation and to explain many experimental facts on the basis of the theory of pro-cesses occurring in the ideal defect of the crystal lattice – the twinning boundary (MSC-TB). Specific materials, including new ones, are described, which, in accordance with the theory of MSC-TB, should have improved properties of SC, promising directions for further research are formulated.

  7. Computational Study of Hypersonic Boundary Layer Stability on Cones

    NASA Astrophysics Data System (ADS)

    Gronvall, Joel Edwin

    Due to the complex nature of boundary layer laminar-turbulent transition in hypersonic flows and the resultant effect on the design of re-entry vehicles, there remains considerable interest in developing a deeper understanding of the underlying physics. To that end, the use of experimental observations and computational analysis in a complementary manner will provide the greatest insights. It is the intent of this work to provide such an analysis for two ongoing experimental investigations. The first focuses on the hypersonic boundary layer transition experiments for a slender cone that are being conducted at JAXA's free-piston shock tunnel HIEST facility. Of particular interest are the measurements of disturbance frequencies associated with transition at high enthalpies. The computational analysis provided for these cases included two-dimensional CFD mean flow solutions for use in boundary layer stability analyses. The disturbances in the boundary layer were calculated using the linear parabolized stability equations. Estimates for transition locations, comparisons of measured disturbance frequencies and computed frequencies, and a determination of the type of disturbances present were made. It was found that for the cases where the disturbances were measured at locations where the flow was still laminar but nearly transitional, that the highly amplified disturbances showed reasonable agreement with the computations. Additionally, an investigation of the effects of finite-rate chemistry and vibrational excitation on flows over cones was conducted for a set of theoretical operational conditions at the HIEST facility. The second study focuses on transition in three-dimensional hypersonic boundary layers, and for this the cone at angle of attack experiments being conducted at the Boeing/AFOSR Mach-6 quiet tunnel at Purdue University were examined. Specifically, the effect of surface roughness on the development of the stationary crossflow instability are investigated

  8. Stability of high-speed boundary layers in oxygen including chemical non-equilibrium effects

    NASA Astrophysics Data System (ADS)

    Klentzman, Jill; Tumin, Anatoli

    2013-11-01

    The stability of high-speed boundary layers in chemical non-equilibrium is examined. A parametric study varying the edge temperature and the wall conditions is conducted for boundary layers in oxygen. The edge Mach number and enthalpy ranges considered are relevant to the flight conditions of reusable hypersonic cruise vehicles. Both viscous and inviscid stability formulations are used and the results compared to gain insight into the effects of viscosity and thermal conductivity on the stability. It is found that viscous effects have a strong impact on the temperature and mass fraction perturbations in the critical layer and in the viscous sublayer near the wall. Outside of these areas, the perturbations closely match in the viscous and inviscid models. The impact of chemical non-equilibrium on the stability is investigated by analyzing the effects of the chemical source term in the stability equations. The chemical source term is found to influence the growth rate of the second Mack mode instability but not have much of an effect on the mass fraction eigenfunction for the flow parameters considered. This work was supported by the AFOSR/NASA/National Center for Hypersonic Laminar-Turbulent Transition Research.

  9. Stabilization of time domain acoustic boundary element method for the interior problem with impedance boundary conditions.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2012-04-01

    The time domain boundary element method (BEM) is associated with numerical instability that typically stems from the time marching scheme. In this work, a formulation of time domain BEM is derived to deal with all types of boundary conditions adopting a multi-input, multi-output, infinite impulse response structure. The fitted frequency domain impedance data are converted into a time domain expression as a form of an infinite impulse response filter, which can also invoke a modeling error. In the calculation, the response at each time step is projected onto the wave vector space of natural radiation modes, which can be obtained from the eigensolutions of the single iterative matrix. To stabilize the computation, unstable oscillatory modes are nullified, and the same decay rate is used for two nonoscillatory modes. As a test example, a transient sound field within a partially lined, parallelepiped box is used, within which a point source is excited by an octave band impulse. In comparison with the results of the inverse Fourier transform of a frequency domain BEM, the average of relative difference norm in the stabilized time response is found to be 4.4%.

  10. Stabilizing the boundary between US politics and science: the role of the Office of Technology Transfer as a boundary organization.

    PubMed

    Guston, D H

    1999-02-01

    The sociological study of boundary-work and the political-ecomomic approach of principal-agent theory can be complementary ways of examining the relationship between society and science: boundary-work provides the empirical nuance to the principal-agent scheme, and principal-agent theory provides structure to the thick boundary description. This paper motivates this complementarity to examine domestic technology transfer in the USA from the intramural laboratories of the US National Institutes of Health (NIH). It casts US policy for technology transfer in the principal-agent framework, in which politicians attempt to manage the moral hazard of the productivity of research by providing specific incentives to the agents for engaging in measurable research-based innovation. Such incentives alter the previously negotiated boundary between politics and science. The paper identifies the crucial role of the NIH Office of Technology Transfer (OTT) as a boundary organization, which medicates the new boundary negotiations in its routine work, and stabilizes the boundary by performing successfully as an agent for both politicians and scientists. The paper hypothesizes that boundary organizations like OTT are general phenomena at the boundary between politics and science.

  11. Pollutant Plume Dispersion in the Atmospheric Boundary Layer over Idealized Urban Roughness

    NASA Astrophysics Data System (ADS)

    Wong, Colman C. C.; Liu, Chun-Ho

    2013-05-01

    The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness.

  12. The role of post-failure brittleness of soft rocks in the assessment of stability of intact masses: FDEM technique applications to ideal problems

    NASA Astrophysics Data System (ADS)

    Lollino, Piernicola; Andriani, Gioacchino Francesco; Fazio, Nunzio Luciano; Perrotti, Michele

    2016-04-01

    Strain-softening under low confinement stress, i.e. the drop of strength that occurs in the post-failure stage, represents a key factor of the stress-strain behavior of rocks. However, this feature of the rock behavior is generally underestimated or even neglected in the assessment of boundary value problems of intact soft rock masses. This is typically the case when the stability of intact rock masses is treated by means of limit equilibrium or finite element analyses, for which rigid-plastic or elastic perfectly-plastic constitutive models, generally implementing peak strength conditions of the rock, are respectively used. In fact, the aforementioned numerical techniques are characterized by intrinsic limitations that do not allow to account for material brittleness, either for the method assumptions or due to numerical stability problems, as for the case of the finite element method, unless sophisticated regularization techniques are implemented. However, for those problems that concern the stability of intact soft rock masses at low stress levels, as for example the stability of shallow underground caves or that of rock slopes, the brittle stress-strain response of rock in the post-failure stage cannot be disregarded due to the risk of overestimation of the stability factor. This work is aimed at highlighting the role of post-peak brittleness of soft rocks in the analysis of specific ideal problems by means of the use of a hybrid finite-discrete element technique (FDEM) that allows for the simulation of the rock stress-strain brittle behavior in a proper way. In particular, the stability of two ideal cases, represented by a shallow underground rectangular cave and a vertical cliff, has been analyzed by implementing a post-peak brittle behavior of the rock and the comparison with a non-brittle response of the rock mass is also explored. To this purpose, the mechanical behavior of a soft calcarenite belonging to the Calcarenite di Gravina formation, extensively

  13. Influence of grain boundary characteristics on thermal stability in nanotwinned copper

    PubMed Central

    Niu, Rongmei; Han, Ke; Su, Yi-feng; Besara, Tiglet; Siegrist, Theo M.; Zuo, Xiaowei

    2016-01-01

    High density grain boundaries provide high strength, but may introduce undesirable features, such as high Fermi levels and instability. We investigated the kinetics of recovery and recrystallization of Cu that was manufactured to include both nanotwins (NT) and high-angle columnar boundaries. We used the isothermal Johnson-Mehl-Avrami-Kolmogorov (JMAK) model to estimate activation energy values for recovery and recrystallization and compared those to values derived using the non-isothermal Kissinger equation. The JMAK model hinges on an exponent that expresses the growth mechanism of a material. The exponent for this Cu was close to 0.5, indicating low-dimensional microstructure evolution, which is associated with anisotropic twin coarsening, heterogeneous recrystallization, and high stability. Since this Cu was of high purity, there was a negligible impurity-drag-effect on boundaries. The twin coarsening and heterogeneous recrystallization resulted from migration of high-angle columnar boundaries with their triple junctions in one direction, assisted by the presence of high concentration vacancies at boundaries. Analyses performed by electron energy loss spectroscopy of atomic columns at twin boundaries (TBs) and in the interior showed similar plasma peak shapes and L3 edge positions. This implies that values for conductivity and Fermi level are equal for atoms at TBs and in the interior. PMID:27514474

  14. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    PubMed

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673boundaries. Rather, the analysis indicates that grain boundaries hinder oxygen transport.

  15. Stabilization of time domain acoustic boundary element method for the exterior problem avoiding the nonuniqueness.

    PubMed

    Jang, Hae-Won; Ih, Jeong-Guon

    2013-03-01

    The time domain boundary element method (TBEM) to calculate the exterior sound field using the Kirchhoff integral has difficulties in non-uniqueness and exponential divergence. In this work, a method to stabilize TBEM calculation for the exterior problem is suggested. The time domain CHIEF (Combined Helmholtz Integral Equation Formulation) method is newly formulated to suppress low order fictitious internal modes. This method constrains the surface Kirchhoff integral by forcing the pressures at the additional interior points to be zero when the shortest retarded time between boundary nodes and an interior point elapses. However, even after using the CHIEF method, the TBEM calculation suffers the exponential divergence due to the remaining unstable high order fictitious modes at frequencies higher than the frequency limit of the boundary element model. For complete stabilization, such troublesome modes are selectively adjusted by projecting the time response onto the eigenspace. In a test example for a transiently pulsating sphere, the final average error norm of the stabilized response compared to the analytic solution is 2.5%.

  16. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  17. Thermal stability of static coronal loops: Part 1: Effects of boundary conditions

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Shoub, E. C.; An, C. H.; Emslie, A. G.

    1985-01-01

    The linear stability of static coronal-loop models undergoing thermal perturbations was investigated. The effect of conditions at the loop base on the stability properties of the models was considered in detail. The question of appropriate boundary conditions at the loop base was considered and it was concluded that the most physical assumptions are that the temperature and density (or pressure) perturbations vanish there. However, if the base is taken to be sufficiently deep in the chromosphere, either several chromospheric scale heights or several coronal loop lengths in depth, then the effect of the boundary conditions on loop stability becomes negligible so that all physically acceptable conditions are equally appropriate. For example, one could as well assume that the velocity vanishes at the base. The growth rates and eigenmodes of static models in which gravity is neglected and in which the coronal heating is a relatively simple function, either constant per-unit mass or per-unit volume were calculated. It was found that all such models are unstable with a growth rate of the order of the coronal cooling time. The physical implications of these results for the solar corona and transition region are discussed.

  18. Global stability behaviour for the BEK family of rotating boundary layers

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2017-12-01

    Numerical simulations were conducted to investigate the linear global stability behaviour of the Bödewadt, Ekman, von Kármán (BEK) family of flows, for cases where a disc rotates beneath an incompressible fluid that is also rotating. This extends the work reported in recent studies that only considered the rotating-disc boundary layer with a von Kármán configuration, where the fluid that lies above the boundary layer remains stationary. When a homogeneous flow approximation is made, neglecting the radial variation of the basic state, it can be shown that linearised disturbances are susceptible to absolute instability. We shall demonstrate that, despite this prediction of absolute instability, the disturbance development exhibits globally stable behaviour in the BEK boundary layers with a genuine radial inhomogeneity. For configurations where the disc rotation rate is greater than that of the overlying fluid, disturbances propagate radially outwards and there is only a convective form of instability. This replicates the behaviour that had previously been documented when the fluid did not rotate beyond the boundary layer. However, if the fluid rotation rate is taken to exceed that of the disc, then the propagation direction reverses and disturbances grow while convecting radially inwards. Eventually, as they approach regions of smaller radii, where stability is predicted according to the homogeneous flow approximation, the growth rates reduce until decay takes over. Given sufficient time, such disturbances can begin to diminish at every radial location, even those which are positioned outwards from the radius associated with the onset of absolute instability. This leads to the confinement of the disturbance development within a finitely bounded region of the spatial-temporal plane.

  19. Resistive MHD Stability Analysis in Near Real-time

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  20. Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

    NASA Technical Reports Server (NTRS)

    Goldberg, M.; Tadmor, E.

    1986-01-01

    The purpose of this paper is to achieve more versatile, convenient stability criteria for a wide class of finite-difference approximations to initial boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter-plane x greater than or equal to 0, t greater than or equal to 0. With these criteria, stability is easily established for a large number of examples, thus incorporating and generalizing many of the cases studied in recent literature.

  1. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  2. Finite-difference solution for laminar or turbulent boundary layer flow over axisymmetric bodies with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-12-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  3. Three-dimensional boundary layer stability and transition

    NASA Technical Reports Server (NTRS)

    Malik, M. R.; Li, F.

    1992-01-01

    Nonparallel and nonlinear stability of a three-dimensional boundary layer, subject to crossflow instability, is investigated using parabolized stability equations (PSEs). Both traveling and stationary disturbances are considered and nonparallel effect on crossflow instability is found to be destabilizing. Our linear PSE results for stationary disturbances agree well with the results from direct solution of Navier-Stokes equations obtained by Spalart (1989). Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity pattern results in streamwise streaks which resemble remarkably well with the surface oil-flow visualizations in swept-wing experiments. Other features of the stationary vortex development (half-mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear calculations. Nonlinear interaction of the stationary amplitude of the stationary vortex is large as compared to the traveling mode, and the stationary vortex dominates most of the downstream development. When the two modes have the same initial amplitude, the traveling mode dominates the downstream development owing to its higher growth rate, and there is a tendency for the stationary mode to be suppressed. The effect of nonlinear wave development on the skin-friction coefficient is also computed.

  4. Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling

    NASA Astrophysics Data System (ADS)

    Gupta, Sunit K.; Wahi, Pankaj

    2018-01-01

    We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.

  5. Effect of plate permeability on nonlinear stability of the asymptotic suction boundary layer.

    PubMed

    Wedin, Håkan; Cherubini, Stefania; Bottaro, Alessandro

    2015-07-01

    The nonlinear stability of the asymptotic suction boundary layer is studied numerically, searching for finite-amplitude solutions that bifurcate from the laminar flow state. By changing the boundary conditions for disturbances at the plate from the classical no-slip condition to more physically sound ones, the stability characteristics of the flow may change radically, both for the linearized as well as the nonlinear problem. The wall boundary condition takes into account the permeability K̂ of the plate; for very low permeability, it is acceptable to impose the classical boundary condition (K̂=0). This leads to a Reynolds number of approximately Re(c)=54400 for the onset of linearly unstable waves, and close to Re(g)=3200 for the emergence of nonlinear solutions [F. A. Milinazzo and P. G. Saffman, J. Fluid Mech. 160, 281 (1985); J. H. M. Fransson, Ph.D. thesis, Royal Institute of Technology, KTH, Sweden, 2003]. However, for larger values of the plate's permeability, the lower limit for the existence of linear and nonlinear solutions shifts to significantly lower Reynolds numbers. For the largest permeability studied here, the limit values of the Reynolds numbers reduce down to Re(c)=796 and Re(g)=294. For all cases studied, the solutions bifurcate subcritically toward lower Re, and this leads to the conjecture that they may be involved in the very first stages of a transition scenario similar to the classical route of the Blasius boundary layer initiated by Tollmien-Schlichting (TS) waves. The stability of these nonlinear solutions is also investigated, showing a low-frequency main unstable mode whose growth rate decreases with increasing permeability and with the Reynolds number, following a power law Re(-ρ), where the value of ρ depends on the permeability coefficient K̂. The nonlinear dynamics of the flow in the vicinity of the computed finite-amplitude solutions is finally investigated by direct numerical simulations, providing a viable scenario for

  6. Influence of grain boundary characteristics on thermal stability in nanotwinned copper

    DOE PAGES

    Niu, Rongmei; Han, Ke; Su, Yi-feng; ...

    2016-08-12

    High density grain boundaries provide high strength, but may introduce undesirable features, such as high Fermi levels and instability. We investigated the kinetics of recovery and recrystallization of Cu that was manufactured to include both nanotwins (NT) and high-angle columnar boundaries. We used the isothermal Johnson-Mehl-Avrami-Kolmogorov (JMAK) model to estimate activation energy values for recovery and recrystallization and compared those to values derived using the non-isothermal Kissinger equation. The JMAK model hinges on an exponent that expresses the growth mechanism of a material. The exponent for this Cu was close to 0.5, indicating low-dimensional microstructure evolution, which is associated withmore » anisotropic twin coarsening, heterogeneous recrystallization, and high stability. Since this Cu was of high purity, there was a negligible impurity-drag-effect on boundaries. The twin coarsening and heterogeneous recrystallization resulted from migration of high-angle columnar boundaries with their triple junctions in one direction, assisted by the presence of high concentration vacancies at boundaries. Analyses performed by electron energy loss spectroscopy of atomic columns at twin boundaries (TBs) and in the interior showed similar plasma peak shapes and L3 edge positions. As a result, this implies that values for conductivity and Fermi level are equal for atoms at TBs and in the interior.« less

  7. Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team

    2017-10-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).

  8. A quiet tunnel investigation of hypersonic boundary-layer stability over a cooled, flared cone

    NASA Technical Reports Server (NTRS)

    Blanchard, Alan E.; Selby, Gregory V.; Wilkinson, Stephen P.

    1996-01-01

    A flared-cone model under adiabatic and cooled-wall conditions was placed in a calibrated, low-disturbance Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N = 10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows under low freestream noise conditions was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of spectral data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.

  9. Stability analysis of spectral methods for hyperbolic initial-boundary value systems

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Lustman, L.; Tadmor, E.

    1986-01-01

    A constant coefficient hyperbolic system in one space variable, with zero initial data is discussed. Dissipative boundary conditions are imposed at the two points x = + or - 1. This problem is discretized by a spectral approximation in space. Sufficient conditions under which the spectral numerical solution is stable are demonstrated - moreover, these conditions have to be checked only for scalar equations. The stability theorems take the form of explicit bounds for the norm of the solution in terms of the boundary data. The dependence of these bounds on N, the number of points in the domain (or equivalently the degree of the polynomials involved), is investigated for a class of standard spectral methods, including Chebyshev and Legendre collocations.

  10. Global stability analysis of axisymmetric boundary layer over a circular cylinder

    NASA Astrophysics Data System (ADS)

    Bhoraniya, Ramesh; Vinod, Narayanan

    2018-05-01

    This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.

  11. The effect of a shear boundary layer on the stability of a capillary jet

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso; Montanero, Jose M.; Herrada, Miguel A.

    2014-11-01

    The generic stabilization effect of a shear boundary layer over the free surface of a capillary jet is here studied from analytical (asymptotic), numerical and experimental approaches. In first place, we show the consistency of the proposed asymptotic analysis by a linear stability (numerical) analysis of the Navier-Stokes equations for a finite boundary layer thickness. We show how the convective-to-absolute instability transition departs drastically from the flat velocity profile case as the axial coordinate becomes closer to the origin of the boundary layer development. For large enough axial distances from that origin, Rayleigh's dispersion relation is recovered. A collection of experimental observations is analyzed from the perspective provided by these results. We propose a systematic framework to the dynamics of capillary jets issued from a nozzle, either by direct injection into a quiescent atmosphere or in a co-flow (e.g. gas flow-focused jets), which exhibit peculiarities now definitely attributable in first order to the formation of shear boundary layers. Partial support from the Ministry of Economy and Competitiveness, Junta de Extremadura, and Junta de Andalucia (Spain) through Grant Nos. DPI2010-21103, GR10047, P08-TEP-04128, and TEP-7465, respectively, is gratefully acknowledged.

  12. An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, Alan E.; Selby, Gregory V.

    1996-01-01

    One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.

  13. Boundary control of anti-symmetric vibration of satellite with flexible appendages in planar motion with exponential stability

    NASA Astrophysics Data System (ADS)

    Rad, Hossein Kaviani; Salarieh, Hassan; Alasty, Aria; Vatankhah, Ramin

    2018-06-01

    In this research, we have investigated the planar maneuver of a flexible satellite with appendages anti-symmetric vibration. The hybrid governing equations are comprised of coupled partial and ordinary differential equations which are derived by employing Hamilton's principle. In this paper, control goals are the tracking desired pitch angle along with the flexible appendages vibration suppression simultaneously by using only one control torque which is applied to the central hub. The boundary control is proposed to fulfill these control aims; furthermore, this boundary control ensures that spillover instability phenomenon is eliminated, and in-domain sensors and actuators implement are excluded. Indeed, the proposed boundary control is able to stabilize an infinite number of vibration modes, which is one of the important benefits of the proposed control when it is considered that different factors including external disturbances and even the satellite maneuver can excite the various vibration modes of the flexible appendages and consequently the excitement of the high order vibration modes will be possible. Lyapunov's direct method is used to prove the exponential stability; moreover, this Proof is achieved in absence of any damping effect in modeling the vibrations of flexible appendages. In addition, the procedure for finding the boundary control coefficients which ensures the exponential stability is provided. Eventually, numerical simulations are presented to illustrate the effectiveness of the proposed boundary control.

  14. The effect of non-Newtonian viscosity on the stability of the Blasius boundary layer

    NASA Astrophysics Data System (ADS)

    Griffiths, P. T.; Gallagher, M. T.; Stephen, S. O.

    2016-07-01

    We consider, for the first time, the stability of the non-Newtonian boundary layer flow over a flat plate. Shear-thinning and shear-thickening flows are modelled using a Carreau constitutive viscosity relationship. The boundary layer equations are solved in a self-similar fashion. A linear asymptotic stability analysis, that concerns the lower-branch structure of the neutral curve, is presented in the limit of large Reynolds number. It is shown that the lower-branch mode is destabilised and stabilised for shear-thinning and shear-thickening fluids, respectively. Favourable agreement is obtained between these asymptotic predictions and numerical results obtained from an equivalent Orr-Sommerfeld type analysis. Our results indicate that an increase in shear-thinning has the effect of significantly reducing the value of the critical Reynolds number, this suggests that the onset of instability will be significantly advanced in this case. This postulation, that shear-thinning destabilises the boundary layer flow, is further supported by our calculations regarding the development of the streamwise eigenfunctions and the relative magnitude of the temporal growth rates.

  15. Stability of semidiscrete approximations for hyperbolic initial-boundary-value problems: Stationary modes

    NASA Technical Reports Server (NTRS)

    Warming, Robert F.; Beam, Richard M.

    1988-01-01

    Spatially discrete difference approximations for hyperbolic initial-boundary-value problems (IBVPs) require numerical boundary conditions in addition to the analytical boundary conditions specified for the differential equations. Improper treatment of a numerical boundary condition can cause instability of the discrete IBVP even though the approximation is stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability literature there exists a small class of discrete approximations called borderline cases. For nondissipative approximations, borderline cases are unstable according to the theory of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable or unstable in the L sub 2 norm on a finite domain. It is shown that borderline approximation can be characterized by the presence of a stationary mode for the finite-domain problem. A stationary mode has the property that it does not decay with time and a nontrivial stationary mode leads to algebraic growth of the solution norm with mesh refinement. An analytical condition is given which makes it easy to detect a stationary mode; several examples of numerical boundary conditions are investigated corresponding to borderline cases.

  16. Implementation and Testing of Advanced Surface Boundary Conditions Over Complex Terrain in A Semi-idealized Model

    NASA Astrophysics Data System (ADS)

    Li, Y.; Epifanio, C.

    2017-12-01

    In numerical prediction models, the interaction between the Earth's surface and the atmosphere is typically accounted for in terms of surface layer parameterizations, whose main job is to specify turbulent fluxes of heat, moisture and momentum across the lower boundary of the model domain. In the case of a domain with complex geometry, implementing the flux conditions (particularly the tensor stress condition) at the boundary can be somewhat subtle, and there has been a notable history of confusion in the CFD community over how to formulate and impose such conditions generally. In the atmospheric case, modelers have largely been able to avoid these complications, at least until recently, by assuming that the terrain resolved at typical model resolutions is fairly gentle, in the sense of having relatively shallow slopes. This in turn allows the flux conditions to be imposed as if the lower boundary were essentially flat. Unfortunately, while this flat-boundary assumption is acceptable for coarse resolutions, as grids become more refined and the geometry of the resolved terrain becomes more complex, the appproach is less justified. With this in mind, the goal of our present study is to explore the implementation and usage of the full, unapproximated version of the turbulent flux/stress conditions in atmospheric models, thus taking full account of the complex geometry of the resolved terrain. We propose to implement the conditions using a semi-idealized model developed by Epifanio (2007), in which the discretized boundary conditions are reduced to a large, sparse-matrix problem. The emphasis will be on fluxes of momentum, as the tensor nature of this flux makes the associated stress condition more difficult to impose, although the flux conditions for heat and moisture will be considered as well. With the resulotion of 90 meters, some of the results show that the typical differences between flat-boundary cases and full/stress cases are on the order of 10%, with extreme

  17. High-Temperature Stability and Grain Boundary Complexion Formation in a Nanocrystalline Cu-Zr Alloy

    NASA Astrophysics Data System (ADS)

    Khalajhedayati, Amirhossein; Rupert, Timothy J.

    2015-12-01

    Nanocrystalline Cu-3 at.% Zr powders with ~20 nm average grain size were created with mechanical alloying and their thermal stability was studied from 550-950°C. Annealing drove Zr segregation to the grain boundaries, which led to the formation of amorphous intergranular complexions at higher temperatures. Grain growth was retarded significantly, with 1 week of annealing at 950°C, or 98% of the solidus temperature, only leading to coarsening of the average grain size to 54 nm. The enhanced thermal stability can be connected to both a reduction in grain boundary energy with doping as well as the precipitation of ZrC particles. High mechanical strength is retained even after these aggressive heat treatments, showing that complexion engineering may be a viable path toward the fabrication of bulk nanostructured materials with excellent properties.

  18. Grain Boundary Resistivity of Yttria-Stabilized Zirconia at 1400°C

    DOE PAGES

    Wang, J.; Du, A.; Yang, Di; ...

    2013-01-01

    Tmore » he grain size dependence of the bulk resistivity of 3 mol% yttria-stabilized zirconia at 1400°C was determined from the effect of a dc electric field E a = 18.1  V/cm on grain growth and the corresponding electric current during isothermal annealing tests. Employing the brick layer model, the present annealing test results were in accordance with extrapolations of the values obtained at lower temperature employing impedance spectroscopy and 4-point-probe dc. he combined values give that the magnitude of the grain boundary resistivity ρ b = 133  ohm-cm. he electric field across the grain boundary width was 28–43 times the applied field for the grain size and current ranges in the present annealing test.« less

  19. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-01-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers.

  20. Charts and Tables for Estimating the Stability of the Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal

    1959-01-01

    The minimum critical Reynolds numbers for the similar solutions of the compressible laminar boundary layer computed by Cohen and Reshotko and also for the Falkner and Skan solutions as recomputed by Smith have been calculated by Lin's rapid approximate method for two-dimensional disturbances. These results enable the stability of the compressible laminar boundary layer with heat transfer and pressure gradient to be easily estimated after the behavior of the boundary layer has been computed by the approximate method of Cohen and Reshotko. The previously reported unusual result (NACA Technical Note 4037) that a highly cooled stagnation point flow is more unstable than a highly cooled flat-plate flow is again encountered. Moreover, this result is found to be part of the more general result that a favorable pressure gradient is destabilizing for very cool walls when the Mach number is less than that for complete stability. The minimum critical Reynolds numbers for these wall temperature ratios are, however, all larger than any value of the laminar-boundary-layer Reynolds number likely to be encountered. For Mach numbers greater than those for which complete stability occurs a favorable pressure gradient is stabilizing, even for very cool walls.

  1. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    DTIC Science & Technology

    2014-06-01

    Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov* and Vitaly G. Soudakov

  2. On the Nonlinear Stability of a High-Speed, Axisymmetric Boundary Layer

    DTIC Science & Technology

    1991-03-01

    NASA Contractor Report 187538 IN ICASE Report No. 91-30 ICASE ON THE NONLINEAR STABILITY OF A HIGH-SPEED, AXISYMMETRIC BOUNDARY LAYER C. David Pruett... David Pruett National Research Council Associate Lian L. Ng Analytical Services and Materials Gordon Erlebacher t Senior Scientist, ICASE NASA Langley...Oct. 5, 1989. 29) Fetterman , D. E., Jr., "Preliminary Sizing and Performance of Aircraft", NASA TM-86357, July 1985. 30) Gaster, M., "A Note on the

  3. Evaluation of retrieval methods of daytime convective boundary layer height based on lidar data

    NASA Astrophysics Data System (ADS)

    Li, Hong; Yang, Yi; Hu, Xiao-Ming; Huang, Zhongwei; Wang, Guoyin; Zhang, Beidou; Zhang, Tiejun

    2017-04-01

    The atmospheric boundary layer height is a basic parameter in describing the structure of the lower atmosphere. Because of their high temporal resolution, ground-based lidar data are widely used to determine the daytime convective boundary layer height (CBLH), but the currently available retrieval methods have their advantages and drawbacks. In this paper, four methods of retrieving the CBLH (i.e., the gradient method, the idealized backscatter method, and two forms of the wavelet covariance transform method) from lidar normalized relative backscatter are evaluated, using two artificial cases (an idealized profile and a case similar to real profile), to test their stability and accuracy. The results show that the gradient method is suitable for high signal-to-noise ratio conditions. The idealized backscatter method is less sensitive to the first estimate of the CBLH; however, it is computationally expensive. The results obtained from the two forms of the wavelet covariance transform method are influenced by the selection of the initial input value of the wavelet amplitude. Further sensitivity analysis using real profiles under different orders of magnitude of background counts show that when different initial input values are set, the idealized backscatter method always obtains consistent CBLH. For two wavelet methods, the different CBLH are always obtained with the increase in the wavelet amplitude when noise is significant. Finally, the CBLHs as measured by three lidar-based methods are evaluated by as measured from L-band soundings. The boundary layer heights from two instruments coincide with ±200 m in most situations.

  4. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  5. Size-Dependent Grain-Boundary Structure with Improved Conductive and Mechanical Stabilities in Sub-10-nm Gold Crystals

    NASA Astrophysics Data System (ADS)

    Wang, Chunyang; Du, Kui; Song, Kepeng; Ye, Xinglong; Qi, Lu; He, Suyun; Tang, Daiming; Lu, Ning; Jin, Haijun; Li, Feng; Ye, Hengqiang

    2018-05-01

    Low-angle grain boundaries generally exist in the form of dislocation arrays, while high-angle grain boundaries (misorientation angle >15 ° ) exist in the form of structural units in bulk metals. Here, through in situ atomic resolution aberration corrected electron microscopy observations, we report size-dependent grain-boundary structures improving both stabilities of electrical conductivity and mechanical properties in sub-10-nm-sized gold crystals. With the diameter of a nanocrystal decreasing below 10 nm, the high-angle grain boundary in the crystal exists as an array of dislocations. This size effect may be of importance to a new generation of interconnects applications.

  6. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Brien, C. J.; Barr, C. M.; Price, P. M.

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  7. Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals

    DOE PAGES

    O’Brien, C. J.; Barr, C. M.; Price, P. M.; ...

    2017-10-31

    There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Furthermore, experiments quantifying segregation in thin films are reported that corroborate the prediction thatmore » grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.« less

  8. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-06-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers. 13 references.

  9. A pseudospectra-based approach to non-normal stability of embedded boundary methods

    NASA Astrophysics Data System (ADS)

    Rapaka, Narsimha; Samtaney, Ravi

    2017-11-01

    We present non-normal linear stability of embedded boundary (EB) methods employing pseudospectra and resolvent norms. Stability of the discrete linear wave equation is characterized in terms of the normalized distance of the EB to the nearest ghost node (α) in one and two dimensions. An important objective is that the CFL condition based on the Cartesian grid spacing remains unaffected by the EB. We consider various discretization methods including both central and upwind-biased schemes. Stability is guaranteed when α <=αmax ranges between 0.5 and 0.77 depending on the discretization scheme. Also, the stability characteristics remain the same in both one and two dimensions. Sharper limits on the sufficient conditions for stability are obtained based on the pseudospectral radius (the Kreiss constant) than the restrictive limits based on the usual singular value decomposition analysis. We present a simple and robust reclassification scheme for the ghost cells (``hybrid ghost cells'') to ensure Lax stability of the discrete systems. This has been tested successfully for both low and high order discretization schemes with transient growth of at most O (1). Moreover, we present a stable, fourth order EB reconstruction scheme. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01.

  10. Ideal-Magnetohydrodynamic-Stable Tilting in Field-Reversed Configurations

    NASA Astrophysics Data System (ADS)

    Kanno, Ryutaro; Ishida, Akio; Steinhauer, Loren

    1995-02-01

    The tilting mode in field-reversed configurations (FRC) is examined using ideal-magnetohydrodynamic stability theory. Tilting, a global mode, is the greatest threat for disruption of FRC confinement. Previous studies uniformly found tilting to be unstable in ideal theory: the objective here is to ascertain if stable equilibria were overlooked in past work. Solving the variational problem with the Rayleigh-Ritz technique, tilting-stable equilibria are found for sufficiently hollow current profile and sufficient racetrackness of the separatrix shape. Although these equilibria were not examined previously, the present conclusion is quite surprising. Consequently checks of the method are offered. Even so it cannot yet be claimed with complete certainty that stability has been proved: absolute confirmation of ideal-stable tilting awaits the application of more complete methods.

  11. Axisymmetric magnetorotational instability in ideal and viscous laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Mikhailovskii, A. B.; Lominadze, J. G.; Churikov, A. P.; Erokhin, N. N.; Pustovitov, V. D.; Konovalov, S. V.

    2008-10-01

    The original analysis of the axisymmetric magnetorotational instability (MRI) by Velikhov (Sov. Phys. JETP 9, 995 (1959)) and Chandrasekhar (Proc. Nat. Acad. Sci. 46, 253 (1960)), applied to the ideally conducting magnetized medium in the laboratory conditions and restricted to the incompressible approximation, is extended by allowing for the compressibility. Thereby, two additional driving mechanisms of MRI are revealed in addition to the standard drive due to the negative medium rotation frequency gradient (the Velikhov effect). One is due to the squared medium pressure gradient and another is a combined effect of the pressure and density gradients. For laboratory applications, the expression for the MRI boundary with all the above driving mechanisms and the stabilizing magnetoacoustic effect is derived. The effects of parallel and perpendicular viscosities on the MRI in the laboratory plasma are investigated. It is shown that, for strong viscosity, there is a family of MRI driven for the same condition as the ideal one. It is also revealed that the presence of strong viscosity leads to additional family of instabilities called the viscosity-driven MRI. Then the parallel-viscositydriven MRI looks as an overstability (oscillatory instability) possessing both the growth rate and the real part of oscillation frequency, while the perpendicular-viscosity MRI is the aperiodical instability.

  12. Stability-limit "Ouzo region" boundaries for poly(lactide-co-glycolide) nanoparticles prepared by nanoprecipitation.

    PubMed

    Beck-Broichsitter, Moritz

    2016-09-10

    The introduction of "Ouzo diagrams" has enhanced the applicability of the basic nanoprecipitation process for drug delivery research. The current study investigated the interaction of two relevant polymer/solvent systems, which is thought to impact the location of the stability-limit "Ouzo boundary". Viscosity measurements (Kurata-Stockmayer-Fixman approach) and static light scattering (Debye method) underlined a distinct interplay of the employed polymer (poly(lactide-co-glycolide)) with the utilized organic solvents (acetone and tetrahydrofuran). Both methods indicated that tetrahydrofuran was the "better" solvent for poly(lactide-co-glycolide). Thus, nanoprecipitation of this polymer/solvent composition resulted in larger nanoparticles. This observation can be attributed to the chain configuration of poly(lactide-co-glycolide) in the organic solvent, which influenced the extent of the break-up of the injected solvent layer. Accordingly, the stability-limit curve of the "Ouzo region" was shifted to lower poly(lactide-co-glycolide) fractions for tetrahydrofuran. Overall, the location of the "Ouzo region", which is an essential tool for drug delivery research, is influenced by the employed organic solvent. The current study described two distinct methods suitable to identify relevant polymer-solvent interactions, which dictate the stability-limit "Ouzo boundary" for relevant poly(lactide-co-glycolide). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Transient Growth Analysis of Compressible Boundary Layers with Parabolized Stability Equations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of parabolized linear stability equations (PSE) is used in a variational approach to extend the previous body of results for the optimal, non-modal disturbance growth in boundary layer flows. This methodology includes the non-parallel effects associated with the spatial development of boundary layer flows. As noted in literature, the optimal initial disturbances correspond to steady counter-rotating stream-wise vortices, which subsequently lead to the formation of stream-wise-elongated structures, i.e., streaks, via a lift-up effect. The parameter space for optimal growth is extended to the hypersonic Mach number regime without any high enthalpy effects, and the effect of wall cooling is studied with particular emphasis on the role of the initial disturbance location and the value of the span-wise wavenumber that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary layer equations, mean flow solutions based on the full Navier-Stokes (NS) equations are used in select cases to help account for the viscous-inviscid interaction near the leading edge of the plate and also for the weak shock wave emanating from that region. These differences in the base flow lead to an increasing reduction with Mach number in the magnitude of optimal growth relative to the predictions based on self-similar mean-flow approximation. Finally, the maximum optimal energy gain for the favorable pressure gradient boundary layer near a planar stagnation point is found to be substantially weaker than that in a zero pressure gradient Blasius boundary layer.

  14. Free boundary resistive modes in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W.

    1993-05-01

    There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma--vacuum boundary conditions have been implemented in the fully toroidal resistive spectral code CASTOR (Complex Alfven Spectrum in Toroidal Geometry) [[ital Proceedings] [ital of] [ital the] 18[ital th] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics], Berlin, edited by P. Bachmann and D. C. Robinson (European Physical Society, Petit-Lancy, Switzerland, 1991), p. 89].more » The influence of a free boundary, as compared to a fixed boundary on the stability of low-[ital m] tearing modes, is studied. It is found that the stabilizing (toroidal) effect of a finite pressure due the plasma compression is lost in the free boundary case for modes localized near the boundary. Since the stabilization due to the favorable average curvature in combination with a pressure gradient near the boundary is small, the influence of the pressure on the stability is much less important for free boundary modes than for fixed boundary modes.« less

  15. The effect of small streamwise velocity distortion on the boundary layer flow over a thin flat plate with application to boundary layer stability theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Leib, S. J.; Cowley, S. J.

    1990-01-01

    Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.

  16. Weak variations of Lipschitz graphs and stability of phase boundaries

    NASA Astrophysics Data System (ADS)

    Grabovsky, Yury; Kucher, Vladislav A.; Truskinovsky, Lev

    2011-03-01

    In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.

  17. Effect of nonzero surface admittance on receptivity and stability of compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan

    1994-01-01

    The effect of small-amplitude short-scale variations in surface admittance on the acoustic receptivity and stability of two-dimensional compressible boundary layers is examined. In the linearized limit, the two problems are shown to be related both physically and mathematically. This connection between the two problems is used, in conjunction with some previously reported receptivity results, to infer the modification of stability properties due to surface permeability. Numerical calculations are carried out for a self-similar flat-plate boundary layer at subsonic and low supersonic speeds. Variations in mean suction velocity at the perforated admittance surface can also induce receptivity to an acoustic wave. For a subsonic boundary layer, the dependence of admittance-induced receptivity on the acoustic-wave orientation is significantly different from that of the receptivity produced via mean suction variation. The admittance-induced receptivity is generally independent of the angle of acoustic incidence, except in a relatively narrow range of upstream-traveling waves for which the receptivity becomes weaker. However, this range of angles is precisely that for which the suction-induced receptivity tends to be large. At supersonic Mach numbers, the admittance-induced receptivity to slow acoustic models is relatively weaker than that in the case of the fast acoustic modes. We also find that purely real values for the surface admittance tend to have a destabilizing effect on the evolution of an instability wave over a slightly permeable surface. The limits on the validity of the linearized approximation are also assessed in one specific case.

  18. Boundary layer stability on a yawed spinning body of revolution and its effect on the magnus force and moment

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Morton, J. B.

    1972-01-01

    The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.

  19. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu

    NASA Astrophysics Data System (ADS)

    Niu, Rongmei; Han, Ke; Su, Yi-Feng; Salters, Vincent J.

    2014-01-01

    The stored energy and hardness of nanotwinned (NT) Cu are related to interaction between dislocations and {111}-twin boundaries (TBs) studied at atomic scales by high-angle annular dark-field scanning transmission electron microscope. Lack of mobile dislocations at coherent TBs (CTBs) provides as-deposited NT Cu a rare combination of stability and hardness. The introduction of numerous incoherent TBs (ITBs) reduces both the stability and hardness. While storing more energy in their ITBs than in the CTBs, deformed NT Cu also exhibits high dislocation density and TB mobility and therefore has increased the driving force for recovery, coarsening, and recrystallization.

  20. Ideals as Anchors for Relationship Experiences

    PubMed Central

    Frye, Margaret; Trinitapoli, Jenny

    2016-01-01

    Research on young-adult sexuality in sub-Saharan Africa typically conceptualizes sex as an individual-level risk behavior. We introduce a new approach that connects the conditions surrounding the initiation of sex with subsequent relationship well-being, examines relationships as sequences of interdependent events, and indexes relationship experiences to individually held ideals. New card-sort data from southern Malawi capture young women’s relationship experiences and their ideals in a sequential framework. Using optimal matching, we measure the distance between ideal and experienced relationship sequences to (1) assess the associations between ideological congruence and perceived relationship well-being, (2) compare this ideal-based approach to other experience-based alternatives, and (3) identify individual- and couple-level correlates of congruence between ideals and experiences in the romantic realm. We show that congruence between ideals and experiences conveys relationship well-being along four dimensions: expressions of love and support, robust communication habits, perceived biological safety, and perceived relationship stability. We further show that congruence is patterned by socioeconomic status and supported by shared ideals within romantic dyads. We argue that conceiving of ideals as anchors for how sexual experiences are manifest advances current understandings of romantic relationships, and we suggest that this approach has applications for other domains of life. PMID:27110031

  1. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary.

    PubMed

    Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M

    2016-06-01

    The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control. Copyright © 2016. Published by Elsevier B.V.

  2. The impact of boundary layer turbulence on snow growth and precipitation: Idealized Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Chu, Xia; Xue, Lulin; Geerts, Bart; Kosović, Branko

    2018-05-01

    Ice particles and supercooled droplets often co-exist in planetary boundary-layer (PBL) clouds. The question examined in this numerical study is how large turbulent PBL eddies affect snow growth and surface precipitation from mixed-phase PBL clouds. In order to simplify this question, this study assumes an idealized BL with well-developed turbulence but no surface heat fluxes or radiative heat exchanges. Large Eddy Simulations with and without resolved PBL turbulence are compared. This comparison demonstrates that the impact on snow growth in mixed-phase clouds is controlled by two opposing mechanisms, a microphysical and a dynamical one. The cloud microphysical impact of large turbulent eddies is based on the difference in saturation vapor pressure over water and over ice. The net outcome of alternating turbulent up- and downdrafts is snow growth by diffusion and/or accretion (riming). On the other hand, turbulence-induced entrainment and detrainment may suppress snow growth. In the case presented herein, the net effect of these microphysical and dynamical processes is positive, but in general the net effect depends on ambient conditions, in particular the profiles of temperature, humidity, and wind.

  3. HADY-I, a FORTRAN program for the compressible stability analysis of three-dimensional boundary layers. [on swept and tapered wings

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.

    1981-01-01

    A computer program HADY-I for calculating the linear incompressible or compressible stability characteristics of the laminar boundary layer on swept and tapered wings is described. The eigenvalue problem and its adjoint arising from the linearized disturbance equations with the appropriate boundary conditions are solved numerically using a combination of Newton-Raphson interative scheme and a variable step size integrator based on the Runge-Kutta-Fehlburh fifth-order formulas. The integrator is used in conjunction with a modified Gram-Schmidt orthonormalization procedure. The computer program HADY-I calculates the growth rates of crossflow or streamwise Tollmien-Schlichting instabilities. It also calculates the group velocities of these disturbances. It is restricted to parallel stability calculations, where the boundary layer (meanflow) is assumed to be parallel. The meanflow solution is an input to the program.

  4. Stability of ideal MHD configurations. I. Realizing the generality of the G operator

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Demaerel, T.

    2016-12-01

    A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes

  5. Thermoelectric Generation Using Counter-Flows of Ideal Fluids

    NASA Astrophysics Data System (ADS)

    Meng, Xiangning; Lu, Baiyi; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2017-08-01

    Thermoelectric (TE) performance of a three-dimensional (3-D) TE module is examined by exposing it between a pair of counter-flows of ideal fluids. The ideal fluids are thermal sources of TE module flow in the opposite direction at the same flow rate and generate temperature differences on the hot and cold surfaces due to their different temperatures at the channel inlet. TE performance caused by different inlet temperatures of thermal fluids are numerically analyzed by using the finite-volume method on 3-D meshed physical models and then compared with those using a constant boundary temperature. The results show that voltage and current of the TE module increase gradually from a beginning moment to a steady flow and reach a stable value. The stable values increase with inlet temperature of the hot fluid when the inlet temperature of cold fluid is fixed. However, the time to get to the stable values is almost consistent for all the temperature differences. Moreover, the trend of TE performance using a fluid flow boundary is similar to that of using a constant boundary temperature. Furthermore, 3-D contours of fluid pressure, temperature, enthalpy, electromotive force, current density and heat flux are exhibited in order to clarify the influence of counter-flows of ideal fluids on TE generation. The current density and heat flux homogeneously distribute on an entire TE module, thus indicating that the counter-flows of thermal fluids have high potential to bring about fine performance for TE modules.

  6. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection (Briefing Charts)

    DTIC Science & Technology

    2014-06-01

    Vitaly G. Soudakov; Ivett A Leyva 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q0AF 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...cases of low injection rates in which the N -factors in the near field region are below the critical level, shaping can produce a significant...Release; Distribution Unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander Fedorov and Vitaly Soudakov Moscow

  7. On the nonlinear stability of a high-speed, axisymmetric boundary layer

    NASA Technical Reports Server (NTRS)

    Pruett, C. David; Ng, Lian L.; Erlebacher, Gordon

    1991-01-01

    The stability of a high-speed, axisymmetric boundary layer is investigated using secondary instability theory and direct numerical simulation. Parametric studies based on the temporal secondary instability theory identify subharmonic secondary instability as a likely path to transition on a cylinder at Mach 4.5. The theoretical predictions are validated by direct numerical simulation at temporally-evolving primary and secondary disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the secondary disturbance, predicted growth rates agree to several significant digits with values obtained from the spectrally-accurate solution of the compressible Navier-Stokes equations. Qualitative agreement persists to large amplitudes of the secondary disturbance. Moderate transverse curvature is shown to significantly affect the growth rate of axisymmetric second mode disturbances, the likely candidates of primary instability. The influence of curvature on secondary instability is largely indirect but most probably significant, through modulation of the primary disturbance amplitude. Subharmonic secondary instability is shown to be predominantly inviscid in nature, and to account for spikes in the Reynolds stress components at or near the critical layer.

  8. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  9. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  10. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  11. Karl Jaspers on the disease entity: Kantian ideas and Weberian ideal types.

    PubMed

    Walker, Chris

    2014-09-01

    Jaspers' nosology is indebted to Immanuel Kant's theory of knowledge. He drew the distinction of form and content from the Transcendental Analytic of Kant's Critique of Pure Reason. The distinction is universal to all knowledge, including psychopathology. Individual experience is constituted by a form or category of the Understanding to give a determinate or knowable object classified into the generic type of a real disease entity. The application of form and content is limited by the boundaries of experience. Beyond this boundary are wholes whose conception requires Ideas of reason drawn from the Transcendental Dialectic. Wholes are regulated by Ideas of reason to give an object or schema of the Idea collected into ideal types of an ideal typical disease entity. Jaspers drew ideal types from Max Weber's social theory. He anticipated that, as knowledge advanced, ideal typical disease entities would become real disease entities. By 1920, this had been the destiny of general paralysis as knowledge of its neuropathology, serology and microbiology emerged. As he presented the final edition of General Psychopathology in 1946, Jaspers was anticipating the transition of schizophrenia from ideal typical to real disease entity. Almost 70 years later, with knowledge of its aetiology still unclear, schizophrenia remains marooned as an ideal typical disease entity - still awaiting that crucial advance! © The Author(s) 2014.

  12. Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX

    NASA Astrophysics Data System (ADS)

    Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team

    2016-10-01

    Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  13. Molecular microelectrostatic view on electronic states near pentacene grain boundaries

    NASA Astrophysics Data System (ADS)

    Verlaak, Stijn; Heremans, Paul

    2007-03-01

    Grain boundaries are the most inevitable and pronounced structural defects in pentacene films. To study the effect of those structural defects on the electronic state distribution, the energy levels of a hole on molecules at and near the defect have been calculated using a submolecular self-consistent-polarization-field approach in combination with atomic charge-quadrupole interaction energy calculations. This method has been benchmarked prior to application on four idealized grain boundaries: a grain boundary void, a void with molecules squeezed in between two grains, a boundary between two grains with different crystallographic orientations, and a grain boundary void in which a permanent dipole (e.g., a water molecule) has nested. While idealized, those views highlight different aspects of real grain boundaries. Implications on macroscopic charge transport models are discussed, as well as some relation between growth conditions and the formation of the grain boundary.

  14. Natural laminar flow flight experiments on a swept wing business jet-boundary layer stability analyses

    NASA Technical Reports Server (NTRS)

    Rozendaal, R. A.

    1986-01-01

    The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.

  15. COSAL: A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.

  16. Bifurcation and stability analysis of rotating chemical spirals in circular domains: Boundary-induced meandering and stabilization

    NASA Astrophysics Data System (ADS)

    Bär, Markus; Bangia, Anil K.; Kevrekidis, Ioannis G.

    2003-05-01

    Recent experimental and model studies have revealed that the domain size may strongly influence the dynamics of rotating spirals in two-dimensional pattern forming chemical reactions. Hartmann et al. [Phys. Rev. Lett. 76, 1384 (1996)], report a frequency increase of spirals in circular domains with diameters substantially smaller than the spiral wavelength in a large domain for the catalytic NO+CO reaction on a microstructured platinum surface. Accompanying simulations with a simple reaction-diffusion system reproduced the behavior. Here, we supplement these studies by a numerical bifurcation and stability analysis of rotating spirals in a simple activator-inhibitor model. The problem is solved in a corotating frame of reference. No-flux conditions are imposed at the boundary of the circular domain. At large domain sizes, eigenvalues and eigenvectors very close to those corresponding to infinite medium translational invariance are observed. Upon decrease of domain size, we observe a simultaneous change in the rotation frequency and a deviation of these eigenvalues from being neutrally stable (zero real part). The latter phenomenon indicates that the translation symmetry of the spiral solution is appreciably broken due to the interaction with the (now nearby) wall. Various dynamical regimes are found: first, the spiral simply tries to avoid the boundary and its tip moves towards the center of the circular domain corresponding to a negative real part of the “translational” eigenvalues. This effect is noticeable at a domain radius of Rboundary-induced spiral meandering. A systematic study of the spiral rotation as a function of a control parameter and the domain size reveals that the meandering instability in large domains becomes suppressed, and the spiral rotation becomes rigid, at a critical radius Rcr,0. Boundary

  17. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  18. Common MRI acquisition non-idealities significantly impact the output of the boundary shift integral method of measuring brain atrophy on serial MRI.

    PubMed

    Preboske, Gregory M; Gunter, Jeff L; Ward, Chadwick P; Jack, Clifford R

    2006-05-01

    Measuring rates of brain atrophy from serial magnetic resonance imaging (MRI) studies is an attractive way to assess disease progression in neurodegenerative disorders, particularly Alzheimer's disease (AD). A widely recognized approach is the boundary shift integral (BSI). The objective of this study was to evaluate how several common scan non-idealities affect the output of the BSI algorithm. We created three types of image non-idealities between the image volumes in a serial pair used to measure between-scan change: inconsistent image contrast between serial scans, head motion, and poor signal-to-noise (SNR). In theory the BSI volume difference measured between each pair of images should be zero and any deviation from zero should represent corruption of the BSI measurement by some non-ideality intentionally introduced into the second scan in the pair. Two different BSI measures were evaluated, whole brain and ventricle. As the severity of motion, noise, and non-congruent image contrast increased in the second scan, the calculated BSI values deviated progressively more from the expected value of zero. This study illustrates the magnitude of the error in measures of change in brain and ventricle volume across serial MRI scans that can result from commonly encountered deviations from ideal image quality. The magnitudes of some of the measurement errors seen in this study exceed the disease effect in AD shown in various publications, which range from 1% to 2.78% per year for whole brain atrophy and 5.4% to 13.8% per year for ventricle expansion (Table 1). For example, measurement error may exceed 100% if image contrast properties dramatically differ between the two scans in a measurement pair. Methods to maximize consistency of image quality over time are an essential component of any quantitative serial MRI study.

  19. An Idealized Direct-Contact Biomass Pyrolysis Reactor Model

    NASA Technical Reports Server (NTRS)

    Miller, R. S.; Bellan, J.

    1996-01-01

    A numerical study is performed in order to assess the performance of biomass pyrolysis reactors which utilize direct particle-wall thermal conduction heating. An idealized reactor configuration consisting of a flat-plate turbulent boundary layer flow with particle convection along the heated wall and incorporating particle re-entrainment is considered.

  20. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  1. Grain boundary stability and influence on ionic conductivity in a disordered perovskite -- a first-principles investigation of lithium lanthanum titanate

    DOE PAGES

    Alexander, Kathleen C.; Ganesh, P.; Chi, Miaofang; ...

    2016-12-01

    The origin of ionic conductivity in bulk lithium lanthanum titanate, a promising solid electrolyte for Li-ion batteries, has long been under debate, with experiments showing lower conductivity than predictions. Recent microscopy images show Type I and Type II grain boundaries. Using first-principles based calculations we find that experimentally observed Type I boundaries are more stable compared to the Type II grain boundaries, consistent with their observed relative abundance. Grain boundary stability appears to strongly anti-correlate with the field strength as well as the spatial extent of the space charge region. Ion migration is faster along Type II grain boundaries thanmore » across, consistent with recent experiments of increased conductivity when Type II densities were increased.« less

  2. Sublayer of Prandtl Boundary Layers

    NASA Astrophysics Data System (ADS)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  3. Noise Production of an Idealized Two-Dimensional Fish School

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2017-11-01

    The analysis of quiet bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates the coupled fluid-solid dynamics of swimmers and their wakes with the resulting noise generation. Such a framework is presented for two-dimensional flows, where the fluid motion is modeled by an unsteady boundary element method with a vortex-particle wake. The unsteady surface forces from the potential flow solver are then passed to an acoustic boundary element solver to predict the radiated sound in low-Mach-number flows. The coupled flow-acoustic solver is validated against canonical vortex-sound problems. A diamond arrangement of four airfoils are subjected to traveling wave kinematics representing a known idealized pattern for a school of fish, and the airfoil motion and inflow values are derived from the range of Strouhal values common to many natural swimmers. The coupled flow-acoustic solver estimates and analyzes the hydrodynamic performance and noise production of the idealized school of swimmers.

  4. Stabilization of Hypersonic Boundary Layers by Linear and Nonlinear Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2017-01-01

    The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7 deg. half-angle cone with 0:126 mm nose radius and 0:305 m length is investigated. The freestream parameters (M = 6, Re(exp 1) = 18 x 10(exp. 6) /m) are selected to match the flow conditions of a previous experiment in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are used in conjunction with a partial-differential equation based planar eigenvalue analysis to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone; however, subharmonic first-mode instabilities, which are destabilized by the presence of the streaks, do reach N = 6 near the end of the cone. The highest stabilization is observed at streak amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial disturbance profiles based on linear optimal growth theory may yield suboptimal control in the context of nonlinear streaks, the computational predictions are extended to nonlinear optimal growth theory. Results show that by using nonlinearly optimal perturbation leads to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced destabilization of subharmonic first-mode disturbances.

  5. Impact of grain boundaries on efficiency and stability of organic-inorganic trihalide perovskites

    DOE PAGES

    Chu, Zhaodong; Yang, Mengjin; Schulz, Philip; ...

    2017-12-20

    Organic-inorganic perovskite solar cells have attracted tremendous attention because of their remarkably high power conversion efficiencies. To further improve device performance, it is imperative to obtain fundamental understandings on the photo-response and long-term stability down to the microscopic level. Here, we report the quantitative nanoscale photoconductivity imaging on two methylammonium lead triiodide thin films with different efficiencies by light-stimulated microwave impedance microscopy. The microwave signals are largely uniform across grains and grain boundaries, suggesting that microstructures do not lead to strong spatial variations of the intrinsic photo-response. In contrast, the measured photoconductivity and lifetime are strongly affected by bulk propertiesmore » such as the sample crystallinity. As visualized by the spatial evolution of local photoconductivity, the degradation process begins with the disintegration of grains rather than nucleation and propagation from visible boundaries between grains. In conclusion, our findings provide insights to improve the electro-optical properties of perovskite thin films towards large-scale commercialization.« less

  6. Theoretical-Numerical Analysis of Boundary-Layer Stability with Combined Injection and Acoustic Absorptive Coating

    DTIC Science & Technology

    2014-01-01

    stabilization of the boundary-layer flow. The foregoing model assumes that: • The number of pores per the instability wavelength ( porn ) is large...calculated ( ) porn x using the wavelength distribution ( )xλ∗ for the most unstable (vs. frequency) waves. Figure 45 shows that 100porn > downstream...instability wavelength ( ) porn x . Distribution A: Approved for public release; distribution is unlimited. 37 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 R e

  7. Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces

    NASA Astrophysics Data System (ADS)

    Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.

    2015-11-01

    The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.

  8. Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations

    NASA Astrophysics Data System (ADS)

    Huck, Thierry; Vallis, Geoffrey K.

    2001-08-01

    What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of

  9. Secondary resonances and the boundary of effective stability of Trojan motions

    NASA Astrophysics Data System (ADS)

    Páez, Rocío Isabel; Efthymiopoulos, Christos

    2018-02-01

    One of the most interesting features in the libration domain of co-orbital motions is the existence of secondary resonances. For some combinations of physical parameters, these resonances occupy a large fraction of the domain of stability and rule the dynamics within the stable tadpole region. In this work, we present an application of a recently introduced `basic Hamiltonian model' H_b for Trojan dynamics (Páez and Efthymiopoulos in Celest Mech Dyn Astron 121(2):139, 2015; Páez et al. in Celest Mech Dyn Astron 126:519, 2016): we show that the inner border of the secondary resonance of lowermost order, as defined by H_b, provides a good estimation of the region in phase space for which the orbits remain regular regardless of the orbital parameters of the system. The computation of this boundary is straightforward by combining a resonant normal form calculation in conjunction with an `asymmetric expansion' of the Hamiltonian around the libration points, which speeds up convergence. Applications to the determination of the effective stability domain for exoplanetary Trojans (planet-sized objects or asteroids) which may accompany giant exoplanets are discussed.

  10. A boundary PDE feedback control approach for the stabilization of mortgage price dynamics

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Sarno, D.

    2017-11-01

    Several transactions taking place in financial markets are dependent on the pricing of mortgages (loans for the purchase of residences, land or farms). In this article, a method for stabilization of mortgage price dynamics is developed. It is considered that mortgage prices follow a PDE model which is equivalent to a multi-asset Black-Scholes PDE. Actually it is a diffusion process evolving in a 2D assets space, where the first asset is the house price and the second asset is the interest rate. By applying semi-discretization and a finite differences scheme this multi-asset PDE is transformed into a state-space model consisting of ordinary nonlinear differential equations. For the local subsystems, into which the mortgage PDE is decomposed, it becomes possible to apply boundary-based feedback control. The controller design proceeds by showing that the state-space model of the mortgage price PDE stands for a differentially flat system. Next, for each subsystem which is related to a nonlinear ODE, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input (boundary condition) that is actually applied to the multi-factor mortgage price PDE system is found. This control input contains recursively all virtual control inputs which were computed for the individual ODE subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the mortgage price PDE system so as to assure that all its state variables will converge to the desirable setpoints. By showing the feasibility of such a control method it is also proven that through selected modification of the PDE boundary conditions the price of the mortgage can be made to converge and stabilize at specific

  11. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  12. Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries

    USGS Publications Warehouse

    Hughes, J.M.; Bloodaxe, E.S.; Hanchar, J.M.; Foord, E.E.

    1997-01-01

    The atomic arrangement of a natural rare-earth-rich titanite and two synthetic rare-earth-doped titanites have been refined in space group A2/a, and the atomic arrangement of an undoped P21/a synthetic titanite was also refined for comparison. Previous work has shown that titanite possesses a domain structure, with domains formed of like-displaced Ti atoms in the [100] octahedral chains. P21/a titanite results when the crystal is formed of a single domain, but as Ti-reversal sites occur in the octahedral chain the apparent A2/a structure results from the average of antiphase domains. Antiphase boundaries occur at O1, which is alternately overbonded or underbonded at the boundaries, depending on the displacement of the neighboring Ti atoms. Type 2 antiphase boundaries exist where two Ti atoms are displaced away from the intervening O1 atom and are energetically unfavorable because of underbonding of that O1 atom. However, substitution of a trivalent rare earth element in the adjacent Ca2+ site relieves that underbonding, favoring the creation of type 2 antiphase boundaries and stabilization of the A2/a dimorph. The results of high-precision crystal structure analyses demonstrate that rare earth substituents for Ca stabilize the A2/a dimorph at lower substitution levels than required for octahedral substitutions.

  13. F-111 natural laminar flow glove flight test data analysis and boundary layer stability analysis

    NASA Technical Reports Server (NTRS)

    Runyan, L. J.; Navran, B. H.; Rozendaal, R. A.

    1984-01-01

    An analysis of 34 selected flight test data cases from a NASA flight program incorporating a natural laminar flow airfoil into partial wing gloves on the F-111 TACT airplane is given. This analysis determined the measured location of transition from laminar to turbulent flow. The report also contains the results of a boundary layer stability analysis of 25 of the selected cases in which the crossflow (C-F) and Tollmien-Schlichting (T-S) disturbance amplification factors are correlated with the measured transition location. The chord Reynolds numbers for these cases ranges from about 23 million to 29 million, the Mach numbers ranged from 0.80 to 0.85, and the glove leading-edge sweep angles ranged from 9 deg to 25 deg. Results indicate that the maximum extent of laminar flow varies from 56% chord to 9-deg sweep on the upper surface, and from 51% chord at 16-deg sweep to 6% chord at 25-deg sweep on the lower. The results of the boundary layer stability analysis indicate that when both C-F and T-S disturbances are amplified, an interaction takes place which reduces the maximum amplification factor of either type of disturbance that can be tolerated without causing transition.

  14. Longitudinal structure of MHD perturbations at the boundary of convective stability in the Kruskal-Oberman model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenin, V. V.

    2010-10-15

    It is shown that, in contrast to the MHD model, a perturbation at the boundary of convective stability of a finite-pressure plasma in confinement systems without an averaged minB in the Kruskal-Oberman model is not generally a purely flute one. The reasons for this discrepancy are clarified. The analysis is carried out for axisymmetric configurations formed by a poloidal magnetic field.

  15. Adjustment of Turbulent Boundary-Layer Flow to Idealized Urban Surfaces: A Large-Eddy Simulation Study

    NASA Astrophysics Data System (ADS)

    Cheng, Wai-Chi; Porté-Agel, Fernando

    2015-05-01

    Large-eddy simulations (LES) are performed to simulate the atmospheric boundary-layer (ABL) flow through idealized urban canopies represented by uniform arrays of cubes in order to better understand atmospheric flow over rural-to-urban surface transitions. The LES framework is first validated with wind-tunnel experimental data. Good agreement between the simulation results and the experimental data are found for the vertical and spanwise profiles of the mean velocities and velocity standard deviations at different streamwise locations. Next, the model is used to simulate ABL flows over surface transitions from a flat homogeneous terrain to aligned and staggered arrays of cubes with height . For both configurations, five different frontal area densities , equal to 0.028, 0.063, 0.111, 0.174 and 0.250, are considered. Within the arrays, the flow is found to adjust quickly and shows similar structure to the wake of the cubes after the second row of cubes. An internal boundary layer is identified above the cube arrays and found to have a similar depth in all different cases. At a downstream location where the flow immediately above the cube array is already adjusted to the surface, the spatially-averaged velocity is found to have a logarithmic profile in the vertical. The values of the displacement height are found to be quite insensitive to the canopy layout (aligned vs. staggered) and increase roughly from to as increases from 0.028 to 0.25. Relatively larger values of the aerodynamic roughness length are obtained for the staggered arrays, compared with the aligned cases, and a maximum value of is found at for both configurations. By explicitly calculating the drag exerted by the cubes on the flow and the drag coefficients of the cubes using our LES results, and comparing the results with existing theoretical expressions, we show that the larger values of for the staggered arrays are related to the relatively larger drag coefficients of the cubes for that

  16. Stability Analysis of Algebraic Reconstruction for Immersed Boundary Methods with Application in Flow and Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Yousefzadeh, M.; Battiato, I.

    2017-12-01

    Flow and reactive transport problems in porous media often involve complex geometries with stationary or evolving boundaries due to absorption and dissolution processes. Grid based methods (e.g. finite volume, finite element, etc.) are a vital tool for studying these problems. Yet, implementing these methods requires one to answer a very first question of what type of grid is to be used. Among different possible answers, Cartesian grids are one of the most attractive options as they possess simple discretization stencil and are usually straightforward to generate at roughly no computational cost. The Immersed Boundary Method, a Cartesian based methodology, maintains most of the useful features of the structured grids while exhibiting a high-level resilience in dealing with complex geometries. These features make it increasingly more attractive to model transport in evolving porous media as the cost of grid generation reduces greatly. Yet, stability issues and severe time-step restriction due to explicit-time implementation combined with limited studies on the implementation of Neumann (constant flux) and linear and non-linear Robin (e.g. reaction) boundary conditions (BCs) have significantly limited the applicability of IBMs to transport in porous media. We have developed an implicit IBM capable of handling all types of BCs and addressed some numerical issues, including unconditional stability criteria, compactness and reduction of spurious oscillations near the immersed boundary. We tested the method for several transport and flow scenarios, including dissolution processes in porous media, and demonstrate its capabilities. Successful validation against both experimental and numerical data has been carried out.

  17. Overcoming Indecision by Changing the Decision Boundary

    PubMed Central

    2017-01-01

    The dominant theoretical framework for decision making asserts that people make decisions by integrating noisy evidence to a threshold. It has recently been shown that in many ecologically realistic situations, decreasing the decision boundary maximizes the reward available from decisions. However, empirical support for decreasing boundaries in humans is scant. To investigate this problem, we used an ideal observer model to identify the conditions under which participants should change their decision boundaries with time to maximize reward rate. We conducted 6 expanded-judgment experiments that precisely matched the assumptions of this theoretical model. In this paradigm, participants could sample noisy, binary evidence presented sequentially. Blocks of trials were fixed in duration, and each trial was an independent reward opportunity. Participants therefore had to trade off speed (getting as many rewards as possible) against accuracy (sampling more evidence). Having access to the actual evidence samples experienced by participants enabled us to infer the slope of the decision boundary. We found that participants indeed modulated the slope of the decision boundary in the direction predicted by the ideal observer model, although we also observed systematic deviations from optimality. Participants using suboptimal boundaries do so in a robust manner, so that any error in their boundary setting is relatively inexpensive. The use of a normative model provides insight into what variable(s) human decision makers are trying to optimize. Furthermore, this normative model allowed us to choose diagnostic experiments and in doing so we present clear evidence for time-varying boundaries. PMID:28406682

  18. Stability of the Boundary Layer and the Spot

    NASA Technical Reports Server (NTRS)

    Wygnanski, I.

    2007-01-01

    The similarity among turbulent spots observed in various transition experiments, and the rate in which they contaminate the surrounding laminar boundary layer is only cursory. The shape of the spot depends on the Reynolds number of the surrounding boundary layer and on the pressure gradient to which it and the surrounding laminar flow are exposed. The propagation speeds of the spot boundaries depend, in addition, on the location from which the spot originated and do not simply scale with the local free stream velocity. The understanding of the manner in which the turbulent manner in which the turbulent spot destabilizes the surrounding, vortical fluid is a key to the understanding of the transition process. We therefore turned to detailed observations near the spot boundaries in general and near the spanwise tip of the spot in particular.

  19. Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10

    NASA Astrophysics Data System (ADS)

    Rigney, Jeffrey M.

    A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.

  20. Atmospheric stability effects on wind farm performance using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Archer, C. L.; Ghaisas, N.; Xie, S.

    2014-12-01

    Atmospheric stability has been recently found to have significant impacts on wind farm performance, especially since offshore and onshore wind farms are known to operate often under non-neutral conditions. Recent field observations have revealed that changes in stability are accompanied by changes in wind speed, direction, and turbulent kinetic energy (TKE). In order to isolate the effects of stability, large-eddy simulations (LES) are performed under neutral, stable, and unstable conditions, keeping the wind speed and direction unchanged at a fixed height. The Lillgrund wind farm, comprising of 48 turbines, is studied in this research with the Simulator for Offshore/Onshore Wind Farm Applications (SOWFA) developed by the National Renewable Energy Laboratory. Unlike most previous numerical simulations, this study does not impose periodic boundary conditions and therefore is ideal for evaluating the effects of stability in large, but finite, wind farms. Changes in power generation, velocity deficit, rate of wake recovery, TKE, and surface temperature are quantified as a function of atmospheric stability. The sensitivity of these results to wind direction is also discussed.

  1. Finite-Larmor-radius effects on z-pinch stability

    NASA Astrophysics Data System (ADS)

    Scheffel, Jan; Faghihi, Mostafa

    1989-06-01

    The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.

  2. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  3. Weak stability of the plasma-vacuum interface problem

    NASA Astrophysics Data System (ADS)

    Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo

    2016-09-01

    We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.

  4. Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.

    1997-01-01

    Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.

  5. Stabilizing a solution of the 2D Navier-Stokes system in the exterior of a bounded domain by means of a control on the boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshkov, Aleksei V

    2012-09-30

    The problem of stabilizing a solution of the 2D Navier-Stokes system defined in the exterior of a bounded domain with smooth boundary is investigated. For a given initial velocity field a control on the boundary of the domain must be constructed such that the solution stabilizes to a prescribed vortex solution or trivial solution at the rate of 1/t{sup k}. On the way, related questions are investigated, concerning the behaviour of the spectrum of an operator under a relatively compact perturbation and the existence of attracting invariant manifolds. Bibliography: 21 titles.

  6. Stability of Boundary Layer Flow.

    DTIC Science & Technology

    1980-03-01

    climato- logical frequency of convection in the North Atlantic, and offered recom- U mendations on the modelling of triggered convection. The current ...support of the current investigation we have carried out several additional calculations of the marine boundary layer with SIGMET. These calculations...In a fixed coordinate system x ( positive eastward), y ( positive northward), and z ( positive vertically upward) the equations are au .U +vE + W+-U

  7. MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas

    2015-11-01

    The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.

  8. Hypersonic Boundary-Layer Stability Experiments on a Flared-Cone Model at Angle of Attack in a Quiet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Doggett, Glen P.; Chokani, Ndaona

    1996-01-01

    An experimental investigation of the effects of angle of attack on hypersonic boundary-layer stability on a flared-cone model was conducted in the low-disturbance Mach-6 Nozzle-Test Chamber Facility at NASA Langley Research Center. This unique facility provided a 'quiet' flow test environment which is well suited for stability experiments because the low levels of freestream 'noise' minimize artificial stimulation of flow-disturbance growth. Surface pressure and temperature measurements documented the adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics were applied to identify the instability mechanisms which lead to transition. In addition, the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes computations. Results show that the boundary layer becomes more stable on the windward ray and less stable on the leeward ray relative to the zero-degree angle-of-attack case. The second-mode instability dominates the transition process at a zero-degree angle of attack, however, on the windward ray at an angle of attack this mode was completely stabilized. The less-dominant first-mode instability was slightly destabilized on the windward ray. Non-linear mechanisms such as saturation and harmonic generation are identified from the flow-disturbance bispectra.

  9. Leaching boundary movement in solidified/stabilized waste forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuang Ye Cheng; Bishop, P.L.

    1992-02-01

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indicators. The movement of the leaching boundary was found to be a single diffusion-controlled process.

  10. The Weak Stability Boundary, A Gateway for Human Exploration of Space

    NASA Technical Reports Server (NTRS)

    Mendell, Wendell W.

    2000-01-01

    NASA plans for future human exploration of the Solar System describe only missions to Mars. Before such missions can be initiated, much study remains to be done in technology development, mission operations and human performance. While, for example, technology validation and operational experience could be gained in the context of lunar exploration missions, a NASA lunar program is seen as a competitor to a Mars mission rather than a step towards it. The recently characterized Weak Stability Boundary in the Earth-Moon gravitational field may provide an operational approach to all types of planetary exploration, and infrastructure developed for a gateway to the Solar System may be a programmatic solution for exploration that avoids the fractious bickering between Mars and Moon advocates. This viewpoint proposes utilizing the concept of Greater Earth to educate policy makers, opinion makers and the public about these subtle attributes of our space neighborhood.

  11. Validation of three-dimensional incompressible spatial direct numerical simulation code: A comparison with linear stability and parabolic stability equation theories for boundary-layer transition on a flat plate

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan

    1992-01-01

    Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.

  12. Structural stability and energetics of grain boundary triple junctions in face centered cubic materials

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2015-03-01

    We present a systematic study to elucidate the role of triple junctions (TJs) and their constituent grain boundaries on the structural stability of nanocrystalline materials. Using atomistic simulations along with the nudge elastic band calculations, we explored the atomic structural and thermodynamic properties of TJs in three different fcc materials. We found that the magnitude of excess energy at a TJ was directly related to the atomic density of the metal. Further, the vacancy binding and migration energetics in the vicinity of the TJ were examined as they play a crucial role in the structural stability of NC materials. The resolved line tension which takes into account the stress buildup at the TJ was found to be a good measure in predicting the vacancy binding tendency near the TJ. The activation energy for vacancy migration along the TJ was directly correlated with the measured excess energy. Finally, we show that the resistance for vacancy diffusion increased for TJs with larger excess stored energy and the defect mobility at some TJs is slower than their constituent GBs. Hence, our results have general implications on the diffusional process in NC materials and provide new insight into stabilizing NC materials with tailored TJs.

  13. Elastic stability of biaxially loaded longitudinally stiffened composite structures.

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1973-01-01

    A linear analysis method is presented for the elastic stability of structures of uniform cross section, that may be idealized as an assemblage of laminated plate-strips, flat and curved, and beams. Each plate-strip and beam covers the entire length of the structure and is simply supported on the edges normal to the longitudinal axis. Arbitrary boundary conditions may be specified on any external longitudinal side of plate-strips. The structure or selected plate-strips may be loaded in any desired combination of inplane biaxial loads. The analysis simultaneously considers all modes of instability and is applicable for the buckling of laminated composite structures. Some numerical results are presented to indicate possible applications.

  14. Summation by parts, projections, and stability

    NASA Technical Reports Server (NTRS)

    Olsson, Pelle

    1993-01-01

    We have derived stability results for high-order finite difference approximations of mixed hyperbolic-parabolic initial-boundary value problems (IBVP). The results are obtained using summation by parts and a new way of representing general linear boundary conditions as an orthogonal projection. By slightly rearranging the analytic equations, we can prove strict stability for hyperbolic-parabolic IBVP. Furthermore, we generalize our technique so as to yield strict stability on curvilinear non-smooth domains in two space dimensions. Finally, we show how to incorporate inhomogeneous boundary data while retaining strict stability. Using the same procedure one can prove strict stability in higher dimensions as well.

  15. Straight velocity boundaries in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Latt, Jonas; Chopard, Bastien; Malaspinas, Orestis; Deville, Michel; Michler, Andreas

    2008-05-01

    Various ways of implementing boundary conditions for the numerical solution of the Navier-Stokes equations by a lattice Boltzmann method are discussed. Five commonly adopted approaches are reviewed, analyzed, and compared, including local and nonlocal methods. The discussion is restricted to velocity Dirichlet boundary conditions, and to straight on-lattice boundaries which are aligned with the horizontal and vertical lattice directions. The boundary conditions are first inspected analytically by applying systematically the results of a multiscale analysis to boundary nodes. This procedure makes it possible to compare boundary conditions on an equal footing, although they were originally derived from very different principles. It is concluded that all five boundary conditions exhibit second-order accuracy, consistent with the accuracy of the lattice Boltzmann method. The five methods are then compared numerically for accuracy and stability through benchmarks of two-dimensional and three-dimensional flows. None of the methods is found to be throughout superior to the others. Instead, the choice of a best boundary condition depends on the flow geometry, and on the desired trade-off between accuracy and stability. From the findings of the benchmarks, the boundary conditions can be classified into two major groups. The first group comprehends boundary conditions that preserve the information streaming from the bulk into boundary nodes and complete the missing information through closure relations. Boundary conditions in this group are found to be exceptionally accurate at low Reynolds number. Boundary conditions of the second group replace all variables on boundary nodes by new values. They exhibit generally much better numerical stability and are therefore dedicated for use in high Reynolds number flows.

  16. A free boundary problem for steady small plaques in the artery and their stability

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hao, Wenrui; Hu, Bei

    2015-08-01

    Atherosclerosis is a leading cause of death in the United States and worldwide; it originates from a plaque which builds up in the artery. In this paper, we consider a simplified model of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We prove that there exist small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. We also determine necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times.

  17. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  18. Estimating amplitude ratios in boundary layer stability theory: a comparison between two approaches

    NASA Astrophysics Data System (ADS)

    Govindarajan, Rama; Narasimha, R.

    2001-07-01

    We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R[minus sign]1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R[minus sign]2/3) and O(R[minus sign]1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.

  19. Rawls, Race, and Education: A Challenge to the Ideal/Nonideal Divide

    ERIC Educational Resources Information Center

    Thompson, Winston C.

    2015-01-01

    In this essay, Winston C. Thompson questions the rigidity of the boundary between ideal and nonideal theory, suggesting a porosity that allows elements of both to be brought to bear upon educational issues in singularly incisive ways. In the service of this goal, Thompson challenges and extends John Rawls's theory of justice as fairness, bringing…

  20. Quantifying ataxia: ideal trajectory analysis--a technical note

    NASA Technical Reports Server (NTRS)

    McPartland, M. D.; Krebs, D. E.; Wall, C. 3rd

    2000-01-01

    We describe a quantitative method to assess repeated stair stepping stability. In both the mediolateral (ML) and anterioposterior (AP) directions, the trajectory of the subject's center of mass (COM) was compared to an ideal sinusoid. The two identified sinusoids were unique in each direction but coupled. Two dimensionless numbers-the mediolateral instability index (IML) and AP instability index (IAP)-were calculated using the COM trajectory and ideal sinusoids for each subject with larger index values resulting from less stable performance. The COM trajectories of nine nonimpaired controls and six patients diagnosed with unilateral or bilateral vestibular labyrinth hypofunction were analyzed. The average IML and IAP values of labyrinth disorder patients were respectively 127% and 119% greater than those of controls (p<0.014 and 0.006, respectively), indicating that the ideal trajectory analysis distinguishes persons with labyrinth disorder from those without. The COM trajectories also identify movement inefficiencies attributable to vestibulopathy.

  1. Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, J.; Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543; Hudson, S. R.

    2015-09-15

    We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at themore » resonant surface.« less

  2. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  3. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  4. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ' Microstructures.

    PubMed

    Prakash, Aruna; Bitzek, Erik

    2017-01-23

    Single-crystal Ni-base superalloys, consisting of a two-phase γ / γ ' microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ ' phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ / γ ' microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ ' particles with planar γ / γ ' interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples-the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions.

  5. Development of a Three-Dimensional PSE Code for Compressible Flows: Stability of Three-Dimensional Compressible Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Jeyasingham, Samarasingham

    1999-01-01

    A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.

  6. Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet

    NASA Astrophysics Data System (ADS)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2017-11-01

    This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.

  7. Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height

    NASA Astrophysics Data System (ADS)

    Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang

    2018-02-01

    This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.

  8. Rotation and kinetic modifications of the tokamak ideal-wall pressure limit.

    PubMed

    Menard, J E; Wang, Z; Liu, Y; Bell, R E; Kaye, S M; Park, J-K; Tritz, K

    2014-12-19

    The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can also be destabilizing, and drift-kinetic damping can potentially offset these destabilization mechanisms. These results are obtained using the unique parameter regime accessible in the spherical torus NSTX of high toroidal rotation speed relative to the thermal and Alfvén speeds and high kinetic pressure relative to the magnetic pressure. Inclusion of rotation and kinetic effects significantly improves agreement between measured and predicted ideal stability characteristics and may provide new insight into tearing mode triggering.

  9. Roles of strain and domain boundaries on the phase transition stability of VO2 thin films

    NASA Astrophysics Data System (ADS)

    Jian, Jie; Chen, Aiping; Chen, Youxing; Zhang, Xinghang; Wang, Haiyan

    2017-10-01

    The fundamental phase transition mechanism and the stability of the semiconductor-to-metal phase transition properties during multiple thermal cycles have been investigated on epitaxial vanadium dioxide (VO2) thin films via both ex situ heating and in situ heating by transmission electron microscopy (TEM). VO2 thin films were deposited on c-cut sapphire substrates by pulsed laser deposition. Ex situ studies show the broadening of transition sharpness (ΔT) and the width of thermal hysteresis (ΔH) after 60 cycles. In situ TEM heating studies reveal that during thermal cycles, large strain was accumulated around the domain boundaries, which was correlated with the phase transition induced lattice constant change and the thermal expansion. It suggests that the degradation of domain boundary structures in the VO2 films not only caused the transition property reduction (e.g., the decrease in ΔT and ΔH) but also played an important role in preventing the film from fracture during thermal cycles.

  10. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edlund, E. M.; Ji, H.

    2015-10-06

    Here, we present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  11. Reynolds number scaling of the influence of boundary layers on the global behavior of laboratory quasi-Keplerian flows.

    PubMed

    Edlund, E M; Ji, H

    2015-10-01

    We present fluid velocity measurements in a modified Taylor-Couette device operated in the quasi-Keplerian regime, where it is observed that nearly ideal flows exhibit self-similarity under scaling of the Reynolds number. In contrast, nonideal flows show progressive departure from ideal Couette as the Reynolds number is increased. We present a model that describes the observed departures from ideal Couette rotation as a function of the fluxes of angular momentum across the boundaries, capturing the dependence on Reynolds number and boundary conditions.

  12. Introduction to boundary-layer theory. [viscous friction loss calculation for turbine blade design

    NASA Technical Reports Server (NTRS)

    Mcnally, W. D.

    1973-01-01

    The pressure ratio across a turbine provides a certain amount of ideal energy that is available to the turbine for producing work. The portion of the ideal energy that is not converted to work is considered to be a loss. One of the more important and difficult aspects of turbine design is the prediction of the losses. The primary cause of losses is the boundary layer that develops on the blade and end wall surfaces. Boundary-layer theory is used to calculate the parameters needed to estimate viscous (friction) losses.

  13. Boundary Layer Theory. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.

  14. Higher modes of the Orr-Sommerfeld problem for boundary layer flows

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.; Grosch, C. E.

    1983-01-01

    The discrete spectrum of the Orr-Sommerfeld problem of hydrodynamic stability for boundary layer flows in semi-infinite regions is examined. Related questions concerning the continuous spectrum are also addressed. Emphasis is placed on the stability problem for the Blasius boundary layer profile. A general theoretical result is given which proves that the discrete spectrum of the Orr-Sommerfeld problem for boundary layer profiles (U(y), 0,0) has only a finite number of discrete modes when U(y) has derivatives of all orders. Details are given of a highly accurate numerical technique based on collocation with splines for the calculation of stability characteristics. The technique includes replacement of 'outer' boundary conditions by asymptotic forms based on the proper large parameter in the stability problem. Implementation of the asymptotic boundary conditions is such that there is no need to make apriori distinctions between subcases of the discrete spectrum or between the discrete and continuous spectrums. Typical calculations for the usual Blasius problem are presented.

  15. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    NASA Astrophysics Data System (ADS)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  16. The impact of environmental inertial stability on the secondary circulation of axisymmetric tropical cyclones

    NASA Astrophysics Data System (ADS)

    O'Neill, M. E.; Chavas, D. R.

    2017-12-01

    In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.

  17. Effects of Forward- and Backward-Facing Steps on the Crossflow Receptivity and Stability in Supersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; King, Rudolph A.; Eppink, Jenna L.

    2014-01-01

    The effects of forward- and backward-facing steps on the receptivity and stability of three-dimensional supersonic boundary layers over a swept wing with a blunt leading edge are numerically investigated for a freestream Mach number of 3 and a sweep angle of 30 degrees. The flow fields are obtained by solving the full Navier-Stokes equations. The evolution of instability waves generated by surface roughness is simulated with and without the forward- and backward-facing steps. The separation bubble lengths are about 5-10 step heights for the forward-facing step and are about 10 for the backward-facing step. The linear stability calculations show very strong instability in the separated region with a large frequency domain. The simulation results show that the presence of backward-facing steps decreases the amplitude of the stationary crossflow vortices with longer spanwise wavelengths by about fifty percent and the presence of forward-facing steps does not modify the amplitudes noticeably across the steps. The waves with the shorter wavelengths grow substantially downstream of the step in agreement with the linear stability prediction.

  18. Idealized vs. Realistic Microstructures: An Atomistic Simulation Case Study on γ/γ′ Microstructures

    PubMed Central

    Prakash, Aruna; Bitzek, Erik

    2017-01-01

    Single-crystal Ni-base superalloys, consisting of a two-phase γ/γ′ microstructure, retain high strengths at elevated temperatures and are key materials for high temperature applications, like, e.g., turbine blades of aircraft engines. The lattice misfit between the γ and γ′ phases results in internal stresses, which significantly influence the deformation and creep behavior of the material. Large-scale atomistic simulations that are often used to enhance our understanding of the deformation mechanisms in such materials must accurately account for such misfit stresses. In this work, we compare the internal stresses in both idealized and experimentally-informed, i.e., more realistic, γ/γ′ microstructures. The idealized samples are generated by assuming, as is frequently done, a periodic arrangement of cube-shaped γ′ particles with planar γ/γ′ interfaces. The experimentally-informed samples are generated from two different sources to produce three different samples—the scanning electron microscopy micrograph-informed quasi-2D atomistic sample and atom probe tomography-informed stoichiometric and non-stoichiometric atomistic samples. Additionally, we compare the stress state of an idealized embedded cube microstructure with finite element simulations incorporating 3D periodic boundary conditions. Subsequently, we study the influence of the resulting stress state on the evolution of dislocation loops in the different samples. The results show that the stresses in the atomistic and finite element simulations are almost identical. Furthermore, quasi-2D boundary conditions lead to a significantly different stress state and, consequently, different evolution of the dislocation loop, when compared to samples with fully 3D boundary conditions. PMID:28772453

  19. Edge plasma boundary layer generated by kink modes in tokamaks

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.

    2011-06-01

    This paper describes the structure of the electric current generated by external wall touching and free boundary kink modes at the plasma edge using the ideally conducting plasma model. Both kinds of modes generate δ-functional surface current at the plasma edge. Free boundary kink modes also perturb the core plasma current, which in the plasma edge compensates the difference between the δ-functional surface currents of free boundary and wall touching kink modes. In addition, the resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  20. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  1. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships.

    PubMed

    Rodriguez, Lindsey M; Hadden, Benjamin W; Knee, C Raymond

    2015-03-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one's relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes.

  2. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships

    PubMed Central

    Rodriguez, Lindsey M.; Hadden, Benjamin W.; Knee, C. Raymond

    2015-01-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one’s relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes. PMID:25821396

  3. The stability of the boundary layer compressible gas with heat and mass transfer from the surface

    NASA Astrophysics Data System (ADS)

    Gaponov, S. A.; Terekhova, N. M.

    2016-10-01

    This work continues the research on modeling of the flow regime control in the compressible boundary layer. The effect of the distributed heat and mass transfer on the stability characteristics of the supersonic boundary layer at Mach number M = 5.35 is considered. The main attention is paid to modeling of acoustic disturbances both in conditions of a normal injection, when only the component of the average velocity V is nonzero, and the injection of other direction, including tangential one, when only the component U is nonzero at the wall. It is assumed that the effect of an injection of a homogeneous gas of the different temperature is similar to blowing of the gas of a different density, namely, blowing of the cold gas simulates blowing of the heavy gas and vice versa. Therefore in the present work this modeling is achieved by the change of a temperature factor (heating or cooling of the walls). There are the variant when the so-called locking regime when the velocity perturbations on the porous surface can be taken as zero.

  4. Linear and nonlinear stability of the Blasius boundary layer

    NASA Technical Reports Server (NTRS)

    Bertolotti, F. P.; Herbert, TH.; Spalart, P. R.

    1992-01-01

    Two new techniques for the study of the linear and nonlinear instability in growing boundary layers are presented. The first technique employs partial differential equations of parabolic type exploiting the slow change of the mean flow, disturbance velocity profiles, wavelengths, and growth rates in the streamwise direction. The second technique solves the Navier-Stokes equation for spatially evolving disturbances using buffer zones adjacent to the inflow and outflow boundaries. Results of both techniques are in excellent agreement. The linear and nonlinear development of Tollmien-Schlichting (TS) waves in the Blasius boundary layer is investigated with both techniques and with a local procedure based on a system of ordinary differential equations. The results are compared with previous work and the effects of non-parallelism and nonlinearity are clarified. The effect of nonparallelism is confirmed to be weak and, consequently, not responsible for the discrepancies between measurements and theoretical results for parallel flow.

  5. Sex Education and Ideals

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.; Spiecker, Ben

    2008-01-01

    This article argues that sex education should include sexual ideals. Sexual ideals are divided into sexual ideals in the strict sense and sexual ideals in the broad sense. It is argued that ideals that refer to the context that is deemed to be most ideal for the gratification of sexual ideals in the strict sense are rightfully called sexual…

  6. Stability of mixing layers

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Krothapalli, A

    1993-01-01

    The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.

  7. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  8. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  9. What would an ideal mental health service for primary care look like?

    PubMed Central

    2011-01-01

    The creation of GP commissioning consortia offers potential opportunities for GPs to challenge a number of divisions and distinctions that are currently taken for granted in mental health services, but may be neither necessary nor logical. I examine a range of these and suggest what GPs and patients might reasonably expect if we challenged them in order to imagine and commission an ideal mental health service for primary care. Among its features, an ideal service would cross the boundaries of mental and physical care, individual and family care, and the mental, social and economic domains. It would also transcend mental health ideologies, geographical borders and the artificial distinction between making a diagnosis, offering treatment and holding a therapeutic conversation. PMID:25949648

  10. Calculations of unsteady turbulent boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.; Patel, V. C.

    1975-01-01

    The results are presented of a series of computational experiments aimed at studying the characteristics of time-dependent turbulent boundary layers with embedded reversed-flow regions. A calculation method developed earlier was extended to boundary layers with reversed flows for this purpose. The calculations were performed for an idealized family of external velocity distributions, and covered a range of degrees of unsteadiness. The results confirmed those of previous studies in demonstrating that the point of flow reversal is nonsingular in a time-dependent boundary layer. A singularity was observed to develop downstream of reversal, under certain conditions, accompanied by the breakdown of the boundary-layer approximations. A tentative hypothesis was advanced in an attempt to predict the appearance of the singularity, and is shown to be consistent with the calculated results.

  11. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  12. A spectrally accurate boundary-layer code for infinite swept wings

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1994-01-01

    This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.

  13. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  14. A new class of long-term stable lunar resonance orbits: Space weather applications and the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Carrico, J. P.; Hautamaki, B.; Intelisano, M.; Lebois, R.; Loucks, M.; Policastri, L.; Reno, M.; Scherrer, J.; Schwadron, N. A.; Tapley, M.; Tyler, R.

    2011-11-01

    NASA's Interstellar Boundary Explorer (IBEX) mission was recently maneuvered into a unique long-term stable Earth orbit, with apogee at ˜50 Earth radii (RE). The Moon's (˜65 RE) gravity disrupts most highly elliptical Earth orbits, leading to (1) chaotic orbital solutions, (2) the inability to predict orbital positions more than a few years into the future, and ultimately (3) mission-ending possibilities of atmospheric reentry or escape from Earth orbit. By synchronizing the satellite's orbital period to integer fractions of the Moon's sidereal period, PM = 27.3 days (e.g., PM/2 = 13.6 days, PM/3 = 9.1 days), and phasing apogee to stay away from the Moon, very long term stability can be achieved. Our analysis indicates orbital stability for well over a decade, and these IBEX-like orbits represent a new class of Earth orbits that are stable far longer than typical satellite lifetimes. These orbits provide cost-effective and nearly ideal locations for long-term space weather observations from spacecraft that can remotely image the Earth's magnetosphere from outside its boundaries while simultaneously providing external (solar wind or magnetosheath) observation over most of their orbits. Utilized with multiple spacecraft, such orbits would allow continuous and simultaneous monitoring of the magnetosphere in order to help predict and mitigate adverse space weather-driven effects.

  15. Convection in an ideal gas at high Rayleigh numbers.

    PubMed

    Tilgner, A

    2011-08-01

    Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.

  16. LEACHING BOUNDARY MOVEMENT IN SOLIDIFIED/STABILIZED WASTE FORMS

    EPA Science Inventory

    Investigation of the leaching of cement-based waste forms in acetic acid solutions found that acids attacked the waste form from the surface toward the center. A sharp leaching boundary was identified in every leached sample, using pH color indica- tors. The movement of the leach...

  17. Toroidal Alfvén eigenmode triggered by trapped anisotropic energetic particles in a toroidal resistive plasma with free boundary

    NASA Astrophysics Data System (ADS)

    Yang, S. X.; Hao, G. Z.; Liu, Y. Q.; Wang, Z. X.; Hu, Y. J.; Zhu, J. X.; He, H. D.; Wang, A. K.

    2018-04-01

    The toroidal Alfvén eigenmode (TAE), excited by trapped energetic particles (EPs), is numerically investigated in a tokamak plasma, using the non-perturbative magnetohydrodynamic-kinetic hybrid formulation based MARS-K code (Liu et al 2008 Phys. Plasmas 15 112503). Compared with the fixed boundary condition at the plasma edge, a free boundary enhances the critical value of the EPs kinetic contribution for driving the TAE. Free boundary also induces finite perturbations at the plasma edge as expected. An anisotropic distribution of EPs, in the particle pitch angle space, strongly enhances the instability and results in a more global mode structure, compared with the isotropic case. The plasma resistivity is also found to play a role in the EPs-destabilized TAE. In particular, the mode stability domain is mapped out, in the 2D parameter space of the plasma resistivity and a quantity defining the width of the particle distribution in pitch angle (for anisotropic distribution). A resonance layer in the poloidal mode structure, with the layer width increasing with the plasma resistivity, appears at the large width of the particle distribution in pitch angle space. A mode conversion, from the modified ideal kink by the EPs kinetic effect to the TAE, is also observed while increasing the birth energy of EPs. Computational results suggest that the TAE mode structure can be modified by certain key plasma parameters, such as the EPs kinetic contribution, the equilibrium pressure, the plasma resistivity, the distribution of EPs, as well as the birth energy of EPs. Such modification of the eigenmode structure can only be obtained following the non-perturbative hybrid approach (Wang et al 2013 Phys. Rev. Lett. 111 145003, Wang et al 2015 Phys. Plasmas 22 022509), as adopted in this study. More importantly, numerical results show that near the marginal stability point, the dominant poloidal harmonics of the TAE overlap with each other, and are localized at the tip positions of

  18. Liquid-bridge stability and breakup on surfaces with contact-angle hysteresis.

    PubMed

    Akbari, Amir; Hill, Reghan J

    2016-08-10

    We study the stability and breakup of liquid bridges with a free contact line on surfaces with contact-angle hysteresis (CAH) under zero-gravity conditions. Non-ideal surfaces exhibit CAH because of surface imperfections, by which the constraints on three-phase contact lines are influenced. Given that interfacial instabilities are constraint-sensitive, understanding how CAH affects the stability and breakup of liquid bridges is crucial for predicting the drop size in contact-drop dispensing. Unlike ideal surfaces on which contact lines are always free irrespective of surface wettability, contact lines may undergo transitions from pinned to free and vice versa during drop deposition on non-ideal surfaces. Here, we experimentally and theoretically examine how stability and breakup are affected by CAH, highlighting cases where stability is lost during a transition from a pinned-pinned (more constrained) to pinned-free (less constrained) interface-rather than a critical state. This provides a practical means of expediting or delaying stability loss. We also demonstrate how the dynamic contact angle can control the contact-line radius following stability loss.

  19. Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2014-09-01

    Because of surface tension, soap films seek the shape that minimizes their surface energy and thus their surface area. This mathematical postulate allows one to predict the existence and stability of simple minimal surfaces. After briefly recalling classical results obtained in the case of symmetric catenoids that span two circular rings with the same radius, we discuss the role of boundary conditions on such shapes, working with two rings having different radii. We then investigate the conditions of existence and stability of other shapes that include two portions of catenoids connected by a planar soap film and half-symmetric catenoids for which we introduce a method of observation. We report a variety of experimental results including metastability—an hysteretic evolution of the shape taken by a soap film—explained using simple physical arguments. Working by analogy with the theory of phase transitions, we conclude by discussing universal behaviors of the studied minimal surfaces in the vicinity of their existence thresholds.

  20. Nonlinear power flow feedback control for improved stability and performance of airfoil sections

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2013-09-03

    A computer-implemented method of determining the pitch stability of an airfoil system, comprising using a computer to numerically integrate a differential equation of motion that includes terms describing PID controller action. In one model, the differential equation characterizes the time-dependent response of the airfoil's pitch angle, .alpha.. The computer model calculates limit-cycles of the model, which represent the stability boundaries of the airfoil system. Once the stability boundary is known, feedback control can be implemented, by using, for example, a PID controller to control a feedback actuator. The method allows the PID controller gain constants, K.sub.I, K.sub.p, and K.sub.d, to be optimized. This permits operation closer to the stability boundaries, while preventing the physical apparatus from unintentionally crossing the stability boundaries. Operating closer to the stability boundaries permits greater power efficiencies to be extracted from the airfoil system.

  1. Stability investigation in nominally two-dimensional laminar boundary layers by means of heat pulsing

    NASA Astrophysics Data System (ADS)

    Zhou, Ming De; Liu, Tian Shu

    The effects of heat pulses from surface-mounted wires on the laminar boundary-layer flow on an 800 x 300 x 32-mm flat wooden plate with a 6:1 elliptical nose are investigated experimentally in the 1.5 x 0.3-m working section of the DFVLR-AVA Goettingen low-turbulence wind tunnel at maximum free-stream velocity 45 m/s and longitudinal turbulence intensity about 0.05 percent. The results of flow visualization and hot-film measurements are presented in extensive graphs and photographs and analyzed. It is found that the initial amplification of disturbances is accurately predicted by two-dimensional linear stability theory, even when the disturbances include significant three-dimensional components. Subharmonic paths to turbulence are shown to begin from lower initial-disturbance fluctuation levels or at lower Reynolds numbers than predicted by the 'K' mechanism (Klebanoff et al., 1962), and the oblique wave angles at which maximum amplification occurs are seen as consistent with the resonant triad model of Craik (1971).

  2. Ideals versus reality: Are weight ideals associated with weight change in the population?

    PubMed

    Kärkkäinen, Ulla; Mustelin, Linda; Raevuori, Anu; Kaprio, Jaakko; Keski-Rahkonen, Anna

    2016-04-01

    To quantify weight ideals of young adults and to examine whether the discrepancy between actual and ideal weight is associated with 10-year body mass index (BMI) change in the population. This study comprised 4,964 adults from the prospective population-based FinnTwin16 study. They reported their actual and ideal body weight at age 24 (range 22-27) and 10 years later (attrition 24.6%). The correlates of discrepancy between actual and ideal body weight and the impact on subsequent BMI change were examined. The discrepancy between actual and ideal weight at 24 years was on average 3.9 kg (1.4 kg/m(2) ) among women and 1.2 kg (0.4 kg/m(2) ) among men. On average, participants gained weight during follow-up irrespective of baseline ideal weight: women ¯x = +4.8 kg (1.7 kg/m(2) , 95% CI 1.6-1.9 kg/m(2) ), men ¯x = +6.3 kg (2.0 kg/m(2) , 95% CI 1.8-2.1 kg/m(2) ). Weight ideals at 24 years were not correlated with 10-year weight change. At 34 years, just 13.2% of women and 18.9% of men were at or below the weight they had specified as their ideal weight at 24 years. Women and men adjusted their ideal weight upward over time. Irrespective of ideal weight at baseline, weight gain was nearly universal. Weight ideals were shifted upward over time. © 2016 The Obesity Society.

  3. Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball

    NASA Astrophysics Data System (ADS)

    Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.

  4. Real-time flutter boundary prediction based on time series models

    NASA Astrophysics Data System (ADS)

    Gu, Wenjing; Zhou, Li

    2018-03-01

    For the purpose of predicting the flutter boundary in real time during flutter flight tests, two time series models accompanied with corresponding stability criterion are adopted in this paper. The first method simplifies a long nonstationary response signal as many contiguous intervals and each is considered to be stationary. The traditional AR model is then established to represent each interval of signal sequence. While the second employs a time-varying AR model to characterize actual measured signals in flutter test with progression variable speed (FTPVS). To predict the flutter boundary, stability parameters are formulated by the identified AR coefficients combined with Jury's stability criterion. The behavior of the parameters is examined using both simulated and wind-tunnel experiment data. The results demonstrate that both methods show significant effectiveness in predicting the flutter boundary at lower speed level. A comparison between the two methods is also given in this paper.

  5. Active ideal sedimentation: exact two-dimensional steady states.

    PubMed

    Hermann, Sophie; Schmidt, Matthias

    2018-02-28

    We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.

  6. Associations between Sexual Abstinence Ideals, Religiosity, and Alcohol Abstinence: A Longitudinal Study of Finnish Twins

    PubMed Central

    Winter, Torsten; Karvonen, Sakari; Rose, Richard J.

    2016-01-01

    We analyzed prevalence and stability of attitudes endorsing sexual abstinence ideals from late adolescence into early adulthood and studied associations of these attitudes with religiosity and alcohol abstinence in a sexually liberal Nordic society. Our population-based sample of Finnish twins permitted comparisons of co-twins concordant for religiosity but discordant for drinking to evaluate the association of sexual abstinence ideals with alcohol abstinence, controlling for household environment. From age 17 to 24, endorsement of sexual abstinence as a romantic ideal declined from 25% to 15%. Religiosity and alcohol abstinence correlated, both separately and together, with endorsing sexual abstinence. Abstinence ideals were associated with literal belief in fundamental tenets of the Bible. The association of sexual abstinence ideals with alcohol abstinence was confirmed in within-family comparisons of co-twins discordant for drinking but concordant for religiosity. Alcohol-abstinent twins were significantly more likely than their non-alcohol-abstinent twin siblings to endorse sexual abstinence ideals; that result suggests the association of sexual abstinence ideals with abstaining from alcohol is not explained by unmeasured confounds in familial background and structure. Our longitudinal results and analyses of discordant twins suggest that attitudes toward sexual abstinence ideals are embedded within other conservative attitudes and behaviors. PMID:23301620

  7. Enhancing the Bioactivity of Yttria-Stabilized Tetragonal Zirconia Ceramics via Grain-Boundary Activation.

    PubMed

    Ke, Jinhuan; He, Fupo; Ye, Jiandong

    2017-05-17

    Yttria-stabilized tetragonal zirconia (Y-TZP) has been proposed as a potential dental implant because of its good biocompatibility, excellent mechanical properties, and distinctive aesthetic effect. However, Y-TZP cannot form chemical bonds with bone tissue because of its biological inertness, which affects the reliability and long-term efficacy of Y-TZP implants. In this study, to improve the bioactivity of Y-TZP ceramics while maintaining their good mechanical performance, Y-TZP was modified by grain-boundary activation via the infiltration of a bioactive glass (BG) sol into the surface layers of Y-TZP ceramics under different negative pressures (atmospheric pressure, -0.05 kPa, and -0.1 kPa), followed by gelling and sintering. The in vitro bioactivity, mechanical properties, and cell behavior of the Y-TZP with improved bioactivity were systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron probe microanalysis (EPMA), and Raman spectroscopy. The results of the bioactivity test conducted by immersing Y-TZP in simulated body fluid (SBF) showed that a bonelike apatite layer was produced on the entire surface. The mechanical properties of the modified Y-TZP decreased as the negative pressure in the BG-infiltration process increased relative to those of the Y-TZP blank group. However, the samples infiltrated with the BG sol under -0.05 kPa and atmospheric pressure still retained good mechanical performance. The cell-culture results revealed that the bioactive surface modification of Y-TZP could promote cell adhesion and differentiation. The present work demonstrates that the bioactivity of Y-TZP can be enhanced by grain-boundary activation, and the bioactive Y-TZP is expected to be a potential candidate for use as a dental implant material.

  8. Lattice Boltzmann Method for 3-D Flows with Curved Boundary

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi

    2002-01-01

    In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.

  9. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  10. Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92

    NASA Astrophysics Data System (ADS)

    Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.

    2018-01-01

    We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.

  11. Artificial neural network implementation of a near-ideal error prediction controller

    NASA Technical Reports Server (NTRS)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  12. Solving free-plasma-boundary problems with the SIESTA MHD code

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  13. The stability boundary of group-III transition metal diboride ScB 2 (0 0 0 1) surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qin, Na

    2012-01-01

    Experimental observations and theoretical investigations exhibit that a group-IV(V) transition metal diboride (0 0 0 1) surface is terminated with a 1 × 1 TM(B) layer. As to a group-III transition metal diboride, we have investigated the stability boundary of ScB2 (0 0 0 1) surfaces using first principles total energy plane-wave pseudopotential method based on density functional theory. The Mulliken charge population analysis shows that Sc atoms in the second layer cannot provide B atoms in the first layer with sufficient electrons to form a complete graphene-like boron layer. We also found that the charge transfer between the first and the second layer for the B-terminated surface is more than that for Sc-terminated surface. It elucidates the reason that the outermost interlayer spacing contract more strongly in the B-terminated surface than in the Sc-terminated surface. The surface energies of both terminated ScB2 (0 0 0 1) surfaces as a function of the chemical potential of B are also calculated to check the relative stability of the two surface structures.

  14. Solving Fluid Structure Interaction Problems with an Immersed Boundary Method

    NASA Technical Reports Server (NTRS)

    Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.

    2016-01-01

    An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.

  15. Exploration of the mechanisms of temperature-dependent grain boundary mobility: Search for the common origin of ultrafast grain boundary motion

    DOE PAGES

    O’Brien, C. J.; Foiles, S. M.

    2016-04-19

    The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with Σ values of 5,more » 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. Furthermore, this provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.« less

  16. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  17. Impact of vertical wind shear on roll structure in idealized hurricane boundary layers

    NASA Astrophysics Data System (ADS)

    Wang, Shouping; Jiang, Qingfang

    2017-03-01

    Quasi-two-dimensional roll vortices are frequently observed in hurricane boundary layers. It is believed that this highly coherent structure, likely caused by the inflection-point instability, plays an important role in organizing turbulent transport. Large-eddy simulations are conducted to investigate the impact of wind shear characteristics, such as the shear strength and inflection-point level, on the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind nudging approach is used in the simulations to maintain the specified mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential because of the quasi-two-dimensionality of the roll structure. The most robust rolls are produced in a simulation with the highest inflection-point level and relatively strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40 % in the middle of the boundary layer.

  18. Experimental studies on the stability and transition of 3-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Nitschke-Kowsky, P.

    1987-01-01

    Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.

  19. Close partner as sculptor of the ideal self: behavioral affirmation and the Michelangelo phenomenon.

    PubMed

    Drigotas, S M; Rusbult, C E; Wieselquist, J; Whitton, S W

    1999-08-01

    This work incorporates concepts from the behavioral confirmation tradition, self tradition, and interdependence tradition to identify an interpersonal process termed the Michelangelo phenomenon. The Michelangelo phenomenon describes the means by which the self is shaped by a close partner's perceptions and behavior. Specifically, self movement toward the ideal self is described as a product of partner affirmation, or the degree to which a partner's perceptions of the self and behavior toward the self are congruent with the self's ideal. The results of 4 studies revealed strong associations between perceived partner affirmation and self movement toward the ideal self, using a variety of participant populations and measurement methods. In addition, perceived partner affirmation--particularly perceived partner behavioral affirmation--was strongly associated with quality of couple functioning and stability in ongoing relationships.

  20. A new method of imposing boundary conditions for hyperbolic equations

    NASA Technical Reports Server (NTRS)

    Funaro, D.; ative.

    1987-01-01

    A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.

  1. Advantageous grain boundaries in iron pnictide superconductors

    PubMed Central

    Katase, Takayoshi; Ishimaru, Yoshihiro; Tsukamoto, Akira; Hiramatsu, Hidenori; Kamiya, Toshio; Tanabe, Keiichi; Hosono, Hideo

    2011-01-01

    High critical temperature superconductors have zero power consumption and could be used to produce ideal electric power lines. The principal obstacle in fabricating superconducting wires and tapes is grain boundaries—the misalignment of crystalline orientations at grain boundaries, which is unavoidable for polycrystals, largely deteriorates critical current density. Here we report that high critical temperature iron pnictide superconductors have advantages over cuprates with respect to these grain boundary issues. The transport properties through well-defined bicrystal grain boundary junctions with various misorientation angles (θGB) were systematically investigated for cobalt-doped BaFe2As2 (BaFe2As2:Co) epitaxial films fabricated on bicrystal substrates. The critical current density through bicrystal grain boundary (JcBGB) remained high (>1 MA cm−2) and nearly constant up to a critical angle θc of ∼9°, which is substantially larger than the θc of ∼5° for YBa2Cu3O7–δ. Even at θGB>θc, the decay of JcBGB was much slower than that of YBa2Cu3O7–δ. PMID:21811238

  2. Flight-measured laminar boundary-layer transition phenomena including stability theory analysis

    NASA Technical Reports Server (NTRS)

    Obara, C. J.; Holmes, B. J.

    1985-01-01

    Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows.

  3. Stalactite growth as a free-boundary problem: a geometric law and its platonic ideal.

    PubMed

    Short, Martin B; Baygents, James C; Beck, J Warren; Stone, David A; Toomey, Rickard S; Goldstein, Raymond E

    2005-01-14

    The chemical mechanisms underlying the growth of cave formations such as stalactites are well known, yet no theory has yet been proposed which successfully accounts for the dynamic evolution of their shapes. Here we consider the interplay of thin-film fluid dynamics, calcium carbonate chemistry, and CO2 transport in the cave to show that stalactites evolve according to a novel local geometric growth law which exhibits extreme amplification at the tip as a consequence of the locally-varying fluid layer thickness. Studies of this model show that a broad class of initial conditions is attracted to an ideal shape which is strikingly close to a statistical average of natural stalactites.

  4. Wavelet Filtering to Reduce Conservatism in Aeroservoelastic Robust Stability Margins

    NASA Technical Reports Server (NTRS)

    Brenner, Marty; Lind, Rick

    1998-01-01

    Wavelet analysis for filtering and system identification was used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins was reduced with parametric and nonparametric time-frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data was used to reduce the effects of external desirableness and unmodeled dynamics. Parametric estimates of modal stability were also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. F-18 high Alpha Research Vehicle aeroservoelastic flight test data demonstrated improved robust stability prediction by extension of the stability boundary beyond the flight regime.

  5. Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

    DOE PAGES

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven; ...

    2016-01-13

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  6. Prediction of pilot-aircraft stability boundaries and performance contours

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Broussard, J. R.

    1977-01-01

    Control-theoretic pilot models can provide important new insights regarding the stability and performance characteristics of the pilot-aircraft system. Optimal-control pilot models can be formed for a wide range of flight conditions, suggesting that the human pilot can maintain stability if he adapts his control strategy to the aircraft's changing dynamics. Of particular concern is the effect of sub-optimal pilot adaptation as an aircraft transitions from low to high angle-of-attack during rapid maneuvering, as the changes in aircraft stability and control response can be extreme. This paper examines the effects of optimal and sub-optimal effort during a typical 'high-g' maneuver, and it introduces the concept of minimum-control effort (MCE) adaptation. Limited experimental results tend to support the MCE adaptation concept.

  7. Motion of negative ion plasma near the boundary with electron−ion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Yu. V., E-mail: medve@mail.ru

    2017-01-15

    Processes occurring near the boundary between three-component plasma with negative ions and two-component electron−ion plasma are considered. The excited waves and instability are described. Stability condition at the boundary is determined.

  8. Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2015-01-01

    Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.

  9. The Place of Ideals in Teaching.

    ERIC Educational Resources Information Center

    Hansen, David T.

    This paper examines whether ideals and idealism have a role to play in teaching, identifying some ambiguities and problems associated with ideals and arguing that ideals figure importantly in teaching, but they are ideals of character or personhood as much as they are ideals of educational purpose. The first section focuses on the promise and…

  10. BOUNDARY SHEAR STRESS ALONG VEGETATED STREAMBANKS

    EPA Science Inventory

    This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The resu...

  11. Computer program for design of two-dimensional supersonic turbine rotor blades with boundary-layer correction

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Scullin, V. J.

    1971-01-01

    A FORTRAN 4 computer program for the design of two-dimensional supersonic rotor blade sections corrected for boundary-layer displacement thickness is presented. The ideal rotor is designed by the method of characteristics to produce vortex flow within the blade passage. The boundary-layer parameters are calculated by Cohen and Reshotoko's method for laminar flow and Sasman and Cresci's method for turbulent flow. The program input consists essentially of the blade surface Mach number distribution and total flow conditions. The primary output is the corrected blade profile and the boundary-layer parameters.

  12. Variational Integration for Ideal Magnetohydrodynamics and Formation of Current Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao

    Coronal heating has been a long-standing conundrum in solar physics. Parker's conjecture that spontaneous current singularities lead to nanoflares that heat the corona has been controversial. In ideal magnetohydrodynamics (MHD), can genuine current singularities emerge from a smooth 3D line-tied magnetic field? To numerically resolve this issue, the schemes employed must preserve magnetic topology exactly to avoid artificial reconnection in the presence of (nearly) singular current densities. Structure-preserving numerical methods are favorable for mitigating numerical dissipation, and variational integration is a powerful machinery for deriving them. However, successful applications of variational integration to ideal MHD have been scarce. In thismore » thesis, we develop variational integrators for ideal MHD in Lagrangian labeling by discretizing Newcomb's Lagrangian on a moving mesh using discretized exterior calculus. With the built-in frozen-in equation, the schemes are free of artificial reconnection, hence optimal for studying current singularity formation. Using this method, we first study a fundamental prototype problem in 2D, the Hahm-Kulsrud-Taylor (HKT) problem. It considers the effect of boundary perturbations on a 2D plasma magnetized by a sheared field, and its linear solution is singular. We find that with increasing resolution, the nonlinear solution converges to one with a current singularity. The same signature of current singularity is also identified in other 2D cases with more complex magnetic topologies, such as the coalescence instability of magnetic islands. We then extend the HKT problem to 3D line-tied geometry, which models the solar corona by anchoring the field lines in the boundaries. The effect of such geometry is crucial in the controversy over Parker's conjecture. The linear solution, which is singular in 2D, is found to be smooth. However, with finite amplitude, it can become pathological above a critical system length. The

  13. Stability Analysis of Roughness Array Wake in a High-Speed Boundary Layer

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Li, Fei; Edwards, Jack

    2009-01-01

    Computations are performed to examine the effects of both an isolated and spanwise periodic array of trip elements on a high-speed laminar boundary layer, so as to identify the potential physical mechanisms underlying an earlier transition to turbulence as a result of the trip(s). In the context of a 0.333 scale model of the Hyper-X forebody configuration, the time accurate solution for an array of ramp shaped trips asymptotes to a stationary field at large times, indicating the likely absence of a strong absolute instability in the mildly separated flow due to the trips. A prominent feature of the wake flow behind the trip array corresponds to streamwise streaks that are further amplified in passing through the compression corner. Stability analysis of the streaks using a spatial, 2D eigenvalue approach reveals the potential for a strong convective instability that might explain the earlier onset of turbulence within the array wake. The dominant modes of streak instability are primarily sustained by the spanwise gradients associated with the streaks and lead to integrated logarithmic amplification factors (N factors) approaching 7 over the first ramp of the scaled Hyper-X forebody, and substantially higher over the second ramp. Additional computations are presented to shed further light on the effects of both trip geometry and the presence of a compression corner on the evolution of the streaks.

  14. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  15. Medical ethics and more: ideal theories, non-ideal theories and conscientious objection.

    PubMed

    Luna, Florencia

    2015-01-01

    Doing 'good medical ethics' requires acknowledgment that it is often practised in non-ideal circumstances! In this article I present the distinction between ideal theory (IT) and non-ideal theory (NIT). I show how IT may not be the best solution to tackle problems in non-ideal contexts. I sketch a NIT framework as a useful tool for bioethics and medical ethics and explain how NITs can contribute to policy design in non-ideal circumstances. Different NITs can coexist and be evaluated vis-à-vis the IT. Additionally, I address what an individual doctor ought to do in this non-ideal context with the view that knowledge of NITs can facilitate the decision-making process. NITs help conceptualise problems faced in the context of non-compliance and scarcity in a better and more realistic way. Deciding which policy is optimal in such contexts may influence physicians' decisions regarding their patients. Thus, this analysis-usually identified only with policy making-may also be relevant to medical ethics. Finally, I recognise that this is merely a first step in an unexplored but fundamental theoretical area and that more work needs to be done. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. Boundary Conditions for Jet Flow Computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, E.

    1994-01-01

    Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.

  17. Effect of fluid-colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids.

    PubMed

    Fedosov, Dmitry A; Sengupta, Ankush; Gompper, Gerhard

    2015-09-07

    Janus colloids propelled by light, e.g., thermophoretic particles, offer promising prospects as artificial microswimmers. However, their swimming behavior and its dependence on fluid properties and fluid-colloid interactions remain poorly understood. Here, we investigate the behavior of a thermophoretic Janus colloid in its own temperature gradient using numerical simulations. The dissipative particle dynamics method with energy conservation is used to investigate the behavior in non-ideal and ideal-gas like fluids for different fluid-colloid interactions, boundary conditions, and temperature-controlling strategies. The fluid-colloid interactions appear to have a strong effect on the colloid behavior, since they directly affect heat exchange between the colloid surface and the fluid. The simulation results show that a reduction of the heat exchange at the fluid-colloid interface leads to an enhancement of colloid's thermophoretic mobility. The colloid behavior is found to be different in non-ideal and ideal fluids, suggesting that fluid compressibility plays a significant role. The flow field around the colloid surface is found to be dominated by a source-dipole, in agreement with the recent theoretical and simulation predictions. Finally, different temperature-control strategies do not appear to have a strong effect on the colloid's swimming velocity.

  18. Developmental Idealism in China

    PubMed Central

    Thornton, Arland; Xie, Yu

    2016-01-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20th century, substantial numbers of Chinese had reacted to the country’s defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today. PMID:28316833

  19. Developmental Idealism in China.

    PubMed

    Thornton, Arland; Xie, Yu

    2016-10-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19 th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20 th century, substantial numbers of Chinese had reacted to the country's defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today.

  20. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  1. Some aspects of the problem of secondary eyewall formation in idealized three-dimensional nonlinear simulations

    NASA Astrophysics Data System (ADS)

    Menelaou, K.; Yau, M. K.; Martinez, Y.

    2014-09-01

    Some aspects of the problem of secondary eyewall formation (SEF) are investigated with the aid of an idealized model. A series of experiments are conducted, starting with a strong annular vortex embedded in a quiescent background flow and forced by the sustained heating associated with a spiral rainband (control experiment). Following this, two experiments are configured to assess the impact of vertical wind shear (VWS) in the SEF process. The importance of the boundary layer force imbalance is finally investigated in a number of simulations in which surface and boundary layer physics are included. From the control experiment, it is found that in the absence of background environmental flow, the sustained latent heating associated with a spiral rainband can form a secondary eyewall even in the absence of a frictional boundary layer. The presence of VWS acts negatively in the SEF process by disrupting the organization of the potential vorticity induced by the rainband. When boundary layer physics is included, some similarities with previous studies are seen, but there is no SEF. These results suggest that the boundary layer most likely contributes to, rather than initiate, a secondary eyewall. This article was corrected on 10 OCT 2014. See the end of the full text for details.

  2. Impact of Wind Shear Characteristics on Roll Structure in Idealized Hurricane Boundary Layers

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jiang, Q.

    2016-12-01

    The hurricane boundary layer (HBL) is well known for its critical role in evolutions of tropical cyclones (TCs) as the air-sea interaction represents both the most important source and sink of the moist available energy and the kinetic energy, respectively. One of the frequently occurring features in the HBL is horizontal roll vortices, which have quasi-two dimensional coherent and banded structure extending from the surface to the top of the HBL. It is believed that this highly coherent structure, caused by the inflection point instability in the basic wind profiles, plays an important role in organizing turbulent transport. To understand this role, large-eddy simulations are conducted to investigate how the wind shear characteristics such as the shear strength and inflection-point level can impact the roll structure in terms of its spectral characteristics and turbulence organization. A mean wind profile nudging approach is used in the simulations to maintain the required mean wind shear without directly affecting turbulent motions. Enhancing the radial wind shear expands the roll horizontal scale and strengthens the roll's kinetic energy. Increasing the inflection-point level tends to produce a narrow and sharp peak in the power spectrum at the wavelength consistent with the roll spacing indicated by the instantaneous turbulent fields. The spectral tangential momentum flux, in particular, reaches a strong peak value at the roll wavelength. In contrast, the spectral radial momentum flux obtains its maximum at the wavelength that is usually shorter than the roll's, suggesting that the roll radial momentum transport is less efficient than the tangential. The most robust rolls are produced in a simulation with the highest inflection-point level and strong radial wind shear. Based on the spectral analysis, the roll-scale contribution to the turbulent momentum flux can reach 40% in the middle of the boundary layer.

  3. Finite element stress analysis of idealized composite damage zones

    NASA Technical Reports Server (NTRS)

    Obrien, D.; Herakovich, C. T.

    1978-01-01

    A quasi three dimensional finite element stress analysis of idealized damage zones in composite laminates is presented. The damage zones consist of a long centered groove or cutout extending one or two layers in depth from both top and bottom surfaces of a thin composite laminate. Elastic results are presented for compressive loading of four and eight layer laminates. It is shown that a boundary layer exists near the cutout edge similar to that previously shown to exist along free edges. The cutout is shown to produce significant interlaminar stresses in the interior of the laminate away from free cutout edges. The interlaminar stresses are also shown to contribute to failure which is defined using the Tsai-Wu failure criteria.

  4. Equation of state of an ideal gas with nonergodic behavior in two connected vessels.

    PubMed

    Naplekov, D M; Semynozhenko, V P; Yanovsky, V V

    2014-01-01

    We consider a two-dimensional collisionless ideal gas in the two vessels connected through a small hole. One of them is a well-behaved chaotic billiard, another one is known to be nonergodic. A significant part of the second vessel's phase space is occupied by an island of stability. In the works of Zaslavsky and coauthors, distribution of Poincaré recurrence times in similar systems was considered. We study the gas pressure in the vessels; it is uniform in the first vessel and not uniform in second one. An equation of the gas state in the first vessel is obtained. Despite the very different phase-space structure, behavior of the second vessel is found to be very close to the behavior of a good ergodic billiard but of different volume. The equation of state differs from the ordinary equation of ideal gas state by an amendment to the vessel's volume. Correlation of this amendment with a share of the phase space under remaining intact islands of stability is shown.

  5. Stabilization of multiple rib fractures in a canine model.

    PubMed

    Huang, Ke-Nan; Xu, Zhi-Fei; Sun, Ju-Xian; Ding, Xin-Yu; Wu, Bin; Li, Wei; Qin, Xiong; Tang, Hua

    2014-12-01

    Operative stabilization is frequently used in the clinical treatment of multiple rib fractures (MRF); however, no ideal material exists for use in this fixation. This study investigates a newly developed biodegradable plate system for the stabilization of MRF. Silk fiber-reinforced polycaprolactone (SF/PCL) plates were developed for rib fracture stabilization and studied using a canine flail chest model. Adult mongrel dogs were divided into three groups: one group received the SF/PCL plates, one group received standard clinical steel plates, and the final group did not undergo operative fracture stabilization (n = 6 for each group). Radiographic, mechanical, and histologic examination was performed to evaluate the effectiveness of the biodegradable material for the stabilization of the rib fractures. No nonunion and no infections were found when using SF-PCL plates. The fracture sites collapsed in the untreated control group, leading to obvious chest wall deformity not encountered in the two groups that underwent operative stabilization. Our experimental study shows that the SF/PCL plate has the biocompatibility and mechanical strength suitable for fixation of MRF and is potentially ideal for the treatment of these injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  7. Weak stability boundary transfer to the Moon from GTO as a piggyback payload on Ariane 5

    NASA Astrophysics Data System (ADS)

    Quantius, Dominik; Spurmann, Jörn; Dekens, Erwin; Päsler, Hartmut

    2012-06-01

    In cooperation with the German non-profit amateur satellite organisation (AMSAT-DL), the German Aerospace Center developed the idea of using AMSAT's Earth satellite P3-D as a baseline for a Moon mission. For cost-effectiveness, P3-D was launched as an auxiliary payload on Ariane 5 into a geosynchronous transfer orbit (GTO) and used its on-board propulsion system to achieve a Molniya orbit. The present study describes how a similar satellite can reach a 100 × 100 km lunar orbit with the same launch strategy. A delta-v saving transfer scenario using the weak stability boundary transfer was found to be feasible taking a P3-D-like satellite bus into account. It contains phasing orbits as a solution for non-dedicated launch dates and deals with the constraints of Ariane's GTO. This approach opens up the opportunity to accomplish a low-cost mission to the Moon with public and scientific value.

  8. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 2; Phase-Averages

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.

  9. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  10. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  11. Constructing integrable high-pressure full-current free-boundary stellarator magnetohydrodynamic equilibrium solutions

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.; Monticello, D. A.; Reiman, A. H.; Strickler, D. J.; Hirshman, S. P.; Ku, L.-P.; Lazarus, E.; Brooks, A.; Zarnstorff, M. C.; Boozer, A. H.; Fu, G.-Y.; Neilson, G. H.

    2003-10-01

    For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schlüter currents, diamagnetic currents and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to design the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver (Reiman and Greenside 1986 Comput. Phys. Commun. 43 157) which iterates the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator eXperiment (Reiman et al 2001 Phys. Plasma 8 2083).

  12. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    and alpha → gamma phase transformation in Fe-Ni-Zr alloys. In addition to the experimental study of thermal stabilization of nanocrystalline Fe-Cr-Zr or Fe-Ni-Zr alloys, the thesis presented here developed a new predictive model, applicable to strongly segregating solutes, for thermodynamic stabilization of binary alloys. This model can serve as a benchmark for selecting solute and evaluating the possible contribution of stabilization. Following a regular solution model, both the chemical and elastic strain energy contributions are combined to obtain the mixing enthalpy. The total Gibbs free energy of mixing is then minimized with respect to simultaneous variations in the grain boundary volume fraction and the solute concentration in the grain boundary and the grain interior. The Lagrange multiplier method was used to obtained numerical solutions. Application are given for the temperature dependence of the grain size and the grain boundary solute excess for selected binary system where experimental results imply that thermodynamic stabilization could be operative. This thesis also extends the binary model to a new model for thermodynamic stabilization of ternary nanocrystalline alloys. It is applicable to strongly segregating size-misfit solutes and uses input data available in the literature. In a same manner as the binary model, this model is based on a regular solution approach such that the chemical and elastic strain energy contributions are incorporated into the mixing enthalpy DeltaHmix, and the mixing entropy DeltaSmix is obtained using the ideal solution approximation. The Gibbs mixing free energy Delta Gmix is then minimized with respect to simultaneous variations in grain growth and solute segregation parameters. The Lagrange multiplier method is similarly used to obtain numerical solutions for the minimum Delta Gmix. The temperature dependence of the nanocrystalline grain size and interfacial solute excess can be obtained for selected ternary systems. As

  13. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    NASA Astrophysics Data System (ADS)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  14. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics

    PubMed Central

    Lei, Huan; Fedosov, Dmitry A.; Karniadakis, George Em

    2011-01-01

    We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase. PMID:21499548

  15. On-Line Robust Modal Stability Prediction using Wavelet Processing

    NASA Technical Reports Server (NTRS)

    Brenner, Martin J.; Lind, Rick

    1998-01-01

    Wavelet analysis for filtering and system identification has been used to improve the estimation of aeroservoelastic stability margins. The conservatism of the robust stability margins is reduced with parametric and nonparametric time- frequency analysis of flight data in the model validation process. Nonparametric wavelet processing of data is used to reduce the effects of external disturbances and unmodeled dynamics. Parametric estimates of modal stability are also extracted using the wavelet transform. Computation of robust stability margins for stability boundary prediction depends on uncertainty descriptions derived from the data for model validation. The F-18 High Alpha Research Vehicle aeroservoelastic flight test data demonstrates improved robust stability prediction by extension of the stability boundary beyond the flight regime. Guidelines and computation times are presented to show the efficiency and practical aspects of these procedures for on-line implementation. Feasibility of the method is shown for processing flight data from time- varying nonstationary test points.

  16. The effects of a uniform axial magnetic field on the global stability of the rotating-disk boundary-layer

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2006-11-01

    Following on from the earlier discovery by Lingwood (1995) that the rotating-disk boundary-layer is absolutely unstable, Jasmine & Gajjar (2005) have shown that the application of a uniform axial magnetic field can raise the critical Reynolds number for the onset of absolute instability. As with Lingwood's analysis, a parallel-flow' type of approximation is needed in order to derive this locally-based stability result. The approximation amounts to a freezing out' of the underlying radial variation of the mean flow. Numerical simulations have been conducted to investigate the behaviour of linearized disturbances in the genuine rotating disk boundary layer, where the radial dependence of the mean flow is fully accounted for. This extends the work of Davies & Carpenter (2003), who studied the more usual rotating-disk problem, in the absence of any magnetic field. The simulation results suggest that globally unstable behaviour can be promoted when a uniform axial magnetic field is applied. Impulsively excited disturbances were found to display an increasingly rapid growth at the radial position of the impulse, albeit without any selection of a dominant frequency, as would be more usual for an unstable global mode. This is very similar to the behaviour to that was observed in a recent investigation by Davies & Thomas (2005) of the effects of mass transfer, where suction was also found to promote global instability.

  17. The inviscid stability of supersonic flow past axisymmetric bodies

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).

  18. Instability of a Supersonic Boundary-Layer with Localized Roughness

    NASA Technical Reports Server (NTRS)

    Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2010-01-01

    A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).

  19. How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

    NASA Astrophysics Data System (ADS)

    Schlögl, Sebastian; Lehning, Michael; Nishimura, Kouichi; Huwald, Hendrik; Cullen, Nicolas J.; Mott, Rebecca

    2017-10-01

    We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin-Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin-Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6 W m^{-2} (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5 W m^{-2}, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin-Obukhov bulk formulation.

  20. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient.

    PubMed

    Chen, Juan; Cui, Baotong; Chen, YangQuan

    2018-06-11

    This paper presents a boundary feedback control design for a fractional reaction diffusion (FRD) system with a space-dependent (non-constant) diffusion coefficient via the backstepping method. The contribution of this paper is to generalize the results of backstepping-based boundary feedback control for a FRD system with a space-independent (constant) diffusion coefficient to the case of space-dependent diffusivity. For the boundary stabilization problem of this case, a designed integral transformation treats it as a problem of solving a hyperbolic partial differential equation (PDE) of transformation's kernel, then the well posedness of the kernel PDE is solved for the plant with non-constant diffusivity. Furthermore, by the fractional Lyapunov stability (Mittag-Leffler stability) theory and the backstepping-based boundary feedback controller, the Mittag-Leffler stability of the closed-loop FRD system with non-constant diffusivity is proved. Finally, an extensive numerical example for this closed-loop FRD system with non-constant diffusivity is presented to verify the effectiveness of our proposed controller. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Hypersonic Boundary Layer Instability Over a Corner

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Zhao, Hong-Wu; McClinton, Charles (Technical Monitor)

    2001-01-01

    A boundary-layer transition study over a compression corner was conducted under a hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full Navier-Stokes equations were solved to simulate the development of disturbance in the boundary layer. A linear stability analysis and PSE method were used to get the initial disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to solve the full Navier-stokes by using WENO(weighted essentially non-oscillating) scheme. The given numerical results show the evolution of the linear disturbance for the most amplified disturbance in supersonic and hypersonic flow over a compression ramp. The nonlinear computations also determined the minimal amplitudes necessary to cause transition at a designed location.

  2. Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Bowen

    and reconstruction LES framework. The DRM is a mixed model that consists of subgrid scale (SGS) and resolved subfilter scale (RSFS) components. The RSFS portion is represented by a scale-similarity model that allows for backscatter of energy from the SFS to the mean flow. Compared to conventional closures, the DRM is able to sustain resolved turbulence under moderate stability at coarser resolution (thus saving computational resources). The DRM performs equally well at fine resolution. Under strong stability, the DRM simulates an intermittently turbulent SBL, whereas conventional closures predict false laminar flows. The improved simulation methodology of the SBL has many potential applications in the area of wind energy, numerical weather prediction, pollution modeling and so on. The SBL is first simulated over idealized flat terrain with prescribed forcings and periodic lateral boundaries. A wide range of stability regimes, from weakly to strongly stable conditions, is tested to evaluate model performance. Under strongly stable conditions, intermittency due to mean shear and turbulence interactions is simulated and analyzed. Furthermore, results of the strongly stable SBL are used to improve wind farm siting and nighttime operations. Moving away from the idealized setting, the SBL is simulated over relatively flat terrain at a Kansas site over the Great Plains, where the Cooperative Atmospheric-Surface Exchange Study -- 1999 (CASES-99) took place. The LES obtains realistic initial and lateral boundary conditions from a meso-scale model reanalysis through a grid nesting procedure. Shear-instability induced intermittency observed on the night of Oct 5th during CASES-99 is reproduced to good temporal and magnitude agreement. The LES locates the origin of the shear-instability waves in a shallow upwind valley, and uncovers the intermittency mechanism to be wave breaking over a standing wave (formed over a stagnant cold-air bubble) across the valley. Finally, flow over

  3. Simulation of Nonlinear Instabilities in an Attachment-Line Boundary Layer

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1996-01-01

    The linear and the nonlinear stability of disturbances that propagate along the attachment line of a three-dimensional boundary layer is considered. The spatially evolving disturbances in the boundary layer are computed by direct numerical simulation (DNS) of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either by forcing at the in ow or by applying suction and blowing at the wall. Quasi-parallel linear stability theory and a nonparallel theory yield notably different stability characteristics for disturbances near the critical Reynolds number; the DNS results con rm the latter theory. Previously, a weakly nonlinear theory and computations revealed a high wave-number region of subcritical disturbance growth. More recent computations have failed to achieve this subcritical growth. The present computational results indicate the presence of subcritically growing disturbances; the results support the weakly nonlinear theory. Furthermore, an explanation is provided for the previous theoretical and computational discrepancy. In addition, the present results demonstrate that steady suction can be used to stabilize disturbances that otherwise grow subcritically along the attachment line.

  4. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  5. The three-class ideal observer for univariate normal data: Decision variable and ROC surface properties

    PubMed Central

    Edwards, Darrin C.; Metz, Charles E.

    2012-01-01

    Although a fully general extension of ROC analysis to classification tasks with more than two classes has yet to be developed, the potential benefits to be gained from a practical performance evaluation methodology for classification tasks with three classes have motivated a number of research groups to propose methods based on constrained or simplified observer or data models. Here we consider an ideal observer in a task with underlying data drawn from three univariate normal distributions. We investigate the behavior of the resulting ideal observer’s decision variables and ROC surface. In particular, we show that the pair of ideal observer decision variables is constrained to a parametric curve in two-dimensional likelihood ratio space, and that the decision boundary line segments used by the ideal observer can intersect this curve in at most six places. From this, we further show that the resulting ROC surface has at most four degrees of freedom at any point, and not the five that would be required, in general, for a surface in a six-dimensional space to be non-degenerate. In light of the difficulties we have previously pointed out in generalizing the well-known area under the ROC curve performance metric to tasks with three or more classes, the problem of developing a suitable and fully general performance metric for classification tasks with three or more classes remains unsolved. PMID:23162165

  6. Streamline-curvature effect in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.; Lin, Ray-Sing; Petraglia, Media M.

    1992-01-01

    The effect of including wall and streamline curvature terms in swept-wing boundary-layer stability calculations is studied. The linear disturbance equations are cast on a fixed, body-intrinsic, curvilinear coordinate system. Those nonparallel terms which contribute mainly to the streamline-curvature effect are retained in this formulation and approximated by their local finite-difference values. Convex-wall curvature has a stabilizing effect, while streamline curvature is destabilizing if the curvature exceeds a critical value.

  7. Boundary Closures for Fourth-order Energy Stable Weighted Essentially Non-Oscillatory Finite Difference Schemes

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.; Yamaleev, Nail K.; Frankel, Steven H.

    2009-01-01

    A general strategy exists for constructing Energy Stable Weighted Essentially Non Oscillatory (ESWENO) finite difference schemes up to eighth-order on periodic domains. These ESWENO schemes satisfy an energy norm stability proof for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, boundary closures are developed for the fourth-order ESWENO scheme that maintain wherever possible the WENO stencil biasing properties, while satisfying the summation-by-parts (SBP) operator convention, thereby ensuring stability in an L2 norm. Second-order, and third-order boundary closures are developed that achieve stability in diagonal and block norms, respectively. The global accuracy for the second-order closures is three, and for the third-order closures is four. A novel set of non-uniform flux interpolation points is necessary near the boundaries to simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil biasing mechanics.

  8. Multiscale Modeling of Grain Boundaries in ZrB2: Structure, Energetics, and Thermal Resistance

    NASA Technical Reports Server (NTRS)

    Lawson, John W.; Daw, Murray S.; Squire, Thomas H.; Bauschlicher, Charles W., Jr.

    2012-01-01

    A combination of ab initio, atomistic and finite element methods (FEM) were used to investigate the structures, energetics and lattice thermal conductance of grain boundaries for the ultra high temperature ceramic ZrB2. Atomic models of idealized boundaries were relaxed using density functional theory. Information about bonding across the interfaces was determined from the electron localization function. The Kapitza conductance of larger scale versions of the boundary models were computed using non-equilibrium molecular dynamics. The interfacial thermal parameters together with single crystal thermal conductivities were used as parameters in microstructural computations. FEM meshes were constructed on top of microstructural images. From these computations, the effective thermal conductivity of the polycrystalline structure was determined.

  9. Investigation of Kelvin-Helmholtz Instability in the boundary layer using Doppler lidar and radiosonde data

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar; Das, Siddarth Shankar; Saha, Korak; Murali Krishna, U. V.; Dani, K. K.

    2018-04-01

    Characteristics of Kelvin Helmholtz Instability (KHI) using Doppler wind lidar observation have rarely been reported during the Indian summer monsoon season. In this paper, we present a case study of KHI near planetary boundary layer using Doppler wind lidar and radiosonde measurements at Mahabubnagar, a tropical Indian station. The data was collected during the Integrated Ground Observation Campaign (June-October 2011) under the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment-2011. The continuous wind lidar observation during 10-16 August 2011 shows there is an increase in carrier-to-noise ratio values near planetary boundary layer from 03:00 to 11:00 LT on 13 August; reveals the formation of KHI. There is a strong power bursts pattern corresponding to high turbulence characteristics in the early half of the day. The KHI temporal evolution from initial to dissipating stage is observed with clear variation in the carrier-to-noise ratio values. The observed KHI billows are in the height between 600 and 1200 m and lasted for about 7.5 h. The vertical velocity from Doppler lidar measurement shows the presence of updrafts after breaking of KHI in the boundary layer. The presence of strong wind shear, high stability parameter, low Richardson number and high relative humidity during the enhanced carrier-to-noise ratio period indicates the ideal condition for the formation and persistence of this dynamic instability. A typical characteristic of trapped humidity above the KHI billows suggest the presence of strong inversion. A wavelet analysis of 3-dimensional wind components show dominant periodicity of 45-65 min and the periodicity in vertical wind is more prominent.

  10. Re-Innovating Recycling for Turbulent Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Joseph; Blanquart, Guillaume

    2017-11-01

    Historically, turbulent boundary layers along a flat plate have been expensive to simulate numerically, in part due to the difficulty of initializing the inflow with ``realistic'' turbulence, but also due to boundary layer growth. The former has been resolved in several ways, primarily dedicating a region of at least 10 boundary layer thicknesses in width to rescale and recycle flow or by extending the region far enough downstream to allow a laminar flow to develop into turbulence. Both of these methods are relatively costly. We propose a new method to remove the need for an inflow region, thus reducing computational costs significantly. Leveraging the scale similarity of the mean flow profiles, we introduce a coordinate transformation so that the boundary layer problem can be solved as a parallel flow problem with additional source terms. The solutions in the new coordinate system are statistically homogeneous in the downstream direction and so the problem can be solved with periodic boundary conditions. The present study shows the stability of this method, its implementation and its validation for a few laminar and turbulent boundary layer cases.

  11. Large-eddy simulations of mechanical and thermal processes within boundary layer of the Graciosa Island

    NASA Astrophysics Data System (ADS)

    Sever, G.; Collis, S. M.; Ghate, V. P.

    2017-12-01

    Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ < 100 meter) simulations. Ideal configurations include model initializations with ideal dry and moist temperature and wind profiles to capture flow features over an island-like topography. Real configurations will use observations from different climatological background states over the Eastern Northern Atlantic, Atmospheric Radiation Measurement (ENA-ARM) site on Graciosa Island. Initial small-domain large-eddy simulations (LES) of dry airflow produce cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.

  12. Stability Results for Idealized Shear Flows on a Rectangular Periodic Domain

    NASA Astrophysics Data System (ADS)

    Dullin, Holger R.; Worthington, Joachim

    2018-06-01

    We present a new linearly stable solution of the Euler fluid flow on a torus. On a two-dimensional rectangular periodic domain [0,2π )× [0,2π / κ ) for κ \\in R^+, the Euler equations admit a family of stationary solutions given by the vorticity profiles Ω ^*(x)= Γ cos (p_1x_1+ κ p_2x_2). We show linear stability for such flows when p_2=0 and κ ≥ |p_1| (equivalently p_1=0 and κ {|p_2|}≤ {1}). The classical result due to Arnold is that for p_1 = 1, p_2 = 0 and κ ≥ 1 the stationary flow is nonlinearly stable via the energy-Casimir method. We show that for κ ≥ |p_1| ≥ 2, p_2 = 0 the flow is linearly stable, but one cannot expect a similar nonlinear stability result. Finally we prove nonlinear instability for all steady states satisfying p_1^2+κ ^2{p_2^2}>{3(κ ^2+1)}/4(7-4√{3)}. The modification and application of a structure-preserving Hamiltonian truncation is discussed for the anisotropic case κ ≠ 1. This leads to an explicit Lie-Poisson integrator for the approximate system, which is used to illustrate our analytical results.

  13. Wave phenomena in a high Reynolds number compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1985-01-01

    Growth of unstable disturbances in a high Reynolds number compressible boundary layer is numerically simulated. Localized periodic surface heating and cooling as a means of active control of these disturbances is studied. It is shown that compressibility in itself stabilizes the flow but at a lower Mach number, significant nonlinear distortions are produced. Phase cancellation is shown to be an effective mechanism for active boundary layer control.

  14. Stability of short-axial-wavelength internal kink modes of an anisotropic plasma

    NASA Astrophysics Data System (ADS)

    Faghihi, M.; Scheffel, J.

    1987-12-01

    The double adiabatic equations are used to study the stability of a cylindrical Z-pinch with respect to small axial wavelength, internal kink (m ≥ 1) modes. It is found that marginally (ideally) unstable, isotropic equilibria are stabilized. Also, constant-current-density equilibria can be stabilized for P > P and large β

  15. From the ideal market to the ideal clinic: constructing a normative standard of fairness for human subjects research.

    PubMed

    Phillips, Trisha

    2011-02-01

    Preventing exploitation in human subjects research requires a benchmark of fairness against which to judge the distribution of the benefits and burdens of a trial. This paper proposes the ideal market and its fair market price as a criterion of fairness. The ideal market approach is not new to discussions about exploitation, so this paper reviews Wertheimer's inchoate presentation of the ideal market as a principle of fairness, attempt of Emanuel and colleagues to apply the ideal market to human subjects research, and Ballantyne's criticisms of both the ideal market and the resulting benchmark of fairness. It argues that the criticism of this particular benchmark is on point, but the rejection of the ideal market is mistaken. After presenting a complete account of the ideal market, this paper proposes a new method for applying the ideal market to human subjects research and illustrates the proposal by considering a sample case.

  16. Boundary shear stress along rigid trapezoidal bends

    Treesearch

    Christopher I. Thornton; Kyung-Seop Sin; Paul Sclafani; Steven R. Abt

    2012-01-01

    The migration of alluvial channels through the geologic landform is an outcome of the natural erosive processes. Mankind continually attempts to stabilize channel meandering processes, both vertically and horizontally, to reduce sediment discharge, provide boundary definition, and enable economic development along the river's edge. A critical component in the...

  17. IDEAL characterization of isometry classes of FLRW and inflationary spacetimes

    NASA Astrophysics Data System (ADS)

    Canepa, Giovanni; Dappiaggi, Claudio; Khavkine, Igor

    2018-02-01

    In general relativity, an IDEAL (Intrinsic, Deductive, Explicit, ALgorithmic) characterization of a reference spacetime metric g 0 consists of a set of tensorial equations T[g]  =  0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g 0. The same notion can be extended to also include scalar or tensor fields, where the equations T[g, φ]=0 are allowed to also depend on the extra fields ϕ. We give the first IDEAL characterization of cosmological FLRW spacetimes, with and without a dynamical scalar (inflaton) field. We restrict our attention to what we call regular geometries, which uniformly satisfy certain identities or inequalities. They roughly split into the following natural special cases: constant curvature spacetime, Einstein static universe, and flat or curved spatial slices. We also briefly comment on how the solution of this problem has implications, in general relativity and inflation theory, for the construction of local gauge invariant observables for linear cosmological perturbations and for stability analysis.

  18. Enthalpy effects on hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Adam, Philippe H.

    Shots with air and carbon dioxide were carried out in the T5 shock tunnel at GALCIT to study enthalpy effects on hypervelocity boundary layers. The model tested was a 1-meter long, 5-deg half-angle cone. It was instrumented with 51 chromel-constantan coaxial thermocouples and the surface heat transfer rate was computed to deduce the state of the boundary layer. Transitional boundary layers obtained confirm the stabilizing effect of enthalpy. As the reservoir enthalpy is increased, the transition Reynolds number evaluated at the reference conditions increases. This stabilizing effect is more rapid in gases with lower dissociation energy and it seems to level off when no further dissociation can be achieved. Normalizing the reservoir enthalpy with the edge enthalpy appears to collapse the data for all gases onto a single curve. A similar collapse is obtained when normalizing both the transition location and the reservoir enthalpy with the maximum temperature conditions obtained with BLIMPK, a nonequilibrium boundary layer code. The observation that reference conditions are more appropriate to normalize high enthalpy transition data was taken a step further by comparing the tunnel data with results from a reentry experiment. When the edge conditions are used, the tunnel and flight data are around an order of magnitude apart. This is commonly attributed to high disturbance levels in tunnels that cause the boundary layer to transition early. However, when the reference conditions are used instead, the tunnel and flight data come within striking distance of one another although the trends with enthalpy are reversed. This difference could be due to the cone bending and nose blunting. Experimental laminar heat transfer levels were compared to numerical results obtained with BLIMPK. Results for air indicate that the reactions are probably in nonequilibrium and that the wall is catalytic. The catalycity is seen to yield higher surface heat transfer rates than the

  19. Stability and electronic structure of the low- Σ grain boundaries in CdTe: a density functional study

    DOE PAGES

    Park, Ji-Sang; Kang, Joongoo; Yang, Ji-Hui; ...

    2015-01-15

    Using first-principles density functional calculations, we investigate the relative stability and electronic structure of the grain boundaries (GBs) in zinc-blende CdTe. Among the low-Σ-value symmetric tilt Σ3 (111), Σ3 (112), Σ5 (120), and Σ5 (130) GBs, we show that the Σ3 (111)GB is always the most stable due to the absence of dangling bonds and wrong bonds. The Σ5 (120) GBs, however, are shown to be more stable than the Σ3 (112) GBs, even though the former has a higher Σ value, and the latter is often used as a model system to study GB effects in zinc-blende semiconductors. Furthermore,more » we find that although containing wrong bonds, the Σ5 (120) GBs are electrically benign due to the short wrong bond lengths, and thus are not as harmful as the Σ3 (112) GBs also having wrong bonds but with longer bond lengths.« less

  20. Asymptotic stability of shear-flow solutions to incompressible viscous free boundary problems with and without surface tension

    NASA Astrophysics Data System (ADS)

    Tice, Ian

    2018-04-01

    This paper concerns the dynamics of a layer of incompressible viscous fluid lying above a rigid plane and with an upper boundary given by a free surface. The fluid is subject to a constant external force with a horizontal component, which arises in modeling the motion of such a fluid down an inclined plane, after a coordinate change. We consider the problem both with and without surface tension for horizontally periodic flows. This problem gives rise to shear-flow equilibrium solutions, and the main thrust of this paper is to study the asymptotic stability of the equilibria in certain parameter regimes. We prove that there exists a parameter regime in which sufficiently small perturbations of the equilibrium at time t=0 give rise to global-in-time solutions that return to equilibrium exponentially in the case with surface tension and almost exponentially in the case without surface tension. We also establish a vanishing surface tension limit, which connects the solutions with and without surface tension.

  1. Noether symmetries and stability of ideal gas solutions in Galileon cosmology

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Jamal, Sameerah; Leon, Genly; Paliathanasis, Andronikos

    2017-03-01

    A class of generalized Galileon cosmological models, which can be described by a pointlike Lagrangian, is considered in order to utilize Noether's theorem to determine conservation laws for the field equations. In the Friedmann-Lemaître-Robertson-Walker universe, the existence of a nontrivial conservation law indicates the integrability of the field equations. Because of the complexity of the latter, we apply the differential invariants approach in order to construct special power-law solutions and study their stability.

  2. STABILITY OF A CYLINDRICAL SOLUTE-SOLVENT INTERFACE: EFFECT OF GEOMETRY, ELECTROSTATICS, AND HYDRODYNAMICS.

    PubMed

    Li, B O; Sun, Hui; Zhou, Shenggao

    The solute-solvent interface that separates biological molecules from their surrounding aqueous solvent characterizes the conformation and dynamics of such molecules. In this work, we construct a solvent fluid dielectric boundary model for the solvation of charged molecules and apply it to study the stability of a model cylindrical solute-solvent interface. The motion of the solute-solvent interface is defined to be the same as that of solvent fluid at the interface. The solvent fluid is assumed to be incompressible and is described by the Stokes equation. The solute is modeled simply by the ideal-gas law. All the viscous force, hydrostatic pressure, solute-solvent van der Waals interaction, surface tension, and electrostatic force are balanced at the solute-solvent interface. We model the electrostatics by Poisson's equation in which the solute-solvent interface is treated as a dielectric boundary that separates the low-dielectric solute from the high-dielectric solvent. For a cylindrical geometry, we find multiple cylindrically shaped equilibrium interfaces that describe polymodal (e.g., dry and wet) states of hydration of an underlying molecular system. These steady-state solutions exhibit bifurcation behavior with respect to the charge density. For their linearized systems, we use the projection method to solve the fluid equation and find the dispersion relation. Our asymptotic analysis shows that, for large wavenumbers, the decay rate is proportional to wavenumber with the proportionality half of the ratio of surface tension to solvent viscosity, indicating that the solvent viscosity does affect the stability of a solute-solvent interface. Consequences of our analysis in the context of biomolecular interactions are discussed.

  3. Ideals and Category Typicality

    ERIC Educational Resources Information Center

    Kim, ShinWoo; Murphy, Gregory L.

    2011-01-01

    Barsalou (1985) argued that exemplars that serve category goals become more typical category members. Although this claim has received support, we investigated (a) whether categories have a single ideal, as negatively valenced categories (e.g., cigarette) often have conflicting goals, and (b) whether ideal items are in fact typical, as they often…

  4. Ideal AFROC and FROC observers.

    PubMed

    Khurd, Parmeshwar; Liu, Bin; Gindi, Gene

    2010-02-01

    Detection of multiple lesions in images is a medically important task and free-response receiver operating characteristic (FROC) analyses and its variants, such as alternative FROC (AFROC) analyses, are commonly used to quantify performance in such tasks. However, ideal observers that optimize FROC or AFROC performance metrics have not yet been formulated in the general case. If available, such ideal observers may turn out to be valuable for imaging system optimization and in the design of computer aided diagnosis techniques for lesion detection in medical images. In this paper, we derive ideal AFROC and FROC observers. They are ideal in that they maximize, amongst all decision strategies, the area, or any partial area, under the associated AFROC or FROC curve. Calculation of observer performance for these ideal observers is computationally quite complex. We can reduce this complexity by considering forms of these observers that use false positive reports derived from signal-absent images only. We also consider a Bayes risk analysis for the multiple-signal detection task with an appropriate definition of costs. A general decision strategy that minimizes Bayes risk is derived. With particular cost constraints, this general decision strategy reduces to the decision strategy associated with the ideal AFROC or FROC observer.

  5. High beta and second stability region transport and stability analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  6. Receptivity of Supersonic Boundary Layers Due To Acoustic Disturbances Over Blunt Cones

    NASA Technical Reports Server (NTRS)

    Balakumar, P.

    2007-01-01

    Receptivity and stability of supersonic boundary layers over a 5-degree straight cone with a blunt tip are numerically investigated at a free stream Mach number of 3.5 and at a high Reynolds number of 106/inch. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The linear stability results showed that bluntness has less stabilizing effects on the stability of boundary layers over cones than on flat plates and wedges. The unsteady simulations of the interaction of plane threedimensional acoustic waves with the cone showed that the modulation of wavelength and the generation of instability waves first occurred near the leading edge in the plane where the constant acoustic phase lines are perpendicular to the cone axis. Further downstream, this instability region spreads in the azimuthal direction from this plane.

  7. Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi

    2017-11-01

    Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.

  8. High beta and second stability region transport and stability analysis: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.H.; Phillips, M.W.

    1995-03-01

    This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model.

  9. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  10. Structural instabilities and wrinkles at the grain boundaries in 2-D h-BN: a first-principles analysis.

    PubMed

    Singh, Anjali; Waghmare, Umesh V

    2014-10-21

    The structure of grain boundaries (GBs) or interfaces between nano-forms of carbon determines their evolution into 3-D forms with nano-scale architecture. Here, we present a general framework for the construction of interfaces in 2-D h-BN and graphene in terms of (a) stacking faults and (b) growth faults, using first-principles density functional theoretical analysis. Such interfaces or GBs involve deviation from their ideal hexagonal lattice structure. We show that a stacking fault involves a linkage of rhombal and octagonal rings (4 : 8), and a growth fault involves a linkage of paired pentagonal and octagonal rings (5 : 5 : 8). While a growth fault is energetically more stable than a stacking fault in graphene, the polarity of B and N leads to the reversal of their relative stability in h-BN. We show that the planar structure of these interfacing grains exhibits instability with respect to buckling (out-of-plane deformation), which results in the formation of a wrinkle at the grain boundary (GB) and rippling of the structure. Our analysis leads to prediction of new types of low-energy GBs of 2-D h-BN and graphene. Our results for electronic and vibrational signatures of these interfaces and an STM image of the most stable interface will facilitate their experimental characterization, particularly of the wrinkles forming spontaneously at these interfaces.

  11. Convergence results for pseudospectral approximations of hyperbolic systems by a penalty type boundary treatment

    NASA Technical Reports Server (NTRS)

    Funaro, Daniele; Gottlieb, David

    1989-01-01

    A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.

  12. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  13. Constructing Integrable High-pressure Full-current Free-boundary Stellarator Magnetohydrodynamic Equilibrium Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.R. Hudson; D.A. Monticello; A.H. Reiman

    For the (non-axisymmetric) stellarator class of plasma confinement devices to be feasible candidates for fusion power stations it is essential that, to a good approximation, the magnetic field lines lie on nested flux surfaces; however, the inherent lack of a continuous symmetry implies that magnetic islands responsible for breaking the smooth topology of the flux surfaces are guaranteed to exist. Thus, the suppression of magnetic islands is a critical issue for stellarator design, particularly for small aspect ratio devices. Pfirsch-Schluter currents, diamagnetic currents, and resonant coil fields contribute to the formation of magnetic islands, and the challenge is to designmore » the plasma and coils such that these effects cancel. Magnetic islands in free-boundary high-pressure full-current stellarator magnetohydrodynamic equilibria are suppressed using a procedure based on the Princeton Iterative Equilibrium Solver [Reiman and Greenside, Comp. Phys. Comm. 43 (1986) 157] which iterate s the equilibrium equations to obtain the plasma equilibrium. At each iteration, changes to a Fourier representation of the coil geometry are made to cancel resonant fields produced by the plasma. The changes are constrained to preserve certain measures of engineering acceptability and to preserve the stability of ideal kink modes. As the iterations continue, the coil geometry and the plasma simultaneously converge to an equilibrium in which the island content is negligible, the plasma is stable to ideal kink modes, and the coils satisfy engineering constraints. The method is applied to a candidate plasma and coil design for the National Compact Stellarator Experiment [Reiman, et al., Phys. Plasmas 8 (May 2001) 2083].« less

  14. A Dissipative Systems Theory for FDTD With Application to Stability Analysis and Subgridding

    NASA Astrophysics Data System (ADS)

    Bekmambetova, Fadime; Zhang, Xinyue; Triverio, Piero

    2017-02-01

    This paper establishes a far-reaching connection between the Finite-Difference Time-Domain method (FDTD) and the theory of dissipative systems. The FDTD equations for a rectangular region are written as a dynamical system having the magnetic and electric fields on the boundary as inputs and outputs. Suitable expressions for the energy stored in the region and the energy absorbed from the boundaries are introduced, and used to show that the FDTD system is dissipative under a generalized Courant-Friedrichs-Lewy condition. Based on the concept of dissipation, a powerful theoretical framework to investigate the stability of FDTD methods is devised. The new method makes FDTD stability proofs simpler, more intuitive, and modular. Stability conditions can indeed be given on the individual components (e.g. boundary conditions, meshes, embedded models) instead of the whole coupled setup. As an example of application, we derive a new subgridding method with material traverse, arbitrary grid refinement, and guaranteed stability. The method is easy to implement and has a straightforward stability proof. Numerical results confirm its stability, low reflections, and ability to handle material traverse.

  15. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  16. Stability investigations of airfoil flow by global analysis

    NASA Technical Reports Server (NTRS)

    Morzynski, Marek; Thiele, Frank

    1992-01-01

    As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.

  17. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. MHD stability analysis and global mode identification preparing for high beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.

    2017-10-01

    H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.

  19. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE PAGES

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...

    2017-08-28

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  20. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  1. "A Guided Walk in the Woods": Boundary Crossing in a Collaborative Action Research Project

    ERIC Educational Resources Information Center

    Jacobs, Gaby

    2017-01-01

    This article discusses the ideal and practice of collaboration in a collaborative action research project in which university researchers work together with staff from the field of primary education. A qualitative case study was conducted using the theory of boundary crossing to make sense of the ways collaboration took place within the project…

  2. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  3. Note on the stability of viscous roll waves

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Johnson, Mathew A.; Noble, Pascal; Rodrigues, Luis Miguel; Zumbrun, Kevin

    2017-02-01

    In this note, we announce a complete classification of the stability of periodic roll-wave solutions of the viscous shallow water equations, from their onset at Froude number F ≈ 2 up to the infinite Froude limit. For intermediate Froude numbers, we obtain numerically a particularly simple power-law relation between F and the boundaries of the region of stable periods, which appears potentially useful in hydraulic engineering applications. In the asymptotic regime F → 2 (onset), we provide an analytic expression of the stability boundaries, whereas in the limit F → ∞, we show that roll waves are always unstable.

  4. Numerical Treatment of Degenerate Diffusion Equations via Feller's Boundary Classification, and Applications

    NASA Technical Reports Server (NTRS)

    Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato

    2011-01-01

    A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.

  5. Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    NASA Technical Reports Server (NTRS)

    Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.

    1960-01-01

    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure

  6. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 1; Instantaneous Fields and Statistics

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.

  7. Good fences: the importance of setting boundaries for peaceful coexistence.

    PubMed

    Rutherford, Alex; Harmon, Dion; Werfel, Justin; Gard-Murray, Alexander S; Bar-Yam, Shlomiya; Gros, Andreas; Xulvi-Brunet, Ramon; Bar-Yam, Yaneer

    2014-01-01

    We consider the conditions of peace and violence among ethnic groups, testing a theory designed to predict the locations of violence and interventions that can promote peace. Characterizing the model's success in predicting peace requires examples where peace prevails despite diversity. Switzerland is recognized as a country of peace, stability and prosperity. This is surprising because of its linguistic and religious diversity that in other parts of the world lead to conflict and violence. Here we analyze how peaceful stability is maintained. Our analysis shows that peace does not depend on integrated coexistence, but rather on well defined topographical and political boundaries separating groups, allowing for partial autonomy within a single country. In Switzerland, mountains and lakes are an important part of the boundaries between sharply defined linguistic areas. Political canton and circle (sub-canton) boundaries often separate religious groups. Where such boundaries do not appear to be sufficient, we find that specific aspects of the population distribution guarantee either sufficient separation or sufficient mixing to inhibit intergroup violence according to the quantitative theory of conflict. In exactly one region, a porous mountain range does not adequately separate linguistic groups and that region has experienced significant violent conflict, leading to the recent creation of the canton of Jura. Our analysis supports the hypothesis that violence between groups can be inhibited by physical and political boundaries. A similar analysis of the area of the former Yugoslavia shows that during widespread ethnic violence existing political boundaries did not coincide with the boundaries of distinct groups, but peace prevailed in specific areas where they did coincide. The success of peace in Switzerland may serve as a model to resolve conflict in other ethnically diverse countries and regions of the world.

  8. Good Fences: The Importance of Setting Boundaries for Peaceful Coexistence

    PubMed Central

    Rutherford, Alex; Harmon, Dion; Werfel, Justin; Gard-Murray, Alexander S.; Bar-Yam, Shlomiya; Gros, Andreas; Xulvi-Brunet, Ramon; Bar-Yam, Yaneer

    2014-01-01

    We consider the conditions of peace and violence among ethnic groups, testing a theory designed to predict the locations of violence and interventions that can promote peace. Characterizing the model's success in predicting peace requires examples where peace prevails despite diversity. Switzerland is recognized as a country of peace, stability and prosperity. This is surprising because of its linguistic and religious diversity that in other parts of the world lead to conflict and violence. Here we analyze how peaceful stability is maintained. Our analysis shows that peace does not depend on integrated coexistence, but rather on well defined topographical and political boundaries separating groups, allowing for partial autonomy within a single country. In Switzerland, mountains and lakes are an important part of the boundaries between sharply defined linguistic areas. Political canton and circle (sub-canton) boundaries often separate religious groups. Where such boundaries do not appear to be sufficient, we find that specific aspects of the population distribution guarantee either sufficient separation or sufficient mixing to inhibit intergroup violence according to the quantitative theory of conflict. In exactly one region, a porous mountain range does not adequately separate linguistic groups and that region has experienced significant violent conflict, leading to the recent creation of the canton of Jura. Our analysis supports the hypothesis that violence between groups can be inhibited by physical and political boundaries. A similar analysis of the area of the former Yugoslavia shows that during widespread ethnic violence existing political boundaries did not coincide with the boundaries of distinct groups, but peace prevailed in specific areas where they did coincide. The success of peace in Switzerland may serve as a model to resolve conflict in other ethnically diverse countries and regions of the world. PMID:24847861

  9. Effect of initial densities in the lattice Boltzmann model for non-ideal fluid with curved interface

    NASA Astrophysics Data System (ADS)

    Gong, Jiaming; Oshima, Nobuyuki

    2017-06-01

    The effect of initial densities in a free energy based two-phase-flow lattice Boltzmann method for non-ideal fluids with a curved interface was investigated in the present work. To investigate this effect, the initial densities in the liquid and gas phases coming from the saturation points and the equilibrium state were adopted in the simulation of a static droplet in an open and a closed system. For the purpose of simplicity and easier comparison, the closed system is fabricated by the implementation of the periodic boundary condition at the inlet and outlet of a gas channel, and the open system is fabricated by the implementation of a constant flux boundary condition at the inlet and a free-out boundary condition at the outlet of the same gas channel. By comparing the simulation results from the two types of initial densities in the open and closed systems, it is proven that the commonly used saturation initial densities setting is the reason for droplet mass and volume variation which occurred in the simulation, particularly in the open system with a constant flux boundary condition. Such problems are believed to come from the curvature effect of the surface tension and can be greatly reduced by adopting the initial densities in the two phases from equilibrium state.

  10. Dynamics and density distribution of strongly confined noninteracting nonaligning self-propelled particles in a nonconvex boundary

    NASA Astrophysics Data System (ADS)

    Fily, Yaouen; Baskaran, Aparna; Hagan, Michael F.

    2015-01-01

    We study the dynamics of nonaligning, noninteracting self-propelled particles confined to a box in two dimensions. In the strong confinement limit, when the persistence length of the active particles is much larger than the size of the box, particles stay on the boundary and align with the local boundary normal. It is then possible to derive the steady-state density on the boundary for arbitrary box shapes. In nonconvex boxes, the nonuniqueness of the boundary normal results in hysteretic dynamics and the density is nonlocal, i.e., it depends on the global geometry of the box. These findings establish a general connection between the geometry of a confining box and the behavior of an ideal active gas it confines, thus providing a powerful tool to understand and design such confinements.

  11. Stabilization of a locally minimal forest

    NASA Astrophysics Data System (ADS)

    Ivanov, A. O.; Mel'nikova, A. E.; Tuzhilin, A. A.

    2014-03-01

    The method of partial stabilization of locally minimal networks, which was invented by Ivanov and Tuzhilin to construct examples of shortest trees with given topology, is developed. According to this method, boundary vertices of degree 2 are not added to all edges of the original locally minimal tree, but only to some of them. The problem of partial stabilization of locally minimal trees in a finite-dimensional Euclidean space is solved completely in the paper, that is, without any restrictions imposed on the number of edges remaining free of subdivision. A criterion for the realizability of such stabilization is established. In addition, the general problem of searching for the shortest forest connecting a finite family of boundary compact sets in an arbitrary metric space is formalized; it is shown that such forests exist for any family of compact sets if and only if for any finite subset of the ambient space there exists a shortest tree connecting it. The theory developed here allows us to establish further generalizations of the stabilization theorem both for arbitrary metric spaces and for metric spaces with some special properties. Bibliography: 10 titles.

  12. Measurements in a Transitioning Cone Boundary Layer at Freestream Mach 3.5

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Chou, Amanda; Balakumar, Ponnampalam; Owens, Lewis R.; Kegerise, Michael A.

    2016-01-01

    An experimental study was conducted in the Supersonic Low-Disturbance Tunnel to investigate naturally-occurring instabilities in a supersonic boundary layer on a 7 deg half- angle cone. All tests were conducted with a nominal freestream Mach number of M(sub infinity) = 3:5, total temperature of T(sub 0) = 299:8 K, and unit Reynolds numbers of Re(sub infinity) x 10(exp -6) = 9:89, 13.85, 21.77, and 25.73 m(exp -1). Instability measurements were acquired under noisy- ow and quiet- ow conditions. Measurements were made to document the freestream and the boundary-layer edge environment, to document the cone baseline flow, and to establish the stability characteristics of the transitioning flow. Pitot pressure and hot-wire boundary- layer measurements were obtained using a model-integrated traverse system. All hot- wire results were single-point measurements and were acquired with a sensor calibrated to mass ux. For the noisy-flow conditions, excellent agreement for the growth rates and mode shapes was achieved between the measured results and linear stability theory (LST). The corresponding N factor at transition from LST is N 3:9. The stability measurements for the quiet-flow conditions were limited to the aft end of the cone. The most unstable first-mode instabilities as predicted by LST were successfully measured, but this unstable first mode was not the dominant instability measured in the boundary layer. Instead, the dominant instabilities were found to be the less-amplified, low-frequency disturbances predicted by linear stability theory, and these instabilities grew according to linear theory. These low-frequency unstable disturbances were initiated by freestream acoustic disturbances through a receptivity process that is believed to occur near the branch I locations of the cone. Under quiet-flow conditions, the boundary layer remained laminar up to the last measurement station for the largest Re1, implying a transition N factor of N greater than 8:5.

  13. Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karve, A.A.; Rizwan-uddin; Dorning, J.J.

    1995-09-01

    A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less

  14. Ideal and resistive plasma resistive wall modes and control: linear and nonlinear

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2004-11-01

    Our recent work* on control of linear and nonlinear resistive wall modes (RWM) showed that if there is an ideal plasma mode and a resistive plasma mode, and if the beta limit for the latter is lower (as is typical), then nonlinear resistive wall modes behave basically as nonlinear tearing-like modes locked to the wall. We investigate here the effect of plasma rotation sufficient to stabilize the resistive-plasma RWM but not the ideal plasma RWM. We also review results** showing the effect of normal and poloidal magnetic field sensing, and describe a simple model which is amenable to analytic solution, and which makes previously obtained simulation results transparent. *J. Finn and L. Chacon, 'Control of linear and nonlinear resistive wall modes', Phys. Plas 11, 1866 (2004). **J. Finn, 'Control of resistive wall modes in a cylindrical tokamak with radial and poloidal magnetic field sensors', to appear in Phys. Plasmas, 2004.

  15. A rapid boundary integral equation technique for protein electrostatics

    NASA Astrophysics Data System (ADS)

    Grandison, Scott; Penfold, Robert; Vanden-Broeck, Jean-Marc

    2007-06-01

    A new boundary integral formulation is proposed for the solution of electrostatic field problems involving piecewise uniform dielectric continua. Direct Coulomb contributions to the total potential are treated exactly and Green's theorem is applied only to the residual reaction field generated by surface polarisation charge induced at dielectric boundaries. The implementation shows significantly improved numerical stability over alternative schemes involving the total field or its surface normal derivatives. Although strictly respecting the electrostatic boundary conditions, the partitioned scheme does introduce a jump artefact at the interface. Comparison against analytic results in canonical geometries, however, demonstrates that simple interpolation near the boundary is a cheap and effective way to circumvent this characteristic in typical applications. The new scheme is tested in a naive model to successfully predict the ground state orientation of biomolecular aggregates comprising the soybean storage protein, glycinin.

  16. Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.

    2000-01-01

    The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.

  17. A complex-lamellar description of boundary layer transition

    NASA Astrophysics Data System (ADS)

    Kolla, Maureen Louise

    Flow transition is important, in both practical and phenomenological terms. However, there is currently no method for identifying the spatial locations associated with transition, such as the start and end of intermittency. The concept of flow stability and experimental correlations have been used, however, flow stability only identifies the location where disturbances begin to grow in the laminar flow and experimental correlations can only give approximations as measuring the start and end of intermittency is difficult. Therefore, the focus of this work is to construct a method to identify the start and end of intermittency, for a natural boundary layer transition and a separated flow transition. We obtain these locations by deriving a complex-lamellar description of the velocity field that exists between a fully laminar and fully turbulent boundary condition. Mathematically, this complex-lamellar decomposition, which is constructed from the classical Darwin-Lighthill-Hawthorne drift function and the transport of enstrophy, describes the flow that exists between the fully laminar Pohlhausen equations and Prandtl's fully turbulent one seventh power law. We approximate the difference in enstrophy density between the boundary conditions using a power series. The slope of the power series is scaled by using the shape of the universal intermittency distribution within the intermittency region. We solve the complex-lamellar decomposition of the velocity field along with the slope of the difference in enstrophy density function to determine the location of the laminar and turbulent boundary conditions. Then from the difference in enstrophy density function we calculate the start and end of intermittency. We perform this calculation on a natural boundary layer transition over a flat plate for zero pressure gradient flow and for separated shear flow over a separation bubble. We compare these results to existing experimental results and verify the accuracy of our transition

  18. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  19. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  20. On modelling three-dimensional piezoelectric smart structures with boundary spectral element method

    NASA Astrophysics Data System (ADS)

    Zou, Fangxin; Aliabadi, M. H.

    2017-05-01

    The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.

  1. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  2. Summary of methods for calculating dynamic lateral stability and response and for estimating aerodynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Mckinney, Marion O

    1952-01-01

    A summary of methods for making dynamic lateral stability and response calculations and for estimating the aerodynamic stability derivatives required for use in these calculations is presented. The processes of performing calculations of the time histories of lateral motions, of the period and damping of these motions, and of the lateral stability boundaries are presented as a series of simple straightforward steps. Existing methods for estimating the stability derivatives are summarized and, in some cases, simple new empirical formulas are presented. Detailed estimation methods are presented for low-subsonic-speed conditions but only a brief discussion and a list of references are given for transonic and supersonic speed conditions.

  3. Stability of hot electron plasma in the ELMO bumpy torus

    NASA Astrophysics Data System (ADS)

    Tsang, K. T.; Cheng, C. Z.

    The stability of a hot electron plasma in the ELMO Bumpy Torus was investigated using two different models. In the first model, where the hot electron distribution function is assumed to be a delta function in the perpendicular velocity, a stability boundary in addition to those discussed by Nelson and by Van Dam and Lee is found. In the second model, where the hot electron distribution function is assumed to be a Maxwellian in the perpendicular velocity, stability boundaries significantly different from those of the first model are found. Coupling of the Nelson-Van Dam-Lee mode to the compressional Alfven mode is now possible. This leads to a higher permissible core plasma beta value for stable operation.

  4. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    NASA Astrophysics Data System (ADS)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  5. Stability and Drag Reduction in a Boundary Layer with Microbubbles.

    DTIC Science & Technology

    1988-02-01

    order accurate. .’ Since the numerical methods are not the object of this % dissertation, we decline from including the finite difference equations...previous appendix must be the special case of zero pressure gradient. Some entries of the matrices of the block tridiagonal system will be different ...of the wall mean velocity gradient was observed to be associated with the migration of the bubbles away from the boundary layer. The time scale of the

  6. On the stability of a time dependent boundary layer

    NASA Technical Reports Server (NTRS)

    Otto, S. R.

    1993-01-01

    The aim of this article is to determine the stability characteristics of a Rayleigh layer, which is known to occur when the fluid above a flat plate has a velocity imparted to it (parallel to the plate). This situation is intrinsically unsteady, however, as a first approximation we consider the instantaneous stability of the flow. The Orr-Sommerfeld equation is found to govern fixed downstream wavelength linear perturbations to the basic flow profile. By the solution of this equation, we can determine the Reynolds numbers at which the flow is neutrally stable; this quasisteady approach is only formally applicable for infinite Reynolds numbers. We shall consider the large Reynolds number limit of the original problem and use a three deck mentality to determine the form of the modes. The results of the two calculations are compared, and the linear large Reynolds number analysis is extended to consider the effect of weak nonlinearity in order to determine whether the system is subcritical or supercritical.

  7. Dynamic stabilization of classical Rayleigh-Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2011-09-15

    Dynamic stabilization of classical Rayleigh-Taylor instability is studied by modeling the interface vibration with the simplest possible wave form, namely, a sequence of Dirac deltas. As expected, stabilization results to be impossible. However, in contradiction to previously reported results obtained with a sinusoidal driving, it is found that in general the perturbation amplitude is larger than in the classical case. Therefore, no beneficial effect can be obtained from the vertical vibration of a Rayleigh-Taylor unstable interface between two ideal fluids.

  8. Optimization of Kink Stability in High-Beta Quasi-axisymmetric Stellarators

    NASA Astrophysics Data System (ADS)

    Fu, G. Y.; Ku, L.-P.; Manickam, J.; Cooper, W. A.

    1998-11-01

    A key issue for design of Quasi-axisymmetric stellarators( A. Reiman et al, this conference.) (QAS) is the stability of external kink modes driven by pressure-induced bootstrap current. In this work, the 3D MHD stability code TERPSICHORE(W.A. Cooper, Phys. Plasmas 3), 275(1996). is used to calculate the stability of low-n external kink modes in a high-beta QAS. The kink stability is optimized by adjusting plasma boundary shape (i.e., external coil configuration) as well as plasma pressure and current profiles. For this purpose, the TERPSICHORE code has been implemented successfully in an optimizer which maximizes kink stability as well as quasi-symmetry. A key factor for kink stability is rotational transform profile. It is found that the edge magnetic shear is strongly stabilizing. The amount of the shear needed for complete stabilization increases with edge transform. It is also found that the plasma boundary shape plays an important role in the kink stability besides transform profile. The physics mechanisms for the kink stability are being studied by examining the contributions of individual terms in δ W of the energy principle: the field line bending term, the current-driven term, the pressure-driven term, and the vacuum term. Detailed results will be reported.

  9. A numerical method for the prediction of high-speed boundary-layer transition using linear theory

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1975-01-01

    A method is described of estimating the location of transition in an arbitrary laminar boundary layer on the basis of linear stability theory. After an examination of experimental evidence for the relation between linear stability theory and transition, a discussion is given of the three essential elements of a transition calculation: (1) the interaction of the external disturbances with the boundary layer; (2) the growth of the disturbances in the boundary layer; and (3) a transition criterion. The computer program which carried out these three calculations is described. The program is first tested by calculating the effect of free-stream turbulence on the transition of the Blasius boundary layer, and is then applied to the problem of transition in a supersonic wind tunnel. The effects of unit Reynolds number and Mach number on the transition of an insulated flat-plate boundary layer are calculated on the basis of experimental data on the intensity and spectrum of free-stream disturbances. Reasonable agreement with experiment is obtained in the Mach number range from 2 to 4.5.

  10. The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1994-01-01

    This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.

  11. Local Characteristics of the Nocturnal Boundary Layer in Response to External Pressure Forcing

    NASA Astrophysics Data System (ADS)

    van der Linden, Steven; Baas, Peter; van Hooft, Antoon; van Hooijdonk, Ivo; Bosveld, Fred; van de Wiel, Bas

    2017-04-01

    Geostrophic wind speed data, derived from pressure observations, are used in combination with tower measurements to investigate the nocturnal stable boundary layer at Cabauw, The Netherlands. Since the geostrophic wind speed is not directly influenced by local nocturnal stability, it may be regarded as an external forcing parameter of the nocturnal stable boundary layer. This is in contrast to local parameters such as in situ wind speed, the Monin-Obukhov stability parameter (z/L) or the local Richardson number. To characterize the stable boundary layer, ensemble averages of clear-sky nights with similar geostrophic wind speed are formed. In this manner, the mean dynamical behavior of near-surface turbulent characteristics, and composite profiles of wind and temperature is systematically investigated. We find that the classification results in a gradual ordering of the diagnosed variables in terms of the geostrophic wind speed. In an ensemble sense the transition from the weakly stable to very stable boundary layer is more gradual than expected. Interestingly, for very weak geostrophic winds turbulent activity is found to be negligibly small while the resulting boundary cooling stays finite. Realistic numerical simulations for those cases should therefore have a a solid description of other thermodynamic processes such as soil heat conduction and radiative transfer. This prerequisite poses a challenge for Large-Eddy Simulations of weak wind nocturnal boundary layers.

  12. Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au

    NASA Astrophysics Data System (ADS)

    Radetic, T.; Lançon, F.; Dahmen, U.

    2002-08-01

    We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90° <110> tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary.

  13. Kirkwood–Buff integrals for ideal solutions

    PubMed Central

    Ploetz, Elizabeth A.; Bentenitis, Nikolaos; Smith, Paul E.

    2010-01-01

    The Kirkwood–Buff (KB) theory of solutions is a rigorous theory of solution mixtures which relates the molecular distributions between the solution components to the thermodynamic properties of the mixture. Ideal solutions represent a useful reference for understanding the properties of real solutions. Here, we derive expressions for the KB integrals, the central components of KB theory, in ideal solutions of any number of components corresponding to the three main concentration scales. The results are illustrated by use of molecular dynamics simulations for two binary solutions mixtures, benzene with toluene, and methanethiol with dimethylsulfide, which closely approach ideal behavior, and a binary mixture of benzene and methanol which is nonideal. Simulations of a quaternary mixture containing benzene, toluene, methanethiol, and dimethylsulfide suggest this system displays ideal behavior and that ideal behavior is not limited to mixtures containing a small number of components. PMID:20441282

  14. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.

    PubMed

    Baule, A; Evans, R M L; Olmsted, P D

    2006-12-01

    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena, Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

  15. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  16. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: From branes to pistons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizalde, E.; Odintsov, S. D.; Institucio Catalana de Recerca i Estudis Avanccats

    2009-03-15

    We evaluate the Casimir energy and force for a massive scalar field with general curvature coupling parameter, subject to Robin boundary conditions on two codimension-one parallel plates, located on a (D+1)-dimensional background spacetime with an arbitrary internal space. The most general case of different Robin coefficients on the two separate plates is considered. With independence of the geometry of the internal space, the Casimir forces are seen to be attractive for special cases of Dirichlet or Neumann boundary conditions on both plates and repulsive for Dirichlet boundary conditions on one plate and Neumann boundary conditions on the other. For Robinmore » boundary conditions, the Casimir forces can be either attractive or repulsive, depending on the Robin coefficients and the separation between the plates, what is actually remarkable and useful. Indeed, we demonstrate the existence of an equilibrium point for the interplate distance, which is stabilized due to the Casimir force, and show that stability is enhanced by the presence of the extra dimensions. Applications of these properties in braneworld models are discussed. Finally, the corresponding results are generalized to the geometry of a piston of arbitrary cross section.« less

  17. The stability analysis of magnetohydrodynamic equilibria - Comparing the thermodynamic approach with the energy principle

    NASA Technical Reports Server (NTRS)

    Brinkmann, R. P.

    1989-01-01

    This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.

  18. Variational approach to stability boundary for the Taylor-Goldstein equation

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.

    2015-11-01

    Linear stability of inviscid stratified shear flow is studied by developing an efficient method for finding neutral (i.e., marginally stable) solutions of the Taylor-Goldstein equation. The classical Miles-Howard criterion states that stratified shear flow is stable if the local Richardson number JR is greater than 1/4 everywhere. In this work, the case of JR > 0 everywhere is considered by assuming strictly monotonic and smooth profiles of the ambient shear flow and density. It is shown that singular neutral modes that are embedded in the continuous spectrum can be found by solving one-parameter families of self-adjoint eigenvalue problems. The unstable ranges of wavenumber are searched for accurately and efficiently by adopting this method in a numerical algorithm. Because the problems are self-adjoint, the variational method can be applied to ascertain the existence of singular neutral modes. For certain shear flow and density profiles, linear stability can be proven by showing the non-existence of a singular neutral mode. New sufficient conditions, extensions of the Rayleigh-Fjortoft stability criterion for unstratified shear flows, are derived in this manner. This work was supported by JSPS Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation # 55053270.

  19. Ideal regularization for learning kernels from labels.

    PubMed

    Pan, Binbin; Lai, Jianhuang; Shen, Lixin

    2014-08-01

    In this paper, we propose a new form of regularization that is able to utilize the label information of a data set for learning kernels. The proposed regularization, referred to as ideal regularization, is a linear function of the kernel matrix to be learned. The ideal regularization allows us to develop efficient algorithms to exploit labels. Three applications of the ideal regularization are considered. Firstly, we use the ideal regularization to incorporate the labels into a standard kernel, making the resulting kernel more appropriate for learning tasks. Next, we employ the ideal regularization to learn a data-dependent kernel matrix from an initial kernel matrix (which contains prior similarity information, geometric structures, and labels of the data). Finally, we incorporate the ideal regularization to some state-of-the-art kernel learning problems. With this regularization, these learning problems can be formulated as simpler ones which permit more efficient solvers. Empirical results show that the ideal regularization exploits the labels effectively and efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Intuitionistic fuzzy n-fold KU-ideal of KU-algebra

    NASA Astrophysics Data System (ADS)

    Mostafa, Samy M.; Kareem, Fatema F.

    2018-05-01

    In this paper, we apply the notion of intuitionistic fuzzy n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionistic fuzzy closed ideal and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, a few results of intuitionistic fuzzy n-fold KU-ideals of a KU-algebra under homomorphism are discussed.

  1. Experimental characterization of powered Fontan hemodynamics in an idealized total cavopulmonary connection model

    NASA Astrophysics Data System (ADS)

    Kerlo, Anna-Elodie M.; Delorme, Yann T.; Xu, Duo; Frankel, Steven H.; Giridharan, Guruprasad A.; Rodefeld, Mark D.; Chen, Jun

    2013-08-01

    A viscous impeller pump (VIP) based on the Von Karman viscous pump is specifically designed to provide cavopulmonary assist in a univentricular Fontan circulation. The technology will make it possible to biventricularize the univentricular Fontan circulation. Ideally, it will reduce the number of surgeries required for Fontan conversion from three to one early in life, while simultaneously improving physiological conditions. Later in life, it will provide a currently unavailable means of chronic support for adolescent and adult patients with failing Fontan circulations. Computational fluid dynamics simulations demonstrate that the VIP can satisfactorily augment cavopulmonary blood flow in an idealized total cavopulmonary connection (TCPC). When the VIP is deployed at the TCPC intersection as a static device, it stabilizes the four-way flow pattern and is not obstructive to the flow. Experimental studies are carried out to assess performance, hemodynamic characteristics, and flow structures of the VIP in an idealized TCPC model. Stereoscopic particle image velocimetry is applied using index-matched blood analog. Results show excellent performance of the VIP without cavitation and with reduction of the energy losses. The non-rotating VIP smoothes and accelerates flow, and decreases stresses and turbulence in the TCPC. The rotating VIP generates the desired low-pressure Fontan flow augmentation (0-10 mmHg) while maintaining acceptable stress thresholds.

  2. On the boundary treatment in spectral methods for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Canuto, C.; Quarteroni, A.

    1986-01-01

    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions are clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.

  3. On the boundary treatment in spectral methods for hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Canuto, Claudio; Quarteroni, Alfio

    1987-01-01

    Spectral methods were successfully applied to the simulation of slow transients in gas transportation networks. Implicit time advancing techniques are naturally suggested by the nature of the problem. The correct treatment of the boundary conditions is clarified in order to avoid any stability restriction originated by the boundaries. The Beam and Warming and the Lerat schemes are unconditionally linearly stable when used with a Chebyshev pseudospectral method. Engineering accuracy for a gas transportation problem is achieved at Courant numbers up to 100.

  4. Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and Users' Manual

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.; Behbehani, Roxanna

    1990-01-01

    NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.

  5. Examples for Non-Ideal Solution Thermodynamics Study

    ERIC Educational Resources Information Center

    David, Carl W.

    2004-01-01

    A mathematical model of a non-ideal solution is presented, where it is shown how and where the non-ideality manifests itself in the standard thermodynamics tableau. Examples related to the non-ideal solution thermodynamics study are also included.

  6. Ideal Magnetic Dipole Scattering

    NASA Astrophysics Data System (ADS)

    Feng, Tianhua; Xu, Yi; Zhang, Wei; Miroshnichenko, Andrey E.

    2017-04-01

    We introduce the concept of tunable ideal magnetic dipole scattering, where a nonmagnetic nanoparticle scatters light as a pure magnetic dipole. High refractive index subwavelength nanoparticles usually support both electric and magnetic dipole responses. Thus, to achieve ideal magnetic dipole scattering one has to suppress the electric dipole response. Such a possibility was recently demonstrated for the so-called anapole mode, which is associated with zero electric dipole scattering. By spectrally overlapping the magnetic dipole resonance with the anapole mode, we achieve ideal magnetic dipole scattering in the far field with tunable strong scattering resonances in the near infrared spectrum. We demonstrate that such a condition can be realized at least for two subwavelength geometries. One of them is a core-shell nanosphere consisting of a Au core and silicon shell. It can be also achieved in other geometries, including nanodisks, which are compatible with current nanofabrication technology.

  7. Discovering the Role of Grain Boundary Complexions in Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmer, Martin P.

    Grain boundaries are inherently an area of disorder in polycrystalline materials which define the transport and various other material properties. The relationship between the interfacial chemistry, structure and the material properties is not well understood. Among the various taxonomies for grain boundaries, Grain Boundary Complexion is a relatively new conceptual scheme that relates the structure and kinetic properties of grain boundaries. In this classification scheme, grain boundaries are considered to be distinct three dimensional (the thickness being considerably smaller as compared to the other two dimensions but nonetheless discernible) equilibrium thermodynamic phases abutted between two crystalline phases. The stability andmore » structure of these interfacial phases are dictated by various thermodynamic variables such as temperature, stress (pressure), interfacial chemistry (chemical potential) and most importantly by the energies of the adjoining crystal surfaces. These phases are only stable within the constraint of the adjoining grains. Although these interfacial phases are not stable in bulk form, they can transform from one complexion to another as a function of various thermodynamic variables analogous to the behavior of bulk phases. Examples of different complexions have been reported in various publications. However, a systematic investigation exploring the existence of grain boundary complexions in material systems other than alumina remains to be done. Although the role of interfacial chemistry on grain boundary complexions in alumina has been addressed, a clear understanding of the underlying thermodynamics governing complexion formation is lacking. Finally, the effects of grain boundary complexions in bulk material properties are widely unknown. Factors above urge a thorough exploration of grain boundary complexions in a range of different materials systems The purpose of the current program is to verify the existence of grain boundary

  8. Permeability models affecting nonlinear stability in the asymptotic suction boundary layer: the Forchheimer versus the Darcy model

    NASA Astrophysics Data System (ADS)

    Wedin, Håkan; Cherubini, Stefania

    2016-12-01

    The asymptotic suction boundary layer (ASBL) is used for studying two permeability models, namely the Darcy and the Forchheimer model, the latter being more physically correct according to the literature. The term that defines the two apart is a function of the non-Darcian wall permeability {\\hat{K}}2 and of the wall suction {\\hat{V}}0, whereas the Darcian wall permeability {\\hat{K}}1 is common to the two models. The underlying interest of the study lies in the field of transition to turbulence where focus is put on two-dimensional nonlinear traveling waves (TWs) and their three-dimensional linear stability. Following a previous study by Wedin et al (2015 Phys. Rev. E 92 013022), where only the Darcy model was considered, the present work aims at comparing the two models, assessing where in the parameter space they cease to produce the same results. For low values of {\\hat{K}}1 both models produce almost identical TW solutions. However, when both increasing the suction {\\hat{V}}0 to sufficiently high amplitudes (i.e. lowering the Reynolds number Re, based on the displacement thickness) and using large values of the wall porosity, differences are observed. In terms of the non-dimensional Darcian wall permeability parameter, a, strong differences in the overall shape of the bifurcation curves are observed for a≳ 0.70, with the emergence of a new family of solutions at Re lower than 100. For these large values of a, a Forchheimer number {{Fo}}\\max ≳ 0.5 is found, where Fo expresses the ratio between the kinetic and viscous forces acting on the porous wall. Moreover, the minimum Reynolds number, {{Re}}g, for which the Navier-Stokes equations allow for nonlinear solutions, decreases for increasing values of a. Fixing the streamwise wavenumber to α = 0.154, as used in the study by Wedin et al referenced above, we find that {{Re}}g is lowered from Re ≈ 3000 for zero permeability, to below 50 for a = 0.80 for both permeability models. Finally, the stability of

  9. Asymmetry in convection and restratification in the Nordic Seas: an idealized model study

    NASA Astrophysics Data System (ADS)

    Ypma, Stefanie L.; Brüggemann, Nils; Pietrzak, Julie D.; Katsman, Caroline A.

    2017-04-01

    The Nordic Seas are an important production region for dense water masses that feed the lower limb of the Atlantic Meridional Overturning Circulation. They display a pronounced hydrographic asymmetry, with a warm eastern basin, and a cold western basin. Previous studies have shown that this asymmetry is set by the interplay between large eddies shed near the coast of Norway where the continental slope steepens, and the Mohn-Knipovich ridge that separates the Lofoten Basin in the east from the Greenland Basin in the west. While it is known from earlier studies that eddies play a crucial role for the yearly cycle of wintertime convection and summertime restratification in marginal seas like the Labrador Sea, the situation in the Nordic Seas is different as the large eddies can only restratify the eastern part of the Nordic Seas due to the presence of the ridge. Possibly due to this asymmetry in eddy activity and a weaker stratification as a result, the western basin is more sensitive for intense deep convection. The question remains how this area is restratified after a deep convection event in the absence of large eddies and how the dense water is able to leave the basin. An high resolution, idealized model configuration of the MITgcm is used that reproduces the main characteristics of the Nordic Seas, including a warm cyclonic boundary current, a strong eddy field in the east and the hydrographic asymmetry between east and west. The idealized approach enables multiple sensitivity studies to changes in the eddy field and the boundary current and provides the possibility to investigate cause and effect, while keeping the set-up simple. We will present results of tracer studies where the sensitivity of the spreading and the restratification of dense water to the formation location in both basins is studied.

  10. Sustainability. Planetary boundaries: guiding human development on a changing planet.

    PubMed

    Steffen, Will; Richardson, Katherine; Rockström, Johan; Cornell, Sarah E; Fetzer, Ingo; Bennett, Elena M; Biggs, Reinette; Carpenter, Stephen R; de Vries, Wim; de Wit, Cynthia A; Folke, Carl; Gerten, Dieter; Heinke, Jens; Mace, Georgina M; Persson, Linn M; Ramanathan, Veerabhadran; Reyers, Belinda; Sörlin, Sverker

    2015-02-13

    The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed. Copyright © 2015, American Association for the Advancement of Science.

  11. The Langley Stability and Transition Analysis Code (LASTRAC) : LST, Linear and Nonlinear PSE for 2-D, Axisymmetric, and Infinite Swept Wing Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2003-01-01

    During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary

  12. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs

    DOE PAGES

    Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...

    2016-03-24

    Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less

  13. On the thermal stability of coronal loop plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Emslie, A. G.; Shoub, E. C.; An, C. H.

    1982-01-01

    The stability to thermal perturbation of static models of coronal loops is considered including the effects of cool, radiatively stable material at the loop base. The linear stability turns out to be sensitive only to the boundary conditions assumed on the velocity at the loop base. The question of the appropriate boundary conditions is discussed, and it is concluded that the free surface condition (the pressure perturbation vanishes), rather than the rigid wall (the velocity vanishes), is relevant to the solar case. The static models are found to be thermally unstable, with a growth time of the order of the coronal cooking time. The physical implications of these results for the solar corona and transition region are examined.

  14. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  15. Bypass transition in boundary layers including curvature and favorable pressure gradient effects

    NASA Technical Reports Server (NTRS)

    Volino, R. J.; Simon, T. W.

    1991-01-01

    Recent studies of 2-D boundary layers undergoing bypass transition were reviewed. Bypass transition is characterized by the sudden appearance of turbulent spots in boundary layer without first the regular, observable growth of disturbances predicted by linear stability theory. There are no standard criteria or parameters for defining bypass transition, but it is known to be the mode of transition when the flow is disturbed by perturbations of sufficient amplitude.

  16. Improved Classification of Mammograms Following Idealized Training

    PubMed Central

    Hornsby, Adam N.; Love, Bradley C.

    2014-01-01

    People often make decisions by stochastically retrieving a small set of relevant memories. This limited retrieval implies that human performance can be improved by training on idealized category distributions (Giguère & Love, 2013). Here, we evaluate whether the benefits of idealized training extend to categorization of real-world stimuli, namely classifying mammograms as normal or tumorous. Participants in the idealized condition were trained exclusively on items that, according to a norming study, were relatively unambiguous. Participants in the actual condition were trained on a representative range of items. Despite being exclusively trained on easy items, idealized-condition participants were more accurate than those in the actual condition when tested on a range of item types. However, idealized participants experienced difficulties when test items were very dissimilar from training cases. The benefits of idealization, attributable to reducing noise arising from cognitive limitations in memory retrieval, suggest ways to improve real-world decision making. PMID:24955325

  17. Improved Classification of Mammograms Following Idealized Training.

    PubMed

    Hornsby, Adam N; Love, Bradley C

    2014-06-01

    People often make decisions by stochastically retrieving a small set of relevant memories. This limited retrieval implies that human performance can be improved by training on idealized category distributions (Giguère & Love, 2013). Here, we evaluate whether the benefits of idealized training extend to categorization of real-world stimuli, namely classifying mammograms as normal or tumorous. Participants in the idealized condition were trained exclusively on items that, according to a norming study, were relatively unambiguous. Participants in the actual condition were trained on a representative range of items. Despite being exclusively trained on easy items, idealized-condition participants were more accurate than those in the actual condition when tested on a range of item types. However, idealized participants experienced difficulties when test items were very dissimilar from training cases. The benefits of idealization, attributable to reducing noise arising from cognitive limitations in memory retrieval, suggest ways to improve real-world decision making.

  18. Complex blood flow patterns in an idealized left ventricle: A numerical study

    NASA Astrophysics Data System (ADS)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  19. On the wall-normal velocity of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1991-01-01

    Numerical methods for the compressible boundary-layer equations are facilitated by transformation from the physical (x,y) plane to a computational (xi,eta) plane in which the evolution of the flow is 'slow' in the time-like xi direction. The commonly used Levy-Lees transformation results in a computationally well-behaved problem for a wide class of non-similar boundary-layer flows, but it complicates interpretation of the solution in physical space. Specifically, the transformation is inherently nonlinear, and the physical wall-normal velocity is transformed out of the problem and is not readily recovered. In light of recent research which shows mean-flow non-parallelism to significantly influence the stability of high-speed compressible flows, the contribution of the wall-normal velocity in the analysis of stability should not be routinely neglected. Conventional methods extract the wall-normal velocity in physical space from the continuity equation, using finite-difference techniques and interpolation procedures. The present spectrally-accurate method extracts the wall-normal velocity directly from the transformation itself, without interpolation, leaving the continuity equation free as a check on the quality of the solution. The present method for recovering wall-normal velocity, when used in conjunction with a highly-accurate spectral collocation method for solving the compressible boundary-layer equations, results in a discrete solution which is extraordinarily smooth and accurate, and which satisfies the continuity equation nearly to machine precision. These qualities make the method well suited to the computation of the non-parallel mean flows needed by spatial direct numerical simulations (DNS) and parabolized stability equation (PSE) approaches to the analysis of stability.

  20. Forward marching procedure for separated boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Carter, J. E.; Wornom, S. F.

    1975-01-01

    A forward-marching procedure for separated boundary-layer flows which permits the rapid and accurate solution of flows of limited extent is presented. The streamwise convection of vorticity in the reversed flow region is neglected, and this approximation is incorporated into a previously developed (Carter, 1974) inverse boundary-layer procedure. The equations are solved by the Crank-Nicolson finite-difference scheme in which column iteration is carried out at each streamwise station. Instabilities encountered in the column iterations are removed by introducing timelike terms in the finite-difference equations. This provides both unconditional diagonal dominance and a column iterative scheme, found to be stable using the von Neumann stability analysis.

  1. Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-02-01

    In this article, we are concerned with the polynomial stabilization of a two-dimensional thermoelastic Mindlin-Timoshenko plate model with no mechanical damping. The model is subject to Dirichlet boundary conditions on the elastic as well as the thermal variables. The work complements our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 64:1305-1325, 2013) on the polynomial stabilization of a Mindlin-Timoshenko model in a radially symmetric domain under Dirichlet boundary conditions on the displacement and thermal variables and free boundary conditions on the shear angle variables. In particular, our aim is to investigate the effect of the Dirichlet boundary conditions on all the variables on the polynomial decay rate of the model. By once more applying a frequency domain method in which we make critical use of an inequality for the trace of Sobolev functions on the boundary of a bounded, open connected set we show that the decay is slower than in the model considered in the cited work. A comparison of our result with our polynomial decay result for a magnetoelastic Mindlin-Timoshenko model subject to Dirichlet boundary conditions on the elastic variables in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) also indicates a correlation between the robustness of the coupling between parabolic and hyperbolic dynamics and the polynomial decay rate in the two models.

  2. Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2013-01-01

    Computational fluid dynamic (CFD) analyses of the University of Michigan (UM) Shock/Boundary-Layer Interaction (SBLI) experiments were performed as an extension of the CFD SBLI Workshop held at the 48th AIAA Aerospace Sciences Meeting in 2010. In particular, the UM Mach 2.75 Glass Tunnel with a semi-spanning 7.75deg wedge was analyzed in attempts to explore key physics pertinent to SBLI's, including thermodynamic and viscous boundary conditions as well as turbulence modeling. Most of the analyses were 3D CFD simulations using the OVERFLOW flow solver, with additional quasi-1D simulations performed with an in house MATLAB code interfacing with the NIST REFPROP code to explore perfect verses non-ideal air. A fundamental exploration pertaining to the effects of particle image velocimetry (PIV) on post-processing data is also shown. Results from the CFD simulations showed an improvement in agreement with experimental data with key contributions including adding a laminar zone upstream of the wedge and the necessity of mimicking PIV particle lag for comparisons. Results from the quasi-1D simulation showed that there was little difference between perfect and non-ideal air for the configuration presented.

  3. How children remember neutral and emotional pictures: boundary extension in children's scene memories.

    PubMed

    Candel, Ingrid; Merckelbach, Harald; Houben, Katrijn; Vandyck, Inne

    2004-01-01

    Boundary extension is the tendency to remember more of a scene than was actually shown. The dominant interpretation of this memory illusion is that it originates from schemata that people construct when viewing a scene. Evidence of boundary extension has been obtained primarily with adult participants who remember neutral pictures. The current study addressed the developmental stability of this phenomenon. Therefore, we investigated whether children aged 10-12 years display boundary extension for neutral pictures. Moreover, we examined emotional scene memory. Eighty-seven children drew pictures from memory after they had seen either neutral or emotional pictures. Both their neutral and emotional drawings revealed boundary extension. Apparently, the schema construction that underlies boundary extension is a robust and ubiquitous process.

  4. An ideal free-kick

    NASA Astrophysics Data System (ADS)

    De Luca, R.; Faella, O.

    2017-01-01

    The kinematics of a free-kick is studied. As in projectile motion, the free-kick is ideal since we assume that a point-like ball moves in the absence of air resistance. We have experienced the fortunate conjuncture of a classical mechanics lecture taught right before an important football game. These types of sports events might trigger a great deal of attention from the classroom. The idealized problem is devised in such a way that students are eager to come to the end of the whole story.

  5. Bifurcation approach to a logistic elliptic equation with a homogeneous incoming flux boundary condition

    NASA Astrophysics Data System (ADS)

    Umezu, Kenichiro

    In this paper, we consider a semilinear elliptic boundary value problem in a smooth bounded domain, having the so-called logistic nonlinearity that originates from population dynamics, with a nonlinear boundary condition. Although the logistic nonlinearity has an absorption effect in the problem, the nonlinear boundary condition is induced by the homogeneous incoming flux on the boundary. The objective of our study is to analyze the existence of a bifurcation component of positive solutions from trivial solutions and its asymptotic behavior and stability. We perform this analysis using the method developed by Lyapunov and Schmidt, based on a scaling argument.

  6. Fluctuation-induced forces in confined ideal and imperfect Bose gases.

    PubMed

    Diehl, H W; Rutkevich, Sergei B

    2017-06-01

    Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d-dimensional films of size ∞^{d-1}×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions Υ_{d}^{BC}(x_{λ}=D/λ_{th},x_{ξ}=D/ξ) of the residual reduced grand potential per area φ_{res,d}^{BC}(T,μ,D)=D^{-(d-1)}Υ_{d}^{BC}(x_{λ},x_{ξ}) are determined for the ideal gas case with these BCs, where λ_{th} and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions Θ_{d}^{BC}(x_{ξ})≡Υ_{d}^{BC}(∞,x_{ξ}) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O(2) theory for BC=P,A,DD,DN,NN. For d=3, they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions Υ_{d}^{BC}(x_{λ},x_{ξ},c_{1}D,c_{2}D) and Θ_{d}^{R}(x_{ξ},c_{1}D,c_{2}D) under the RBCs (∂_{z}-c_{1})ϕ|_{z=0}=(∂_{z}+c_{2})ϕ|_{z=D}=0 with c_{1}≥0 and c_{2}≥0 are also determined. The corresponding scaling functions Υ_{∞,d}^{P}(x_{λ},x_{ξ}) and Θ_{∞,d}^{P}(x_{ξ}) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n→∞. Hence, for d=3, Θ_{∞,d}^{P}(x_{ξ}) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n→∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ_{∞,3}^{DD}(x_{ξ}) therefore follow from those of the O(2n)ϕ^{4} model for n→∞.

  7. YSZ thin films with minimized grain boundary resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e. g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here we report that the ionic conductivity ofmore » yttria stabilized zirconia thin films with nano-­ columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500°C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film- substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  8. YSZ thin films with minimized grain boundary resistivity

    DOE PAGES

    Mills, Edmund M.; Kleine-Boymann, Matthias; Janek, Juergen; ...

    2016-03-31

    In recent years, interface engineering of solid electrolytes has been explored to increase their ionic conductivity and improve the performance of solid oxide fuel cells and other electrochemical power sources. It has been observed that the ionic conductivity of epitaxially grown thin films of some electrolytes is dramatically enhanced, which is often attributed to effects (e.g. strain-induced mobility changes) at the heterophase boundary with the substrate. Still largely unexplored is the possibility of manipulation of grain boundary resistivity in polycrystalline solid electrolyte films, clearly a limiting factor in their ionic conductivity. Here in this paper, we report that the ionicmore » conductivity of yttria stabilized zirconia thin films with nano-columnar grains grown on a MgO substrate nearly reaches that of the corresponding single crystal when the thickness of the films becomes less than roughly 8 nm (smaller by a factor of three at 500 °C). Using impedance spectroscopy, the grain boundary resistivity was probed as a function of film thickness. The resistivity of the grain boundaries near the film–substrate interface and film surface (within 4 nm of each) was almost entirely eliminated. This minimization of grain boundary resistivity is attributed to Mg 2+ diffusion from the MgO substrate into the YSZ grain boundaries, which is supported by time of flight secondary ion mass spectroscopy measurements. We suggest grain boundary “design” as an attractive method to obtain highly conductive solid electrolyte thin films.« less

  9. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  10. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  11. Numerical magnetohydrodynamic simulations of expanding flux ropes: Influence of boundary driving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tacke, Thomas; Dreher, Jürgen; Sydora, Richard D.

    2013-07-15

    The expansion dynamics of a magnetized, current-carrying plasma arch is studied by means of time-dependent ideal MHD simulations. Initial conditions model the setup used in recent laboratory experiments that in turn simulate coronal loops [J. Tenfelde et al., Phys. Plasmas 19, 072513 (2012); E. V. Stenson and P. M. Bellan, Plasma Phys. Controlled Fusion 54, 124017 (2012)]. Boundary conditions of the electric field at the “lower” boundary, intersected by the arch, are chosen such that poloidal magnetic flux is injected into the domain, either localized at the arch footpoints themselves or halfway between them. These conditions are motivated by themore » tangential electric field expected to exist in the laboratory experiments due to the external circuit that drives the plasma current. The boundary driving is found to systematically enhance the expansion velocity of the plasma arch. While perturbations at the arch footpoints also deform its legs and create characteristic elongated segments, a perturbation between the footpoints tends to push the entire structure upwards, retaining an ellipsoidal shape.« less

  12. Winter cold of eastern continental boundaries induced by warm ocean waters.

    PubMed

    Kaspi, Yohai; Schneider, Tapio

    2011-03-31

    In winter, northeastern North America and northeastern Asia are both colder than other regions at similar latitudes. This has been attributed to the effects of stationary weather systems set by elevated terrain (orography), and to a lack of maritime influences from the prevailing westerly winds. However, the differences in extent and orography between the two continents suggest that further mechanisms are involved. Here we show that this anomalous winter cold can result in part from westward radiation of large-scale atmospheric waves--nearly stationary Rossby waves--generated by heating of the atmosphere over warm ocean waters. We demonstrate this mechanism using simulations with an idealized general circulation model, with which we show that the extent of the cold region is controlled by properties of Rossby waves, such as their group velocity and its dependence on the planetary rotation rate. Our results show that warm ocean waters contribute to the contrast in mid-latitude winter temperatures between eastern and western continental boundaries not only by warming western boundaries, but also by cooling eastern boundaries.

  13. Persistent Identifiers as Boundary Objects

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.; Fox, P. A.

    2017-12-01

    In 1989, Leigh Star and Jim Griesemer defined the seminal concept of `boundary objects'. These `objects' are what Latour calls `immutable mobiles' that enable communication and collaboration across difference by helping meaning to be understood in different contexts. As Star notes, they are a sort of arrangement that allow different groups to work together without (a priori) consensus. Part of the idea is to recognize and allow for the `interpretive flexibility' that is central to much of the `constructivist' approach in the sociology of science. Persistent Identifiers (PIDs) can clearly act as boundary objects, but people do not usually assume that they enable interpretive flexibility. After all, they are meant to be unambiguous, machine-interpretable identifiers of defined artifacts. In this paper, we argue that PIDs can fill at least two roles: 1) That of the standardized form, where there is strong agreement on what is being represented and how and 2) that of the idealized type, a more conceptual concept that allows many different representations. We further argue that these seemingly abstract conceptions actually help us implement PIDs more effectively to link data, publications, various other artifacts, and especially people. Considering PIDs as boundary objects can help us address issues such as what level of granularity is necessary for PIDs, what metadata should be directly associated with PIDs, and what purpose is the PID serving (reference, provenance, credit, etc.). In short, sociological theory can improve data sharing standards and their implementation in a way that enables broad interdisciplinary data sharing and reuse. We will illustrate this with several specific examples of Earth science data.

  14. Behavior of turbulent boundary layers on curved convex walls

    NASA Technical Reports Server (NTRS)

    Schmidbauer, Hans

    1936-01-01

    The system of linear differential equations which indicated the approach of separation and the so-called "boundary-layer thickness" by Gruschwitz is extended in this report to include the case where the friction layer is subject to centrifugal forces. Evaluation of the data yields a strong functional dependence of the momentum change and wall drag on the boundary-layer thickness radius of curvature ratio for the wall. It is further shown that the transition from laminar to turbulent flow occurs at somewhat higher Reynolds Numbers at the convex wall than at the flat plate, due to the stabilizing effect of the centrifugal forces.

  15. Relaxation of sound fields in rooms of diffusely reflecting boundaries and its application in acoustical radiosity simulation.

    PubMed

    Zhang, Honghu

    2006-04-01

    The acoustical radiosity method is a computationally expensive acoustical simulation algorithm that assumes an enclosure with ideal diffuse reflecting boundaries. Miles observed that for such an enclosure, the sound energy decay of every point on the boundaries will gradually converge to exponential manner with a uniform decay rate. Therefore, the ratio of radiosity between every pair of points on the boundaries will converge to a constant, and the radiosity across the boundaries will approach a fixed distribution during the sound decay process, where radiosity is defined as the acoustic power per unit area leaving (or being received by) a point on a boundary. We call this phenomenon the "relaxation" of the sound field. In this paper, we study the relaxation in rooms of different shapes with different boundary absorptions. Criteria based on the relaxation of the sound field are proposed to terminate the costly and unnecessary radiosity computation in the later phase, which can then be replaced by a fast regression step to speed up the acoustical radiosity simulation.

  16. Recharging Our Sense of Idealism: Concluding Thoughts

    ERIC Educational Resources Information Center

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  17. Adaptive tracking control for active suspension systems with non-ideal actuators

    NASA Astrophysics Data System (ADS)

    Pan, Huihui; Sun, Weichao; Jing, Xingjian; Gao, Huijun; Yao, Jianyong

    2017-07-01

    As a critical component of transportation vehicles, active suspension systems are instrumental in the improvement of ride comfort and maneuverability. However, practical active suspensions commonly suffer from parameter uncertainties (e.g., the variations of payload mass and suspension component parameters), external disturbances and especially the unknown non-ideal actuators (i.e., dead-zone and hysteresis nonlinearities), which always significantly deteriorate the control performance in practice. To overcome these issues, this paper synthesizes an adaptive tracking control strategy for vehicle suspension systems to achieve suspension performance improvements. The proposed control algorithm is formulated by developing a unified framework of non-ideal actuators rather than a separate way, which is a simple yet effective approach to remove the unexpected nonlinear effects. From the perspective of practical implementation, the advantages of the presented controller for active suspensions include that the assumptions on the measurable actuator outputs, the prior knowledge of nonlinear actuator parameters and the uncertain parameters within a known compact set are not required. Furthermore, the stability of the closed-loop suspension system is theoretically guaranteed by rigorous mathematical analysis. Finally, the effectiveness of the presented adaptive control scheme is confirmed using comparative numerical simulation validations.

  18. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  19. Framing of grid cells within and beyond navigation boundaries

    PubMed Central

    Savelli, Francesco; Luck, JD; Knierim, James J

    2017-01-01

    Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992

  20. Boundary Layer Transition over Blunt Hypersonic Vehicles Including Effects of Ablation-Induced Out-Gassing

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan; Chang, Chau-Lyan; White, Jeffery

    2011-01-01

    Computations are performed to study the boundary layer instability mechanisms pertaining to hypersonic flow over blunt capsules. For capsules with ablative heat shields, transition may be influenced both by out-gassing associated with surface pyrolysis and the resulting modification of surface geometry including the formation of micro-roughness. To isolate the effects of out-gassing, this paper examines the stability of canonical boundary layer flows over a smooth surface in the presence of gas injection into the boundary layer. For a slender cone, the effects of out-gassing on the predominantly second mode instability are found to be stabilizing. In contrast, for a blunt capsule flow dominated by first mode instability, out-gassing is shown to be destabilizing. Analogous destabilizing effects of outgassing are also noted for both stationary and traveling modes of crossflow instability over a blunt sphere-cone configuration at angle of attack.

  1. On Stable Wall Boundary Conditions for the Hermite Discretization of the Linearised Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Sarna, Neeraj; Torrilhon, Manuel

    2018-01-01

    We define certain criteria, using the characteristic decomposition of the boundary conditions and energy estimates, which a set of stable boundary conditions for a linear initial boundary value problem, involving a symmetric hyperbolic system, must satisfy. We first use these stability criteria to show the instability of the Maxwell boundary conditions proposed by Grad (Commun Pure Appl Math 2(4):331-407, 1949). We then recognise a special block structure of the moment equations which arises due to the recursion relations and the orthogonality of the Hermite polynomials; the block structure will help us in formulating stable boundary conditions for an arbitrary order Hermite discretization of the Boltzmann equation. The formulation of stable boundary conditions relies upon an Onsager matrix which will be constructed such that the newly proposed boundary conditions stay close to the Maxwell boundary conditions at least in the lower order moments.

  2. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  3. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  4. Boundary streaming with Navier boundary condition.

    PubMed

    Xie, Jin-Han; Vanneste, Jacques

    2014-06-01

    In microfluidic applications involving high-frequency acoustic waves over a solid boundary, the Stokes boundary-layer thickness δ is so small that some non-negligible slip may occur at the fluid-solid interface. This paper assesses the impact of this slip by revisiting the classical problem of steady acoustic streaming over a flat boundary, replacing the no-slip boundary condition with the Navier condition u|_{y=0}=L_{s}∂_{y}u|_{y=0}, where u is the velocity tangent to the boundary y=0, and the parameter L_{s} is the slip length. A general expression is obtained for the streaming velocity across the boundary layer as a function of the dimensionless parameter L_{s}/δ. The limit outside the boundary layer provides an effective slip velocity satisfied by the interior mean flow. Particularizing to traveling and standing waves shows that the boundary slip respectively increases and decreases the streaming velocity.

  5. Detecting dynamical boundaries from kinematic data in biomechanics

    NASA Astrophysics Data System (ADS)

    Ross, Shane D.; Tanaka, Martin L.; Senatore, Carmine

    2010-03-01

    Ridges in the state space distribution of finite-time Lyapunov exponents can be used to locate dynamical boundaries. We describe a method for obtaining dynamical boundaries using only trajectories reconstructed from time series, expanding on the current approach which requires a vector field in the phase space. We analyze problems in musculoskeletal biomechanics, considered as exemplars of a class of experimental systems that contain separatrix features. Particular focus is given to postural control and balance, considering both models and experimental data. Our success in determining the boundary between recovery and failure in human balance activities suggests this approach will provide new robust stability measures, as well as measures of fall risk, that currently are not available and may have benefits for the analysis and prevention of low back pain and falls leading to injury, both of which affect a significant portion of the population.

  6. Boundary Approximation Methods for Sloving Elliptic Problems on Unbounded Domains

    NASA Astrophysics Data System (ADS)

    Li, Zi-Cai; Mathon, Rudolf

    1990-08-01

    Boundary approximation methods with partial solutions are presented for solving a complicated problem on an unbounded domain, with both a crack singularity and a corner singularity. Also an analysis of partial solutions near the singular points is provided. These methods are easy to apply, have good stability properties, and lead to highly accurate solutions. Hence, boundary approximation methods with partial solutions are recommended for the treatment of elliptic problems on unbounded domains provided that piecewise solution expansions, in particular, asymptotic solutions near the singularities and infinity, can be found.

  7. Non-idealities in the 3ω method for thermal characterization in the low- and high-frequency regimes

    NASA Astrophysics Data System (ADS)

    Jaber, Wassim; Chapuis, Pierre-Olivier

    2018-04-01

    This work is devoted to analytical and numerical studies of diffusive heat conduction in configurations considered in 3ω experiments, which aim at measuring thermal conductivity of materials. The widespread 2D analytical model considers infinite media and translational invariance, a situation which cannot be met in practice in numerous cases due to the constraints in low-dimensional materials and systems. We investigate how thermal boundary resistance between heating wire and sample, native oxide and heating wire shape affect the temperature fields. 3D finite element modelling is also performed to account for the effect of the bonding pads and the 3D heat spreading down to a typical package. Emphasis is given on the low-frequency regime, which is less known than the so-called slope regime. These results will serve as guides for the design of ideal experiments where the 2D model can be applied and for the analyses of non-ideal ones.

  8. Positivity and Almost Positivity of Biharmonic Green's Functions under Dirichlet Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Grunau, Hans-Christoph; Robert, Frédéric

    2010-03-01

    In general, for higher order elliptic equations and boundary value problems like the biharmonic equation and the linear clamped plate boundary value problem, neither a maximum principle nor a comparison principle or—equivalently—a positivity preserving property is available. The problem is rather involved since the clamped boundary conditions prevent the boundary value problem from being reasonably written as a system of second order boundary value problems. It is shown that, on the other hand, for bounded smooth domains {Ω subsetmathbb{R}^n} , the negative part of the corresponding Green’s function is “small” when compared with its singular positive part, provided {n≥q 3} . Moreover, the biharmonic Green’s function in balls {Bsubsetmathbb{R}^n} under Dirichlet (that is, clamped) boundary conditions is known explicitly and is positive. It has been known for some time that positivity is preserved under small regular perturbations of the domain, if n = 2. In the present paper, such a stability result is proved for {n≥q 3}.

  9. Heating and current drive requirements for ideal MHD stability and ITB sustainment in ITER steady state scenarios

    NASA Astrophysics Data System (ADS)

    Poli, Francesca

    2012-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.

  10. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  11. Sensored Field Oriented Control of a Robust Induction Motor Drive Using a Novel Boundary Layer Fuzzy Controller

    PubMed Central

    Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir

    2013-01-01

    Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.

  12. Genetic and environmental influences on thin-ideal internalization.

    PubMed

    Suisman, Jessica L; O'Connor, Shannon M; Sperry, Steffanie; Thompson, J Kevin; Keel, Pamela K; Burt, S Alexandra; Neale, Michael; Boker, Steven; Sisk, Cheryl; Klump, Kelly L

    2012-12-01

    Current research on the etiology of thin-ideal internalization focuses on psychosocial influences (e.g., media exposure). The possibility that genetic influences also account for variance in thin-ideal internalization has never been directly examined. This study used a twin design to estimate genetic effects on thin-ideal internalization and examine if environmental influences are primarily shared or nonshared in origin. Participants were 343 postpubertal female twins (ages: 12-22 years; M = 17.61) from the Michigan State University Twin Registry. Thin-ideal internalization was assessed using the Sociocultural Attitudes toward Appearance Questionnaire-3. Twin modeling suggested significant additive genetic and nonshared environmental influences on thin-ideal internalization. Shared environmental influences were small and non-significant. Although prior research focused on psychosocial factors, genetic influences on thin-ideal internalization were significant and moderate in magnitude. Research is needed to investigate possible interplay between genetic and nonshared environmental factors in the development of thin-ideal internalization. Copyright © 2012 Wiley Periodicals, Inc.

  13. Biot-Savart helicity versus physical helicity: A topological description of ideal flows

    NASA Astrophysics Data System (ADS)

    Sahihi, Taliya; Eshraghi, Homayoon

    2014-08-01

    For an isentropic (thus compressible) flow, fluid trajectories are considered as orbits of a family of one parameter, smooth, orientation-preserving, and nonsingular diffeomorphisms on a compact and smooth-boundary domain in the Euclidian 3-space which necessarily preserve a finite measure, later interpreted as the fluid mass. Under such diffeomorphisms the Biot-Savart helicity of the pushforward of a divergence-free and tangent to the boundary vector field is proved to be conserved and since these circumstances present an isentropic flow, the conservation of the "Biot-Savart helicity" is established for such flows. On the other hand, the well known helicity conservation in ideal flows which here we call it "physical helicity" is found to be an independent constant with respect to the Biot-Savart helicity. The difference between these two helicities reflects some topological features of the domain as well as the velocity and vorticity fields which is discussed and is shown for simply connected domains the two helicities coincide. The energy variation of the vorticity field is shown to be formally the same as for the incompressible flow obtained before. For fluid domains consisting of several disjoint solid tori, at each time, the harmonic knot subspace of smooth vector fields on the fluid domain is found to have two independent base sets with a special type of orthogonality between these two bases by which a topological description of the vortex and velocity fields depending on the helicity difference is achieved since this difference is shown to depend only on the harmonic knot parts of velocity, vorticity, and its Biot-Savart vector field. For an ideal magnetohydrodynamics (MHD) flow three independent constant helicities are reviewed while the helicity of magnetic potential is generalized for non-simply connected domains by inserting a special harmonic knot field in the dynamics of the magnetic potential. It is proved that the harmonic knot part of the vorticity

  14. Stochastic stability of parametrically excited random systems

    NASA Astrophysics Data System (ADS)

    Labou, M.

    2004-01-01

    Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.

  15. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  16. Family Life and Developmental Idealism in Yazd, Iran

    PubMed Central

    Abbasi-Shavazi, Mohammad Jalal; Askari-Nodoushan, Abbas

    2012-01-01

    BACKGROUND This paper is motivated by the theory that developmental idealism has been disseminated globally and has become an international force for family and demographic change. Developmental idealism is a set of cultural beliefs and values about development and how development relates to family and demographic behavior. It holds that modern societies are causal forces producing modern families, that modern families help to produce modern societies, and that modern family change is to be expected. OBJECTIVE We examine the extent to which developmental idealism has been disseminated in Iran. We also investigate predictors of the dissemination of developmental idealism. METHODS We use survey data collected in 2007 from a sample of women in Yazd, a city in Iran. We examine the distribution of developmental idealism in the sample and the multivariate predictors of developmental idealism. RESULTS We find considerable support for the expectation that many elements of developmental idealism have been widely disseminated. Statistically significant majorities associate development with particular family attributes, believe that development causes change in families, believe that fertility reductions and age-at-marriage increases help foster development, and perceive family trends in Iran headed toward modernity. As predicted, parental education, respondent education, and income affect adherence to developmental idealism. CONCLUSIONS Developmental idealism has been widely disseminated in Yazd, Iran and is related to social and demographic factors in predicted ways. COMMENTS Although our data come from only one city, we expect that developmental idealism has been widely distributed in Iran, with important implications for family and demographic behavior. PMID:22942772

  17. Linear and nonlinear stability of periodic orbits in annular billiards.

    PubMed

    Dettmann, Carl P; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  18. Linear and nonlinear stability of periodic orbits in annular billiards

    NASA Astrophysics Data System (ADS)

    Dettmann, Carl P.; Fain, Vitaly

    2017-04-01

    An annular billiard is a dynamical system in which a particle moves freely in a disk except for elastic collisions with the boundary and also a circular scatterer in the interior of the disk. We investigate the stability properties of some periodic orbits in annular billiards in which the scatterer is touching or close to the boundary. We analytically show that there exist linearly stable periodic orbits of an arbitrary period for scatterers with decreasing radii that are located near the boundary of the disk. As the position of the scatterer moves away from a symmetry line of a periodic orbit, the stability of periodic orbits changes from elliptic to hyperbolic, corresponding to a saddle-center bifurcation. When the scatterer is tangent to the boundary, the periodic orbit is parabolic. We prove that slightly changing the reflection angle of the orbit in the tangential situation leads to the existence of Kolmogorov-Arnold-Moser islands. Thus, we show that there exists a decreasing to zero sequence of open intervals of scatterer radii, along which the billiard table is not ergodic.

  19. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE PAGES

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo; ...

    2017-08-28

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  20. Large-Eddy Simulation Sensitivities to Variations of Configuration and Forcing Parameters in Canonical Boundary-Layer Flows for Wind Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirocha, Jeffrey D.; Churchfield, Matthew J.; Munoz-Esparza, Domingo

    Here, the sensitivities of idealized Large-Eddy Simulations (LES) to variations of model configuration and forcing parameters on quantities of interest to wind power applications are examined. Simulated wind speed, turbulent fluxes, spectra and cospectra are assessed in relation to variations of two physical factors, geostrophic wind speed and surface roughness length, and several model configuration choices, including mesh size and grid aspect ratio, turbulence model, and numerical discretization schemes, in three different code bases. Two case studies representing nearly steady neutral and convective atmospheric boundary layer (ABL) flow conditions over nearly flat and homogeneous terrain were used to force andmore » assess idealized LES, using periodic lateral boundary conditions. Comparison with fast-response velocity measurements at five heights within the lowest 50 m indicates that most model configurations performed similarly overall, with differences between observed and predicted wind speed generally smaller than measurement variability. Simulations of convective conditions produced turbulence quantities and spectra that matched the observations well, while those of neutral simulations produced good predictions of stress, but smaller than observed magnitudes of turbulence kinetic energy, likely due to tower wakes influencing the measurements. While sensitivities to model configuration choices and variability in forcing can be considerable, idealized LES are shown to reliably reproduce quantities of interest to wind energy applications within the lower ABL during quasi-ideal, nearly steady neutral and convective conditions over nearly flat and homogeneous terrain.« less

  1. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  2. Optimization of a pressure control valve for high power automatic transmission considering stability

    NASA Astrophysics Data System (ADS)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  3. Ideal Cardiovascular Health and Incident Cardiovascular Events

    PubMed Central

    Ommerborn, Mark J.; Blackshear, Chad T.; Hickson, DeMarc A.; Griswold, Michael E.; Kwatra, Japneet; Djousse, Luc; Clark, Cheryl R.

    2016-01-01

    Introduction The epidemiology of American Heart Association ideal cardiovascular health (CVH) metrics has not been fully examined in African Americans. This study examines associations of CVH metrics with incident cardiovascular disease (CVD) in the Jackson Heart Study, a longitudinal cohort study of CVD in African Americans. Methods Jackson Heart Study participants without CVD (N=4,702) were followed prospectively between 2000 and 2011. Incidence rates and Cox proportional hazard ratios estimated risks for incident CVD (myocardial infarction, stroke, cardiac procedures, and CVD mortality) associated with seven CVH metrics by sex. Analyses were performed in 2015. Results Participants were followed for a median 8.3 years; none had ideal health on all seven CVH metrics. The prevalence of ideal health was low for nutrition, physical activity, BMI, and blood pressure metrics. The age-adjusted CVD incidence rate (IR) per 1,000 person years was highest for individuals with the least ideal health metrics: zero to one (IR=12.5, 95% CI=9.7, 16.1), two (IR=8.2, 95% CI=6.5, 10.4), three (IR=5.7, 95% CI=4.2, 7.6), and four or more (IR=3.4, 95% CI=2.0, 5.9). Adjusting for covariates, individuals with four or more ideal CVH metrics had lower risks of incident CVD compared with those with zero or one ideal CVH metric (hazard ratio, 0.29; 95% CI=0.17, 0.52; p<0.001). Conclusions African Americans with more ideal CVH metrics have lower risks of incident CVD. Comprehensive preventive behavioral and clinical supports should be intensified to improve CVD risk for African Americans with few ideal CVH metrics. PMID:27539974

  4. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  5. Wind-Turbine Wakes in a Convective Boundary Layer: A Wind-Tunnel Study

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey D.; Porté-Agel, Fernando

    2013-02-01

    Thermal stability changes the properties of the turbulent atmospheric boundary layer, and in turn affects the behaviour of wind-turbine wakes. To better understand the effects of thermal stability on the wind-turbine wake structure, wind-tunnel experiments were carried out with a simulated convective boundary layer (CBL) and a neutral boundary layer. The CBL was generated by cooling the airflow to 12-15 °C and heating up the test section floor to 73-75 °C. The freestream wind speed was set at about 2.5 m s-1, resulting in a bulk Richardson number of -0.13. The wake of a horizontal-axis 3-blade wind-turbine model, whose height was within the lowest one third of the boundary layer, was studied using stereoscopic particle image velocimetry (S-PIV) and triple-wire (x-wire/cold-wire) anemometry. Data acquired with the S-PIV were analyzed to characterize the highly three-dimensional turbulent flow in the near wake (0.2-3.2 rotor diameters) as well as to visualize the shedding of tip vortices. Profiles of the mean flow, turbulence intensity, and turbulent momentum and heat fluxes were measured with the triple-wire anemometer at downwind locations from 2-20 rotor diameters in the centre plane of the wake. In comparison with the wake of the same wind turbine in a neutral boundary layer, a smaller velocity deficit (about 15 % at the wake centre) is observed in the CBL, where an enhanced radial momentum transport leads to a more rapid momentum recovery, particularly in the lower part of the wake. The velocity deficit at the wake centre decays following a power law regardless of the thermal stability. While the peak turbulence intensity (and the maximum added turbulence) occurs at the top-tip height at a downwind distance of about three rotor diameters in both cases, the magnitude is about 20 % higher in the CBL than in the neutral boundary layer. Correspondingly, the turbulent heat flux is also enhanced by approximately 25 % in the lower part of the wake, compared to that

  6. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  7. Attitude stability of spinning flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Barbera, F. J.

    1971-01-01

    The stability of spinning flexible satellites in a force-free environment was analyzed. The satellite was modeled as a rigid core having attached to it a flexible appendage idealized as a collection of particles (point masses) interconnected by springs. Both Liapunov and Routh-Hurwitz stability procedures are used. In the former, the Hamiltonian of the system, constrained through the angular momentum integral so as to admit complete damping, is used as a testing function. Equations of motion are written using the hybrid coordinate formulation, which readily accepts a modal coordinate transformation ultimately allowing truncation to a level amenable to literal stability analysis. Closed form stability criteria are generated for the first mode of a restricted appendage model lying in a plane containing the system center of mass and orthogonal to the spin axis. The effects of spin on flexible bodies are discussed by considering a very elementary particle model. Control of passively unstable spacecraft is briefly considered.

  8. General stability of memory-type thermoelastic Timoshenko beam acting on shear force

    NASA Astrophysics Data System (ADS)

    Apalara, Tijani A.

    2018-03-01

    In this paper, we consider a linear thermoelastic Timoshenko system with memory effects where the thermoelastic coupling is acting on shear force under Neumann-Dirichlet-Dirichlet boundary conditions. The same system with fully Dirichlet boundary conditions was considered by Messaoudi and Fareh (Nonlinear Anal TMA 74(18):6895-6906, 2011, Acta Math Sci 33(1):23-40, 2013), but they obtained a general stability result which depends on the speeds of wave propagation. In our case, we obtained a general stability result irrespective of the wave speeds of the system.

  9. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  10. Ideal proportions in full face front view, contemporary versus antique.

    PubMed

    Mommaerts, M Y; Moerenhout, B A M M L

    2011-03-01

    To compare the facial proportions of contemporary harmonious faces with those of antiquity, to validate classical canons and to determine new ones useful in orthofacial surgery planning. Contemporary beautiful faces were retrieved from yearly polls of People Magazine and FHM. Selected B/W frontal facial photographs of 31 men and 74 women were ranked by 20 patients who had to undergo orthofacial surgery. The top-15 female faces and the top-10 male faces were analyzed with Scion Image software. The classical facial index, the Bruges facial index, the ratio lower facial height/total facial height and the vertical tri-partite of the lower face were calculated. The same analysis was done on pictures of classical sculptures representing seven goddesses and 12 gods. Harmonious contemporary female faces have a significantly lower classical facial index, indicating that facial height is less or facial width is larger than in male and even than in antique female faces. The Bruges index indicates a similar difference between ideal contemporary female and male faces. The contemporary male has a higher lower face (48%) compared to total facial height than the contemporary female (45%), although this is statistically not significant (P=0.08). The lower facial thirds index remained quite stabile for 2500 years, without gender difference. A good canon for both sexes today is stomion-gnathion being 70% of subnasale-stomion. The average ideal contemporary female face is shorter than the male face, given the fact that interpupillary distance is similar. The Vitruvian thirds in the lower face have to be adjusted to a 30% upper lip, 70% lower lip-chin proportion. The contemporary ideal ratios are suitable to be implemented in an orthofacial planning concept. Copyright © 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  12. Boundary control for a flexible manipulator based on infinite dimensional disturbance observer

    NASA Astrophysics Data System (ADS)

    Jiang, Tingting; Liu, Jinkun; He, Wei

    2015-07-01

    This paper focuses on disturbance observer and boundary control design for the flexible manipulator in presence of both boundary disturbance and spatially distributed disturbance. Taking the infinite-dimensionality of the flexural dynamics into account, this study proposes a partial differential equation (PDE) model. Since the spatially distributed disturbance is infinite dimensional, it cannot be compensated by the typical disturbance observer, which is designed by finite dimensional approach. To estimate the spatially distributed disturbance, we propose a novel infinite dimensional disturbance observer (IDDO). Applying the IDDO as a feedforward compensator, a boundary control scheme is designed to regulate the joint position and eliminate the elastic vibration simultaneously. Theoretical analysis validates the stability of both the proposed disturbance observer and the boundary controller. The performance of the closed-loop system is demonstrated by numerical simulations.

  13. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  14. Second-mode control in hypersonic boundary layers over assigned complex wall impedance

    NASA Astrophysics Data System (ADS)

    Sousa, Victor; Patel, Danish; Chapelier, Jean-Baptiste; Scalo, Carlo

    2017-11-01

    The durability and aerodynamic performance of hypersonic vehicles greatly relies on the ability to delay transition to turbulence. Passive aerodynamic flow control devices such as porous acoustic absorbers are a very attractive means to damp ultrasonic second-mode waves, which govern transition in hypersonic boundary layers under idealized flow conditions (smooth walls, slender geometries, small angles of attack). The talk will discuss numerical simulations modeling such absorbers via the time-domain impedance boundary condition (TD-IBC) approach by Scalo et al. in a hypersonic boundary layer flow over a 7-degree wedge at freestream Mach numbers M∞ = 7.3 and Reynolds numbers Rem = 1.46 .106 . A three-parameter impedance model tuned to the second-mode waves is tested first with varying resistance, R, and damping ratio, ζ, revealing complete mode attenuation for R < 20. A realistic IBC is then employed, derived via an inverse Helmholtz solver analysis of an ultrasonically absorbing carbon-fiber-reinforced carbon ceramic sample used in recent hypersonic transition experiments by Dr. Wagner and co-workers at DLR-Göttingen.

  15. Advanced stability analysis for laminar flow control

    NASA Technical Reports Server (NTRS)

    Orszag, S. A.

    1981-01-01

    Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.

  16. The Statistical Mechanics of Ideal MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  17. Stability analysis and trend study of a balloon tethered in a wind, with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bland, S. R.; Bennett, R. M.

    1973-01-01

    A stability analysis and trend study for a balloon tethered in a steady wind are presented. The linearized, stability-derivative type analysis includes balloon aerodynamics, buoyancy, mass (including apparent mass), and static forces resulting from the tether cable. The analysis has been applied to a balloon 7.64 m in length, and the results are compared with those from tow tests of this balloon. This comparison shows that the analysis gives reasonable predictions for the damping, frequencies, modes of motion, and stability boundaries exhibited by the balloon. A trend study for the 7.64-m balloon was made to illustrate how the stability boundaries are affected by changes in individual stability parameters. The trends indicated in this study may also be applicable to many other tethered-balloon systems.

  18. A machine learns to predict the stability of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Lam, Christopher; Kipping, David

    2018-06-01

    Long-period circumbinary planets appear to be as common as those orbiting single stars and have been found to frequently have orbital radii just beyond the critical distance for dynamical stability. Assessing the stability is typically done either through N-body simulations or using the classic stability criterion first considered by Dvorak and later developed by Holman and Wiegert: a second-order polynomial calibrated to broadly match numerical simulations. However, the polynomial is unable to capture islands of instability introduced by mean motion resonances, causing the accuracy of the criterion to approach that of a random coin-toss when close to the boundary. We show how a deep neural network (DNN) trained on N-body simulations generated with REBOUND is able to significantly improve stability predictions for circumbinary planets on initially coplanar, circular orbits. Specifically, we find that the accuracy of our DNN never drops below 86 per cent, even when tightly surrounding the boundary of instability, and is fast enough to be practical for on-the-fly calls during likelihood evaluations typical of modern Bayesian inference. Our binary classifier DNN is made publicly available at https://github.com/CoolWorlds/orbital-stability.

  19. Predicting Film Genres with Implicit Ideals

    PubMed Central

    Olney, Andrew McGregor

    2013-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories. PMID:23423823

  20. Predicting film genres with implicit ideals.

    PubMed

    Olney, Andrew McGregor

    2012-01-01

    We present a new approach to defining film genre based on implicit ideals. When viewers rate the likability of a film, they indirectly express their ideal of what a film should be. Across six studies we investigate the category structure that emerges from likability ratings and the category structure that emerges from the features of film. We further compare these data-driven category structures with human annotated film genres. We conclude that film genres are structured more around ideals than around features of film. This finding lends experimental support to the notion that film genres are set of shifting, fuzzy, and highly contextualized psychological categories.

  1. Ideal Theory in Semigroups Based on Intersectional Soft Sets

    PubMed Central

    Song, Seok Zun; Jun, Young Bae

    2014-01-01

    The notions of int-soft semigroups and int-soft left (resp., right) ideals are introduced, and several properties are investigated. Using these notions and the notion of inclusive set, characterizations of subsemigroups and left (resp., right) ideals are considered. Using the notion of int-soft products, characterizations of int-soft semigroups and int-soft left (resp., right) ideals are discussed. We prove that the soft intersection of int-soft left (resp., right) ideals (resp., int-soft semigroups) is also int-soft left (resp., right) ideals (resp., int-soft semigroups). The concept of int-soft quasi-ideals is also introduced, and characterization of a regular semigroup is discussed. PMID:25101310

  2. Switching moving boundary models for two-phase flow evaporators and condensers

    NASA Astrophysics Data System (ADS)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  3. Improvements in the Hemodynamic Stability of Combat Casualties During En Route Care

    DTIC Science & Technology

    2013-01-01

    IMPROVEMENTS IN THE HEMODYNAMIC STABILITY OF COMBAT CASUALTIES DURING EN ROUTE CARE Amy N. Apodaca,* Jonathan J. Morrison,†‡ Mary Ann Spott,* John J...greater clinical capability is associated with an improved hemodynamic status in critical casualties. The ideal prehospital triage should endeavor to...before out of theater medical evacuation (MEDEVAC). As SI is measure of hemodynamic stability, patients with isolated severe brain injury or

  4. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  5. Entropic (de)stabilization of surface-bound peptides conjugated with polymers

    NASA Astrophysics Data System (ADS)

    Carmichael, Scott P.; Shell, M. Scott

    2015-12-01

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  6. Entropic (de)stabilization of surface-bound peptides conjugated with polymers.

    PubMed

    Carmichael, Scott P; Shell, M Scott

    2015-12-28

    In many emerging biotechnologies, functional proteins must maintain their native structures on or near interfaces (e.g., tethered peptide arrays, protein coated nanoparticles, and amphiphilic peptide micelles). Because the presence of a surface is known to dramatically alter the thermostability of tethered proteins, strategies to stabilize surface-bound proteins are highly sought. Here, we show that polymer conjugation allows for significant control over the secondary structure and thermostability of a model surface-tethered peptide. We use molecular dynamics simulations to examine the folding behavior of a coarse-grained helical peptide that is conjugated to polymers of various lengths and at various conjugation sites. These polymer variations reveal surprisingly diverse behavior, with some stabilizing and some destabilizing the native helical fold. We show that ideal-chain polymer entropies explain these varied effects and can quantitatively predict shifts in folding temperature. We then develop a generic theoretical model, based on ideal-chain entropies, that predicts critical lengths for conjugated polymers to effect changes in the folding of a surface-bound protein. These results may inform new design strategies for the stabilization of surface-associated proteins important for a range technological applications.

  7. Assessing Uncertainties in Boundary Layer Transition Predictions for HIFiRE-1 at Non-zero Angles of Attack

    NASA Technical Reports Server (NTRS)

    Marek, Lindsay C.

    2011-01-01

    Boundary layer stability was analyzed for the HIFiRE-1 flight vehicle geometry for ground tests conducted at the CUBRC LENS I hypersonic shock test facility and the Langley Research Center (LaRC) 20- inch Mach 6 Tunnel. Boundary layer stability results were compared to transition onset location obtained from discrete heat transfer measurements from thin film gauges during the CUBRC test and spatially continuous heat transfer measurements from thermal phosphor paint data during the LaRC test. The focus of this analysis was on conditions at non-zero angles of attack as stability analysis has already been performed at zero degrees angle of attack. Also, the transition onset data obtained during flight testing was at nonzero angles of attack, so this analysis could be expanded in the future to include the results of the flight test data. Stability analysis was performed using the 2D parabolized stability software suite STABL (Stability and Transition Analysis for Hypersonic Boundary Layers) developed at the University of Minnesota and the mean flow solutions were computed using the DPLR finite volume Navier-Stokes computational fluid dynamics (CFD) solver. A center line slice of the 3D mean flow solution was used for the stability analysis to incorporate the angle of attack effects while still taking advantage of the 2D STABL software suite. The N-factors at transition onset and the value of Re(sub theta)/M(sub e), commonly used to predict boundary layer transition onset, were compared for all conditions analyzed. Ground test data was analyzed at Mach 7.2 and Mach 6.0 and angles of attack of 1deg, 3deg and 5deg. At these conditions, the flow was found to be second mode dominant for the HIFiRE-1 slender cone geometry. On the leeward side of the vehicle, a strong trend of transition onset location with angle of attack was observed as the boundary layer on the leeward side of the vehicle developed inflection points at streamwise positions on the vehicle that correlated to

  8. Operational stability prediction in milling based on impact tests

    NASA Astrophysics Data System (ADS)

    Kiss, Adam K.; Hajdu, David; Bachrathy, Daniel; Stepan, Gabor

    2018-03-01

    Chatter detection is usually based on the analysis of measured signals captured during cutting processes. These techniques, however, often give ambiguous results close to the stability boundaries, which is a major limitation in industrial applications. In this paper, an experimental chatter detection method is proposed based on the system's response for perturbations during the machining process, and no system parameter identification is required. The proposed method identifies the dominant characteristic multiplier of the periodic dynamical system that models the milling process. The variation of the modulus of the largest characteristic multiplier can also be monitored, the stability boundary can precisely be extrapolated, while the manufacturing parameters are still kept in the chatter-free region. The method is derived in details, and also verified experimentally in laboratory environment.

  9. Maintaining ideal body weight counseling sessions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brammer, S.H.

    The purpose of this program is to provide employees with the motivation, knowledge and skills necessary to maintain ideal body weight throughout life. The target audience for this program, which is conducted in an industrial setting, is the employee 40 years of age or younger who is at or near his/her ideal body weight.

  10. Plasmoids everywhere: ideal tearing, the transition to fast reconnection, and solar activity.

    NASA Astrophysics Data System (ADS)

    Velli, M. C. M.; Pucci, F.; Tenerani, A.; Shi, C.; Del Sarto, D.; Rappazzo, A. F.

    2017-12-01

    We discuss the role of generalized ``ideal" tearing (IT) as a possible trigger mechanism for magnetic reconnection to understand energetic phenomena in the solar atmosphere. We begin with a pedagogical introduction to the IT concept, how it stems from the classical analysis of the tearing instability, what is meant by plasmoids, and the connections of IT to the plasmoid instability and Sweet Parker current sheets. We then proceed to analyze how the IT concept extends to equilibria with flows, small scale kinetic effects, different current structures and different magnetic field topology configurations. Finally we discuss the relationship of reconnection triggering to nonlinear cascades and turbulent evolution, and how different situations may arise depending on scale, boundary conditions, and time-history, from coronal heating via nanoflares, to solar flares and coronal mass ejections. Issues of local topology, dimensionality, anisotropy will also be discussed.

  11. The Ideal Man and Woman According to University Students

    ERIC Educational Resources Information Center

    Weinstein, Lawrence; Laverghetta, Antonio V.; Peterson, Scott A.

    2009-01-01

    The present study determined if the ideal man has changed over the years and who and what the ideal woman is. We asked students at Cameron University to rate the importance of character traits that define the ideal man and woman. Subjects also provided examples of famous people exemplifying the ideal, good, average, and inferior man and woman. We…

  12. Fluctuation-induced forces in confined ideal and imperfect Bose gases

    NASA Astrophysics Data System (ADS)

    Diehl, H. W.; Rutkevich, Sergei B.

    2017-06-01

    Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d -dimensional films of size ∞d -1×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions ΥdBC(xλ=D /λth ,xξ=D /ξ ) of the residual reduced grand potential per area φres,dBC(T ,μ ,D ) =D-(d -1 )ΥdBC(xλ,xξ) are determined for the ideal gas case with these BCs, where λth and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions ΘdBC(xξ) ≡ΥdBC(∞ ,xξ) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O (2 ) theory for BC=P,A,DD,DN,NN . For d =3 , they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions ΥdBC(xλ,xξ,c1D ,c2D ) and ΘdR(xξ,c1D ,c2D ) under the RBCs (∂z-c1) ϕ |z=0=(∂z+c2) ϕ | z =D=0 with c1≥0 and c2≥0 are also determined. The corresponding scaling functions Υ∞,d P(xλ,xξ) and Θ∞,d P(xξ) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n →∞ . Hence, for d =3 , Θ∞,d P(xξ) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n →∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ∞,3 DD(xξ) therefore follow from those of the O (2 n ) ϕ4 model for n →∞ .

  13. Boundary particle method for Laplace transformed time fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Fu, Zhuo-Jia; Chen, Wen; Yang, Hai-Tian

    2013-02-01

    This paper develops a novel boundary meshless approach, Laplace transformed boundary particle method (LTBPM), for numerical modeling of time fractional diffusion equations. It implements Laplace transform technique to obtain the corresponding time-independent inhomogeneous equation in Laplace space and then employs a truly boundary-only meshless boundary particle method (BPM) to solve this Laplace-transformed problem. Unlike the other boundary discretization methods, the BPM does not require any inner nodes, since the recursive composite multiple reciprocity technique (RC-MRM) is used to convert the inhomogeneous problem into the higher-order homogeneous problem. Finally, the Stehfest numerical inverse Laplace transform (NILT) is implemented to retrieve the numerical solutions of time fractional diffusion equations from the corresponding BPM solutions. In comparison with finite difference discretization, the LTBPM introduces Laplace transform and Stehfest NILT algorithm to deal with time fractional derivative term, which evades costly convolution integral calculation in time fractional derivation approximation and avoids the effect of time step on numerical accuracy and stability. Consequently, it can effectively simulate long time-history fractional diffusion systems. Error analysis and numerical experiments demonstrate that the present LTBPM is highly accurate and computationally efficient for 2D and 3D time fractional diffusion equations.

  14. Shock Tunnel Operation and Correlation of Boundary Layer Transition on a Cone in Hypervelocity Flow

    DTIC Science & Technology

    2013-07-01

    conditions from the ideal reflected-shock pressure to measured reservoir pressure using an isentropic expan- sion. Furthermore, the 1-D nozzle computation...does not account for boundary layer growth within the nozzle , off-design operation conditions that lead to flow nonuni- formity, or vibration...translation nonequilibrium and freezing within the nozzle , which is significant for the N2 cases. For the uncertainties that can be quantified, we have combined

  15. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  16. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  17. Grain boundary engineering to control the discontinuous precipitation in multicomponent U10Mo alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Kovarik, Libor; Kautz, Elizabeth

    Grain boundaries in metallic alloys often play a crucial role, not only in determining the mechanical properties or thermal stability of alloys, but also in dictating the phase transformation kinetics during thermomechanical processing. We demonstrate that locally stabilized structure and compositional segregation at grain boundaries—“grain boundary complexions”—in a complex multicomponent alloy can be modified to influence the kinetics of cellular transformation during subsequent thermomechanical processing. Using aberration-corrected scanning transmission electron microscopy and atom probe tomography analysis of a metallic nuclear fuel highly relevant to worldwide nuclear non-proliferation efforts —uranium-10 wt% molybdenum (U-10Mo) alloy, new evidence for the existence of grainmore » boundary complexion is provided. We then modified the concentration of impurities dissolved in Υ-UMo grain interiors and/or segregated to Υ-UMo grain boundaries by changing the homogenization treatment, and these effects were used used to retard the kinetics of cellular transformation during subsequent sub-eutectoid annealing in this U-10-Mo alloy during sub-eutectoid annealing. Thus, this work provided insights on tailoring the final microstructure of the U-10Mo alloy, which can potentially improve the irradiation performance of this important class of alloy fuels.« less

  18. Maintaining a Cognitive Map in Darkness: The Need to Fuse Boundary Knowledge with Path Integration

    PubMed Central

    Cheung, Allen; Ball, David; Milford, Michael; Wyeth, Gordon; Wiles, Janet

    2012-01-01

    Spatial navigation requires the processing of complex, disparate and often ambiguous sensory data. The neurocomputations underpinning this vital ability remain poorly understood. Controversy remains as to whether multimodal sensory information must be combined into a unified representation, consistent with Tolman's “cognitive map”, or whether differential activation of independent navigation modules suffice to explain observed navigation behaviour. Here we demonstrate that key neural correlates of spatial navigation in darkness cannot be explained if the path integration system acted independently of boundary (landmark) information. In vivo recordings demonstrate that the rodent head direction (HD) system becomes unstable within three minutes without vision. In contrast, rodents maintain stable place fields and grid fields for over half an hour without vision. Using a simple HD error model, we show analytically that idiothetic path integration (iPI) alone cannot be used to maintain any stable place representation beyond two to three minutes. We then use a measure of place stability based on information theoretic principles to prove that featureless boundaries alone cannot be used to improve localization above chance level. Having shown that neither iPI nor boundaries alone are sufficient, we then address the question of whether their combination is sufficient and – we conjecture – necessary to maintain place stability for prolonged periods without vision. We addressed this question in simulations and robot experiments using a navigation model comprising of a particle filter and boundary map. The model replicates published experimental results on place field and grid field stability without vision, and makes testable predictions including place field splitting and grid field rescaling if the true arena geometry differs from the acquired boundary map. We discuss our findings in light of current theories of animal navigation and neuronal computation, and

  19. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy

    PubMed Central

    Borojeni, Azadeh A.T.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.; Garcia, Guilherme J. M.

    2016-01-01

    Virtual surgery planning based on computational fluid dynamics (CFD) simulations has the potential to improve surgical outcomes for nasal airway obstruction (NAO) patients, but the benefits of virtual surgery planning must outweigh the risks of radiation exposure. Cone beam computed tomography (CBCT) scans represent an attractive imaging modality for virtual surgery planning due to lower costs and lower radiation exposures compared with conventional CT scans. However, to minimize the radiation exposure, the CBCT sinusitis protocol sometimes images only the nasal cavity, excluding the nasopharynx. The goal of this study was to develop an idealized nasopharynx geometry for accurate representation of outlet boundary conditions when the nasopharynx geometry is unavailable. Anatomically-accurate models of the nasopharynx created from thirty CT scans were intersected with planes rotated at different angles to obtain an average geometry. Cross sections of the idealized nasopharynx were approximated as ellipses with cross-sectional areas and aspect ratios equal to the average in the actual patient-specific models. CFD simulations were performed to investigate whether nasal airflow patterns were affected when the CT-based nasopharynx was replaced by the idealized nasopharynx in 10 NAO patients. Despite the simple form of the idealized geometry, all biophysical variables (nasal resistance, airflow rate, and heat fluxes) were very similar in the idealized vs. patient-specific models. The results confirmed the expectation that the nasopharynx geometry has a minimal effect in the nasal airflow patterns during inspiration. The idealized nasopharynx geometry will be useful in future CFD studies of nasal airflow based on medical images that exclude the nasopharynx. PMID:27525807

  20. The Hall-induced stability of gravitating fluids

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.

    2018-05-01

    We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.

  1. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the

  2. Self-sustained oscillations of a shock wave interacting with a boundary layer on a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Howe, M. S.

    1984-01-01

    A theory is proposed of the self-sustaining oscillations of a weak shock on an airfoi in steady, transonic flow. The interaction of the shock with the boundary layer on the airfoil produces displacement thickness fluctuations which convect downstream and generate sound by interaction with the trailing edge. A feedback loop is established when this sound impinges on the shock wave, resulting in the production of further fluctuations in the displacement thickness. The details are worked out for an idealized mean boundary layer velocity profile, but strong support for the basic hypotheses of the theory is provided by a comparison with recent experiments involving the generation of acoustic 'tone bursts' by a supercritical airfoil section.

  3. Self-sustained oscillations of a shock wave interacting with a boundary layer on a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Ventres, C. S.; Howe, M. S.

    1983-01-01

    A theory is proposed of the self-sustaining oscillations of a weak shock on an airfoil in steady, transonic flow. The interaction of the shock with the boundary layer on the airfoil produces displacement thickness fluctuations which convect downstream and generate sound by interaction with the trailing edge. A feedback loop is established when this sound impinges on the shock wave, resulting in the production of further fluctuations in the displacement thickness. The details are worked out for an idealized mean boundary layer velocity profile, but strong support for the basic hypotheses of the theory is provided by a comparison with recent experiments involving the generation of acoustic "tone bursts' by a supercritical airfoil section.

  4. Idealism and materialism in perception.

    PubMed

    Rose, David; Brown, Dora

    2015-01-01

    Koenderink (2014, Perception, 43, 1-6) has said most Perception readers are deluded, because they believe an 'All Seeing Eye' observes an objective reality. We trace the source of Koenderink's assertion to his metaphysical idealism, and point to two major weaknesses in his position-namely, its dualism and foundationalism. We counter with arguments from modern philosophy of science for the existence of an objective material reality, contrast Koenderink's enactivism to his idealism, and point to ways in which phenomenology and cognitive science are complementary and not mutually exclusive.

  5. Transpiration and film cooling boundary layer computer program. Volume 2: Computer program and user's manual

    NASA Technical Reports Server (NTRS)

    Gloss, R. J.

    1971-01-01

    A finite difference turbulent boundary layer computer program which allows for mass transfer wall cooling and equilibrium chemistry effects is presented. The program is capable of calculating laminar or turbulent boundary layer solutions for an arbitrary ideal gas or an equilibrium hydrogen oxygen system. Either two dimensional or axisymmetric geometric configurations may be considered. The equations are solved, in nondimension-alized physical coordinates, using the implicit Crank-Nicolson technique. The finite difference forms of the conservation of mass, momentum, total enthalpy and elements equations are linearized and uncoupled, thereby generating easily solvable tridiagonal sets of algebraic equations. A detailed description of the computer program, as well as a program user's manual is provided. Detailed descriptions of all boundary layer subroutines are included, as well as a section defining all program symbols of principal importance. Instructions are then given for preparing card input to the program and for interpreting the printed output. Finally, two sample cases are included to illustrate the use of the program.

  6. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  7. Investigation of 3D Shock-Boundary Layer Interaction: A Combined Approach using Experiments, Numerical Simulations and Stability Analysis

    DTIC Science & Technology

    2015-12-02

    layer , the non-reflecting boundary condition suggested by Poinsot and Lele is adopted.38 On the flat – plate surface, the no-penetration (v = 0) and the no...generator plate is emulated to create an oblique shock that impinges on the boundary layer causing separation. This is similar to the experimental...without SBLI and with SBLI. To calculate the steady flat – plate solution with no shock, a characteristic boundary condition according to Harris is used.39

  8. Competing disturbance amplification mechanisms in two-fluid boundary layers

    NASA Astrophysics Data System (ADS)

    Saha, Sandeep; Page, Jacob; Zaki, Tamer

    2015-11-01

    The linear stability of boundary layers above a thin wall film of lower viscosity is analyzed. Appropriate choice of the film thickness and viscosity excludes the possibility of interfacial instabilities. Transient amplification of disturbances is therefore the relevant destabilizing influence, and can take place via three different mechanisms in the two-fluid configuration. Each is examined in detail by solving an initial value problem whose initial condition comprises a pair of appropriately chosen eigenmodes from the discrete, continuous and interface modes. Two regimes are driven by the lift-up mechanism: (i) The response to a streamwise vortex and (ii) the normal vorticity generated by a stable Tollmien-Schlichting wave. Both are damped due to the film. The third regime is associated with the wall-normal vorticity that is generated by the interface displacement. It can lead to appreciable streamwise velocity disturbances in the near-wall region at relatively low viscosity ratios. The results demonstrate that a wall film can stabilize the early linear stages of boundary-layer transition, and explain the observations from the recent nonlinear direct numerical simulations of this configuration by Jung & Zaki (J. Fluid Mech., vol 772, 2015, 330-360).

  9. Medical learning curves and the Kantian ideal.

    PubMed

    Le Morvan, P; Stock, B

    2005-09-01

    A hitherto unexamined problem for the "Kantian ideal" that one should always treat patients as ends in themselves, and never only as a means to other ends, is explored in this paper. The problem consists of a prima facie conflict between this Kantian ideal and the reality of medical practice. This conflict arises because, at least presently, medical practitioners can only acquire certain skills and abilities by practising on live, human patients, and given the inevitability and ubiquity of learning curves, this learning requires some patients to be treated only as a means to this end. A number of ways of attempting to establish the compatibility of the Kantian Ideal with the reality of medical practice are considered. Each attempt is found to be unsuccessful. Accordingly, until a way is found to reconcile them, we conclude that the Kantian ideal is inconsistent with the reality of medical practice.

  10. Medical learning curves and the Kantian ideal

    PubMed Central

    Le Morvan, P; Stock, B

    2005-01-01

    A hitherto unexamined problem for the "Kantian ideal" that one should always treat patients as ends in themselves, and never only as a means to other ends, is explored in this paper. The problem consists of a prima facie conflict between this Kantian ideal and the reality of medical practice. This conflict arises because, at least presently, medical practitioners can only acquire certain skills and abilities by practising on live, human patients, and given the inevitability and ubiquity of learning curves, this learning requires some patients to be treated only as a means to this end. A number of ways of attempting to establish the compatibility of the Kantian Ideal with the reality of medical practice are considered. Each attempt is found to be unsuccessful. Accordingly, until a way is found to reconcile them, we conclude that the Kantian ideal is inconsistent with the reality of medical practice. PMID:16131552

  11. Simulations of string vibrations with boundary conditions of third kind using the functional transformation method

    NASA Astrophysics Data System (ADS)

    Trautmann, L.; Petrausch, S.; Bauer, M.

    2005-09-01

    The functional transformation method (FTM) is an established mathematical method for accurate simulation of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. It is a frequency-domain method based on the decomposition into eigenvectors and eigenfrequencies of the underlying physical problem. In this article, the FTM is applied to real-time simulations of vibrating strings which are ideally fixed at one end while the fixing at the other end is modeled by a frequency-dependent input impedance. Thus, boundary conditions of third kind are applied to the model at the end fixed with the input impedance. It is shown that accurate and stable simulations are achieved with nearly the same computational cost as with strings ideally fixed at both ends.

  12. Steady Boundary Layer Disturbances Created By Two-Dimensional Surface Ripples

    NASA Astrophysics Data System (ADS)

    Kuester, Matthew

    2017-11-01

    Multiple experiments have shown that surface roughness can enhance the growth of Tollmien-Schlichting (T-S) waves in a laminar boundary layer. One of the common observations from these studies is a ``wall displacement'' effect, where the boundary layer profile shape remains relatively unchanged, but the origin of the profile pushes away from the wall. The objective of this work is to calculate the steady velocity field (including this wall displacement) of a laminar boundary layer over a surface with small, 2D surface ripples. The velocity field is a combination of a Blasius boundary layer and multiple disturbance modes, calculated using the linearized Navier-Stokes equations. The method of multiple scales is used to include non-parallel boundary layer effects of O (Rδ- 1) ; the non-parallel terms are necessary, because a wall displacement is mathematically inconsistent with a parallel boundary layer assumption. This technique is used to calculate the steady velocity field over ripples of varying height and wavelength, including cases where a separation bubble forms on the leeward side of the ripple. In future work, the steady velocity field will be the input for stability calculations, which will quantify the growth of T-S waves over rough surfaces. The author would like to acknowledge the support of the Kevin T. Crofton Aerospace & Ocean Engineering Department at Virginia Tech.

  13. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  14. Non-Linear Spring Equations and Stability

    ERIC Educational Resources Information Center

    Fay, Temple H.; Joubert, Stephan V.

    2009-01-01

    We discuss the boundary in the Poincare phase plane for boundedness of solutions to spring model equations of the form [second derivative of]x + x + epsilonx[superscript 2] = Fcoswt and the [second derivative of]x + x + epsilonx[superscript 3] = Fcoswt and report the results of a systematic numerical investigation on the global stability of…

  15. An effective absorbing layer for the boundary condition in acoustic seismic wave simulation

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Wu, Di

    2018-04-01

    Efficient numerical simulation of seismic wavefields generally involves truncating the Earth model in order to keep computing time and memory requirements down. Absorbing boundary conditions, therefore, are applied to remove the boundary reflections caused by this truncation, thereby allowing for accurate modeling of wavefields. In this paper, we derive an effective absorbing boundary condition for both acoustic and elastic wave simulation, through the simplification of the damping term of the split perfectly matched layer (SPML) boundary condition. This new boundary condition is accurate, cost-effective, and easily implemented, especially for high-performance computing. Stability analysis shows that this boundary condition is effectively as stable as normal (non-absorbing) wave equations for explicit time-stepping finite differences. We found that for full-waveform inversion (FWI), the strengths of the effective absorbing layer—a reduction of the computational and memory cost coupled with a simplistic implementation—significantly outweighs the limitation of incomplete absorption of outgoing waves relative to the SPML. More importantly, we demonstrate that this limitation can easily be overcome through the use of two strategies in FWI, namely variable cell size and model extension thereby fully compensating for the imperfectness of the proposed absorbing boundary condition.

  16. [The style of leadership idealized by nurses].

    PubMed

    Higa, Elza de Fátima Ribeiro; Trevizan, Maria Auxiliadora

    2005-01-01

    This study focuses on nursing leadership on the basis of Grid theories. According to the authors, these theories are an alternative that allows for leadership development in nursing. The research aimed to identify and analyze the style of leadership idealized by nurses, according to their own view, and to compare the styles of leadership idealized by nurses between the two research institutions. Study subjects were 13 nurses. The results show that nurses at both institutions equally mention they idealize style 9.9, followed by 5.5 and 1.9, with a tendency to reject styles 9.1 and 1.1.

  17. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  18. Stability of a two-volume MRxMHD model in slab geometry

    NASA Astrophysics Data System (ADS)

    Tuen, Li Huey

    Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for

  19. Concepts of Ideal and Nonideal Explosives.

    DTIC Science & Technology

    1981-12-01

    Akst and J. Hershkowitz, "Explosive Performance Modification by Cosolidifaction of Ammonium Nitrate with Fuels ," Technical Report 4987, Picatinny...explosives Equations of state Diameter effect Ammonium nitrate 20. ASSrRACr (ca’mes r w re t N netwezy ad identity by block number) The purpose of...this report is to stimulate discussion on the nonideality of ammonium nitrate and its composite explosives. The concept of ideal and non- ideal

  20. Numerical boundary condition procedures and multigrid methods; Proceedings of the Symposium, NASA Ames Research Center, Moffett Field, CA, October 19-22, 1981

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Papers presented in this volume provide an overview of recent work on numerical boundary condition procedures and multigrid methods. The topics discussed include implicit boundary conditions for the solution of the parabolized Navier-Stokes equations for supersonic flows; far field boundary conditions for compressible flows; and influence of boundary approximations and conditions on finite-difference solutions. Papers are also presented on fully implicit shock tracking and on the stability of two-dimensional hyperbolic initial boundary value problems for explicit and implicit schemes.

  1. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  2. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  3. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  4. Periodic sequence of stabilized wave segments in an excitable medium

    NASA Astrophysics Data System (ADS)

    Zykov, V. S.; Bodenschatz, E.

    2018-03-01

    Numerical computations show that a stabilization of a periodic sequence of wave segments propagating through an excitable medium is possible only in a restricted domain within the parameter space. By application of a free-boundary approach, we demonstrate that at the boundary of this domain the parameter H introduced in our Rapid Communication is constant. We show also that the discovered parameter predetermines the propagation velocity and the shape of the wave segments. The predictions of the free-boundary approach are in good quantitative agreement with results from numerical reaction-diffusion simulations performed on the modified FitzHugh-Nagumo model.

  5. Nonlinear Alfvén wave propagating in ideal MHD plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, Jugao; Chen, Yinhua; Yu, Mingyang

    2016-01-01

    The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.

  6. Surface Stability and Growth Kinetics of Compound Semiconductors: An Ab Initio-Based Approach

    PubMed Central

    Kangawa, Yoshihiro; Akiyama, Toru; Ito, Tomonori; Shiraishi, Kenji; Nakayama, Takashi

    2013-01-01

    We review the surface stability and growth kinetics of III-V and III-nitride semiconductors. The theoretical approach used in these studies is based on ab initio calculations and includes gas-phase free energy. With this method, we can investigate the influence of growth conditions, such as partial pressure and temperature, on the surface stability and growth kinetics. First, we examine the feasibility of this approach by comparing calculated surface phase diagrams of GaAs(001) with experimental results. In addition, the Ga diffusion length on GaAs(001) during molecular beam epitaxy is discussed. Next, this approach is systematically applied to the reconstruction, adsorption and incorporation on various nitride semiconductor surfaces. The calculated results for nitride semiconductor surface reconstructions with polar, nonpolar, and semipolar orientations suggest that adlayer reconstructions generally appear on the polar and the semipolar surfaces. However, the stable ideal surface without adsorption is found on the nonpolar surfaces because the ideal surface satisfies the electron counting rule. Finally, the stability of hydrogen and the incorporation mechanisms of Mg and C during metalorganic vapor phase epitaxy are discussed. PMID:28811438

  7. Ideal strength of bcc molybdenum and niobium

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Roundy, D.; Cohen, Marvin L.; Morris, J. W.

    2002-09-01

    The behavior of bcc Mo and Nb under large strain was investigated using the ab initio pseudopotential density-functional method. We calculated the ideal shear strength for the {211}<111> and {011}<111> slip systems and the ideal tensile strength in the <100> direction, which are believed to provide the minimum shear and tensile strengths. As either material is sheared in either of the two systems, it evolves toward a stress-free tetragonal structure that defines a saddle point in the strain-energy surface. The inflection point on the path to this tetragonal ``saddle-point'' structure sets the ideal shear strength. When either material is strained in tension along <100>, it initially follows the tetragonal, ``Bain,'' path toward a stress-free fcc structure. However, before the strained crystal reaches fcc, its symmetry changes from tetragonal to orthorhombic; on continued strain it evolves toward the same tetragonal saddle point that is reached in shear. In Mo, the symmetry break occurs after the point of maximum tensile stress has been passed, so the ideal strength is associated with the fcc extremum as in W. However, a Nb crystal strained in <100> becomes orthorhombic at tensile stress below the ideal strength. The ideal tensile strength of Nb is associated with the tetragonal saddle point and is caused by failure in shear rather than tension. In dimensionless form, the ideal shear and tensile strengths of Mo (τ*=τm/G111=0.12, σ*=σm/E100=0.078) are essentially identical to those previously calculated for W. Nb is anomalous. Its dimensionless shear strength is unusually high, τ*=0.15, even though the saddle-point structure that causes it is similar to that in Mo and W, while its dimensionless tensile strength, σ*=0.079, is almost the same as that of Mo and W, even though the saddle-point structure is quite different.

  8. A fast numerical method for ideal fluid flow in domains with multiple stirrers

    NASA Astrophysics Data System (ADS)

    Nasser, Mohamed M. S.; Green, Christopher C.

    2018-03-01

    A collection of arbitrarily-shaped solid objects, each moving at a constant speed, can be used to mix or stir ideal fluid, and can give rise to interesting flow patterns. Assuming these systems of fluid stirrers are two-dimensional, the mathematical problem of resolving the flow field—given a particular distribution of any finite number of stirrers of specified shape and speed—can be formulated as a Riemann-Hilbert (R-H) problem. We show that this R-H problem can be solved numerically using a fast and accurate algorithm for any finite number of stirrers based around a boundary integral equation with the generalized Neumann kernel. Various systems of fluid stirrers are considered, and our numerical scheme is shown to handle highly multiply connected domains (i.e. systems of many fluid stirrers) with minimal computational expense.

  9. Hydrogen segregation to inclined Σ3 < 110 >twin grain boundaries in nickel

    DOE PAGES

    O’Brien, Christopher J.; Foiles, Stephen M.

    2016-08-04

    Low-mobility twin grain boundaries dominate the microstructure of grain boundary-engineered materials and are critical to understanding their plastic deformation behaviour. The presence of solutes, such as hydrogen, has a profound effect on the thermodynamic stability of the grain boundaries. This work examines the case of a Σ3 grain boundary at inclinations from 0° ≤ Φ ≤ 90°. The angle Φ corresponds to the rotation of the Σ3 (1 1 1) < 1 1 0 > (coherent) into the Σ3 (1 1 2) < 1 1 0 > (lateral) twin boundary. To this end, atomistic models of inclined grain boundaries, utilisingmore » empirical potentials, are used to elucidate the finite-temperature boundary structure while grand canonical Monte Carlo models are applied to determine the degree of hydrogen segregation. In order to understand the boundary structure and segregation behaviour of hydrogen, the structural unit description of inclined twin grain boundaries is found to provide insight into explaining the observed variation of excess enthalpy and excess hydrogen concentration on inclination angle, but the explanatory power is limited by how the enthalpy of segregation is affected by hydrogen concentration. At higher concentrations, the grain boundaries undergo a defaceting transition. In order to develop a more complete mesoscale model of the interfacial behaviour, an analytical model of boundary energy and hydrogen segregation that relies on modelling the boundary as arrays of discrete 1/3 < 1 1 1 > disconnections is constructed. Lastly, the complex interaction of boundary reconstruction and concentration-dependent segregation behaviour exhibited by inclined twin grain boundaries limits the range of applicability of such an analytical model and illustrates the fundamental limitations for a structural unit model description of segregation in lower stacking fault energy materials.« less

  10. Ideal and Nonideal Reasoning in Educational Theory

    ERIC Educational Resources Information Center

    Jaggar, Alison M.

    2015-01-01

    The terms "ideal theory" and "nonideal theory" are used in contemporary Anglophone political philosophy to identify alternative methodological approaches for justifying normative claims. Each term is used in multiple ways. In this article Alison M. Jaggar disentangles several versions of ideal and nonideal theory with a view to…

  11. Idealized cultural beliefs about gender: implications for mental health.

    PubMed

    Mahalingam, Ramaswami; Jackson, Benita

    2007-12-01

    In this paper, we examined the relationship between culture-specific ideals (chastity, masculinity, caste beliefs) and self-esteem, shame and depression using an idealized cultural model proposed by Mahalingam (2006, In: Mahalingam R (ed) Cultural psychology of immigrants. Lawrence Erlbaum, Mahwah, NJ, pp 1-14). Participants were from communities with a history of extreme male-biased sex ratios in Tamilnadu, India (N = 785). We hypothesized a dual-process model of self-appraisals suggesting that achieving idealized cultural identities would increase both self-esteem and shame, with the latter leading to depression, even after controlling for key covariates. We tested this using structural equation modeling. The proposed idealized cultural identities model had an excellent fit (CFI = 0.99); the effect of idealized identities on self-esteem, shame and depression differed by gender. Idealized beliefs about gender relate to psychological well-being in gender specific ways in extreme son preference communities. We discuss implications of these findings for future research and community-based interventions.

  12. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.

    2006-04-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.

  13. Direct Simulation of Evolution and Control of Three-Dimensional Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1995-01-01

    The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.

  14. Laminar Boundary Layer Stability Measurements at Mach 7 Including Wall Temperature Effects

    DTIC Science & Technology

    1977-11-01

    Diagnostics were done by a four-probe rake bearing a pitot tube, a To probe and two hot films - a boundary layer hot film probe (BLHF) and a freestream hot...tunnel. Inset shows hot film probe close to the surface with second probe positioned higher to sample simultaneously the frcestream turbulence ( pitot ... rake away from the surface by small increments and taking readings at each stop. The readings were simultaneously recorded and reduced by the Tunnel B

  15. Steady state toroidal magnetic field at earth's core-mantle boundary

    NASA Technical Reports Server (NTRS)

    Levy, Eugene H.; Pearce, Steven J.

    1991-01-01

    Measurements of the dc electrical potential near the top of earth's mantle have been extrapolated into the deep mantle in order to estimate the strength of the toroidal magnetic field component at the core-mantle interface. Recent measurements have been interpreted as indicating that at the core-mantle interface, the magnetic toroidal and poloidal field components are approximately equal in magnitude. A motivation for such measurements is to obtain an estimate of the strength of the toroidal magnetic field in the core, a quantity important to our understanding of the geomagnetic field's dynamo generation. Through the use of several simple and idealized calculation, this paper discusses the theoretical relationship between the amplitude of the toroidal magnetic field at the core-mantle boundary and the actual amplitude within the core. Even with a very low inferred value of the toroidal field amplitude at the core-mantle boundary, (a few gauss), the toroidal field amplitude within the core could be consistent with a magnetohydrodynamic dynamo dominated by nonuniform rotation and having a strong toroidal magnetic field.

  16. On stability and turbulence of fluid flows

    NASA Technical Reports Server (NTRS)

    Heisenberg, Werner

    1951-01-01

    This investigation is divided into two parts, the treatment of the stability problem of fluid flows on the one hand, and that of the turbulent motion on the other. The first part summarizes all previous investigations under a unified point of view, that is, sets up as generally as possible the conditions under which a profile possesses unstable or stable characteristics, and indicates the methods for solution of the stability equation for any arbitrary velocity profile and for calculation of the critical Reynolds number for unstable profiles. In the second part, under certain greatly idealizing assumptions, differential equations for the turbulent motions are derived and from them qualitative information about several properties of the turbulent velocity distribution is obtained.

  17. Breaking the Boundaries: Using the Writing Experience To Examine the Conflicts between Personal and "American" Democratic Ideals in the Schoolroom.

    ERIC Educational Resources Information Center

    Hamberger, Nan Marie; Moore, Robert L.

    Noting that one way to break boundaries that separate one person from another is to use the writing experience to identify and analyze values, this paper presents guidelines for defining values, discussing values, and teaching about values. Teaching and discussion aids are provided to enhance the examination of narratives and biographies, which…

  18. Two modes of grain boundary pinning by coherent precipitates

    DOE PAGES

    Wang, Nan; Ji, Yanzhou; Wang, Yongbiao; ...

    2017-06-18

    Here, we propose a two-mechanism theory to estimate the pinning effect of coherent precipitates on grain-boundary (GB) migration in grain growth, taking into account the important effect of elastic misfit strain at the coherent interface. Depending on the relative importance of the elastic and the GB contributions to the total free energy, Zener type stabilization or a novel elastic energy induced stabilization may occur. It is found that the pinning is most effective in the crossover region between these two mechanisms. Finally, a phase-field-crystal model is used to numerically validate the theory. Relevant experiments and potential impacts on alloy designmore » are also discussed.« less

  19. Susceptibility for thin ideal media and eating styles.

    PubMed

    Anschutz, Doeschka J; Engels, Rutger C M E; Van Strien, Tatjana

    2008-03-01

    This study examined the relations between susceptibility for thin ideal media and restrained, emotional and external eating, directly and indirectly through body dissatisfaction. Thin ideal media susceptibility, body dissatisfaction and eating styles were measured in a sample of 163 female students. Structural equation modelling was used for analyses, controlling for BMI. Higher susceptibility for thin ideal media was directly related to higher scores on all eating styles, and indirectly related to higher restrained and emotional eating through elevated levels of body dissatisfaction. So, thin ideal media susceptibility was not only related to restraint through body dissatisfaction, but also directly. Emotional eaters might be more vulnerable for negative affect, whereas external eaters might be more sensitive to external cues in general.

  20. String stabilized ribbon growth a method for seeding same

    DOEpatents

    Sachs, Emanuel M.

    1987-08-25

    This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.