Sample records for identical molecular masses

  1. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  2. L-Phenylalanine catabolism and 2-phenylethanol synthesis in Yarrowia lipolytica--mapping molecular identities through whole-proteome quantitative mass spectrometry analysis.

    PubMed

    Celińska, Ewelina; Olkowicz, Mariola; Grajek, Włodzimierz

    2015-08-01

    A world-wide effort is now being pursued towards the development of flavors and fragrances (F&F) production independently from traditional sources, as well as autonomously from depleting fossil fuel supplies. Biotechnological production of F&F by microbes has emerged as a vivid solution to the current market limitations. Amongst a wide variety of fragrant chemicals, 2-PE is of significant interest to both scientific and industrial community. Although the general overview of the 2-PE synthesis pathway is commonly known, involvement of particular molecular identities in this pathway has not been elucidated in Yarrowia lipolytica to date. The aim of this study was mapping molecular identities involved in 2-PE synthesis in Y. lipolytica. To acquire a comprehensive landscape of the proteins that are directly and indirectly involved in L-Phe degradation and 2-PE synthesis, we took advantage of comprehensibility and sensitivity of high-throughput LC-MS/MS-quantitative analysis. Amongst a number of proteins involved in amino acid turnover and the central carbon metabolism, enzymes involved in L-Phe conversion to 2-PE have been identified. Results on yeast-to-hyphae transition in relation to the character of the provided nitrogen source have been presented. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Masses, luminosities and dynamics of galactic molecular clouds

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Rivolo, A. R.; Mooney, T. J.; Barrett, J. W.; Sage, L. J.

    1987-01-01

    Star formation in galaxies takes place in molecular clouds and the Milky Way is the only galaxy in which it is possible to resolve and study the physical properties and star formation activity of individual clouds. The masses, luminosities, dynamics, and distribution of molecular clouds, primarily giant molecular clouds in the Milky Way are described and analyzed. The observational data sets are the Massachusetts-Stony Brook CO Galactic Plane Survey and the IRAS far IR images. The molecular mass and infrared luminosities of glactic clouds are then compared with the molecular mass and infrared luminosities of external galaxies.

  4. High- and low-molecular-mass microbial surfactants.

    PubMed

    Rosenberg, E; Ron, E Z

    1999-08-01

    Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (i) increasing the surface area of hydrophobic water-insoluble growth substrates; (ii) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces; (iii) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water, enhanced oil recovery, replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels and machinery, use in the detergent industry, formulations of herbicides and pesticides and formation of stable oil-in-water emulsions for the food and cosmetic industries.

  5. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry.

    PubMed

    Barnidge, David R; Dasari, Surendra; Ramirez-Alvarado, Marina; Fontan, Adrian; Willrich, Maria A V; Tschumper, Renee C; Jelinek, Diane F; Snyder, Melissa R; Dispenzieri, Angela; Katzmann, Jerry A; Murray, David L

    2014-11-07

    We previously described a microLC-ESI-Q-TOF MS method for identifying monoclonal immunoglobulins in serum and then tracking them over time using their accurate molecular mass. Here we demonstrate how the same methodology can be used to identify and characterize polyclonal immunoglobulins in serum. We establish that two molecular mass distributions observed by microLC-ESI-Q-TOF MS are from polyclonal kappa and lambda light chains using a combination of theoretical molecular masses from gene sequence data and the analysis of commercially available purified polyclonal IgG kappa and IgG lambda from normal human serum. A linear regression comparison of kappa/lambda ratios for 74 serum samples (25 hypergammaglobulinemia, 24 hypogammaglobulinemia, 25 normal) determined by microflowLC-ESI-Q-TOF MS and immunonephelometry had a slope of 1.37 and a correlation coefficient of 0.639. In addition to providing kappa/lambda ratios, the same microLC-ESI-Q-TOF MS analysis can determine the molecular mass for oligoclonal light chains observed above the polyclonal background in patient samples. In 2 patients with immune disorders and hypergammaglobulinemia, we observed a skewed polyclonal molecular mass distribution which translated into biased kappa/lambda ratios. Mass spectrometry provides a rapid and simple way to combine the polyclonal kappa/lambda light chain abundance ratios with the identification of dominant monoclonal as well as oligoclonal light chain immunoglobulins. We anticipate that this approach to evaluating immunoglobulin light chains will lead to improved understanding of immune deficiencies, autoimmune diseases, and antibody responses.

  6. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography.

    PubMed

    Winter, Gregory T; Wilhide, Joshua A; LaCourse, William R

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  7. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography

    NASA Astrophysics Data System (ADS)

    Winter, Gregory T.; Wilhide, Joshua A.; LaCourse, William R.

    2016-02-01

    Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.

  8. Stability of high-mass molecular libraries: the role of the oligoporphyrin core

    PubMed Central

    Sezer, Uĝur; Schmid, Philipp; Felix, Lukas; Mayor, Marcel; Arndt, Markus

    2015-01-01

    Molecular beam techniques are a key to many experiments in physical chemistry and quantum optics. In particular, advanced matter-wave experiments with high-mass molecules profit from the availability of slow, neutral and mass-selected molecular beams that are sufficiently stable to remain intact during laser heating and photoionization mass spectrometry. We present experiments on the photostability with molecular libraries of tailored oligoporphyrins with masses up to 25 000 Da. We compare two fluoroalkylsulfanyl-functionalized libraries based on two different molecular cores that offer the same number of anchor points for functionalization but differ in their geometry and electronic properties. A pentaporphyrin core stabilizes a library of chemically well-defined molecules with more than 1600 atoms. They can be neutrally desorbed with velocities as low as 20 m/s and efficiently analyzed in photoionization mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25601698

  9. Molecular gas in high-mass filament WB673

    NASA Astrophysics Data System (ADS)

    Kirsanova, Maria S.; Salii, Svetlana V.; Sobolev, Andrej M.; Olofsson, Anders Olof Henrik; Ladeyschikov, Dmitry A.; Thomasson, Magnus

    2017-12-01

    We studied the distribution of dense gas in a filamentary molecular cloud containing several dense clumps. The center of the filament is given by the dense clump WB673. The clumps are high-mass and intermediate-mass starforming regions. We observed CS (2-1), 13CO (1-0), C18O(1-0), and methanol lines at 96 GHz toward WB673 with the Onsala Space Observatory 20-m telescope. We found CS (2-1) emission in the inter-clump medium so the clumps are physically connected and the whole cloud is indeed a filament. Its total mass is 104 M⊙ and mass-to-length ratio is 360M⊙ pc-1 from 13CO (1-0) data. Mass-to-length ratio for the dense gas is 3.4 - 34M⊙ pc-1 from CS (2-1) data. The PV-diagram of the filament is V-shaped. We estimated physical conditions in the molecular gas using methanol lines. Location of the filament on the sky between extended shells suggests that it could be a good example to test theoretical models of formation of the filaments via multiple compression of interstellar gas by supersonic waves.

  10. Ion mobility-mass spectrometry of complex carbohydrates: collision cross sections of sodiated N-linked glycans.

    PubMed

    Pagel, Kevin; Harvey, David J

    2013-05-21

    Currently, the vast majority of complex carbohydrates are characterized using mass spectrometry (MS)-based techniques. Measuring the molecular mass of a sugar, however, immediately poses a fundamental problem: entire classes of the constituting monosaccharide building blocks exhibit an identical atomic composition and, consequently, also an identical mass. Therefore, carbohydrate MS data can be highly ambiguous and often it is simply not possible to clearly assign a particular molecular structure. A promising approach to overcome the above-mentioned limitation is to implement an additional gas-phase separation dimension using ion mobility spectrometry (IMS), which is a method in which molecules of identical mass and structure but different structure can be separated according to their shape and collision cross section (CCS). With the emergence of commercially available hybrid ion mobility-mass spectrometry (IM-MS) instruments in 2006, IMS technology became readily available. Because of the nonhomogeneous, traveling wave (TW) field utilized in these instruments, however, CCS values currently cannot be determined directly from the drift times measured. Instead, an external calibration using compounds of known CCS and similar molecular identity is required. Here, we report a calibration protocol for TW IMS instruments using a series of sodiated N-glycans that were released from commercially available glycoproteins using an easy-to-follow protocol. The underlying CCS values were determined using a modified Synapt HDMS instrument with a linear drift tube, which was described in detail previously. Our data indicate that, under in-source fragmentation conditions, only a few glycans are required to obtain a TW IMS calibration of sufficient quality. In this context, however, the type of glycan was shown to be of tremendous importance. Furthermore, our data clearly demonstrate that carbohydrate isomers with identical mass but different conformation can be distinguished based

  11. Direct and comprehensive analysis of dyes based on integrated molecular and structural information via laser desorption laser postionization mass spectrometry.

    PubMed

    Liu, Rong; Yin, Zhibin; Leng, Yixin; Hang, Wei; Huang, Benli

    2018-01-01

    Laser desorption laser postionization time-of-flight mass spectrometry (LDPI-TOFMS) was employed for direct analysis and determination of typical basic dyes. It was also used for the analysis and comprehensive understanding of complex materials such as blue ballpoint pen inks. Simultaneous emergences of fragmental and molecular information largely simplify and facilitate unambiguous identification of dyes via variable energy of 266nm postionization laser. More specifically, by optimizing postionization laser energy with the same energy of desorption laser, the structurally significant results show definite differences in the fragmentation patterns, which offer opportunities for discrimination of isomeric species with identical molecular weight. Moreover, relatively high spectra resolution can be acquired without the expense of sensitivity. In contrast to laser desorption/ionization mass spectrometry (LDI-MS), LDPI-MS simultaneously offers valuable molecular information about dyes in traces, solvents and additives about inks, thereby offering direct determination and comprehensive understanding of blue ballpoint inks and giving a high level of confidence to discriminate the complicated evidentiary samples. In addition, direct analysis of the inks not only allows the avoidance of the tedious sample preparation processes, significantly shortening the overall analysis time and improving throughput, but allows minimized sample consumption which is important for rare and precious samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Characterization of molecular identity and pathogenicity of rice blast fungus in Hunan province of China

    USDA-ARS?s Scientific Manuscript database

    Characterization of molecular identity and pathogenicity of the rice blast fungus benefits the deployment of effective blast resistance (R) genes. In order to identify blast resistance genes in rice producing areas where most of the hybrid rice is grown in Hunan province, 182 M. oryzae strains were ...

  13. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    PubMed Central

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-01-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827

  14. Direct molecular mass determination of trehalose monomycolate from 11 species of mycobacteria by MALDI-TOF mass spectrometry.

    PubMed

    Fujita, Yukiko; Naka, Takashi; Doi, Takeshi; Yano, Ikuya

    2005-05-01

    Direct estimation of the molecular mass of single molecular species of trehalose 6-monomycolate (TMM), a ubiquitous cell-wall component of mycobacteria, was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. When less than 1 microg TMM was analysed by MALDI-TOF mass spectrometry, quasimolecular ions [M+Na]+ of each molecular species were demonstrated and the numbers of carbons and double bonds (or cyclopropane rings) were determined. Since the introduction of oxygen atoms such as carbonyl, methoxy and ester groups yielded the appropriate shift of mass ions, the major subclasses of mycolic acid (alpha, methoxy, keto and wax ester) were identified without resorting to hydrolytic procedures. The results showed a marked difference in the molecular species composition of TMM among mycobacterial species. Unexpectedly, differing from other mycoloyl glycolipids, TMM from Mycobacterium tuberculosis showed a distinctive mass pattern, with abundant odd-carbon-numbered monocyclopropanoic (or monoenoic) alpha-mycolates besides dicyclopropanoic mycolate, ranging from C75 to C85, odd- and even-carbon-numbered methoxymycolates ranging from C83 to C94 and even- and odd-carbon-numbered ketomycolates ranging from C83 to C90. In contrast, TMM from Mycobacterium bovis (wild strain and BCG substrains) possessed even-carbon-numbered dicyclopropanoic alpha-mycolates. BCG Connaught strain lacked methoxymycolates almost completely. These results were confirmed by MALDI-TOF mass analysis of mycolic acid methyl esters liberated by alkaline hydrolysis and methylation of the original TMM. Wax ester-mycoloyl TMM molecular species were demonstrated for the first time as an intact form in the Mycobacterium avium-intracellulare group, M. phlei and M. flavescens. The M. avium-intracellulare group possessed predominantly C85 and C87 wax ester-mycoloyl TMM, while M. phlei and the rapid growers tested contained C80, C81, C82 and C83 wax ester

  15. THE IMPACT OF MOLECULAR GAS ON MASS MODELS OF NEARBY GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, B. S.; Blok, W. J. G. de; Walter, F.

    2016-04-15

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in themore » inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors α{sub CO} to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro–Frenk–White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of α{sub CO} can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.« less

  16. Utilizing Ion-Mobility Data to Estimate Molecular Masses

    NASA Technical Reports Server (NTRS)

    Duong, Tuan; Kanik, Isik

    2008-01-01

    A method is being developed for utilizing readings of an ion-mobility spectrometer (IMS) to estimate molecular masses of ions that have passed through the spectrometer. The method involves the use of (1) some feature-based descriptors of structures of molecules of interest and (2) reduced ion mobilities calculated from IMS readings as inputs to (3) a neural network. This development is part of a larger effort to enable the use of IMSs as relatively inexpensive, robust, lightweight instruments to identify, via molecular masses, individual compounds or groups of compounds (especially organic compounds) that may be present in specific environments or samples. Potential applications include detection of organic molecules as signs of life on remote planets, modeling and detection of biochemicals of interest in the pharmaceutical and agricultural industries, and detection of chemical and biological hazards in industrial, homeland-security, and industrial settings.

  17. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Ting; Trims Collaboration

    2017-09-01

    The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment examines the branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). Measuring this branching ratio helps to validate the current molecular final-state theory applied in neutrino mass experiments such as KATRIN and Project 8. TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question. We will give an update on the apparatus, simulation software, and analysis tools, including efforts to improve the resolution of our detectors and to characterize the stability and uniformity of our field sources. We will also share our commissioning results and prospects for physics data. The TRIMS experiment is supported by U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  18. Black hole mass measurement using molecular gas kinematics: what ALMA can do

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang

    2017-04-01

    We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.

  19. Cocoa content influences chocolate molecular profile investigated by MALDI-TOF mass spectrometry.

    PubMed

    Bonatto, Cínthia C; Silva, Luciano P

    2015-06-01

    Chocolate authentication is a key aspect of quality control and safety. Matrix-assisted laser desorption ionization time-of flight (MALDI-TOF) mass spectrometry (MS) has been demonstrated to be useful for molecular profiling of cells, tissues, and even food. The present study evaluated if MALDI-TOF MS analysis on low molecular mass profile may classify chocolate samples according to the cocoa content. The molecular profiles of seven processed commercial chocolate samples were compared by using MALDI-TOF MS. Some ions detected exclusively in chocolate samples corresponded to the metabolites of cocoa or other constituents. This method showed the presence of three distinct clusters according to confectionery and sensorial features of the chocolates and was used to establish a mass spectra database. Also, novel chocolate samples were evaluated in order to check the validity of the method and to challenge the database created with the mass spectra of the primary samples. Thus, the method was shown to be reliable for clustering unknown samples into the main chocolate categories. Simple sample preparation of the MALDI-TOF MS approach described will allow the surveillance and monitoring of constituents during the molecular profiling of chocolates. © 2014 Society of Chemical Industry.

  20. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry

    USGS Publications Warehouse

    Leenheer, J.A.; Rostad, C.E.; Gates, Paul M.; Furlong, E.T.; Ferrer, I.

    2001-01-01

    Molecular weight distributions of fulvic acid from the Suwannee River, Georgia, were investigated by electrospray ionization/quadrupole mass spectrometry (ESI/QMS), and fragmentation pathways of specific fulvic acid masses were investigated by electrospray ionization/ion trap multistage tandem mass spectrometry (ESI/MST/MS). ESI/QMS studies of the free acid form of low molecular weight poly(carboxylic acid) standards in 75% methanol/25% water mobile phase found that negative ion detection gave the optimum generation of parent ions that can be used for molecular weight determinations. However, experiments with poly(acrylic acid) mixtures and specific high molecular weight standards found multiply charged negative ions that gave a low bias to molecular mass distributions. The number of negative charges on a molecule is dependent on the distance between charges. ESI/MST/MS of model compounds found characteristic water loss from alcohol dehydration and anhydride formation, as well as CO2 loss from decarboxylation, and CO loss from ester structures. Application of these fragmentation pathways to specific masses of fulvic acid isolated and fragmented by ESI/MST/MS is indicative of specific structures that can serve as a basis for future structural confirmation after these hypothesized structures are synthesized.

  1. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes.

    PubMed

    Uludağ, Yildiz; Piletsky, Sergey A; Turner, Anthony P F; Cooper, Matthew A

    2007-11-01

    Biomimetic recognition elements employed for the detection of analytes are commonly based on proteinaceous affibodies, immunoglobulins, single-chain and single-domain antibody fragments or aptamers. The alternative supra-molecular approach using a molecularly imprinted polymer now has proven utility in numerous applications ranging from liquid chromatography to bioassays. Despite inherent advantages compared with biochemical/biological recognition (which include robustness, storage endurance and lower costs) there are few contributions that describe quantitative analytical applications of molecularly imprinted polymers for relevant small molecular mass compounds in real-world samples. There is, however, significant literature describing the use of low-power, portable piezoelectric transducers to detect analytes in environmental monitoring and other application areas. Here we review the combination of molecularly imprinted polymers as recognition elements with piezoelectric biosensors for quantitative detection of small molecules. Analytes are classified by type and sample matrix presentation and various molecularly imprinted polymer synthetic fabrication strategies are also reviewed.

  2. Laser desorption mass spectrometry for molecular diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, C. H. Winston; Taranenko, N. I.; Zhu, Y. F.; Allman, S. L.; Tang, K.; Matteson, K. J.; Chang, L. Y.; Chung, C. N.; Martin, Steve; Haff, Lawrence

    1996-04-01

    Laser desorption mass spectrometry has been used for molecular diagnosis of cystic fibrosis. Both 3-base deletion and single-base point mutation have been successfully detected by clinical samples. This new detection method can possibly speed up the diagnosis by one order of magnitude in the future. It may become a new biotechnology technique for population screening of genetic disease.

  3. TRIMS: Validating T2 Molecular Effects for Neutrino Mass Experiments

    NASA Astrophysics Data System (ADS)

    Lin, Ying-Ting; Bodine, Laura; Enomoto, Sanshiro; Kallander, Matthew; Machado, Eric; Parno, Diana; Robertson, Hamish; Trims Collaboration

    2017-01-01

    The upcoming KATRIN and Project 8 experiments will measure the model-independent effective neutrino mass through the kinematics near the endpoint of tritium beta-decay. A critical systematic, however, is the understanding of the molecular final-state distribution populated by tritium decay. In fact, the current theory incorporated in the KATRIN analysis framework predicts an observable that disagrees with an experimental result from the 1950s. The Tritium Recoil-Ion Mass Spectrometer (TRIMS) experiment will reexamine branching ratio of the molecular tritium (T2) beta decay to the bound state (3HeT+). TRIMS consists of a magnet-guided time-of-flight mass spectrometer with a detector located on each end. By measuring the kinetic energy and time-of-flight difference of the ions and beta particles reaching the detectors, we will be able to distinguish molecular ions from atomic ones and hence derive the ratio in question.We will give an update on simulation software, analysis tools, and the apparatus, including early commissioning results. U.S. Department of Energy Office of Science, Office of Nuclear Physics, Award Number DE-FG02-97ER41020.

  4. Time Evolution of the Giant Molecular Cloud Mass Functions across Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-Ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-01-01

    We formulate and conduct the time-integration of time evolution equation for the giant molecular cloud mass function (GMCMF) including the cloud-cloud collision (CCC) effect. Our results show that the CCC effect is only limited in the massive-end of the GMCMF and indicate that future high resolution and sensitivity radio observations may constrain giant molecular cloud (GMC) timescales by observing the GMCMF slope in the lower mass regime.

  5. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes.

    PubMed

    Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S

    2013-01-01

    The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.

  6. Subset of Kappa and Lambda Germline Sequences Result in Light Chains with a Higher Molecular Mass Phenotype.

    PubMed

    Barnidge, David R; Lundström, Susanna L; Zhang, Bo; Dasari, Surendra; Murray, David L; Zubarev, Roman A

    2015-12-04

    In our previous work, we showed that electrospray ionization of intact polyclonal kappa and lambda light chains isolated from normal serum generates two distinct, Gaussian-shaped, molecular mass distributions representing the light-chain repertoire. During the analysis of a large (>100) patient sample set, we noticed a low-intensity molecular mass distribution with a mean of approximately 24 250 Da, roughly 800 Da higher than the mean of the typical kappa molecular-mass distribution mean of 23 450 Da. We also observed distinct clones in this region that did not appear to contain any typical post-translational modifications that would account for such a large mass shift. To determine the origin of the high molecular mass clones, we performed de novo bottom-up mass spectrometry on a purified IgM monoclonal light chain that had a calculated molecular mass of 24 275.03 Da. The entire sequence of the monoclonal light chain was determined using multienzyme digestion and de novo sequence-alignment software and was found to belong to the germline allele IGKV2-30. The alignment of kappa germline sequences revealed ten IGKV2 and one IGKV4 sequences that contained additional amino acids in their CDR1 region, creating the high-molecular-mass phenotype. We also performed an alignment of lambda germline sequences, which showed additional amino acids in the CDR2 region, and the FR3 region of functional germline sequences that result in a high-molecular-mass phenotype. The work presented here illustrates the ability of mass spectrometry to provide information on the diversity of light-chain molecular mass phenotypes in circulation, which reflects the germline sequences selected by the immunoglobulin-secreting B-cell population.

  7. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs.

  8. Resolution of identity approximation for the Coulomb term in molecular and periodic systems.

    PubMed

    Burow, Asbjörn M; Sierka, Marek; Mohamed, Fawzi

    2009-12-07

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.

  9. Resolution of identity approximation for the Coulomb term in molecular and periodic systems

    NASA Astrophysics Data System (ADS)

    Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi

    2009-12-01

    A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.

  10. Complete Molecular Weight Profiling of Low-Molecular Weight Heparins Using Size Exclusion Chromatography-Ion Suppressor-High-Resolution Mass Spectrometry.

    PubMed

    Zaia, Joseph; Khatri, Kshitij; Klein, Joshua; Shao, Chun; Sheng, Yuewei; Viner, Rosa

    2016-11-01

    Low-molecular weight heparins (LMWH) prepared by partial depolymerization of unfractionated heparin are used globally to treat coagulation disorders on an outpatient basis. Patent protection for several LMWH has expired and abbreviated new drug applications have been approved by the Food and Drug Administration. As a result, reverse engineering of LMWH for biosimilar LMWH has become an active global endeavor. Traditionally, the molecular weight distributions of LMWH preparations have been determined using size exclusion chromatography (SEC) with optical detection. Recent advances in liquid chromatography-mass spectrometry methods have enabled exact mass measurements of heparin saccharides roughly up to degree-of-polymerization 20, leaving the high molecular weight half of the LMWH preparation unassigned. We demonstrate a new LC-MS system capable of determining the exact masses of complete LMWH preparations, up to dp30. This system employed an ion suppressor cell to desalt the chromatographic effluent online prior to the electrospray mass spectrometry source. We expect this new capability will impact the ability to define LMWH mixtures favorably.

  11. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  12. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  13. Submillimetre flux as a probe of molecular ISM mass in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Lichen; Feldmann, Robert; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Hayward, Christopher C.; Quataert, Eliot; Scoville, Nick Z.

    2018-07-01

    Recent long-wavelength observations on the thermal dust continuum suggest that the Rayleigh-Jeans tail can be used as a time-efficient quantitative probe of the dust and interstellar medium (ISM) mass in high-z galaxies. We use high-resolution cosmological simulations from the Feedback in Realistic Environment (FIRE) project to analyse the dust emission of M* ≳ 1010 M⊙ galaxies at z= 2-4. Our simulations (MASSIVEFIRE) explicitly include various forms of stellar feedback, and they produce the stellar masses and star formation rates of high-z galaxies in agreement with observations. Using radiative transfer modelling, we show that sub-millimetre (sub-mm) luminosity and molecular ISM mass are tightly correlated and that the overall normalization is in quantitative agreement with observations. Notably, sub-mm luminosity traces molecular ISM mass even during starburst episodes as dust mass and mass-weighted temperature evolve only moderately between z = 4 and z = 2, including during starbursts. Our finding supports the empirical approach of using broadband sub-mm flux as a proxy for molecular gas content in high-z galaxies. We thus expect single-band sub-mm observations with ALMA to dramatically increase the sample size of high-z galaxies with reliable ISM masses in the near future.

  14. Submillimeter flux as a probe of molecular ISM mass in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Lichen; Feldmann, Robert; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Hayward, Christopher C.; Quataert, Eliot; Scoville, Nick Z.

    2018-04-01

    Recent long wavelength observations on the thermal dust continuum suggest that the Rayleigh-Jeans (RJ) tail can be used as a time-efficient quantitative probe of the dust and ISM mass in high-z galaxies. We use high-resolution cosmological simulations from the Feedback in Realistic Environment (FIRE) project to analyze the dust emission of M* ≳ 1010M⊙ galaxies at z = 2 - 4. Our simulations (MassiveFIRE) explicitly include various forms of stellar feedback, and they produce the stellar masses and star formation rates of high-z galaxies in agreement with observations. Using radiative transfer modelling, we show that sub-millimeter (sub-mm) luminosity and molecular ISM mass are tightly correlated and that the overall normalization is in quantitative agreement with observations. Notably, sub-mm luminosity traces molecular ISM mass even during starburst episodes as dust mass and mass-weighted temperature evolve only moderately between z = 4 and z = 2, including during starbursts. Our finding supports the empirical approach of using broadband sub-mm flux as a proxy for molecular gas content in high-z galaxies. We thus expect single-band sub-mm observations with ALMA to dramatically increase the sample size of high-z galaxies with reliable ISM masses in the near future.

  15. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  16. Synchrotron based mass spectrometry to investigate the molecular properties of mineral-organic associations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Suet Yi; Kleber, Markus; Takahashi, Lynelle K.

    2013-04-01

    Soil organic matter (OM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser Desorption Synchrotron Postionization (synchrotron-LDPI) mass spectrometry is introduced as a novelmore » analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that when combined with Secondary Ion Mass Spectrometry (SIMS), can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions, verifies the consistency of our results with bulk analytical techniques. We further demonstrate that by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.« less

  17. Determination of Hyaluronan Molecular Mass Distribution in Human Breast Milk

    PubMed Central

    Yuan, Han; Amin, Ripal; Ye, Xin; De La Motte, Carol A.; Cowman, Mary K.

    2015-01-01

    Hyaluronan (HA) in human milk mediates host responses to microbial infection, via TLR4- and CD44-dependent signaling. Signaling by HA is generally size-specific. Because pure HA with average molecular mass (M) of 35 kDa can elicit a protective response in intestinal epithelial cells, it has been proposed that human milk HA may have a bioactive low M component. Here we report the size distribution of HA in human milk samples from twenty unique donors. A new method for HA analysis, employingion exchange (IEX) chromatography to fractionate HA by size, and specific quantification of each size fraction by competitive Enzyme Linked Sorbent Assay (ELSA), was developed. When separated into four fractions, milk HA with M ≤ 20 kDa, M ≈20-60 kDa, and M ≈ 60-110 kDa comprised an average of 1.5%, 1.4% and 2% of the total HA, respectively. The remaining 95% was HA with M≥110 kDa. Electrophoretic analysis of the higher M HA from thirteen samples showed nearly identical M distributions, with an average M of ∼440 kDa. This higher M HA component in human milk is proposed to bind to CD44 and to enhance human beta defensin 2 (HBD2) induction by the low M HA components. PMID:25579786

  18. Establishment of replacement batches for heparin low-molecular-mass for calibration CRS, and the International Standard Low Molecular Weight Heparin for Calibration.

    PubMed

    Mulloy, B; Heath, A; Behr-Gross, M-E

    2007-12-01

    An international collaborative study involving fourteen laboratories has taken place, organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) with National Institute for Biological Standards & Control (NIBSC) (in its capacity as a World Health Organisation (WHO) Laboratory for Biological Standardisation) to provide supporting data for the establishment of replacement batches of Heparin Low-Molecular-Mass (LMM) for Calibration Chemical Reference Substance (CRS), and of the International Reference Reagent (IRR) Low Molecular Weight Heparin for Molecular Weight Calibration. A batch of low-molecular-mass heparin was donated to the organisers and candidate preparations of freeze-dried heparin were produced at NIBSC and EDQM. The establishment study was organised in two phases: a prequalification (phase 1, performed in 3 laboratories in 2005) followed by an international collaborative study (phase 2). In phase 2, started in March 2006, molecular mass parameters were determined for seven different LMM heparin samples using the current CRS batch and two batches of candidate replacement material with a defined number average relative molecular mass (Mn) of 3,700, determined in phase 1. The values calculated using the candidates as standard were systematically different from values calculated using the current batch with its assigned number-average molecular mass (Mna) of 3,700. Using raw data supplied by participants, molecular mass parameters were recalculated using the candidates as standard with values for Mna of 3,800 and 3,900. Values for these parameters agreed more closely with those calculated using the current batch supporting the fact that the candidates, though similar to batch 1 in view of the production processes used, differ slightly in terms of molecular mass distribution. Therefore establishment of the candidates was recommended with an assigned Mna value of 3,800 that is both consistent with phase 1 results and guarantees

  19. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    PubMed Central

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248

  20. Accurate calibration of a molecular beam time-of-flight mass spectrometer for on-line analysis of high molecular weight species.

    PubMed

    Apicella, B; Wang, X; Passaro, M; Ciajolo, A; Russo, C

    2016-10-15

    Time-of-Flight (TOF) Mass Spectrometry is a powerful analytical technique, provided that an accurate calibration by standard molecules in the same m/z range of the analytes is performed. Calibration in a very large m/z range is a difficult task, particularly in studies focusing on the detection of high molecular weight clusters of different molecules or high molecular weight species. External calibration is the most common procedure used for TOF mass spectrometric analysis in the gas phase and, generally, the only available standards are made up of mixtures of noble gases, covering a small mass range for calibration, up to m/z 136 (higher mass isotope of xenon). In this work, an accurate calibration of a Molecular Beam Time-of Flight Mass Spectrometer (MB-TOFMS) is presented, based on the use of water clusters up to m/z 3000. The advantages of calibrating a MB-TOFMS with water clusters for the detection of analytes with masses above those of the traditional calibrants such as noble gases were quantitatively shown by statistical calculations. A comparison of the water cluster and noble gases calibration procedures in attributing the masses to a test mixture extending up to m/z 800 is also reported. In the case of the analysis of combustion products, another important feature of water cluster calibration was shown, that is the possibility of using them as "internal standard" directly formed from the combustion water, under suitable experimental conditions. The water clusters calibration of a MB-TOFMS gives rise to a ten-fold reduction in error compared to the traditional calibration with noble gases. The consequent improvement in mass accuracy in the calibration of a MB-TOFMS has important implications in various fields where detection of high molecular mass species is required. In combustion products analysis, it is also possible to obtain a new calibration spectrum before the acquisition of each spectrum, only modifying some operative conditions. Copyright © 2016

  1. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  2. Thermally modulated nano-trampoline material as smart skin for gas molecular mass detection

    NASA Astrophysics Data System (ADS)

    Xia, Hua

    2012-06-01

    Conventional multi-component gas analysis is based either on laser spectroscopy, laser and photoacoustic absorption at specific wavelengths, or on gas chromatography by separating the components of a gas mixture primarily due to boiling point (or vapor pressure) differences. This paper will present a new gas molecular mass detection method based on thermally modulated nano-trampoline material as smart skin for gas molecular mass detection by fiber Bragg grating-based gas sensors. Such a nanomaterial and fiber Bragg grating integrated sensing device has been designed to be operated either at high-energy level (highly thermal strained status) or at low-energy level (low thermal strained status). Thermal energy absorption of gas molecular trigs the sensing device transition from high-thermal-energy status to low-thermal- energy status. Experiment has shown that thermal energy variation due to gas molecular thermal energy absorption is dependent upon the gas molecular mass, and can be detected by fiber Bragg resonant wavelength shift with a linear function from 17 kg/kmol to 32 kg/kmol and a sensitivity of 0.025 kg/kmol for a 5 micron-thick nano-trampoline structure and fiber Bragg grating integrated gas sensing device. The laboratory and field validation data have further demonstrated its fast response characteristics and reliability to be online gas analysis instrument for measuring effective gas molecular mass from single-component gas, binary-component gas mixture, and multi-gas mixture. The potential industrial applications include fouling and surge control for gas charge centrifugal compressor ethylene production, gas purity for hydrogen-cooled generator, gasification for syngas production, gasoline/diesel and natural gas fuel quality monitoring for consumer market.

  3. A tandem mass spectrometer for crossed-beam irradiation of mass-selected molecular systems by keV atomic ions

    NASA Astrophysics Data System (ADS)

    Schwob, Lucas; Lalande, Mathieu; Chesnel, Jean-Yves; Domaracka, Alicja; Huber, Bernd A.; Maclot, Sylvain; Poully, Jean-Christophe; Rangama, Jimmy; Rousseau, Patrick; Vizcaino, Violaine; Adoui, Lamri; Méry, Alain

    2018-04-01

    In the present paper, we describe a new home-built crossed-beam apparatus devoted to ion-induced ionization and fragmentation of isolated biologically relevant molecular systems. The biomolecular ions are produced by an electrospray ionization source, mass-over-charge selected, accumulated in a 3D ion trap, and then guided to the extraction region of an orthogonal time-of-flight mass spectrometer. Here, the target molecular ions interact with a keV atomic ion beam produced by an electron cyclotron resonance ion source. Cationic products from the collision are detected on a position sensitive detector and analyzed by time-of-flight mass spectrometry. A detailed description of the operation of the setup is given, and early results from irradiation of a protonated pentapeptide (leucine-enkephalin) by a 7 keV He+ ion beam are presented as a proof-of-principle.

  4. Evolutionary Description of Giant Molecular Cloud Mass Functions on Galactic Disks

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masato I. N.; Inutsuka, Shu-ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji

    2017-02-01

    Recent radio observations show that giant molecular cloud (GMC) mass functions noticeably vary across galactic disks. High-resolution magnetohydrodynamics simulations show that multiple episodes of compression are required for creating a molecular cloud in the magnetized interstellar medium. In this article, we formulate the evolution equation for the GMC mass function to reproduce the observed profiles, for which multiple compressions are driven by a network of expanding shells due to H II regions and supernova remnants. We introduce the cloud-cloud collision (CCC) terms in the evolution equation in contrast to previous work (Inutsuka et al.). The computed time evolution suggests that the GMC mass function slope is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC effect is limited only in the massive end of the mass function. In addition, we identify a gas resurrection channel that allows the gas dispersed by massive stars to regenerate GMC populations or to accrete onto pre-existing GMCs. Our results show that almost all of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60% contributes in inter-arm regions. Our results also predict that GMC mass functions have a single power-law exponent in the mass range <105.5 {M}⊙ (where {M}⊙ represents the solar mass), which is well characterized by GMC self-growth and dispersal timescales. Measurement of the GMC mass function slope provides a powerful method to constrain those GMC timescales and the gas resurrecting factor in various environments across galactic disks.

  5. Fluorescence- and capillary electrophoresis (CE)-based SSR DNA fingerprinting and a molecular identity database for the Louisiana sugarcane industry

    USDA-ARS?s Scientific Manuscript database

    A database of Louisiana sugarcane molecular identity has been constructed and is being updated annually using FAM or HEX or NED fluorescence- and capillary electrophoresis (CE)-based microsatellite (SSR) fingerprinting information. The fingerprints are PCR-amplified from leaf DNA samples of current ...

  6. Molecular shifts in limb identity underlie development of feathered feet in two domestic avian species

    PubMed Central

    Domyan, Eric T; Kronenberg, Zev; Infante, Carlos R; Vickrey, Anna I; Stringham, Sydney A; Bruders, Rebecca; Guernsey, Michael W; Park, Sungdae; Payne, Jason; Beckstead, Robert B; Kardon, Gabrielle; Menke, Douglas B; Yandell, Mark; Shapiro, Michael D

    2016-01-01

    Birds display remarkable diversity in the distribution and morphology of scales and feathers on their feet, yet the genetic and developmental mechanisms governing this diversity remain unknown. Domestic pigeons have striking variation in foot feathering within a single species, providing a tractable model to investigate the molecular basis of skin appendage differences. We found that feathered feet in pigeons result from a partial transformation from hindlimb to forelimb identity mediated by cis-regulatory changes in the genes encoding the hindlimb-specific transcription factor Pitx1 and forelimb-specific transcription factor Tbx5. We also found that ectopic expression of Tbx5 is associated with foot feathers in chickens, suggesting similar molecular pathways underlie phenotypic convergence between these two species. These results show how changes in expression of regional patterning genes can generate localized changes in organ fate and morphology, and provide viable molecular mechanisms for diversity in hindlimb scale and feather distribution. DOI: http://dx.doi.org/10.7554/eLife.12115.001 PMID:26977633

  7. Enamel: Molecular identity of its transepithelial ion transport system.

    PubMed

    Lacruz, Rodrigo S

    2017-07-01

    Enamel is the most calcified tissue in vertebrates. It differs from bone in a number of characteristics including its origin from ectodermal epithelium, lack of remodeling capacity by the enamel forming cells, and absence of collagen. The enamel-forming cells known as ameloblasts, choreograph first the synthesis of a unique protein-rich matrix, followed by the mineralization of this matrix into a tissue that is ∼95% mineral. To do this, ameloblasts arrange the coordinated movement of ions across a cell barrier while removing matrix proteins and monitoring extracellular pH using a variety of buffering systems to enable the growth of carbonated apatite crystals. Although our knowledge of these processes and the molecular identity of the proteins involved in transepithelial ion transport has increased in the last decade, it remains limited compared to other cells. Here we present an overview of the evolution and development of enamel, its differences with bone, and describe the ion transport systems associated with ameloblasts. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. Optical signatures of molecular particles via mass-selected cluster spectroscopy

    NASA Technical Reports Server (NTRS)

    Duncan, Michael A.

    1990-01-01

    A new molecular beam apparatus was developed to study optical absorption in cold (less than 100 K) atomic clusters and complexes produced by their condensation with simple molecular gases. In this instrument, ionized clusters produced in a laser vaporization nozzle source are mass selected and studied with photodissociation spectroscopy at visible and ultraviolet wavelengths. This new approach can be applied to synthesize and characterize numerous particulates and weakly bound complexes expected in planetary atmospheres and in comets.

  9. WISDOM Project - II. Molecular gas measurement of the supermassive black hole mass in NGC 4697

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; Bureau, Martin; Onishi, Kyoko; Cappellari, Michele; Iguchi, Satoru; Sarzi, Marc

    2017-07-01

    As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC 4697. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-3 observations of the 12CO(2-1) emission line with a linear resolution of 29 pc (0.53 arcsec). We find that NGC 4697 hosts a small relaxed central molecular gas disc with a mass of 1.6 × 107 M⊙, co-spatial with the obscuring dust disc visible in optical Hubble Space Telescope imaging. We also resolve thermal 1 mm continuum emission from the dust in this disc. NGC 4697 is found to have a very low molecular gas velocity dispersion, σgas = 1.65^{+0.68}_{-0.65} km s-1. This seems to be partially because the giant molecular cloud mass function is not fully sampled, but other mechanisms such as chemical differentiation in a hard radiation field or morphological quenching also seem to be required. We detect a Keplerian increase of the rotation of the molecular gas in the very centre of NGC 4697, and use forward modelling of the ALMA data cube in a Bayesian framework with the KINematic Molecular Simulation (kinms) code to estimate an SMBH mass of (1.3_{-0.17}^{+0.18}) × 108 M⊙ and an I-band mass-to-light ratio of 2.14_{-0.05}^{+0.04} M⊙/L⊙ (at the 99 per cent confidence level). Our estimate of the SMBH mass is entirely consistent with previous measurements from stellar kinematics. This increases confidence in the growing number of SMBH mass estimates being obtained in the ALMA era.

  10. Differential effects of spaced vs. massed training in long-term object-identity and object-location recognition memory.

    PubMed

    Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor

    2013-08-01

    Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Molecular definition of the identity and activation of natural killer cells.

    PubMed

    Bezman, Natalie A; Kim, Charles C; Sun, Joseph C; Min-Oo, Gundula; Hendricks, Deborah W; Kamimura, Yosuke; Best, J Adam; Goldrath, Ananda W; Lanier, Lewis L

    2012-10-01

    Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8(+) T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.

  12. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    PubMed

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  13. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    PubMed

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  14. Parallel Elemental and Molecular Mass Spectrometry (PEMMS) for Speciation of Metals in Complex Matrices

    NASA Astrophysics Data System (ADS)

    Derry, L. A.; Sacks, G. L.; Brenna, J. T.

    2006-12-01

    The mobility, bioavailability, and toxicity of many metals are strongly influenced by their molecular form, or speciation. Many metals (M) in the environment are complexed with organic ligands (L); in some cases such complexed forms comprise virtually all of the dissolved metal. When available, stability constants can be used to model speciation, but only when the identities of species can be known or assumed. In other cases, coupling a separation tool such as HPLC to a metal detection system like ICP-MS can provide information on speciation. But because ICP-MS destroys molecular information the complexing L must be identified by retention time matching of standards. The assumptions inherent in these approaches preclude investigation of unknown compounds. Electrochemical methods can determine conditional stability constants for unknown L but do not provide information on their molecular structure or composition. Molecular MS allows characterization of molecular mass and structure and is a powerful tool for identifying unknown organic compounds. However, sensitivity for M and precision for isotope ratios are often low. We combined HPLC separation with simultaneous parallel detection of metals (M) and ligands (L) by ICP-MS and API-QTOF-MS-MS. The basis of our approach is that the shape of a chromatographic peak is essentially set by interactions with the LC column. The signal of a metal M determined by the ICP-MS in chromatographic mode is fit using an exponentially modified Gaussian function. Peak parameters including retention time, peak width and skew are determined for the M peak. The parallel QTOF signal in full scan mode may show hundreds of peaks in the same time window. The acquired peak library is searched for L peaks that match the parameters determined for the M peak on the ICP-MS. We have found that our system can correctly identify M-L pairs and L in complex samples and generates few false positives. Unknown L can be further interrogated by using the MS

  15. A High-Mass Cold Core in the Auriga-California Giant Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine; Paladini, Roberta; Pelkonen, Veli-Matti; Toth, Viktor; Sayers, Jack

    2015-08-01

    The Auriga-California Giant Molecular Cloud is noted for its relatively low star formation rate, especially at the high-mass end of the Initial Mass Function. We combine maps acquired by the Caltech Submillimeter Observatory's Multiwavelength Submillimeter Inductance Camera [MUSIC] in the wavelength range 0.86 to 2.00 millimeters with Planck and publicly-available Herschel PACS and SPIRE data in order to characterize the mass, dust properties, and environment of the bright core PGCC G163.32-8.41.

  16. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    PubMed

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  17. The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Andersen, Bridget; Stephens, Ian; Dunham, Michael; Pokhrel, Riwaj; Jørgensen, Jes; Frimann, Søren

    2018-01-01

    In the standard picture for low-mass star formation, a dense molecular cloud undergoes gravitational collapse to form a protostellar system consisting of a new central star, a circumstellar disk, and a surrounding envelope of remaining material. The mass distribution of the system evolves as matter accretes from the large-scale envelope through the disk and onto the protostar. While this general picture is supported by simulations and indirect observational measurements, the specific timescales related to disk growth and envelope dissipation remain poorly constrained. We present a rigorous test of a method introduced by Jørgensen et al. (2009) to obtain observational mass measurements of disks and envelopes around embedded protostars from unresolved (resolution of ~1000 AU) observations. Using data from the recent Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, we derive disk and envelope mass estimates for 59 protostellar systems in the Perseus molecular cloud. We compare our results to independent disk mass measurements from the VLA Nascent Disk and Multiplicity (VANDAM) survey and find a strong linear correlation. Then, leveraging the size and uniformity of our sample, we find no significant trend in protostellar mass distribution as a function of age, as approximated from bolometric temperatures. These results may indicate that the disk mass of a protostar is set near the onset of the Class 0 protostellar stage and remains roughly constant throughout the Class I protostellar stage.

  18. A black-hole mass measurement from molecular gas kinematics in NGC4526.

    PubMed

    Davis, Timothy A; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2013-02-21

    The masses of the supermassive black holes found in galaxy bulges are correlated with a multitude of galaxy properties, leading to suggestions that galaxies and black holes may evolve together. The number of reliably measured black-hole masses is small, and the number of methods for measuring them is limited, holding back attempts to understand this co-evolution. Directly measuring black-hole masses is currently possible with stellar kinematics (in early-type galaxies), ionized-gas kinematics (in some spiral and early-type galaxies) and in rare objects that have central maser emission. Here we report that by modelling the effect of a black hole on the kinematics of molecular gas it is possible to fit interferometric observations of CO emission and thereby accurately estimate black-hole masses. We study the dynamics of the gas in the early-type galaxy NGC 4526, and obtain a best fit that requires the presence of a central dark object of 4.5(+4.2)(-3.1) × 10(8) solar masses (3σ confidence limit). With the next-generation millimetre-wavelength interferometers these observations could be reproduced in galaxies out to 75 megaparsecs in less than 5 hours of observing time. The use of molecular gas as a kinematic tracer should thus allow one to estimate black-hole masses in hundreds of galaxies in the local Universe, many more than are accessible with current techniques.

  19. Evaluation of the Orbitrap Mass Spectrometer for the Molecular Fingerprinting Analysis of Natural Dissolved Organic Matter.

    PubMed

    Hawkes, Jeffrey A; Dittmar, Thorsten; Patriarca, Claudia; Tranvik, Lars; Bergquist, Jonas

    2016-08-02

    We investigated the application of the LTQ-Orbitrap mass spectrometer (LTQ-Velos Pro, Thermo Fisher) for resolving complex mixtures of natural aquatic dissolved organic matter (DOM) and compared this technique to the more established state-of-the-art technique, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS, Bruker Daltonics), in terms of the distribution of molecular masses detected and the reproducibility of the results collected. The Orbitrap was capable of excellent reproducibility: Bray-Curtis dissimilarity between duplicate measurements was 2.85 ± 0.42% (mean ± standard deviation). The Orbitrap was also capable of the detection of most major ionizable organic molecules in typical aquatic mixtures, with the exception of most sulfur and phosphorus containing masses. This result signifies that the Orbitrap is an appropriate technique for the investigation of very subtle biogeochemical processing of bulk DOM. The lower costs (purchase and maintenance) and wider availability of Orbitrap mass spectrometers in university departments means that the tools necessary for research into DOM processing at the molecular level should be accessible to a much wider group of scientists than before. The main disadvantage of the technique is that substantially fewer molecular formulas can be resolved from a complex mixture (roughly one third as many), meaning some loss of information. In balance, most biogeochemical studies that aim at molecularly fingerprinting the source of natural DOM could be satisfactorily carried out with Orbitrap mass spectrometry. For more targeted metabolomic studies where individual compounds are traced through natural systems, FTICR-MS remains advantageous.

  20. Molecular line tracers of high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Nagy, Zsofia; Van der Tak, Floris; Ossenkopf, Volker; Bergin, Edwin; Black, John; Faure, Alexandre; Fuller, Gary; Gerin, Maryvonne; Goicoechea, Javier; Joblin, Christine; Le Bourlot, Jacques; Le Petit, Franck; Makai, Zoltan; Plume, Rene; Roellig, Markus; Spaans, Marco; Tolls, Volker

    2013-07-01

    High-mass stars influence their environment in different ways including feedback via their FUV radiation. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and Far Infrared wavelengths. In this poster we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field toward W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation in the heating and chemistry of the region. The other line survey presented in the poster is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources, PI: E. Bergin) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectrally resolved HIFI and spectrally unresolved PACS spectra give constraints on the chemistry and excitation of reactive ions in these regions.

  1. Imaging ion and molecular transport at subcellular resolution by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Morrison, George H.

    1995-05-01

    The transport of K+, Na+, and Ca2+ were imaged in individual cells with a Cameca IMS-3f ion microscope. Strict cryogenic frozen freeze-dry sample preparations were employed. Ion redistribution artifacts in conventional chemical preparations are discussed. Cryogenically prepared freeze-fractured freeze-dried cultured cells allowed the three-dimensional ion microscopic imaging of elements. As smaller structures in calcium images can be resolved with the 0.5 [mu]m spatial resolution, correlative techniques are needed to confirm their identity. The potentials of reflected light microscopy, scanning electron microscopy and laser scanning confocal microscopy are discussed for microfeature recognition in freeze-fractured freeze-dried cells. The feasibility of using frozen freeze-dried cells for imaging molecular transport at subcellular resolution was tested. Ion microscopy successfully imaged the transport of the isotopically tagged (13C, 15N) amino acid, -arginine. The labeled amino acid was imaged at mass 28 with a Cs+ primary ion beam as the 28(13C15N)- species. After a 4 h exposure of LLC-PK1 kidney cells to 4 mM labeled arginine, the amino acid was localized throughout the cell with a preferential incorporation into the nucleus and nucleolus. An example is also shown of the ion microscopic imaging of sodium borocaptate, an experimental therapeutic drug for brain tumors, in cryogenically prepared frozen freeze-dried Swiss 3T3 cells.

  2. Mass accommodation of water: bridging the gap between molecular dynamics simulations and kinetic condensation models.

    PubMed

    Julin, Jan; Shiraiwa, Manabu; Miles, Rachael E H; Reid, Jonathan P; Pöschl, Ulrich; Riipinen, Ilona

    2013-01-17

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268-300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys. 2012, 12, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation coefficient

  3. Mass Accommodation of Water: Bridging the Gap Between Molecular Dynamics Simulations and Kinetic Condensation Models

    PubMed Central

    2012-01-01

    The condensational growth of submicrometer aerosol particles to climate relevant sizes is sensitive to their ability to accommodate vapor molecules, which is described by the mass accommodation coefficient. However, the underlying processes are not yet fully understood. We have simulated the mass accommodation and evaporation processes of water using molecular dynamics, and the results are compared to the condensation equations derived from the kinetic gas theory to shed light on the compatibility of the two. Molecular dynamics simulations were performed for a planar TIP4P-Ew water surface at four temperatures in the range 268–300 K as well as two droplets, with radii of 1.92 and 4.14 nm at T = 273.15 K. The evaporation flux from molecular dynamics was found to be in good qualitative agreement with that predicted by the simple kinetic condensation equations. Water droplet growth was also modeled with the kinetic multilayer model KM-GAP of Shiraiwa et al. [Atmos. Chem. Phys.2012, 117, 2777]. It was found that, due to the fast transport across the interface, the growth of a pure water droplet is controlled by gas phase diffusion. These facts indicate that the simple kinetic treatment is sufficient in describing pure water condensation and evaporation. The droplet size was found to have minimal effect on the value of the mass accommodation coefficient. The mass accommodation coefficient was found to be unity (within 0.004) for all studied surfaces, which is in agreement with previous simulation work. Additionally, the simulated evaporation fluxes imply that the evaporation coefficient is also unity. Comparing the evaporation rates of the mass accommodation and evaporation simulations indicated that the high collision flux, corresponding to high supersaturation, present in typical molecular dynamics mass accommodation simulations can under certain conditions lead to an increase in the evaporation rate. Consequently, in such situations the mass accommodation

  4. Forensic aspects of DNA-based human identity testing.

    PubMed

    Roper, Stephen M; Tatum, Owatha L

    2008-01-01

    The forensic applications of DNA-based human identity laboratory testing are often underappreciated. Molecular biology has seen an exponential improvement in the accuracy and statistical power provided by identity testing in the past decade. This technology, dependent upon an individual's unique DNA sequence, has cemented the use of DNA technology in the forensic laboratory. This paper will discuss the state of modern DNA-based identity testing, describe the technology used to perform this testing, and describe its use as it relates to forensic applications. We will also compare individual technologies, including polymerase chain reaction (PCR) and Southern Blotting, that are used to detect the molecular differences that make all individuals unique. An increasing reliance on DNA-based identity testing dictates that healthcare providers develop an understanding of the background, techniques, and guiding principles of this important forensic tool.

  5. WISDOM project - I. Black hole mass measurement using molecular gas kinematics in NGC 3665

    NASA Astrophysics Data System (ADS)

    Onishi, Kyoko; Iguchi, Satoru; Davis, Timothy A.; Bureau, Martin; Cappellari, Michele; Sarzi, Marc; Blitz, Leo

    2017-07-01

    As a part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) project, we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotator early-type galaxy NGC 3665. We obtained the Combined Array for Research in Millimeter Astronomy (CARMA) B and C array observations of the 12CO(J = 2 - 1) emission line with a combined angular resolution of 0.59 arcsec. We analysed and modelled the three-dimensional molecular gas kinematics, obtaining a best-fitting SMBH mass M_BH=5.75^{+1.49}_{-1.18} × 108 M⊙, a mass-to-light ratio at H-band (M/L)H = 1.45 ± 0.04 (M/L)⊙,H and other parameters describing the geometry of the molecular gas disc (statistical errors, all at 3σ confidence). We estimate the systematic uncertainties on the stellar M/L to be ≈0.2 (M/L)⊙,H, and on the SMBH mass to be ≈0.4 × 108 M⊙. The measured SMBH mass is consistent with that estimated from the latest correlations with galaxy properties. Following our older works, we also analysed and modelled the kinematics using only the major-axis position-velocity diagram, and conclude that the two methods are consistent.

  6. Intact molecular characterization of cord factor (trehalose 6,6'-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry.

    PubMed

    Fujita, Yukiko; Naka, Takashi; McNeil, Michael R; Yano, Ikuya

    2005-10-01

    Cord factor (trehalose 6,6'-dimycolate, TDM) is an unique glycolipid with a trehalose and two molecules of mycolic acids in the mycobacterial cell envelope. Since TDM consists of two molecules of very long branched-chain 3-hydroxy fatty acids, the molecular mass ranges widely and in a complex manner. To characterize the molecular structure of TDM precisely and simply, an attempt was made to determine the mycolic acid subclasses of TDM and the molecular species composition of intact TDM by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry for the first time. The results showed that less than 1 microg mycolic acid methyl ester of TDM from nine representative species of mycobacteria and TDM from the same species was sufficient to obtain well-resolved mass spectra composed of pseudomolecular ions [M+Na]+. Although the mass ion distribution was extremely diverse, the molecular species of each TDM was identified clearly by constructing a molecular ion matrix consisting of the combination of two molecules of mycolic acids. The results showed a marked difference in the molecular structure of TDM among mycobacterial species and subspecies. TDM from Mycobacterium tuberculosis (H37Rv and Aoyama B) showed a distinctive mass pattern and consisted of over 60 molecular ions with alpha-, methoxy- and ketomycolate. TDM from Mycobacterium bovis BCG Tokyo 172 similarly showed over 35 molecular ions, but that from M. bovis BCG Connaught showed simpler molecular ion clusters consisting of less than 35 molecular species due to a complete lack of methoxymycolate. Mass ions due to TDM from M. bovis BCG Connaught and Mycobacterium kansasii showed a biphasic distribution, but the two major peaks of TDM from M. kansasii were shifted up two or three carbon units higher compared with M. bovis BCG Connaught. Within the rapid grower group, in TDM consisting of alpha-, keto- and wax ester mycolate from Mycobacterium phlei and Mycobacterium flavescens, the

  7. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less

  8. Molecular line tracers of high-mass star forming regions

    NASA Astrophysics Data System (ADS)

    Nagy, Zsofia

    2013-09-01

    High-mass stars influence their environment in different ways including feedback via their far-UV radiation and mechanical feedback via shocks and stellar winds. The penetration of FUV photons into molecular clouds creates Photon Dominated Regions (PDRs) with different chemical layers where the mainly ionized medium changes into mainly molecular. Different chemical layers in PDRs are traced by different species observable at sub-mm and far-infrared wavelengths. In this thesis we present results from two molecular line surveys. One of them is the James Clerk Maxwell Telescope (JCMT) Spectral Legacy Survey (SLS) toward the luminous (>10^7 L_Sun), massive (~10^6 M_Sun), and distant (11.4 kpc) star-forming region W49A. The SLS images a 2x2 arcminute field around W49A in the 330-373 GHz frequency range. The detected molecular lines reveal a complex chemistry and the importance of FUV-irradiation and shocks in the heating and chemistry of the region. The other line survey presented in this thesis is part of the HEXOS (Herschel observations of EXtra-Ordinary Sources) key program using the Herschel Space Observatory and is toward the nearby (~420 pc) prototypical edge-on Orion Bar PDR and the dense molecular condensation Orion S. Reactive ions, such as CH+, SH+, and CO+, detected as a part of this line survey trace the warm (~500-1000 K) surface region of PDRs. Spectroscopic data from the HIFI and PACS instruments of Herschel give constraints on the chemistry and excitation of reactive ions in these regions.

  9. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    PubMed

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  10. First detection of koi herpesvirus from koi, Cyprinus carpio L. experiencing mass mortalities in Iran: clinical, histopathological and molecular study.

    PubMed

    Rahmati-Holasoo, H; Zargar, A; Ahmadivand, S; Shokrpoor, S; Ezhari, S; Ebrahimzadeh Mousavi, H A

    2016-10-01

    Koi herpesvirus (KHV) is the aetiological agent of an emerging disease (KHVD) associated with mass mortalities in koi and common carp and reported from at least 30 countries. We report the first detection of KHV from koi in Iran using clinical, histopathological and molecular studies. KHV-infected fish showed reduced swimming activity, sunken eyes and increased mucus production on skin and fins. On post-mortem examination, gill necrosis was observed in the majority of fish. Histopathologically, the gill showed diffuse necrosis of the branchial epithelial cells. Margination of chromatin was detected in gills, kidney, heart, spleen, intestine and brain. In addition, sequence analyses of the TK gene, ORF 136 and marker I and II, demonstrates that Iranian KHV isolates were identical and classified as variant A1 of TUSMT1 (J strain) and displayed the I(++) II(+) allele of this Asian genotype. © 2016 John Wiley & Sons Ltd.

  11. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm 3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  12. Targeting the untargeted in molecular phenomics with structurally-selective ion mobility-mass spectrometry.

    PubMed

    May, Jody Christopher; Gant-Branum, Randi Lee; McLean, John Allen

    2016-06-01

    Systems-wide molecular phenomics is rapidly expanding through technological advances in instrumentation and bioinformatics. Strategies such as structural mass spectrometry, which utilizes size and shape measurements with molecular weight, serve to characterize the sum of molecular expression in biological contexts, where broad-scale measurements are made that are interpreted through big data statistical techniques to reveal underlying patterns corresponding to phenotype. The data density, data dimensionality, data projection, and data interrogation are all critical aspects of these approaches to turn data into salient information. Untargeted molecular phenomics is already having a dramatic impact in discovery science from drug discovery to synthetic biology. It is evident that these emerging techniques will integrate closely in broad efforts aimed at precision medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Analysis of sulfates on low molecular weight heparin using mass spectrometry: structural characterization of enoxaparin.

    PubMed

    Gupta, Rohitesh; Ponnusamy, Moorthy P

    2018-05-31

    Structural characterization of low molecular weight heparin (LMWH) is critical to meet biosimilarity standards. In this context, the review focuses on structural analysis of labile sulfates attached to the side-groups of LMWH using mass spectrometry. A comprehensive review of this topic will help readers to identify key strategies for tackling the problem related to sulfate loss. At the same time, various mass spectrometry techniques are presented to facilitate compositional analysis of LMWH, mainly enoxaparin. Areas covered: This review summarizes findings on mass spectrometry application for LMWH, including modulation of sulfates, using enzymology and sample preparation approaches. Furthermore, popular open-source software packages for automated spectral data interpretation are also discussed. Successful use of LC/MS can decipher structural composition for LMWH and help evaluate their sameness or biosimilarity with the innovator molecule. Overall, the literature has been searched using PubMed by typing various search queries such as 'enoxaparin', 'mass spectrometry', 'low molecular weight heparin', 'structural characterization', etc. Expert commentary: This section highlights clinically relevant areas that need improvement to achieve satisfactory commercialization of LMWHs. It also primarily emphasizes the advancements in instrumentation related to mass spectrometry, and discusses building automated software for data interpretation and analysis.

  14. Mass Spectrometry-based Approaches to Understand the Molecular Basis of Memory

    NASA Astrophysics Data System (ADS)

    Pontes, Arthur; de Sousa, Marcelo

    2016-10-01

    The central nervous system is responsible for an array of cognitive functions such as memory, learning, language and attention. These processes tend to take place in distinct brain regions; yet, they need to be integrated to give rise to adaptive or meaningful behavior. Since cognitive processes result from underlying cellular and molecular changes, genomics and transcriptomics assays have been applied to human and animal models to understand such events. Nevertheless, genes and RNAs are not the end products of most biological functions. In order to gain further insights toward the understanding of brain processes, the field of proteomics has been of increasing importance in the past years. Advancements in liquid chromatography-tandem mass spectrometry (LC-MS/MS) have enable the identification and quantification of thousand of proteins with high accuracy and sensitivity, fostering a revolution in the neurosciences. Herein, we review the molecular bases of explicit memory in the hippocampus. We outline the principles of mass spectrometry (MS)-based proteomics, highlighting the use of this analytical tool to study memory formation. In addition, we discuss MS-based targeted approaches as the future of protein analysis.

  15. Origin and identity of Fejervarya (Anura: Dicroglossidae) on Guam

    USGS Publications Warehouse

    Wostl, Elijah; Smith, Eric N.; Reed, Robert

    2016-01-01

    We used morphological and molecular data to infer the identity and origin of frogs in the genus Fejervarya that have been introduced to the island of Guam. Mensural and meristic data were collected from 96 specimens from throughout their range on the island and a principal component analysis was used to investigate the distribution of these data in morphological space. We also amplified a fragment of the 16S ribosomal ribonucleic acid mitochondrial gene from 27 of these specimens and compared it to 63 published sequences of Fejervarya and the morphologically similar Zakerana. All examined Fejervarya from Guam are morphologically indistinguishable and share an identical haplotype. The molecular data identify them as Fejervarya cancrivora with a haplotype identical to F. cancrivora from Taiwan.

  16. Chromatographic fractionation and molecular mass characterization of Cercidium praecox (Brea) gum.

    PubMed

    Castel, Virginia; Zivanovic, Svetlana; Jurat-Fuentes, Juan L; Santiago, Liliana G; Rubiolo, Amelia C; Carrara, Carlos R; Harte, Federico M

    2016-10-01

    Brea gum (BG) is an exudate from the Cercidium praecox tree that grows in semi-arid regions of Argentina. Some previous studies on BG have shown physicochemical characteristics and functional features similar to those of gum arabic. However, there is a need to elucidate the molecular structure of BG to understand the functionality. In this sense, BG was fractionated using hydrophobic interaction chromatography and the obtained fractions were analyzed by size exclusion chromatography. Analysis of the fractions showed that the bulk of the gum (approx. 84% of the polysaccharides) was a polysaccharide of 2.79 × 10(3)  kDa. The second major fraction (approx. 16% of the polysaccharides) was a polysaccharide-protein complex with a molecular mass of 1.92 × 10(5)  kDa. A third fraction consisted of protein species with a wide range of molecular weights. The molecular weight distribution of the protein fraction was analyzed by size exclusion chromatography. Comparison of the elution profiles of the exudates in native and reducing conditions revealed that some of the proteins were forming aggregates through disulfide bridges in native conditions. Further analysis of the protein fraction by SDS-PAGE showed proteins with molecular weight ranging from 6.5 to 66 kDa. The findings showed that BG consists of several fractions with heterogeneous chemical composition and polydisperse molecular weight distributions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  18. Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.

    PubMed

    Pang, Yuan-Ping

    2016-09-01

    Predicting crystallographic B-factors of a protein from a conventional molecular dynamics simulation is challenging, in part because the B-factors calculated through sampling the atomic positional fluctuations in a picosecond molecular dynamics simulation are unreliable, and the sampling of a longer simulation yields overly large root mean square deviations between calculated and experimental B-factors. This article reports improved B-factor prediction achieved by sampling the atomic positional fluctuations in multiple picosecond molecular dynamics simulations that use uniformly increased atomic masses by 100-fold to increase time resolution. Using the third immunoglobulin-binding domain of protein G, bovine pancreatic trypsin inhibitor, ubiquitin, and lysozyme as model systems, the B-factor root mean square deviations (mean ± standard error) of these proteins were 3.1 ± 0.2-9 ± 1 Å 2 for Cα and 7.3 ± 0.9-9.6 ± 0.2 Å 2 for Cγ, when the sampling was done for each of these proteins over 20 distinct, independent, and 50-picosecond high-mass molecular dynamics simulations with AMBER forcefield FF12MC or FF14SB. These results suggest that sampling the atomic positional fluctuations in multiple picosecond high-mass molecular dynamics simulations may be conducive to a priori prediction of crystallographic B-factors of a folded globular protein.

  19. [MALDI-TOF mass spectrometry in the investigation of large high-molecular biological compounds].

    PubMed

    Porubl'ova, L V; Rebriiev, A V; Hromovyĭ, T Iu; Minia, I I; Obolens'ka, M Iu

    2009-01-01

    MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry has become, in the recent years, a tool of choice for analyses of biological polymers. The wide mass range, high accuracy, informativity and sensitivity make it a superior method for analysis of all kinds of high-molecular biological compounds including proteins, nucleic acids and lipids. MALDI-TOF-MS is particularly suitable for the identification of proteins by mass fingerprint or microsequencing. Therefore it has become an important technique of proteomics. Furthermore, the method allows making a detailed analysis of post-translational protein modifications, protein-protein and protein-nucleic acid interactions. Recently, the method was also successfully applied to nucleic acid sequencing as well as screening for mutations.

  20. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry

    PubMed Central

    Kind, Tobias; Fiehn, Oliver

    2007-01-01

    Background Structure elucidation of unknown small molecules by mass spectrometry is a challenge despite advances in instrumentation. The first crucial step is to obtain correct elemental compositions. In order to automatically constrain the thousands of possible candidate structures, rules need to be developed to select the most likely and chemically correct molecular formulas. Results An algorithm for filtering molecular formulas is derived from seven heuristic rules: (1) restrictions for the number of elements, (2) LEWIS and SENIOR chemical rules, (3) isotopic patterns, (4) hydrogen/carbon ratios, (5) element ratio of nitrogen, oxygen, phosphor, and sulphur versus carbon, (6) element ratio probabilities and (7) presence of trimethylsilylated compounds. Formulas are ranked according to their isotopic patterns and subsequently constrained by presence in public chemical databases. The seven rules were developed on 68,237 existing molecular formulas and were validated in four experiments. First, 432,968 formulas covering five million PubChem database entries were checked for consistency. Only 0.6% of these compounds did not pass all rules. Next, the rules were shown to effectively reducing the complement all eight billion theoretically possible C, H, N, S, O, P-formulas up to 2000 Da to only 623 million most probable elemental compositions. Thirdly 6,000 pharmaceutical, toxic and natural compounds were selected from DrugBank, TSCA and DNP databases. The correct formulas were retrieved as top hit at 80–99% probability when assuming data acquisition with complete resolution of unique compounds and 5% absolute isotope ratio deviation and 3 ppm mass accuracy. Last, some exemplary compounds were analyzed by Fourier transform ion cyclotron resonance mass spectrometry and by gas chromatography-time of flight mass spectrometry. In each case, the correct formula was ranked as top hit when combining the seven rules with database queries. Conclusion The seven rules enable an

  1. Demonstration by Mass Spectrometry that Purified Native Treponema pallidum Rare Outer Membrane Protein 1 (Tromp1) Has a Cleaved Signal Peptide

    PubMed Central

    Blanco, David R.; Whitelegge, Julian P.; Miller, James N.; Lovett, Michael A.

    1999-01-01

    Purified native Tromp1 was subjected to mass spectrometric analysis in order to determine conclusively whether this protein possesses a cleaved or uncleaved signal peptide. The molecular masses of Tromp1, three Treponema pallidum lipoproteins, and a bovine serum albumin (BSA) control were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The molecular masses of all of the T. pallidum lipoproteins and BSA were within 0.7% of their respective calculated masses. The molecular mass of Tromp1 was 31,510 Da, which is consistent with a signal-less form of Tromp1, given a calculated mass of unprocessed Tromp1 of 33,571 Da, a difference of 2,061 Da (a 6.5% difference). Purified native Tromp1 was also subjected to MALDI-TOF analysis in comparison to recombinant Tromp1 following cyanogen bromide cleavage, which further confirmed the identity of Tromp1 and showed that native Tromp1 was not degraded at the carboxy terminus. These studies confirm that Tromp1 is processed and does not contain an uncleaved signal peptide as previously reported. PMID:10438785

  2. Circumnuclear Molecular Disks in Early-type Galaxies: Physical Properties and Precision Black Hole Mass Measurements

    NASA Astrophysics Data System (ADS)

    Boizelle, Benjamin

    2018-01-01

    ALMA is now capable of providing the most precise determinations of the masses of supermassive black holes in early-type galaxies (ETGs). In ALMA Cycle 2 we began a program to map the molecular gas kinematics in nearby ETGs that host central dust disks as seen in Hubble Space Telescope imaging. These initial observations targeted CO(2-1) emission at ~0.3" resolution, corresponding roughly to the projected radii of influence of the central black holes. In all cases we detect significant (~108 M⊙) molecular gas reservoirs that are in dynamically cold rotation, providing the most sensitive probes of the inner gravitational potentials of luminous ETGs. Using these gas kinematics, we verify that these molecular disks are formally stable against gravitational fragmentation and collapse. In several galaxies we detect central high-velocity gas rotation that provides direct kinematic evidence for a black hole. For two of these targets, NGC 1332 and NGC 3258, we have obtained higher-resolution observations (0.044" and 0.09") in Cycles 3 and 4 that more fully map out the gas rotation within the gravitational sphere of influence. We present dynamical modeling results for these targets, demonstrating that ALMA observations can enable black hole mass measurements at a precision of 10% or better, with minimal susceptibility to the systematic uncertainties that affect other methods of black hole mass measurement in ETGs. We discuss the impact of future high-resolution ALMA observations on black hole demographics and their potential to refine the high-mass end of the black hole-host galaxy scaling relationships.

  3. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    NASA Technical Reports Server (NTRS)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  4. The size-line width relation and the mass of molecular hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Issa, M.; Maclaren, I.; Wolfendale, A. W.

    Some difficulties associated with the problem of cloud definition are considered, with particular regard to the crowded distribution of clouds and the difficulty of choosing an appropriate boundary in such circumstances. A number of tests carried out on the original data suggest that the delta(v) - S relation found by Solomon et al. (1987) is not a genuine reflection of the dynamical state of Giant Molecular Clouds. The Solomon et al. parameters, are insensitive to the actual cloud properties and are unable to distinguish true clouds from the consequences of sampling any crowded region of emission down to a lowmore » threshold temperature. The overall effect of such problems is to overestimate both the masses of Giant Molecular Clouds and the number of very large clouds. 24 refs.« less

  5. [Correlations between apparent diffusion coefficient in diffusion?weighted magnetic resonance imaging and molecular subtypes of invasive breast cancer masses].

    PubMed

    Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan

    2017-10-20

    To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.

  6. Chemistry of the High-mass Protostellar Molecular Clump IRAS 16562–3959

    NASA Astrophysics Data System (ADS)

    Guzmán, Andrés E.; Guzmán, Viviana V.; Garay, Guido; Bronfman, Leonardo; Hechenleitner, Federico

    2018-06-01

    We present molecular line observations of the high-mass molecular clump IRAS 16562‑3959 taken at 3 mm using the Atacama Large Millimeter/submillimeter Array at 1.″7 angular resolution (0.014 pc spatial resolution). This clump hosts the actively accreting high-mass young stellar object (HMYSO) G345.4938+01.4677, which is associated with a hypercompact H II region. We identify and analyze emission lines from 22 molecular species (encompassing 34 isomers) and classify them into two groups, depending on their spatial distribution within the clump. One of these groups gathers shock tracers (e.g., SiO, SO, HNCO) and species formed in dust grains like methanol (CH3OH), ethenone or ketene (H2CCO), and acetaldehyde (CH3CHO). The second group collects species closely resembling the dust continuum emission morphology and are formed mainly in the gas phase, like hydrocarbons (CCH, c-C3H2, CH3CCH), cyanopolyynes (HC3N and HC5N), and cyanides (HCN and CH3C3N). Emission from complex organic molecules (COMs) like CH3OH, propanenitrile (CH3CH2CN), and methoxymethane (CH3OCH3) arise from gas in the vicinity of a hot molecular core (T ≳ 100 K) associated with the HMYSO. Other COMs such as propyne (CH3CCH), acrylonitrile (CH2CHCN), and acetaldehyde seem to better trace warm (T ≲ 80 K) dense gas. In addition, deuterated ammonia (NH2D) is detected mostly in the outskirts of IRAS 16562‑3959 and associated with near-infrared dark globules, probably gaseous remnants of the clump’s prestellar phase. The spatial distribution of molecules in IRAS 16562‑3959 supports the view that in protostellar clumps, chemical tracers associated with different evolutionary stages—starless to hot cores/H II regions—exist coevally.

  7. Collaborative study for the calibration of replacement batches for the heparin low-molecular-mass for assay biological reference preparation.

    PubMed

    Terao, E; Daas, A

    2016-01-01

    The European Pharmacopoeia (Ph. Eur.) prescribes the control of the activity of low molecular mass heparins by assays for anti-Xa and anti-IIa activities (monograph 0828), using a reference standard calibrated in International Units (IU). An international collaborative study coded BSP133 was launched in the framework of the Biological Standardisation Programme (BSP) run under the aegis of the Council of Europe and the European Commission to calibrate replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay Biological Reference Preparation (BRP) batch 8. Thirteen official medicines control and manufacturers laboratories from European and non-European countries took part in this study to calibrate two freeze-dried candidate batches against the 3rd International Standard (IS) for heparin, low molecular weight (11/176; 3rd IS). The Heparin low-molecular-mass for assay BRP (batch 8) was also included in the test panel to check the continuity between subsequent BRP batches. Taking into account the stability data, the results of this collaborative study and on the basis of the central statistical analysis performed at the European Directorate for the Quality of Medicines & HealthCare (EDQM), the 2 candidate batches were officially adopted by the Commission of the European Pharmacopoeia as Heparin low-molecular-mass for assay BRP batches 9 and 10 with assigned anti-Xa activities of 102 and 100 IU/vial and anti-IIa activities of 34 and 33 IU/vial respectively.

  8. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate amore » remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA

  9. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections.

    PubMed

    Kay, Jeremy N; De la Huerta, Irina; Kim, In-Jung; Zhang, Yifeng; Yamagata, Masahito; Chu, Monica W; Meister, Markus; Sanes, Joshua R

    2011-05-25

    The retina contains ganglion cells (RGCs) that respond selectively to objects moving in particular directions. Individual members of a group of ON-OFF direction-selective RGCs (ooDSGCs) detect stimuli moving in one of four directions: ventral, dorsal, nasal, or temporal. Despite this physiological diversity, little is known about subtype-specific differences in structure, molecular identity, and projections. To seek such differences, we characterized mouse transgenic lines that selectively mark ooDSGCs preferring ventral or nasal motion as well as a line that marks both ventral- and dorsal-preferring subsets. We then used the lines to identify cell surface molecules, including Cadherin 6, CollagenXXVα1, and Matrix metalloprotease 17, that are selectively expressed by distinct subsets of ooDSGCs. We also identify a neuropeptide, CART (cocaine- and amphetamine-regulated transcript), that distinguishes all ooDSGCs from other RGCs. Together, this panel of endogenous and transgenic markers distinguishes the four ooDSGC subsets. Patterns of molecular diversification occur before eye opening and are therefore experience independent. They may help to explain how the four subsets obtain distinct inputs. We also demonstrate differences among subsets in their dendritic patterns within the retina and their axonal projections to the brain. Differences in projections indicate that information about motion in different directions is sent to different destinations.

  10. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry.

    PubMed

    Venisse, A; Berjeaud, J M; Chaurand, P; Gilleron, M; Puzo, G

    1993-06-15

    It was recently shown that mycobacterial lipoarabinomannan (LAM) can be classified into two types (Chatterjee, D., Lowell, K., Rivoire B., McNeil M. R., and Brennan, P. J. (1992) J. Biol. Chem. 267, 6234-6239) according to the presence or absence of mannosyl residues (Manp) located at the nonreducing end of the oligoarabinosyl side chains. These two types of LAM were found in a pathogenic Mycobacterium tuberculosis strain and in an avirulent M. tuberculosis strain, respectively, suggesting that LAM with Manp characterizes virulent and "disease-inducing strains." We now report the structure of the LAM from Mycobacterium bovis Bacille Calmette-Guérin (BCG) strain Pasteur, largely used throughout the world as vaccine against tuberculosis. Using an up-to-date analytical approach, we found that the LAM of M. bovis BCG belongs to the class of LAMs capped with Manp. By means of two-dimensional homonuclear and heteronuclear scalar coupling NMR analysis and methylation data, the sugar spin system assignments were partially established, revealing that the LAM contained two types of terminal Manp and 2-O-linked Manp. From the following four-step process: (i) partial hydrolysis of deacylated LAM (dLAM), (ii) oligosaccharide derivatization with aminobenzoic ethyl ester, (iii) HPLC purification, (iv) FAB/MS-MS analysis; it was shown that the dimannosyl unit alpha-D-Manp-(1-->2)-alpha-D-Manp is the major residue capping the termini of the arabinan of the LAM. In this report, LAM molecular mass determination was established using matrix-assisted UV-laser desorption/ionization mass spectrometry which reveals that the LAM molecular mass is around 17.4 kDa. The similarity of the LAM structures between M. bovis BCG and M. tuberculosis H37Rv is discussed in regard to their function in the immunopathology of mycobacterial infection.

  11. Certification and uncertainty evaluation of the certified reference materials of poly(ethylene glycol) for molecular mass fractions by using supercritical fluid chromatography.

    PubMed

    Takahashi, Kayori; Kishine, Kana; Matsuyama, Shigetomo; Saito, Takeshi; Kato, Haruhisa; Kinugasa, Shinichi

    2008-07-01

    Poly(ethylene glycol) (PEG) is a useful water-soluble polymer that has attracted considerable interest in medical and biological science applications as well as in polymer physics. Through the use of a well-calibrated evaporative light-scattering detector coupled with high performance supercritical fluid chromatography, we are able to determine exactly not only the average mass but also all of the molecular mass fractions of PEG samples needed for certified reference materials issued by the National Metrology Institute of Japan. In addition, experimental uncertainty was determined in accordance with the Guide to the expression of uncertainty in measurement (GUM). This reference material can be used to calibrate measuring instruments, to control measurement precision, and to confirm the validity of measurement methods when determining molecular mass distributions and average molecular masses. Especially, it is suitable for calibration against both masses and intensities for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

  12. Characterization of low-molecular weight iodine-terminated polyethylenes by gas chromatography/mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with the use of derivatization.

    PubMed

    Zaikin, Vladimir G; Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Vinogradov, Aleksei A; Ivanyuk, Aleksei V

    2013-01-01

    Gas chromatography/mass spectrometry (GC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry, in conjunction with various derivatization approaches, have been applied to structure determination of individual oligomers and molecular-mass distributions (MMD) in low-molecular mass polyethylene having an iodine terminus. Direct GC/MS analysis has shown that the samples under investigation composed of polyethyelene-iodides (major components) and n-alkanes. Exchange reaction with methanol in the presence of NaOH gave rise to methoxy-derivatives and n-alkenes. Electron ionization mass spectra have shown that the former contained terminal methoxy groups indicating the terminal position of the iodine atom in the initial oligomers. MMD parameters have been determined with the aid of MALDI mass spectrometry followed by preliminary derivatization-formation of covalently bonded charge through the reaction of iodides with triphenylphosphine, trialkylamines, pyridine or quinoline. The mass spectra revealed well-resolved peaks for cationic parts of derivatized oligomers allowing the determination of MMD. The latter values have been compared with those calculated from GC/MS data.

  13. The molecular mechanisms of sexual orientation and gender identity.

    PubMed

    Fisher, Alessandra D; Ristori, Jiska; Morelli, Girolamo; Maggi, Mario

    2018-05-15

    Differences between males and females are widely represented in nature. There are gender differences in phenotypes, personality traits, behaviors and interests, cognitive performance, and proneness to specific diseases. The most marked difference in humans is represented by sexual orientation and core gender identity, the origins of which are still controversial and far from being understood. Debates continue on whether sexual behavior and gender identity are a result of biological (nature) or cultural (nurture) factors, with biology possibly playing a major role. The main goal of this review is to summarize the studies available to date on the biological factors involved in the development of both sexual orientation and gender identity. A systematic search of published evidence was performed using Medline (from January 1948 to June 2017). Review of the relevant literature was based on authors' expertise. Indeed, different studies have documented the possible role and interaction of neuroanatomic, hormonal and genetic factors. The sexual dimorphic brain is considered the anatomical substrate of psychosexual development, on which genes and gonadal hormones may have a shaping effect. In particular, growing evidence shows that prenatal and pubertal sex hormones permanently affect human behavior. In addition, heritability studies have demonstrated a role of genetic components. However, a convincing candidate gene has not been identified. Future studies (e.i. genome wide studies) are needed to better clarify the complex interaction between genes, anatomy and hormonal influences on psychosexual development. Copyright © 2017. Published by Elsevier B.V.

  14. Serotonin neuron development: shaping molecular and structural identities.

    PubMed

    Deneris, Evan; Gaspar, Patricia

    2018-01-01

    The continuing fascination with serotonin (5-hydroxytryptamine, 5-HT) as a nervous system chemical messenger began with its discovery in the brains of mammals in 1953. Among the many reasons for this decades-long interest is that the small numbers of neurons that make 5-HT influence the excitability of neural circuits in nearly every region of the brain and spinal cord. A further reason is that 5-HT dysfunction has been linked to a range of psychiatric and neurological disorders many of which have a neurodevelopmental component. This has led to intense interest in understanding 5-HT neuron development with the aim of determining whether early alterations in their generation lead to brain disease susceptibility. Here, we present an overview of the neuroanatomical organization of vertebrate 5-HT neurons, their neurogenesis, and prodigious axonal architectures, which enables the expansive reach of 5-HT neuromodulation in the central nervous system. We review recent findings that have revealed the molecular basis for the tremendous diversity of 5-HT neuron subtypes, the impact of environmental factors on 5-HT neuron development, and how 5-HT axons are topographically organized through disparate signaling pathways. We summarize studies of the gene regulatory networks that control the differentiation, maturation, and maintenance of 5-HT neurons. These studies show that the regulatory factors controlling acquisition of 5-HT-type transmitter identity continue to play critical roles in the functional maturation and the maintenance of 5-HT neurons. New insights are presented into how continuously expressed 5-HT regulatory factors control 5-HT neurons at different stages of life and how the regulatory networks themselves are maintained. WIREs Dev Biol 2018, 7:e301. doi: 10.1002/wdev.301 This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and

  15. Matrix-Assisted Laser Desorption Ionization Imaging Mass Spectrometry: In Situ Molecular Mapping

    PubMed Central

    Angel, Peggi M.; Caprioli, Richard M.

    2013-01-01

    Matrix-assisted laser desorption ionization imaging mass spectrometry (IMS) is a relatively new imaging modality that allows mapping of a wide range of biomolecules within a thin tissue section. The technology uses a laser beam to directly desorb and ionize molecules from discrete locations on the tissue that are subsequently recorded in a mass spectrometer. IMS is distinguished by the ability to directly measure molecules in situ ranging from small metabolites to proteins, reporting hundreds to thousands of expression patterns from a single imaging experiment. This article reviews recent advances in IMS technology, applications, and experimental strategies that allow it to significantly aid in the discovery and understanding of molecular processes in biological and clinical samples. PMID:23259809

  16. High-resolution mass spectrometric analysis of biomass pyrolysis vapors

    DOE PAGES

    Christensen, Earl; Evans, Robert J.; Carpenter, Daniel

    2017-01-19

    Vapors generated from the pyrolysis of lignocellulosic biomass are made up of a complex mixture of oxygenated compounds. Direct analysis of these vapors provides insight into the mechanisms of depolymerization of cellulose, hemicellulose, and lignin as well as insight into reactions that may occur during condensation of pyrolysis vapors into bio-oil. Studies utilizing pyrolysis molecular beam mass spectrometry have provided valuable information regarding the chemical composition of pyrolysis vapors. Mass spectrometers generally employed with these instruments have low mass resolution of approximately a mass unit. The presence of chemical species with identical unit mass but differing elemental formulas cannot bemore » resolved with these instruments and are therefore detected as a single ion. In this study we analyzed the pyrolysis vapors of several biomass sources using a high-resolution double focusing mass spectrometer. High-resolution analysis of pyrolysis vapors allowed for speciation of several compounds that would be detected as a single ion with unit mass resolution. Lastly, these data not only provide greater detail into the composition of pyrolysis vapors but also highlight differences between vapors generated from multiple biomass feedstocks.« less

  17. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, Colleen E.; Leenheer, Jerry A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra.

  18. Note: A versatile mass spectrometer chamber for molecular beam and temperature programmed desorption experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, James P., E-mail: james.tonks@awe.co.uk; AWE Plc, Aldermaston, Reading, Berkshire RG7 4PR; Galloway, Ewan C., E-mail: ewan.galloway@awe.co.uk

    2016-08-15

    A dual purpose mass spectrometer chamber capable of performing molecular beam scattering (MBS) and temperature programmed desorption (TPD) is detailed. Two simple features of this design allow it to perform these techniques. First, the diameter of entrance aperture to the mass spectrometer can be varied to maximize signal for TPD or to maximize angular resolution for MBS. Second, the mass spectrometer chamber can be radially translated so that it can be positioned close to the sample to maximize signal or far from the sample to maximize angular resolution. The performance of this system is described and compares well with systemsmore » designed for only one of these techniques.« less

  19. Very low-molecular-mass fragments of albumin in the plasma of patients with focal segmental glomerulosclerosis.

    PubMed

    Hellin, Joan Lopez; Bech-Serra, Joan J; Moctezuma, Enrique Lara; Chocron, Sara; Santin, Sheila; Madrid, Alvaro; Vilalta, Ramon; Canals, Francesc; Torra, Roser; Meseguer, Anna; Nieto, Jose L

    2009-11-01

    Primary focal segmental glomerulosclerosis (FSGS) is a glomerular disease that frequently does not respond to treatment and progresses to kidney failure. FSGS can be of either genetic origin, caused by mutations in slit diaphragm proteins, such as podocin, or idiopathic origin of unknown cause. Case series. Children with FSGS (aged 3-18 years); 15 with idiopathic and 11 with genetic forms of FSGS. Genetic versus idiopathic forms. Differentially expressed proteins in the plasma proteome, detected using 2-dimensional electrophoresis and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Western blot, and liquid chromatography electron spray ionization tandem mass spectrometry for fragmentation and identification of the peptides. We found 3 very low-molecular-mass (9.2, 6.9, and 4.7 kDa; isoelectric point, 5.7) spots that were present in pooled samples from patients with genetic FSGS, but missing in patients with idiopathic FSGS and healthy individuals. Spots were identified using mass spectrometry as fragments of albumin, 2 of them apparently containing peptides from both C- and N-terminal parts of the whole protein. Proteomic analyses were carried out on all genetic patients individually; of these, 10 of 11 patients had > or =1 albumin fragment detected in the pool. We did not find an evident relationship between type of mutation or clinical status of patients and albumin fragments observed. Very low-molecular-weight albumin fragments also can be produced by other diseases. We describe for the first time the presence of very low-molecular-mass albumin fragments in plasma of patients with FSGS with podocyte protein mutations that are absent in patients with idiopathic FSGS or healthy individuals. Additional studies are necessary to determine whether these fragments could be potential biomarkers to distinguish between genetic and idiopathic forms of FSGS.

  20. Collaborative study for the establishment of replacement batches of heparin low- molecular-mass for assay biological reference preparations.

    PubMed

    Terao, E; Daas, A; Rautmann, G; Buchheit, K-H

    2010-10-01

    A collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM) in the context of the Biological Standardisation Programme (BSP), under the aegis of the Council of Europe and the European Commission, to establish replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay European Pharmacopoeia Biological Reference Preparation (BRP). The replacement batches of BRP are intended to be used in the assays for anti-Xa and anti-IIa activities, as described in the European Pharmacopoeia (Ph. Eur.) monograph Heparins, low-molecular-mass (0828). Three freeze-dried candidate batches were calibrated against the current International Standard (IS) for Heparin, lowmolecular- weight (2nd IS, 01/608). For the purpose of the continuity check between subsequent BRP batches, the current Heparin low-molecular-mass for assay BRP (batch 5) was also included in the test panel. Thirteen official medicines control and manufacturers laboratories from European and non-European countries contributed data. A central statistical analysis of the datasets was performed at the EDQM. On the basis of the results, the 3 candidate materials were assigned a potency of 104 IU/vial for the anti-Xa activity and 31 IU/vial for the anti-IIa activity. Taken into account the preliminary stability data and the results of this collaborative study, the 3 batches of candidate BRP were adopted in June 2010 by the Commission of the Ph. Eur. as Heparin low-molecular-mass for assay BRP batches 6, 7 and 8.

  1. Effect of molecular mass on supramolecular organisation of poly(4,4''-dioctyl-2,2':5',2''-terthiophene).

    PubMed

    Jaroch, Tomasz; Knor, Marek; Nowakowski, Robert; Zagórska, Małgorzata; Proń, Adam

    2008-10-28

    The effect of the chain length on the type and extent of the 2D supramolecular organization in poly(4,4''-dioctyl-2,2':5',2''-terthiophene) (PDOTT) monomolecular layers deposited on highly oriented pyrolytic graphite (HOPG) is studied by scanning tunneling microscopy (STM) and analyzed in terms of molecular modeling. The strictly monodispersed fractions of increasing molecular mass used in this study were obtained by chromatographic fractionation of the crude product of 4,4''-dioctyl-2,2':5',2''-terthiophene oxidative polymerization. STM investigations of PDOTT layers, deposited on HOPG from poly- and monodispersed fractions, show that polydispersity can be considered as a key factor seriously limiting supramolecular ordering. This is a consequence of significant differences in the type of supramolecular order observed for molecules of different chain length. It has been demonstrated that shorter molecules (consisting of 6 and 9 thiophene units) form well-defined two-dimensional islands, while the interactions between longer molecules (consisting of 12 and 15 thiophene units) become anisotropic. Consequently, for higher molecular mass fractions, the supramolecular organization is one-dimensional and consists of more or less separated rows of ordered macromolecules. In this case an increase of the chain length leads to amplification of the intermolecular interactions proceeding via interdigitation of the alkyl substituents of adjacent molecules. Polydispersed fractions show much less ordered organization because of the incompatibility of the supramolecular structures of molecules of different molecular masses. This finding is of crucial importance for the application of polythiophene derivatives in organic and molecular electronics since ordered supramolecular organization constitutes the condition sine qua non of good electrical transport properties.

  2. Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI MS) imaging.

    PubMed

    Hemalatha, R G; Pradeep, T

    2013-08-07

    The difference in size, shape, and chemical cues of leaves and flowers display the underlying genetic makeup and their interactions with the environment. The need to understand the molecular signatures of these fragile plant surfaces is illustrated with a model plant, Madagascar periwinkle (Catharanthus roseus (L.) G. Don). Flat, thin layer chromatographic imprints of leaves/petals were imaged using desorption electrospray ionization mass spectrometry (DESI MS), and the results were compared with electrospray ionization mass spectrometry (ESI MS) of their extracts. Tandem mass spectrometry with DESI and ESI, in conjunction with database records, confirmed the molecular species. This protocol has been extended to other plants. Implications of this study in identifying varietal differences, toxic metabolite production, changes in metabolites during growth, pest/pathogen attack, and natural stresses are shown with illustrations. The possibility to image subtle features like eye color of petals, leaf vacuole, leaf margin, and veins is demonstrated.

  3. Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis.

    PubMed

    Kay, Richard; Barton, Chris; Ratcliffe, Lucy; Matharoo-Ball, Balwir; Brown, Pamela; Roberts, Jane; Teale, Phil; Creaser, Colin

    2008-10-01

    A rapid acetonitrile (ACN)-based extraction method has been developed that reproducibly depletes high abundance and high molecular weight proteins from serum prior to mass spectrometric analysis. A nanoflow liquid chromatography/tandem mass spectrometry (nano-LC/MS/MS) multiple reaction monitoring (MRM) method for 57 high to medium abundance serum proteins was used to characterise the ACN-depleted fraction after tryptic digestion. Of the 57 targeted proteins 29 were detected and albumin, the most abundant protein in serum and plasma, was identified as the 20th most abundant protein in the extract. The combination of ACN depletion and one-dimensional nano-LC/MS/MS enabled the detection of the low abundance serum protein, insulin-like growth factor-I (IGF-I), which has a serum concentration in the region of 100 ng/mL. One-dimensional sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the depleted serum showed no bands corresponding to proteins of molecular mass over 75 kDa after extraction, demonstrating the efficiency of the method for the depletion of high molecular weight proteins. Total protein analysis of the ACN extracts showed that approximately 99.6% of all protein is removed from the serum. The ACN-depletion strategy offers a viable alternative to the immunochemistry-based protein-depletion techniques commonly used for removing high abundance proteins from serum prior to MS-based proteomic analyses.

  4. Supersonic molecular beam-hyperthermal surface ionisation coupled with time-of-flight mass spectrometry applied to trace level detection of polynuclear aromatic hydrocarbons in drinking water for reduced sample preparation and analysis time.

    PubMed

    Davis, S C; Makarov, A A; Hughes, J D

    1999-01-01

    Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.

  5. Effect of the molecular mass of tremella polysaccharides on accelerated recovery from cyclophosphamide-induced leucopenia in rats.

    PubMed

    Jiang, Rui-Zhi; Wang, Ying; Luo, Hao-Ming; Cheng, Yan-Qiu; Chen, Ying-Hong; Gao, Yang; Gao, Qi-Pin

    2012-03-23

    The body of tremella were decocted with water, and hydrolyzed with 0.1 mol/L hydrochloric acid for different times, giving tremella polysaccharides with six molecular mass values. The structures of all the tremella polysaccharides had non-reducing terminals of β-D-pyranglucuronide, the backbone was composed of (1 → 3)-linked β-D-manno-pyranoside, and the side chain composed of (1 → 6)-linked β-D-xylopyranoside was attached to the C(2) of the backbone mannopyranoside. Immunomodulatory effect studies indicated that tremella polysaccharides increased the counts of leukocytes in the peripheral blood which were significantly lowered by cyclophosphamide, and the lower the molecular mass of the tremella polysaccharide, the better this effect was.

  6. Photoaffinity labeling of protoporphyrinogen oxidase, the molecular target of diphenylether-type herbicides.

    PubMed

    Camadro, J M; Matringe, M; Thome, F; Brouillet, N; Mornet, R; Labbe, P

    1995-05-01

    Diphenylether-type herbicides are extremely potent inhibitors of protoporphyrinogen oxidase, a membrane-bound enzyme involved in the heme and chlorophyll biosynthesis pathways. Tritiated acifluorfen and a diazoketone derivative of tritiated acifluorfen were specifically bound to a single class of high-affinity binding sites on yeast mitochondrial membranes with apparent dissociation constants of 7 nM and 12.5 nM, respectively. The maximum density of specific binding sites, determined by Scatchard analysis, was 3 pmol.mg-1 protein. Protoporphyrinogen oxidase specific activity was estimated to be 2500 nmol protoporphyrinogen oxidized h-1.mol-1 enzyme. The diazoketone derivative of tritiated acifluorfen was used to specifically photolabel yeast protoporphyrinogen oxidase. The specifically labeled polypeptide in wild-type mitochondrial membranes had an apparent molecular mass of 55 kDa, identical to the molecular mass of the purified enzyme. This photolabeled polypeptide was not detected in a protoporphyrinogen-oxidase-deficient yeast strain, but the membranes contained an equivalent amount of inactive immunoreactive protoporphyrinogen oxidase protein.

  7. Atmospheric Oxidation of Squalene: Molecular Study Using COBRA Modeling and High-Resolution Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fooshee, David R.; Aiona, Paige K.; Laskin, Alexander

    2015-10-22

    Squalene is a major component of skin and plant surface lipids, and is known to be present at high concentrations in indoor dust. Its high reactivity toward ozone makes it an important ozone sink and a natural protectant against atmospheric oxidizing agents. While the volatile products of squalene ozonolysis are known, the condensed-phase products have not been characterized. We present an analysis of condensed-phase products resulting from an extensive oxidation of squalene by ozone probed by electrospray ionization (ESI) high-resolution mass spectrometry (HR-MS). A complex distribution of nearly 1,300 peaks assignable to molecular formulas is observed in direct infusion positivemore » ion mode ESI mass spectra. The distribution of peaks in the mass spectra suggests that there are extensive cross-coupling reactions between hydroxy-carbonyl products of squalene ozonolysis. To get additional insights into the mechanism, we apply a Computational Brewing Application (COBRA) to simulate the oxidation of squalene in the presence of ozone, and compare predicted results with those observed by the HR-MS experiments. The system predicts over one billion molecular structures between 0-1450 Da, which correspond to about 27,000 distinct elemental formulas. Over 83% of the squalene oxidation products inferred from the mass spectrometry data are matched by the simulation. Simulation indicates a prevalence of peroxy groups, with hydroxyl and ether groups being the second-most important O-containing functional groups formed during squalene oxidation. These highly oxidized products of squalene ozonolysis may accumulate on indoor dust and surfaces, and contribute to their redox capacity.« less

  8. Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Sheehan, Patrick D.; Eisner, Josh A.

    2017-12-01

    Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.

  9. A high pressure modulated molecular beam mass spectrometric sampling system

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The current state of understanding of free-jet high pressure sampling is critically reviewed and modifications of certain theoretical and empirical considerations are presented. A high pressure, free-jet expansion, modulated molecular beam, mass spectrometric sampling apparatus was constructed and this apparatus is described in detail. Experimental studies have demonstrated that the apparatus can be used to sample high temperature systems at pressures up to one atmosphere. Condensible high temperature gaseous species have been routinely sampled and the mass spectrometric detector has provided direct identification of sampled species. System sensitivity is better than one tenth of a part per million. Experimental results obtained with argon and nitrogen beams are presented and compared to theoretical predictions. These results and the respective comparison are taken to indicate acceptable performance of the sampling apparatus. Results are also given for two groups of experiments related to hot corrosion studies. The formation of gaseous sodium sulfate in doped methane-oxygen flames was characterized and the oxidative vaporization of metals was studied in an atmospheric pressure flowing gas system to which gaseous salt partial pressures were added.

  10. On the probability distribution function of the mass surface density of molecular clouds. I

    NASA Astrophysics Data System (ADS)

    Fischera, Jörg

    2014-05-01

    The probability distribution function (PDF) of the mass surface density is an essential characteristic of the structure of molecular clouds or the interstellar medium in general. Observations of the PDF of molecular clouds indicate a composition of a broad distribution around the maximum and a decreasing tail at high mass surface densities. The first component is attributed to the random distribution of gas which is modeled using a log-normal function while the second component is attributed to condensed structures modeled using a simple power-law. The aim of this paper is to provide an analytical model of the PDF of condensed structures which can be used by observers to extract information about the condensations. The condensed structures are considered to be either spheres or cylinders with a truncated radial density profile at cloud radius rcl. The assumed profile is of the form ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 for arbitrary power n where ρc and r0 are the central density and the inner radius, respectively. An implicit function is obtained which either truncates (sphere) or has a pole (cylinder) at maximal mass surface density. The PDF of spherical condensations and the asymptotic PDF of cylinders in the limit of infinite overdensity ρc/ρ(rcl) flattens for steeper density profiles and has a power law asymptote at low and high mass surface densities and a well defined maximum. The power index of the asymptote Σ- γ of the logarithmic PDF (ΣP(Σ)) in the limit of high mass surface densities is given by γ = (n + 1)/(n - 1) - 1 (spheres) or by γ = n/ (n - 1) - 1 (cylinders in the limit of infinite overdensity). Appendices are available in electronic form at http://www.aanda.org

  11. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  12. Determination of the Subunit Molecular Mass and Composition of Alcohol Dehydrogenase by SDS-PAGE

    ERIC Educational Resources Information Center

    Nash, Barbara T.

    2007-01-01

    SDS-PAGE is a simple, rapid technique that has many uses in biochemistry and is readily adaptable to the undergraduate laboratory. It is, however, a technique prone to several types of procedural pitfalls. This article describes the use of SDS-PAGE to determine the subunit molecular mass and composition of yeast alcohol dehydrogenase employing…

  13. Probing mass-transport and binding inhomogeneity in macromolecular interactions by molecular interferometric imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Wang, Xuefeng; Nolte, David

    2009-02-01

    In solid-support immunoassays, the transport of target analyte in sample solution to capture molecules on the sensor surface controls the detected binding signal. Depletion of the target analyte in the sample solution adjacent to the sensor surface leads to deviations from ideal association, and causes inhomogeneity of surface binding as analyte concentration varies spatially across the sensor surface. In the field of label-free optical biosensing, studies of mass-transport-limited reaction kinetics have focused on the average response on the sensor surface, but have not addressed binding inhomogeneities caused by mass-transport limitations. In this paper, we employ Molecular Interferometric Imaging (MI2) to study mass-transport-induced inhomogeneity of analyte binding within a single protein spot. Rabbit IgG binding to immobilized protein A/G was imaged at various concentrations and under different flow rates. In the mass-transport-limited regime, enhanced binding at the edges of the protein spots was caused by depletion of analyte towards the center of the protein spots. The magnitude of the inhomogeneous response was a function of analyte reaction rate and sample flow rate.

  14. Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria

    PubMed Central

    McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.

    2015-01-01

    Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429

  15. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    NASA Astrophysics Data System (ADS)

    Siposova, Katarina; Pospiskova, Kristyna; Bednarikova, Zuzana; Safarik, Ivo; Safarikova, Mirka; Kubovcikova, Martina; Kopcansky, Peter; Gazova, Zuzana

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe3O4-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15-20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15-20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran).

  16. HIV-1 Vif promotes the formation of high molecular mass APOBEC3G complexes

    PubMed Central

    Goila-Gaur, Ritu; Khan, Mohammad A.; Miyagi, Eri; Kao, Sandra; Opi, Sandrine; Takeuchi, Hiroaki; Strebel, Klaus

    2008-01-01

    HIV-1 Vif inhibits the antiviral activity of APOBEC3G (APO3G) by inducing proteasomal degradation. Here, we studied the effects of Vif on APO3G in vitro. In this system, Vif did not cause APO3G degradation. Instead, Vif induced changes in APO3G that affected immunoprecipitation of the native protein. This effect required wt Vif and was reversed by heat-denaturation of APO3G. Sucrose gradient analysis demonstrated that wt Vif induced the gradual transition of APO3G translated in vitro or expressed in HeLa cells from a low molecular mass conformation to puromycin-sensitive high molecular mass (HMM) complexes. In the absence of Vif or the presence of biologically inactive Vif APO3G failed to form HMM complexes. Our results expose a novel function of Vif that promotes the assembly of APO3G into presumably packaging-incompetent HMM complexes and may explain how Vif can overcome the APO3G-imposed block to HIV replication under conditions of no or inefficient APO3G degradation. PMID:18023836

  17. Substrate specificity of low-molecular mass bacterial DD-peptidases.

    PubMed

    Nemmara, Venkatesh V; Dzhekieva, Liudmila; Sarkar, Kumar Subarno; Adediran, S A; Duez, Colette; Nicholas, Robert A; Pratt, R F

    2011-11-22

    The bacterial DD-peptidases or penicillin-binding proteins (PBPs) catalyze the formation and regulation of cross-links in peptidoglycan biosynthesis. They are classified into two groups, the high-molecular mass (HMM) and low-molecular mass (LMM) enzymes. The latter group, which is subdivided into classes A-C (LMMA, -B, and -C, respectively), is believed to catalyze DD-carboxypeptidase and endopeptidase reactions in vivo. To date, the specificity of their reactions with particular elements of peptidoglycan structure has not, in general, been defined. This paper describes the steady-state kinetics of hydrolysis of a series of specific peptidoglycan-mimetic peptides, representing various elements of stem peptide structure, catalyzed by a range of LMM PBPs (the LMMA enzymes, Escherichia coli PBP5, Neisseria gonorrhoeae PBP4, and Streptococcus pneumoniae PBP3, and the LMMC enzymes, the Actinomadura R39 dd-peptidase, Bacillus subtilis PBP4a, and N. gonorrhoeae PBP3). The R39 enzyme (LMMC), like the previously studied Streptomyces R61 DD-peptidase (LMMB), specifically and rapidly hydrolyzes stem peptide fragments with a free N-terminus. In accord with this result, the crystal structures of the R61 and R39 enzymes display a binding site specific to the stem peptide N-terminus. These are water-soluble enzymes, however, with no known specific function in vivo. On the other hand, soluble versions of the remaining enzymes of those noted above, all of which are likely to be membrane-bound and/or associated in vivo and have been assigned particular roles in cell wall biosynthesis and maintenance, show little or no specificity for peptides containing elements of peptidoglycan structure. Peptidoglycan-mimetic boronate transition-state analogues do inhibit these enzymes but display notable specificity only for the LMMC enzymes, where, unlike peptide substrates, they may be able to effectively induce a specific active site structure. The manner in which LMMA (and HMM) DD

  18. The dense gas mass fraction of molecular clouds in the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu

    2014-01-10

    The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less

  19. Molecular recognition of emerald ash borer infestation using leaf spray mass spectrometry.

    PubMed

    Falcone, Caitlin E; Cooks, R Graham

    2016-06-15

    The introduction of the emerald ash borer (Agrilus planipennis) (EAB) from Asia to Michigan, USA, in the 1990s caused the widespread death of ash trees in two Canadian provinces and 24 US states. The three current methods for the detection of emerald ash borer infestation, visual surveys, tree girdling and artificial traps, can be unreliable, and there is clearly a need for a rapid, dependable technique for the detection of emerald ash borer infestation. Leaf spray, an ambient ionization method for mass spectrometry (MS), gives direct chemical information on a leaf sample by applying a high voltage to a naturally or artificially sharply pointed leaf piece causing ions to be generated directly from the leaf tip for MS analysis. Leaflets from 23 healthy and EAB-infested ash trees were analyzed by leaf spray mass spectrometry in an attempt to distinguish healthy and EAB-infested ash trees. In negative ion mode, healthy ash trees showed an increased abundance of ions m/z 455.5, 471.5 and 487.5, and ash trees infested with the EAB displayed an increased abundance of ions m/z 181 and 217. The identities of the chemical discriminators ursolic acid and oleanolic acid in healthy ash trees, and six-carbon sugar alcohols in infested ash trees, were determined by tandem mass spectrometry and confirmed with standards. This preliminary study suggests that leaf spray mass spectrometry of ash tree leaflets provides a potential tool for the early detection of ash tree infestation by the emerald ash borer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38.

    PubMed Central

    Augustin, A; Muller-Steffner, H; Schuber, F

    2000-01-01

    Bovine spleen ecto-NAD(+) glycohydrolase, an archetypal member of the mammalian membrane-associated NAD(P)(+) glycohydrolase enzyme family (EC 3.2.2.6), displays catalytic features similar to those of CD38, i.e. a protein originally described as a lymphocyte differentiation marker involved in the metabolism of cyclic ADP-ribose and signal transduction. Using amino acid sequence information obtained from NAD(+) glycohydrolase and from a truncated and hydrosoluble form of the enzyme (hNADase) purified to homogeneity, a full-length cDNA clone was obtained. The deduced sequence indicates a protein of 278 residues with a molecular mass of 31.5 kDa. It predicts that bovine ecto-NAD(+) glycohydrolase is a type II transmembrane protein, with a very short intracellular tail. The bulk of the enzyme, which is extracellular and contains two potential N-glycosylation sites, yields the fully catalytically active hNADase which is truncated by 71 residues. Transfection of HeLa cells with the full-length cDNA resulted in the expression of the expected NAD(+) glycohydrolase, ADP-ribosyl cyclase and GDP-ribosyl cyclase activities at the surface of the cells. The bovine enzyme, which is the first 'classical' NAD(P)(+) glycohydrolase whose structure has been established, presents a particularly high sequence identity with CD38, including the presence of 10 strictly conserved cysteine residues in the ectodomain and putative catalytic residues. However, it lacks two otherwise conserved cysteine residues near its C-terminus. Thus hNADase, the truncated protein of 207 amino acids, represents the smallest functional domain endowed with all the catalytic activities of CD38/NAD(+) glycohydrolases so far identified. Altogether, our data strongly suggest that the cloned bovine spleen ecto-NAD(+) glycohydrolase is the bovine equivalent of CD38. PMID:10600637

  1. The neuron identity problem: form meets function.

    PubMed

    Fishell, Gord; Heintz, Nathaniel

    2013-10-30

    A complete understanding of nervous system function cannot be achieved without the identification of its component cell types. In this Perspective, we explore a series of related issues surrounding cell identity and how revolutionary methods for labeling and probing specific neuronal types have clarified this question. Specifically, we ask the following questions: what is the purpose of such diversity, how is it generated, how is it maintained, and, ultimately, how can one unambiguously identity one cell type from another? We suggest that each cell type can be defined by a unique and conserved molecular ground state that determines its capabilities. We believe that gaining an understanding of these molecular barcodes will advance our ability to explore brain function, enhance our understanding of the biochemical basis of CNS disorders, and aid in the development of novel therapeutic strategies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Analysis of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance.

    PubMed

    Johnson, Kenneth L; Mason, Christopher J; Muddiman, David C; Eckel, Jeanette E

    2004-09-01

    This study quantifies the experimental uncertainty for LC retention time, mass measurement precision, and ion abundance obtained from replicate nLC-dual ESI-FT-ICR analyses of the low molecular weight fraction of serum. We used ultrafiltration to enrich the < 10-kDa fraction of components from the high-abundance proteins in a pooled serum sample derived from ovarian cancer patients. The THRASH algorithm for isotope cluster detection was applied to five replicate nLC-dual ESI-FT-ICR chromatograms. A simple two-level grouping algorithm was applied to the more than 7000 isotope clusters found in each replicate and identified 497 molecular species that appeared in at least four of the replicates. In addition, a representative set of 231 isotope clusters, corresponding to 188 unique molecular species, were manually interpreted to verify the automated algorithm and to set its tolerances. For nLC retention time reproducibility, 95% of the 497 species had a 95% confidence interval of the mean of +/- 0.9 min or less without the use of chromatographic alignment procedures. Furthermore, 95% of the 497 species had a mass measurement precision of < or = 3.2 and < or = 6.3 ppm for internally and externally calibrated spectra, respectively. Moreover, 95% of replicate ion abundance measurements, covering an ion abundance range of approximately 3 orders of magnitude, had a coefficient of variation of less than 62% without using any normalization functions. The variability of ion abundance was independent of LC retention time, mass, and ion abundance quartile. These measures of analytical reproducibility establish a statistical rationale for differentiating healthy and disease patient populations for the elucidation of biomarkers in the low molecular fraction of serum. Copyright 2004 American Chemical Society

  3. Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis.

    PubMed

    Sabareesh, Varatharajan; Singh, Gurpreet

    2013-04-01

    Mass Spectrometry based Lipid(ome) Analyzer and Molecular Platform (MS-LAMP) is a new software capable of aiding in interpreting electrospray ionization (ESI) and/or matrix-assisted laser desorption/ionization (MALDI) mass spectrometric data of lipids. The graphical user interface (GUI) of this standalone programme is built using Perl::Tk. Two databases have been developed and constituted within MS-LAMP, on the basis of Mycobacterium tuberculosis (M. tb) lipid database (www.mrl.colostate.edu) and that of Lipid Metabolites and Pathways Strategy Consortium (LIPID MAPS; www.lipidmaps.org). Different types of queries entered through GUI would interrogate with a chosen database. The queries can be molecular mass(es) or mass-to-charge (m/z) value(s) and molecular formula. LIPID MAPS identifier also can be used to search but not for M. tb lipids. Multiple choices have been provided to select diverse ion types and lipids. Satisfying to input parameters, a glimpse of various lipid categories and their population distribution can be viewed in the output. Additionally, molecular structures of lipids in the output can be seen using ChemSketch (www.acdlabs.com), which has been linked to the programme. Furthermore, a version of MS-LAMP for use in Linux operating system is separately available, wherein PyMOL can be used to view molecular structures that result as output from General Lipidome MS-LAMP. The utility of this software is demonstrated using ESI mass spectrometric data of lipid extracts of M. tb grown under two different pH (5.5 and 7.0) conditions. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Titan's Organic Aerosols : Molecular Composition And Structure Inferred From Systematic Pyrolysis Gas Chromatography Mass Spectrometry Analysis of Analogues

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Gautier, Thomas

    2015-04-01

    In spite of numerous studies carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), their molecular composition as well as their structuration are still little known. If Pyrolysis gas chromatography mass spectrometry (Pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained show that they can be attributed to the analytical conditions used, to differences in the nature of the analogues studied, or both. In order to have a better description of Titan's tholins molecular composition, we led a systematic analysis of these materials by pyr-GCMS, exploring the analytical parameters to estimate the biases this technique can induce. With this aim, we used the PAMPRE experiment, a capacitively coupled RF cold plasma reactor (Szopa et al. 2006), to synthetize tholins with 2%, 5% and 10% of CH4 in N2. The three samples were systematically pyrolyzed in the temperature range 200-600°C with a 100°C step. The evolved gases were then injected into a GC-MS device for molecular identification. This systematic pyr-GC-MS analysis had two major objectives: (i) optimizing all the analytical parameters for the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio on the tholins molecular structure. About a hundred of molecules have been identified in the pyrolysis products. Although an identical major pattern of nitriles and ethylene appears clearly for the three samples, some discriminant signatures were highlighted. The samples mainly differ by the number of released compounds. The results show especially an increase in the hydrocarbonaceous chains when the CH4 ratio increases. At the opposite, the formation of poly-nitrogenous compounds seems to be easier for lower CH4 ratios. We also performed a semi-quantitative study on the best represented chemical family in

  5. Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal.

    PubMed

    Smith, Rob; Taylor, Ryan M; Prince, John T

    2015-01-01

    The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts.

  6. Current controlled vocabularies are insufficient to uniquely map molecular entities to mass spectrometry signal

    PubMed Central

    2015-01-01

    Background The comparison of analyte mass spectrometry precursor (MS1) signal is central to many proteomic (and other -omic) workflows. Standard vocabularies for mass spectrometry exist and provide good coverage for most experimental applications yet are insufficient for concise and unambiguous description of data concepts spanning the range of signal provenance from a molecular perspective (e.g. from charged peptides down to fine isotopes). Without a standard unambiguous nomenclature, literature searches, algorithm reproducibility and algorithm evaluation for MS-omics data processing are nearly impossible. Results We show how terms from current official ontologies are too vague or ambiguous to explicitly map molecular entities to MS signals and we illustrate the inconsistency and ambiguity of current colloquially used terms. We also propose a set of terms for MS1 signal that uniquely, succinctly and intuitively describe data concepts spanning the range of signal provenance from full molecule downs to fine isotopes. We suggest that additional community discussion of these terms should precede any further standardization efforts. We propose a novel nomenclature that spans the range of the required granularity to describe MS data processing from the perspective of the molecular provenance of the MS signal. Conclusions The proposed nomenclature provides a chain of succinct and unique terms spanning the signal created by a charged molecule down through each of its constituent subsignals. We suggest that additional community discussion of these terms should precede any further standardization efforts. PMID:25952148

  7. Effects of molecular weight and cationization agent on the sensitivity of Bi cluster secondary ion mass spectrometry.

    PubMed

    Fujii, Makiko; Shishido, Rie; Satoh, Takaya; Suzuki, Shigeru; Matsuo, Jiro

    2016-07-30

    Bi cluster secondary ion mass spectrometry (SIMS) is one of the most promising tools for precise analysis of synthetic polymers. However, the sensitivity in the high-mass region is still insufficient compared with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Accordingly, the effects of metal assistance (cationization agents) were investigated in this study. To investigate the effects caused by varying the ionization agent, three different polyethylene glycol (PEG) samples were prepared, one with an Ag-deposited film, and two others mixed with Ag and Na, respectively. The measurements were performed by using a commercial Bi cluster SIMS and MALDI-TOFMS systems. The mass spectrum obtained with MALDI-TOFMS was used as a reference molecular weight distribution to evaluate the effects of molecular weight and primary ion species (Bi + , Bi 3 + , Bi 3 2 + ) on the sensitivity of Bi cluster SIMS. The intensity of each secondary ion was the highest in Bi 3 2 + irradiation, and the lowest in Bi + irradiation. Regarding the cationization agents, the secondary ion yield was the highest for the sample mixed with Ag, while the degree of decay of sensitivity along with the increase in molecular weight was the smallest for the sample mixed with Na. It was suggested that the cationization mechanism consists of pre-formed ionization and gas-phase ionization processes. The sensitivity of Bi cluster SIMS decreases to approximately one-fiftieth in every 1000 u. These results might help in understanding the mechanism of cationization and further enhancement of secondary ion yields of polymers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Surprising dissimilarities in a newly formed pair of `identical twin' stars

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan G.; Mathieu, Robert D.; Cargile, Phillip A.; Aarnio, Alicia N.; Stempels, Eric; Geller, Aaron

    2008-06-01

    The mass and chemical composition of a star are the primary determinants of its basic physical properties-radius, temperature and luminosity-and how those properties evolve with time. Accordingly, two stars born at the same time, from the same natal material and with the same mass, are `identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41+/-0.01 solar masses, identical to within 2per cent. Here we report that these twin stars have surface temperatures differing by ~300K (~10per cent) and luminosities differing by ~50per cent, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10per cent. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system. Our findings reveal cosmic limits on the age synchronization of young binary stars, often used as tests for the age calibrations of star-formation models.

  9. Mass spectrometric profiling of low-molecular-weight volatile compounds--diagnostic potential and latest applications.

    PubMed

    Lechner, Matthias; Rieder, Josef

    2007-01-01

    The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.

  10. Ratios of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The ratios of regioisomers of 72 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lesquerella oil. The ratios of ion signal intensities (or relative abundances) of ...

  11. Physical properties and scaling relations of molecular clouds: the effect of stellar feedback

    NASA Astrophysics Data System (ADS)

    Grisdale, Kearn; Agertz, Oscar; Renaud, Florent; Romeo, Alessandro B.

    2018-06-01

    Using hydrodynamical simulations of entire galactic discs similar to the Milky Way, reaching 4.6{ pc} resolution, we study the origins of observed physical properties of giant molecular clouds (GMCs). We find that efficient stellar feedback is a necessary ingredient in order to develop a realistic interstellar medium (ISM), leading to molecular cloud masses, sizes, velocity dispersions and virial parameters in excellent agreement with Milky Way observations. GMC scaling relations observed in the Milky Way, such as the mass-size (M-R), velocity dispersion-size (σ-R), and the σ-RΣ relations, are reproduced in a feedback driven ISM when observed in projection, with M∝R2.3 and σ∝R0.56. When analysed in 3D, GMC scaling relations steepen significantly, indicating potential limitations of our understanding of molecular cloud 3D structure from observations. Furthermore, we demonstrate how a GMC population's underlying distribution of virial parameters can strongly influence the scatter in derived scaling relations. Finally, we show that GMCs with nearly identical global properties exist in different evolutionary stages, where a majority of clouds being either gravitationally bound or expanding, but with a significant fraction being compressed by external ISM pressure, at all times.

  12. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds.

    PubMed

    Li, Yi; Zhang, Hua; Zhao, Zongshan; Tian, Yong; Liu, Kun; Jie, Feifan; Zhu, Liang; Chen, Huanwen

    2018-05-01

    Particulate matters (PMs) emitted by automobile exhaust contribute to a significant fraction of the global PMs. Extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed to explore the molecular dependence of PMs collected from exhaust gases produced at different vehicle engine speeds. The mass spectral fingerprints of the organic compounds embedded in differentially sized PMs (e.g., 0.22-0.45, 0.45-1.00, 1.00-2.00, 2.00-3.00, 3.00-5.00, and 5.00-10.00μm) generated at different engine speeds (e.g., 1000, 1500, 2000, 2500, and 3000r/min) were chemically profiled in the mass range of mass to charge ratio (m/z) 50-800. Organic compounds, including alcohols, aldehydes, and esters, were detected in all the PMs tested, with varied concentration levels for each individual PM sample. At relatively low engine speeds (≤1500r/min), the total amount of organic species embedded in PMs of 0.22-1.00μm was greater than in PMs of other sizes, while more organic species were found in PMs of 5.00-10.00μm at high engine speeds (≥3000r/min), indicating that the organic compounds distributed in different sizes of PMs strongly correlated with the engine speed. The experimental data showed that the EAPCI-MS technique enables molecular characterization of PMs in exhaust, revealing the chemical dependence of PMs on the engine speeds (i.e., the combustion conditions) of automobiles. Copyright © 2017. Published by Elsevier B.V.

  13. Molecular composition of boreal forest aerosol from Hyytiälä, Finland, using ultrahigh resolution mass spectrometry.

    PubMed

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Ruuskanen, Taina M; McLeod, Matthew W; Maenhaut, Willy; Jones, Rod; Kulmala, Markku; Kalberer, Markus

    2013-05-07

    Organic compounds are important constituents of fine particulate matter (PM) in the troposphere. In this study, we applied direct infusion nanoelectrospray (nanoESI) ultrahigh resolution mass spectrometry (UHR-MS) and liquid chromatography LC/ESI-UHR-MS for the analysis of the organic fraction of PM1 aerosol samples collected over a two week period at a boreal forest site (Hyytiälä), southern Finland. Elemental formulas (460-730 in total) were identified with nanoESI-UHR-MS in the negative ionization mode and attributed to organic compounds with a molecular weight below 400. Kendrick Mass Defect and Van Krevelen approaches were used to identify compound classes and mass distributions of the detected species. The molecular composition of the aerosols strongly varied between samples with different air mass histories. An increased number of nitrogen, sulfur, and highly oxygenated organic compounds was observed during the days associated with continental air masses. However, the samples with Atlantic air mass history were marked by a presence of homologous series of unsaturated and saturated C12-C20 fatty acids suggesting their marine origin. To our knowledge, we show for the first time that the highly detailed chemical composition obtained from UHR-MS analyses can be clearly linked to meteorological parameters and trace gases concentrations that are relevant to atmospheric oxidation processes. The additional LC/ESI-UHR-MS analysis revealed 29 species, which were mainly attributed to oxidation products of biogenic volatile compounds BVOCs (i.e., α,β-pinene, Δ3-carene, limonene, and isoprene) supporting the results from the direct infusion analysis.

  14. Molecular characterization of dissolved organic matter in contrasted freshwater environments by electrospray ionization mass spectrometry and EEM-PARAFAC

    NASA Astrophysics Data System (ADS)

    Parot, Jérémie; Parlanti, Edith; Guéguen, Céline

    2015-04-01

    Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.

  15. Evaporation of liquid droplets of nano- and micro-meter size as a function of molecular mass and intermolecular interactions: experiments and molecular dynamics simulations.

    PubMed

    Hołyst, Robert; Litniewski, Marek; Jakubczyk, Daniel

    2017-09-13

    Transport of heat to the surface of a liquid is a limiting step in the evaporation of liquids into an inert gas. Molecular dynamics (MD) simulations of a two component Lennard-Jones (LJ) fluid revealed two modes of energy transport from a vapour to an interface of an evaporating droplet of liquid. Heat is transported according to the equation of temperature diffusion, far from the droplet of radius R. The heat flux, in this region, is proportional to temperature gradient and heat conductivity in the vapour. However at some distance from the interface, Aλ, (where λ is the mean free path in the gas), the temperature has a discontinuity and heat is transported ballistically i.e. by direct individual collisions of gas molecules with the interface. This ballistic transport reduces the heat flux (and consequently the mass flux) by the factor R/(R + Aλ) in comparison to the flux obtained from temperature diffusion. Thus it slows down the evaporation of droplets of sizes R ∼ Aλ and smaller (practically for sizes from 10 3 nm down to 1 nm). We analyzed parameter A as a function of interactions between molecules and their masses. The rescaled parameter, A(k B T b /ε 11 ) 1/2 , is a linear function of the ratio of the molecular mass of the liquid molecules to the molecular mass of the gas molecules, m 1 /m 2 (for a series of chemically similar compounds). Here ε 11 is the interaction parameter between molecules in the liquid (proportional to the enthalpy of evaporation) and T b is the temperature of the gas in the bulk. We tested the predictions of MD simulations in experiments performed on droplets of ethylene glycol, diethylene glycol, triethylene glycol and tetraethylene glycol. They were suspended in an electrodynamic trap and evaporated into dry nitrogen gas. A changes from ∼1 (for ethylene glycol) to approximately 10 (for tetraethylene glycol) and has the same dependence on molecular parameters as obtained for the LJ fluid in MD simulations. The value of x = A

  16. Forensic applications of ambient ionization mass spectrometry.

    PubMed

    Ifa, Demian R; Jackson, Ayanna U; Paglia, Giuseppe; Cooks, R Graham

    2009-08-01

    This review highlights and critically assesses forensic applications in the developing field of ambient ionization mass spectrometry. Ambient ionization methods permit the ionization of samples outside the mass spectrometer in the ordinary atmosphere, with minimal sample preparation. Several ambient ionization methods have been created since 2004 and they utilize different mechanisms to create ions for mass-spectrometric analysis. Forensic applications of these techniques--to the analysis of toxic industrial compounds, chemical warfare agents, illicit drugs and formulations, explosives, foodstuff, inks, fingerprints, and skin--are reviewed. The minimal sample pretreatment needed is illustrated with examples of analysis from complex matrices (e.g., food) on various substrates (e.g., paper). The low limits of detection achieved by most of the ambient ionization methods for compounds of forensic interest readily offer qualitative confirmation of chemical identity; in some cases quantitative data are also available. The forensic applications of ambient ionization methods are a growing research field and there are still many types of applications which remain to be explored, particularly those involving on-site analysis. Aspects of ambient ionization currently undergoing rapid development include molecular imaging and increased detection specificity through simultaneous chemical reaction and ionization by addition of appropriate chemical reagents.

  17. 'Who's who' in two different flower types of Calluna vulgaris (Ericaceae): morphological and molecular analyses of flower organ identity

    PubMed Central

    2009-01-01

    Background The ornamental crop Calluna vulgaris is of increasing importance to the horticultural industry in the northern hemisphere due to a flower organ mutation: the flowers of the 'bud-flowering' phenotype remain closed i.e. as buds throughout the total flowering period and thereby maintain more colorful flowers for a longer period of time than the wild-type. This feature is accompanied and presumably caused by the complete lack of stamens. Descriptions of this botanical particularity are inconsistent and partially conflicting. In order to clarify basic questions of flower organ identity in general and stamen loss in detail, a study of the wild-type and the 'bud-flowering' flower type of C. vulgaris was initiated. Results Flowers were examined by macro- and microscopic techniques. Organ development was investigated comparatively in both the wild-type and the 'bud-flowering' type by histological analyses. Analysis of epidermal cell surface structure of vegetative tissues and perianth organs using scanning electron microscopy revealed that in wild-type flowers the outer whorls of colored organs may be identified as sepals, while the inner ones may be identified as petals. In the 'bud-flowering' type, two whorls of sepals are directly followed by the gynoecium. Both, petals and stamens, are completely missing in this flower type. The uppermost whorl of green leaves represents bracts in both flower types. In addition, two MADS-box genes (homologs of AP3/DEF and SEP1/2) were identified in C. vulgaris using RACE-PCR. Expression analysis by qRT-PCR was conducted for both genes in leaves, bracts, sepals and petals. These experiments revealed an expression pattern supporting the organ classification based on morphological characteristics. Conclusions Organ identity in both wild-type and 'bud-flowering' C. vulgaris was clarified using a combination of microscopic and molecular methods. Our results for bract, sepal and petal organ identity are supported by the 'ABCDE

  18. Mass Spectrometry Profiles Superoxide-Induced Intra-molecular Disulfide in the FMN-binding Subunit of Mitochondrial Complex I

    PubMed Central

    Zhang, Liwen; Xu, Hua; Chen, Chwen-Lih; Green-Church, Kari B.; Freitas, Michael A.; Chen, Yeong-Renn

    2008-01-01

    Protein thiols with regulatory functions play a critical role in maintaining the homeostasis of the redox state in mitochondria. One major host of regulatory cysteines in mitochondria is complex I, with the thiols primarily located on its 51 kDa FMN-binding subunit. In response to oxidative stress, these thiols are expected to form intra-molecular disulfide bridges as one of their oxidative post-translational modifications. Here, to test this hypothesis and gain insights into the molecular pattern of disulfide in complex I, the isolated bovine complex I was prepared. Superoxide (O2•−) is generated by complex I under the conditions of enzyme turnover. O2•−-induced intra-molecular disulfide formation at the 51 kDa subunit was determined by tandem mass spectrometry and database searching, with the latter accomplished by adaptation of the in-house developed database search engine, MassMatrix [Xu H., et. al J. Proteome Res. (2008) 7, 138–44]. LC/MS/MS analysis of tryptic/chymotryptic digests of the 51 kDa subunit from alkylated complex I revealed that four specific cysteines (C125, C142, C187, and C206) of the 51 kDa subunit were involved in the formation of mixed intra-molecular disulfide linkages. In all, three cysteine pairs were observed: C125/C142, C187/C206, and C142/C206. The formation of disulfide bond was subsequently inhibited by superoxide dismutase, indicating the involvement of O2•−. These results elucidated by mass spectrometry indicates that the residues of C125, C142, C187, and C206 are the specific regulatory cysteines of complex I, and they participate in the oxidative modification with disulfide formation under the physiological or pathophysiological conditions of oxidative stress. PMID:18789718

  19. Identification of intact high molecular weight glutenin subunits from the wheat proteome using combined liquid chromatography-electrospray ionization mass spectrometry.

    PubMed

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  20. From molecular chaperones to membrane motors: through the lens of a mass spectrometrist.

    PubMed

    Robinson, Carol V

    2017-02-08

    Twenty-five years ago, we obtained our first mass spectra of molecular chaperones in complex with protein ligands and entered a new field of gas-phase structural biology. It is perhaps now time to pause and reflect, and to ask how many of our initial structure predictions and models derived from mass spectrometry (MS) datasets were correct. With recent advances in structure determination, many of the most challenging complexes that we studied over the years have become tractable by other structural biology approaches enabling such comparisons to be made. Moreover, in the light of powerful new electron microscopy methods, what role is there now for MS? In considering these questions, I will give my personal view on progress and problems as well as my predictions for future directions. © 2017 The Author(s).

  1. Filtrates and Residues: Measuring the Atomic or Molecular Mass of a Gas with a Tire Gauge and a Butane Lighter Fluid Can.

    ERIC Educational Resources Information Center

    Bodner, George M.; Magginnis, Lenard J.

    1985-01-01

    Describes the use of an inexpensive apparatus (based on a butane lighter fluid can and a standard tire pressure gauge) in measuring the atomic/molecular mass of an unknown gas and in demonstrating the mass of air or the dependence of pressure on the mass of a gas. (JN)

  2. Protected Amine Labels: A Versatile Molecular Scaffold for Multiplexed Nominal Mass and Sub-Da Isotopologue Quantitative Proteomic Reagents

    PubMed Central

    Ficarro, Scott B.; Biagi, Jessica M.; Wang, Jinhua; Scotcher, Jenna; Koleva, Rositsa I.; Card, Joseph D.; Adelmant, Guillaume; He, Huan; Askenazi, Manor; Marshall, Alan G.; Young, Nicolas L.; Gray, Nathanael S.; Marto, Jarrod A.

    2014-01-01

    We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (i) robust targeting of peptide N-termini and lysyl side chains, (ii) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (iii) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (iv) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally we provide exemplar data that extends the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers. PMID:24496597

  3. MALDI-TOF mass spectrometry imaging reveals molecular level changes in ultrahigh molecular weight polyethylene joint implants in correlation with lipid adsorption.

    PubMed

    Fröhlich, Sophie M; Archodoulaki, Vasiliki-Maria; Allmaier, Günter; Marchetti-Deschmann, Martina

    2014-10-07

    Ultrahigh molecular weight polyethylene (PE-UHMW), a material with high biocompatibility and excellent mechanical properties, is among the most commonly used materials for acetabular cup replacement in artificial joint systems. It is assumed that the interaction with synovial fluid in the biocompartment leads to significant changes relevant to material failure. In addition to hyaluronic acid, lipids are particularly relevant for lubrication in an articulating process. This study investigates synovial lipid adsorption on two different PE-UHMW materials (GUR-1050 and vitamin E-doped) in an in vitro model system by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry imaging (MSI). Lipids were identified by high performance thin layer chromatography (HP-TLC) and tandem mass spectrometry (MS/MS) analysis, with an analytical focus on phospholipids and cholesterol, both being species of high importance for lubrication. Scanning electron microscopy (SEM) analysis was applied in the study to correlate molecular information with PE-UHMW material qualities. It is demonstrated that lipid adsorption preferentially occurs in rough or oxidized polymer regions. Polymer modifications were colocalized with adsorbed lipids and found with high density in regions identified by SEM. Explanted, the in vivo polymer material showed comparable and even more obvious polymer damage and lipid adsorption when compared with the static in vitro model. A three-dimensional reconstruction of MSI data from consecutive PE-UHMW slices reveals detailed information about the diffusion process of lipids in the acetabular cup and provides, for the first time, a promising starting point for future studies correlating molecular information with commonly used techniques for material analysis (e.g., Fourier-transform infrared spectroscopy, nanoindentation).

  4. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    PubMed

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  5. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions.

    PubMed

    Zehender, Hartmut; Mayr, Lorenz M

    2007-10-01

    In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.

  6. Chromatographic evidence for high-molecular-mass galanin immunoreactivity in pig and cat adrenal glands.

    PubMed

    Bauer, F E; Adrian, T E; Yanaihara, N; Polak, J M; Bloom, S R

    1986-06-09

    Galanin was measured by radioimmunoassay in extracts of pig, cat and rat adrenals using non-C- and mid to C-terminally directed antibodies. The extracts were fractioned by gel chromatography and HPLC. The non-C-terminal galanin immunoreactivity in pig was 92.8 +/- 11.7 pmol/g, in cat 9.1 +/- 0.9 pmol/g and in rat less than 1 pmol/g. Two higher molecular forms of galanin have been identified in both pig and cat adrenal. One major large form behaves as if it was N-terminally extended (Kav pig 0.58, cat 0.48) and the other, a very high-molecular-mass form (Kav pig 0.10, 0.24, cat 0.10), as if it had both N- and C-terminal extensions.

  7. Time evolution of giant molecular cloud mass functions with cloud-cloud collisions and gas resurrection in various environments

    NASA Astrophysics Data System (ADS)

    Kobayashi, M. I. N.; Inutsuka, S.; Kobayashi, H.; Hasegawa, K.

    We formulate the evolution equation for the giant molecular cloud (GMC) mass functions including self-growth of GMCs through the thermal instability, self-dispersal due to massive stars born in GMCs, cloud-cloud collisions (CCCs), and gas resurrection that replenishes the minimum-mass GMC population. The computed time evolutions obtained from this formulation suggest that the slope of GMC mass function in the mass range <105.5 Mȯ is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC process modifies only the massive end of the mass function. Our results also suggest that most of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent contributes in inter-arm regions.

  8. A Derivatization and Validation Strategy for Determining the Spatial Localization of Endogenous Amine Metabolites in Tissues using MALDI Imaging Mass Spectrometry

    PubMed Central

    Manier, M. Lisa; Spraggins, Jeffrey M.; Reyzer, Michelle L.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid (FA) as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MSn imaging mass spectrometry. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. PMID:25044893

  9. Non-universal bound states of two identical heavy fermions and one light particle

    NASA Astrophysics Data System (ADS)

    Safavi, Arghavan; Rittenhouse, Seth; Blume, Dorte; Sadeghpour, Hossein

    2013-05-01

    We study a system of two identical heavy fermions of mass M and light particle of mass m. The interspecies interaction is modeled using a short-range two-body potential with positive s-wave scattering length. We impose a short-range boundary condition on the logarithmic derivative of the hyperradial wavefunction and show that, in the regime where Efimov states are absent, a non-universal three-body state ``cuts through'' the universal three-body states previously described by Kartavtsev and Malykh [O. I. Kartavtsev and A. V. Malykh, J. Phys. B 40, 1429 (2007)]. We study the effect of the non-universal state on the behavior of the universal states and use a simple quantum defect theory, utilizing hyperspherical coordinates, to explain the existence of the non-universal state. An empirical two-state model is employed to quantify the coupling of the non-universal state to the universal states. This work was supported by NSF through a grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard University and Smithsonian Astrophysical Observatory and through grant PHY-1205443.

  10. Galaxy pairs in the SDSS - XIII. The connection between enhanced star formation and molecular gas properties in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Violino, Giulio; Ellison, Sara L.; Sargent, Mark; Coppin, Kristen E. K.; Scudder, Jillian M.; Mendel, Trevor J.; Saintonge, Amelie

    2018-05-01

    We investigate the connection between star formation and molecular gas properties in galaxy mergers at low redshift (z ≤ 0.06). The study we present is based on IRAM 30-m CO(1-0) observations of 11 galaxies with a close companion selected from the Sloan Digital Sky Survey (SDSS). The pairs have mass ratios ≤4, projected separations rp ≤ 30 kpc and velocity separations ΔV ≤ 300 km s-1, and have been selected to exhibit enhanced specific star formation rates (sSFRs). We calculate molecular gas (H2) masses, assigning to each galaxy a physically motivated conversion factor αCO, and we derive molecular gas fractions and depletion times. We compare these quantities with those of isolated galaxies from the extended CO Legacy Data base for the GALEX Arecibo SDSS Survey sample (xCOLDGASS; Saintonge et al.) with gas quantities computed in an identical way. Ours is the first study which directly compares the gas properties of galaxy pairs and those of a control sample of normal galaxies with rigorous control procedures and for which SFR and H2 masses have been estimated using the same method. We find that the galaxy pairs have shorter depletion times and an average molecular gas fraction enhancement of 0.4 dex compared to the mass matched control sample drawn from xCOLDGASS. However, the gas masses (and fractions) in galaxy pairs and their depletion times are consistent with those of non-mergers whose SFRs are similarly elevated. We conclude that both external interactions and internal processes may lead to molecular gas enhancement and decreased depletion times.

  11. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 methodmore » and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated.« less

  12. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  13. Origin of low-molecular mass aldehydes as disinfection by-products in beverages.

    PubMed

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-09-01

    A novel, simple and automatic method based on static headspace-gas chromatography-mass spectrometry has been developed to determine 10 low-molecular mass aldehydes that can be found in beverages, coming from the treated water used in their production. These aldehydes are the most frequently found in treated water as water disinfection by-products, so they can be used as indicators of the addition of treated water to beverages. The study covered a large number of fruit juices and soft drinks. The presence of the whole array of analytes is related to the contact with treated water during beverage production, mainly by the addition of treated water as ingredient. In particular, propionaldehyde, valeraldehyde and benzaldehyde can be used as indicators of the addition of treated water in these kinds of beverages. Among the ten aldehydes, only formaldehyde and acetaldehyde are naturally present in all kinds of fruit, and their concentrations are related to stage of the ripening of the fruit.

  14. Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

    PubMed

    Cevallos, M A; Navarro-Duque, C; Varela-Julia, M; Alagon, A C

    1992-08-01

    We describe a procedure for molecular mass determination of hyaluronidases present in animal venoms from different families. Hyaluronidases can be revealed, following their electrophoretic separation in sodium dodecyl sulfate-polyacrylamide gel containing hyaluronic acid, by incubating the gel in Triton X-100 to remove sodium dodecyl sulfate and restore in situ enzyme activity. This method allows the detection of as little as 0.025 turbidity-reducing units after 2 hr incubation. All the hyaluronidases from the analyzed invertebrate venoms had a mass below 50,000 and showed only one component, while those from vertebrate venoms were more than 60,000 and in many instances contained more than one form.

  15. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  16. Kinematic Structure of Molecular Gas around High-mass YSO, Papillon Nebula, in N159 East in the Large Magellanic Cloud: A New Perspective with ALMA

    NASA Astrophysics Data System (ADS)

    Saigo, Kazuya; Onishi, Toshikazu; Nayak, Omnarayani; Meixner, Margaret; Tokuda, Kazuki; Harada, Ryohei; Morioka, Yuuki; Sewiło, Marta; Indebetouw, Remy; Torii, Kazufumi; Kawamura, Akiko; Ohama, Akio; Hattori, Yusuke; Yamamoto, Hiroaki; Tachihara, Kengo; Minamidani, Tetsuhiro; Inoue, Tsuyoshi; Madden, Suzanne; Galametz, Maud; Lebouteiller, Vianney; Chen, C.-H. Rosie; Mizuno, Norikazu; Fukui, Yasuo

    2017-01-01

    We present the ALMA Band 3 and Band 6 results of 12CO(2-1), 13CO(2-1), H30α recombination line, free-free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ˜1 pc and several parsecs. The total molecular mass is 0.92 × 105 M⊙ from the 13CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H II region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M⊙ and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M⊙. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free-free and H30α emission. The temperature of the molecular gas around the hole reaches ˜80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.

  17. KINEMATIC STRUCTURE OF MOLECULAR GAS AROUND HIGH-MASS YSO, PAPILLON NEBULA, IN N159 EAST IN THE LARGE MAGELLANIC CLOUD: A NEW PERSPECTIVE WITH ALMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saigo, Kazuya; Harada, Ryohei; Kawamura, Akiko

    We present the ALMA Band 3 and Band 6 results of {sup 12}CO(2-1), {sup 13}CO(2-1), H30 α recombination line, free–free emission around 98 GHz, and the dust thermal emission around 230 GHz toward the N159 East Giant Molecular Cloud (N159E) in the Large Magellanic Cloud (LMC). LMC is the nearest active high-mass star-forming face-on galaxy at a distance of 50 kpc and is the best target for studing high-mass star formation. ALMA observations show that N159E is the complex of filamentary clouds with the width and length of ∼1 pc and several parsecs. The total molecular mass is 0.92 ×more » 10{sup 5} M {sub ⊙} from the {sup 13}CO(2-1) intensity. N159E harbors the well-known Papillon Nebula, a compact high-excitation H ii region. We found that a YSO associated with the Papillon Nebula has the mass of 35 M {sub ⊙} and is located at the intersection of three filamentary clouds. It indicates that the formation of the high-mass YSO was induced by the collision of filamentary clouds. Fukui et al. reported a similar kinematic structure toward two YSOs in the N159 West region, which are the other YSOs that have the mass of ≳35 M {sub ⊙}. This suggests that the collision of filamentary clouds is a primary mechanism of high-mass star formation. We found a small molecular hole around the YSO in Papillon Nebula with a sub-parsec scale. It is filled by free–free and H30 α emission. The temperature of the molecular gas around the hole reaches ∼80 K. It indicates that this YSO has just started the distruction of parental molecular cloud.« less

  18. Molecularly imprinted polymers as selective adsorbents for ambient plasma mass spectrometry.

    PubMed

    Cegłowski, Michał; Smoluch, Marek; Reszke, Edward; Silberring, Jerzy; Schroeder, Grzegorz

    2017-05-01

    The application of molecularly imprinted polymers (MIPs) as molecular scavengers for ambient plasma ionization mass spectrometry has been reported for the first time. MIPs were synthesized using methacrylic acid as functional monomer; nicotine, propyphenazone, or methylparaben as templates; ethylene glycol dimethacrylate as a cross-linker; and 2,2'-azobisisobutyronitrile as polymerization initiator. To perform ambient plasma ionization experiments, a setup consisting of the heated crucible, a flowing atmospheric-pressure afterglow (FAPA) plasma ion source, and a quadrupole ion trap mass spectrometer has been used. The heated crucible with programmable temperature allows for desorption of the analytes from MIPs structure which results in their direct introduction into the ion stream. Limits of detection, linearity of the proposed analytical procedure, and selectivities have been determined for three analytes: nicotine, propyphenazone, and methylparaben. The analytes used were chosen from various classes of organic compounds to show the feasibility of the analytical procedure. The limits of detections (LODs) were 10 nM, 10, and 0.5 μM for nicotine, propyphenazone, and methylparaben, respectively. In comparison with the measurements performed for the non-imprinted polymers, the values of LODs were improved for at least one order of magnitude due to preconcentration of the sample and reduction of background noise, contributing to signal suppression. The described procedure has shown linearity in a broad range of concentrations. The overall time of single analysis is short and requires ca. 5 min. The developed technique was applied for the determination of nicotine, propyphenazone, and methylparaben in spiked real-life samples, with recovery of 94.6-98.4%. The proposed method is rapid, sensitive, and accurate which provides a new option for the detection of small organic compounds in various samples. Graphical abstract The experimental setup used for analysis.

  19. Free energy calculation of single molecular interaction using Jarzynski's identity method: the case of HIV-1 protease inhibitor system

    NASA Astrophysics Data System (ADS)

    Li, De-Chang; Ji, Bao-Hua

    2012-06-01

    Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and experiments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molecular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic complexity of the ligand-receptor system, the energy barrier predicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results suggested that the JI method is more appropriate for reconstructing free energy landscape using the data taken from experiments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distribution in SMD simulations.

  20. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Schmitt-Kopplin, P.

    2013-03-01

    resolution and depicted resolved molecular signatures in excess of a certain minimum abundance. Classical methyl groups terminating aliphatic chains represented ~15% of total methyl in all samples investigated. A noticeable fraction of methyl (~2%) was bound to olefinic carbon. Methyl ethers were abundant in surface marine SPE-DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. In all samples, we identified sp2-hybridized carbon chemical environments with discrimination of isolated and conjugated olefins and α,β-unsaturated double bonds. Olefinic proton and carbon atoms were more abundant than aromatic ones; olefinic unsaturation in marine SPE-DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The abundance of furan, pyrrol and thiophene derivatives was marginal, whereas benzene derivatives, phenols and six-membered nitrogen heterocycles were prominent; a yet unassigned set of six-membered N-heterocycles with likely more than one single nitrogen occurred in all samples. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter at all water depths. Progressive NMR cross-peak attenuation from surface to deep marine SPE-DOM was particularly strong in COSY NMR spectra and indicated a continual disappearance of biosignatures as well as entropy gain from an ever increased molecular diversity. Nevertheless, a specific near-seafloor SPE-DOM signature of unsaturated molecules recognized in both NMR and Fourier transform ion cyclotron mass spectrometry (FTICR/MS) possibly originated from sediment leaching. The conformity of key NMR and FTICR/MS signatures suggested the presence of a large set of identical molecules throughout the entire ocean column even though the investigated water masses belonged to different oceanic regimes and currents. FTICR/MS showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers

  1. Structural characteristics of the molecular species of tetraacylglycerols in lesquerella (Physaria fendleri) oil elucidated by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The structure and ratios of regioisomers of the molecular species of tetraacylglycerols affect their physical properties. They were elucidated by ESI mass spectrometry of the lithium adducts of tetraacylglycerols from the HPLC fractions of lesquerella oil. The contents of acyl and acylacyl chains at...

  2. Molecular beam mass spectrometer development

    NASA Technical Reports Server (NTRS)

    Brock, F. J.; Hueser, J. E.

    1976-01-01

    An analytical model, based on the kinetics theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. The concept of a molecular shield in terrestrial orbit above 200 km is also analyzed using the kinetic theory of a drifting Maxwellian gas. Data are presented for the components of the gas density within the shield due to the free stream atmosphere, outgassing from the shield and enclosed experiments, and atmospheric gas scattered off a shield orbiter system. A description is given of a FORTRAN program for computating the three dimensional transition flow regime past the space shuttle orbiter that employs the Monte Carlo simulation method to model real flow by some thousands of simulated molecules.

  3. Identification of Intact High Molecular Weight Glutenin Subunits from the Wheat Proteome Using Combined Liquid Chromatography-Electrospray Ionization Mass Spectrometry

    PubMed Central

    Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter

    2013-01-01

    The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for

  4. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi

    2008-08-01

    We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  5. Meristem identity and phyllotaxis in inflorescence development

    PubMed Central

    Bartlett, Madelaine E.; Thompson, Beth

    2014-01-01

    Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology. PMID:25352850

  6. Meristem identity and phyllotaxis in inflorescence development.

    PubMed

    Bartlett, Madelaine E; Thompson, Beth

    2014-01-01

    Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology.

  7. Revisiting shape selectivity in liquid chromatography for polycyclic aromatic hydrocarbons (PAHs) - six-ring and seven-ring Cata-condensed PAH isomers of molecular mass 328 Da and 378 Da.

    PubMed

    Oña-Ruales, Jorge O; Sander, Lane C; Wilson, Walter B; Wise, Stephen A

    2018-01-01

    The relationship of reversed-phase liquid chromatography (RPLC) retention on a polymeric C 18 stationary phase and the shape of polycyclic aromatic hydrocarbons (PAHs) was investigated for three-ring to seven-ring cata-condensed isomers. We report the first RPLC separation for six-ring and seven-ring cata-condensed PAH isomers. Correlations of LC retention and shape parameters (length-to-breath ratio, L/B and thickness, T) were investigated for 2 three-ring isomers (molecular mass 178 Da), 5 four-ring isomers (molecular mass 228 Da), 11 five-ring isomers (molecular mass 278 Da), 17 six-ring isomers (molecular mass 328 Da), and 20 seven-ring isomers (molecular mass 378 Da). Significant linear correlations were found for all isomer groups (r = 0.71 to 0.94). Nonplanarity of the PAH isomers was found to influence retention (i.e., nonplanar isomers eluting earlier than expected based on L/B) and linear correlations of retention vs. T for isomer groups containing nonplanar isomers were significant (r = 0.71 to 0.86). Graphical abstract.

  8. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.

    PubMed

    Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried

    2009-08-01

    The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.

  9. Finding molecular dioxygen tunnels in homoprotocatechuate 2,3-dioxygenase: implications for different reactivity of identical subunits.

    PubMed

    Xu, Liang; Zhao, Weijie; Wang, Xicheng

    2010-01-01

    Extradiol dioxygenases facilitate microbial aerobic degradation of catechol and its derivatives by activating molecular dioxygen and incorporating both oxygen atoms into their substrates. Experimental and theoretical studies have focused on the mechanism of the reaction at the active site. However, whether the catalytic rate is limited by O(2) access to the active site has not yet been explored. Here, we choose a recently solved X-ray structure of homoprotocatechuate 2,3-dioxygenase as a typical example to determine potential pathways for O(2) migration from the solvent into the enzyme center. On the basis of the trajectories of two 10-ns molecular dynamics simulations, implicit ligand sampling was used to calculate the 3D free energy map for O(2) inside the protein. The energetically optimal routes for O(2) diffusion were identified for each subunit of the homotetrameric protein structure. The O(2) tunnels formed because of thermal fluctuations were also characterized by connecting elongated cavities inside the protein. By superimposing the favorable O(2) tunnels on to the free energy map, both energetically and geometrically preferred O(2) pathways were determined, as also were the amino acids that may be critical for O(2) passage along these paths. Our results demonstrate that identical subunits possess quite distinct O(2) tunnels. The order of O(2) affinity of these tunnels is generally consistent with the order of the catalytic rate of each subunit. As a consequence, the probability of finding the reaction product is highest in the subunit containing the highest O(2) affinity pathway.

  10. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase

    PubMed Central

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T.; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2005-01-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcβ1,4- and X=[Xylα1,6]Glcβ1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 °C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes. PMID:16356166

  11. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase.

    PubMed

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2006-04-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcbeta1,4- and X=[Xylalpha1,6]Glcbeta1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 degrees C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes.

  12. Purification of a factor from the granules of a rat natural killer cell line (RNK) that reduces tumor cell growth and changes tumor morphology. Molecular identity with a granule serine protease (RNKP-1).

    PubMed

    Sayers, T J; Wiltrout, T A; Sowder, R; Munger, W L; Smyth, M J; Henderson, L E

    1992-01-01

    We have purified a protein from the granules of the rat NK leukemia cell line (RNK) that is cytostatic to a variety of tumor cells. This protein shows no species specificity because certain tumor cell lines of mouse, rat, and human origin were equally sensitive to its growth inhibitory effects. Treatment of sensitive cells resulted in a rounding of the cells followed by homotypic aggregation into large aggregates. The granule protein was distinct from cytolysin, Na-Cbz-Lys-thiobenzylester-esterase, or leukolexin. It had a molecular mass of 29 to 31 kDa, bound strongly to heparin, was inactivated by heating at 70 degrees C for 5 min or reduction, but was stable to trypsin treatment. By using molecular sieve chromatography, heparin agarose chromatography, and reverse phase HPLC, this protein was purified to homogeneity. The first 33 amino acids of the N-terminal amino acid sequence showed complete identity to the sequence predicted from a rat serine protease gene recently cloned and designated RNKP-1. Therefore we have purified a novel serine protease and demonstrated that it has effects on the growth and morphology of certain tumor cells. Other serine proteases that were structurally related and have substantial homology with RNKP-1 at the amino acid level showed neither growth inhibitory properties nor affected the morphology of the tumor target cells we used.

  13. Small‐angle X‐ray scattering as a useful supplementary technique to determine molecular masses of polyelectrolytes in solution

    PubMed Central

    Plazzotta, Beatrice; Diget, Jakob Stensgaard; Zhu, Kaizheng; Nyström, Bo

    2016-01-01

    ABSTRACT Determination of molecular masses of charged polymers is often nontrivial and most methods have their drawbacks. For polyelectrolytes, a new possibility for the determination of number‐average molecular masses is represented by small‐angle X‐ray scattering (SAXS) which allows fast determinations with a 10% accuracy. This is done by relating the mass to the position of a characteristic peak feature which arises in SAXS due to the local ordering caused by charge‐repulsions between polyelectrolytes. Advantages of the technique are the simplicity of data analysis, the independency from polymer architecture, and the low sample and time consumption. The method was tested on polyelectrolytes of various structures and chemical compositions, and the results were compared with those obtained from more conventional techniques, such as asymmetric flow field‐flow fractionation, gel permeation chromatography, and classical SAXS data analysis, showing that the accuracy of the suggested method is similar to that of the other techniques. © 2016 The Authors. Journal of Polymer Science Part B: Polymer Physics Published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1913–1917 PMID:27840558

  14. Molecular beam scattering from C-13 enriched Kapton and correlation with the EOIM-3 carousel experiment

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Moore, Teresa A.

    1995-01-01

    Mass spectra of products emerging from identical samples of a C-13-enriched polyimide polymer (chemically equivalent to Kapton) under atomic oxygen bombardment in space and in the laboratory were collected. Reaction products unambiguously detected in space were CO-13, NO, (12)CO2, and (13)CO2. These reaction products and two others, H2O and CO-12, were detected in the laboratory, along with inelastically scattered atomic and molecular oxygen. Qualitative agreement was seen in the mass spectra taken in space and in the laboratory; the agreement may be improved by reducing the fraction of O2 in the laboratory molecular beam. Both laboratory and space data indicated that CO and CO2 products come preferentially from reaction with the imide component of the polymer chain, raising the possibility that the either component may degrade in part by the 'evaporation' of higher molecular weight fragments. Laboratory time-of-flight distributions showed: (1) incomplete energy accommodation of impinging O and O2 species that do not react with the surface; and (2) both hyperthermal and thermal CO and CO2 products, suggesting two distinct reaction mechanisms with the surface.

  15. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Koch, Boris P.; Witt, Matthias; Engbrodt, Ralph; Dittmar, Thorsten; Kattner, Gerhard

    2005-07-01

    The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

  16. Document authentication at molecular levels using desorption atmospheric pressure chemical ionization mass spectrometry imaging.

    PubMed

    Li, Ming; Jia, Bin; Ding, Liying; Hong, Feng; Ouyang, Yongzhong; Chen, Rui; Zhou, Shumin; Chen, Huanwen; Fang, Xiang

    2013-09-01

    Molecular images of documents were obtained by sequentially scanning the surface of the document using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS), which was operated in either a gasless, solvent-free or methanol vapor-assisted mode. The decay process of the ink used for handwriting was monitored by following the signal intensities recorded by DAPCI-MS. Handwritings made using four types of inks on four kinds of paper surfaces were tested. By studying the dynamic decay of the inks, DAPCI-MS imaging differentiated a 10-min old from two 4 h old samples. Non-destructive forensic analysis of forged signatures either handwritten or computer-assisted was achieved according to the difference of the contour in DAPCI images, which was attributed to the strength personalized by different writers. Distinction of the order of writing/stamping on documents and detection of illegal printings were accomplished with a spatial resolution of about 140 µm. A Matlab® written program was developed to facilitate the visualization of the similarity between signature images obtained by DAPCI-MS. The experimental results show that DAPCI-MS imaging provides rich information at the molecular level and thus can be used for the reliable document analysis in forensic applications. © 2013 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd.

  17. Online molecular characterisation of organic aerosols in an atmospheric chamber using extractive electrospray ionisation mass spectrometry

    NASA Astrophysics Data System (ADS)

    Gallimore, Peter J.; Giorio, Chiara; Mahon, Brendan M.; Kalberer, Markus

    2017-12-01

    The oxidation of biogenic volatile organic compounds (VOCs) represents a substantial source of secondary organic aerosol (SOA) in the atmosphere. In this study, we present online measurements of the molecular constituents formed in the gas and aerosol phases during α-pinene oxidation in the Cambridge Atmospheric Simulation Chamber (CASC). We focus on characterising the performance of extractive electrospray ionisation (EESI) mass spectrometry (MS) for particle analysis. A number of new aspects of EESI-MS performance are considered here. We show that relative quantification of organic analytes can be achieved in mixed organic-inorganic particles. A comprehensive assignment of mass spectra for α-pinene derived SOA in both positive and negative ion modes is obtained using an ultra-high-resolution mass spectrometer. We compare these online spectra to conventional offline ESI-MS spectra and find good agreement in terms of the compounds identified, without the need for complex sample work-up procedures. Under our experimental conditions, EESI-MS signals arise only from particle-phase analytes. High-time-resolution (7 min) EESI-MS spectra are compared with simulations from the near-explicit Master Chemical Mechanism (MCM) for a range of reaction conditions. We show that MS peak abundances scale with modelled concentrations for condensable products (pinonic acid, pinic acid, OH-pinonic acid). Relative quantification is achieved throughout SOA formation as the composition, size and mass (5-2400 µg m-3) of particles is evolving. This work provides a robust demonstration of the advantages of EESI-MS for chamber studies over offline ESI-MS (time resolution, relative quantification) and over hard online techniques (molecular information).

  18. Testing a Low Molecular Mass Fraction of a Mushroom (Lentinus edodes) Extract Formulated as an Oral Rinse in a Cohort of Volunteers

    PubMed Central

    Signoretto, Caterina; Burlacchini, Gloria; Marchi, Anna; Grillenzoni, Marcello; Cavalleri, Giacomo; Ciric, Lena; Lingström, Peter; Pezzati, Elisabetta; Daglia, Maria; Zaura, Egija; Pratten, Jonathan; Spratt, David A.; Wilson, Michael; Canepari, Pietro

    2011-01-01

    Although foods are considered enhancing factors for dental caries and periodontitis, laboratory researches indicate that several foods and beverages contain components endowed with antimicrobial and antiplaque activities. A low molecular mass (LMM) fraction of an aqueous mushroom extract has been found to exert these activities in in vitro experiments against potential oral pathogens. We therefore conducted a clinical trial in which we tested an LMM fraction of shiitake mushroom extract formulated in a mouthrinse in 30 young volunteers, comparing the results with those obtained in two identical cohorts, one of which received water (placebo) and the other Listerine. Plaque index, gingival index and bacterial counts in plaque samples were determined in all volunteers over the 11 days of the clinical trial. Statistically significant differences (P < 0.05) were obtained for the plaque index on day 12 in subjects treated with mushroom versus placebo, while for the gingival index significant differences were found for both mushroom versus placebo and mushroom versus Listerine. Decreases in total bacterial counts and in counts of specific oral pathogens were observed for both mushroom extract and Listerine in comparison with placebo. The data suggest that a mushroom extract may prove beneficial in controlling dental caries and/or gingivitis/periodontitis. PMID:21912481

  19. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation.

    PubMed

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi 3 + beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm 2 . The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  20. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation

    NASA Astrophysics Data System (ADS)

    Wang, Jia; Liu, Feng; Mo, Yuxiang; Wang, Zhaoying; Zhang, Sichun; Zhang, Xinrong

    2017-11-01

    Mass spectrometry imaging (MSI) has important applications in material research, biology, and medicine. The MSI method based on UV laser desorption/ionization (UVLDI) can obtain images of intact samples, but has a high level of molecular fragmentation. In this work, we report a new MSI instrument that uses a VUV laser (125.3 nm) as a desorption/ionization source to exploit its advantages of high single photon energy and small focus size. The new instrument was tested by the mass spectra of Nile red and FGB (Fibrinogen beta chain) samples and mass spectrometric images of a fly brain section. For the tested samples, the VUVDI method offers lower levels of molecular fragmentations and higher sensitivities than those of the UVLDI method and second ion mass spectrometry imaging method using a Bi3+ beam. The ablation crater produced by the focused VUV laser on a quartz plate has an area of 10 μm2. The VUV laser is prepared based on the four-wave mixing method using three collimated laser beams and a heated Hg cell.

  1. Total molecular gas masses of Planck - Herschel selected strongly lensed hyper luminous infrared galaxies

    NASA Astrophysics Data System (ADS)

    Harrington, K. C.; Yun, M. S.; Magnelli, B.; Frayer, D. T.; Karim, A.; Weiß, A.; Riechers, D.; Jiménez-Andrade, E. F.; Berman, D.; Lowenthal, J.; Bertoldi, F.

    2018-03-01

    We report the detection of CO(1-0) line emission from seven Planck and Herschel selected hyper luminous ({L_{IR (8-1000{μ m})} > 10^{13} L_{⊙}) infrared galaxies with the Green Bank Telescope (GBT). CO(1-0) measurements are a vital tool to trace the bulk molecular gas mass across all redshifts. Our results place tight constraints on the total gas content of these most apparently luminous high-z star-forming galaxies (apparent IR luminosities of LIR > 1013 - 14 L⊙), while we confirm their predetermined redshifts measured using the Large Millimeter Telescope, LMT (zCO = 1.33-3.26). The CO(1-0) lines show similar profiles as compared to Jup = 2-4 transitions previously observed with the LMT. We report enhanced infrared to CO line luminosity ratios of < L_IR / L^' }_{CO(1-0)} > = 110 ± 22 L_{⊙} (K km s^{-1} pc^{-2})^{-1} compared to normal star-forming galaxies, yet similar to those of well-studied IR-luminous galaxies at high-z. We find average brightness temperature ratios of 〈 r21〉 = 0.93 (2 sources), 〈 r31〉 = 0.34 (5 sources), and 〈 r41〉 = 0.18 (1 source). The r31 and r41 values are roughly half the average values for SMGs. We estimate the total gas mass content as {μ M_{H2} = (0.9-27.2) × 10^{11} (α _CO/0.8) M_{⊙}, where μ is the magnification factor and αCO is the CO line luminosity to molecular hydrogen gas mass conversion factor. The rapid gas depletion times, < τ_depl > = 80} Myr, reveal vigorous starburst activity, and contrast the Gyr depletion time-scales observed in local, normal star-forming galaxies.

  2. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry.

    PubMed

    Tfaily, Malak M; Chu, Rosalie K; Tolić, Nikola; Roscioli, Kristyn M; Anderton, Christopher R; Paša-Tolić, Ljiljana; Robinson, Errol W; Hess, Nancy J

    2015-01-01

    Soil organic matter (SOM), a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and accurately predict how terrestrial carbon fluxes will respond to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soils with a wide range of C content. Our use of electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O/C ratios (<0.1); water (H2O) was selective for carbohydrates with high O/C ratios; acetonitrile (ACN) preferentially extracts lignin, condensed structures, and tannin polyphenolic compounds with O/C > 0.5; methanol (MeOH) has higher selectivity toward compounds characterized with low O/C < 0.5; and hexane, MeOH, ACN, and H2O solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils. We present the first comparative study of the molecular composition of SOM from different ecosystems using ultra high-resolution mass spectrometry.

  3. Direct analysis in real time mass spectrometry (DART-MS) of highly non-polar low molecular weight polyisobutylenes.

    PubMed

    Nagy, Lajos; Nagy, Tibor; Deák, György; Kuki, Ákos; Antal, Borbála; Zsuga, Miklós; Kéki, Sándor

    2015-09-01

    Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end-groups were studied using direct analysis in real time mass spectrometry (DART-MS). To facilitate the adduct ion formation under DART conditions, NH 4 Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl] - up to m/z 1100, and the deprotonated polyisobutylene succinic acid [MH] - were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH 4 ] + , adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl] - , product ions were absent, suggesting a simple dissociation of the precursor [M + Cl] - into a Cl - ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH 4 ] + ions, allowing us to obtain valuable information on the arm-length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART-MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  4. On the probability distribution function of the mass surface density of molecular clouds. II.

    NASA Astrophysics Data System (ADS)

    Fischera, Jörg

    2014-11-01

    The probability distribution function (PDF) of the mass surface density of molecular clouds provides essential information about the structure of molecular cloud gas and condensed structures out of which stars may form. In general, the PDF shows two basic components: a broad distribution around the maximum with resemblance to a log-normal function, and a tail at high mass surface densities attributed to turbulence and self-gravity. In a previous paper, the PDF of condensed structures has been analyzed and an analytical formula presented based on a truncated radial density profile, ρ(r) = ρc/ (1 + (r/r0)2)n/ 2 with central density ρc and inner radius r0, widely used in astrophysics as a generalization of physical density profiles. In this paper, the results are applied to analyze the PDF of self-gravitating, isothermal, pressurized, spherical (Bonnor-Ebert spheres) and cylindrical condensed structures with emphasis on the dependence of the PDF on the external pressure pext and on the overpressure q-1 = pc/pext, where pc is the central pressure. Apart from individual clouds, we also consider ensembles of spheres or cylinders, where effects caused by a variation of pressure ratio, a distribution of condensed cores within a turbulent gas, and (in case of cylinders) a distribution of inclination angles on the mean PDF are analyzed. The probability distribution of pressure ratios q-1 is assumed to be given by P(q-1) ∝ q-k1/ (1 + (q0/q)γ)(k1 + k2) /γ, where k1, γ, k2, and q0 are fixed parameters. The PDF of individual spheres with overpressures below ~100 is well represented by the PDF of a sphere with an analytical density profile with n = 3. At higher pressure ratios, the PDF at mass surface densities Σ ≪ Σ(0), where Σ(0) is the central mass surface density, asymptotically approaches the PDF of a sphere with n = 2. Consequently, the power-law asymptote at mass surface densities above the peak steepens from Psph(Σ) ∝ Σ-2 to Psph(Σ) ∝ Σ-3. The

  5. Local mass and energy transports in evaporation processes from a vapor-liquid interface in a slit pore based on molecular dynamics

    NASA Astrophysics Data System (ADS)

    Fujiwara, K.; Shibahara, M.

    2018-02-01

    Molecular evaporation processes from a vapor-liquid interface formed in a slit-like pore were examined based on the classical molecular dynamics method, in order to elucidate a molecular mechanism of local mass and energy transports in a slit. The calculation system consisted of monatomic molecules and atoms which interact through the 12-6 Lennard-Jones potential. At first, a liquid was situated in a slit with a vapor-liquid interface, and instantaneous amounts of the mass and energy fluxes defined locally in the slit were obtained in two dimensions to reveal local fluctuation properties of the fluid in equilibrium states. Then, imposing a temperature gradient in the calculation system, non-equilibrium evaporation processes in the slit were investigated in details based on the local mass and energy fluxes. In this study, we focused on the fluid which is in the vicinity of the solid surface and in contact with the vapor phase. In the non-equilibrium evaporation processes, the results revealed that the local energy transport mechanism in the vicinity of the solid surface is different from that of the vapor phase, especially in the case of the relatively strong fluid-solid interaction. The results also revealed that the local mass transport in the vicinity of the solid surface can be interpreted based on the mechanism of the local energy transport, and the mechanism provides valuable information about pictures of the evaporation phenomena especially in the vicinity of the hydrophilic surfaces. It suggests that evaluating and changing this mechanism of the local energy transport are necessary to control the local mass flux more precisely in the vicinity of the solid surface.

  6. Ratios of regioisomers of the molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil estimated by mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The ratios of regioisomers of 74 molecular species of triacylglycerols (TAG) in lesquerella oil were estimated using HPLC and the electrospray ionization mass spectrometry of the lithium adducts of TAG in the HPLC fractions of lequerella oil. The ratios of relative abundances of the fragment ions fr...

  7. Unraveling the benzocaine-receptor interaction at molecular level using mass-resolved spectroscopy.

    PubMed

    Aguado, Edurne; León, Iker; Millán, Judith; Cocinero, Emilio J; Jaeqx, Sander; Rijs, Anouk M; Lesarri, Alberto; Fernández, José A

    2013-10-31

    The benzocaine-toluene cluster has been used as a model system to mimic the interaction between the local anesthetic benzocaine and the phenylalanine residue in Na(+) channels. The cluster was generated in a supersonic expansion of benzocaine and toluene in helium. Using a combination of mass-resolved laser-based experimental techniques and computational methods, the complex was fully characterized, finding four conformational isomers in which the molecules are bound through N-H···π and π···π weak hydrogen bonds. The structures of the detected isomers closely resemble those predicted for benzocaine in the inner pore of the ion channels, giving experimental support to previously reported molecular chemistry models.

  8. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    PubMed

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  9. MEASUREMENT OF HIGH-MOLECULAR-WEIGHT POLYCYCLIC AROMATIC HYDROCARBONS IN SOILS BY PARTICLE BEAM HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY

    EPA Science Inventory

    Polycyclic aromatic hydrocarbons (PAHs) comprise a class of potentially hazardous compounds of concern to the U.S.EPA. The application of particle-beam (PB) liquid chromatography-mass spectrometry (LC-MS) to the measurement of high-molecular-weight PAHs was investigated. Instrume...

  10. Visualization and Phospholipid Identification (VaLID): online integrated search engine capable of identifying and visualizing glycerophospholipids with given mass

    PubMed Central

    Figeys, Daniel; Fai, Stephen; Bennett, Steffany A. L.

    2013-01-01

    Motivation: Establishing phospholipid identities in large lipidomic datasets is a labour-intensive process. Where genomics and proteomics capitalize on sequence-based signatures, glycerophospholipids lack easily definable molecular fingerprints. Carbon chain length, degree of unsaturation, linkage, and polar head group identity must be calculated from mass to charge (m/z) ratios under defined mass spectrometry (MS) conditions. Given increasing MS sensitivity, many m/z values are not represented in existing prediction engines. To address this need, Visualization and Phospholipid Identification is a web-based application that returns all theoretically possible phospholipids for any m/z value and MS condition. Visualization algorithms produce multiple chemical structure files for each species. Curated lipids detected by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics are provided as high-resolution structures. Availability: VaLID is available through the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics resources web site at https://www.med.uottawa.ca/lipidomics/resources.html. Contacts: lipawrd@uottawa.ca Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23162086

  11. The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear

    PubMed Central

    Levin, Michaela E.

    2012-01-01

    Inner ear hair cells respond to mechanical stimuli with graded receptor potentials. These graded responses are modulated by a host of voltage-dependent currents that flow across the basolateral membrane. Here, we examine the molecular identity and the function of a class of voltage-dependent ion channels that carries the potassium-selective inward rectifier current known as IK1. IK1 has been identified in vestibular hair cells of various species, but its molecular composition and functional contributions remain obscure. We used quantitative RT-PCR to show that the inward rectifier gene, Kir2.1, is highly expressed in mouse utricle between embryonic day 15 and adulthood. We confirmed Kir2.1 protein expression in hair cells by immunolocalization. To examine the molecular composition of IK1, we recorded voltage-dependent currents from type II hair cells in response to 50-ms steps from −124 to −54 in 10-mV increments. Wild-type cells had rapidly activating inward currents with reversal potentials close to the K+ equilibrium potential and a whole-cell conductance of 4.8 ± 1.5 nS (n = 46). In utricle hair cells from Kir2.1-deficient (Kir2.1−/−) mice, IK1 was absent at all stages examined. To identify the functional contribution of Kir2.1, we recorded membrane responses in current-clamp mode. Hair cells from Kir2.1−/− mice had significantly (P < 0.001) more depolarized resting potentials and larger, slower membrane responses than those of wild-type cells. These data suggest that Kir2.1 is required for IK1 in type II utricle hair cells and contributes to hyperpolarized resting potentials and fast, small amplitude receptor potentials in response to current inputs, such as those evoked by hair bundle deflections. PMID:22496522

  12. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography - Part II: 2-Methylfuran.

    PubMed

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2014-03-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed.

  13. Molecular dynamic approach to the study of the intense heat and mass transfer processes on the vapor-liquid interface

    NASA Astrophysics Data System (ADS)

    Levashov, V. Yu; Kamenov, P. K.

    2017-10-01

    The paper is devoted to research of the heat and mass transfer processes on the vapor-liquid interface. These processes can be realized for example at metal tempering, accidents at nuclear power stations, followed by the release of the corium into the heat carrier, getting hot magma into the water during volcanic eruptions and other. In all these examples the vapor film can arise on the heated body surface. In this paper the vapor film formation process will be considered with help of molecular dynamics simulation methods. The main attention during this process modeling will be focused on the subject of the fluid and vapor interactions with the heater surface. Another direction of this work is to study of the processes inside the droplet that may take place as result of impact of the high-power laser radiation. Such impact can lead to intensive evaporation and explosive destruction of the droplet. At that the duration of heat and mass transfer processes in droplet substance is tens of femtoseconds. Thus, the methods of molecular dynamics simulation can give the possibilities describe the heat and mass transfer processes in the droplet and the vapor phase formation.

  14. Molecular Beam Mass Spectrometry With Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation

    PubMed Central

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics1-4. Fundamental studies of photoionization processes of biomolecules provide information about the electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water1, 5-9. We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-dimethyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline10 located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds1. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations11, 12. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in

  15. Constituent quark masses in Poincaré-invariant quantum mechanics

    NASA Astrophysics Data System (ADS)

    Andreev, Viktor; Haurysh, Vadzim

    2017-12-01

    The masses of the quarks in the Poincaré-invariant quantum mechanics are the constituent masses. Even in this framework it is possible to obtain an estimate of the constituent quark masses from the Ward identity for the axial current ant the current quark masses.

  16. Renormalization group and Ward identities for infrared QED4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastropietro, Vieri

    2007-10-15

    A regularized version of Euclidean QED4 in the Feynman gauge is considered, with a fixed ultraviolet cutoff, photon mass of the size of the cutoff, and any value, including zero, of the electron mass. We will prove that the Schwinger functions are expressed by convergent series for small values of the charge and verify the Ward identities, up to corrections which are small for momentum scales far from the ultraviolet cutoff.

  17. Constructing nurses' professional identity through social identity theory.

    PubMed

    Willetts, Georgina; Clarke, David

    2014-04-01

    The profession of nursing continues to struggle with defining and clarifying its professional identity. The definitive recognition of nursing as a profession was the moving of training from the hospital apprentice model to the tertiary sector. However, this is only part of the story of professional identity in nursing. Once training finishes and enculturation into the workplace commences, professional identity becomes a complicated social activity. This paper proposes social identity theory as a valuable research framework to assist with clarifying and describing the professional identity of nurses. The paper outlines the key elements of a profession and then goes on to describe the main concepts of social identity theory. Lastly, a connection is made between the usefulness of using social identity theory in researching professional identity in nursing, recognizing the contextual nature of the social activity of the profession within its workplace environment. © 2013 Wiley Publishing Asia Pty Ltd.

  18. Ionisation in turbulent magnetic molecular clouds. I. Effect on density and mass-to-flux ratio structures

    NASA Astrophysics Data System (ADS)

    Bailey, Nicole D.; Basu, Shantanu; Caselli, Paola

    2017-05-01

    Context. Previous studies show that the physical structures and kinematics of a region depend significantly on the ionisation fraction. These studies have only considered these effects in non-ideal magnetohydrodynamic simulations with microturbulence. The next logical step is to explore the effects of turbulence on ionised magnetic molecular clouds and then compare model predictions with observations to assess the importance of turbulence in the dynamical evolution of molecular clouds. Aims: In this paper, we extend our previous studies of the effect of ionisation fractions on star formation to clouds that include both non-ideal magnetohydrodynamics and turbulence. We aim to quantify the importance of a treatment of the ionisation fraction in turbulent magnetised media and investigate the effect of the turbulence on shaping the clouds and filaments before star formation sets in. In particular, here we investigate how the structure, mass and width of filamentary structures depend on the amount of turbulence in ionised media and the initial mass-to-flux ratio. Methods: To determine the effects of turbulence and mass-to-flux ratio on the evolution of non-ideal magnetised clouds with varying ionisation profiles, we have run two sets of simulations. The first set assumes different initial turbulent Mach values for a fixed initial mass-to-flux ratio. The second set assumes different initial mass-to-flux ratio values for a fixed initial turbulent Mach number. Both sets explore the effect of using one of two ionisation profiles: step-like (SL) or cosmic ray only (CR-only). We compare the resulting density and mass-to-flux ratio structures both qualitatively and quantitatively via filament and core masses and filament fitting techniques (Gaussian and Plummer profiles). Results: We find that even with almost no turbulence, filamentary structure still exists although at lower density contours. Comparison of simulations shows that for turbulent Mach numbers above 2, there is

  19. Method for the elucidation of the elemental composition of low molecular mass chemicals using exact masses of product ions and neutral losses: application to environmental chemicals measured by liquid chromatography with hybrid quadrupole/time-of-flight mass spectrometry.

    PubMed

    Suzuki, Shigeru; Ishii, Tetsuko; Yasuhara, Akio; Sakai, Shinichi

    2005-01-01

    A method for elucidating the elemental compositions of low molecular weight chemicals, based primarily on mass measurements made using liquid chromatography (LC) with time-of-flight mass spectrometry (TOFMS) and quadrupole/time-of-flight mass spectrometry (LC/QTOFMS), was developed and tested for 113 chemicals of environmental interest with molecular masses up to approximately 400 Da. As the algorithm incorporating the method is not affected by differences in the instrument used, or by the ionization method and other ionization conditions, the method is useful not only for LC/TOFMS, but also for all kinds of mass spectra measured with higher accuracy and precision (uncertainties of a few mDa) employing all ionization methods and on-line separation techniques. The method involves calculating candidate compositions for intact ionized molecules (ionized forms of the sample molecule that have lost or gained no more than a proton, i.e., [M+H](+) or [M-H](-)) as well as for fragment ions and corresponding neutral losses, and eliminating those atomic compositions for the molecules that are inconsistent with the corresponding candidate compositions of fragment ions and neutral losses. Candidate compositions were calculated for the measured masses of the intact ionized molecules and of the fragment ions and corresponding neutral losses, using mass uncertainties of 2 and 5 mDa, respectively. Compositions proposed for the ionized molecule that did not correspond to the sum of the compositions of a candidate fragment ion and its corresponding neutral loss were discarded. One, 2-5, 6-10, 11-20, and >20 candidate compositions were found for 65%, 39%, 1%, 1%, and 0%, respectively, for the 124 ionized molecules formed from the 113 chemicals tested (both positive and negative ions were obtained from 11 of the chemicals). However, no candidate composition was found for 2% of the test cases (i.e., 3 chemicals), for each of which the measured mass of one of the product ions was in

  20. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity.

    PubMed

    Dasen, Jeremy S; Tice, Bonnie C; Brenner-Morton, Susan; Jessell, Thomas M

    2005-11-04

    Spinal motor neurons acquire specialized "pool" identities that determine their ability to form selective connections with target muscles in the limb, but the molecular basis of this striking example of neuronal specificity has remained unclear. We show here that a Hox transcriptional regulatory network specifies motor neuron pool identity and connectivity. Two interdependent sets of Hox regulatory interactions operate within motor neurons, one assigning rostrocaudal motor pool position and a second directing motor pool diversity at a single segmental level. This Hox regulatory network directs the downstream transcriptional identity of motor neuron pools and defines the pattern of target-muscle connectivity.

  1. Resolving an identity crisis: Implicit drinking identity and implicit alcohol identity are related but not the same.

    PubMed

    Ramirez, Jason J; Olin, Cecilia C; Lindgren, Kristen P

    2017-09-01

    Two variations of the Implicit Association Test (IAT), the Drinking Identity IAT and the Alcohol Identity IAT, assess implicit associations held in memory between one's identity and alcohol-related constructs. Both have been shown to predict numerous drinking outcomes, but these IATs have never been directly compared to one another. The purpose of this study was to compare these IATs and evaluate their incremental predictive validity. US undergraduate students (N=64, 50% female, mean age=21.98years) completed the Drinking Identity IAT, the Alcohol Identity IAT, an explicit measure of drinking identity, as well as measures of typical alcohol consumption and hazardous drinking. When evaluated in separate regression models that controlled for explicit drinking identity, results indicated that the Drinking Identity IAT and the Alcohol Identity IAT were significant, positive predictors of typical alcohol consumption, and that the Drinking Identity IAT, but not the Alcohol Identity IAT, was a significant predictor of hazardous drinking. When evaluated in the same regression models, the Drinking Identity IAT, but not the Alcohol Identity IAT, was significantly associated with typical and hazardous drinking. These results suggest that the Drinking Identity IAT and Alcohol Identity IAT are related but not redundant. Moreover, given that the Drinking Identity IAT, but not the Alcohol Identity IAT, incrementally predicted variance in drinking outcomes, identification with drinking behavior and social groups, as opposed to identification with alcohol itself, may be an especially strong predictor of drinking outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Determination of atomic hydrogen in non-thermal hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry.

    PubMed

    Wang, Wei-Guo; Xu, Yong; Yang, Xue-Feng; Wang, Wen-Chun; Zhu, Ai-Min

    2005-01-01

    Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from approximately 0.83% to approximately 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported. Copyright 2005 John Wiley & Sons, Ltd.

  3. Dietary flavonoid fisetin increases abundance of high-molecular-mass hyaluronan conferring resistance to prostate oncogenesis.

    PubMed

    Lall, Rahul K; Syed, Deeba N; Khan, Mohammad Imran; Adhami, Vaqar M; Gong, Yuansheng; Lucey, John A; Mukhtar, Hasan

    2016-09-01

    We and others have shown previously that fisetin, a plant flavonoid, has therapeutic potential against many cancer types. Here, we examined the probable mechanism of its action in prostate cancer (PCa) using a global metabolomics approach. HPLC-ESI-MS analysis of tumor xenografts from fisetin-treated animals identified several metabolic targets with hyaluronan (HA) as the most affected. Efficacy of fisetin on HA was then evaluated in vitro and also in vivo in the transgenic TRAMP mouse model of PCa. Size exclusion chromatography-multiangle laser light scattering (SEC-MALS) was performed to analyze the molar mass (Mw) distribution of HA. Fisetin treatment downregulated intracellular and secreted HA levels both in vitro and in vivo Fisetin inhibited HA synthesis and degradation enzymes, which led to cessation of HA synthesis and also repressed the degradation of the available high-molecular-mass (HMM)-HA. SEC-MALS analysis of intact HA fragment size revealed that cells and animals have more abundance of HMM-HA and less of low-molecular-mass (LMM)-HA upon fisetin treatment. Elevated HA levels have been shown to be associated with disease progression in certain cancer types. Biological responses triggered by HA mainly depend on the HA polymer length where HMM-HA represses mitogenic signaling and has anti-inflammatory properties whereas LMM-HA promotes proliferation and inflammation. Similarly, Mw analysis of secreted HA fragment size revealed less HMM-HA is secreted that allowed more HMM-HA to be retained within the cells and tissues. Our findings establish that fisetin is an effective, non-toxic, potent HA synthesis inhibitor, which increases abundance of antiangiogenic HMM-HA and could be used for the management of PCa. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. WISDOM Project - III. Molecular gas measurement of the supermassive black hole mass in the barred lenticular galaxy NGC4429

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; Bureau, Martin; Onishi, Kyoko; van de Voort, Freeke; Cappellari, Michele; Iguchi, Satoru; Liu, Lijie; North, Eve V.; Sarzi, Marc; Smith, Mark D.

    2018-01-01

    As part of the mm-Wave Interferometric Survey of Dark Object Masses project we present an estimate of the mass of the supermassive black hole (SMBH) in the nearby fast-rotating early-type galaxy NGC4429, that is barred and has a boxy/peanut-shaped bulge. This estimate is based on Atacama Large Millimeter/submillimeter Array (ALMA) cycle-2 observations of the 12CO(3-2) emission line with a linear resolution of ≈13 pc (0.18 arcsec × 0.14 arcsec). NGC4429 has a relaxed, flocculent nuclear disc of molecular gas that is truncated at small radii, likely due to the combined effects of gas stability and tidal shear. The warm/dense 12CO(3-2) emitting gas is confined to the inner parts of this disc, likely again because the gas becomes more stable at larger radii, preventing star formation. The gas disc has a low velocity dispersion of 2.2^{+0.68}_{-0.65} km s-1. Despite the inner truncation of the gas disc, we are able to model the kinematics of the gas and estimate a mass of (1.5 ± 0.1^{+0.15}_{-0.35}) × 108 M⊙ for the SMBH in NGC4429 (where the quoted uncertainties reflect the random and systematic uncertainties, respectively), consistent with a previous upper limit set using ionized gas kinematics. We confirm that the V-band mass-to-light ratio changes by ≈30 per cent within the inner 400 pc of NGC4429, as suggested by other authors. This SMBH mass measurement based on molecular gas kinematics, the sixth presented in the literature, once again demonstrates the power of ALMA to constrain SMBH masses.

  5. Predicting glycerophosphoinositol identities in lipidomic datasets using VaLID (Visualization and Phospholipid Identification)--an online bioinformatic search engine.

    PubMed

    McDowell, Graeme S V; Blanchard, Alexandre P; Taylor, Graeme P; Figeys, Daniel; Fai, Stephen; Bennett, Steffany A L

    2014-01-01

    The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID) bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5'-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels) under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL) team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site.

  6. Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity.

    PubMed

    Paul, Anirban; Crow, Megan; Raudales, Ricardo; He, Miao; Gillis, Jesse; Huang, Z Josh

    2017-10-19

    Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-Ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-11-19

    (18)F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.

  8. [Womanhood today--identity experiences and identity crises].

    PubMed

    Kast, V

    1985-01-01

    Modern women's identity crises and the various possibilities of identification along the way towards a new identity can be seen as her attempts to develop out of the depressive situation that her once normal role identity had, to a large extent, placed her in. Under this aspect, even concepts of living that are seen by many to be problematic can be justified as leading along the way towards identity, which is so essential for human relationships and interpersonal empathy.

  9. Towards Molecular Characterization of Mineral-Organic Matter Interface Using In Situ Liquid Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Yu, X. Y.

    2017-12-01

    Organo-Mineral-Microbe interactions in terrestrial ecosystems are of great interest. Quite a few models have been developed through extensive efforts in this field. However, predictions from current models are far from being accurate, and many debates still exist. One of the major reasons is that most experimental data generated from bulk analysis, and the information of molecular dynamics occurring at mineral-organic matter interface is rare. Such information has been difficult to obtain, due to lack of suitable in situ analysis tools. Recently, we have developed in situ liquid secondary ion mass spectrometry (SIMS) at Pacific Northwest National Laboratory1, and it has shown promise to provide both elemental and molecular information at vacuum-liquid and solid-liquid interfaces.2 In this presentation, we demonstrate that in situ liquid SIMS can provide critical molecular information at solid substrate-live biofilm interface.3 Shewanella oneidensis is used as a model micro-organism and silicon nitride as a model mineral surface. Of particular interest, biologically relevant water clusters have been first observed in the living biofilms. Characteristic fragments of biofilm matrix components such as proteins, polysaccharides, and lipids can be molecularly examined. Furthermore, characteristic fatty acids (e.g., palmitic acid), quinolone signal, and riboflavin fragments were found to respond after the biofilm is treated with Cr(VI), leading to biofilm dispersal. Significant changes in water clusters and quorum sensing signals indicative of intercellular communication in the aqueous environment were observed, suggesting that they might result in fatty acid synthesis and inhibition of riboflavin production. The Cr(VI) reduction seems to follow the Mtr pathway leading to Cr(III) formation. Our approach potentially opens a new avenue for in-situ understanding of mineral-organo or mineral-microbe interfaces using in situ liquid SIMS and super resolution fluorescence

  10. Are the 'cave' minerals archerite (K,NH 4)H 2PO 4 and biphosphammite (K,NH 4)H 2PO 4 identical? A molecular structural study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.

    2011-08-01

    The molecular structure of the mineral archerite ((K,NH 4)H 2PO 4) has been determined and compared with that of biphosphammite ((NH 4,K)H 2PO 4). Raman spectroscopy and infrared spectroscopy has been used to characterise these 'cave' minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to HPO4-, OH and NH stretching vibrations. The Raman band at 981 cm -1 is assigned to the HOP stretching vibration. Bands in the 1200-1800 cm -1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.

  11. Anatomical-Molecular Distribution of EphrinA1 in Infarcted Mouse Heart Using MALDI Mass Spectrometry Imaging

    NASA Astrophysics Data System (ADS)

    Lefcoski, Stephan; Kew, Kimberly; Reece, Shaun; Torres, Maria J.; Parks, Justin; Reece, Sky; de Castro Brás, Lisandra E.; Virag, Jitka A. I.

    2018-03-01

    EphrinA1 is a tyrosine kinase receptor localized in the cellular membrane of healthy cardiomyocytes, the expression of which is lost upon myocardial infarction (MI). Intra-cardiac injection of the recombinant form of ephrinA1 (ephrinA1-Fc) at the time of ligation in mice has shown beneficial effects by reducing infarct size and myocardial necrosis post-MI. To date, immunohistochemistry and Western blotting comprise the only experimental approaches utilized to localize and quantify relative changes of ephrinA1 in sections and homogenates of whole left ventricle, respectively. Herein, we used matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) coupled with a time-of-flight mass spectrometer (MALDI/TOF MS) to identify intact as well as tryptic fragments of ephrinA1 in healthy controls and acutely infarcted murine hearts. The purpose of the present study was 3-fold: (1) to spatially resolve the molecular distribution of endogenous ephrinA1, (2) to determine the anatomical expression profile of endogenous ephrinA1 after acute MI, and (3) to identify molecular targets of ephrinA1-Fc action post-MI. The tryptic fragments detected were identified as the ephrinA1-isoform with 38% and 34% sequence coverage and Mascot scores of 25 for the control and MI hearts, respectively. By using MALDI-MSI, we have been able to simultaneously measure the distribution and spatial localization of ephrinA1, as well as additional cardiac proteins, thus offering valuable information for the elucidation of molecular partners, mediators, and targets of ephrinA1 action in cardiac muscle. [Figure not available: see fulltext.

  12. Mass spectrometry and tandem mass spectrometry of citrus limonoids.

    PubMed

    Tian, Qingguo; Schwartz, Steven J

    2003-10-15

    Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring

  13. Low-mass ions observed in plasma desorption mass spectrometry of high explosives

    PubMed

    Hakansson; Coorey; Zubarev; Talrose; Hakansson

    2000-03-01

    The low-mass ions observed in both positive and negative plasma desorption mass spectrometry (PDMS) of the high explosives HMX, RDX, CL-20, NC, PETN and TNT are reported. Possible identities of the most abundant ions are suggested and their presence or absence in the different spectra is related to the properties of the explosives as matrices in PDMS. The detection of abundant NO+ and NO2- ions for HMX, RDX and CL-20, which are efficient matrices, indicates that explosive decomposition takes place in PDMS of these three substances and that a contribution from the corresponding chemical energy release is possible. The observation of abundant C2H4N+ and CH2N+ ions, which have high protonation properties, might also explain the higher protein charge states observed with these matrices. Also, the observation of NO2-, possibly formed by electron scavenging which increases the survival probability of positively charged protein molecular ions, completes the pattern. TNT does not give any of these ions and it is thereby possible to explain why it does not work as a PDMS matrix. For NC and PETN, decomposition does not seem to be as pronounced as for HMX, RDX and CL-20, and also no particularly abundant ions with high protonation properties are observed. The fact that NC works well as a matrix might be related to other properties of this compound, such as its high adsorption ability.

  14. Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration

    PubMed Central

    Kiontke, Andreas; Oliveira-Birkmeier, Ariana; Opitz, Andreas

    2016-01-01

    Over the past decades, electrospray ionization for mass spectrometry (ESI-MS) has become one of the most commonly employed techniques in analytical chemistry, mainly due to its broad applicability to polar and semipolar compounds and the superior selectivity which is achieved in combination with high resolution separation techniques. However, responsiveness of an analytical method also determines its suitability for the quantitation of chemical compounds; and in electrospray ionization for mass spectrometry, it can vary significantly among different analytes with identical solution concentrations. Therefore, we investigated the ESI-response behavior of 56 nitrogen-containing compounds including aromatic amines and pyridines, two compound classes of high importance to both, synthetic organic chemistry as well as to pharmaceutical sciences. These compounds are increasingly analyzed employing ESI mass spectrometry detection due to their polar, basic character. Signal intensities of the peaks from the protonated molecular ion (MH+) were acquired under different conditions and related to compound properties such as basicity, polarity, volatility and molecular size exploring their quantitative impact on ionization efficiency. As a result, we found that though solution basicity of a compound is the main factor initially determining the ESI response of the protonated molecular ion, other factors such as polarity and vaporability become more important under acidic solvent conditions and may nearly outweigh the importance of basicity under these conditions. Moreover, we show that different molecular descriptors may become important when using different types of instruments for such investigations, a fact not detailed so far in the available literature. PMID:27907110

  15. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    NASA Astrophysics Data System (ADS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  16. Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.

    PubMed

    Hansen, J S

    2013-09-01

    This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point.

  17. Tracing early evolutionary stages of high-mass star formation with molecular lines

    NASA Astrophysics Data System (ADS)

    Marseille, M. G.; van der Tak, F. F. S.; Herpin, F.; Jacq, T.

    2010-11-01

    Context. Despite its major role in the evolution of the interstellar medium, the formation of high-mass stars (M ≥ 10 M_⊙) remains poorly understood. Two types of massive star cluster precursors, the so-called massive dense cores (MDCs), have been observed, which differ in terms of their mid-infrared brightness. The origin of this difference has not yet been established and may be the result of evolution, density, geometry differences, or a combination of these. Aims: We compare several molecular tracers of physical conditions (hot cores, shocks) observed in a sample of mid-IR weakly emitting MDCs with previous results obtained in a sample of exclusively mid-IR bright MDCs. We attempt to understand the differences between these two types of object. Methods: We present single-dish observations of HDO, H_218O, SO2, and CH3OH lines at λ = 1.3-3.5 mm. We study line profiles and estimate abundances of these molecules, and use a partial correlation method to search for trends in the results. Results: The detection rates of thermal emission lines are found to be very similar for both mid-IR quiet and bright objects. The abundances of H2O, HDO (10-13 to 10-9 in the cold outer envelopes), SO2 and CH3OH differ from source to source but independently of their mid-IR flux. In contrast, the methanol class I maser emission, a tracer of outflow shocks, is found to be strongly anti-correlated with the 12 μm source brightnesses. Conclusions: The enhancement of the methanol maser emission in mid-IR quiet MDCs may be indicative of a more embedded nature. Since total masses are similar between the two samples, we suggest that the matter distribution is spherical around mid-IR quiet sources but flattened around mid-IR bright ones. In contrast, water emission is associated with objects containing a hot molecular core, irrespective of their mid-IR brightness. These results indicate that the mid-IR brightness of MDCs is an indicator of their evolutionary stage.

  18. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    PubMed

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  19. Molecular and phenotypic analyses reveal the non-identity of the Phaeobacter gallaeciensis type strain deposits CIP 105210T and DSM 17395.

    PubMed

    Buddruhs, Nora; Pradella, Silke; Göker, Markus; Päuker, Orsola; Pukall, Rüdiger; Spröer, Cathrin; Schumann, Peter; Petersen, Jörn; Brinkhoff, Thorsten

    2013-11-01

    The marine genus Phaeobacter currently comprises six species, some of which were intensively studied mainly due to their ability to produce secondary metabolites. The type strain of the type species, Phaeobacter gallaeciensis BS107(T), has been deposited at several public culture collections worldwide. Based on differences in plasmid profiles, we detected that the alleged P. gallaeciensis type strains deposited at the Collection Institute Pasteur (CIP; Paris, France) as CIP 105210 and at the German Collection of Microorganisms and Cell Cultures (DSMZ; Braunschweig, Germany) as DSM 17395 are not identical. To determine the identity of these strains, we conducted DNA-DNA hybridization, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF), 16S rRNA gene and internal transcribed spacer (ITS) sequence analyses, as well as physiological experiments. Based on the detailed 16S rRNA gene reanalysis we showed that strain CIP 105210 most likely corresponds to the original P. gallaeciensis type strain BS107(T). In contrast, the Phaeobacter strain DSM 17395 exhibits a much closer affiliation to Phaeobacter inhibens DSM 16374(T) ( = T5(T)) and should thus be allocated to this species. The detection of the dissimilarity of strains CIP 105210(T) and DSM 17395 will influence future comparative studies within the genus Phaeobacter.

  20. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing.

    PubMed

    Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher

    2008-09-15

    We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.

  1. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions

    NASA Astrophysics Data System (ADS)

    Graf, Isabella R.; Frey, Erwin

    2017-03-01

    Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.

  2. Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry.

    PubMed

    Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy

    2017-11-01

    The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown. Graphical Abstract ᅟ.

  3. Molecular Communication over Gas Stream Channels using Portable Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Giannoukos, Stamatios; Marshall, Alan; Taylor, Stephen; Smith, Jeremy

    2017-07-01

    The synthetic generation/coding and transmission of olfactory information over a gas stream or an odor network is a new and unexplored field. Application areas vary from the entertainment or advertisement industry to security and telemedicine. However, current technological limitations frustrate the accurate reproduction of decoded and transmitted olfactory data. This study describes the development, testing, and characterization of a novel odor emitter (OE) that is used to investigate the generation-encoding of gaseous standards with odorous characteristics with a regulatable way, for scent transmission purposes. The calibration and the responses of a developed OE were examined using a portable quadrupole mass spectrometer (MS). Experiments were undertaken for a range of volatile organic compounds (VOCs) at different temperatures and flow rates. Individual compounds and mixtures were tested to investigate periodic and dynamic transmission characteristics within two different size tubular containers for distances up to 3 m. Olfactory information transmission is demonstrated using MS as the main molecular sensor for odor detection and monitoring and for the first time spatial encryption of olfactory information is shown.

  4. Mass spectrometry imaging under ambient conditions.

    PubMed

    Wu, Chunping; Dill, Allison L; Eberlin, Livia S; Cooks, R Graham; Ifa, Demian R

    2013-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI for example the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information on the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  5. Mass Spectrometry Imaging under Ambient Conditions

    PubMed Central

    Wu, Chunping; Dill, Allison L.; Eberlin, Livia S.; Cooks, R. Graham; Ifa, Demian R.

    2012-01-01

    Mass spectrometry imaging (MSI) has emerged as an important tool in the last decade and it is beginning to show potential to provide new information in many fields owing to its unique ability to acquire molecularly specific images and to provide multiplexed information, without the need for labeling or staining. In MSI, the chemical identity of molecules present on a surface is investigated as a function of spatial distribution. In addition to now standard methods involving MSI in vacuum, recently developed ambient ionization techniques allow MSI to be performed under atmospheric pressure on untreated samples outside the mass spectrometer. Here we review recent developments and applications of MSI emphasizing the ambient ionization techniques of desorption electrospray ionization (DESI), laser ablation electrospray ionization (LAESI), probe electrospray ionization (PESI), desorption atmospheric pressure photoionization (DAPPI), femtosecond laser desorption ionization (fs-LDI), laser electrospray mass spectrometry (LEMS), infrared laser ablation metastable-induced chemical ionization (IR-LAMICI), liquid microjunction surface sampling probe mass spectrometry (LMJ-SSP MS), nanospray desorption electrospray ionization (nano-DESI), and plasma sources such as the low temperature plasma (LTP) probe and laser ablation coupled to flowing atmospheric-pressure afterglow (LA-FAPA). Included are discussions of some of the features of ambient MSI including the ability to implement chemical reactions with the goal of providing high abundance ions characteristic of specific compounds of interest and the use of tandem mass spectrometry to either map the distribution of targeted molecules with high specificity or to provide additional MS information in the structural identification of compounds. We also describe the role of bioinformatics in acquiring and interpreting the chemical and spatial information obtained through MSI, especially in biological applications for tissue

  6. Environmental Forensics: Molecular Insight into Oil Spill Weathering Helps Advance High Magnetic Field FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McKenna, Amy

    2013-03-01

    The depletion of terrestrial global oil reserves has shifted oil exploration into offshore and ultra-deep water (> 5000 ft) oil reserves to meet global energy demands. Deep water reservoirs are currently in production in many parts of the world, including the Gulf of Mexico, but production is complicated by the water depth and thick salt caps that challenge reservoir characterization / production. The explosion aboard the Deepwater Horizon in April 2010 resulted in an estimated total release of ~5 million barrels (BP claims that they collected ~1M barrels, for a net release of 4 M) of light, sweet crude oil into the Gulf of Mexico and shifted attention toward the environmental risks associated with offshore oil production. The growing emphasis on deep water and ultra-deep water oil production poses a significant environmental threat, and increased regulations require that oil companies minimize environmental impact to prevent oil spills, and mitigate environmental damage when spills occur. Every oil spill is unique. The molecular transformations that occur to petroleum after contact with seawater depend on the physical and chemical properties of the spilled oil, environmental conditions, and deposition environment. Molecular-level knowledge of the composition, distribution, and total mass of released hydrocarbons is essential to disentangle photo- and bio-degradation, source identification, and long-term environmental impact of hydrocarbons released into the environment. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is unsurpassed in its ability to characterize complex mixtures at the level of elemental composition assignment. Only FT-ICR mass spectrometry can routinely achieve the required minimum resolving power necessary to elucidate molecular-level characterization of crude oil. Conversely, the spectral complexity of petroleum facilitates identification of systematic errors in the accumulation, transfer, excitation, and detection

  7. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.

    PubMed

    Wang, Mingxun; Carver, Jeremy J; Phelan, Vanessa V; Sanchez, Laura M; Garg, Neha; Peng, Yao; Nguyen, Don Duy; Watrous, Jeramie; Kapono, Clifford A; Luzzatto-Knaan, Tal; Porto, Carla; Bouslimani, Amina; Melnik, Alexey V; Meehan, Michael J; Liu, Wei-Ting; Crüsemann, Max; Boudreau, Paul D; Esquenazi, Eduardo; Sandoval-Calderón, Mario; Kersten, Roland D; Pace, Laura A; Quinn, Robert A; Duncan, Katherine R; Hsu, Cheng-Chih; Floros, Dimitrios J; Gavilan, Ronnie G; Kleigrewe, Karin; Northen, Trent; Dutton, Rachel J; Parrot, Delphine; Carlson, Erin E; Aigle, Bertrand; Michelsen, Charlotte F; Jelsbak, Lars; Sohlenkamp, Christian; Pevzner, Pavel; Edlund, Anna; McLean, Jeffrey; Piel, Jörn; Murphy, Brian T; Gerwick, Lena; Liaw, Chih-Chuang; Yang, Yu-Liang; Humpf, Hans-Ulrich; Maansson, Maria; Keyzers, Robert A; Sims, Amy C; Johnson, Andrew R; Sidebottom, Ashley M; Sedio, Brian E; Klitgaard, Andreas; Larson, Charles B; P, Cristopher A Boya; Torres-Mendoza, Daniel; Gonzalez, David J; Silva, Denise B; Marques, Lucas M; Demarque, Daniel P; Pociute, Egle; O'Neill, Ellis C; Briand, Enora; Helfrich, Eric J N; Granatosky, Eve A; Glukhov, Evgenia; Ryffel, Florian; Houson, Hailey; Mohimani, Hosein; Kharbush, Jenan J; Zeng, Yi; Vorholt, Julia A; Kurita, Kenji L; Charusanti, Pep; McPhail, Kerry L; Nielsen, Kristian Fog; Vuong, Lisa; Elfeki, Maryam; Traxler, Matthew F; Engene, Niclas; Koyama, Nobuhiro; Vining, Oliver B; Baric, Ralph; Silva, Ricardo R; Mascuch, Samantha J; Tomasi, Sophie; Jenkins, Stefan; Macherla, Venkat; Hoffman, Thomas; Agarwal, Vinayak; Williams, Philip G; Dai, Jingqui; Neupane, Ram; Gurr, Joshua; Rodríguez, Andrés M C; Lamsa, Anne; Zhang, Chen; Dorrestein, Kathleen; Duggan, Brendan M; Almaliti, Jehad; Allard, Pierre-Marie; Phapale, Prasad; Nothias, Louis-Felix; Alexandrov, Theodore; Litaudon, Marc; Wolfender, Jean-Luc; Kyle, Jennifer E; Metz, Thomas O; Peryea, Tyler; Nguyen, Dac-Trung; VanLeer, Danielle; Shinn, Paul; Jadhav, Ajit; Müller, Rolf; Waters, Katrina M; Shi, Wenyuan; Liu, Xueting; Zhang, Lixin; Knight, Rob; Jensen, Paul R; Palsson, Bernhard O; Pogliano, Kit; Linington, Roger G; Gutiérrez, Marcelino; Lopes, Norberto P; Gerwick, William H; Moore, Bradley S; Dorrestein, Pieter C; Bandeira, Nuno

    2016-08-09

    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.

  8. Analysis of low molecular weight metabolites in tea using mass spectrometry-based analytical methods.

    PubMed

    Fraser, Karl; Harrison, Scott J; Lane, Geoff A; Otter, Don E; Hemar, Yacine; Quek, Siew-Young; Rasmussen, Susanne

    2014-01-01

    Tea is the second most consumed beverage in the world after water and there are numerous reported health benefits as a result of consuming tea, such as reducing the risk of cardiovascular disease and many types of cancer. Thus, there is much interest in the chemical composition of teas, for example; defining components responsible for contributing to reported health benefits; defining quality characteristics such as product flavor; and monitoring for pesticide residues to comply with food safety import/export requirements. Covered in this review are some of the latest developments in mass spectrometry-based analytical techniques for measuring and characterizing low molecular weight components of tea, in particular primary and secondary metabolites. The methodology; more specifically the chromatography and detection mechanisms used in both targeted and non-targeted studies, and their main advantages and disadvantages are discussed. Finally, we comment on the latest techniques that are likely to have significant benefit to analysts in the future, not merely in the area of tea research, but in the analytical chemistry of low molecular weight compounds in general.

  9. A molecular beam/quadrupole mass spectrometer system with synchronized beam modulation and digital waveform analysis

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Adams, B. R.

    1983-01-01

    A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.

  10. Odour concentration affects odour identity in honeybees

    PubMed Central

    Wright, Geraldine A; Thomson, Mitchell G.A; Smith, Brian H

    2005-01-01

    The fact that most types of sensory stimuli occur naturally over a large range of intensities is a challenge to early sensory processing. Sensory mechanisms appear to be optimized to extract perceptually significant stimulus fluctuations that can be analysed in a manner largely independent of the absolute stimulus intensity. This general principle may not, however, extend to olfaction; many studies have suggested that olfactory stimuli are not perceptually invariant with respect to odour intensity. For many animals, absolute odour intensity may be a feature in itself, such that it forms a part of odour identity and thus plays an important role in discrimination alongside other odour properties such as the molecular identity of the odorant. The experiments with honeybees reported here show a departure from odour-concentration invariance and are consistent with a lower-concentration regime in which odour concentration contributes to overall odour identity and a higher-concentration regime in which it may not. We argue that this could be a natural consequence of odour coding and suggest how an ‘intensity feature’ might be useful to the honeybee in natural odour detection and discrimination. PMID:16243694

  11. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.

    PubMed

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  12. Cancerous 'floater': a lesson learned about tissue identity testing, endometrial cancer and microsatellite instability.

    PubMed

    Bossuyt, Veerle; Buza, Natalia; Ngo, Nhu T; Much, Melissa A; Asis, Maria C; Schwartz, Peter E; Hui, Pei

    2013-09-01

    A 46-year-old woman presented with endometrial cells on a pap smear and underwent endometrial curettage. The specimen revealed secretory endometrium and a possible endometrial polyp. In addition, a single 4 mm fragment of well-differentiated adenocarcinoma was found. Tissue identity DNA genotyping was performed and the adenocarcinoma tissue fragment showed a drastically different allelic pattern from that of the background endometrium. To confirm tissue contamination, genotyping of three other tumor specimens-probable sources for a contaminant-was performed but failed to identify a match. Without confirmation of contamination, a second endometrial curettage was obtained from the patient, in which similar adenocarcinoma tissue was once again found. Further workup demonstrated that the patient had a microsatellite unstable (MSI) endometrial adenocarcinoma by immunohistochemistry and molecular testing. The patient subsequently underwent staging surgery, which revealed an early-stage, well-differentiated endometrioid adenocarcinoma. This case study illustrates an uncommon, yet important caveat of tissue identity testing by DNA genotyping, where MSI instability can significantly alter the allelic pattern of DNA polymorphisms in the tumor genome, leading to erroneous conclusion regarding the tissue identity. Awareness of this phenomenon is crucial for a molecular pathologist to avoid interpretation errors of tissue identity testing in a cancer diagnostic workup.

  13. [Determination of the distribution of relative molecular mass of organic matter by high pressure size exclusion chromatography with UV and TOC detectors].

    PubMed

    Zhang, Han; Dong, Bing-Zhi

    2012-09-01

    An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.

  14. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  15. Mass spectrometry.

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Johanson, G. A.

    1972-01-01

    Review of the current state of mass spectrometry, indicating its unique importance for advanced scientific research. Mass spectrometry applications in computer techniques, gas chromatography, ion cyclotron resonance, molecular fragmentation and ionization, and isotope labeling are covered. Details are given on mass spectrometry applications in bio-organic chemistry and biomedical research. As the subjects of these applications are indicated alkaloids, carbohydrates, lipids, terpenes, quinones, nucleic acid components, peptides, antibiotics, and human and animal metabolisms. Particular attention is given to the mass spectra of organo-inorganic compounds, inorganic mass spectrometry, surface phenomena such as secondary ion and electron emission, and elemental and isotope analysis. Further topics include mass spectrometry in organic geochemistry, applications in geochronology and cosmochemistry, and organic mass spectrometry.

  16. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    PubMed

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  17. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodin, A.; Laloo, R.; Abeilhou, P.

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The resultsmore » obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.« less

  18. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    PubMed Central

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  19. Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry

    Treesearch

    Stephen S. Kelley; Roger M. Rowell; Mark Davis; Cheryl K. Jurich; Rebecca Ibach

    2004-01-01

    The chemical composition of a variety of agricultural biomass samples was analyzed with near infrared spectroscopy and pyrolysis molecular beam mass spectroscopy. These samples were selected from a wide array of agricultural residue samples and included residues that had been subjected to a variety of di2erent treatments including solvent extractions and chemical...

  20. MASS SPECTROMETER

    DOEpatents

    White, F.A.

    1960-08-23

    A mass spectrometer is designed with a first adjustable magnetic field for resolving an ion beam into beams of selected masses, a second adjustable magnetic field for further resolving the ion beam from the first field into beams of selected masses, a thin foil disposed in the path of the beam between the first and second magnets to dissociate molecular ions incident thereon, an electrostatic field for further resolving the ion beam from the second field into beams of selected masses, and a detector disposed adjacent to the electrostatic field to receive the ion beam.

  1. Weathering trend characterization of medium-molecular weight polycyclic aromatic disulfur heterocycles by Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Hegazi, Abdelrahman H; Fathalla, Eiman M; Andersson, Jan T

    2014-09-01

    Different weathering factors act to change petroleum composition once it is spilled into the environment. n-Alkanes, biomarkers, low-molecular weight polyaromatic hydrocarbons and sulfur heterocycles compositional changing in the environment have been extensively studied by different researchers and many parameters have been used for oil source identification and monitoring of weathering and biological degradation processes. In this work, we studied the fate of medium-molecular weight polycyclic aromatic disulfur heterocycles (PAS2Hs), up to ca. 900Da, of artificially weathered Flotta North Sea crude oil by ultra high-resolution Fourier transform ion cyclotron resonance mass spectrometry. It was found that PAS2Hs in studied crude oil having double bond equivalents (DBE) from 5 to 8 with a mass range from ca 316 to 582Da were less influenced even after six months artificial weathering experiment. However, compounds having DBEs 12, 11 and 10 were depleted after two, four and six months weathering, respectively. In addition, DBE 9 series was more susceptible to weathering than those of DBE 7 and 8. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Characterization of polyesters by matrix-assisted laser desorption/ionization and Fourier transform mass spectrometry.

    PubMed

    Mize, Todd H; Simonsick, William J; Amster, I Jonathan

    2003-01-01

    Two homopolyesters, poly(neopentyl glycol-alt-isophthalic acid) and poly(hexanediol-alt-azelaic acid), and two copolyesters, poly(dipropoxylated bisphenol-A-alt-(isophthalic acid-co-adipic acid)) and poly(neopentyl glycol-alt-(adipic acid-co-isophthalic acid)) were analyzed by internal source matrix assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). The high resolution and high mass accuracy provided by FTMS greatly facilitate the characterization of the polyester and copolyester samples. Isobaric resolution allows the ion abundances of overlapping isotopic envelopes to be assessed. Repeat units were confirmed and end functionality assigned. Single shot mass spectra of the entire polymeric distribution demonstrate that the dynamic range of this internal MALDI source instrument and the analyzer cell exceeds performance of those previously reported for higher field instruments. Corrections of space charge mass shift effects are demonstrated for the analytes using an external calibrant and (subsequent to confirmation of structure) via internal calibration which removes ambiguity due to space charge differences in calibrant and analyte spectra. Capillary gel permeation chromatography was used to prepare low polydispersity samples from a high polydispersity polyester, improving the measurement of molecular weight distribution two-fold while retaining the benefits of high resolution mass spectrometry for elucidation of oligomer identity.

  3. Reading the Molecular Clock.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Suggesting that the evolutionary record may be written in proteins and genes, discusses research in which species are compared by immunology, DNA, and radioimmunoassay. Molecular studies show that DNA from humans and chimps is 98 percent identical, a degree of similarity usually occurring only among animals of the same genus. (JN)

  4. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    PubMed

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  5. Quantifying Mass Transfer Processes in Groundwater as a Function of Molecular Structure Variation for Multicomponent NAPL Sources

    NASA Astrophysics Data System (ADS)

    Abbott, J. B., III; Tick, G. R.; Greenberg, R. R.; Carroll, K. C.

    2017-12-01

    The remediation of nonaqueous liquid (NAPL) contamination sources in groundwater has been shown to be challenging and have limited success in the field. The presence of multicomponent NAPL sources further complicates the remediation due to variability of mass-transfer (dissolution) behavior as a result of compositional and molecular structure variations between the different compounds within the NAPL phase. This study investigates the effects of the contaminant of concern (COC) composition and the bulk-NAPL components molecular structure (i.e. carbon chain length, aliphatic and aromatic) on dissolution and aqueous phase concentrations in groundwater. The specific COCs tested include trichloroethene (TCE), toluene (TOL), and perfluorooctanoic acid (PFOA). Each COC was tested in a series of binary batch experiments using insoluble bulk NAPL including n-hexane (HEX), n-decane (DEC), and n-hexadecane (HEXDEC). These equilibrium batch tests were performed to understand how different carbon-chain-length (NAPL) systems affect resulting COC aqueous phase concentrations. The experiments were conducted with four different COC mole fractions mixed within the bulk-NAPL derivatives (0.1:0.9, 0.05:0.95, 0.01:0.99, 0.001:0.999). Raoult's Law was used to assess the relative ideality of the mass transfer processes for each binary equilibrium dissolution experiment. Preliminary results indicate that as mole fraction of the COC decreases (composition effects), greater deviance from dissolution ideality occurs. It was also shown that greater variation in molecular structure (i.e. greater carbon chain length of bulk-NAPL with COC and aromatic COC presence) exhibited greater dissolution nonideality via Raoult's Law analysis. For instance, TOL (aromatic structure) showed greater nonideality than TCE (aliphatic structure) in the presence of the different bulk-NAPL derivatives (i.e. of various aliphatic carbon chains lengths). The results suggest that the prediction of aqueous phase

  6. Silver Coating for High-Mass-Accuracy Imaging Mass Spectrometry of Fingerprints on Nanostructured Silicon.

    PubMed

    Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H

    2015-11-17

    Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.

  7. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  8. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry

    DOE PAGES

    Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...

    2017-05-22

    A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in

  9. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel

    A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in

  10. Action of polysaccharides of similar average mass but differing molecular volume and charge on fluid drainage through synovial interstitium in rabbit knees

    PubMed Central

    Scott, D; Coleman, P J; Mason, R M; Levick, J R

    2000-01-01

    Hyaluronan (HA), an anionic polysaccharide of synovial fluid, attenuates fluid loss from joints as joint pressure is raised (‘outflow buffering’). The buffering is thought to depend on the expanded molecular domain of the polymer, which causes reflection by synovial extracellular matrix, leading to flow-dependent concentration polarization. We therefore assessed the effects of polysaccharides of differing average molecular volume and charge. Trans-synovial fluid drainage(Q̇s) was measured at controlled joint fluid pressure (Pj) in knees of anaesthetized rabbits. The joints were infused with polydisperse HA of weight-average mass 2100 kDa (4 mg ml−1, n = 17), with polydisperse neutral dextran of similar average mass (2000 kDa; n = 7) or with Ringer solution vehicle (n = 2). The role of polymer charge was assessed by infusions of neutral or sulphated dextran of average molecular mass 500 kDa (n = 6). When HA was present, Q̇s increased little with pressure, forming a virtual plateau of ∼4 μl min−1 from 10 to 25 cmH2O. Neutral dextran 2000 failed to replicate this effect. Instead, Q̇s increased steeply with Pj, reaching eight times the HA value by 20 cmH2O (P = 0.0001, ANOVA). Dextran 2000 reduced flows in comparison with Ringer solution. Analysis of the aspirated joint fluid showed that 31 ± 0.07 % (s.e.m.) of dextran 2000 in the filtrand was reflected by synovium, compared with ≥ 79 % for HA. The viscometric molecular radius of the dextran, ∼31 nm, was smaller than that of HA (101–181 nm), as was its osmotic pressure. Anionic dextran 500 failed to buffer fluid drainage, but it reduced fluid escape and synovial conductance dQ̇s/dPj more than neutral dextran 500 (P < 0.0001, ANOVA). The anionic charge increased the molecular volume and viscosity of dextran 500. The results support the hypothesis that polymer molecular volume influences its reflection by interstitial matrix and outflow buffering. Polymer charge influences flow through an effect on

  11. Fluorophore-assisted carbohydrate electrophoresis for the determination of molecular mass of heparins and low-molecular-weight (LMW) heparins.

    PubMed

    Buzzega, Dania; Maccari, Francesca; Volpi, Nicola

    2008-11-01

    We report the use of fluorophore-assisted carbohydrate electrophoresis (FACE) to determine the molecular mass (M) values of heparins (Heps) and low-molecular-weight (LMW)-Hep derivatives. Hep are labeled with 8-aminonaphthalene-1,3,6-trisulfonic acid and FACE is able to resolve each fraction as a discrete band depending on their M. After densitometric acquisition, the migration distance of each Hep standard is acquired and the third-grade polynomial calibration standard curve is determined by plotting the logarithms of the M values as a function of migration ratio. Purified Hep samples having different properties, pharmaceutical Heps and various LMW-Heps were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (Mp), the number-average Mn, weight-average Mw and polydispersity (Mw/Mn) were examined by both techniques and found to be similar. This approach offers certain advantages over the HPSEC method. The derivatization process with 8-aminonaphthalene-1,3,6-trisulfonic acid is complete after 4 h so that many samples may be analyzed in a day also considering that multiple samples can be run simultaneously and in parallel and that a single FACE analysis requires approx. 15 min. Furthermore, FACE is a very sensitive method as it requires approx. 5-10 microg of Heps, about 10-100-fold lower than samples and standards used in HPSEC evaluation. Finally, the utilization of mini-gels allows the use of very low amounts of reagents with neither expensive equipment nor any complicated procedures having to be applied. This study demonstrates that FACE analysis is a sensitive method for the determination of the M values of Heps and LMW-Heps with possible utilization in virtually any kind of research and development such as quality control laboratories due to its rapid, parallel analysis of multiple samples by means of common and simple largely used

  12. Social identity change: shifts in social identity during adolescence.

    PubMed

    Tanti, Chris; Stukas, Arthur A; Halloran, Michael J; Foddy, Margaret

    2011-06-01

    This study investigated the proposition that adolescence involves significant shifts in social identity as a function of changes in social context and cognitive style. Using an experimental design, we primed either peer or gender identity with a sample of 380 early- (12-13 years), mid- (15-16 years), and late-adolescents (18-20 years) and then measured the effect of the prime on self-stereotyping and ingroup favouritism. The findings showed significant differences in social identity across adolescent groups, in that social identity effects were relatively strong in early- and late-adolescents, particularly when peer group identity rather than gender identity was salient. While these effects were consistent with the experience of change in educational social context, differences in cognitive style were only weakly related to ingroup favouritism. The implications of the findings for theory and future research on social identity during adolescence are discussed. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  13. Comparative Associations Between Achieved Bicultural Identity, Achieved Ego Identity, and Achieved Religious Identity and Adaptation Among Australian Adolescent Muslims.

    PubMed

    Abu-Rayya, Hisham M; Abu-Rayya, Maram H; White, Fiona A; Walker, Richard

    2018-04-01

    This study examined the comparative roles of biculturalism, ego identity, and religious identity in the adaptation of Australian adolescent Muslims. A total of 504 high school Muslim students studying at high schools in metropolitan Sydney and Melbourne, Australia, took part in this study which required them to complete a self-report questionnaire. Analyses indicated that adolescent Muslims' achieved religious identity seems to play a more important role in shaping their psychological and socio-cultural adaptation compared to adolescents' achieved bicultural identity. Adolescents' achieved ego identity tended also to play a greater role in their psychological and socio-cultural adaptation than achieved bicultural identity. The relationships between the three identities and negative indicators of psychological adaptation were consistently indifferent. Based on these findings, we propose that the three identity-based forces-bicultural identity development, religious identity attainment, and ego identity formation-be amalgamated into one framework in order for researchers to more accurately examine the adaptation of Australian adolescent Muslims.

  14. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    PubMed

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  15. Molecular profiling of synchronous and metachronous cancers of the pancreas reveal molecular mimicry between samples from the same patient.

    PubMed

    Talbott, Vanessa A; Yeo, Charles J; Brody, Jonathan R; Witkiewicz, Agnieszka K

    2012-07-01

    Pancreatic ductal adenocarcinoma (PDA) is rarely a survivable disease. In rare cases, separate synchronous tumors are discovered at the time of resection, while in others, patients present with a metachronous cancer after prior surgical resection. Studying molecular markers of synchronous and metachronous lesions may aid to clarify the biology of this often deadly disease. Two patients presented with synchronous tumors (each one with a tumor in the pancreatic head/neck and the other in the tail, designated patients A and B). An additional patient (patient C) underwent an R0 resection for PDA of the head and recurred 1.5 y later with PDA in the tail. Genomic DNA was laser capture microdissected (LCM) from the tumor and molecular analysis was performed. K-ras status and loss of heterozygosity (LOH) were determined from multiple specimens for each case. All samples from each patient harbored identical K-ras mutations. In patient A, the tumor at the head of the pancreas had more clonal genetic instability as reflected by LOH analysis over multiple LCM samples. Patient B had more genetic instability in the tail lesion compared with the neck. Patient C had virtually the identical molecular profile in both tumors, supporting the notion that both tumors were related. We conclude that the synchronous and metachronous tumors likely are initiated from identical precursor lesions and/or events (i.e., K-ras mutations). Future studies will need to investigate if these tumors will respond similarly to adjuvant therapies targeted against the clonal molecular events in the tumor. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Molecular cloning, expression and characterization of Pru a 1, the major cherry allergen.

    PubMed

    Scheurer, S; Metzner, K; Haustein, D; Vieths, S

    1997-06-01

    A high percentage of birch pollen allergic patients experiences food hypersensitivity reactions after ingestion of several fruits and vegetables. Previous work demonstrated common epitopes on an allergen of Mr 18,000 from sweet cherry (Prunus avium) and Bet v 1, the major allergen from birch pollen. N-terminal amino acid sequencing showed a sequence identity of 67% with Bet v 1. Here we report the cloning and cDNA sequencing of this cherry allergen. The entire deduced amino acid sequence described a protein of Mr 17,700 with 59.1% identity to Bet v 1. High degrees of identity in the range of 40 to 60% were also found with related allergens from other kinds of tree pollen and plant foods as well as with stress-induced proteins from food plants such as parsley, potato and soya. The coding DNA of the cherry protein was cloned into vector pET-16b and expressed in E. coli strain BL21(DE3) as a His-tag fusion protein. As shown by SDS-PAGE, the apparent molecular masses of the nonfusion protein and the natural allergen were identical. The fusion protein showed high IgE binding potency when sera from patients allergic to cherry were tested by immunoblotting and enzyme allergosorbent tests. Moreover, it cross-reacted strongly with IgE specific for the natural counterpart and for Bet v 1. The high biological activity of the recombinant fusion protein was further confirmed by the induction of a strong histamine release in basophils from cherry-allergic patients. Since sera from 17/19 of such patients contained IgE against this allergen it was classified as a major allergen and named Pru a 1. Recombinant Pru a 1 mimics most of the allergenic potency of cherry extract and hence could be a useful tool for studying the molecular and immunological properties of pollen related food allergens.

  17. Swiss identity smells like chocolate: Social identity shapes olfactory judgments

    PubMed Central

    Coppin, Géraldine; Pool, Eva; Delplanque, Sylvain; Oud, Bastiaan; Margot, Christian; Sander, David; Van Bavel, Jay J.

    2016-01-01

    There is extensive evidence that social identities can shape people’s attitudes and behavior, but what about sensory judgments? We examined the possibility that social identity concerns may also shape the judgment of non-social properties—namely, olfactory judgment. In two experiments, we presented Swiss and non-Swiss participants with the odor of chocolate, for which Switzerland is world-famous, and a control odor (popcorn). Swiss participants primed with Swiss identity reported the odor of chocolate (but not popcorn) as more intense than non-Swiss participants (Experiments 1 and 2) and than Swiss participants primed with individual identity or not primed (Experiment 2). The self-reported intensity of chocolate smell tended to increase as identity accessibility increased—but only among Swiss participants (Experiment 1). These results suggest that identity priming can counter-act classic sensory habituation effects, allowing identity-relevant smells to maintain their intensity after repeated presentations. This suggests that social identity dynamically influences sensory judgment. We discuss the potential implications for models of social identity and chemosensory perception. PMID:27725715

  18. Swiss identity smells like chocolate: Social identity shapes olfactory judgments.

    PubMed

    Coppin, Géraldine; Pool, Eva; Delplanque, Sylvain; Oud, Bastiaan; Margot, Christian; Sander, David; Van Bavel, Jay J

    2016-10-11

    There is extensive evidence that social identities can shape people's attitudes and behavior, but what about sensory judgments? We examined the possibility that social identity concerns may also shape the judgment of non-social properties-namely, olfactory judgment. In two experiments, we presented Swiss and non-Swiss participants with the odor of chocolate, for which Switzerland is world-famous, and a control odor (popcorn). Swiss participants primed with Swiss identity reported the odor of chocolate (but not popcorn) as more intense than non-Swiss participants (Experiments 1 and 2) and than Swiss participants primed with individual identity or not primed (Experiment 2). The self-reported intensity of chocolate smell tended to increase as identity accessibility increased-but only among Swiss participants (Experiment 1). These results suggest that identity priming can counter-act classic sensory habituation effects, allowing identity-relevant smells to maintain their intensity after repeated presentations. This suggests that social identity dynamically influences sensory judgment. We discuss the potential implications for models of social identity and chemosensory perception.

  19. The influence of degree-of-branching and molecular mass on the interaction between dextran and Concanavalin A in hydrogel preparations intended for insulin release.

    PubMed

    Benzeval, Ian; Bowyer, Adrian; Hubble, John

    2012-01-01

    The interactions of a number of commercially available dextran preparations with the lectin Concanavalin A (ConA) have been investigated. Dextrans over the molecular mass range 6 × 10³-2 × 10⁶ g mol⁻¹ were initially characterised in terms of their branching and hence terminal ligand density, using NMR. This showed a range of branching ratios between 3% and 5%, but no clear correlation with molecular mass. The bio-specific interaction of these materials with ConA was investigated using microcalorimetry. The data obtained were interpreted using a number of possible binding models reflecting the known structure of both dextran and the lectin. The results of this analysis suggest that the interaction is most appropriately described in terms of a two-site model. This offers the best compromise for the observed relationship between data and model predictions and the number of parameters used based on the chi-squared values obtained from a nonlinear least-squares fitting procedure. A two-site model is also supported by analysis of the respective sizes of the dextrans and the ConA tetramer. Using this model, the relationship between association constants, binding energy and molecular mass was determined. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography – Part II: 2-Methylfuran

    PubMed Central

    Tran, Luc-Sy; Togbé, Casimir; Liu, Dong; Felsmann, Daniel; Oßwald, Patrick; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Kohse-Höinghaus, Katharina

    2013-01-01

    This is Part II of a series of three papers which jointly address the combustion chemistry of furan and its alkylated derivatives 2-methylfuran (MF) and 2,5-dimethylfuran (DMF) under premixed low-pressure flame conditions. Some of them are considered to be promising biofuels. With furan as a common basis studied in Part I of this series, the present paper addresses two laminar premixed low-pressure (20 and 40 mbar) flat argon-diluted (50%) flames of MF which were studied with electron-ionization molecular-beam mass spectrometry (EI-MBMS) and gas chromatography (GC) for equivalence ratios φ=1.0 and 1.7, identical conditions to those for the previously reported furan flames. Mole fractions of reactants, products as well as stable and reactive intermediates were measured as a function of the distance above the burner. Kinetic modeling was performed using a comprehensive reaction mechanism for all three fuels given in Part I and described in the three parts of this series. A comparison of the experimental results and the simulation shows reasonable agreement, as also seen for the furan flames in Part I before. This set of experiments is thus considered to be a valuable additional basis for the validation of the model. The main reaction pathways of MF consumption have been derived from reaction flow analyses, and differences to furan combustion chemistry under the same conditions are discussed. PMID:24518895

  1. MALDI Mass Spectrometry of Fullero[C60]tetrahydropyridines

    NASA Astrophysics Data System (ADS)

    Fatkullina, A. F.; Yanybin, V. M.; Asfandiarov, N. L.; Tuktarov, A. R.; Khalilov, L. M.

    2018-07-01

    Mass spectra of positive and negative MALDI ions of the series of fullero[C60] tetrahydropyridines with different substituents in a heterocycle are systematically studied for the first time. All mass spectra contain C60 fullerene peaks as a result of the reduction of fullero[C60]tetrahydropyridines. The intensities of the protonated molecular ions' [M + H]+ peaks are highest in the mass spectra of positive ions of the studied compounds, while molecular radical ion [M]+ is less intense. The intensities of the peaks of molecular radical ion [M]- are highest in the mass spectra of the negative ions. The [C60C2H5] ions formed during the decay of the molecular ions with the detachment of neutral nitrile molecules is characteristic of all compounds. Using DFT quantum-chemical calculations (PBE/3z), the energies of the highest (HOMO) and lowest unoccupied molecular orbitals (LUMO) are determined for fullero[C60]tetrahydropyridines with substituents in the heterocycle.

  2. Determination of phosphatidylethanolamine molecular species in various food matrices by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2).

    PubMed

    Zhou, Li; Zhao, Minjie; Ennahar, Saïd; Bindler, Françoise; Marchioni, Eric

    2012-04-01

    A liquid chromatographic-electrospray ionization-tandem mass spectrometric (LC-ESI-MS(2)) method has been developed for determination of the molecular species of phosphatidylethanolamine (PE) in four food matrices (soy, egg yolk, ox liver, and krill oil). The extraction and purification method consisted of a pressurized liquid extraction procedure for total lipid (TL) extraction, purification of phospholipids (PLs) by adsorption on a silica gel column, and separation of PL classes by semi-preparative normal-phase HPLC. Separation and identification of PE molecular species were performed by reversed-phase HPLC coupled with electrospray ionization tandem mass spectrometry (ESI-MS(2)). Methanol containing 5 mmol L(-1) ammonium formate was used as the mobile phase. A variety of PE molecular species were detected in the four food matrices. (C16:0-C18:2)PE, (C18:2-C18:2)PE, and (C16:0-C18:1)PE were the major PE molecular species in soy. Egg yolk PE contained (C16:0-C18:1)PE, (C18:0-C18:1)PE, (C18:0-C18:2)PE, and (C16:0-C18:2)PE as the major molecular species. Ox liver PE was rich in the species (C18:0-C18:1)PE, (C18:0-C20:4)PE, and (C18:0-C18:2)PE. Finally, krill oil which was particularly rich in (C16:0(alkyl)-C22:6(acyl))plasmanylethanolamine (PakE), (C16:0-C22:6)PE, and (C16:0-C20:5)PE, seemed to be an interesting potential source for supplementation of food with eicosapentaenoic acid and docosahexaenoic acid.

  3. Study of Nanocomposites of Amino Acids and Organic Polyethers by Means of Mass Spectrometry and Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Zobnina, V. G.; Kosevich, M. V.; Chagovets, V. V.; Boryak, O. A.

    A problem of elucidation of structure of nanomaterials based on combination of proteins and polyether polymers is addressed on the monomeric level of single amino acids and oligomers of PEG-400 and OEG-5 polyethers. Efficiency of application of combined approach involving experimental electrospray mass spectrometry and computer modeling by molecular dynamics simulation is demonstrated. It is shown that oligomers of polyethers form stable complexes with amino acids valine, proline, histidine, glutamic, and aspartic acids. Molecular dynamics simulation has shown that stabilization of amino acid-polyether complexes is achieved due to winding of the polymeric chain around charged groups of amino acids. Structural motives revealed for complexes of single amino acids with polyethers can be realized in structures of protein-polyether nanoparticles currently designed for drug delivery.

  4. Determination of molecular mass values of chondroitin sulfates by fluorophore-assisted carbohydrate electrophoresis (FACE).

    PubMed

    Buzzega, Dania; Maccari, Francesca; Volpi, Nicola

    2010-03-11

    Fluorophore-assisted carbohydrate electrophoresis (FACE) was applied to determine the molecular mass (M) values of various chondroitin sulfate (CS) samples. After labeling with 8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS), FACE was able to resolve each CS sample as a discrete band depending on the M value. After densitometric acquisition, the migration distance of each CS standard was acquired and the third grade polynomial calibration standard curve was determined by plotting the logarithms of the M values as a function of migration ratio. Purified CS samples of different origin and the European Pharmacopeia CS standard were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (M(p)), the number-average M(n), weight-average M(w), and polydispersity (M(w)/M(n)) were examined by both techniques and found to be quite similar. This study demonstrates that FACE analysis is a suitable, sensitive and simple method for the determination of the M values of CS macromolecules with possible utilization in virtually any kind of research and development such as quality control laboratories. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  6. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  7. Quantitation of phosphatidic acid and lysophosphatidic acid molecular species using hydrophilic interaction liquid chromatography coupled to electrospray ionization high resolution mass spectrometry.

    PubMed

    Triebl, Alexander; Trötzmüller, Martin; Eberl, Anita; Hanel, Pia; Hartler, Jürgen; Köfeler, Harald C

    2014-06-20

    A method for a highly selective and sensitive identification and quantitation of lysophosphatidic acid (LPA) and phosphatidic acid (PA) molecular species was developed using hydrophilic interaction liquid chromatography (HILIC) followed by negative-ion electrospray ionization high resolution mass spectrometry. Different extraction methods for the polar LPA and PA species were compared and a modified Bligh & Dyer extraction by addition of 0.1M hydrochloric acid resulted in a ≈1.2-fold increase of recovery for the 7 PA and a more than 15-fold increase for the 6 LPA molecular species of a commercially available natural mix compared to conventional Bligh & Dyer extraction. This modified Bligh & Dyer extraction did not show any artifacts resulting from hydrolysis of natural abundant phospholipids. The developed HILIC method is able to separate all PA and LPA species from major polar membrane lipid classes which might have suppressive effects on the minor abundant lipid classes of interest. The elemental compositions of intact lipid species are provided by the high mass resolution of 100,000 and high mass accuracy below 3ppm of the Orbitrap instrument. Additionally, tandem mass spectra were generated in a parallel data dependent acquisition mode in the linear ion trap to provide structural information at molecular level. Limits of quantitation were identified at 45fmol on column and the dynamic range reaches 20pmol on column, covering the range of natural abundance well. By applying the developed method to mouse brain it can be shown that phosphatidic acid contains less unsaturated fatty acids with PA 34:1 and PA 36:1 as the major species. In contrast, for LPA species a high content of polyunsaturated fatty acids (LPA 20:4 and LPA 22:6) was quantified. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Trace-fiber color discrimination by electrospray ionization mass spectrometry: a tool for the analysis of dyes extracted from submillimeter nylon fibers.

    PubMed

    Tuinman, Albert A; Lewis, Linda A; Lewis, Samuel A

    2003-06-01

    The application of electrospray ionization mass spectrometry (ESI-MS) to trace-fiber color analysis is explored using acidic dyes commonly employed to color nylon-based fibers, as well as extracts from dyed nylon fibers. Qualitative information about constituent dyes and quantitative information about the relative amounts of those dyes present on a single fiber become readily available using this technique. Sample requirements for establishing the color identity of different samples (i.e., comparative trace-fiber analysis) are shown to be submillimeter. Absolute verification of dye mixture identity (beyond the comparison of molecular weights derived from ESI-MS) can be obtained by expanding the technique to include tandem mass spectrometry (ESI-MS/MS). For dyes of unknown origin, the ESI-MS/MS analyses may offer insights into the chemical structure of the compound-information not available from chromatographic techniques alone. This research demonstrates that ESI-MS is viable as a sensitive technique for distinguishing dye constituents extracted from a minute amount of trace-fiber evidence. A protocol is suggested to establish/refute the proposition that two fibers--one of which is available in minute quantity only--are of the same origin.

  9. Bipolar Molecular Outflows within 1pc of Sgr A*:Evidence for Low-mass Star Formation Activity

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad; Wardle, Mark; Kunneriath, Devaky; Royster, Marc; Wootten, Al; Roberts, Douglas

    2018-01-01

    The 4 million solar mass black hole, Sgr A*, is expected to suppress star formation because the measured density of the cloud is insufficient for self-gravity to overcome tidal disruption by the black hole's gravitational field. Nevertheless, objects resembling dust-enshrouded young stars and photo-evaporative flows from their disks have been identified within 2pc of Sgr A*. Clear identification of the nature of these objects has been hampered by the Galactic center's distance, 30 magnitudes of foreground extinction, and stellar crowding. Here, we report the discovery of 11 bipolar molecular outflows using ALMA within a projected distance of one pc from Sgr A*. These unambiguous signatures of young protostars manifest as approaching and receding lobes of dense gas swept up by the jets created during the formation and early evolution of low-mass stars. The mean dynamical age of the outflow sources and the rate of star formation are estimated to be ~6500 years and ~5x10^{-4} solar mass per year, respectively. These measurements suggest that star formation could take place in the immediate vicinity of supermassive black holes in the nuclei of external galaxies.

  10. Hydrogenation-assisted graphene origami and its application in programmable molecular mass uptake, storage, and release.

    PubMed

    Zhu, Shuze; Li, Teng

    2014-03-25

    The malleable nature of atomically thin graphene makes it a potential candidate material for nanoscale origami, a promising bottom-up nanomanufacturing approach to fabricating nanobuilding blocks of desirable shapes. The success of graphene origami hinges upon precise and facile control of graphene morphology, which still remains as a significant challenge. Inspired by recent progresses on functionalization and patterning of graphene, we demonstrate hydrogenation-assisted graphene origami (HAGO), a feasible and robust approach to enabling the formation of unconventional carbon nanostructures, through systematic molecular dynamics simulations. A unique and desirable feature of HAGO-enabled nanostructures is the programmable tunability of their morphology via an external electric field. In particular, we demonstrate reversible opening and closing of a HAGO-enabled graphene nanocage, a mechanism that is crucial to achieve molecular mass uptake, storage, and release. HAGO holds promise to enable an array of carbon nanostructures of desirable functionalities by design. As an example, we demonstrate HAGO-enabled high-density hydrogen storage with a weighted percentage exceeding the ultimate goal of US Department of Energy.

  11. Molecular selectivity of brown carbon chromophores.

    PubMed

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey A; Roach, Patrick; Eckert, Peter; Gilles, Mary K; Wang, Bingbing; Lee, Hyun Ji Julie; Hu, Qichi

    2014-10-21

    Complementary methods of high-resolution mass spectrometry and microspectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene SOA (LSOA) and α-pinene SOA (PSOA). The LSOA compounds readily formed adducts with Na(+) under electrospray ionization conditions, with only a small fraction of compounds detected in the protonated form. In contrast, a significant fraction of PSOA compounds appeared in the protonated form because of their increased molecular rigidity. Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas was detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl-imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the α-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.

  12. Triton-polyacrylamide gel electrophoresis and leucine aminopeptidase activity staining detect Triton-slowed bands including high-molecular-mass aminopeptidase N (CD13) isoform in cholestatic patient sera.

    PubMed

    Kawai, Makoto; Hara, Yukichi

    2006-02-01

    Western blotting of aminopeptidase N (APN) detects a high-molecular-mass isoform (260 kDa) [M. Kawai, Y. Otake, Y. Hara High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 330 (2003) 141-149] in cholestatic patient serum but is time-consuming. Human sera were electrophoresed on polyacrylamide gel containing Triton-X100 (Triton-PAGE) and stained with leucine-B-naphthylamide (LAP-staining). The stained bands were eluted from the gel, treated with N- and O-glycosidase if necessary, and analyzed by Western blotting [M. Kawai, Y. Otake, Y. Hara High-molecular-mass isoform of aminopeptidase N/CD13 in serum from cholestatic patients. Clin Chim Acta 330 (2003) 141-149]. Triton-PAGE and LAP-staining clearly detected fast bands in all the sera examined. Almost parallel with leucine aminopeptidase activity, slow bands were strongly stained in all 11 cholestatic patients but clearly stained in 3 out of 14 patients with hepatobiliary diseases other than cholestasis. PAGE with various concentrations of Triton showed that Triton slows down slow bands but not fast bands. Western blotting showed that Triton-PAGE-slow bands of cholestasis contained 140 and 260-kDa APN and that fast bands were slightly smaller than monomer-size slow bands after glycosidase treatment. Less time-consuming than Western blotting, Triton-PAGE and LAP-staining detect novel APN bands slowed by Triton and partly composed of the high-molecular-mass isoform in cholestasis. The slow bands seem to be homodimers of APN with transmembrane anchors. The polypeptide of the fast band seems to be processed differently from that of the slow band.

  13. In vivo comparison of various polymeric and low molecular mass inhibitors of intestinal P-glycoprotein.

    PubMed

    Föger, Florian; Hoyer, Herbert; Kafedjiiski, Krum; Thaurer, Michael; Bernkop-Schnürch, Andreas

    2006-12-01

    Several polymers have been reported to modulate drug absorption by inhibition of intestinal P-glycoprotein (P-gp). The aim of the present study was to provide a direct in vivo comparison of delivery systems based on Pluronic P85, Myrj 52 and chitosan-4-thiobutylamidine (Ch-TBA) in vivo in rats, using rhodamine-123 (Rho-123) as representative P-gp substrate. Furthermore, the postulated low molecular mass P-gp inhibitors 6-mercaptopurine and reduced glutathione (GSH) were evaluated in vitro and in vivo. In vitro, the permeation enhancing effect of 6-mercaptopurine, GSH, Pluronic P85, Myrj 52, and the combination of Ch-TBA with GSH was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type diffusion chambers. In comparison to buffer only, Rho-123 transport in presence of 100 microm 6-mercaptopurine, 0.5% (w/v) GSH, 0.5% (w/v) Pluronic P85, 0.5% (w/v) Myrj 52 and the combination of 0.5% (w/v) Ch-TBA/ 0.5% (w/v) GSH, was 2.1, 1.6, 1.9, 1.8, 3.0-fold improved, respectively. In vivo in rat, enteric-coated tablets based on Pluronic P85, Myrj 52 or Ch-TBA/GSH increased the area under the plasma concentration time curve (AUC(0-12)) of Rho-123 1.6-fold, 2.4-fold, 4.3-fold, respectively, in comparison to control only. Contrariwise, the low molecular mass excipients 6-mercaptopurine and GSH showed no significant effect in vivo at all. This in vivo study showed that polymeric P-gp inhibitors and especially the delivery system based on thiolated chitosan significantly increased the oral bioavailability of P-gp substrate Rho-123.

  14. Predicting Glycerophosphoinositol Identities in Lipidomic Datasets Using VaLID (Visualization and Phospholipid Identification)—An Online Bioinformatic Search Engine

    PubMed Central

    McDowell, Graeme S. V.; Taylor, Graeme P.; Fai, Stephen; Bennett, Steffany A. L.

    2014-01-01

    The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID) bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5′-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels) under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL) team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site. PMID:24701584

  15. Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis.

    PubMed

    Thomas, D; Newcomb, W W; Brown, J C; Wall, J S; Hainfeld, J F; Trus, B L; Steven, A C

    1985-05-01

    Dark-field scanning transmission electron microscopy was used to perform mass analyses of purified vesicular stomatitis virions, pronase-treated virions, and nucleocapsids, leading to a complete self-consistent account of the molecular composition of vesicular stomatitis virus. The masses obtained were 265.6 +/- 13.3 megadaltons (MDa) for the native virion, 197.5 +/- 8.4 MDa for the pronase-treated virion, and 69.4 +/- 4.9 MDa for the nucleocapsid. The reduction in mass effected by pronase treatment, which corresponds to excision of the external domains (spikes) of G protein, leads to an average of 1,205 molecules of G protein per virion. The nucleocapsid mass, after compensation for the RNA (3.7 MDa) and residual amounts of other proteins, yielded a complement of 1,258 copies of N protein. Calibration of the amounts of M, NS, and L proteins relative to N protein by biochemical quantitation yielded values of 1,826, 466, and 50 molecules, respectively, per virion. Assuming that the remaining virion mass is contributed by lipids in the viral envelope, we obtained a value of 56.1 MDa for its lipid content. In addition, four different electron microscopy procedures were applied to determine the nucleocapsid length, which we conclude to be 3.5 to 3.7 micron. The nucleocapsid comprises a strand of repeating units which have a center-to-center spacing of 3.3 nm as measured along the middle of the strand. We show that these repeating units represent monomers of N protein, each of which is associated with 9 +/- 1 bases of single-stranded RNA. From scanning transmission electron microscopy images of negatively stained nucleocapsids, we inferred that N protein has a wedge-shaped, bilobed structure with dimensions of approximately 9.0 nm (length), approximately 5.0 nm (depth), and approximately 3.3 nm (width, at the midpoint of its long axis). In the coiled configuration of the in situ nucleocapsid, the long axis of N protein is directed radially, and its depth corresponds to

  16. Mass and molecular composition of vesicular stomatitis virus: a scanning transmission electron microscopy analysis.

    PubMed Central

    Thomas, D; Newcomb, W W; Brown, J C; Wall, J S; Hainfeld, J F; Trus, B L; Steven, A C

    1985-01-01

    Dark-field scanning transmission electron microscopy was used to perform mass analyses of purified vesicular stomatitis virions, pronase-treated virions, and nucleocapsids, leading to a complete self-consistent account of the molecular composition of vesicular stomatitis virus. The masses obtained were 265.6 +/- 13.3 megadaltons (MDa) for the native virion, 197.5 +/- 8.4 MDa for the pronase-treated virion, and 69.4 +/- 4.9 MDa for the nucleocapsid. The reduction in mass effected by pronase treatment, which corresponds to excision of the external domains (spikes) of G protein, leads to an average of 1,205 molecules of G protein per virion. The nucleocapsid mass, after compensation for the RNA (3.7 MDa) and residual amounts of other proteins, yielded a complement of 1,258 copies of N protein. Calibration of the amounts of M, NS, and L proteins relative to N protein by biochemical quantitation yielded values of 1,826, 466, and 50 molecules, respectively, per virion. Assuming that the remaining virion mass is contributed by lipids in the viral envelope, we obtained a value of 56.1 MDa for its lipid content. In addition, four different electron microscopy procedures were applied to determine the nucleocapsid length, which we conclude to be 3.5 to 3.7 micron. The nucleocapsid comprises a strand of repeating units which have a center-to-center spacing of 3.3 nm as measured along the middle of the strand. We show that these repeating units represent monomers of N protein, each of which is associated with 9 +/- 1 bases of single-stranded RNA. From scanning transmission electron microscopy images of negatively stained nucleocapsids, we inferred that N protein has a wedge-shaped, bilobed structure with dimensions of approximately 9.0 nm (length), approximately 5.0 nm (depth), and approximately 3.3 nm (width, at the midpoint of its long axis). In the coiled configuration of the in situ nucleocapsid, the long axis of N protein is directed radially, and its depth corresponds to

  17. Resonant pairing between fermions with unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shin-Tza; Pao, C.-H.; Yip, S.-K.

    We study via mean-field theory the pairing between fermions of different masses, especially at the unitary limit. At equal populations, the thermodynamic properties are identical with the equal mass case provided an appropriate rescaling is made. At unequal populations, for sufficiently light majority species, the system does not phase separate. For sufficiently heavy majority species, the phase separated normal phase have a density larger than that of the superfluid. For atoms in harmonic traps, the density profiles for unequal mass fermions can be drastically different from their equal-mass counterparts.

  18. IdentityMap Visualization of the Super Identity Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  19. IdentityMap Visualization of the Super Identity Model

    ScienceCinema

    None

    2018-06-08

    The Super Identity Model is a collaboration with six United Kingdom universities to develop use cases used to piece together a person's identity across biological, cyber, psychological, and biographical domains. PNNL visualized the model in a web-based application called IdentityMap. This is the first step in a promising new field of research. Interested future collaborators are welcome to find out more by emailing superid@pnnl.gov.

  20. Mistaken identity: activating conservative political identities induces "conservative" financial decisions.

    PubMed

    Morris, Michael W; Carranza, Erica; Fox, Craig R

    2008-11-01

    Four studies investigated whether activating a social identity can lead group members to choose options that are labeled in words associated with that identity. When political identities were made salient, Republicans (but not Democrats) became more likely to choose the gamble or investment option labeled "conservative." This shift did not occur in a condition in which the same options were unlabeled. Thus, the mechanism underlying the effect appears to be not activated identity-related values prioritizing low risk, but rather activated identity-related language (the group label "conservative"). Indeed, when political identities were salient, Republicans favored options labeled "conservative" regardless of whether the options were low or high risk. Finally, requiring participants to explain the label "conservative" before making their choice did not diminish the effect, which suggests that it does not merely reflect inattention to content or construct accessibility. We discuss the implications of these results for the literatures on identity, priming, choice, politics, and marketing.

  1. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-02-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  2. RCW 36 in the Vela Molecular Ridge: Evidence for high-mass star-cluster formation triggered by cloud-cloud collision

    NASA Astrophysics Data System (ADS)

    Sano, Hidetoshi; Enokiya, Rei; Hayashi, Katsuhiro; Yamagishi, Mitsuyoshi; Saeki, Shun; Okawa, Kazuki; Tsuge, Kisetsu; Tsutsumi, Daichi; Kohno, Mikito; Hattori, Yusuke; Yoshiike, Satoshi; Fujita, Shinji; Nishimura, Atsushi; Ohama, Akio; Tachihara, Kengo; Torii, Kazufumi; Hasegawa, Yutaka; Kimura, Kimihiro; Ogawa, Hideo; Wong, Graeme F.; Braiding, Catherine; Rowell, Gavin; Burton, Michael G.; Fukui, Yasuo

    2018-05-01

    A collision between two molecular clouds is one possible candidate for high-mass star formation. The H II region RCW 36, located in the Vela molecular ridge, contains a young star cluster (˜ 1 Myr old) and two O-type stars. We present new CO observations of RCW 36 made with NANTEN2, Mopra, and ASTE using 12CO(J = 1-0, 2-1, 3-2) and 13CO(J = 2-1) emission lines. We have discovered two molecular clouds lying at the velocities VLSR ˜ 5.5 and 9 km s-1. Both clouds are likely to be physically associated with the star cluster, as verified by the good spatial correspondence among the two clouds, infrared filaments, and the star cluster. We also found a high intensity ratio of ˜ 0.6-1.2 for CO J = 3-2/1-0 toward both clouds, indicating that the gas temperature has been increased due to heating by the O-type stars. We propose that the O-type stars in RCW 36 were formed by a collision between the two clouds, with a relative velocity separation of 5 km s-1. The complementary spatial distributions and the velocity separation of the two clouds are in good agreement with observational signatures expected for O-type star formation triggered by a cloud-cloud collision. We also found a displacement between the complementary spatial distributions of the two clouds, which we estimate to be 0.3 pc assuming the collision angle to be 45° relative to the line-of-sight. We estimate the collision timescale to be ˜ 105 yr. It is probable that the cluster age found by Ellerbroek et al. (2013b, A&A, 558, A102) is dominated by the low-mass members which were not formed under the triggering by cloud-cloud collision, and that the O-type stars in the center of the cluster are explained by the collisional triggering independently from the low-mass star formation.

  3. Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Patterson, Nathan Heath; Tsui, Tina; Caprioli, Richard M.; Norris, Jeremy L.

    2018-05-01

    It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. [Figure not available: see fulltext.

  4. Single-Cell Mass Spectrometry Reveals Changes in Lipid and Metabolite Expression in RAW 264.7 Cells upon Lipopolysaccharide Stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Patterson, Nathan Heath; Tsui, Tina; Caprioli, Richard M.; Norris, Jeremy L.

    2018-03-01

    It has been widely recognized that individual cells that exist within a large population of cells, even if they are genetically identical, can have divergent molecular makeups resulting from a variety of factors, including local environmental factors and stochastic processes within each cell. Presently, numerous approaches have been described that permit the resolution of these single-cell expression differences for RNA and protein; however, relatively few techniques exist for the study of lipids and metabolites in this manner. This study presents a methodology for the analysis of metabolite and lipid expression at the level of a single cell through the use of imaging mass spectrometry on a high-performance Fourier transform ion cyclotron resonance mass spectrometer. This report provides a detailed description of the overall experimental approach, including sample preparation as well as the data acquisition and analysis strategy for single cells. Applying this approach to the study of cultured RAW264.7 cells, we demonstrate that this method can be used to study the variation in molecular expression with cell populations and is sensitive to alterations in that expression that occurs upon lipopolysaccharide stimulation. [Figure not available: see fulltext.

  5. Liquid chromatography-diode array detection-mass spectrometry for compositional analysis of low molecular weight heparins.

    PubMed

    Wang, Zhangjie; Li, Daoyuan; Sun, Xiaojun; Bai, Xue; Jin, Lan; Chi, Lianli

    2014-04-15

    Low molecular weight heparins (LMWHs) are important artificial preparations from heparin polysaccharide and are widely used as anticoagulant drugs. To analyze the structure and composition of LMWHs, identification and quantitation of their natural and modified building blocks are indispensable. We have established a novel reversed-phase high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry approach for compositional analysis of LMWHs. After being exhaustively digested and labeled with 2-aminoacridone, the structural motifs constructing LMWHs, including 17 components from dalteparin and 15 components from enoxaparin, were well separated, identified, and quantified. Besides the eight natural heparin disaccharides, many characteristic structures from dalteparin and enoxaparin, such as modified structures from the reducing end and nonreducing end, 3-O-sulfated tetrasaccharides, and trisaccharides, have been unambiguously identified based on their retention time and mass spectra. Compared with the traditional heparin compositional analysis methods, the approach described here is not only robust but also comprehensive because it is capable of identifying and quantifying nearly all components from lyase digests of LMWHs. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Imaging mass spectrometry in drug development and toxicology.

    PubMed

    Karlsson, Oskar; Hanrieder, Jörg

    2017-06-01

    During the last decades, imaging mass spectrometry has gained significant relevance in biomedical research. Recent advances in imaging mass spectrometry have paved the way for in situ studies on drug development, metabolism and toxicology. In contrast to whole-body autoradiography that images the localization of radiolabeled compounds, imaging mass spectrometry provides the possibility to simultaneously determine the discrete tissue distribution of the parent compound and its metabolites. In addition, imaging mass spectrometry features high molecular specificity and allows comprehensive, multiplexed detection and localization of hundreds of proteins, peptides and lipids directly in tissues. Toxicologists traditionally screen for adverse findings by histopathological examination. However, studies of the molecular and cellular processes underpinning toxicological and pathologic findings induced by candidate drugs or toxins are important to reach a mechanistic understanding and an effective risk assessment strategy. One of IMS strengths is the ability to directly overlay the molecular information from the mass spectrometric analysis with the tissue section and allow correlative comparisons of molecular and histologic information. Imaging mass spectrometry could therefore be a powerful tool for omics profiling of pharmacological/toxicological effects of drug candidates and toxicants in discrete tissue regions. The aim of the present review is to provide an overview of imaging mass spectrometry, with particular focus on MALDI imaging mass spectrometry, and its use in drug development and toxicology in general.

  7. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry.

    PubMed

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-05-02

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and size-exclusion chromatography (SEC) analysis. Standard electrospray ionization (ESI)-mass spectrometry does not provide a direct solution as this approach is hindered by extensive interference of ion signals caused by closely spaced charge states of broadly distributed glycoforms. Here, we introduce a native tandem MS-based approach, enabling charge-state resolution and charge assignment of protein ions including those that escape mass analysis under standard MS conditions. Using this method, we determined the MW of two model glycoproteins, the extra-cellular domains of the highly and heterogeneously glycosylated proteins CD38 and epidermal growth factor receptor (EGFR), as well as the overall MW and binding stoichiometries of these proteins in complex with a specific antibody.

  8. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds.

    PubMed

    Silina, Yuliya E; Volmer, Dietrich A

    2013-12-07

    Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.

  9. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    PubMed

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    PubMed

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  11. Molecular inimitability amongst tumors: implications for precision cancer medicine in the age of personalized oncology.

    PubMed

    Patel, Sandip P; Schwaederle, Maria; Daniels, Gregory A; Fanta, Paul T; Schwab, Richard B; Shimabukuro, Kelly A; Kesari, Santosh; Piccioni, David E; Bazhenova, Lyudmila A; Helsten, Teresa L; Lippman, Scott M; Parker, Barbara A; Kurzrock, Razelle

    2015-10-20

    Tumor sequencing has revolutionized oncology, allowing for detailed interrogation of the molecular underpinnings of cancer at an individual level. With this additional insight, it is increasingly apparent that not only do tumors vary within a sample (tumor heterogeneity), but also that each patient's individual tumor is a constellation of unique molecular aberrations that will require an equally unique personalized therapeutic regimen. We report here the results of 439 patients who underwent Clinical Laboratory Improvement Amendment (CLIA)-certified next generation sequencing (NGS) across histologies. Among these patients, 98.4% had a unique molecular profile, and aside from three primary brain tumor patients with a single genetic lesion (IDH1 R132H), no two patients within a given histology were molecularly identical. Additionally, two sets of patients had identical profiles consisting of two mutations in common and no other anomalies. However, these profiles did not segregate by histology (lung adenocarcinoma-appendiceal cancer (KRAS G12D and GNAS R201C), and lung adenocarcinoma-liposarcoma (CDK4 and MDM2 amplification pairs)). These findings suggest that most advanced tumors are molecular singletons within and between histologies, and that tumors that differ in histology may still nonetheless exhibit identical molecular portraits, albeit rarely.

  12. Isolation and molecular cloning of a fish myeloperoxidase.

    PubMed

    Castro, Rosario; Piazzon, M Carla; Noya, Manuel; Leiro, José M; Lamas, Jesús

    2008-01-01

    Myeloperoxidase (MPO) is a conspicuous enzyme in neutrophils of many fish species. Although the MPO gene has been identified in some fish species, the structure and functions of the protein remain to be determined in these vertebrates. In the present study, we isolated turbot neutrophil MPO from kidney cells by affinity chromatography, with Ulva rigida acidic sulphated polysaccharides (ASP), some of which resemble glycosaminoglycans, and Sepharose. The product obtained, of approximately 150kDa molecular weight and with peroxidase activity, was examined by SDS-page electrophoresis under reduced conditions and immunoblotting, and a single band of about 75kDa was observed. The results obtained suggest that turbot MPO is a dimer and that the band of 75kDa probably corresponds to a monomer generated by treatment of the samples with the reducing agent. The band was analysed by electromatrix-assisted laser desorption ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) and liquid chromatography-electrospray ionization-ion trap mass spectrometry, dynamic exclusion mode (LC-ESI-IT DE), to determine the amino acid composition of some peptides. The peptides obtained were very similar to myeloperoxidases of other organisms, including other fish and mammals, and were used to design the primers for cDNA amplification. A 567bp product was amplified and the deduced amino acid sequence, which contains several putative N-glycosylation and O-glycosylation sites, was compared with other myeloperoxidases. As expected, turbot MPO was more similar to MPO from other fish species (67-86% identity), where the phylogenetic tree obtained agrees with the taxonomic hierarchy, than to MPO from mammals (55-57% identity) and other groups. The results obtained in the present study will also allow functional studies to be carried out with turbot neutrophil MPO enzyme, as well as analysis of MPO gene expression under different stimuli.

  13. QSAR for RNases and theoretic-experimental study of molecular diversity on peptide mass fingerprints of a new Leishmania infantum protein.

    PubMed

    González-Díaz, Humberto; Dea-Ayuela, María A; Pérez-Montoto, Lázaro G; Prado-Prado, Francisco J; Agüero-Chapín, Guillermín; Bolas-Fernández, Francisco; Vazquez-Padrón, Roberto I; Ubeira, Florencio M

    2010-05-01

    The toxicity and low success of current treatments for Leishmaniosis determines the search of new peptide drugs and/or molecular targets in Leishmania pathogen species (L. infantum and L. major). For example, Ribonucleases (RNases) are enzymes relevant to several biologic processes; then, theoretical and experimental study of the molecular diversity of Peptide Mass Fingerprints (PMFs) of RNases is useful for drug design. This study introduces a methodology that combines QSAR models, 2D-Electrophoresis (2D-E), MALDI-TOF Mass Spectroscopy (MS), BLAST alignment, and Molecular Dynamics (MD) to explore PMFs of RNases. We illustrate this approach by investigating for the first time the PMFs of a new protein of L. infantum. Here we report and compare new versus old predictive models for RNases based on Topological Indices (TIs) of Markov Pseudo-Folding Lattices. These group of indices called Pseudo-folding Lattice 2D-TIs include: Spectral moments pi ( k )(x,y), Mean Electrostatic potentials xi ( k )(x,y), and Entropy measures theta ( k )(x,y). The accuracy of the models (training/cross-validation) was as follows: xi ( k )(x,y)-model (96.0%/91.7%)>pi ( k )(x,y)-model (84.7/83.3) > theta ( k )(x,y)-model (66.0/66.7). We also carried out a 2D-E analysis of biological samples of L. infantum promastigotes focusing on a 2D-E gel spot of one unknown protein with M<20, 100 and pI <7. MASCOT search identified 20 proteins with Mowse score >30, but not one >52 (threshold value), the higher value of 42 was for a probable DNA-directed RNA polymerase. However, we determined experimentally the sequence of more than 140 peptides. We used QSAR models to predict RNase scores for these peptides and BLAST alignment to confirm some results. We also calculated 3D-folding TIs based on MD experiments and compared 2D versus 3D-TIs on molecular phylogenetic analysis of the molecular diversity of these peptides. This combined strategy may be of interest in drug development or target identification.

  14. Cluster reactivity experiments: Employing mass spectrometry to investigate the molecular level details of catalytic oxidation reactions

    PubMed Central

    Johnson, Grant E.; Tyo, Eric C.; Castleman, A. W.

    2008-01-01

    Mass spectrometry is the most widely used tool in the study of the properties and reactivity of clusters in the gas phase. In this article, we demonstrate its use in investigating the molecular-level details of oxidation reactions occurring on the surfaces of heterogeneous catalysts via cluster reactivity experiments. Guided ion beam mass spectrometry (GIB-MS) employing a quadrupole–octopole–quadrupole (Q–O–Q) configuration enables mass-selected cluster ions to be reacted with various chemicals, providing insight into the effect of size, stoichiometry, and ionic charge state on the reactivity of catalyst materials. For positively charged tungsten oxide clusters, it is shown that species having the same stoichiometry as the bulk, WO3+, W2O6+, and W3O9+, exhibit enhanced activity and selectivity for the transfer of a single oxygen atom to propylene (C3H6), suggesting the formation of propylene oxide (C3H6O), an important monomer used, for example, in the industrial production of plastics. Furthermore, the same stoichiometric clusters are demonstrated to be active for the oxidation of CO to CO2, a reaction of significance to environmental pollution abatement. The findings reported herein suggest that the enhanced oxidation reactivity of these stoichiometric clusters may be due to the presence of radical oxygen centers (W–O●) with elongated metal–oxygen bonds. The unique insights gained into bulk-phase oxidation catalysis through the application of mass spectrometry to cluster reactivity experiments are discussed. PMID:18687883

  15. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.

    PubMed

    Salmon, Magali S; Bayer, Emmanuelle M F

    2012-01-01

    In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.

  16. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we employ top-down mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  17. Ethnic Identity in Everyday Life: The Influence of Identity Development Status

    PubMed Central

    Yip, Tiffany

    2013-01-01

    The current study explores the intersection of ethnic identity development and significance in a sample of 354 diverse adolescents (mean age 14). Adolescents completed surveys 5 times a day for 1 week. Cluster analyses revealed 4 identity clusters: diffused, foreclosed, moratorium, achieved. Achieved adolescents reported the highest levels of identity salience across situations, followed by moratorium adolescents. Achieved and moratorium adolescents also reported a positive association between identity salience and private regard. For foreclosed and achieved adolescents reporting low levels of centrality, identity salience was associated with lower private regard. For foreclosed and achieved adolescents reporting high levels of centrality, identity salience was associated with higher private regard. PMID:23581701

  18. Teacher Educators: Their Identities, Sub-Identities and Implications for Professional Development

    ERIC Educational Resources Information Center

    Swennen, Anja; Jones, Ken; Volman, Monique

    2010-01-01

    In this article we address the question: "What sub-identities of teacher educators emerge from the research literature about teacher educators and what are the implications of the sub-identities for the professional development of teacher educators?" Like other professional identities, the identity of teacher educators is a construction of various…

  19. Bridging Identities and Disciplines: Advances and Challenges in Understanding Multiple Identities

    ERIC Educational Resources Information Center

    Phinney, Jean S.

    2008-01-01

    The chapters in this volume address the need for a better understanding of the development of intersecting identities over age and context. The chapters provide valuable insights into the development of identities, particularly group identities. They highlight common processes across identities, such as the role of contrast and comparison and the…

  20. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  1. A canary in the coal mine: documenting citizenship and identity in the State of Massachusetts.

    PubMed

    Kwong, Richard M; Miller, Edward Alan

    2010-06-01

    The U.S. federal government requires original documentation of citizenship and identity for applicants to qualify for coverage under Medicaid. The purpose of this investigation is to identify what challenges one state Medicaid agency has faced when implementing this requirement; and to identify what strategies this agency and other interested parties (e.g., providers, community advocates) adopted to help overcome them. The setting for this study is MassHealth, the Medicaid agency for the State of Massachusetts. Data derive from archival documents, direct observation, and in-depth interviews with key stakeholders, including state officials, provider agencies, community health centers, and beneficiary advocates. While MassHealth has met several of the implementation benchmarks put forth in federal regulations and guidance letters, the agency has fallen short in several respects. This includes assisting applicants seeking to enroll in MassHealth and maintaining a seamless documentation submission process. The result has been an increase in application processing time and misinterpretations in the MassHealth community; for example, that legal immigrants should not apply for coverage even though the new requirement does not affect them. Assuming a prominent role in informing and assisting MassHealth applicants has been providers and community-based organizations. Consumer advocacy groups have also worked to streamline the process for demonstrating citizenship and identity. Synergies have been formed between MassHealth and these other organizations as well. Findings suggest a number of lessons for state Medicaid agencies wishing to address the challenges posed by federal requirements to demonstrate citizenship and identity. These include working to ensure the readability, comprehension and non-English translation of materials provided to program applicants. It also includes strengthening the document handling process and forming partnerships with providers, beneficiary

  2. Albumin is synthesized in epididymis and aggregates in a high molecular mass glycoprotein complex involved in sperm-egg fertilization.

    PubMed

    Arroteia, Kélen Fabíola; Barbieri, Mainara Ferreira; Souza, Gustavo Henrique Martins Ferreira; Tanaka, Hiromitsu; Eberlin, Marcos Nogueira; Hyslop, Stephen; Alvares, Lúcia Elvira; Pereira, Luís Antonio Violin Dias

    2014-01-01

    The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.

  3. A High Molecular-Mass Anoxybacillus sp. SK3-4 Amylopullulanase: Characterization and Its Relationship in Carbohydrate Utilization

    PubMed Central

    Kahar, Ummirul Mukminin; Chan, Kok-Gan; Salleh, Madihah Md.; Hii, Siew Mee; Goh, Kian Mau

    2013-01-01

    An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK) was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD)-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC) domains. In addition, the existence of a S-layer homology (SLH) domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring. PMID:23759984

  4. A Dual Identity Approach for Conceptualizing and Measuring Children's Gender Identity.

    PubMed

    Martin, Carol Lynn; Andrews, Naomi C Z; England, Dawn E; Zosuls, Kristina; Ruble, Diane N

    2017-01-01

    The goal was to test a new dual identity perspective on gender identity by asking children (n = 467) in three grades (M age  = 5.7, 7.6, 9.5) to consider the relation of the self to both boys and girls. This change shifted the conceptualization of gender identity from one to two dimensions, provided insights into the meaning and measurement of gender identity, and allowed for revisiting ideas about the roles of gender identity in adjustment. Using a graphical measure to allow assessment of identity in young children and cluster analyses to determine types of identity, it was found that individual and developmental differences in how similar children feel to both genders, and these variations matter for many important personal and social outcomes. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  5. Position-dependent effective masses in semiconductor theory. II

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Mavromatis, H.

    1985-01-01

    A compound semiconductor possessing a slowly varying position-dependent chemical composition is considered. An effective-mass equation governing the dynamics of electron (or hole) motion using the Kohn-Luttinger representation and canonical transformations is derived. It is shown that, as long as the variation in chemical composition may be treated as a perturbation, the effective masses become constant, position-independent quantities. The effective-mass equation derived here is identical to the effective-mass equation derived previously by von Roos (1983), using a Wannier representation.

  6. Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved Shpol'skii spectroscopy

    PubMed Central

    Wilson, Walter B.; Alfarhani, Bassam; Moore, Anthony F. T.; Bisson, Cristina; Wise, Stephen A.; Campiglia, Andres D.

    2016-01-01

    This article presents an alternative approach for the analysis of high molecular weight – polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2 K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 μg L−1 (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples. PMID:26653471

  7. Mass Separation by Metamaterials

    PubMed Central

    Restrepo-Flórez, Juan Manuel; Maldovan, Martin

    2016-01-01

    Being able to manipulate mass flow is critically important in a variety of physical processes in chemical and biomolecular science. For example, separation and catalytic systems, which requires precise control of mass diffusion, are crucial in the manufacturing of chemicals, crystal growth of semiconductors, waste recovery of biological solutes or chemicals, and production of artificial kidneys. Coordinate transformations and metamaterials are powerful methods to achieve precise manipulation of molecular diffusion. Here, we introduce a novel approach to obtain mass separation based on metamaterials that can sort chemical and biomolecular species by cloaking one compound while concentrating the other. A design strategy to realize such metamaterial using homogeneous isotropic materials is proposed. We present a practical case where a mixture of oxygen and nitrogen is manipulated using a metamaterial that cloaks nitrogen and concentrates oxygen. This work lays the foundation for molecular mass separation in biophysical and chemical systems through metamaterial devices. PMID:26912419

  8. The Identity Mapping Project: Demographic differences in patterns of distributed identity.

    PubMed

    Gilbert, Richard L; Dionisio, John David N; Forney, Andrew; Dorin, Philip

    2015-01-01

    The advent of cloud computing and a multi-platform digital environment is giving rise to a new phase of human identity called "The Distributed Self." In this conception, aspects of the self are distributed into a variety of 2D and 3D digital personas with the capacity to reflect any number of combinations of now malleable personality traits. In this way, the source of human identity remains internal and embodied, but the expression or enactment of the self becomes increasingly external, disembodied, and distributed on demand. The Identity Mapping Project (IMP) is an interdisciplinary collaboration between psychology and computer Science designed to empirically investigate the development of distributed forms of identity. Methodologically, it collects a large database of "identity maps" - computerized graphical representations of how active someone is online and how their identity is expressed and distributed across 7 core digital domains: email, blogs/personal websites, social networks, online forums, online dating sites, character based digital games, and virtual worlds. The current paper reports on gender and age differences in online identity based on an initial database of distributed identity profiles.

  9. Interferometric Mapping of Perseus Outflows with MASSES

    NASA Astrophysics Data System (ADS)

    Stephens, Ian; Dunham, Michael; Myers, Philip C.; MASSES Team

    2017-01-01

    The MASSES (Mass Assembly of Stellar Systems and their Evolution with the SMA) survey, a Submillimeter Array (SMA) large-scale program, is mapping molecular lines and continuum emission about the 75 known Class 0/I sources in the Perseus Molecular Cloud. In this talk, I present some of the key results of this project, with a focus on the CO(2-1) maps of the molecular outflows. In particular, I investigate how protostars inherit their rotation axes from large-scale magnetic fields and filamentary structure.

  10. Women Teachers in Hong Kong: Stories of Changing Gendered Identities

    ERIC Educational Resources Information Center

    Luk-Fong, Yuk Yee Pattie; Brennan, Marie

    2010-01-01

    In a time of mass schooling in most parts of the world, the discourse of the "woman primary teacher" is often the subject of discourse. Yet most stories of these women teachers emerge from other (Western) contexts, with little known about how changing education processes affect the gendered identities of women in other cultural settings.…

  11. Neurodegeneration and Identity.

    PubMed

    Strohminger, Nina; Nichols, Shaun

    2015-09-01

    There is a widespread notion, both within the sciences and among the general public, that mental deterioration can rob individuals of their identity. Yet there have been no systematic investigations of what types of cognitive damage lead people to appear to no longer be themselves. We measured perceived identity change in patients with three kinds of neurodegenerative disease: frontotemporal dementia, Alzheimer's disease, and amyotrophic lateral sclerosis. Structural equation models revealed that injury to the moral faculty plays the primary role in identity discontinuity. Other cognitive deficits, including amnesia, have no measurable impact on identity persistence. Accordingly, frontotemporal dementia has the greatest effect on perceived identity, and amyotrophic lateral sclerosis has the least. We further demonstrated that perceived identity change fully mediates the impact of neurodegenerative disease on relationship deterioration between patient and caregiver. Our results mark a departure from theories that ground personal identity in memory, distinctiveness, dispositional emotion, or global mental function. © The Author(s) 2015.

  12. Quantum entanglement of identical particles by standard information-theoretic notions

    PubMed Central

    Lo Franco, Rosario; Compagno, Giuseppe

    2016-01-01

    Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475

  13. Revealing the vectors of cellular identity with single-cell genomics

    PubMed Central

    Wagner, Allon; Regev, Aviv; Yosef, Nir

    2017-01-01

    Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell’s identity and type and of the ways in which they are regulated by the cell’s molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell’s identity, from a taxonomy of discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of ‘basis vectors’, each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges—from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities. PMID:27824854

  14. The Identity and Identity Identification of Teachers

    ERIC Educational Resources Information Center

    Qu, Zhengwei

    2008-01-01

    When we tend to analyze the living conditions of teachers, system arrangement and identity identification can be considered a significant method for analysis. In reality, there appears a phenomenon of overlapping identification in the identity identification of teachers in China, which leads to plural selections in the identification manners of…

  15. Long-term on-farm participatory maize breeding by stratified mass selection retains molecular diversity while improving agronomic performance.

    PubMed

    Alves, Mara Lisa; Belo, Maria; Carbas, Bruna; Brites, Cláudia; Paulo, Manuel; Mendes-Moreira, Pedro; Brites, Carla; Bronze, Maria do Rosário; Šatović, Zlatko; Vaz Patto, Maria Carlota

    2018-02-01

    Modern maize breeding programs gave rise to genetically uniform varieties that can affect maize's capacity to cope with increasing climate unpredictability. Maize populations, genetically more heterogeneous, can evolve and better adapt to a broader range of edaphic-climatic conditions. These populations usually suffer from low yields; it is therefore desirable to improve their agronomic performance while maintaining their valuable diversity levels. With this objective, a long-term participatory breeding/on-farm conservation program was established in Portugal. In this program, maize populations were subject to stratified mass selection. This work aimed to estimate the effect of on-farm stratified mass selection on the agronomic performance, quality, and molecular diversity of two historical maize populations. Multilocation field trials, comparing the initial populations with the derived selection cycles, showed that this selection methodology led to agronomic improvement for one of the populations. The molecular diversity analysis, using microsatellites, revealed that overall genetic diversity in both populations was maintained throughout selection. The comparison of quality parameters between the initial populations and the derived selection cycles was made using kernel from a common-garden experiment. This analysis showed that the majority of the quality traits evaluated progressed erratically over time. In conclusion, this breeding approach, through simple and low-cost methodologies, proved to be an alternative strategy for genetic resources' on-farm conservation.

  16. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Szymanski, Craig; Wang, Zhaoying

    2016-01-01

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics atmore » the molecular level.« less

  17. An efficient HPLC method for the analysis of isomeric purity of technetium-99m-exametazime and identity confirmation using LC-MS.

    PubMed

    Vanderghinste, D; Van Eeckhoudt, M; Terwinghe, C; Mortelmans, L; Bormans, G M; Verbruggen, A M; Vanbilloen, H P

    2003-08-08

    99mTc-exametazime (99mTc-d,l-HMPAO, 99mTc-d,l-hexamethylpropyleneamine oxime) is a neutral rather unstable complex of short-lived 99mTc (t(1/2)=6 h) with the d,l-isomer (mixture of D,D- and L,L-isomers) of a bis-amine bis-oxime tetraligand. It is widely used for measurement of regional cerebral perfusion in nuclear medicine. The meso-isomer (D,L-form) should not be present in a preparation as it is not retained in brain and thus does not provide clinically useful information. Meso-HMPAO is removed from the ligand during the synthesis procedure by repeated recrystallization, but can still be present as impurity in d,l-isomer. Due to the lack of a suitable chromatographic method for analysis of the isomeric purity of 99mTc-exametazime preparations, United States Pharmacopoeia 25 (USP 25) prescribes a biological test in rats for quality control purpose. In this study, we developed a suitable high-performance liquid chromatography (HPLC) method which allows to demonstrate the relative amounts of d,l- and meso-isomer in 99mTc-exametazime and so obviates the need for a biodistribution test in animals as part of the quality control. Due to the low concentrations in which 99mTc-d,l-HMPAO is obtained (typically 2-6 ng/ml), confirmation of the identity of 99mTc-d,l-HMPAO in the monograph of the European Pharmacopoeia is now performed only indirectly by TLC and assessment of its retention time on RP-HPLC. To investigate the potential of radio-LC-MS for assessment of the identity of 99mTc-exametazime, 99mTc-d,l-HMPAO and 99mTc-meso-HMPAO prepared using a Tc-rich eluate were analyzed using a radio-LC-MS system equipped with a time-of-flight mass spectrometer with electrospray ionization. The main peak in the radiometric channel coincided with the molecular ion mass of 99mTc-d,l-HMPAO in the mass spectrometer channel and the measured accurate mass differed only by 0.26 ppm from the theoretical mass. The identity of 99mTc-meso-HMPAO was also confirmed. Thus, radio-LC-MS allowed

  18. SuperIdentity: Fusion of Identity across Real and Cyber Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Sue; Creese, Sadie; Guest, Richard

    Under both benign and malign circumstances, people now manage a spectrum of identities across both real-world and cyber domains. Our belief, however, is that all these instances ultimately track back for an individual to reflect a single 'SuperIdentity'. This paper outlines the assumptions underpinning the SuperIdentity Project, describing the innovative use of data fusion to incorporate novel real-world and cyber cues into a rich framework appropriate for modern identity. The proposed combinatorial model will support a robust identification or authentication decision, with confidence indexed both by the level of trust in data provenance, and the diagnosticity of the identity factorsmore » being used. Additionally, the exploration of correlations between factors may underpin the more intelligent use of identity information so that known information may be used to predict previously hidden information. With modern living supporting the 'distribution of identity' across real and cyber domains, and with criminal elements operating in increasingly sophisticated ways in the hinterland between the two, this approach is suggested as a way forwards, and is discussed in terms of its impact on privacy, security, and the detection of threat.« less

  19. Photoelectron photoion molecular beam spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  20. The Molecular Underpinnings of Centromere Identity and Maintenance

    PubMed Central

    Sekulic, Nikolina; Black, Ben E.

    2012-01-01

    Centromeres direct faithful chromosome inheritance at cell division but are not defined by a conserved DNA sequence. Instead, a specialized form of chromatin containing the histone H3 variant, CENP-A, epigenetically specifies centromere location. We discuss current models where CENP-A serves as the marker for the centromere during the entire cell cycle in addition to generating the foundational chromatin for the kinetochore in mitosis. Recent elegant experiments indicate that engineered arrays of CENP-A-containing nucleosomes are sufficient to serve as the site of kinetochore formation and for seeding centromeric chromatin that self-propagates through cell generations. Finally, recent structural and dynamic studies of CENP-A-containing histone complexes—before and after assembly into nucleosomes—provide models to explain underlying molecular mechanisms at the centromere. PMID:22410197

  1. Does Everyone Have a Musical Identity?: Reflections on "Musical Identities"

    ERIC Educational Resources Information Center

    Gracyk, Theodore

    2004-01-01

    The book, "Musical Identities" (Raymond MacDonald, David Hargreaves, Dorothy Miell, eds.; Oxford and New York: Oxford University Press, 2002) consists of 11 essays on the psychology of music. The editors divided the essays into two groups: those on developing musical identities ("identities in music" involving recognizable…

  2. Korean Adoptee Identity: Adoptive and Ethnic Identity Profiles of Adopted Korean Americans.

    PubMed

    Beaupre, Adam J; Reichwald, Reed; Zhou, Xiang; Raleigh, Elizabeth; Lee, Richard M

    2015-12-01

    Adopted Korean adolescents face the task of grappling with their identity as Koreans and coming to terms with their adoptive status. In order to explore these dual identities, the authors conducted a person-centered study of the identity profiles of 189 adopted Korean American adolescents. Using cluster analytic procedures, the study examined patterns of commitment to ethnic and adoptive identities, revealing six conceptually unique identity clusters. Analyzing the association between these identity profiles and psychological adjustment, the study found that the identity profiles were undifferentiated with respect to behavioral development and risk behaviors. However, group differences were found on life satisfaction, school adjustment, and family functioning. Results confirm the importance of considering the collective impact of multiple social identities on a variety of outcomes. The social implications of the results are discussed. © 2015 Wiley Periodicals, Inc.

  3. Identification of clinically relevant Corynebacterium strains by Api Coryne, MALDI-TOF-mass spectrometry and molecular approaches.

    PubMed

    Alibi, S; Ferjani, A; Gaillot, O; Marzouk, M; Courcol, R; Boukadida, J

    2015-09-01

    We evaluated the Bruker Biotyper matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) for the identification of 97 Corynebacterium clinical in comparison to identification strains by Api Coryne and MALDI-TOF-MS using 16S rRNA gene and hypervariable region of rpoB genes sequencing as a reference method. C. striatum was the predominant species isolated followed by C. amycolatum. There was an agreement between Api Coryne strips and MALDI-TOF-MS identification in 88.65% of cases. MALDI-TOF-MS was unable to differentiate C. aurimucosum from C. minutissimum and C. minutissimum from C. singulare but reliably identify 92 of 97 (94.84%) strains. Two strains remained incompletely identified to the species level by MALDI-TOF-MS and molecular approaches. They belonged to Cellulomonas and Pseudoclavibacter genus. In conclusion, MALDI-TOF-MS is a rapid and reliable method for the identification of Corynebacterium species. However, some limits have been noted and have to be resolved by the application of molecular methods. Copyright © 2015. Published by Elsevier SAS.

  4. Reversed-phase ion-pair ultra-high-performance-liquid chromatography-mass spectrometry for fingerprinting low-molecular-weight heparins.

    PubMed

    Langeslay, Derek J; Urso, Elena; Gardini, Cristina; Naggi, Annamaria; Torri, Giangiacomo; Larive, Cynthia K

    2013-05-31

    Heparin is a complex mixture of sulfated linear carbohydrate polymers. It is widely used as an antithrombotic drug, though it has been shown to have a myriad of additional biological activities. Heparin is often partially depolymerized in order to decrease the average molecular weight, as it has been shown that low molecular weight heparins (LMWH) possess more desirable pharmacokinetic and pharmacodynamic properties than unfractionated heparin (UFH). Due to the prevalence of LMWHs in the market and the emerging availability of generic LMWH products, it is important that analytical methods be developed to ensure the drug quality. This work explores the use of tributylamine (TrBA), dibutylamine (DBA), and pentylamine (PTA) as ion-pairing reagents in conjunction with acetonitrile and methanol modified mobile phases for reversed-phase ion-pairing ultraperformance liquid chromatography coupled to mass spectrometry (RPIP-UPLC-MS) for fingerprint analysis of LMWH preparations. RPIP-UPLC-MS fingerprints are presented and compared for tinzaparinand enoxaparin. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Perspectives on Sexual Identity Formation, Identity Practices, and Identity Transitions Among Men Who Have Sex With Men in India.

    PubMed

    Tomori, Cecilia; Srikrishnan, Aylur K; Ridgeway, Kathleen; Solomon, Sunil S; Mehta, Shruti H; Solomon, Suniti; Celentano, David D

    2018-01-01

    Men who have sex with men (MSM) remain at high risk for HIV infection. Culturally specific sexual identities, encompassing sexual roles, behavior, and appearance, may shape MSM's experiences of stigmatization and discrimination, and affect their vulnerability to HIV. This multi-site qualitative study (n = 363) encompassing 31 focus group discussions (FGDs) and 121 in-depth interviews (IDIs) across 15 sites in India investigated sexual identity formation, identity practices, and transitions and their implications for HIV prevention. IDIs and FGDs were transcribed, translated, and underwent thematic analysis. Our findings document heterogeneous sexual identity formation, with MSM who have more gender nonconforming behaviors or appearance reporting greater family- and community-level disapproval, harassment, violence, and exclusion. Concealing feminine aspects of sexual identities was important in daily life, especially for married MSM. Some participants negotiated their identity practices in accordance with socioeconomic and cultural pressures, including taking on identity characteristics to suit consumer demand in sex work and on extended periods of joining communities of hijras (sometimes called TG or transgender women). Participants also reported that some MSM transition toward more feminine and hijra or transgender women identities, motivated by intersecting desires for feminine gender expression and by social exclusion and economic marginalization. Future studies should collect information on gender nonconformity stigma, and any changes in sexual identity practices or plans for transitions to other identities over time, in relation to HIV risk behaviors and outcomes.

  6. Mass spectrometry in life science research.

    PubMed

    Lehr, Stefan; Markgraf, Daniel

    2016-12-01

    Investigating complex signatures of biomolecules by mass spectrometry approaches has become indispensable in molecular life science research. Nowadays, various mass spectrometry-based omics technologies are available to monitor qualitative and quantitative changes within hundreds or thousands of biological active components, including proteins/peptides, lipids and metabolites. These comprehensive investigations have the potential to decipher the pathophysiology of disease development at a molecular level and to monitor the individual response of pharmacological treatment or lifestyle intervention.

  7. A longitudinal integration of identity styles and educational identity processes in adolescence.

    PubMed

    Negru-Subtirica, Oana; Pop, Eleonora Ioana; Crocetti, Elisabetta

    2017-11-01

    Identity formation is a main adolescent psychosocial developmental task. The complex interconnection between different processes that are at the basis of one's identity is a research and applied intervention priority. In this context, the identity style model focuses on social-cognitive strategies (i.e., informational, normative, and diffuse-avoidant) that individuals can use to deal with identity formation. The 3-factor identity dimensional model examines the interplay between identity processes of commitment, in-depth exploration, and reconsideration of commitment in different life domains. Theoretical integrations between these models have been proposed, but there is a dearth of studies unraveling their longitudinal links in specific identity domains. We addressed this gap by testing in a 3-wave longitudinal study the bidirectional associations between identity styles and educational identity processes measured during 1 academic year. Participants were 1,151 adolescents (58.7% female). Results highlighted that the informational style was related over time to higher levels of educational commitment and in-depth exploration, whereas the diffuse-avoidant style was related to lower levels of commitment and higher levels of reconsideration of commitment. Educational commitment was positively related to the informational and normative styles; in-depth exploration was positively related to the informational style; and reconsideration of commitment was positively related to the diffuse-avoidant style. These relations were not moderated by adolescents' gender and age. Hence, identity styles and educational identity processes reinforce each other during 1 academic year. Theoretical integrations between these models, suggestions for integration with other identity approaches (e.g., narrative identity models), and practical implications are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Bondi mass with a cosmological constant

    NASA Astrophysics Data System (ADS)

    Saw, Vee-Liem

    2018-04-01

    The mass loss of an isolated gravitating system due to energy carried away by gravitational waves with a cosmological constant Λ ∈R was recently worked out, using the Newman-Penrose-Unti approach. In that same article, an expression for the Bondi mass of the isolated system, MΛ, for the Λ >0 case was proposed. The stipulated mass MΛ would ensure that in the absence of any incoming gravitational radiation from elsewhere the emitted gravitational waves must carry away a positive-definite energy. That suggested quantity, however, introduced a Λ -correction term to the Bondi mass MB (where MB is the usual Bondi mass for asymptotically flat spacetimes), which would involve information not just on the state of the system at that moment but ostensibly also its past history. In this paper, we derive the identical mass-loss equation using an integral formula on a hypersurface formulated by Frauendiener based on the Nester-Witten identity and argue that one may adopt a generalization of the Bondi mass with Λ ∈R without any correction, viz., MΛ=MB for any Λ ∈R . Furthermore, with MΛ=MB, we show that for purely quadrupole gravitational waves given off by the isolated system (i.e., when the "Bondi news" σo comprises only the l =2 components of the spherical harmonics with spin-weight 2) the energy carried away is manifestly positive definite for the Λ >0 case. For a general σo having higher multipole moments, this perspicuous property in the Λ >0 case still holds if those l >2 contributions are weak—more precisely, if they satisfy any of the inequalities given in this paper.

  9. Velocity profiles of high-excitation molecular hydrogen lines

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1990-01-01

    Profiles of three lines of molecular hydrogen near 2.2 microns, originating from widely spaced energy levels, have been measured at a resolution of 32 km/s at Peak 1 in the Orion molecular outflow. The three lines, 1 - 0 S(1), 2 - 1 S(1), and 3 - 2 S(3), are found to have identical profiles. This result rules out any significant contribution to the population of the higher energy levels of molecular hydrogen at Peak 1 by fluorescence, and is generally consistent with emission from multiple J-type shocks.

  10. Thermospheric Mass Density Specification: Synthesis of Observations and Models

    DTIC Science & Technology

    2013-10-21

    Simulation Experiments (OSSEs) of the column-integrated ratio of atomic oxygen and molecular nitrogen. Note that OSSEs assimilate, for a given...realistic observing system, synthetically generated observational data often sampled from model simulation results, in place of actually observed values...and molecular oxygen mass mixing ratio). Note that in the TIEGCM the molecular nitrogen mass mixing ratio is specified so that the sum of mixing

  11. Use of elemental and molecular-mass spectrometry to assess the toxicological effects of inorganic mercury in the mouse Mus musculus.

    PubMed

    García-Sevillano, Miguel Angel; García-Barrera, Tamara; Navarro, Francisco; Gailer, Jürgen; Gómez-Ariza, José Luiz

    2014-09-01

    The biochemical response of mice (Mus musculus) to acute subcutaneous inorganic-mercury exposure was assessed over a 14-day period by analyzing cytosolic extracts of the liver, the kidneys, and blood plasma. Integrated metallomic and metabolomic approaches using elemental and molecular-mass spectrometry were used to obtain comprehensive insight into the toxicological effects of mercury regarding its distribution and possible perturbation of metabolic pathways. The metallomic approach involved the use of size-exclusion chromatography (SEC) coupled with multiaffinity chromatography inductively coupled plasma-mass spectrometry (ICP-MS) and isotopic-dilution analysis. The metabolomic approach involved the direct infusion of polar and lipophilic tissue extracts into a mass spectrometer (DIMS) in the positive and negative acquisition mode (ESI+and ESI-). The use of SEC-ICP-MS enabled us to detect changes in the metalloproteome in the liver and the kidneys during the exposure period, and revealed that interactions between Hg and endogenous Cu and Zn adversely affected the homeostasis of these essential metals. The detection of an Hg-Se detoxification product in mouse plasma substantiated the known interaction between Hg and Se in mammals. Use of DIMS in conjunction with partial-least-squares discriminant analysis (PLS-DA) uncovered time-dependent changes of endogenous metabolites over time, corroborated by histopathology investigation of specific mouse tissues. The perturbations of endogenous metabolic profiles were explained in terms of the adverse effect of mercury on energy metabolism (e.g. glycolysis, Krebs cycle), the degradation of membrane phospholipids (apoptosis), and increased levels of specific lipids in plasma. In summary, use of an SEC-ICP-MS-based metallomics approach in conjunction with molecular-mass-spectrometry-based metabolomics is revealed as a promising strategy to more comprehensively investigate the toxicological effects of harmful environmental

  12. Identity Styles and Religiosity: Examining the Role of Identity Commitment

    ERIC Educational Resources Information Center

    Grajales, Tevni E.; Sommers, Brittany

    2016-01-01

    This study observed the role of identity styles, identity commitment, and identity statuses in predicting religiosity in a sample of undergraduate students attending a Seventh-day Adventist university (N = 138). Two structural models were evaluated via path analysis. Results revealed two strong models for the prediction of religiosity. Identity…

  13. Fractionation of Poly(butyl methacrylate) by Molecular Topology Using Multidetector Thermal Field-Flow Fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2015-12-01

    Thermal field-flow fractionation (ThFFF) is an interesting alternative to column-based fractionation being able to address different molecular parameters including size and composition. Until today it has not been shown to be able to fractionate polymers of similar molar masses and chemical compositions by molecular topology. The present study demonstrates that poly(butyl methacrylates) with identical molar masses can be fractionated by ThFFF according to the topology of the butyl group. The influence of the solvent polarity on the thermal diffusion behavior of these polymers is presented and it is shown to have a significant influence on the fractionation of poly(n-butyl methacrylate) and poly(t-butyl methacrylate). Fractionation improves with increasing solvent polarity and solvent polarity may have a greater influence on fractionation than solvent viscosity. It is found that the thermal diffusion coefficient, D(T), as well as the hydrodynamic diameter, D(h), exhibit increasing trends with increasing solvent polarity. The solvent quality has a significant influence on the fractionation. It is found that cyclohexane, being a theta solvent for poly(t-butyl methacrylate) but not for poly(n-butyl methacrylate), significantly improves the fractionation of the samples by decreasing the diffusion rate of the former but not the latter. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    PubMed

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Political, religious and occupational identities in context: placing identity status paradigm in context.

    PubMed

    Solomontos-Kountouri, Olga; Hurry, Jane

    2008-04-01

    This study critically contrasts global identity with domain-specific identities (political, religious and occupational) and considers context and gender as integral parts of identity. In a cross-sectional survey, 1038 Greek Cypriot adolescents (449 boys and 589 girls, mean age 16.8) from the three different types of secondary schools (state, state technical and private) and from different SES completed part of the Extended Objective Measure of Ego Identity Status-2 (EOMEIS-2). The macro-context of Greek Cypriot society is used to understand the role of context in adolescents' identities. Results showed that Greek Cypriot young people were not in the same statuses across their global, political, religious and occupational identities. This heterogeneity in the status of global identity and of each identity domain is partially explained by differences in gender, type of school and SES (socio-economic status). The fact that identity status is found to be reactive to context suggests that developmental stage models of identity status should place greater emphasis on context.

  16. Small renal masses: The molecular markers associated with outcome of patients with kidney tumors 7 cm or less

    NASA Astrophysics Data System (ADS)

    Spirina, L. V.; Usynin, Y. A.; Kondakova, I. V.; Yurmazov, Z. A.; Slonimskaya, E. M.; Pikalova, L. V.

    2016-08-01

    The investigation of molecular mechanisms of tumor cell behavior in small renal masses is required to achieve the better cancer survival. The aim of the study is to find molecular markers associated with outcome of patients with kidney tumors 7 cm or less. A homogenous group of 20 patients T1N0M0-1 (mean age 57.6 ± 2.2 years) with kidney cancer was selected for the present analysis. The content of transcription and growth factors was determined by ELISA. The levels of AKT-mTOR signaling pathway components were measured by Western blotting analysis. The molecular markers associated with unfavorable outcome of patients with kidney tumors 7 cm or less were high levels of NF-kB p50, NF-kB p65, HIF-1, HIF-2, VEGF and CAIX. AKT activation with PTEN loss also correlated with the unfavorable outcome of kidney cancer patients with tumor size 7 cm or less. It is observed that the biological features of kidney cancer could predict the outcome of patients.

  17. Finding Canada outside: Building National Identity through Place-Based Outdoor Education

    ERIC Educational Resources Information Center

    Joyce, Katherine

    2011-01-01

    In a country as diverse as Canada, spread over an incomprehensibly large land mass, the connections between citizens may require more imagination. One way that these connections have been traditionally imagined in Canada is through national myths, including the myth of the wilderness. This myth draws the Canadian identity out of an…

  18. Estimation of terpene content in loblolly pine biomass using a hybrid fast-GC and pyrolysis-molecular beam mass spectrometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harman-Ware, Anne E.; Davis, Mark F.; Peter, Gary F.

    Terpenes can be used as renewable fuels and chemicals and quantifying their presence in biomass is becoming increasingly important. A novel method was developed to rapidly quantify total diterpenoid resin acids using pyrolysis-molecular beam mass spectrometry (py-MBMS). Pine sapling monoterpenes and diterpenoids were extracted from wood using a 1:1 (v/v) mixture of hexane and acetone and analyses were performed before and after extraction to determine the extraction efficiency of the solvent system. The resulting extract was analyzed for total diterpenoid content using py-MBMS and was combined with total monoterpene content that was determined using a low thermal mass modular acceleratedmore » column heater (LTM MACH) fast-GC/FID to measure the terpene content present in pine saplings. Oleoresin extruded from larger pine trees was used to validate mass balance closure of the terpene content in the extract solvent.« less

  19. Estimation of terpene content in loblolly pine biomass using a hybrid fast-GC and pyrolysis-molecular beam mass spectrometry method

    DOE PAGES

    Harman-Ware, Anne E.; Davis, Mark F.; Peter, Gary F.; ...

    2017-01-16

    Terpenes can be used as renewable fuels and chemicals and quantifying their presence in biomass is becoming increasingly important. A novel method was developed to rapidly quantify total diterpenoid resin acids using pyrolysis-molecular beam mass spectrometry (py-MBMS). Pine sapling monoterpenes and diterpenoids were extracted from wood using a 1:1 (v/v) mixture of hexane and acetone and analyses were performed before and after extraction to determine the extraction efficiency of the solvent system. The resulting extract was analyzed for total diterpenoid content using py-MBMS and was combined with total monoterpene content that was determined using a low thermal mass modular acceleratedmore » column heater (LTM MACH) fast-GC/FID to measure the terpene content present in pine saplings. Oleoresin extruded from larger pine trees was used to validate mass balance closure of the terpene content in the extract solvent.« less

  20. Metabolic rate does not calibrate the molecular clock

    PubMed Central

    Lanfear, Robert; Thomas, Jessica A.; Welch, John J.; Brey, Thomas; Bromham, Lindell

    2007-01-01

    Rates of molecular evolution vary widely among lineages, but the causes of this variation remain poorly understood. It has been suggested that mass-specific metabolic rate may be one of the key factors determining the rate of molecular evolution, and that it can be used to derive “corrected” molecular clocks. However, previous studies have been hampered by a paucity of mass-specific metabolic rate data and have been largely limited to vertebrate taxa. Using mass-specific metabolic rate measurements and DNA sequence data for >300 metazoan species for 12 different genes, we find no evidence that mass-specific metabolic rate drives substitution rates. The mechanistic basis of the metabolic rate hypothesis is discussed in light of these findings. PMID:17881572

  1. Molecular identity and prevalence of Cryptococcus spp. nasal carriage in asymptomatic feral cats in Italy.

    PubMed

    Danesi, Patrizia; Furnari, Carmelo; Granato, Anna; Schivo, Alice; Otranto, Domenico; Capelli, Gioia; Cafarchia, Claudia

    2014-10-01

    Cryptococcosis is a life-threatening fungal disease that infects humans and animals worldwide. Inhalation of fungal particles from an environmental source can cause primary infection of the respiratory system. As animals can be considered a sentinel for human diseases, the aim of this study was to determine the prevalence and molecular identity of Cryptococcus spp. in the nasal cavity of feral cats. Cats from 162 urban and rural feral cat colonies were sampled over 3 years. Of 766 cats from which nasal swabs were obtained, Cryptococcus spp. were recovered from 95 (12.6%), including 37 C. magnus (4.8%), 16 C. albidus (2.0%), 15 C. carnescens (1.9%), 12 C. neoformans (1.6%), as well as C. oeirensis (n = 3), C. victoriae (n = 3), C. albidosimilis (n = 2), Filobasidium globisporum (n = 2), C. adeliensis (n = 1), C. flavescens (n = 1), C. dimnae (n = 1), C. saitoi (n = 1), and C. wieringae (n = 1) with prevalence <1%. Thirteen Cryptococcus species were identified by polymerase chain reaction and sequencing of internal transcribed spacer amplicons. Statistical analysis did not identify any predisposing factors that contributed to nasal colonization (eg, sex, age, season, or habitat). Results suggest that asymptomatic feral cats may carry C. neoformans and other Cryptococcus species in their sinonasal cavity. Genotyping of the specific cryptococcal isolates provides a better understanding of the epidemiology of these yeasts. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Identity and Intimacy during Adolescence: Connections among Identity Styles, Romantic Attachment and Identity Commitment

    ERIC Educational Resources Information Center

    Kerpelman, Jennifer L.; Pittman, Joe F.; Cadely, Hans Saint-Eloi; Tuggle, Felicia J.; Harrell-Levy, Marinda K.; Adler-Baeder, Francesca M.

    2012-01-01

    Integration of adult attachment and psychosocial development theories suggests that adolescence is a time when capacities for romantic intimacy and identity formation are co-evolving. The current study addressed direct, indirect and moderated associations among identity and romantic attachment constructs with a diverse sample of 2178 middle…

  3. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horn, R.; Ihmann, K.; Ihmann, J.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecularmore » beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.« less

  4. Shades of American Identity: Implicit Relations between Ethnic and National Identities

    PubMed Central

    Devos, Thierry; Mohamed, Hafsa

    2015-01-01

    The issue of ethnic diversity and national identity in an immigrant nation such as the USA is a recurrent topic of debate. We review and integrate research examining the extent to which the American identity is implicitly granted or denied to members of different ethnic groups. Consistently, European Americans are implicitly conceived of as being more American than African, Asian, Latino, and even Native Americans. This implicit American = White effect emerges when explicit knowledge or perceptions point in the opposite direction. The propensity to deny the American identity to members of ethnic minorities is particularly pronounced when targets (individuals or groups) are construed through the lenses of ethnic identities. Implicit ethnic–national associations fluctuate as a function of perceivers’ ethnic identity and political orientation, but also contextual or situational factors. The tendency to equate being American with being White accounts for the strength of national identification (among European Americans) and behavioral responses including hiring recommendations and voting intentions. The robust propensity to deny the American identity to ethnic minority groups reflects an exclusionary national identity. PMID:27011765

  5. Identity configurations: a new perspective on identity formation in contemporary society.

    PubMed

    Schachter, Elli P

    2004-02-01

    This paper deals with the theoretical construct of "identity configuration." It portrays the different possible ways in which individuals configure the relationship among potentially conflicting identifications in the process of identity formation. In order to explicate these configurations, I analyzed narratives of identity development retold by individuals describing personal identity conflicts that arise within a larger context of sociocultural conflict. Thirty Jewish modern orthodox young adults were interviewed regarding a potentially conflictual identity issue (i.e. their religious and sexual development). Their deliberations, as described in the interviews, were examined, and four different configurations were identified: a configuration based on choice and suppression; an assimilative and synthesizing configuration; a confederacy of identifications; and a configuration based on the thrill of dissonance. The different configurations are illustrated through exemplars, and the possible implications of the concept of "configuration" for identity theory are discussed.

  6. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus

    PubMed Central

    Patterson, David J.; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng

    2015-01-01

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. PMID:25819973

  7. Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs.

    PubMed

    Fischer, Jenny J; Michaelis, Simon; Schrey, Anna K; Graebner, Olivia Graebner nee; Glinski, Mirko; Dreger, Mathias; Kroll, Friedrich; Koester, Hubert

    2010-01-01

    Capture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease. We aimed to understand the molecular basis of the difference of both drugs with respect to side effects. Using Capture Compounds with these drugs as selectivity functions, we were able to unambiguously and reproducibly isolate and identify their known target COMT. Tolcapone Capture Compounds captured five times more proteins than entacapone Capture Compounds. Moreover, tolcapone Capture Compounds isolated mitochondrial and peroxisomal proteins. The major tolcapone-protein interactions occurred with components of the respiratory chain and of the fatty acid beta-oxidation. Previously reported symptoms in tolcapone-treated rats suggested that tolcapone might act as decoupling reagent of the respiratory chain (Haasio et al., 2002b). Our results demonstrate that CCMS is an effective tool for the identification of a drug's potential off targets. It fills a gap in currently used in vitro screens for drug profiling that do not contain all the toxicologically relevant proteins. Thereby, CCMS has the potential to fill a technological need in drug safety assessment and helps reengineer or to reject drugs at an early preclinical stage.

  8. Novel algorithm for simultaneous component detection and pseudo-molecular ion characterization in liquid chromatography-mass spectrometry.

    PubMed

    Zhang, Yufeng; Wang, Xiaoan; Wo, Siukwan; Ho, Hingman; Han, Quanbin; Fan, Xiaohui; Zuo, Zhong

    2015-01-01

    Resolving components and determining their pseudo-molecular ions (PMIs) are crucial steps in identifying complex herbal mixtures by liquid chromatography-mass spectrometry. To tackle such labor-intensive steps, we present here a novel algorithm for simultaneous detection of components and their PMIs. Our method consists of three steps: (1) obtaining a simplified dataset containing only mono-isotopic masses by removal of background noise and isotopic cluster ions based on the isotopic distribution model derived from all the reported natural compounds in dictionary of natural products; (2) stepwise resolving and removing all features of the highest abundant component from current simplified dataset and calculating PMI of each component according to an adduct-ion model, in which all non-fragment ions in a mass spectrum are considered as PMI plus one or several neutral species; (3) visual classification of detected components by principal component analysis (PCA) to exclude possible non-natural compounds (such as pharmaceutical excipients). This algorithm has been successfully applied to a standard mixture and three herbal extract/preparations. It indicated that our algorithm could detect components' features as a whole and report their PMI with an accuracy of more than 98%. Furthermore, components originated from excipients/contaminants could be easily separated from those natural components in the bi-plots of PCA. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Modal identities for multibody elastic spacecraft: An aid to selecting modes for simulation

    NASA Technical Reports Server (NTRS)

    Hablani, Hari B.

    1989-01-01

    The question: Which set of modes furnishes a higher fidelity math model of dynamics of a multibody, deformable spacecraft (hinges-free or hinges-locked vehicle modes) is answered. Two sets of general, discretized, linear equations of motion of a spacecraft with an arbitrary number of deformable appendages, each articulated directly to the core body, are obtained using the above two families of modes. By a comparison of these equations, ten sets of modal identities are constructed which involve modal momenta coefficients and frequencies associated with both classes of modes. The sums of infinite series that appear in the identities are obtained in terms of mass, and first and second moments of inertia of the appendages, core body, and vehicle by using certain basic identities concerning appendage modes. Applying the above identities to a four-body spacecraft, the hinges-locked vehicle modes are found to yield a higher fidelity model than hinges-free modes, because the latter modes have nonconverging modal coefficients; a characteristic proved and illustrated.

  10. High-resolution Myogenic Lineage Mapping by Single-Cell Mass Cytometry

    PubMed Central

    Porpiglia, Ermelinda; Samusik, Nikolay; Ho, Andrew Tri Van; Cosgrove, Benjamin D.; Mai, Thach; Davis, Kara L.; Jager, Astraea; Nolan, Garry P.; Bendall, Sean C.; Fantl, Wendy J.; Blau, Helen M.

    2017-01-01

    Muscle regeneration is a dynamic process during which cell state and identity change over time. A major roadblock has been a lack of tools to resolve a myogenic progression in vivo. Here we capitalize on a transformative technology, single-cell mass cytometry (CyTOF), to identify in vivo skeletal muscle stem cell and previously unrecognized progenitor populations that precede differentiation. We discovered two cell surface markers, CD9 and CD104, whose combined expression enabled in vivo identification and prospective isolation of stem and progenitor cells. Data analysis using the X-shift algorithm paired with single-cell force directed layout visualization, defined a molecular signature of the activated stem cell state (CD44+/CD98+/MyoD+) and delineated a myogenic trajectory during recovery from acute muscle injury. Our studies uncover the dynamics of skeletal muscle regeneration in vivo and pave the way for the elucidation of the regulatory networks that underlie cell-state transitions in muscle diseases and aging. PMID:28414312

  11. A new method for differentiating adducts of common drinking water DBPs from higher molecular weight DBPs in electrospray ionization-mass spectrometry analysis.

    PubMed

    Zhai, Hongyan; Zhang, Xiangru

    2009-05-01

    With the presence of bromide in source waters, numerous brominated disinfection byproducts (DBPs) are formed during chlorination. Many of them are polar/highly polar DBPs and thus hard to be detected by gas chromatography mass spectrometry. Electrospray ionization triple quadrupole mass spectrometry (ESI-MS/MS) is reported to be an effective method in finding polar brominated DBPs by setting precursor ion scans of m/z 79 and 81. But as a soft ionization technique, ESI could form adducts of common DBPs, which may complicate ESI-MS/MS spectra and hinder the efforts in finding new brominated DBPs. In this paper, a new method was developed for differentiating adducts of common DBPs from higher molecular weight DBPs. This method was based on the ESI-MS/MS precursor ion scans of the fragments that correspond to the molecular ions of common DBPs. Adducts of common DBPs were selectively detected in the ESI-MS/MS spectra of a simulated drinking water sample. Moreover, the structures of several new brominated DBPs in the sample were tentatively proposed.

  12. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  13. Analysis of co-eluted isomers of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions via solid-phase nanoextraction and time-resolved Shpol'skii spectroscopy.

    PubMed

    Wilson, Walter B; Campiglia, Andres D

    2011-09-28

    We present an accurate method for the determination of isomers of high-molecular weight polycyclic aromatic hydrocarbons co-eluted in HPLC fractions. The feasibility of this approach is demonstrated with two isomers of molecular weight 302 with identical mass fragmentation patterns, namely dibenzo[a,i]pyrene and naphtho[2,3-a]pyrene. Qualitative and quantitative analysis is carried out via laser-excited time-resolved Shpol'skii spectroscopy at liquid helium temperature. Unambiguous identification of co-eluted isomers is based on their characteristic 4.2 K line-narrowed spectra in n-octane as well as their fluorescence lifetimes. Pre-concentration of HPLC fractions prior to spectroscopic analysis is performed with the aid of gold nanoparticles via an environmentally friendly procedure. In addition to the two co-eluted isomers, the analytical figures of merit of the entire procedure were evaluated with dibenzo[a,l]pyrene, dibenzo[a,h]pyrene and dibenzo[a,e]pyrene. The analytical recoveries from drinking water samples varied between 98.2±5.5 (dibenzo[a,l]pyrene) and 102.7±3.2% (dibenzo[a,i]pyrene). The limits of detection ranged from 51.1 ng L(-1) (naphtho[2,3-a]pyrene) to 154 ng L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its HPLC compatibility makes this approach an attractive alternative for the analysis of co-eluted isomers with identical mass spectra. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. TRACING EMBEDDED STELLAR POPULATIONS IN CLUSTERS AND GALAXIES USING MOLECULAR EMISSION: METHANOL AS A SIGNATURE OF THE LOW-MASS END OF THE IMF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, Lars E.; Bergin, Edwin A., E-mail: lkristensen@cfa.harvard.edu

    2015-07-10

    Most low-mass protostars form in clusters, in particular high-mass clusters; however, how low-mass stars form in high-mass clusters and what the mass distribution is are still open questions both in our own Galaxy and elsewhere. To access the population of forming embedded low-mass protostars observationally, we propose using molecular outflows as tracers. Because the outflow emission scales with mass, the effective contrast between low-mass protostars and their high-mass cousins is greatly lowered. In particular, maps of methanol emission at 338.4 GHz (J = 7{sub 0}–6{sub 0} A{sup +}) in low-mass clusters illustrate that this transition is an excellent probe ofmore » the low-mass population. We present here a model of a forming cluster where methanol emission is assigned to every embedded low-mass protostar. The resulting model image of methanol emission is compared to recent ALMA observations toward a high-mass cluster and the similarity is striking: the toy model reproduces observations to better than a factor of two and suggests that approximately 50% of the total flux originates in low-mass outflows. Future fine-tuning of the model will eventually make it a tool for interpreting the embedded low-mass population of distant regions within our own Galaxy and ultimately higher-redshift starburst galaxies, not just for methanol emission but also water and high-J CO.« less

  15. Molecular cloning of a cDNA coding for GTP cyclohydrolase I from Dictyostelium discoideum.

    PubMed Central

    Witter, K; Cahill, D J; Werner, T; Ziegler, I; Rödl, W; Bacher, A; Gütlich, M

    1996-01-01

    The GTP cyclohydrolase I (GTP-CH) gene of the cellular slime mould Dictyostelium discoideum has been cloned and sequenced. The 855 bp cDNA of this gene contains the open reading frame (ORF) encoding 232 amino acids with a predicted molecular mass of approx. 26 kDa. Southern blot analysis indicated the presence of a single gene for GTP-CH in Dictyostelium. PCR amplification of the ORF from chromosomal DNA and sequencing showed the existence of a 101 bp intron in the GTP-CH gene of Dictyostelium discoideum. The amino acid sequence has 47% and 49% positional identity to those of the human and yeast enzymes respectively. Most of the sequence variation between species is located in the N-terminal part of the protein. The overall identity with the E. coli protein is markedly lower. The enzyme was expressed in E. coli and purified as a 68 kDa fusion protein with the maltose-binding protein of E. coli. GTP-CH of Dictyostelium is heat-stable and showed maximal activity at 60 degrees C. The Km value for GTP is 50 microM. PMID:8870645

  16. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    ) and dwarf irregulars (Im), respectively. We use dynamical models to analyse our kinematic maps. We show that σe traces the bulge fraction, which appears to be the main driver for the observed trends in the dynamical (M/L)JAM and in indicators of the (M/L)pop of the stellar population like Hβ and colour, as well as in the molecular gas fraction. A similar variation along contours of σe is also observed for the mass normalization of the stellar initial mass function (IMF), which was recently shown to vary systematically within the ETGs' population. Our preferred relation has the form log _{10} [(M/L)_stars/(M/L)_Salp]=a+b× log _{10}({σ _e}/130 {km s^{-1}}) with a = -0.12 ± 0.01 and b = 0.35 ± 0.06. Unless there are major flaws in all stellar population models, this trend implies a transition of the mean IMF from Kroupa to Salpeter in the interval log _{10}({σ _e}/{km s}^{-1})≈ 1.9-2.5 (or {σ _e}≈ 90-290 km s-1), with a smooth variation in between, consistently with what was shown in Cappellari et al. The observed distribution of galaxy properties on the MP provides a clean and novel view for a number of previously reported trends, which constitute special two-dimensional projections of the more general four-dimensional parameters trends on the MP. We interpret it as due to a combination of two main effects: (i) an increase of the bulge fraction, which increases σe, decreases Re, and greatly enhance the likelihood for a galaxy to have its star formation quenched, and (ii) dry merging, increasing galaxy mass and Re by moving galaxies along lines of roughly constant σe (or steeper), while leaving the population nearly unchanged.

  17. Rapid fingerprinting and classification of extra virgin olive oil by microjet sampling and extractive electrospray ionization mass spectrometry.

    PubMed

    Law, Wai Siang; Chen, Huan Wen; Balabin, Roman; Berchtold, Christian; Meier, Lukas; Zenobi, Renato

    2010-04-01

    Microjet sampling in combination with extractive electrospray ionization (EESI) mass spectrometry (MS) was applied to the rapid characterization and classification of extra virgin olive oil (EVOO) without any sample pretreatment. When modifying the composition of the primary ESI spray solvent, mass spectra of an identical EVOO sample showed differences. This demonstrates the capability of this technique to extract molecules with varying polarities, hence generating rich molecular information of the EVOO. Moreover, with the aid of microjet sampling, compounds of different volatilities (e.g.E-2-hexenal, trans-trans-2,4-heptadienal, tyrosol and caffeic acid) could be sampled simultaneously. EVOO data was also compared with that of other edible oils. Principal Component Analysis (PCA) was performed to discriminate EVOO and EVOO adulterated with edible oils. Microjet sampling EESI-MS was found to be a simple, rapid (less than 2 min analysis time per sample) and powerful method to obtain MS fingerprints of EVOO without requiring any complicated sample pretreatment steps.

  18. Molecular identification of Mucorales in human tissues: contribution of PCR electrospray-ionization mass spectrometry.

    PubMed

    Alanio, A; Garcia-Hermoso, D; Mercier-Delarue, S; Lanternier, F; Gits-Muselli, M; Menotti, J; Denis, B; Bergeron, A; Legrand, M; Lortholary, O; Bretagne, S

    2015-06-01

    Molecular methods are crucial for mucormycosis diagnosis because cultures are frequently negative, even if microscopy suggests the presence of hyphae in tissues. We assessed PCR/electrospray-ionization mass spectrometry (PCR/ESI-MS) for Mucorales identification in 19 unfixed tissue samples from 13 patients with proven or probable mucormycosis and compared the results with culture, quantitative real-time PCR, 16S-23S rRNA gene internal transcribed spacer region (ITS PCR) and 18S PCR sequencing. Concordance with culture identification to both genus and species levels was higher for PCR/ESI-MS than for the other techniques. Thus, PCR/ESI-MS is suitable for Mucorales identification, within 6 hours, for tissue samples for which microscopy results suggest the presence of hyphae. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Dicer maintains the identity and function of proprioceptive sensory neurons

    PubMed Central

    O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.

    2017-01-01

    Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension

  20. Dicer maintains the identity and function of proprioceptive sensory neurons.

    PubMed

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  1. Personal Identity in Italy

    ERIC Educational Resources Information Center

    Crocetti, Elisabetta; Rabaglietti, Emanuela; Sica, Luigia Simona

    2012-01-01

    This chapter discusses specifics of identity formation in Italian adolescents and emerging adults. We review consistent evidence illustrating that, in Italy, a progressive deferral of transition to adulthood strongly impacts youth identity development by stimulating identity exploration and postponement of identity commitments. We also consider…

  2. Goals and objectives for molecular pathology education in residency programs. The Association for Molecular Pathology Training and Education Committee.

    PubMed

    1999-11-01

    Increasing knowledge of the molecular basis of disease and advances in technology for analyzing nucleic acids and gene products are changing pathology practice. The explosion of information regarding inherited susceptibility to disease is an important aspect of this transformation. Pathology residency programs are incorporating molecular pathology education into their curricula to prepare newly trained pathologists for the future, yet little guidance has been available regarding the important components of molecular pathology training. We present general goals for pathology training programs for molecular pathology education. These include recommendations to pathology residents for the acquisition of both basic knowledge in human genetics and molecular biology and specific skills relevant to microbiology, molecular oncology, genetics, histocompatibility, and identity determination. The importance of residents gaining facility in integrating data gained via nucleic acid based-technology with other laboratory and clinical information available in the care of patients is emphasized.

  3. Influence of heteroatom pre-selection on the molecular formula assignment of soil organic matter components determined by ultrahigh resolution mass spectrometry.

    PubMed

    Ohno, Tsutomu; Ohno, Paul E

    2013-04-01

    Soil organic matter (SOM) is involved in many important ecosystem processes. Ultrahigh resolution mass spectrometry has become a powerful technique in the chemical characterization of SOM, allowing assignment of elemental formulae for thousands of peaks resolved in a typical mass spectrum. We investigated how the addition of N, S, and P heteroatoms in the formula calculation stage of the mass spectra processing workflow affected the formula assignments of mass spectra peaks. Dissolved organic matter extracted from plant biomass and soil as well as the soil humic acid fraction was studied. We show that the addition of S and P into the molecular formula calculation increased peak assignments on average by 17.3 % and 10.7 %, respectively, over the assignments based on the CHON elements frequently reported by SOM researchers using ultrahigh resolution mass spectrometry. The organic matter chemical characteristics as represented by van Krevelen diagrams were appreciably affected by differences in the heteroatom pre-selection for the three organic matter samples investigated, especially so for the wheat-derived dissolved organic matter. These results show that inclusion of both S and P heteroatoms into the formula calculation step, which is not routinely done, is important to obtain a more chemically complete interpretation of the ultrahigh resolution mass spectra of SOM.

  4. Discrimination, racial identity, and cytokine levels among African-American adolescents.

    PubMed

    Brody, Gene H; Yu, Tianyi; Miller, Gregory E; Chen, Edith

    2015-05-01

    Low-grade inflammation, measured by circulating levels of cytokines, is a pathogenic mechanism for several chronic diseases of aging. Identifying factors related to inflammation among African-American youths may yield insights into mechanisms underlying racial disparities in health. The purpose of the study was to determine whether (1) reported racial discrimination from ages 17-19 years forecasts heightened cytokine levels at the age of 22 years and (2) this association is lower for youths with positive racial identities. A longitudinal research design was used with a community sample of 160 African-Americans who were aged 17 years at the beginning of the study. Discrimination and racial identity were measured with questionnaires, and blood was drawn to measure basal cytokine levels. Ordinary least squares regression analyses were used to examine the hypotheses. After controlling for socioeconomic risk, life stress, depressive symptoms, and body mass index, racial discrimination (β = .307; p < .01), racial identity (β = -.179; p < .05), and their interaction (β = -.180; p < .05) forecast cytokine levels. Youths exposed to high levels of racial discrimination evinced elevated cytokine levels 3 years later. This association was not significant for young adults with positive racial identities. High levels of interpersonal racial discrimination and the development of a positive racial identity operate jointly to determine low-grade inflammation levels that have been found to forecast chronic diseases of aging, such as coronary disease and stroke. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  5. Discrimination, Racial Identity, and Cytokine Levels Among African American Adolescents

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Miller, Gregory E.; Chen, Edith

    2015-01-01

    Purpose Low-grade inflammation, measured by circulating levels of cytokines, is a pathogenic mechanism for several chronic diseases of aging. Identifying factors related to inflammation among African American youths may yield insights into mechanisms underlying racial disparities in health. The purpose of the study was to determine whether (a) reported racial discrimination from ages 17 to 19 forecast heightened cytokine levels at age 22, and (b) this association is lower for youths with positive racial identities. Methods A longitudinal research design was used with a community sample of 160 African Americans who were 17 at the beginning of the study. Discrimination and racial identity were measured with questionnaires, and blood was drawn to measure basal cytokine levels. Ordinary least squares regression analyses were used to examine the hypotheses. Results After controlling for socioeconomic risk, life stress, depressive symptoms, and body mass index, racial discrimination (β = .307, p < .01), racial identity (β = −.179, p < .05), and their interaction (β = −.180, p < .05) forecast cytokine levels. Youths exposed to high levels of racial discrimination evinced elevated cytokine levels 3 years later. This association was not significant for young adults with positive racial identities. Conclusions High levels of interpersonal racial discrimination and the development of a positive racial identity operate jointly to determine low-grade inflammation levels that have been found to forecast chronic diseases of aging, such as coronary disease and stroke. PMID:25907649

  6. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    PubMed

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  7. Quantification of neutral human milk oligosaccharides by graphitic carbon HPLC with tandem mass spectrometry

    PubMed Central

    Bao, Yuanwu; Chen, Ceng; Newburg, David S.

    2012-01-01

    Defining the biologic roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon HPLC with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights allowing 11 peaks to be fully resolved and quantified by monitoring mass to charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/mL (R2 > 0.998). Precision (CV) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation. PMID:23068043

  8. The New Mass Media and the Shaping of Amazigh Identity.

    ERIC Educational Resources Information Center

    Almasude, Amar

    This paper describes the Imazighen of North Africa, known in the West as Berbers; threats to their language and culture from schooling and the dominant Arabo-Islamic culture; and recent effects of mass media. As the indigenous people of North Africa, the Imazighen have been invaded frequently during the last 3000 years, but only the Arabs…

  9. Differentiating Positional Isomers of Nucleoside Modifications by Higher-Energy Collisional Dissociation Mass Spectrometry (HCD MS)

    NASA Astrophysics Data System (ADS)

    Jora, Manasses; Burns, Andrew P.; Ross, Robert L.; Lobue, Peter A.; Zhao, Ruoxia; Palumbo, Cody M.; Beal, Peter A.; Addepalli, Balasubrahmanyam; Limbach, Patrick A.

    2018-06-01

    The analytical identification of positional isomers (e.g., 3-, N 4-, 5-methylcytidine) within the > 160 different post-transcriptional modifications found in RNA can be challenging. Conventional liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approaches rely on chromatographic separation for accurate identification because the collision-induced dissociation (CID) mass spectra of these isomers nearly exclusively yield identical nucleobase ions (BH2 +) from the same molecular ion (MH+). Here, we have explored higher-energy collisional dissociation (HCD) as an alternative fragmentation technique to generate more informative product ions that can be used to differentiate positional isomers. LC-MS/MS of modified nucleosides characterized using HCD led to the creation of structure- and HCD energy-specific fragmentation patterns that generated unique fingerprints, which can be used to identify individual positional isomers even when they cannot be separated chromatographically. While particularly useful for identifying positional isomers, the fingerprinting capabilities enabled by HCD also offer the potential to generate HPLC-independent spectral libraries for the rapid analysis of modified ribonucleosides. [Figure not available: see fulltext.

  10. Talkin' Musical Identities Blues

    ERIC Educational Resources Information Center

    Lamb, Roberta

    2004-01-01

    After reading the book "Musical Identities" (Raymond MacDonald, David Hargreaves, Dorothy Miell, eds.; Oxford and New York: Oxford University Press, 2002), this author states she finds it difficult to separate "identities in music" from "music in identities." In fact, she cannot conceive of music apart from identity.…

  11. A Century of Progress in Molecular Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    McLafferty, Fred W.

    2011-07-01

    The first mass spectrum of a molecule was measured by J.J. Thomson in 1910. Mass spectrometry (MS) soon became crucial to the study of isotopes and atomic weights and to the development of atomic weapons for World War II. Its notable applications to molecules began with the quantitative analysis of light hydrocarbons during World War II. When I joined the Dow Chemical Company in 1950, MS was not favored by organic chemists. This situation improved only with an increased understanding of gaseous ion chemistry, which was obtained through the use of extensive reference data. Gas chromatography-MS was developed in 1956, and tandem MS was first used a decade later. In neutralization-reionization MS, an unusual, unstable species is prepared by ion-beam neutralization and characterized by reionization. Electrospray ionization of a protein mixture produces its corresponding ionized molecules. In top-down proteomics, ions from an individual component can be mass separated and subjected to collision-activated and electron-capture dissociation to provide extensive sequence information.

  12. Characterization of N-palmitoylated human growth hormone by in situ liquid-liquid extraction and MALDI tandem mass spectrometry.

    PubMed

    Sachon, Emmanuelle; Nielsen, Per Franklin; Jensen, Ole Nørregaard

    2007-06-01

    Acylation is a common post-translational modification found in secreted proteins and membrane-associated proteins, including signal transducing and regulatory proteins. Acylation is also explored in the pharmaceutical and biotechnology industry to increase the stability and lifetime of protein-based products. The presence of acyl moieties in proteins and peptides affects the physico-chemical properties of these species, thereby modulating protein stability, function, localization and molecular interactions. Characterization of protein acylation is a challenging analytical task, which includes the precise definition of the acylation sites in proteins and determination of the identity and molecular heterogeneity of the acyl moiety at each individual site. In this study, we generated a chemically modified human growth hormone (hGH) by incorporation of a palmitoyl moiety on the N(epsilon) group of a lysine residue. Monoacylation of the hGH protein was confirmed by determination of the intact molecular weight by mass spectrometry. Detailed analysis of protein acylation was achieved by analysis of peptides derived from hGH by protease treatment. However, peptide mass mapping by MALDI MS using trypsin and AspN proteases and standard sample preparation methods did not reveal any palmitoylated peptides. In contrast, in situ liquid-liquid extraction (LLE) performed directly on the MALDI MS metal target enabled detection of acylated peptide candidates by MALDI MS and demonstrated that hGH was N-palmitoylated at multiple lysine residues. MALDI MS and MS/MS analysis of the modified peptides mapped the N-palmitoylation sites to Lys158, Lys172 and Lys140 or Lys145. This study demonstrates the utility of LLE/MALDI MS/MS for mapping and characterization of acylation sites in proteins and peptides and the importance of optimizing sample preparation methods for mass spectrometry-based determination of substoichiometric, multi-site protein modifications.

  13. Human identity versus gender identity: The perception of sexual addiction among Iranian women.

    PubMed

    Moshtagh, Mozhgan; Mirlashari, Jila; Rafiey, Hassan; Azin, Ali; Farnam, Robert

    2017-07-01

    This qualitative study was conducted to explore the images of personal identity from the perspective of women with sexual addiction. The data required for the study were collected through 31 in-depth interviews. Sensing a threat to personal identity, dissatisfaction with gender identity, dissociation with the continuum of identity, and identity reconstruction in response to threat were four of the experiences that were common among women with sexual addiction. Painful emotional experiences appear to have created a sense of gender and sexual conflict or weakness in these women and thus threatened their personal identity and led to their sexual addiction.

  14. High molecular weight non-polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Hourani, Nadim; Kuhnert, Nikolai

    2012-10-15

    High molecular weight non-polar hydrocarbons are still difficult to detect by mass spectrometry. Although several studies have targeted this problem, lack of good self-ionization has limited the ability of mass spectrometry to examine these hydrocarbons. Failure to control ion generation in the atmospheric pressure chemical ionization (APCI) source hampers the detection of intact stable gas-phase ions of non-polar hydrocarbon in mass spectrometry. Seventeen non-volatile non-polar hydrocarbons, reported to be difficult to ionize, were examined by an optimized APCI methodology using nitrogen as the reagent gas. All these analytes were successfully ionized as abundant and intact stable [M-H](+) ions without the use of any derivatization or adduct chemistry and without significant fragmentation. Application of the method to real-life hydrocarbon mixtures like light shredder waste and car motor oil was demonstrated. Despite numerous reports to the contrary, it is possible to ionize high molecular weight non-polar hydrocarbons by APCI, omitting the use of additives. This finding represents a significant step towards extending the applicability of mass spectrometry to non-polar hydrocarbon analyses in crude oil, petrochemical products, waste or food. Copyright © 2012 John Wiley & Sons, Ltd.

  15. De facto molecular weight distributions of glucans by size-exclusion chromatography combined with mass/molar-detection of fluorescence labeled terminal hemiacetals.

    PubMed

    Praznik, Werner; Huber, Anton

    2005-09-25

    A major capability of polysaccharides in aqueous media is their tendency for aggregation and dynamic formation of supermolecular structures. Even extended dissolution processes will not eliminate these structures which dominate many analytical approaches, in particular absolute molecular weight determinations referring to light scattering data. An alternative approach for determination of de facto molecular weight for glucans with free terminal hemiacetal functionality (reducing end group) has been adjusted from carbohydrates for midrange and high-dp glucans: quantitative and stabilized labeling as aminopyridyl-derivatives (AP-glucans) and subsequent analysis of SEC-separated elution profiles based on simultaneously monitored mass and molar fractions by refractive index and fluorescence detection. SEC-DRI/FL of AP-glucans proved as an appropriate approach for determination of de facto molecular weight of constituting glucan molecules even in the presence of supermolecular structures for non-branched (pullulan), branched (dextran), narrow distributed and broad distributed and for mixes of compact and loose packed polymer coils (starch glucan hydrolizate).

  16. Role of high molecular mass organics in colour formation during biological treatment of pulp and paper wastewater.

    PubMed

    Milestone, C B; Stuthridge, T R; Fulthorpe, R R

    2007-01-01

    This paper forms part of series of biological treatment colour behaviour studies. Surveys across a range of mills have observed colour increases in aerated stabilisation basins of 20-45%. Much of the colour formation has been demonstrated to occur in high molecular mass effluent organic constituents (HMM) present in bleach plant effluents. Removing material greater than 3000 Da essentially eliminated the colour forming ability in both E and D stage wastewaters. We have also shown that pulp and paper sludges contain anaerobic bacteria capable of reducing humic like materials. Colour formation was correlated to the anoxic conditions and the availability of readily biodegradable organic constituents during the wastewater treatment process. Overall, these studies suggest that colour formation in pulp and paper biological treatment systems may be caused by anaerobic bacteria using HMM material from the bleaching effluents as an electron acceptor for growth. This leads to the reduction of the material, which in turn leads to non-reversible internal changes, such as intra-molecular polymerisation or formation of chromophoric functional groups.

  17. Identities in Harmony: Gender-Work Identity Integration Moderates Frame Switching in Cognitive Processing

    ERIC Educational Resources Information Center

    Sacharin, Vera; Lee, Fiona; Gonzalez, Richard

    2009-01-01

    Professional women's identity integration--the perceived compatibility between work and gender identities--plays a role in how task or relationship information is processed. Seventy female business school students were primed with either their professional or their gender identity. Business women with higher identity integration showed an…

  18. A map of terminal regulators of neuronal identity in Caenorhabditis elegans

    PubMed Central

    2016-01-01

    Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the

  19. The nucleic acid revolution continues – will forensic biology become forensic molecular biology?

    PubMed Central

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about “when” a crime took place and “what” took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future. PMID:24634675

  20. Liquid-chromatography thermospray mass-spectrometric study of n-acylamino dilactones and 4-butyrolactones derived from Antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.; Ha, S.C.; Rosen, R.T.

    1990-01-01

    Reversed-phase high-performance liquid chromatography—thermospray mass spectrometric (HPLC—MS) characteristics of four sets of lactonic complexes (one 4-butyrolactones and three dilactone complexes) derived from antimycin A were investigated. Three types of 8-hydroxy analogues were also included in the study. Pairs of a–b structures isomeric at the 8-acyloxy ester side-chains were best separated with a high-efficiency octadecylsilica column prior to analysis by HPLC—MS. Mass spectra of the a–b pairs each with identical molecular weights exhibited virtually indistinguishable fragmentation patterns, although their relative intensities were not superimposable. In some cases, HPLC—MS of the title compounds yielded mass chromatograms showing the minor components more easily recognizable than the HPLC—UV counter parts because of the apparent higher ionization efficiency of the minor isomers and increased resolution of subcomponents in the MS system. Under the mobile phase conditions employed, analyte ionization occurred with variable degrees of gas phase ammonolysis depending upon the ammonia concentration of the buffer. Potential applicability of the on-line HPLC—MS technique for the characterization of components in mixtures of antimycin analogues and isomers is demonstrated.

  1. Micro-sociology of mass rampage killings.

    PubMed

    Collins, Randall

    2014-01-01

    Spectacular but very rare violent events such as mass killings by habitual non-criminals cannot be explained by factors which are very widespread, such as possession of firearms, being a victim of bullying, an introvert, or a career failure. A stronger clue is clandestine preparation of attack by one or two individuals, against randomly chosen representatives of a hated collective identity. Mass killers develop a deep back-stage, obsessed with planning their attack, overcoming social inferiority and isolation by an emotion of clandestine excitement.

  2. Thinking identity differently: dynamics of identity in self and institutional boundary

    NASA Astrophysics Data System (ADS)

    Albrecht, Nancy J.; Fortney, Brian S.

    2011-03-01

    In research oriented universities, research and teaching are often viewed as separate. Aydeniz and Hodge present one professor's struggles to synthesize an identity from three different spaces, each with competing values and core beliefs. As Mr. G's story unfolds, and he reflects upon his negotiation between teaching and research responsibilities, we seek to expand the discussion by presenting a caution to identity researchers. The caution pertains to construction of understanding on how identities are created, and the role that individual stories take in how identities are created and enacted. In this forum contribution, we present several questions in the hopes of furthering the discussion on identity research, and our understanding of the conceptualization of institutional boundaries and objectivity, as well as questions on participant involvement in the process of research.

  3. Social Identity in People with Multiple Sclerosis: An Examination of Family Identity and Mood.

    PubMed

    Barker, Alex B; Lincoln, Nadina B; Hunt, Nigel; dasNair, Roshan

    2018-01-01

    Mood disorders are highly prevalent in people with multiple sclerosis (MS). MS causes changes to a person's sense of self. The Social Identity Model of Identity Change posits that group membership can have a positive effect on mood during identity change. The family is a social group implicated in adjustment to MS. The objectives of this study were to investigate whether family identity can predict mood in people with MS and to test whether this prediction was mediated by social support and connectedness to others. This cross-sectional survey of 195 participants comprised measures of family identity, family social support, connectedness to others, and mood. Family identity predicted mood both directly and indirectly through parallel mediators of family social support and connectedness to others. Family identity predicted mood as posited by the Social Identity Model of Identity Change. Involving the family in adjustment to MS could reduce low mood.

  4. Narrating and Performing Identity: Literacy Specialists' Writing Identities

    ERIC Educational Resources Information Center

    McKinney, Marilyn; Giorgis, Cyndi

    2009-01-01

    In this study, we explored ways that four literacy specialists who worked in three schools that were part of one state's Reading Excellence Act (REA) grant constructed their identities as writers and as teachers of writing. We also explored how they negotiated the performance of those identities in different contexts over a two-year period.…

  5. Two new β-glucosidases from ethanol-fermenting fungus Mucor circinelloides NBRC 4572: enzyme purification, functional characterization, and molecular cloning of the gene.

    PubMed

    Kato, Yasuo; Nomura, Taiji; Ogita, Shinjiro; Takano, Maki; Hoshino, Kazuhiro

    2013-12-01

    Two β-glucosidases (BGLs 1 and 2) were purified to homogeneity from the extracellular enzyme preparations of the ethanol-fermenting Mucor circinelloides NBRC 4572 statically grown on rice straw. BGLs 1 and 2 are monomeric glycoproteins whose apparent molecular masses (Ms) are around 78 kDa, which decreased by approximately 10 kDa upon enzymatic deglycosylation. Both BGLs showed similar enzyme characteristics in optimal temperature and pH, stability, and inhibitors. They were active against a wide range of aryl-β-glucosides and β-linked glucose oligosaccharides. Their amino acid sequences shared 81% identity and exhibited less than 60% identity with the known family-3 BGLs. Considering properties such as reduced inhibition by ethanol, glucose, and cellobiose, low transglucosylation activity, wider substrate range, less binding affinity to lignocellulosic materials, and abundant expression, BGL1 is likely to be more suitable for bioethanol production than BGL2 via simultaneous saccharification and fermentation of rice straw with M. circinelloides.

  6. Identity-specific motivation: How distinct identities direct self-regulation across distinct situations.

    PubMed

    Browman, Alexander S; Destin, Mesmin; Molden, Daniel C

    2017-12-01

    Research on self-regulation has traditionally emphasized that people's thoughts and actions are guided by either (a) domain-general motivations that emerge from a cumulative history of life experiences, or (b) situation-specific motivations that emerge in immediate response to the incentives present in a particular context. However, more recent studies have illustrated the importance of understanding the interplay between such domain-general and situation-specific motivations across the types of contexts people regularly encounter. The present research, therefore, expands existing perspectives on self-regulation by investigating how people's identities -the internalized roles, relationships, and social group memberships that define who they are-systemically guide when and how different domain-general motivations are activated within specific types of situations. Using the motivational framework described by regulatory focus theory (Higgins, 1997), Studies 1 and 2 demonstrate that people indeed have distinct, identity-specific motivations that uniquely influence their current self-regulation when such identities are active. Studies 3-5 then begin to explore how identity-specific motivations are situated within people's larger self-concept. Studies 3a and 3b demonstrate that the less compatible people's specific identities, the more distinct are the motivations connected to those identities. Studies 4-5 then provide some initial, suggestive evidence that identity-specific motivations are not a separate, superordinate feature of people's identities that then alter how they pursue any subordinate, identity-relevant traits, but instead that such motivations emerge from the cumulative motivational significance of the subordinate traits to which the identities themselves become attached. Implications for understanding the role of the self-concept in self-regulation are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies aremore » SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.« less

  8. Social Identity and Preferences*

    PubMed Central

    Benjamin, Daniel J.; Choi, James J.; Strickland, A. Joshua

    2009-01-01

    Social identities prescribe behaviors for people. We identify the marginal behavioral effect of these norms on discount rates and risk aversion by measuring how laboratory subjects’ choices change when an aspect of social identity is made salient. When we make ethnic identity salient to Asian-American subjects, they make more patient choices. When we make racial identity salient to black subjects, non-immigrant blacks (but not immigrant blacks) make more patient choices. Making gender identity salient has no effect on intertemporal or risk choices. PMID:20871741

  9. Vitellogenesis in Bufo arenarum: Identification, characterization and immunolocalization of high molecular mass lipovitellin during oogenesis

    PubMed Central

    O’Brien, Emma D.; Salicioni, Ana M.; Cabada, Marcelo O.; Arranz, Silvia E.

    2009-01-01

    Vitellogenin (Vtg), a large lipoglycophosphoprotein, is the most important precursor of the yolk proteins, and the major source of nutrients for the developing embryo in oviparous species. After its uptake by the oocytes, Vtg is converted into lipovitellins (high and light) and phosvitin, which are deposited into crystalline yolk platelets. We describe here the presence of two high molecular mass lipovitellins isoforms in Bufo arenarum mature oocytes with masses of 113 and 100 kDa, respectively. The amino acid sequence analysis of p113 and p100 peptides showed a high sequence homology between both polypeptides and the complete reported sequences of Xenopus laevis vitellogenin. Using specific antibodies, we determined that the Vtg uptake begins early during oogenesis, at the previtellogenic stage, and continues until oocytes have reached their mature status. In addition, we found that large endocytic vesicles mediate Vtg uptake in stage I oocytes, and that the size of the endocytic vesicles declines with oogenesis progression. In terms of the Vtg protein trafficking, we detected the Vtg precursor (190 kDa) in the liver of estradiol-injected females. Finally, we propose a subclassification of B. arenarum stage-II oocytes into three physiologically and morphologically distinct periods (early, mid and late). PMID:19932187

  10. Vitellogenesis in Bufo arenarum: identification, characterization and immunolocalization of high molecular mass lipovitellin during oogenesis.

    PubMed

    O'Brien, Emma D; Salicioni, Ana M; Cabada, Marcelo O; Arranz, Silvia E

    2010-03-01

    Vitellogenin (Vtg), a large lipoglycophosphoprotein, is the most important precursor of the yolk proteins, and the major source of nutrients for the developing embryo in oviparous species. After its uptake by the oocytes, Vtg is converted into lipovitellins (high and light) and phosvitin, which are deposited into crystalline yolk platelets. We describe here the presence of two high molecular mass lipovitellin isoforms in Bufo arenarum mature oocytes with masses of 113 and 100 kDa, respectively. The amino acid sequence analysis of p113 and p100 peptides showed a high sequence homology between both polypeptides and the complete reported sequences of Xenopus laevis vitellogenin. Using specific antibodies, we determined that the Vtg uptake begins early during oogenesis, at the previtellogenic stage, and continues until oocytes have reached their mature status. In addition, we found that large endocytic vesicles mediate Vtg uptake in stage I oocytes, and that the size of the endocytic vesicles declines with oogenesis progression. In terms of the Vtg protein trafficking, we detected the Vtg precursor (190 kDa) in the liver of estradiol-injected females. Finally, we propose a subclassification of B. arenarum stage II oocytes into three physiologically and morphologically distinct periods (early, mid and late). 2009 Elsevier Inc. All rights reserved.

  11. Fullerene Soot in Eastern China Air: Results from Soot Particle-Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ge, X.; Chen, M.; Zhang, Q.; Yu, H.; Sun, Y.; Worsnop, D. R.; Collier, S.

    2015-12-01

    In this work, we present for the first time, the observation and quantification of fullerenes in ambient airborne particulate using an Aerodyne Soot Particle - Aerosol Mass Spectrometer (SP-AMS) deployed during 2015 winter in suburban Nanjing, a megacity in eastern China. The laser desorption and electron impact ionization techniques employed by the SP-AMS allow us to differentiate various fullerenes from other aerosol components. Mass spectrum of the identified fullerene soot is consisted by a series of high molecular weight carbon clusters (up to m/z of 2000 in this study), almost identical to the spectral features of commercially available fullerene soot, both with C70 and C60 clusters as the first and second most abundant species. This type of soot was observed throughout the entire study period, with an average mass loading of 0.18 μg/m3, accounting for 6.4% of the black carbon mass, 1.2% of the total organic mass. Temporal variation and diurnal pattern of fullerene soot are overall similar to those of black carbon, but are clearly different in some periods. Combining the positive matrix factorization, back-trajectory and analyses of the meteorological parameters, we identified the petrochemical industrial plants situating upwind from the sampling site, as the major source of fullerene soot. In this regard, our findings imply the ubiquitous presence of fullerene soot in ambient air of industry-influenced area, especially the oil and gas production regions. This study also offers new insights into the characterization of fullerenes from other environmental samples via the advanced SP-AMS technique.

  12. Tuning relaxation dynamics and mechanical properties of polymer films of identical thickness

    NASA Astrophysics Data System (ADS)

    Kchaou, Marwa; Alcouffe, Pierre; Chandran, Sivasurender; Cassagnau, Philippe; Reiter, Günter; Al Akhrass, Samer

    2018-03-01

    Using dewetting as a characterization tool, we demonstrate that physical properties of thin polymer films can be regulated and tuned by employing variable processing conditions. For different molecular weights, the variable behavior of polystyrene films of identical thickness, prepared along systematically altered pathways, became predictable through a single parameter P , defined as the ratio of time required over time available for the equilibration of polymers. In particular, preparation-induced residual stresses, the corresponding relaxation times as well as the rupture probability of such films (of identical thickness) varied by orders of magnitude following scaling relations with P . Our experimental findings suggest that we can predictably enhance properties and hence maximize the performance of thin polymer films via appropriately chosen processing conditions.

  13. Memory transfer for emotionally valenced words between identities in dissociative identity disorder.

    PubMed

    Huntjens, Rafaële J C; Peters, Madelon L; Woertman, Liesbeth; van der Hart, Onno; Postma, Albert

    2007-04-01

    The present study aimed to determine interidentity retrieval of emotionally valenced words in dissociative identity disorder (DID). Twenty-two DID patients participated together with 25 normal controls and 25 controls instructed to simulate DID. Two wordlists A and B were constructed including neutral, positive and negative material. List A was shown to one identity, while list B was shown to another identity claiming total amnesia for the words learned by the first identity. The identity claiming amnesia was tested for intrusions from list A words into the recall of words from list B and recognition of the words learned by both identities. Test results indicated no evidence of total interidentity amnesia for emotionally valenced material in DID. It is argued that dissociative amnesia in DID may more adequately be described as a disturbance in meta-memory functioning instead of an actual retrieval inability.

  14. Molecular characterization of Hepatozoon canis in dogs from Colombia.

    PubMed

    Vargas-Hernandez, Giovanni; André, Marcos R; Munhoz, Thiago D; Faria, Joice M L; Machado, Rosangela Z; Tinucci-Costa, Mirela

    2012-01-01

    Hepatozoonosis is a tick-borne disease whose transmission to dogs occurs by ingestion of oocysts infected ticks or feeding on preys infested by infected ticks. Until now, there is no previous report of molecular characterization of Hepatozoon sp. in dogs from Colombia. EDTA blood samples were collected from 91 dogs from central-western region of Colombia (Bogotá, Bucaramanga, and Villavicencio cities) and submitted to 18S rRNA Hepatozoon sp. PCR and blood smears confection. Phylogenetic analysis was used to access the identity of Hepatozoon species found in sampled dogs. From 91 sampled dogs, 29 (31.8%) were positive to Hepatozoon sp. (25 dogs were only positive in PCR, 1 was positive only in blood smears, and 3 were positive in both blood smears and PCR). After sequencing, the found Hepatozoon sp. DNA showed 100% of identity with Hepatozoon canis DNA isolates. The phylogenetic tree supported the identity of the found Hepatozoon sp. DNA, showing that the isolates from Colombia were placed in the same clade than other H. canis isolates from Venezuela, Spain, and Taiwan. This is the first molecular detection of H. canis in dogs from Colombia.

  15. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    PubMed

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  16. Method development for compositional analysis of low molecular weight poly(vinyl acetate) by matrix-assisted/laser desorption-mass spectrometry and its application to analysis of chewing gum.

    PubMed

    Tisdale, Evgenia; Wilkins, Charles

    2014-04-11

    The influence of the sample preparation parameters (the choice of the solvent and of the matrix:analyte ratio) was investigated and optimal conditions were established for MALDI mass spectrometry analysis of the pristine low molecular weight polyvinyl acetate (PVAc). It was demonstrated that comparison of polymer's and solvent's Hansen solubility parameters could be used as a guide when choosing the solvent for MALDI sample preparation. The highest intensity PVAc signals were obtained when ethyl acetate was used as a solvent along with the lowest matrix-analyte ratio (2,5-dihydroxybenzoic acid was used as a matrix in all experiments). The structure of the PVAc was established with high accuracy using the matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS) analysis. It was demonstrated that PVAc undergoes unimolecular decomposition by losing acetic acid molecules from its backbone under the conditions of FTMS measurements. Number and weight average molecular weights as well as polydispersity indices were determined with both MALDI-TOF and MALDI-FTMS methods. The sample preparation protocol developed was applied to the analysis of a chewing gum and the molecular weight and structure of the polyvinyl acetate present in the sample were established. Thus, it was shown that optimized MALDI mass spectrometry could be used successfully for characterization of polyvinyl acetate in commercially available chewing gum. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma.

    PubMed

    Oppenheimer, Stacey R; Mi, Deming; Sanders, Melinda E; Caprioli, Richard M

    2010-05-07

    The rate of tumor recurrence post resection suggests that there are underlying molecular changes in nearby histologically normal tissue that go undetected by conventional diagnostic methods that utilize contrast agents and immunohistochemistry. MALDI MS is a molecular technology that has the specificity and sensitivity to monitor and identify molecular species indicative of these changes. The current study utilizes this technology to assess molecular distributions within a tumor and adjacent normal tissue in clear cell renal cell carcinoma biopsies. Results indicate that the histologically normal tissue adjacent to the tumor expresses many of the molecular characteristics of the tumor. Proteins of the mitochondrial electron transport system are examples of such distributions. This work demonstrates the utility of MALDI MS for the analysis of tumor tissue in the elucidation of aberrant molecular changes in the tumor microenvironment.

  18. Advanced solvent based methods for molecular characterization of soil organic matter by high-resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tfaily, Malak M.; Chu, Rosalie K.; Tolic, Nikola

    2015-05-19

    Soil organic matter (SOM) a complex, heterogeneous mixture of above and belowground plant litter and animal and microbial residues at various degrees of decomposition, is a key reservoir for carbon (C) and nutrient biogeochemical cycling in soil based ecosystems. A limited understanding of the molecular composition of SOM limits the ability to routinely decipher chemical processes within soil and predict accurately how terrestrial carbon fluxes will response to changing climatic conditions and land use. To elucidate the molecular-level structure of SOM, we selectively extracted a broad range of intact SOM compounds by a combination of different organic solvents from soilsmore » with a wide range of C content. Our use of Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and a suite of solvents with varying polarity significantly expands the inventory of the types of organic molecules present in soils. Specifically, we found that hexane is selective for lipid-like compounds with very low O:C ratios; water was selective for carbohydrates with high O:C ratios; acetonitrile preferentially extracts lignin, condensed structures, and tannin poly phenolic compounds with O:C > 0.5; methanol has higher selectivity towards compounds characterized with low O:C < 0.5; and hexane, MeOH, ACN and water solvents increase the number and types of organic molecules extracted from soil for a broader range of chemically diverse soil types. Our study of SOM molecules by ESI-FTICR MS revealed new insight into the molecular-level complexity of organics contained in soils.« less

  19. Brand Identity.

    ERIC Educational Resources Information Center

    Lawlor, John

    1998-01-01

    Instead of differentiating themselves by building "brand identities," colleges and universities often focus on competing with price. As a result, fewer and fewer institutions base their identities on value, the combination of quality and price. Methods of building two concepts to influence customers' brand image and brand loyalty are…

  20. Adolescence: Search for an Identity

    ERIC Educational Resources Information Center

    Kasinath, H. M.

    2013-01-01

    James Marcia (1991, 1994, 1999, 2002) expanded on Erikson's theory of identity formation. Specifically, he focused on two essential processes in achieving a mature identity: exploration and commitment. Erikson's observations about identity were extended by Marcia, who described four identity statuses: identity diffusion, foreclosure, moratorium…

  1. A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation.

    PubMed

    Liu, Jing; Yan, Junlin; Yuan, Xuanwei; Liu, Kaiqiang; Peng, Junxia; Fang, Yu

    2008-02-15

    A novel low-molecular-mass gelator containing a redox-active ferrocenyl group, cholesteryl glycinate ferrocenoylamide (CGF), was intentionally designed and prepared. It was demonstrated that the gelator gels 13 out of the 45 solvents tested. Scanning electron microscopy (SEM) measurements revealed that the gelator self-assembled into different supramolecular network structures in different gels. Chemical oxidation of the ferrocenyl residue resulted in phase transition of the gel from gel state to solution state. FTIR and (1)H NMR spectroscopy studies revealed that hydrogen bonding between the gelator molecules in the gel was one of the main driving forces for the formation of the gels.

  2. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  3. Identity and Professional Networking.

    PubMed

    Raj, Medha; Fast, Nathanael J; Fisher, Oliver

    2017-06-01

    Despite evidence that large professional networks afford a host of financial and professional benefits, people vary in how motivated they are to build such networks. To help explain this variance, the present article moves beyond a rational self-interest account to examine the possibility that identity shapes individuals' intentions to network. Study 1 established a positive association between viewing professional networking as identity-congruent and the tendency to prioritize strengthening and expanding one's professional network. Study 2 revealed that manipulating the salience of the self affects networking intentions, but only among those high in networking identity-congruence. Study 3 further established causality by experimentally manipulating identity-congruence to increase networking intentions. Study 4 examined whether identity or self-interest is a better predictor of networking intentions, providing support for the former. These findings indicate that identity influences the networks people develop. Implications for research on the self, identity-based motivation, and professional networking are discussed.

  4. Men as victims: "victim" identities, gay identities, and masculinities.

    PubMed

    Dunn, Peter

    2012-11-01

    The impact and meanings of homophobic violence on gay men's identities are explored with a particular focus on their identities as men and as gay men. Homosexuality can pose a challenge to conventional masculinities, and for some gay men, being victimized on account of sexual orientation reawakens conflicts about their masculinity that they thought they had resolved. Being victimized can reinvoke shame that is rooted in failure or unwillingness to uphold masculine norms. For some gay men, victimization therefore has connotations of nonmasculinity that make being a victim an undesirable status, yet that status must be claimed to obtain a response from criminal justice or victim services. Men who experience homophobic abuse are helped by accepting a victim identity, but only if they can quickly move on from it by reconstructing a masculine gay (nonvictim) identity. This process can be facilitated by agencies such as the police and victim services, provided they help men exercise agency in "fighting back," that is, resisting further victimization and recovering.

  5. High molecular weight glutenin subunits in some durum wheat cultivars investigated by means of mass spectrometric techniques.

    PubMed

    Muccilli, Vera; Lo Bianco, Marisol; Cunsolo, Vincenzo; Saletti, Rosaria; Gallo, Giulia; Foti, Salvatore

    2011-11-23

    The primary structures of high molecular weight glutenin subunits (HMW-GS) of 5 Triticum durum Desf. cultivars (Simeto, Svevo, Duilio, Bronte, and Sant'Agata), largely cultivated in the south of Italy, and of 13 populations of the old spring Sicilian durum wheat landrace Timilia (Triticum durum Desf.) (accession nos. 1, 2, 3, 4, 7, 8, 9, 13, 14, 15, SG1, SG2, and SG3) were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high performance liquid chromatography/nanoelectrospray ionization mass spectrometry (RP-HPLC/nESI-MS/MS). M(r) of the intact proteins determined by MALDI mass spectrometry showed that all the 13 populations of Timilia contained the same two HMW-GS with 75.2 kDa and 86.4 kDa, whereas the other durum wheat cultivars showed the presence of the expected HMW-GS 1By8 and 1Bx7 at 75.1 kDa and 83.1 kDa, respectively. By MALDI mass spectrometry of the tryptic digestion peptides of the isolated HMW-GS of Timilia, the 1Bx and 1By subunits were identified as the NCBInr Acc. No AAQ93629, and AAQ93633, respectively. Sequence verification for HMW-GS 1Bx and 1By both in Simeto and Timilia was obtained by MALDI mass mapping and HPLC/nESI-MSMS of the tryptic peptides. The Bx subunit of Timila presents a sequence similarity of 96% with respect to Simeto, with differences in the insertion of 3 peptides of 5, 9, and 15 amino acids, for a total insertion of 29 amino acids and 25 amino acid substitutions. These differences in the amino acidic sequence account for the determined Δm of 3294 Da between the M(r) of the 1Bx subunits in Timilia and Simeto. Sequence alignment between the two By subunits shows 10 amino acid substitutions and is consistent with the Δm of 148 Da found in the MALDI mass spectra of the intact subunits.

  6. Development of stereotactic mass spectrometry for brain tumor surgery.

    PubMed

    Agar, Nathalie Y R; Golby, Alexandra J; Ligon, Keith L; Norton, Isaiah; Mohan, Vandana; Wiseman, Justin M; Tannenbaum, Allen; Jolesz, Ferenc A

    2011-02-01

    Surgery remains the first and most important treatment modality for the majority of solid tumors. Across a range of brain tumor types and grades, postoperative residual tumor has a great impact on prognosis. The principal challenge and objective of neurosurgical intervention is therefore to maximize tumor resection while minimizing the potential for neurological deficit by preserving critical tissue. To introduce the integration of desorption electrospray ionization mass spectrometry into surgery for in vivo molecular tissue characterization and intraoperative definition of tumor boundaries without systemic injection of contrast agents. Using a frameless stereotactic sampling approach and by integrating a 3-dimensional navigation system with an ultrasonic surgical probe, we obtained image-registered surgical specimens. The samples were analyzed with ambient desorption/ionization mass spectrometry and validated against standard histopathology. This new approach will enable neurosurgeons to detect tumor infiltration of the normal brain intraoperatively with mass spectrometry and to obtain spatially resolved molecular tissue characterization without any exogenous agent and with high sensitivity and specificity. Proof of concept is presented in using mass spectrometry intraoperatively for real-time measurement of molecular structure and using that tissue characterization method to detect tumor boundaries. Multiple sampling sites within the tumor mass were defined for a patient with a recurrent left frontal oligodendroglioma, World Health Organization grade II with chromosome 1p/19q codeletion, and mass spectrometry data indicated a correlation between lipid constitution and tumor cell prevalence. The mass spectrometry measurements reflect a complex molecular structure and are integrated with frameless stereotaxy and imaging, providing 3-dimensional molecular imaging without systemic injection of any agents, which can be implemented for surgical margins delineation of

  7. Mass Spectrometry Approaches for Identification and Quantitation of Therapeutic Monoclonal Antibodies in the Clinical Laboratory.

    PubMed

    Ladwig, Paula M; Barnidge, David R; Willrich, Maria A V

    2017-05-01

    Therapeutic monoclonal antibodies (MAbs) are an important class of drugs used to treat diseases ranging from autoimmune disorders to B cell lymphomas to other rare conditions thought to be untreatable in the past. Many advances have been made in the characterization of immunoglobulins as a result of pharmaceutical companies investing in technologies that allow them to better understand MAbs during the development phase. Mass spectrometry is one of the new advancements utilized extensively by pharma to analyze MAbs and is now beginning to be applied in the clinical laboratory setting. The rise in the use of therapeutic MAbs has opened up new challenges for the development of assays for monitoring this class of drugs. MAbs are larger and more complex than typical small-molecule therapeutic drugs routinely analyzed by mass spectrometry. In addition, they must be quantified in samples that contain endogenous immunoglobulins with nearly identical structures. In contrast to an enzyme-linked immunosorbent assay (ELISA) for quantifying MAbs, mass spectrometry-based assays do not rely on MAb-specific reagents such as recombinant antigens and/or anti-idiotypic antibodies, and time for development is usually shorter. Furthermore, using molecular mass as a measurement tool provides increased specificity since it is a first-order principle unique to each MAb. This enables rapid quantification of MAbs and multiplexing. This review describes how mass spectrometry can become an important tool for clinical chemists and especially immunologists, who are starting to develop assays for MAbs in the clinical laboratory and are considering mass spectrometry as a versatile platform for the task. Copyright © 2017 Ladwig et al.

  8. Beyond Race and Ethnicity: Exploring the Effects of Ethnic Identity and Its Implications for Cancer Communication Efforts.

    PubMed

    Hovick, Shelly R; Holt, Lanier F

    2016-01-01

    Within the health communication literature there has been an increased focus on the use of cultural and identity-based message tailoring to enhance the effectiveness of messages and interventions, particularly among minority and underserved populations. Although this approach may be promising, little is known about the effect of ethnic identity on health behaviors and beliefs or how the effects of ethnic identity differ from those of race or ethnicity. This study is among the first to explore relationships between ethnic identity and cancer-related risk factors, knowledge characteristics, and cognitive and affective appraisals. This study utilized a national online sample of Whites, Blacks, and Hispanics (N = 1,452). Higher ethnic identity was associated with increased physical activity and fruit and vegetable intake and decreased body mass index among Whites (p < .05). Higher ethnic identity was also associated with increased cancer risk knowledge (p < .05) but not cancer risk perceptions or self-efficacy (p > .05). Hispanics and Blacks with higher ethnic identity had greater cancer worry. Our results suggest that the effect of ethnic identity is often distinct from that of race/ethnicity and that health communication interventions based solely on race/ethnicity may not be as effective as those that also take ethnic identity into account.

  9. Exploring medical identity theft.

    PubMed

    Mancilla, Desla; Moczygemba, Jackie

    2009-09-16

    The crime of medical identity theft is a growing concern in healthcare institutions. A mixed-method study design including a two-stage electronic survey, telephone survey follow-up, and on-site observations was used to evaluate current practices in admitting and registration departments to reduce the occurrence of medical identity theft. Survey participants were chief compliance officers in acute healthcare organizations and members of the Health Care Compliance Association. Study results indicate variance in whether or how patient identity is confirmed in healthcare settings. The findings of this study suggest that information systems need to be designed for more efficient identity management. Admitting and registration staff must be trained, and compliance with medical identity theft policies and procedures must be monitored. Finally, biometric identity management solutions should be considered for stronger patient identification verification.

  10. Molecular and Biochemical Characterization of a β-Fructofuranosidase from Xanthophyllomyces dendrorhous▿ †

    PubMed Central

    Linde, Dolores; Macias, Isabel; Fernández-Arrojo, Lucía; Plou, Francisco J.; Jiménez, Antonio; Fernández-Lobato, María

    2009-01-01

    An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained. PMID:19088319

  11. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    PubMed Central

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  12. A Longitudinal Integration of Identity Styles and Educational Identity Processes in Adolescence

    ERIC Educational Resources Information Center

    Negru-Subtirica, Oana; Pop, Eleonora Ioana; Crocetti, Elisabetta

    2017-01-01

    Identity formation is a main adolescent psychosocial developmental task. The complex interconnection between different processes that are at the basis of one's identity is a research and applied intervention priority. In this context, the identity style model focuses on social-cognitive strategies (i.e., informational, normative, and…

  13. Identity as a 'patchwork': aspects of identity among low-income Brazilian travestis.

    PubMed

    Garcia, Marcos Roberto Vieira

    2009-08-01

    This paper is based on findings from a qualitative study that took place within the context of a four-year healthcare programme directed towards low-income travestis in the central area of Sao Paulo, Brazil. Throughout the study the formation of social identity among travestis was investigated through a focus on four axes: gender, body, work and violence. This paper subjects the identity of the travestis to a critical analysis and proposes a view of their sense of self as a 'patchwork' assembled through the assimilation of various fragments of identity common in Brazilian society. The primary identities assimilated by the travestis under study were, in the area of femininity, the submissive woman, the puta ['whore'] and the super-seductive woman and, in the area of masculinity, the viado ['queer'], the malandro ['rascal'] and the bandido ['bandit']. The resulting travesti identity exhibited not only gender ambiguity, but also contradictions among the feminine identities described, as well as among the masculine ones.

  14. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles.

    PubMed

    Tan, Jie; Zhao, Wei-Jie; Yu, Jie-Kai; Ma, Sai; Sailor, Michael J; Wu, Jian-Min

    2012-11-01

    Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Capillary Electrophoresis-Mass Spectrometry for the Analysis of Heparin Oligosaccharides and Low Molecular Weight Heparin.

    PubMed

    Sun, Xiaojun; Lin, Lei; Liu, Xinyue; Zhang, Fuming; Chi, Lianli; Xia, Qiangwei; Linhardt, Robert J

    2016-02-02

    Heparins, highly sulfated, linear polysaccharides also known as glycosaminoglycans, are among the most challenging biopolymers to analyze. Hyphenated techniques in conjunction with mass spectrometry (MS) offer rapid analysis of complex glycosaminoglycan mixtures, providing detailed structural and quantitative data. Previous analytical approaches have often relied on liquid chromatography (LC)-MS, and some have limitations including long separation times, low resolution of oligosaccharide mixtures, incompatibility of eluents, and often require oligosaccharide derivatization. This study examines the analysis of glycosaminoglycan oligosaccharides using a novel electrokinetic pump-based capillary electrophoresis (CE)-MS interface. CE separation and electrospray were optimized using a volatile ammonium bicarbonate electrolyte and a methanol-formic acid sheath fluid. The online analyses of highly sulfated heparin oligosaccharides, ranging from disaccharides to low molecular weight heparins, were performed within a 10 min time frame, offering an opportunity for higher-throughput analysis. Disaccharide compositional analysis as well as top-down analysis of low molecular weight heparin was demonstrated. Using normal polarity CE separation and positive-ion electrospray ionization MS, excellent run-to-run reproducibility (relative standard deviation of 3.6-5.1% for peak area and 0.2-0.4% for peak migration time) and sensitivity (limit of quantification of 2.0-5.9 ng/mL and limit of detection of 0.6-1.8 ng/mL) could be achieved.

  16. Broken identity: the impact of the Holocaust on identity in Romanian and Polish Jews.

    PubMed

    Prot, Katarzyna

    2008-01-01

    The paper is based on interviews conducted with Holocaust survivors in Poland (30 interviews) and Romania (55 interviews). It describes how the Holocaust affected survivor identity. Two aspects of identity are analyzed the sense of personal identity and social identity. Each affects the other but they are largely independent and the trauma of the Holocaust impacted each of them differently. Personal identity seems to be unrelated to either the type of trauma or the survivor's social situation. There are no significant differences in that aspect between Polish and Romanian survivors. Social identity is more related to the survivors' social situation prior to and after the trauma. The sense of identity, both personal and social, is dynamic and changes over time.

  17. High field NMR Spectroscopy and FTICR Mass Spectrometry: Powerful Discovery Tools for the Characterization of Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-04-01

    water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The conformity of key NMR signatures suggests the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. High field (12 T) negative electrospray ionization FTICR mass spectra showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks and average mass from surface to bottom SPE-DOM. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The exhaustive characterization of complex unknowns in marine DOM will enable a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses.

  18. Coming to an Asexual Identity: Negotiating Identity, Negotiating Desire.

    PubMed

    Scherrer, Kristin S

    2008-10-01

    Sexuality is generally considered an important aspect of self-hood. Therefore, individuals who do not experience sexual attraction, and embrace an asexual identity are in a unique position to inform the social construction of sexuality. This study explores the experiences of asexual individuals utilizing open ended Internet survey data from 102 self-identified asexual people. In this paper I describe several distinct aspects of asexual identities: the meanings of sexual, and therefore, asexual behaviors, essentialist characterizations of asexuality, and lastly, interest in romance as a distinct dimension of sexuality. These findings have implications not only for asexual identities, but also for the connections of asexuality with other marginalized sexualities.

  19. Molecular Isotopic Distribution Analysis (MIDAs) with Adjustable Mass Accuracy

    NASA Astrophysics Data System (ADS)

    Alves, Gelio; Ogurtsov, Aleksey Y.; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  20. Molecular Isotopic Distribution Analysis (MIDAs) with adjustable mass accuracy.

    PubMed

    Alves, Gelio; Ogurtsov, Aleksey Y; Yu, Yi-Kuo

    2014-01-01

    In this paper, we present Molecular Isotopic Distribution Analysis (MIDAs), a new software tool designed to compute molecular isotopic distributions with adjustable accuracies. MIDAs offers two algorithms, one polynomial-based and one Fourier-transform-based, both of which compute molecular isotopic distributions accurately and efficiently. The polynomial-based algorithm contains few novel aspects, whereas the Fourier-transform-based algorithm consists mainly of improvements to other existing Fourier-transform-based algorithms. We have benchmarked the performance of the two algorithms implemented in MIDAs with that of eight software packages (BRAIN, Emass, Mercury, Mercury5, NeutronCluster, Qmass, JFC, IC) using a consensus set of benchmark molecules. Under the proposed evaluation criteria, MIDAs's algorithms, JFC, and Emass compute with comparable accuracy the coarse-grained (low-resolution) isotopic distributions and are more accurate than the other software packages. For fine-grained isotopic distributions, we compared IC, MIDAs's polynomial algorithm, and MIDAs's Fourier transform algorithm. Among the three, IC and MIDAs's polynomial algorithm compute isotopic distributions that better resemble their corresponding exact fine-grained (high-resolution) isotopic distributions. MIDAs can be accessed freely through a user-friendly web-interface at http://www.ncbi.nlm.nih.gov/CBBresearch/Yu/midas/index.html.

  1. Molecular Identification of Fungal Contamination in Date Palm Tissue Cultures.

    PubMed

    Abass, Mohammed H

    2017-01-01

    Fungal contamination of in vitro cultures of date palm (Phoenix dactylifera L.) is the major constraint to their initiation and maintenance. Different molecular approaches have been applied successfully to analyze both inter- and intraspecific variation among fungal species as well as determine their identity. This chapter describes step-by-step procedures of molecular identification of fungal contaminants by internal transcribed spacer (ITS) products of the most common fungal contaminants of date palm tissue culture. To begin with, samples of genera Alternaria, Aspergillus, Cladosporium, Epicoccum, and Penicillium were collected to isolate each fungal genus and extraction of genomic DNA. Polymerase chain reactions were accomplished by ITS primers (ITS1 and ITS4) for each fungal contaminant as well as for sequencing. Subsequently, they are analyzed by Basic Local Alignment Search Tool (BLAST) search of ITS sequence to reveal the identity of each individual fungal contaminant species. The molecular identification herein is a rapid and reliable procedure to identify date palm fungal contaminants which is very important in their control and treatment.

  2. Teacher Educator Identity Emerging from Identity as a Person

    ERIC Educational Resources Information Center

    Murphy, M. Shaun; Pinnegar, Stefinee

    2011-01-01

    Experience is fundamental in identity development. In research, concepts and issues around identity are shaped and confronted in moments of reflection. The act of reflection requires a backward attention to engender a present understanding and create future possibilities. Kim and Greene, and Young and Erickson capture this temporal aspect of…

  3. Contorting Identities: Figuring Literacy and Identity in Adolescent Worlds

    ERIC Educational Resources Information Center

    Quinlan, A.; Curtin, A.

    2017-01-01

    This paper explores connections and disconnects between identity and literacy for a group of adolescents in a second level classroom setting. We build on Mead and Vygotsky's conceptualisations of identity formation as an intricate emergent happening constantly formed/reformed by people, in their interactions with others [Mead, G. H. 1999.…

  4. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    PubMed

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  5. Exploring Medical Identity Theft

    PubMed Central

    Mancilla, Desla; Moczygemba, Jackie

    2009-01-01

    The crime of medical identity theft is a growing concern in healthcare institutions. A mixed-method study design including a two-stage electronic survey, telephone survey follow-up, and on-site observations was used to evaluate current practices in admitting and registration departments to reduce the occurrence of medical identity theft. Survey participants were chief compliance officers in acute healthcare organizations and members of the Health Care Compliance Association. Study results indicate variance in whether or how patient identity is confirmed in healthcare settings. The findings of this study suggest that information systems need to be designed for more efficient identity management. Admitting and registration staff must be trained, and compliance with medical identity theft policies and procedures must be monitored. Finally, biometric identity management solutions should be considered for stronger patient identification verification. PMID:20169017

  6. Vernalophrys algivore gen. nov., sp. nov. (Rhizaria: Cercozoa: Vampyrellida), a New Algal Predator Isolated from Outdoor Mass Culture of Scenedesmus dimorphus.

    PubMed

    Gong, Yingchun; Patterson, David J; Li, Yunguang; Hu, Zixuan; Sommerfeld, Milton; Chen, Yongsheng; Hu, Qiang

    2015-06-15

    Microbial contamination is the main cause of loss of biomass yield in microalgal cultures, especially under outdoor environmental conditions. Little is known about the identities of microbial contaminants in outdoor mass algal cultures. In this study, a new genus and species of vampyrellid amoeba, Vernalophrys algivore, is described from cultures of Scenedesmus dimorphus in open raceway ponds and outdoor flat-panel photobioreactors. This vampyrellid amoeba was a significant grazer of Scenedesmus and was frequently associated with a very rapid decline in algal numbers. We report on the morphology, subcellular structure, feeding behavior, molecular phylogeny, and life cycle. The new amoeba resembles Leptophrys in the shape of trophozoites and pseudopodia and in the mechanism of feeding (mainly by engulfment). It possesses two distinctive regions in helix E10_1 (nucleotides 117 to 119, CAA) and E23_1 (nucleotides 522 and 523, AG) of the 18S rRNA gene. It did not form a monophyletic group with Leptophrys in molecular phylogenetic trees. We establish a new genus, Vernalophrys, with the type species Vernalophrys algivore. The occurrence, impact of the amoeba on mass culture of S. dimorphus, and means to reduce vampyrellid amoeba contamination in Scenedesmus cultures are addressed. The information obtained from this study will be useful for developing an early warning system and control measures for preventing or treating this contaminant in microalgal mass cultures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Men as Victims: "Victim" Identities, Gay Identities, and Masculinities

    ERIC Educational Resources Information Center

    Dunn, Peter

    2012-01-01

    The impact and meanings of homophobic violence on gay men's identities are explored with a particular focus on their identities as men and as gay men. Homosexuality can pose a challenge to conventional masculinities, and for some gay men, being victimized on account of sexual orientation reawakens conflicts about their masculinity that they…

  8. Racial Identity Attitudes and Ego Identity Statuses in Dominican and Puerto Rican College Students

    ERIC Educational Resources Information Center

    Sanchez, Delida

    2013-01-01

    This study explored the relation between racial identity attitudes and ego identity statuses in 94 Dominican and Puerto Rican Latino college students in an urban public college setting. Simultaneous regression analyses were conducted to test the relation between racial identity attitudes and ego identity statuses, and findings indicated that…

  9. Simulation of wave packet tunneling of interacting identical particles

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.

    2003-02-01

    We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.

  10. Bridging Identities

    ERIC Educational Resources Information Center

    Deaux, Kay; Burke, Peter

    2010-01-01

    Sociology and psychology are no strangers in the theoretical world of self and identity. Early works by William James (1890), a psychologist, and George Herbert Mead (1934), a sociologist, are often taken as a starting point by investigators in both fields. In more recent years, with the development of a number of identity theories in both fields,…

  11. Components of Sexual Identity

    ERIC Educational Resources Information Center

    Shively, Michael G.; DeCecco, John P.

    1977-01-01

    This paper examines the four components of sexual identity: biological sex, gender identity, social sex-role, and sexual orientation. Theories about the development of each component and how they combine and conflict to form the individual's sexual identity are discussed. (Author)

  12. Unmasking identity dissonance: exploring medical students' professional identity formation through mask making.

    PubMed

    Joseph, Kimera; Bader, Karlen; Wilson, Sara; Walker, Melissa; Stephens, Mark; Varpio, Lara

    2017-04-01

    Professional identity formation is an on-going, integrative process underlying trainees' experiences of medical education. Since each medical student's professional identity formation process is an individual, internal, and often times emotionally charged unconscious experience, it can be difficult for educators to understand each student's unique experience. We investigate if mask making can provide learners and educators the opportunity to explore medical students' professional identity formation experiences. In 2014 and 2015, 30 third year medical students created masks, with a brief accompanying written narrative, to creatively express their medical education experiences. Using a paradigmatic case selection approach, four masks were analyzed using techniques from visual rhetoric and the Listening Guide. The research team clearly detected identity dissonance in each case. Each case provided insights into the unique personal experiences of the dissonance process for each trainee at a particular point in their medical school training. We propose that mask making accompanied by a brief narrative reflection can help educators identify students experiencing identity dissonance, and explore each student's unique experience of that dissonance. The process of making these artistic expressions may also provide a form of intervention that can enable educators to help students navigate professional identity formation and identity dissonance experiences.

  13. Korean Adoptee Identity: Adoptive and Ethnic Identity Profiles of Adopted Korean Americans

    ERIC Educational Resources Information Center

    Beaupre, Adam J.; Reichwald, Reed; Zhou, Xiang; Raleigh, Elizabeth; Lee, Richard M.

    2015-01-01

    Adopted Korean adolescents face the task of grappling with their identity as Koreans and coming to terms with their adoptive status. In order to explore these dual identities, the authors conducted a person-centered study of the identity profiles of 189 adopted Korean American adolescents. Using cluster analytic procedures, the study examined…

  14. Natural low-molecular mass organic compounds with oxidase activity as organocatalysts.

    PubMed

    Nishiyama, Tatsuya; Hashimoto, Yoshiteru; Kusakabe, Hitoshi; Kumano, Takuto; Kobayashi, Michihiko

    2014-12-02

    Organocatalysts, low-molecular mass organic compounds composed of nonmetallic elements, are often used in organic synthesis, but there have been no reports of organocatalysts of biological origin that function in vivo. Here, we report that actinorhodin (ACT), a natural product derived from Streptomyces coelicolor A3(2), acts as a biocatalyst. We purified ACT and assayed its catalytic activity in the oxidation of L-ascorbic acid and L-cysteine as substrates by analytical methods for enzymes. Our findings were as follows: (i) oxidation reactions producing H2O2 proceeded upon addition of ACT to the reaction mixture; (ii) ACT was not consumed during the reactions; and (iii) a small amount (catalytic amount) of ACT consumed an excess amount of the substrates. Even at room temperature, atmospheric pressure, and neutral pH, ACT showed catalytic activity in aqueous solution, and ACT exhibited substrate specificity in the oxidation reactions. These findings reveal ACT to be an organocatalyst. ACT is known to show antibiotic activity, but its mechanism of action remains unknown. On the basis of our results, we propose that ACT kills bacteria by catalyzing the production of toxic levels of H2O2. We also screened various other natural products of bacterial, plant, and animal origins and found that several of the compounds exhibited catalytic activity, suggesting that living organisms produce and use these compounds as biocatalysts in nature.

  15. Teachers' Interpersonal Role Identity

    ERIC Educational Resources Information Center

    van der Want, Anna C.; den Brok, Perry; Beijaard, Douwe; Brekelmans, Mieke; Claessens, Luce C. A.; Pennings, Helena J. M.

    2015-01-01

    This article investigates the link between teachers' appraisal of specific interpersonal situations in classrooms and their more general interpersonal identity standard, which together form their interpersonal role identity. Using semi-structured and video-stimulated interviews, data on teachers' appraisals and interpersonal identity standards…

  16. Fundamental Studies of Molecular Secondary Ion Mass Spectrometry Ionization Probability Measured With Femtosecond, Infrared Laser Post-Ionization

    NASA Astrophysics Data System (ADS)

    Popczun, Nicholas James

    The work presented in this dissertation is focused on increasing the fundamental understanding of molecular secondary ion mass spectrometry (SIMS) ionization probability by measuring neutral molecule behavior with femtosecond, mid-infrared laser post-ionization (LPI). To accomplish this, a model system was designed with a homogeneous organic film comprised of coronene, a polycyclic hydrocarbon which provides substantial LPI signal. Careful consideration was given to signal lost to photofragmentation and undersampling of the sputtered plume that is contained within the extraction volume of the mass spectrometer. This study provided the first ionization probability for an organic compound measured directly by the relative secondary ions and sputtered neutral molecules using a strong-field ionization (SFI) ionization method. The measured value of ˜10-3 is near the upper limit of previous estimations of ionization probability for organic molecules. The measurement method was refined, and then applied to a homogeneous guanine film, which produces protonated secondary ions. This measurement found the probability of protonation to occur to be on the order of 10-3, although with less uncertainty than that of the coronene. Finally, molecular depth profiles were obtained for SIMS and LPI signals as a function of primary ion fluence to determine the effect of ionization probability on the depth resolution of chemical interfaces. The interfaces chosen were organic/inorganic interfaces to limit chemical mixing. It is shown that approaching the inorganic chemical interface can enhance or suppress the ionization probability for the organic molecule, which can lead to artificially sharpened or broadened depths, respectively. Overall, the research described in this dissertation provides new methods for measuring ionization efficiency in SIMS in both absolute and relative terms, and will inform both innovation in the technique, as well as increase understanding of depth

  17. Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.

    PubMed

    Chertov, Oleg; Simpson, John T; Biragyn, Arya; Conrads, Thomas P; Veenstra, Timothy D; Fisher, Robert J

    2005-01-01

    The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.

  18. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency.

    PubMed

    Sato, Toshinori; Nakata, Mitsuhiro; Yang, Zhihong; Torizuka, Yu; Kishimoto, Satoko; Ishihara, Masayuki

    2017-08-01

    Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Mass spectrometry with accelerators.

    PubMed

    Litherland, A E; Zhao, X-L; Kieser, W E

    2011-01-01

    As one in a series of articles on Canadian contributions to mass spectrometry, this review begins with an outline of the history of accelerator mass spectrometry (AMS), noting roles played by researchers at three Canadian AMS laboratories. After a description of the unique features of AMS, three examples, (14)C, (10)Be, and (129)I are given to illustrate the methods. The capabilities of mass spectrometry have been extended by the addition of atomic isobar selection, molecular isobar attenuation, further ion acceleration, followed by ion detection and ion identification at essentially zero dark current or ion flux. This has been accomplished by exploiting the techniques and accelerators of atomic and nuclear physics. In 1939, the first principles of AMS were established using a cyclotron. In 1977 the selection of isobars in the ion source was established when it was shown that the (14)N(-) ion was very unstable, or extremely difficult to create, making a tandem electrostatic accelerator highly suitable for assisting the mass spectrometric measurement of the rare long-lived radioactive isotope (14)C in the environment. This observation, together with the large attenuation of the molecular isobars (13)CH(-) and (12)CH 2(-) during tandem acceleration and the observed very low background contamination from the ion source, was found to facilitate the mass spectrometry of (14)C to at least a level of (14)C/C ~ 6 × 10(-16), the equivalent of a radiocarbon age of 60,000 years. Tandem Accelerator Mass Spectrometry, or AMS, has now made possible the accurate radiocarbon dating of milligram-sized carbon samples by ion counting as well as dating and tracing with many other long-lived radioactive isotopes such as (10)Be, (26)Al, (36)Cl, and (129)I. The difficulty of obtaining large anion currents with low electron affinities and the difficulties of isobar separation, especially for the heavier mass ions, has prompted the use of molecular anions and the search for alternative

  20. Molecular profiling of naphthenic acids in technical mixtures and oil sands process-affected water using polar reversed-phase liquid chromatography-mass spectrometry.

    PubMed

    Han, Jun; Yi, Yi; Lin, Karen; Birks, S Jean; Gibson, John J; Borchers, Christoph H

    2016-12-01

    In this work, a reversed-phase ultra-HPLC (UHPLC) ultrahigh resolution MS (UHRMS) method was evaluated for the comprehensive profiling of NAs containing two O atoms in each molecule (O2NAs; general formula C n H 2n + z O 2 , where n is the number of carbon atoms and z represents hydrogen deficiency). Using a polar cyanopropyl-bonded phase column and negative-ion electrospray ionization mass spectrometric detection at 120,000 FWHM (m/z 400), 187 and 226 O2NA species were found in two naphthenic acid technical mixtures, and 424 and 198 species with molecular formulas corresponding to O2NAs were found in two oil sands process-affected water samples (one from a surface mining operation and the other from a steam-assisted gravity drainage operation), respectively. To our knowledge, these are the highest numbers of molecular compositions of O2NAs that have been profiled thus far in environmental samples. Assignments were based on accurate mass measurements (≤3 ppm) combined with rational molecular formula generation, correlation of chromatographic behavior of O2NA homologues with their elemental compositions, and confirmation with carboxyl group-specific chemical derivatization using 3-nitrophenylhydrazine. Application of this UHPLC-UHRMS method to the quantitation of O2NAs in the surface mining operation-derived water sample showed excellent linearity (R 2 = 0.9999) with external calibration, a linear range of 256-fold in concentration, and quantitation accuracies of 64.9 and 69.4% at two "standard substance" spiking levels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Critical look at physics identity: An operationalized framework for examining race and physics identity

    NASA Astrophysics Data System (ADS)

    Hyater-Adams, Simone; Fracchiolla, Claudia; Finkelstein, Noah; Hinko, Kathleen

    2018-06-01

    Studies on physics identity are appearing more frequently and often responding to increased awareness of the underrepresentation of students of color in physics. In our broader research, we focus our efforts on understanding how racial identity and physics identity are negotiated throughout the experiences of Black physicists. In this paper, we present a Critical Physics Identity framework that can be used to examine racialized physics identity and demonstrate the utility of this framework by analyzing interviews with four physicists. Our framework draws from prior constructs of physics identity and racialized identity and provides operational definitions of six interacting dimensions. In this paper, we present the operationalized constructs, demonstrate how we use these constructs to code narrative data, as well as outline three methods of analysis that may be applied to study systems and structures and their influences on the experiences of Black students.

  2. Identical superdeformed bands in yrast 152Dy: a systematic description

    NASA Astrophysics Data System (ADS)

    Dadwal, Anshul; Mittal, H. M.

    2018-06-01

    The nuclear softness (NS) formula, semiclassical particle rotor model (PRM) and modified exponential model with pairing attenuation are used for the systematic study of the identical superdeformed bands in the A ∼ 150 mass region. These formulae/models are employed to study the identical superdeformed bands relative to the yrast SD band 152Dy(1), {152Dy(1), 151Tb(2)}, {152Dy(1), 151Dy(4)} (midpoint), {152Dy(1), 153Dy(2)} (quarter point), {152Dy(1), 153Dy(3)} (three-quarter point). The parameters, baseline moment of inertia ({{I}}0), alignment (i) and effective pairing parameter (Δ0) are calculated using the least-squares fitting of the γ-ray transitions energies in the NS formula, semiclassical-PRM and modified exponential model with pairing attenuation, respectively. The calculated parameters are found to depend sensitively on the proposed baseline spin (I 0).

  3. Social Identity Change: Shifts in Social Identity during Adolescence

    ERIC Educational Resources Information Center

    Tanti, Chris; Stukas, Arthur A.; Halloran, Michael J.; Foddy, Margaret

    2011-01-01

    This study investigated the proposition that adolescence involves significant shifts in social identity as a function of changes in social context and cognitive style. Using an experimental design, we primed either peer or gender identity with a sample of 380 early- (12-13 years), mid- (15-16 years), and late-adolescents (18-20 years) and then…

  4. Surveying Low-Mass Star Formation with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Dunham, Michael

    2018-01-01

    Large astronomical surveys yield important statistical information that can’t be derived from single-object and small-number surveys. In this talk I will review two recent surveys in low-mass star formation undertaken by the Submillimeter Array (SMA): a millimeter continuum survey of disks surrounding variably accreting young stars, and a complete continuum and molecular line survey of all protostars in the nearby Perseus Molecular Cloud. I will highlight several new insights into the processes by which low-mass stars gain their mass that have resulted from the statistical power of these surveys.

  5. Quadrupole Ion Mass Spectrometer for Masses of 2 to 50 Da

    NASA Technical Reports Server (NTRS)

    Helms, William; Griffin, Timothy P.; Ottens, Andrew; Harrison, Willard

    2005-01-01

    A customized quadrupole ion-trap mass spectrometer (QITMS) has been built to satisfy a need for a compact, rugged instrument for measuring small concentrations of hydrogen, helium, oxygen, and argon in a nitrogen atmosphere. This QITMS can also be used to perform quantitative analyses of other gases within its molecular-mass range, which is 2 to 50 daltons (Da). (More precisely, it can be used to perform quantitative analysis of gases that, when ionized, are characterized by m/Z ratios between 2 and 50, where m is the mass of an ion in daltons and Z is the number of fundamental electric charges on the ion.

  6. Inter-identity autobiographical amnesia in patients with dissociative identity disorder.

    PubMed

    Huntjens, Rafaële J C; Verschuere, Bruno; McNally, Richard J

    2012-01-01

    A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.

  7. Formation of young massive clusters from turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Fujii, Michiko; Portegies Zwart, Simon

    2015-08-01

    We simulate the formation and evolution of young star clusters using smoothed-particle hydrodynamics (SPH) and direct N-body methods. We start by performing SPH simulations of the giant molecular cloud with a turbulent velocity field, a mass of 10^4 to 10^6 M_sun, and a density between 17 and 1700 cm^-3. We continue the SPH simulations for a free-fall time scale, and analyze the resulting structure of the collapsed cloud. We subsequently replace a density-selected subset of SPH particles with stars. As a consequence, the local star formation efficiency exceeds 30 per cent, whereas globally only a few per cent of the gas is converted to stars. The stellar distribution is very clumpy with typically a dozen bound conglomerates that consist of 100 to 10000 stars. We continue to evolve the stars dynamically using the collisional N-body method, which accurately treats all pairwise interactions, stellar collisions and stellar evolution. We analyze the results of the N-body simulations at 2 Myr and 10 Myr. From dense massive molecular clouds, massive clusters grow via hierarchical merging of smaller clusters. The shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with a power-law slope of beta = -1.73 at 2 Myr and beta = -1.67 at 10 Myr, which fits to observed cluster mass function of the Carina region. The superposition of mass functions have a power-law slope of < -2, which fits the observed mass function of star clusters in the Milky Way, M31 and M83. We further find that the mass of the most massive cluster formed in a single molecular cloud with a mass of M_g scales with 6.1 M_g^0.51 which also agrees with recent observation in M51. The molecular clouds which can form massive clusters are much denser than those typical in the Milky Way. The velocity dispersion of such molecular clouds reaches 20 km/s and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603

  8. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed Central

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-01-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease. PMID:8253953

  9. Use of multiple molecular subtyping techniques to investigate a Legionnaires' disease outbreak due to identical strains at two tourist lodges.

    PubMed

    Mamolen, M; Breiman, R F; Barbaree, J M; Gunn, R A; Stone, K M; Spika, J S; Dennis, D T; Mao, S H; Vogt, R L

    1993-10-01

    A multistate outbreak of Legionnaires' disease occurred among nine tour groups of senior citizens returning from stays at one of two lodges in a Vermont resort in October 1987. Interviews and serologic studies of 383 (85%) of the tour members revealed 17 individuals (attack rate, 4.4%) with radiologically documented pneumonia and laboratory evidence of legionellosis. A survey of tour groups staying at four nearby lodges and of Vermont-area medical facilities revealed no additional cases. Environmental investigation of common tour stops revealed no likely aerosol source of Legionella infection outside the lodges. Legionella pneumophila serogroup 1 was isolated from water sources at both implicated lodges, and the monoclonal antibody subtype matched those of the isolates from six patients from whom clinical isolates were obtained. The cultures reacted with monoclonal antibodies MAB1, MAB2, 33G2, and 144C2 to yield a 1,2,5,7 or a Benidorm 030E pattern. The strains were also identical by alloenzyme electrophoresis and DNA ribotyping techniques. The epidemiologic and laboratory data suggest that concurrent outbreaks occurred following exposures to the same L. pneumophila serogroup 1 strain at two separate lodges. Multiple molecular subtyping techniques can provide essential information for epidemiologic investigations of Legionnaires' disease.

  10. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    resonance envelopes typical of an intricate mixture of natural organic matter with noticeable peaks of anomerics and C-aromatics carbon whereas oxygenated aromatics and ketones were of too low abundance to result in noticeable humps at the S/N ratio provided. Integration according to major substructure regimes revealed continual increase of carboxylic acids and ketones from surface to deep marine DOM, reflecting a progressive oxygenation of marine DOM, with concomitant decline of carbohydrate-related substructures. Isolation of marine DOM by means of SPE likely discriminated against carbohydrates but produced materials with beneficial NMR relaxation properties: a substantial fraction of dissolved organic molecules present allowed the acquisition of two-dimensional NMR spectra with exceptional resolution. JRES, COSY and HMBC NMR spectra were capable to depict resolved molecular signatures of compounds exceeding a certain minimum abundance. Here, JRES spectra suffered from limited resolution whereas HMBC spectra were constrained because of limited S/N ratio. Hence, COSY NMR spectra appeared best suited to depict organic complexity in marine DOM. The intensity and number of COSY cross peaks was found maximal for sample FMAX and conformed to about 1500 molecules recognizable in variable abundance. Surface DOM (FISH) produced a slightly (~25%) lesser number of cross peaks with remarkable positional accordance to FMAX (~80% conforming COSY cross peaks were found in FISH and FMAX). With increasing water depth, progressive attenuation of COSY cross peaks was caused by fast transverse NMR relaxation of yet unknown origin. However, most of the faint COSY cross peak positions of deep water DOM conformed to those observed in the surface DOM, suggesting the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. Aliphatic chemical environments of methylene (CH2) and

  11. Responses to professional identity threat: Identity management strategies in incident narratives of health care professionals.

    PubMed

    van Os, Annemiek; de Gilder, Dick; van Dyck, Cathy; Groenewegen, Peter

    2015-01-01

    The purpose of this paper is to explore sensemaking of incidents by health care professionals through an analysis of the role of professional identity in narratives of incidents. Using insights from social identity theory, the authors argue that incidents may create a threat of professional identity, and that professionals make use of identity management strategies in response to this identity threat. The paper draws on a qualitative analysis of incident narratives in 14 semi-structured interviews with physicians, nurses, and residents at a Dutch specialist hospital. The authors used an existing framework of identity management strategies to categorize the narratives. The analysis yielded two main results. First, nurses and residents employed multiple types of identity management strategies simultaneously, which points to the possible benefit of combining different strategies. Second, physicians used the strategy of patronization of other professional groups, a specific form of downward comparison. The authors discuss the implications of the findings in terms of the impact of identity management strategies on the perpetuation of hierarchical differences in health care. The authors argue that efforts to manage incident handling may profit from considering social identity processes in sensemaking of incidents. This is the first study that systematically explores how health care professionals use identity management strategies to maintain a positive professional identity in the face of incidents. This study contributes to research on interdisciplinary cooperation in health care.

  12. Tomboy as protective identity.

    PubMed

    Craig, Traci; Lacroix, Jessica

    2011-01-01

    The tomboy in contemporary U.S. culture is a complex identity, providing meaning to many girls and women. In this article, we argue tomboy as a gendered social identity also provides temporary "protections" to girls and women in three main ways. First, tomboy identity can excuse masculine-typed behavior in girls and women and, in doing so, protect women from presumptions about sexual reputation and sexual orientation. Second, tomboy identities can provide some protection for lesbian girls and women who prefer to not divulge their sexual orientation. And, third, tomboy identity can gain women limited privilege to spaces for which masculinity is an unspoken requirement. The temporary nature of the protections provided to tomboys undermines the ability of tomboys to truly transcend the binary gender system.

  13. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  14. Molecular characterization of low molecular weight dissolved organic matter in water reclamation processes using Orbitrap mass spectrometry.

    PubMed

    Phungsai, Phanwatt; Kurisu, Futoshi; Kasuga, Ikuro; Furumai, Hiroaki

    2016-09-01

    Reclaimed water has recently become an important water source for urban use, but the composition of dissolved organic matter (DOM) in reclaimed water has rarely been characterized at the compound level because of its complexity. In this study, the transformation and changes in composition of low molecular weight DOM in water reclamation processes, where secondary effluent of the municipal wastewater treatment plant was further treated by biofiltration, ozonation and chlorination, were investigated by "unknown" screening analysis using Orbitrap mass spectrometry (Orbitrap MS). The intense ions were detected over an m/z range from 100 to 450. In total, 2412 formulae with various heteroatoms were assigned, and formulae with carbon (C), hydrogen (H) and oxygen (O) only and C, H, O and sulfur (S) were the most abundant species. During biofiltration, CHO-only compounds with relatively high hydrogen to carbon (H/C) ratio or with saturated structure were preferentially removed, while CHOS compounds were mostly removed. Ozonation induced the greatest changes in DOM composition. CHOS compounds were mostly decreased after ozonation while ozone selectively removed CHO compounds with relatively unsaturated structure and produced compounds that were more saturated and with a higher degree of oxidation. After chlorination, 168 chlorine-containing formulae, chlorinated disinfection by-products (DBPs), were additionally detected. Candidate DBP precursors were determined by tracking chlorinated DBPs formed via electrophilic substitution, half of which were generated during the ozonation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Identity Uncertainty and Commitment Making across Adolescence: Five-Year Within-Person Associations Using Daily Identity Reports

    ERIC Educational Resources Information Center

    Becht, Andrik I.; Nelemans, Stefanie A.; Branje, Susan J. T.; Vollebergh, Wilma A. M.; Koot, Hans M.; Meeus, Wim H. J.

    2017-01-01

    A central assumption of identity theory is that adolescents reconsider current identity commitments and explore identity alternatives before they make new commitments in various identity domains (Erikson, 1968; Marcia, 1966). Yet, little empirical evidence is available on how commitment and exploration dynamics of identity formation affect each…

  16. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field.

    PubMed

    Lindahl, Paul A; Moore, Michael J

    2016-08-02

    Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to

  17. Threading "Stitches" to Approach Gender Identity, Sexual Identity, and Difference

    ERIC Educational Resources Information Center

    North, Connie E.

    2010-01-01

    As LGBTQI (lesbian, gay, bisexual, transgender, queer/questioning, and intersex) issues become increasingly integrated into multicultural education discourses, we as educators need to examine the implications of our pedagogies for teaching about gender and sexual identities. This article explores my teaching of non-conforming gender identities in…

  18. Assessing the regional impact of Indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    NASA Astrophysics Data System (ADS)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-01-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass back trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  19. Assessing the regional impact of indonesian biomass burning emissions based on organic molecular tracers and chemical mass balance modeling

    NASA Astrophysics Data System (ADS)

    Engling, G.; He, J.; Betha, R.; Balasubramanian, R.

    2014-08-01

    Biomass burning activities commonly occur in Southeast Asia (SEA), and are particularly intense in Indonesia during the dry seasons. The effect of biomass smoke emissions on air quality in the city state of Singapore was investigated during a haze episode in October 2006. Substantially increased levels of airborne particulate matter (PM) and associated chemical species were observed during the haze period. Specifically, the enhancement in the concentration of molecular tracers for biomass combustion such as levoglucosan by as much as two orders of magnitude and the diagnostic ratios of individual organic compounds indicated that biomass burning emissions caused a regional smoke haze episode due to their long-range transport by prevailing winds. With the aid of air mass backward trajectories and chemical mass balance modeling, large-scale forest and peat fires in Sumatra and Kalimantan were identified as the sources of the smoke aerosol, exerting a significant impact on air quality in downwind areas, such as Singapore.

  20. Molecular and Supermolecular Structure of Commercial Pyrodextrins.

    PubMed

    Le Thanh-Blicharz, Joanna; Błaszczak, Wioletta; Szwengiel, Artur; Paukszta, Dominik; Lewandowicz, Grażyna

    2016-09-01

    Size exclusion chromatography with triple detection as well as infrared spectroscopy studies of commercially available pyrodextrins proved that these molecules are characterized not only by significantly lower molecular mass, in comparison to that of native starch, but also by increased branching. Therefore, pyrodextrins adopt a very compact structure in solution and show Newtonian behavior under shear in spite of their molecular masses of tens of thousands Daltons. The results also indicate that 50% reduction of digestibility of pyrodextrins is, to a minor extent, caused by formation of low-molecular color compounds containing carbonyl functional groups. The main reason is, as postulated in the literature, transglycosidation that leads to decreased occurrence of α-1,4-glycoside bonds in the molecular structure. In the process of dextrinization starch also undergoes changes in supermolecular structure, which, however, have no influence on digestibility. Likewise, the effect of formation of low-molecular colorful compounds containing carbonyl groups is not crucial. © 2016 Institute of Food Technologists®

  1. Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder

    PubMed Central

    Huntjens, Rafaële J. C.; Verschuere, Bruno; McNally, Richard J.

    2012-01-01

    Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Findings Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. Conclusion The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature. PMID:22815769

  2. Monitoring the Interaction between β2-Microglobulin and the Molecular Chaperone αB-crystallin by NMR and Mass Spectrometry

    PubMed Central

    Esposito, Gennaro; Garvey, Megan; Alverdi, Vera; Pettirossi, Fabio; Corazza, Alessandra; Fogolari, Federico; Polano, Maurizio; Mangione, P. Patrizia; Giorgetti, Sofia; Stoppini, Monica; Rekas, Agata; Bellotti, Vittorio; Heck, Albert J. R.; Carver, John A.

    2013-01-01

    The interaction at neutral pH between wild-type and a variant form (R3A) of the amyloid fibril-forming protein β2-microglobulin (β2m) and the molecular chaperone αB-crystallin was investigated by thioflavin T fluorescence, NMR spectroscopy, and mass spectrometry. Fibril formation of R3Aβ2m was potently prevented by αB-crystallin. αB-crystallin also prevented the unfolding and nonfibrillar aggregation of R3Aβ2m. From analysis of the NMR spectra collected at various R3Aβ2m to αB-crystallin molar subunit ratios, it is concluded that the structured β-sheet core and the apical loops of R3Aβ2m interact in a nonspecific manner with the αB-crystallin. Complementary information was derived from NMR diffusion coefficient measurements of wild-type β2m at a 100-fold concentration excess with respect to αB-crystallin. Mass spectrometry acquired in the native state showed that the onset of wild-type β2m oligomerization was effectively reduced by αB-crystallin. Furthermore, and most importantly, αB-crystallin reversibly dissociated β2m oligomers formed spontaneously in aged samples. These results, coupled with our previous studies, highlight the potent effectiveness of αB-crystallin in preventing β2m aggregation at the various stages of its aggregation pathway. Our findings are highly relevant to the emerging view that molecular chaperone action is intimately involved in the prevention of in vivo amyloid fibril formation. PMID:23645685

  3. Analysis of molecular hydrogen absorption toward QSO B0642–5038 for a varying proton-to-electron mass ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagdonaite, J.; Ubachs, W.; Murphy, M. T.

    2014-02-10

    Rovibronic molecular hydrogen (H{sub 2}) transitions at redshift z {sub abs} ≅ 2.659 toward the background quasar B0642–5038 are examined for a possible cosmological variation in the proton-to-electron mass ratio μ. We utilize an archival spectrum from the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (UVES) with a signal-to-noise ratio of ∼35 per 2.5 km s{sup –1} pixel at the observed H{sub 2} wavelengths (335-410 nm). Some 111 H{sub 2} transitions in the Lyman and Werner bands have been identified in the damped Lyα system for which a kinetic gas temperature of ∼84 K and a molecular fraction log fmore » = –2.18 ± 0.08 are determined. The H{sub 2} absorption lines are included in a comprehensive fitting method, which allows us to extract a constraint on a variation of the proton-electron mass ratio Δμ/μ from all transitions at once. We obtain Δμ/μ = (17.1 ± 4.5{sub stat} ± 3.7{sub sys}) × 10{sup –6}. However, we find evidence that this measurement has been affected by wavelength miscalibration errors recently identified in UVES. A correction based on observations of objects with solar-like spectra gives a smaller Δμ/μ value and contributes to a larger systematic uncertainty: Δμ/μ = (12.7 ± 4.5{sub stat} ± 4.2{sub sys}) × 10{sup –6}.« less

  4. Language, Power and Identity

    ERIC Educational Resources Information Center

    Wodak, Ruth

    2012-01-01

    How are identities constructed in discourse? How are national and European identities tied to language and communication? And what role does power have--power in discourse, over discourse and of discourse? This paper seeks to identify and analyse processes of identity construction within Europe and at its boundaries, particularly the diversity of…

  5. Magnetohydrodynamic Models of Molecular Tornadoes

    NASA Astrophysics Data System (ADS)

    Au, Kelvin; Fiege, Jason D.

    2017-07-01

    Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.

  6. Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves

    PubMed Central

    Guo, Xiali; Cui, Meng; Deng, Min; Liu, Xingxing; Huang, Xueyong; Zhang, Xinglei; Luo, Liping

    2017-01-01

    Five chemotypes, the isoborneol-type, camphora-type, cineole-type, linalool-type and borneol-type of Cinnamomum camphora (L.) Presl have been identified at the molecular level based on the multivariate analysis of mass spectral fingerprints recorded from a total of 750 raw leaf samples (i.e., 150 leaves equally collected for each chemotype) using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Both volatile and semi-volatile metabolites of the fresh leaves of C. camphora were simultaneously detected by DAPCI-MS without any sample pretreatment, reducing the analysis time from half a day using conventional methods (e.g., GC-MS) down to 30 s. The pattern recognition results obtained using principal component analysis (PCA) was cross-checked by cluster analysis (CA), showing that the difference visualized by the DAPCI-MS spectral fingerprints was validated with 100% accuracy. The study demonstrates that DAPCI-MS meets the challenging requirements for accurate differentiation of all the five chemotypes of C. camphora leaves, motivating more advanced application of DAPCI-MS in plant science and forestry studies. PMID:28425482

  7. Detection of Fatty Acids from Intact Microorganisms by Molecular Beam Static Secondary Ion Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, Jani Cheri; Lehman, Richard Michael; Bauer, William Francis

    We report the use of a surface analysis approach, static secondary ion mass spectrometry (SIMS) equipped with a molecular (ReO4-) ion primary beam, to analyze the surface of intact microbial cells. SIMS spectra of 28 microorganisms were compared to fatty acid profiles determined by gas chromatographic analysis of transesterfied fatty acids extracted from the same organisms. The results indicate that surface bombardment using the molecular primary beam cleaved the ester linkage characteristic of bacteria at the glycerophosphate backbone of the phospholipid components of the cell membrane. This cleavage enables direct detection of the fatty acid conjugate base of intact microorganismsmore » by static SIMS. The limit of detection for this approach is approximately 107 bacterial cells/cm2. Multivariate statistical methods were applied in a graded approach to the SIMS microbial data. The results showed that the full data set could initially be statistically grouped based upon major differences in biochemical composition of the cell wall. The gram-positive bacteria were further statistically analyzed, followed by final analysis of a specific bacterial genus that was successfully grouped by species. Additionally, the use of SIMS to detect microbes on mineral surfaces is demonstrated by an analysis of Shewanella oneidensis on crushed hematite. The results of this study provide evidence for the potential of static SIMS to rapidly detect bacterial species based on ion fragments originating from cell membrane lipids directly from sample surfaces.« less

  8. Identity: empirical contribution. Changes in the identity integration of adolescents in treatment for personality disorders.

    PubMed

    Feenstra, Dine J; Hutsebaut, Joost; Verheul, Roel; van Limbeek, Jacques

    2014-02-01

    A renewed interest in identity as one of the core markers of personality disorders has been introduced by the DSM-5 Level of Personality Functioning Scale. However, little is known about the utility of the construct of identity in children and adolescents. This study aimed to broaden the knowledge of identity integration as a core component of personality functioning in adolescents. The authors investigated levels of identity integration, as measured by the Severity Indices of Personality Problems (SIPP-118; Verheul et al., 2008), in adolescents in both normal (n = 406) and clinical populations (n = 285). Furthermore, changes in levels of identity integration during treatment were investigated in a clinical subsample (n = 76). Levels of identity integration were not associated with age. They were, however, associated with the absence or presence of personality pathology. Most adolescents receiving inpatient psychotherapy gradually changed toward more healthy levels of identity integration; a significant number, however, remained at maladaptive levels of identity functioning after intensive psychotherapy.

  9. Leveraging Web-Based Environments for Mass Atrocity Prevention

    ERIC Educational Resources Information Center

    Harding, Tucker B.; Whitlock, Mark A.

    2013-01-01

    A growing literature exploring large-scale, identity-based political violence, including mass killing and genocide, debates the plausibility of, and prospects for, early warning and prevention. An extension of the debate involves the prospects for creating educational experiences that result in more sophisticated analytical products that enhance…

  10. 7 CFR 52.771 - Identity.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Identity. 52.771 Section 52.771 Agriculture... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Identity and Grades § 52.771 Identity. Canned red tart pitted cherries is the product represented as defined in the standard of identity...

  11. 7 CFR 52.771 - Identity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Identity. 52.771 Section 52.771 Agriculture... Cherries 1 Identity and Grades § 52.771 Identity. Canned red tart pitted cherries is the product represented as defined in the standard of identity for canned cherries (21 CFR 145.125(a)), issued pursuant to...

  12. 7 CFR 52.771 - Identity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Identity. 52.771 Section 52.771 Agriculture... Cherries 1 Identity and Grades § 52.771 Identity. Canned red tart pitted cherries is the product represented as defined in the standard of identity for canned cherries (21 CFR 145.125(a)), issued pursuant to...

  13. Analysis of iminosugars and other low molecular weight carbohydrates in Aglaonema sp. extracts by hydrophilic interaction liquid chromatography coupled to mass spectrometry.

    PubMed

    Rodríguez-Sánchez, S; García-Sarrió, M J; Quintanilla-López, J E; Soria, A C; Sanz, M L

    2015-12-04

    A method by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS(2)) has been successfully developed for the simultaneous analysis of bioactive iminosugars and other low molecular weight carbohydrates in Aglaonema leaf extracts. Among other experimental chromatographic conditions, mobile phase eluents, additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry provided for target carbohydrates. In general, narrow peaks (wh: 0.2-0.6min) with good symmetry (As: 0.9-1.3) and excellent resolution (Rs>1.8) were obtained for iminosugars using an acetonitrile:water gradient with 5mM ammonium acetate in both eluents at 55°C. Tandem mass spectra were used to confirm the presence of previously detected iminosugars in Aglaonema extracts and to tentatively identify for the first time others such as miglitol isomer, glycosyl-miglitol isomers and glycosyl-DMDP isomers. Concentration of total iminosugars varied from 1.35 to 2.84mgg(-1) in the extracts of the different Aglaonema samples analyzed. To the best of our knowledge, this is the first time that a HILIC-MS(2) method has been proposed for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates of Aglaonema sp. extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Structure Determination of Natural Products by Mass Spectrometry.

    PubMed

    Biemann, Klaus

    2015-01-01

    I review laboratory research on the development of mass spectrometric methodology for the determination of the structure of natural products of biological and medical interest, which I conducted from 1958 to the end of the twentieth century. The methodology was developed by converting small peptides to their corresponding polyamino alcohols to make them amenable to mass spectrometry, thereby making it applicable to whole proteins. The structures of alkaloids were determined by analyzing the fragmentation of a known alkaloid and then using the results to deduce the structures of related compounds. Heparin-like structures were investigated by determining their molecular weights from the mass of protonated molecular ions of complexes with highly basic, synthetic peptides. Mass spectrometry was also employed in the analysis of lunar material returned by the Apollo missions. A miniaturized gas chromatograph mass spectrometer was sent to Mars on board of the two Viking 1976 spacecrafts.

  15. Identity Agents: Parents as Active and Reflective Participants in their Children's Identity Formation

    ERIC Educational Resources Information Center

    Schachter, Elli P.; Ventura, Jonathan J.

    2008-01-01

    The paper introduces the concept of identity agents. This concept refers to those individuals who actively interact with children and youth with the intention of participating in their identity formation, and who reflectively mediate larger social influences on identity formation. This contrasts with the focus of mainstream research in the…

  16. Turbulence and star formation in molecular clouds

    NASA Astrophysics Data System (ADS)

    Larson, R. B.

    1981-03-01

    Consideration is given to the turbulence properties of molecular clouds and their implications for star formation. Data for 54 molecular clouds and condensations is presented which reveals cloud velocity dispersion and region size to follow a power-law relation, similar to the Kolmogoroff law for subsonic turbulence. Examination of the dynamics of the molecular clouds for which mass determinations are available reveals essentially all of them to be gravitationally bound, and to approximately satisfy the virial theorem. The observation of moderate scatter in the dispersion-size relation is noted to imply that most regions have not collapsed much since formation, suggesting that processes of turbulent hydrodynamics have played an important role in producing the observed substructures. A lower limit to the size of subcondensations at which their internal motions are no longer supersonic is shown to predict a minimum protostellar mass on the order of a few tenths of a solar mass, while massive protostellar clumps are found to develop complex internal structures, probably leading to the formation of prestellar condensation nuclei. The observed turbulence of molecular clouds is noted to imply lifetimes of less than 10 million years.

  17. Tools for Understanding Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creese, Sadie; Gibson-Robinson, Thomas; Goldsmith, Michael

    Identity attribution and enrichment is critical to many aspects of law-enforcement and intelligence gathering; this identity typically spans a number of domains in the natural-world such as biographic information (factual information – e.g. names, addresses), biometric information (e.g. fingerprints) and psychological information. In addition to these natural-world projections of identity, identity elements are projected in the cyber-world. Conversely, undesirable elements may use similar techniques to target individuals for spear-phishing attacks (or worse), and potential targets or their organizations may want to determine how to minimize the attack surface exposed. Our research has been exploring the construction of a mathematical modelmore » for identity that supports such holistic identities. The model captures the ways in which an identity is constructed through a combination of data elements (e.g. a username on a forum, an address, a telephone number). Some of these elements may allow new characteristics to be inferred, hence enriching the holistic view of the identity. An example use-case would be the inference of real names from usernames, the ‘path’ created by inferring new elements of identity is highlighted in the ‘critical information’ panel. Individual attribution exercises can be understood as paths through a number of elements. Intuitively the entire realizable ‘capability’ can be modeled as a directed graph, where the elements are nodes and the inferences are represented by links connecting one or more antecedents with a conclusion. The model can be operationalized with two levels of tool support described in this paper, the first is a working prototype, the second is expected to reach prototype by July 2013: Understanding the Model The tool allows a user to easily determine, given a particular set of inferences and attributes, which elements or inferences are of most value to an investigator (or an attacker). The tool is also able

  18. Perceived consequences of hypothetical identity-inconsistent sexual experiences: effects of perceiver's sex and sexual identity.

    PubMed

    Preciado, Mariana A; Johnson, Kerri L

    2014-04-01

    Most people organize their sexual orientation under a single sexual identity label. However, people may have sexual experiences that are inconsistent with their categorical sexual identity label. A man might identify as heterosexual but still experience some attraction to men; a woman might identify as lesbian yet enter into a romantic relationship with a man. Identity-inconsistent experiences are likely to have consequences. In the present study, we examined lay perceptions of the consequences of identity-inconsistent sexual experiences for self-perceived sexuality and for social relationships among a sexually diverse sample (N = 283). We found that the perceived consequences of identity-inconsistent experiences for self-perception, for social stigmatization, and for social relationships varied as a function of participant sex, participant sexual identity (heterosexual, gay, lesbian), and experience type (fantasy, attraction, behavior, love). We conclude that not all identity-inconsistent sexual experiences are perceived as equally consequential and that the perceived consequences of such experiences vary predictably as a function of perceiver sex and sexual identity. We discuss the role lay perceptions of the consequences of identity-inconsistent sexual experiences may play in guiding attitudes and behavior.

  19. Effect of molecular-mass characteristics of ethylene-propylene-diene monomer rubber on impact resistance and mobility of the melt of its modified blends with polypropylene

    NASA Astrophysics Data System (ADS)

    Ryzhikova, I. G.; Bauman, N. A.; Volkov, A. M.; Kazakov, Yu. M.; Volfson, S. I.

    2014-05-01

    The study concerned the effect of molecular-mass characteristics and Mooney viscosity of the initial EPDM rubber on the changes in the structure, impact strength and rheological properties of PP/EPDM blends as a result of their modification in a melt under the action of organic peroxide and peroxide-trimethylolpropane triacrylate (TMPTA) system.

  20. Thoughts on the nature of identity: disorders of sex development and gender identity.

    PubMed

    Reiner, William G; Reiner, D Townsend

    2011-10-01

    Children with disorders of sex development have similarities to, but also marked contrasts with, children with normal anatomy but who have gender dysphoria. Understanding gender identity development in children with sex disorders will probably help us understand typical gender identity development more than in understanding gender development in children with gender identity disorder.

  1. Teacher Identity and Numeracy: Developing an Analytic Lens for Understanding Numeracy Teacher Identity

    ERIC Educational Resources Information Center

    Bennison, Anne; Goos, Merrilyn

    2013-01-01

    This paper reviews recent literature on teacher identity in order to propose an operational framework that can be used to investigate the formation and development of numeracy teacher identities. The proposed framework is based on Van Zoest and Bohl's (2005) framework for mathematics teacher identity with a focus on those characteristics thought…

  2. The Galactic Distribution of OB Associations in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan P.; McKee, Christopher F.

    1997-02-01

    Molecular clouds account for half of the mass of the interstellar medium interior to the solar circle and for all current star formation. Using cloud catalogs of two CO surveys of the first quadrant, we have fitted the mass distribution of molecular clouds to a truncated power law in a similar manner as the luminosity function of OB associations in the companion paper to this work. After extrapolating from the first quadrant to the entire inner Galaxy, we find that the mass of cataloged clouds amounts to only 40% of current estimates of the total Galactic molecular mass. Following Solomon & Rivolo, we have assumed that the remaining molecular gas is in cold clouds, and we normalize the distribution accordingly. The predicted total number of clouds is then shown to be consistent with that observed in the solar neighborhood where cloud catalogs should be more complete. Within the solar circle, the cumulative form of the distribution is \\Nscrc(>M)=105[(Mu/M)0.6-1], where \\Nscrc is the number of clouds, and Mu = 6 × 106 M⊙ is the upper mass limit. The large number of clouds near the upper cutoff to the distribution indicates an underlying physical limit to cloud formation or destruction processes. The slope of the distribution corresponds to d\\Nscrc/dM~M-1.6, implying that although numerically most clouds are of low mass, most of the molecular gas is contained within the most massive clouds. The distribution of cloud masses is then compared to the Galactic distribution of OB association luminosities to obtain statistical estimates of the number of massive stars expected in any given cloud. The likelihood of massive star formation in a cloud is determined, and it is found that the median cloud mass that contains at least one O star is ~105 M⊙. The average star formation efficiency over the lifetime of an association is about 5% but varies by more than 2 orders of magnitude from cloud to cloud and is predicted to increase with cloud mass. O stars photoevaporate

  3. The Species Identity of the Widely Cultivated Ganoderma, ‘G. lucidum’ (Ling-zhi), in China

    PubMed Central

    Wang, Xin-Cun; Xi, Rui-Jiao; Li, Yi; Wang, Dong-Mei; Yao, Yi-Jian

    2012-01-01

    Ling-zhi, a widely cultivated fungus in China, has a long history in traditional Chinese medicine. Although the name ‘Ganoderma lucidum’, a species originally described from England, has been applied to the fungus, their identities are not the same. This study aims to clarify the identity of this medicinally and economically important fungus. Specimens of Ling-zhi from China (field collections and cultivated basidiomata of the Chinese ‘G. lucidum’), G. lucidum from UK and other related Ganoderma species, were examined both morphologically and molecularly. High variability of basidioma morphology was found in the cultivated specimens of the Chinese ‘G. lucidum’, while some microscopic characters were more or less consistent, i.e. short clavate cutis elements, Bovista-type ligative hyphae and strongly echinulate basidiospores. These characters were also found in the holotype of G. sichuanense, a species originally described from Sichuan, China, and in recent collections made in the type locality of the species, which matched the diagnostic characters in the prologue. For comparison, specimens of closely related species, G. lucidum, G. multipileum, G. resinaceum, G. tropicum and G. weberianum, were also examined. DNA sequences were obtained from field collections, cultivated basidiomata and living strains of the Chinese ‘G. lucidum’, specimens from the type locality of G. sichuanense, and specimens of the closely related species studied. Three-gene combined analyses (ITS+IGS+rpb2) were performed and the results indicated that the Chinese ‘G. lucidum’ shared almost identical sequences with G. sichuanense. Based on both morphological and molecular data, the identity of the Chinese ‘G. lucidum’ (Ling-zhi) is considered conspecific with G. sichuanense. Detailed morphological descriptions and illustrations are provided in addition to discussion of nomenclature implications. PMID:22911713

  4. The formation of high-mass stars and stellar clusters in the extreme environment of the Central Molecular Zone

    NASA Astrophysics Data System (ADS)

    Walker, Daniel Lewis

    2017-08-01

    The process of converting gas into stars underpins much of astrophysics, yet many fundamental questions surrounding this process remain unanswered. For example - how sensitive is star formation to the local environmental conditions? How do massive and dense stellar clusters form, and how does this crowded environment influence the stars that form within it? How do the most massive stars form and is there an upper limit to the stellar initial mass function (IMF)? Answering questions such as these is crucial if we are to construct an end-to-end model of how stars form across the full range of conditions found throughout the Universe. The research described in this thesis presents a study that utilises a multi-scale approach to identifying and characterising the early precursors to young massive clusters and high-mass proto-stars, with a specific focus on the extreme environment in the inner few hundred parsecs of the Milky Way - the Central Molecular Zone (CMZ). The primary sources of interest that are studied in detail belong to the Galactic centre dust ridge - a group of six high-mass (M 10^(4-5) Msun), dense (R 1-3 pc, n > 10^(4) cm^(-3)), and quiescent molecular clouds. These properties make these clouds ideal candidates for representing the earliest stages of high-mass star and cluster formation. The research presented makes use of single-dish and interferometric far-infrared and (sub-)millimetre observations to study their global and small-scale properties. A comparison of the known young massive clusters (YMCs) and their likely progenitors (the dust ridge clouds) in the CMZ shows that the stellar content of YMCs is much more dense and centrally concentrated than the gas in the clouds. If these clouds are truly precursors to massive clusters, the resultant stellar population would have to undergo significant dynamical evolution to reach central densities that are typical of YMCs. This suggests that YMCs in the CMZ are unlikely to form monolithically. Extending

  5. Quantitative mass spectrometry: an overview

    NASA Astrophysics Data System (ADS)

    Urban, Pawel L.

    2016-10-01

    Mass spectrometry (MS) is a mainstream chemical analysis technique in the twenty-first century. It has contributed to numerous discoveries in chemistry, physics and biochemistry. Hundreds of research laboratories scattered all over the world use MS every day to investigate fundamental phenomena on the molecular level. MS is also widely used by industry-especially in drug discovery, quality control and food safety protocols. In some cases, mass spectrometers are indispensable and irreplaceable by any other metrological tools. The uniqueness of MS is due to the fact that it enables direct identification of molecules based on the mass-to-charge ratios as well as fragmentation patterns. Thus, for several decades now, MS has been used in qualitative chemical analysis. To address the pressing need for quantitative molecular measurements, a number of laboratories focused on technological and methodological improvements that could render MS a fully quantitative metrological platform. In this theme issue, the experts working for some of those laboratories share their knowledge and enthusiasm about quantitative MS. I hope this theme issue will benefit readers, and foster fundamental and applied research based on quantitative MS measurements. This article is part of the themed issue 'Quantitative mass spectrometry'.

  6. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, Eliel

    1996-01-01

    A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

  7. Molecular separation method and apparatus

    DOEpatents

    Villa-Aleman, E.

    1996-04-09

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.

  8. Perceptions of parents' ethnic identities and the personal ethnic-identity and racial attitudes of biracial adults.

    PubMed

    Stepney, Cesalie T; Sanchez, Diana T; Handy, Phillip E

    2015-01-01

    The present study examined the relationship of perceived parental closeness and parental ethnic identity on personal ethnic identity and colorblindness beliefs in 275 part-White biracial Americans (M age = 23.88). Respondents completed online measures of their personal ethnic identity (minority, White, and multiracial), perceived parental ethnic identity, parental closeness, and attitudes about the state of race relations and the need for social action in the United States. Using path modeling, results show that part-White biracial individuals perceive their ethnic identity to be strongly linked to their parental racial identities, especially when they had closer parental relationships. Moreover, stronger minority identity was linked to less colorblind attitudes, and greater White identity was linked to greater colorblind attitudes suggesting that patterns of identity may influence how biracial individuals view race-relations and the need for social action. Implications for biracial well-being and their understanding of prejudice and discrimination are discussed. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  9. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry.

    PubMed

    Wang, Shunhai; Liu, Anita P; Yan, Yuetian; Daly, Thomas J; Li, Ning

    2018-05-30

    Traditional SDS-PAGE method and its modern equivalent CE-SDS method are both widely applied to assess the purity of therapeutic monoclonal antibody (mAb) drug products. However, structural identification of low molecular weight (LMW) impurities using those methods has been challenging and largely based on empirical knowledges. In this paper, we present that hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry analysis is a novel and orthogonal method to characterize such LMW impurities present within a purified mAb drug product sample. We show here that after removal of N-linked glycans, the HILIC method separates mAb-related LMW impurities with a size-based elution order. The subsequent mass measurement from a high-resolution accurate mass spectrometer provides direct and unambiguous identification of a variety of low-abundance LMW impurities within a single LC-MS analysis. Free light chain, half antibody, H2L species (antibody possessing a single light chain) and protein backbone-truncated species can all be confidently identified and elucidated in great detail, including the truncation sites and associated post-translational modifications. It is worth noting that this study provides the first example where the H2L species can be directly detected in a mAb drug product sample by intact mass analysis without prior enrichment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. 11 CFR 100.27 - Mass mailing (2 U.S.C. 431(23)).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 100.27 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.27 Mass mailing (2 U.S.C. 431(23)). Mass mailing means a mailing by United States mail or facsimile of more than 500 pieces of mail matter of an identical or substantially similar...

  11. 11 CFR 100.27 - Mass mailing (2 U.S.C. 431(23)).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 100.27 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.27 Mass mailing (2 U.S.C. 431(23)). Mass mailing means a mailing by United States mail or facsimile of more than 500 pieces of mail matter of an identical or substantially similar...

  12. 11 CFR 100.27 - Mass mailing (2 U.S.C. 431(23)).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 100.27 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) General Definitions § 100.27 Mass mailing (2 U.S.C. 431(23)). Mass mailing means a mailing by United States mail or facsimile of more than 500 pieces of mail matter of an identical or substantially similar...

  13. Online Identities and Social Networking

    NASA Astrophysics Data System (ADS)

    Maheswaran, Muthucumaru; Ali, Bader; Ozguven, Hatice; Lord, Julien

    Online identities play a critical role in the social web that is taking shape on the Internet. Despite many technical proposals for creating and managing online identities, none has received widespread acceptance. Design and implementation of online identities that are socially acceptable on the Internet remains an open problem. This chapter discusses the interplay between online identities and social networking. Online social networks (OSNs) are growing at a rapid pace and has millions of members in them. While the recent trend is to create explicit OSNs such as Facebook and MySpace, we also have implicit OSNs such as interaction graphs created by email and instant messaging services. Explicit OSNs allow users to create profiles and use them to project their identities on the web. There are many interesting identity related issues in the context of social networking including how OSNs help and hinder the definition of online identities.

  14. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 2: Peptide Identification via Molecular Mass Determination

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2009-01-01

    Mass spectrometry has become a routine analytical tool in the undergraduate curriculum in the form of GC-MS. While relatively few undergraduate programs have incorporated biological mass spectrometry into their programs, the importance of these techniques, as demonstrated by their recognition with the 2002 Nobel Prize, will hopefully lead to…

  15. A Distonic Radical-Ion for Detection of Traces of Adventitious Molecular Oxygen (O2) in Collision Gases Used in Tandem Mass Spectrometers

    NASA Astrophysics Data System (ADS)

    Jariwala, Freneil B.; Hibbs, John A.; Weisbecker, Carl S.; Ressler, John; Khade, Rahul L.; Zhang, Yong; Attygalle, Athula B.

    2014-09-01

    We describe a diagnostic ion that enables rapid semiquantitative evaluation of the degree of oxygen contamination in the collision gases used in tandem mass spectrometers. Upon collision-induced dissociation (CID), the m/z 359 positive ion generated from the analgesic etoricoxib undergoes a facile loss of a methyl sulfone radical [•SO2(CH3); 79-Da] to produce a distonic radical cation of m/z 280. The product-ion spectrum of this m/z 280 ion, recorded under low-energy activation on tandem-in-space QqQ or QqTof mass spectrometers using nitrogen from a generator as the collision gas, or tandem-in-time ion-trap (LCQ, LTQ) mass spectrometers using purified helium as the buffer gas, showed two unexpected peaks at m/z 312 and 295. This enigmatic m/z 312 ion, which bears a mass-to-charge ratio higher than that of the precursor ion, represented an addition of molecular oxygen (O2) to the precursor ion. The exceptional affinity of the m/z 280 radical cation towards oxygen was deployed to develop a method to determine the oxygen content in collision gases.

  16. Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Koh, Christine J; Popolan-Vaida, Denisia M; Gallegos, Christopher J; Hooper, Justin B; Bedrov, Dmitry; Vaghjiani, Ghanshyam L; Leone, Stephen R

    2016-10-07

    The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM + DCA - ) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO 3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO 3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

  17. Mass spectrometry imaging: towards mapping the elemental and molecular composition of the rhizosphere

    DOE PAGES

    Veličković, Dušan; Anderton, Christopher R.

    2017-03-22

    In our short review provides perspective regarding the use of mass spectrometry imaging (MSI) to study the rhizosphere. It also serves to complement the multi-omic-focused review by White et al. in this journals’ issue. MSI is capable of elucidating chemical distributions within samples of interest in situ, and thus can provide spatial context to MS omics data in complementary experimental endeavors. Most MSI-based studies of plant-microbe interactions have focused on the phyllosphere and on the “associated rhizosphere” (our term for material that is not removed during harvesting). Sample preparation for these in situ analyses tends to be a limiting factor.more » Our studies, however, have provided valuable insights into the spatial arrangement of proteins, peptides, lipids, and other metabolites within these systems. We intend this short review to be a primer on the fundamentals of MSI and its role in plant-microbe analysis. Finally, we offer a perspective on the future of MSI and its use in understanding the molecular transformations beyond what we call the associated rhizosphere, one which extends to the rest of rhizosphere and into the bulk soil.« less

  18. Mass spectrometry imaging: towards mapping the elemental and molecular composition of the rhizosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veličković, Dušan; Anderton, Christopher R.

    In our short review provides perspective regarding the use of mass spectrometry imaging (MSI) to study the rhizosphere. It also serves to complement the multi-omic-focused review by White et al. in this journals’ issue. MSI is capable of elucidating chemical distributions within samples of interest in situ, and thus can provide spatial context to MS omics data in complementary experimental endeavors. Most MSI-based studies of plant-microbe interactions have focused on the phyllosphere and on the “associated rhizosphere” (our term for material that is not removed during harvesting). Sample preparation for these in situ analyses tends to be a limiting factor.more » Our studies, however, have provided valuable insights into the spatial arrangement of proteins, peptides, lipids, and other metabolites within these systems. We intend this short review to be a primer on the fundamentals of MSI and its role in plant-microbe analysis. Finally, we offer a perspective on the future of MSI and its use in understanding the molecular transformations beyond what we call the associated rhizosphere, one which extends to the rest of rhizosphere and into the bulk soil.« less

  19. imzML: Imaging Mass Spectrometry Markup Language: A common data format for mass spectrometry imaging.

    PubMed

    Römpp, Andreas; Schramm, Thorsten; Hester, Alfons; Klinkert, Ivo; Both, Jean-Pierre; Heeren, Ron M A; Stöckli, Markus; Spengler, Bernhard

    2011-01-01

    Imaging mass spectrometry is the method of scanning a sample of interest and generating an "image" of the intensity distribution of a specific analyte. The data sets consist of a large number of mass spectra which are usually acquired with identical settings. Existing data formats are not sufficient to describe an MS imaging experiment completely. The data format imzML was developed to allow the flexible and efficient exchange of MS imaging data between different instruments and data analysis software.For this purpose, the MS imaging data is divided in two separate files. The mass spectral data is stored in a binary file to ensure efficient storage. All metadata (e.g., instrumental parameters, sample details) are stored in an XML file which is based on the standard data format mzML developed by HUPO-PSI. The original mzML controlled vocabulary was extended to include specific parameters of imaging mass spectrometry (such as x/y position and spatial resolution). The two files (XML and binary) are connected by offset values in the XML file and are unambiguously linked by a universally unique identifier. The resulting datasets are comparable in size to the raw data and the separate metadata file allows flexible handling of large datasets.Several imaging MS software tools already support imzML. This allows choosing from a (growing) number of processing tools. One is no longer limited to proprietary software, but is able to use the processing software which is best suited for a specific question or application. On the other hand, measurements from different instruments can be compared within one software application using identical settings for data processing. All necessary information for evaluating and implementing imzML can be found at http://www.imzML.org .

  20. Purification of two high molecular weight proteases from rabbit reticulocyte lysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, R.; Pratt, G.; Rechsteiner, M.

    1987-05-01

    The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze /sup 125/I-..cap alpha..-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P/sub 1/ position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtrationmore » and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski.« less