Sample records for identical phase oscillators

  1. Chimera at the phase-flip transition of an ensemble of identical nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Gopal, R.; Chandrasekar, V. K.; Senthilkumar, D. V.; Venkatesan, A.; Lakshmanan, M.

    2018-06-01

    A complex collective emerging behavior characterized by coexisting coherent and incoherent domains is termed as a chimera state. We bring out the existence of a new type of chimera in a nonlocally coupled ensemble of identical oscillators driven by a common dynamic environment. The latter facilitates the onset of phase-flip bifurcation/transitions among the coupled oscillators of the ensemble, while the nonlocal coupling induces a partial asynchronization among the out-of-phase synchronized oscillators at this onset. This leads to the manifestation of coexisting out-of-phase synchronized coherent domains interspersed by asynchronous incoherent domains elucidating the existence of a different type of chimera state. In addition to this, a rich variety of other collective behaviors such as clusters with phase-flip transition, conventional chimera, solitary state and complete synchronized state which have been reported using different coupling architectures are found to be induced by the employed couplings for appropriate coupling strengths. The robustness of the resulting dynamics is demonstrated in ensembles of two paradigmatic models, namely Rössler oscillators and Stuart-Landau oscillators.

  2. Identical phase oscillators with global sinusoidal coupling evolve by Mobius group action.

    PubMed

    Marvel, Seth A; Mirollo, Renato E; Strogatz, Steven H

    2009-12-01

    Systems of N identical phase oscillators with global sinusoidal coupling are known to display low-dimensional dynamics. Although this phenomenon was first observed about 20 years ago, its underlying cause has remained a puzzle. Here we expose the structure working behind the scenes of these systems by proving that the governing equations are generated by the action of the Mobius group, a three-parameter subgroup of fractional linear transformations that map the unit disk to itself. When there are no auxiliary state variables, the group action partitions the N-dimensional state space into three-dimensional invariant manifolds (the group orbits). The N-3 constants of motion associated with this foliation are the N-3 functionally independent cross ratios of the oscillator phases. No further reduction is possible, in general; numerical experiments on models of Josephson junction arrays suggest that the invariant manifolds often contain three-dimensional regions of neutrally stable chaos.

  3. Superslow relaxation in identical phase oscillators with random and frustrated interactions

    NASA Astrophysics Data System (ADS)

    Daido, H.

    2018-04-01

    This paper is concerned with the relaxation dynamics of a large population of identical phase oscillators, each of which interacts with all the others through random couplings whose parameters obey the same Gaussian distribution with the average equal to zero and are mutually independent. The results obtained by numerical simulation suggest that for the infinite-size system, the absolute value of Kuramoto's order parameter exhibits superslow relaxation, i.e., 1/ln t as time t increases. Moreover, the statistics on both the transient time T for the system to reach a fixed point and the absolute value of Kuramoto's order parameter at t = T are also presented together with their distribution densities over many realizations of the coupling parameters.

  4. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.

    PubMed

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    2016-09-01

    The Kuramoto-Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling-including three and four-way interactions of the oscillator phases-that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamics in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.

  5. Chaos in generically coupled phase oscillator networks with nonpairwise interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bick, Christian; Ashwin, Peter; Rodrigues, Ana

    The Kuramoto–Sakaguchi system of coupled phase oscillators, where interaction between oscillators is determined by a single harmonic of phase differences of pairs of oscillators, has very simple emergent dynamics in the case of identical oscillators that are globally coupled: there is a variational structure that means the only attractors are full synchrony (in-phase) or splay phase (rotating wave/full asynchrony) oscillations and the bifurcation between these states is highly degenerate. Here we show that nonpairwise coupling—including three and four-way interactions of the oscillator phases—that appears generically at the next order in normal-form based calculations can give rise to complex emergent dynamicsmore » in symmetric phase oscillator networks. In particular, we show that chaos can appear in the smallest possible dimension of four coupled phase oscillators for a range of parameter values.« less

  6. Synchronization of Oscillators: An Ideal Introduction to Phase Transitions

    ERIC Educational Resources Information Center

    English, L. Q.

    2008-01-01

    The spontaneous synchronization of phase-coupled, non-identical oscillators is explored numerically via the famous Kuramoto model. The conditions for synchronization are examined as a function of the coupling network. I argue that such a numerical exploration provides a feasible way to introduce the topic of phase transitions early in the physics…

  7. Indirect synchronization control in a starlike network of phase oscillators

    NASA Astrophysics Data System (ADS)

    Kuptsov, Pavel V.; Kuptsova, Anna V.

    2018-04-01

    A starlike network of non-identical phase oscillators is considered that contains the hub and tree rays each having a single node. In such network effect of indirect synchronization control is reported: changing the natural frequency and the coupling strength of one of the peripheral oscillators one can switch on an off the synchronization of the others. The controlling oscillator at that is not synchronized with them and has a frequency that is approximately four time higher then the frequency of the synchronization. The parameter planes showing a corresponding synchronization tongue are represented and time dependencies of phase differences are plotted for points within and outside of the tongue.

  8. Emergence of amplitude and oscillation death in identical coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Duan, Jinqiao; Kurths, Jürgen

    2014-09-01

    We deduce rigorous conditions for the onset of amplitude death (AD) and oscillation death (OD) in a system of identical coupled paradigmatic Stuart-Landau oscillators. A nonscalar coupling and high frequency are beneficial for the onset of AD. In strong contrast, scalar diffusive coupling and low intrinsic frequency are in favor of the emergence of OD. Our finding contributes to clearly distinguish intrinsic geneses for AD and OD, and further substantially corroborates that AD and OD are indeed two dynamically distinct oscillation quenching phenomena due to distinctly different mechanisms.

  9. The chimera state in colloidal phase oscillators with hydrodynamic interaction

    NASA Astrophysics Data System (ADS)

    Hamilton, Evelyn; Bruot, Nicolas; Cicuta, Pietro

    2017-12-01

    The chimera state is the incongruous situation where coherent and incoherent populations coexist in sets of identical oscillators. Using driven non-linear oscillators interacting purely through hydrodynamic forces at low Reynolds number, previously studied as a simple model of motile cilia supporting waves, we find concurrent incoherent and synchronised subsets in small arrays. The chimeras seen in simulation display a "breathing" aspect, reminiscent of uniformly interacting phase oscillators. In contrast to other systems where chimera has been observed, this system has a well-defined interaction metric, and we know that the emergent dynamics inherit the symmetry of the underlying Oseen tensor eigenmodes. The chimera state can thus be connected to a superposition of eigenstates, whilst considering the mean interaction strength within and across subsystems allows us to make a connection to more generic (and abstract) chimeras in populations of Kuramoto phase oscillators. From this work, we expect the chimera state to emerge in experimental observations of oscillators coupled through hydrodynamic forces.

  10. Phase computations and phase models for discrete molecular oscillators.

    PubMed

    Suvak, Onder; Demir, Alper

    2012-06-11

    Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations.

  11. Phase computations and phase models for discrete molecular oscillators

    PubMed Central

    2012-01-01

    Background Biochemical oscillators perform crucial functions in cells, e.g., they set up circadian clocks. The dynamical behavior of oscillators is best described and analyzed in terms of the scalar quantity, phase. A rigorous and useful definition for phase is based on the so-called isochrons of oscillators. Phase computation techniques for continuous oscillators that are based on isochrons have been used for characterizing the behavior of various types of oscillators under the influence of perturbations such as noise. Results In this article, we extend the applicability of these phase computation methods to biochemical oscillators as discrete molecular systems, upon the information obtained from a continuous-state approximation of such oscillators. In particular, we describe techniques for computing the instantaneous phase of discrete, molecular oscillators for stochastic simulation algorithm generated sample paths. We comment on the accuracies and derive certain measures for assessing the feasibilities of the proposed phase computation methods. Phase computation experiments on the sample paths of well-known biological oscillators validate our analyses. Conclusions The impact of noise that arises from the discrete and random nature of the mechanisms that make up molecular oscillators can be characterized based on the phase computation techniques proposed in this article. The concept of isochrons is the natural choice upon which the phase notion of oscillators can be founded. The isochron-theoretic phase computation methods that we propose can be applied to discrete molecular oscillators of any dimension, provided that the oscillatory behavior observed in discrete-state does not vanish in a continuous-state approximation. Analysis of the full versatility of phase noise phenomena in molecular oscillators will be possible if a proper phase model theory is developed, without resorting to such approximations. PMID:22687330

  12. Chimera and phase-cluster states in populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  13. Time delay in the Kuramoto model of coupled-phase oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, Man Kit Stephen

    1999-10-01

    The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.

  14. Classification of attractors for systems of identical coupled Kuramoto oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelbrecht, Jan R.; Mirollo, Renato

    2014-03-15

    We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well asmore » chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.« less

  15. Stochastic Kuramoto oscillators with discrete phase states.

    PubMed

    Jörg, David J

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  16. Stochastic Kuramoto oscillators with discrete phase states

    NASA Astrophysics Data System (ADS)

    Jörg, David J.

    2017-09-01

    We present a generalization of the Kuramoto phase oscillator model in which phases advance in discrete phase increments through Poisson processes, rendering both intrinsic oscillations and coupling inherently stochastic. We study the effects of phase discretization on the synchronization and precision properties of the coupled system both analytically and numerically. Remarkably, many key observables such as the steady-state synchrony and the quality of oscillations show distinct extrema while converging to the classical Kuramoto model in the limit of a continuous phase. The phase-discretized model provides a general framework for coupled oscillations in a Markov chain setting.

  17. Mechanism of triple-color phase oscillators

    NASA Astrophysics Data System (ADS)

    Pun, Kwok C.

    1998-08-01

    A realistic model has been developed for a barium titanate triple-color phase oscillator based on the mechanism of polarizabililty and quantum mechanics. It helps to explain some of the difficult phenomena of the phase oscillator. As a result, with the clear understanding, we can seek betterment of the oscillator as a photonic switch as well as a one color writing and another color displaying no cross talk advance information exchanger.

  18. From perception to action: phase-locked gamma oscillations correlate with reaction times in a speeded response task

    PubMed Central

    Fründ, Ingo; Busch, Niko A; Schadow, Jeanette; Körner, Ursula; Herrmann, Christoph S

    2007-01-01

    Background Phase-locked gamma oscillations have so far mainly been described in relation to perceptual processes such as sensation, attention or memory matching. Due to its very short latency (≈90 ms) such oscillations are a plausible candidate for very rapid integration of sensory and motor processes. Results We measured EEG in 13 healthy participants in a speeded reaction task. Participants had to press a button as fast as possible whenever a visual stimulus was presented. The stimulus was always identical and did not have to be discriminated from other possible stimuli. In trials in which the participants showed a fast response, a slow negative potential over central electrodes starting approximately 800 ms before the response and highly phase-locked gamma oscillations over central and posterior electrodes between 90 and 140 ms after the stimulus were observed. In trials in which the participants showed a slow response, no slow negative potential was observed and phase-locked gamma oscillations were significantly reduced. Furthermore, for slow response trials the phase-locked gamma oscillations were significantly delayed with respect to fast response trials. Conclusion These results indicate the relevance of phase-locked gamma oscillations for very fast (not necessarily detailed) integration processes. PMID:17439642

  19. Phase reduction approach to synchronisation of nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya

    2016-04-01

    Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modelled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyse. Classical applications of this theory, i.e. the phase locking of an oscillator to a periodic external forcing and the mutual synchronisation of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronisation of non-interacting oscillators induced by common noise and the dynamics of coupled oscillators on complex networks are discussed. We also comment on some recent advances in phase reduction theory for noise-driven oscillators and rhythmic spatiotemporal patterns.

  20. Design of a new low-phase-noise millimetre-wave quadrature voltage-controlled oscillator

    NASA Astrophysics Data System (ADS)

    Kashani, Zeinab; Nabavi, Abdolreza

    2018-07-01

    This paper presents a new circuit topology of millimetre-wave quadrature voltage-controlled oscillator (QVCO) using an improved Colpitts oscillator without tail bias. By employing an extra capacitance between the drain and source terminations of the transistors and optimising circuit values, a low-power and low-phase-noise (PN) oscillator is designed. For generating the output signals with 90° phase difference, a self-injection coupling network between two identical cores is used. The proposed QVCO dissipates no extra dc power for coupling, since there is no dc-path to ground for the coupled transistors and no extra noise is added to circuit. The best figure-of-merit is -188.5, the power consumption is 14.98-15.45 mW, in a standard 180-nm CMOS technology, for 58.2 GHz center frequency from 59.3 to 59.6 GHz. The PN is -104.86 dBc/Hz at 1-MHz offset.

  1. Period and phase comparisons of near-decadal oscillations in solar, geomagnetic, and cosmic ray time series

    NASA Astrophysics Data System (ADS)

    Juckett, David A.

    2001-09-01

    A more complete understanding of the periodic dynamics of the Sun requires continued exploration of non-11-year oscillations in addition to the benchmark 11-year sunspot cycle. In this regard, several solar, geomagnetic, and cosmic ray time series were examined to identify common spectral components and their relative phase relationships. Several non-11-year oscillations were identified within the near-decadal range with periods of ~8, 10, 12, 15, 18, 22, and 29 years. To test whether these frequency components were simply low-level noise or were related to a common source, the phases were extracted for each component in each series. The phases were nearly identical across the solar and geomagnetic series, while the corresponding components in four cosmic ray surrogate series exhibited inverted phases, similar to the known phase relationship with the 11-year sunspot cycle. Cluster analysis revealed that this pattern was unlikely to occur by chance. It was concluded that many non-11-year oscillations truly exist in the solar dynamical environment and that these contribute to the complex variations observed in geomagnetic and cosmic ray time series. Using the different energy sensitivities of the four cosmic ray surrogate series, a preliminary indication of the relative intensities of the various solar-induced oscillations was observed. It provides evidence that many of the non-11-year oscillations result from weak interplanetary magnetic field/solar wind oscillations that originate from corresponding variations in the open-field regions of the Sun.

  2. Study of geometric phase using classical coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sharba; Dey, Biprateep; Mohapatra, Ashok K.

    2018-05-01

    We illustrate the geometric phase associated with the cyclic dynamics of a classical system of coupled oscillators. We use an analogy between a classical coupled oscillator and a two-state quantum mechanical system to represent the evolution of the oscillator on an equivalent Hilbert space, which may be represented as a trajectory on the surface of a sphere. The cyclic evolution of the system leads to a change in phase, which consists of a dynamic phase along with an additional phase shift dependent on the geometry of the evolution. A simple experiment suitable for advanced undergraduate students is designed to study the geometric phase incurred during cyclic evolution of a coupled oscillator.

  3. Phase-locking dynamics in optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath

    2018-05-01

    This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.

  4. A Simplified Theory of Coupled Oscillator Array Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R. J.; York, R. A.

    1997-01-01

    Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.

  5. Identical synchronization of nonidentical oscillators: when only birds of different feathers flock together

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanzhao; Motter, Adilson E.

    2018-01-01

    An outstanding problem in the study of networks of heterogeneous dynamical units concerns the development of rigorous methods to probe the stability of synchronous states when the differences between the units are not small. Here, we address this problem by presenting a generalization of the master stability formalism that can be applied to heterogeneous oscillators with large mismatches. Our approach is based on the simultaneous block diagonalization of the matrix terms in the variational equation, and it leads to dimension reduction that simplifies the original equation significantly. This new formalism allows the systematic investigation of scenarios in which the oscillators need to be nonidentical in order to reach an identical state, where all oscillators are completely synchronized. In the case of networks of identically coupled oscillators, this corresponds to breaking the symmetry of the system as a means to preserve the symmetry of the dynamical state— a recently discovered effect termed asymmetry-induced synchronization (AISync). Our framework enables us to identify communication delay as a new and potentially common mechanism giving rise to AISync, which we demonstrate using networks of delay-coupled Stuart-Landau oscillators. The results also have potential implications for control, as they reveal oscillator heterogeneity as an attribute that may be manipulated to enhance the stability of synchronous states.

  6. Chimera states for coupled oscillators.

    PubMed

    Abrams, Daniel M; Strogatz, Steven H

    2004-10-22

    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera state.

  7. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2017-02-01

    We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.

  8. Collective phase response curves for heterogeneous coupled oscillators

    NASA Astrophysics Data System (ADS)

    Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.

    2015-08-01

    Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.

  9. Time Series Decomposition into Oscillation Components and Phase Estimation.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-02-01

    Many time series are naturally considered as a superposition of several oscillation components. For example, electroencephalogram (EEG) time series include oscillation components such as alpha, beta, and gamma. We propose a method for decomposing time series into such oscillation components using state-space models. Based on the concept of random frequency modulation, gaussian linear state-space models for oscillation components are developed. In this model, the frequency of an oscillator fluctuates by noise. Time series decomposition is accomplished by this model like the Bayesian seasonal adjustment method. Since the model parameters are estimated from data by the empirical Bayes' method, the amplitudes and the frequencies of oscillation components are determined in a data-driven manner. Also, the appropriate number of oscillation components is determined with the Akaike information criterion (AIC). In this way, the proposed method provides a natural decomposition of the given time series into oscillation components. In neuroscience, the phase of neural time series plays an important role in neural information processing. The proposed method can be used to estimate the phase of each oscillation component and has several advantages over a conventional method based on the Hilbert transform. Thus, the proposed method enables an investigation of the phase dynamics of time series. Numerical results show that the proposed method succeeds in extracting intermittent oscillations like ripples and detecting the phase reset phenomena. We apply the proposed method to real data from various fields such as astronomy, ecology, tidology, and neuroscience.

  10. Dynamics of a network of phase oscillators with plastic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekorkin, V. I.; Kasatkin, D. V.; Moscow Institute of Physics and Technology

    The processes of synchronization and phase cluster formation are investigated in a complex network of dynamically coupled phase oscillators. Coupling weights evolve dynamically depending on the phase relations between the oscillators. It is shown that the network exhibits several types of behavior: the globally synchronized state, two-cluster and multi-cluster states, different synchronous states with a fixed phase relationship between the oscillators and chaotic desynchronized state.

  11. An X-band phase-locked relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.

    2015-08-15

    For the purpose of coherent high power microwave combining at high frequency band, an X-band phase-locked relativistic backward wave oscillator is presented and investigated. The phase-locking of the oscillator is accomplished by modulation of the electron beam before it reaches the oscillator. To produce a bunched beam with an acceptable injected RF power requirement, an overmoded input cavity is employed to provide initial density modulation. And a buncher cavity is introduced to further increase the modulation depth. When the beam enters the oscillator, the modulation depth is enough to lock the frequency and phase of the output microwave generated bymore » the oscillator. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with locking bandwidth of 60 MHz.« less

  12. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its

  13. Phase dynamics of oscillating magnetizations coupled via spin pumping

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tomohiro

    2018-05-01

    A theoretical formalism is developed to simultaneously solve equation of motion of the magnetizations in two ferromagnets and the spin-pumping induced spin transport equation. Based on the formalism, a coupled motion of the magnetizations in a self-oscillation state is studied. The spin pumping is found to induce an in-phase synchronization of the magnetizations for the oscillation around the easy axis. For an out-of-plane self-oscillation around the hard axis, on the other hand, the spin pumping leads to an in-phase synchronization in a small current region, whereas an antiphase synchronization is excited in a large current region. An analytical theory based on the phase equation reveals that the phase difference between the magnetizations in a steady state depends on the oscillation direction, clockwise or counterclockwise, of the magnetizations.

  14. Electronically tunable phase locked loop oscillator

    NASA Astrophysics Data System (ADS)

    Balasis, M.; Davis, M. R.; Jackson, C. R.

    1982-02-01

    This report describes the design and development of a low noise, high power, variable oscillator incorporating a high 'Q' electronically tunable resonator as the frequency determining element. The VCO provides improved EMC performance in phase locked synthesizers which are a part of communications equipments. The oscillator combines a low noise VMOS transistor with the selectivity and out-of-band attenuation of a coaxial resonator to provide superior EMC performance. Several oscillator designs were examined and the basis for the final configuration is presented. Oscillator noise is discussed and models for analysis are explained. A brass board model was constructed and tested and the technical results are presented.

  15. Winner-take-all in a phase oscillator system with adaptation.

    PubMed

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2018-01-11

    We consider a system of generalized phase oscillators with a central element and radial connections. In contrast to conventional phase oscillators of the Kuramoto type, the dynamic variables in our system include not only the phase of each oscillator but also the natural frequency of the central oscillator, and the connection strengths from the peripheral oscillators to the central oscillator. With appropriate parameter values the system demonstrates winner-take-all behavior in terms of the competition between peripheral oscillators for the synchronization with the central oscillator. Conditions for the winner-take-all regime are derived for stationary and non-stationary types of system dynamics. Bifurcation analysis of the transition from stationary to non-stationary winner-take-all dynamics is presented. A new bifurcation type called a Saddle Node on Invariant Torus (SNIT) bifurcation was observed and is described in detail. Computer simulations of the system allow an optimal choice of parameters for winner-take-all implementation.

  16. Chimera States in Neural Oscillators

    NASA Astrophysics Data System (ADS)

    Bahar, Sonya; Glaze, Tera

    2014-03-01

    Chimera states have recently been explored both theoretically and experimentally, in various coupled nonlinear oscillators, ranging from phase-oscillator models to coupled chemical reactions. In a chimera state, both coherent and incoherent (or synchronized and desynchronized) states occur simultaneously in populations of identical oscillators. We investigate chimera behavior in a population of neural oscillators using the Huber-Braun model, a Hodgkin-Huxley-like model originally developed to characterize the temperature-dependent bursting behavior of mammalian cold receptors. One population of neurons is allowed to synchronize, with each neuron receiving input from all the others in its group (global within-group coupling). Subsequently, a second population of identical neurons is placed under an identical global within-group coupling, and the two populations are also coupled to each other (between-group coupling). For certain values of the coupling constants, the neurons in the two populations exhibit radically different synchronization behavior. We will discuss the range of chimera activity in the model, and discuss its implications for actual neural activity, such as unihemispheric sleep.

  17. Nearly identical cycles of the quasi-biennial oscillation in the equatorial lower stratosphere

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.

    2017-08-01

    As a nonlinear dynamical system with limit cycles but subject to periodic forcings associated with the seasonal cycle, the quasi-biennial oscillation (QBO) displays seasonal modulation such that phase transitions are more likely to occur in certain months than in others. Modulation is distinct from seasonal synchronization, defined as quantized QBO periods and identical cycles. Instead, nearly identical QBO cycles can be identified in the data having similar period, internal structure, and (optionally) timing with respect to the calendar year. Four such categories are found using a spectral phase method based on the 2-D phase space of the leading rotated principal components (RPCs) of near-equatorial monthly mean zonal wind in the layer 70-10 hPa. The most prominent category, containing as many as 15 cycles of the 28 observed thus far, is "nearly biennial" with period slightly greater than 24 months. All results, prior to the recent QBO anomaly in Cycle 28, are demonstrated to be statistically stationary in the sense that the RPCs are temporally invariant and insensitive to the inclusion of data to 100 hPa and with higher vertical resolution. Inclusion of Cycle 28 has no effect on the rotated empirical orthogonal functions but a microscopic change in the long-term average, since strong easterlies are missing in the anomalous cycle. For objective definition of QBO cycles in physical space-time, westerly onsets in the 40-53 hPa layer are least likely to stall and provide unambiguous starting times. Half of these onsets cluster in April-May, consistent with the seasonal modulation obtained with the spectral phase method.

  18. Collective dynamics of identical bistable self-sustained oscillators with delayed feedback coupled via a mean field

    NASA Astrophysics Data System (ADS)

    Ponomarenko, V. I.; Kul'minskii, D. D.; Karavaev, A. S.; Prokhorov, M. D.

    2017-03-01

    Peculiarities of the collective dynamics of self-sustained oscillators in an ensemble of identical bistable systems with delayed feedback coupled via a mean field have been experimentally studied and numerically simulated. It is established that the ensemble can occur in so-called "chimera" states, whereby some elements exhibit synchronous oscillations, while other oscillators exhibit asynchronous behavior.

  19. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  20. Phase dynamics of coupled oscillators reconstructed from data

    NASA Astrophysics Data System (ADS)

    Rosenblum, Michael; Kralemann, Bjoern; Pikovsky, Arkady

    2013-03-01

    We present a technique for invariant reconstruction of the phase dynamics equations for coupled oscillators from data. The invariant description is achieved by means of a transformation of phase estimates (protophases) obtained from general scalar observables to genuine phases. Staring from the bivariate data, we obtain the coupling functions in terms of these phases. We discuss the importance of the protophase-to-phase transformation for characterization of strength and directionality of interaction. To illustrate the technique we analyse the cardio-respiratory interaction on healthy humans. Our invariant approach is confirmed by high similarity of the coupling functions obtained from different observables of the cardiac system. Next, we generalize the technique to cover the case of small networks of coupled periodic units. We use the partial norms of the reconstructed coupling functions to quantify directed coupling between the oscillators. We illustrate the method by different network motifs for three coupled oscillators. We also discuss nonlinear effects in coupling.

  1. Ultralow-phase-noise oscillators based on BAW resonators.

    PubMed

    Li, Mingdong; Seok, Seonho; Rolland, Nathalie; Rolland, Paul; El Aabbaoui, Hassan; de Foucauld, Emeric; Vincent, Pierre; Giordano, Vincent

    2014-06-01

    This paper presents two 2.1-GHz low-phase noise oscillators based on BAW resonators. Both a single-ended common base structure and a differential Colpitts structure have been implemented in a 0.25-μm BiCMOS process. The detailed design methods including the realization, optimization, and test are reported. The differential Colpitts structure exhibits a phase noise 6.5 dB lower than the single-ended structure because of its good performance of power noise immunity. Comparison between the two structures is also carried out. The differential Colpitts structure shows a phase noise level of -87 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -162 dBc/Hz, with an output power close to -6.5 dBm and a core consumption of 21.6 mW. Furthermore, with the proposed optimization methods, both proposed devices have achieved promising phase noise performance compared with state-of-the-art oscillators described in the literature. Finally, we briefly present the application of the proposed BAW oscillator to a micro-atomic clock.

  2. Synchronization in oscillator networks with delayed coupling: a stability criterion.

    PubMed

    Earl, Matthew G; Strogatz, Steven H

    2003-03-01

    We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.

  3. Synchronization of multi-phase oscillators: an Axelrod-inspired model

    NASA Astrophysics Data System (ADS)

    Kuperman, M. N.; Zanette, D. H.

    2009-07-01

    Inspired by Axelrod’s model of culture dissemination, we introduce and analyze a model for a population of coupled oscillators where different levels of synchronization can be assimilated to different degrees of cultural organization. The state of each oscillator is represented by a set of phases, and the interaction - which occurs between homologous phases - is weighted by a decreasing function of the distance between individual states. Both ordered arrays and random networks are considered. We find that the transition between synchronization and incoherent behaviour is mediated by a clustering regime with rich organizational structure, where any two oscillators can be synchronized in some of their phases, while their remain unsynchronized in the others.

  4. Phase noise analysis of voltage controlled oscillator used in cesium atomic clock

    NASA Astrophysics Data System (ADS)

    Zhi, Menghui; Tang, Liang; Qiao, Donghai

    2017-03-01

    Coherent population trapping (CPT) cesium frequency standard plays a significant role in precision guidance of missile and global positioning system (GPS). Low noise 4.596 GHz voltage controlled oscillator (VCO) is an indispensable part of microwave signal source in cesium frequency standard. Low-phase noise is also the most important and difficult performance indicator of VCO. Starting from phase noise analysis method proposed by Leeson, the formulas about the relationship between phase noise of output signal of oscillator feedback model and phase fluctuation spectrum of amplifier, phase noise of oscillator are derived in this paper. Finally, the asymptote model of microwave oscillator is proposed based on the formula derivation. The experiment shows that when the reverse bias voltage of variode is 1.8 V, the designed oscillation frequency of VCO is 4.596 GHz, the power is -1 dBm and the DC power consumption is 19.6 mW. The tendency of phase noise simulation curve and actual test curve conform to asymptote model. The phase noise in 1 and 10 kHz is, respectively, -60.86 and -86.58 dBc/Hz. The significance of the paper lies in determining the main factors influencing oscillator phase noise and providing guiding direction for the design of low-phase noise VCO.

  5. Bifurcation study of phase oscillator systems with attractive and repulsive interaction.

    PubMed

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2014-08-01

    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.

  6. Bifurcation study of phase oscillator systems with attractive and repulsive interaction

    NASA Astrophysics Data System (ADS)

    Burylko, Oleksandr; Kazanovich, Yakov; Borisyuk, Roman

    2014-08-01

    We study a model of globally coupled phase oscillators that contains two groups of oscillators with positive (synchronizing) and negative (desynchronizing) incoming connections for the first and second groups, respectively. This model was previously studied by Hong and Strogatz (the Hong-Strogatz model) in the case of a large number of oscillators. We consider a generalized Hong-Strogatz model with a constant phase shift in coupling. Our approach is based on the study of invariant manifolds and bifurcation analysis of the system. In the case of zero phase shift, various invariant manifolds are analytically described and a new dynamical mode is found. In the case of a nonzero phase shift we obtained a set of bifurcation diagrams for various systems with three or four oscillators. It is shown that in these cases system dynamics can be complex enough and include multistability and chaotic oscillations.

  7. Phase synchronization of oscillations in cardiovascular and respiratory systems in humans

    NASA Astrophysics Data System (ADS)

    Tankanag, Arina V.; Grinevich, Andrey A.; Tikhonova, Irina V.; Chaplygina, Alina V.; Chemeris, Nikolay K.

    2017-04-01

    Phase synchronization between blood flow oscillations of left and right forearm skin sites, heart rate variability (HRV) and breath rate were studied from healthy volunteers at rest. The degree of synchronization between the phases of the analyzed signals was estimated from the value of the wavelet phase coherence. High medians of values of phase wavelet coherence function were obtained for the endothelial, neurogenic, myogenic and cardiac intervals. Significant phase synchronization were demonstrated between HRV and skin blood flow oscillations in both left and right forearms in a wide frequency range from 0.04 to 0.4 Hz. Six participants exhibited low phase synchronization (< 0.5) between the breath rate and HRV, while nine participants had high phase synchronization (> 0.5). This distribution was not affected by the sex or sympathovagal status of volunteers. Participants with low phase synchronization between breath rate and HRV featured low phase synchronization (< 0.5) between breath rate and blood flow oscillations in both forearms. Contrariwise, in subjects with high phase synchronization between respiratory rhythm and HRV both low and high phase synchronization between breath rate and blood flow oscillations in both forearms was observed. The results obtained allow us to suggest that the organism possesses a mechanism mediating the synchronization of blood flow oscillations in the skin microvasculature with all other periodical processes across the cardiovascular system, in particular, with HRV and breath rate over a wide frequency range.

  8. Parity-time–symmetric optoelectronic oscillator

    PubMed Central

    2018-01-01

    An optoelectronic oscillator (OEO) is a hybrid microwave and photonic system incorporating an amplified positive feedback loop to enable microwave oscillation to generate a high-frequency and low–phase noise microwave signal. The low phase noise is ensured by the high Q factor of the feedback loop enabled by the use of a long and low-loss optical fiber. However, an OEO with a long fiber loop would have a small free spectral range, leading to a large number of closely spaced oscillation modes. To ensure single-mode oscillation, an ultranarrowband optical filter must be used, but such an optical filter is hard to implement and the stability is poor. Here, we use a novel concept to achieve single-mode oscillation without using an ultranarrowband optical filter. The single-mode operation is achieved based on parity-time (PT) symmetry by using two identical feedback loops, with one having a gain and the other having a loss of the same magnitude. The operation is analyzed theoretically and verified by an experiment. Stable single-mode oscillation at an ultralow phase noise is achieved without the use of an ultranarrowband optical filter. The use of PT symmetry in an OEO overcomes the long-existing mode-selection challenge that would greatly simplify the implementation of OEOs for ultralow–phase noise microwave generation. PMID:29888325

  9. Phase definition to assess synchronization quality of nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Freitas, Leandro; Torres, Leonardo A. B.; Aguirre, Luis A.

    2018-05-01

    This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.

  10. Phase definition to assess synchronization quality of nonlinear oscillators.

    PubMed

    Freitas, Leandro; Torres, Leonardo A B; Aguirre, Luis A

    2018-05-01

    This paper proposes a phase definition, named the vector field phase, which can be defined for systems with arbitrary finite dimension and is a monotonically increasing function of time. The proposed definition can properly quantify the dynamics in the flow direction, often associated with the null Lyapunov exponent. Numerical examples that use benchmark periodic and chaotic oscillators are discussed to illustrate some of the main features of the definition, which are that (i) phase information can be obtained either from the vector field or from a time series, (ii) it permits not only detection of phase synchronization but also quantification of it, and (iii) it can be used in the phase synchronization of very different oscillators.

  11. A Linear Model of Phase-Dependent Power Correlations in Neuronal Oscillations

    PubMed Central

    Eriksson, David; Vicente, Raul; Schmidt, Kerstin

    2011-01-01

    Recently, it has been suggested that effective interactions between two neuronal populations are supported by the phase difference between the oscillations in these two populations, a hypothesis referred to as “communication through coherence” (CTC). Experimental work quantified effective interactions by means of the power correlations between the two populations, where power was calculated on the local field potential and/or multi-unit activity. Here, we present a linear model of interacting oscillators that accounts for the phase dependency of the power correlation between the two populations and that can be used as a reference for detecting non-linearities such as gain control. In the experimental analysis, trials were sorted according to the coupled phase difference of the oscillators while the putative interaction between oscillations was taking place. Taking advantage of the modeling, we further studied the dependency of the power correlation on the uncoupled phase difference, connection strength, and topology. Since the uncoupled phase difference, i.e., the phase relation before the effective interaction, is the causal variable in the CTC hypothesis we also describe how power correlations depend on that variable. For uni-directional connectivity we observe that the width of the uncoupled phase dependency is broader than for the coupled phase. Furthermore, the analytical results show that the characteristics of the phase dependency change when a bidirectional connection is assumed. The width of the phase dependency indicates which oscillation frequencies are optimal for a given connection delay distribution. We propose that a certain width enables a stimulus-contrast dependent extent of effective long-range lateral connections. PMID:21808618

  12. A Low Power Low Phase Noise Oscillator for MICS Transceivers

    PubMed Central

    Li, Dawei; Liu, Dongsheng; Kang, Chaojian; Zou, Xuecheng

    2017-01-01

    A low-power, low-phase-noise quadrature oscillator for Medical Implantable Communications Service (MICS) transceivers is presented. The proposed quadrature oscillator generates 349~689 MHz I/Q (In-phase and Quadrature) signals covering the MICS band. The oscillator is based on a differential pair with positive feedback. Each delay cell consists of a few transistors enabling lower voltage operation. Since the oscillator is very sensitive to disturbances in the supply voltage and ground, a self-bias circuit for isolating the voltage disturbance is proposed to achieve bias voltages which can track the disturbances from the supply and ground. The oscillation frequency, which is controlled by the bias voltages, is less sensitive to the supply and ground noise, and a low phase noise is achieved. The chip is fabricated in the UMC (United Microelectronics Corporation) 0.18 μm CMOS (Complementary Metal Oxide Semiconductor) process; the core just occupies a 28.5 × 22 μm2 area. The measured phase noise is −108.45 dBc/Hz at a 1 MHz offset with a center frequency of 540 MHz. The gain of the oscillator is 0.309 MHz/mV with a control voltage from 0 V to 1.1 V. The circuit can work with a supply voltage as low as 1.2 V and the power consumption is only 0.46 mW at a 1.8 V supply voltage. PMID:28085107

  13. A Low Power Low Phase Noise Oscillator for MICS Transceivers.

    PubMed

    Li, Dawei; Liu, Dongsheng; Kang, Chaojian; Zou, Xuecheng

    2017-01-12

    A low-power, low-phase-noise quadrature oscillator for Medical Implantable Communications Service (MICS) transceivers is presented. The proposed quadrature oscillator generates 349~689 MHz I/Q (In-phase and Quadrature) signals covering the MICS band. The oscillator is based on a differential pair with positive feedback. Each delay cell consists of a few transistors enabling lower voltage operation. Since the oscillator is very sensitive to disturbances in the supply voltage and ground, a self-bias circuit for isolating the voltage disturbance is proposed to achieve bias voltages which can track the disturbances from the supply and ground. The oscillation frequency, which is controlled by the bias voltages, is less sensitive to the supply and ground noise, and a low phase noise is achieved. The chip is fabricated in the UMC (United Microelectronics Corporation) 0.18 μm CMOS (Complementary Metal Oxide Semiconductor) process; the core just occupies a 28.5 × 22 μm² area. The measured phase noise is -108.45 dBc/Hz at a 1 MHz offset with a center frequency of 540 MHz. The gain of the oscillator is 0.309 MHz/mV with a control voltage from 0 V to 1.1 V. The circuit can work with a supply voltage as low as 1.2 V and the power consumption is only 0.46 mW at a 1.8 V supply voltage.

  14. Quasi-periodic oscillations in superfluid, relativistic magnetars with nuclear pasta phases

    NASA Astrophysics Data System (ADS)

    Passamonti, Andrea; Pons, José A.

    2016-12-01

    We study the torsional magneto-elastic oscillations of relativistic superfluid magnetars and explore the effects of a phase transition in the crust-core interface (nuclear pasta) which results in a weaker elastic response. Exploring various models with different extension of nuclear pasta phases, we find that the differences in the oscillation spectrum present in purely elastic modes (weak magnetic field) are smeared out with increasing strength of the magnetic field. For magnetar conditions, the main characteristic and features of models without nuclear pasta are preserved. We find, in general, two classes of magneto-elastic oscillations which exhibit a different oscillation pattern. For Bp < 4 × 1014 G, the spectrum is characterized by the turning points and edges of the continuum which are mostly confined into the star's core, and have no constant phase. Increasing the magnetic field, we find, in addition, several magneto-elastic oscillations which reach the surface and have an angular structure similar to crustal modes. These global magneto-elastic oscillations show a constant phase and become dominant when Bp > 5 × 1014 G. We do not find any evidence of fundamental pure crustal modes in the low-frequency range (below 200 Hz) for Bp ≥ 1014 G.

  15. Phase-selective entrainment of nonlinear oscillator ensembles

    NASA Astrophysics Data System (ADS)

    Zlotnik, Anatoly; Nagao, Raphael; Kiss, István Z.; Li-Shin, Jr.

    2016-03-01

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups into spatiotemporal patterns with multiple phase clusters. The experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.

  16. Nonlinear transient waves in coupled phase oscillators with inertia.

    PubMed

    Jörg, David J

    2015-05-01

    Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.

  17. Phase-selective entrainment of nonlinear oscillator ensembles

    DOE PAGES

    Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.; ...

    2016-03-18

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less

  18. Phase-selective entrainment of nonlinear oscillator ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zlotnik, Anatoly V.; Nagao, Raphael; Kiss, Istvan Z.

    The ability to organize and finely manipulate the hierarchy and timing of dynamic processes is important for understanding and influencing brain functions, sleep and metabolic cycles, and many other natural phenomena. However, establishing spatiotemporal structures in biological oscillator ensembles is a challenging task that requires controlling large collections of complex nonlinear dynamical units. In this report, we present a method to design entrainment signals that create stable phase patterns in ensembles of heterogeneous nonlinear oscillators without using state feedback information. We demonstrate the approach using experiments with electrochemical reactions on multielectrode arrays, in which we selectively assign ensemble subgroups intomore » spatiotemporal patterns with multiple phase clusters. As a result, the experimentally confirmed mechanism elucidates the connection between the phases and natural frequencies of a collection of dynamical elements, the spatial and temporal information that is encoded within this ensemble, and how external signals can be used to retrieve this information.« less

  19. The role of amplitude-to-phase conversion in the generation of oscillator flicker phase noise

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.

    1985-01-01

    The role of amplitude-to-phase conversion as a factor in feedback oscillator flicker phase noise is examined. A limiting stage consisting of parallel-connected opposite polarity diodes operating in a circuit environment contining reactance is shown to exhibit amplitude-to-phase conversion. This mechanism coupled with resistive upconversion provides an indirect route for very low frequency flicker noise to be transferred into the phase of an oscillator signal. It is concluded that this effect is more significant in the lower frequency regimes where the onlinear reactances associated with active devices are overwhelmed by linear reactive elements.

  20. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  1. Phasing operator for two oscillators in classical field

    NASA Technical Reports Server (NTRS)

    Kim, Jong-Jean; Koo, Je-Hwan; Bae, Dong-Jae

    1993-01-01

    The origin of Dicke cooperative states was studied by considering two harmonic oscillators driven by a common field of radiation. The origin is assumed for superradiance in a system of molecules where no mutual interactions exist, but all of the molecules encounter the same field of radiation. A phasing operator as Phi(sub Nu) equals D(alpha) + P(sub Nu)D(alpha), where D(alpha) is the displacing operator and P(sub Nu) the projection operator for constant energy Nu for two oscillators, was derived. The eigenstates of the phasing operator Phi are found to show a finite correlation as in the Dicke cooperative states.

  2. EDFA-based coupled opto-electronic oscillator and its phase noise

    NASA Technical Reports Server (NTRS)

    Salik, Ertan; Yu, Nan; Tu, Meirong; Maleki, Lute

    2004-01-01

    EDFA-based coupled opto-electronic oscillator (COEO), an integrated optical and microwave oscillator that can generate picosecond optical pulses, is presented. the phase noise measurements of COEO show better performance than synthesizer-driven mode-locked laser.

  3. Phase Misalignment between Suprachiasmatic Neuronal Oscillators Impairs Photic Behavioral Phase Shifts but not Photic Induction of Gene Expression

    PubMed Central

    Schwartz, Michael D.; Congdon, Seth; de la Iglesia, Horacio O.

    2010-01-01

    The ability of the circadian pacemaker within the suprachiasmatic nucleus (SCN) to respond to light stimulation in a phase-specific manner constitutes the basis for photic entrainment of circadian rhythms. The neural basis for this phase-specificity is unclear. We asked whether a lack of synchrony between SCN neurons, as reflected in phase misalignment between dorsomedial (dmSCN) and ventrolateral (vlSCN) neuronal oscillators in the rat, would impact the pacemaker’s ability to respond to phase-resetting light pulses. Light pulses delivered at maximal phase-misalignment between the vl-and dmSCN oscillators increased expression of Per1 mRNA, irrespective of the circadian phase of the dmSCN. However, phase shifts of locomotor activity were only observed when the vl-and dmSCN were phase-aligned at the time of stimulation. Our results fit a model in which a vlSCN oscillator phase-gates its own response to light and in turn relays light information to a dmSCN oscillator. This model predicts that the phase misalignment that results from circadian internal desynchronization could preserve the ability of light to induce gene expression within the master circadian clock but impair its ability to induce behavioral phase shifts. PMID:20881133

  4. Duffing revisited: phase-shift control and internal resonance in self-sustained oscillators

    NASA Astrophysics Data System (ADS)

    Arroyo, Sebastián I.; Zanette, Damián H.

    2016-01-01

    We address two aspects of the dynamics of the forced Duffing oscillator which are relevant to the technology of micromechanical devices and, at the same time, have intrinsic significance to the field of nonlinear oscillating systems. First, we study the stability of periodic motion when the phase shift between the external force and the oscillation is controlled - contrary to the standard case, where the control parameter is the frequency of the force. Phase-shift control is the operational configuration under which self-sustained oscillators - and, in particular, micromechanical oscillators - provide a frequency reference useful for time keeping. We show that, contrary to the standard forced Duffing oscillator, under phase-shift control oscillations are stable over the whole resonance curve, and provide analytical approximate expressions for the time dependence of the oscillation amplitude and frequency during transients. Second, we analyze a model for the internal resonance between the main Duffing oscillation mode and a higher-harmonic mode of a vibrating solid bar clamped at its two ends. We focus on the stabilization of the oscillation frequency when the resonance takes place, and present preliminary experimental results that illustrate the phenomenon. This synchronization process has been proposed to counteract the undesirable frequency-amplitude interdependence in nonlinear time-keeping micromechanical devices. Supplementary material in the form of one pdf file and one gif file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2015-60517-3

  5. Analysis of biochemical phase shift oscillators by a harmonic balancing technique.

    PubMed

    Rapp, P

    1976-11-25

    The use of harmonic balancing techniques for theoretically investigating a large class of biochemical phase shift oscillators is outlined and the accuracy of this approximate technique for large dimension nonlinear chemical systems is considered. It is concluded that for the equations under study these techniques can be successfully employed to both find periodic solutions and to indicate those cases which can not oscillate. The technique is a general one and it is possible to state a step by step procedure for its application. It has a substantial advantage in producing results which are immediately valid for arbitrary dimension. As the accuracy of the method increases with dimension, it complements classical small dimension methods. The results obtained by harmonic balancing analysis are compared with those obtained by studying the local stability properties of the singular points of the differential equation. A general theorem is derived which identifies those special cases where the results of first order harmonic balancing are identical to those of local stability analysis, and a necessary condition for this equivalence is derived. As a concrete example, the n-dimensional Goodwin oscillator is considered where p, the Hill coefficient of the feedback metabolite, is equal to three and four. It is shown that for p = 3 or 4 and n less than or equal to 4 the approximation indicates that it is impossible to construct a set of physically permissible reaction constants such that the system possesses a periodic solution. However for n greater than or equal to 5 it is always possible to find a large domain in the reaction constant space giving stable oscillations. A means of constructing such a parameter set is given. The results obtained here are compared with previously derived results for p = 1 and p = 2.

  6. Influence of beam-loaded effects on phase-locking in the high power microwave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenghong; Zhou, Zhigang; Qiu, Rong

    2014-06-15

    Owing to the power limitation of a single device, much more attentions are focused on developing high power microwave (HPM) oscillators that can be phase-locked to the external signal in the recent HPM researches. Although the phase-locking is proved to be feasible in the conventional devices (such as magnetrons), challenges still exist in the HPM devices due to beam-loaded effects, which are more obvious in HPM devices because of its high current and the low Q-factor of the device. A simple structured HPM oscillator (Bitron) is introduced to study such effects on the phase-locking in the HPM oscillator. The self-consistentmore » analysis is carried out to study such effects together with particle in cell simulations. Then the modified Adler equation is established for the phase-locking HPM oscillator. Finally, conditions for the phase-locking in the HPM oscillator are given.« less

  7. Phase-modulated decoupling and error suppression in qubit-oscillator systems.

    PubMed

    Green, Todd J; Biercuk, Michael J

    2015-03-27

    We present a scheme designed to suppress the dominant source of infidelity in entangling gates between quantum systems coupled through intermediate bosonic oscillator modes. Such systems are particularly susceptible to residual qubit-oscillator entanglement at the conclusion of a gate period that reduces the fidelity of the target entangling operation. We demonstrate how the exclusive use of discrete shifts in the phase of the field moderating the qubit-oscillator interaction is sufficient to both ensure multiple oscillator modes are decoupled and to suppress the effects of fluctuations in the driving field. This approach is amenable to a wide variety of technical implementations including geometric phase gates in superconducting qubits and the Molmer-Sorensen gate for trapped ions. We present detailed example protocols tailored to trapped-ion experiments and demonstrate that our approach has the potential to enable multiqubit gate implementation with a significant reduction in technical complexity relative to previously demonstrated protocols.

  8. The phase of prestimulus alpha oscillations affects tactile perception.

    PubMed

    Ai, Lei; Ro, Tony

    2014-03-01

    Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.

  9. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  10. Extremely Coherent Microwave Emission from Spin Torque Oscillator Stabilized by Phase Locked Loop

    PubMed Central

    Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Yuasa, Shinji; Fukushima, Akio

    2015-01-01

    Spin torque oscillator (STO) has been attracting a great deal of attention as a candidate for the next generation microwave signal sources for various modern electronics systems since its advent. However, the phase noise of STOs under free running oscillation is still too large to be used in practical microwave applications, thus an industrially viable means to stabilize its oscillation has been strongly sought. Here we demonstrate implementation of a phase locked loop using a STO as a voltage controlled oscillator (VCO) that generates a 7.344 GHz microwave signal stabilized by a 153 MHz reference signal. Spectrum measurement showed successful phase locking of the microwave signal to the reference signal, characterized by an extremely narrow oscillation peak with a linewidth of less than the measurement limit of 1 Hz. This demonstration should be a major breakthrough toward various practical applications of STOs. PMID:26658880

  11. Dynamics of three coupled van der Pol oscillators with application to circadian rhythms

    NASA Astrophysics Data System (ADS)

    Rompala, Kevin; Rand, Richard; Howland, Howard

    2007-08-01

    In this work we study a system of three van der Pol oscillators. Two of the oscillators are identical, and are not directly coupled to each other, but rather are coupled via the third oscillator. We investigate the existence of the in-phase mode in which the two identical oscillators have the same behavior. To this end we use the two variable expansion perturbation method (also known as multiple scales) to obtain a slow flow, which we then analyze using the computer algebra system MACSYMA and the numerical bifurcation software AUTO. Our motivation for studying this system comes from the presence of circadian rhythms in the chemistry of the eyes. We model the circadian oscillator in each eye as a van der Pol oscillator. Although there is no direct connection between the two eyes, they are both connected to the brain, especially to the pineal gland, which is here represented by a third van der Pol oscillator.

  12. Entraining the topology and the dynamics of a network of phase oscillators

    NASA Astrophysics Data System (ADS)

    Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.

    2009-04-01

    We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.

  13. Simple mechanisms that impede the Berry phase identification from magneto-oscillations

    NASA Astrophysics Data System (ADS)

    Kuntsevich, A. Yu.; Shupletsov, A. V.; Minkov, G. M.

    2018-05-01

    The phase of quantum magneto-oscillations is often associated with the Berry phase and is widely used to argue in favor of topological nontriviality of the system (Berry phase 2 π n +π ). Nevertheless, the experimentally determined value may deviate from 2 π n +π arbitrarily, therefore more care should be made analyzing the phase of magneto-oscillations to distinguish trivial systems from nontrivial. In this paper we suggest two simple mechanisms dramatically affecting the experimentally observed value of the phase in three-dimensional topological insulators: (i) magnetic field dependence of the chemical potential, and (ii) possible nonuniformity of the system. These mechanisms are not limited to topological insulators and can be extended to other topologically trivial and nontrivial systems.

  14. Sound asleep: processing and retention of slow oscillation phase-targeted stimuli.

    PubMed

    Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M

    2014-01-01

    The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep.

  15. Sound Asleep: Processing and Retention of Slow Oscillation Phase-Targeted Stimuli

    PubMed Central

    Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M.

    2014-01-01

    The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep. PMID:24999803

  16. Phase noise in oscillators as differential-algebraic systems with colored noise sources

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2004-05-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter, which are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and possibly optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In this paper, we review our work on the theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of differential-algebraic equations (DAEs) with white and colored noise sources. The bulk of the work reviewed in this paper first appeared in [1], then in [2] and [3]. Prior to the work mentioned above, we developed a theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of ordinary differential equations (ODEs) with white noise sources only [4, 5]. In this paper, we also discuss some open problems and issues in the modeling and analysis of phase noise both in free running oscillators and in phase/injection-locked ones.

  17. Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force.

    PubMed

    Pyragas, Kestutis; Novičenko, Viktor

    2015-07-01

    The phase reduction method for a limit cycle oscillator subjected to a strong amplitude-modulated high-frequency force is developed. An equation for the phase dynamics is derived by introducing a new, effective phase response curve. We show that if the effective phase response curve is everywhere positive (negative), then an entrainment of the oscillator to an envelope frequency is possible only when this frequency is higher (lower) than the natural frequency of the oscillator. Also, by using the Pontryagin maximum principle, we have derived an optimal waveform of the perturbation that ensures an entrainment of the oscillator with minimal power. The theoretical results are demonstrated with the Stuart-Landau oscillator and model neurons.

  18. Breathing multichimera states in nonlocally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  19. Periodic synchronization in a system of coupled phase oscillators with attractive and repulsive interactions

    NASA Astrophysics Data System (ADS)

    Yuan, Di; Tian, Jun-Long; Lin, Fang; Ma, Dong-Wei; Zhang, Jing; Cui, Hai-Tao; Xiao, Yi

    2018-06-01

    In this study we investigate the collective behavior of the generalized Kuramoto model with an external pinning force in which oscillators with positive and negative coupling strengths are conformists and contrarians, respectively. We focus on a situation in which the natural frequencies of the oscillators follow a uniform probability density. By numerically simulating the model, it is shown that the model supports multistable synchronized states such as a traveling wave state, π state and periodic synchronous state: an oscillating π state. The oscillating π state may be characterized by the phase distribution oscillating in a confined region and the phase difference between conformists and contrarians oscillating around π periodically. In addition, we present the parameter space of the oscillating π state and traveling wave state of the model.

  20. A novel method for determining the phase-noise behavior of resonator-oscillators

    NASA Astrophysics Data System (ADS)

    Hoffmann, Michael H. W.

    2005-05-01

    A novel approach to the theory of phase-noise in resonator-oscillators will be given that is based on a combination of a large-signal-small-signal method, harmonic balance, and a modified Rice-model of signals plus noise. The method will be explained using a simple example. Since the type of oscillator under consideration not only de-attenuates eigen-oscillations but also noise in the spectral vicinity of the eigen-frequency, a signal is generated that is quasi-harmonic, and that might be described by means of a pseudo-Fourier-series expansion. Due to the specific description of the internal noise-sources, it is possible to use a time-domain description that at the same time reveals information about the spectral components of the signal. By comparison of these components, the spectrum of the oscillation might be determined. Relations between the spectrum of internal noise sources and the generated oscillator-signal will be recognized. The novel method will thus enable the designer to predict the phase-noise behavior of a specific oscillator-design.

  1. Interferometric Phase-Locking of Two Electronic Oscillators Based on a Cascade Electro-Optic Modulator

    NASA Astrophysics Data System (ADS)

    Chien, Pie-Yau; Chao, Chen-Hsing

    1993-03-01

    An optical phase-locked loop system based on a triangular phase-modulated cascade Mach-Zehnder modulator is demonstrated. A reference oscillator of 10 MHz is multiplied such that it can be used to lock a target oscillator of 120 MHz. The phase error of \\varDeltaθe≤2.0× 10-4 rad/Hz1/2 has been implemented in this system.

  2. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    PubMed

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  3. Generalizing the transition from amplitude to oscillation death in coupled oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Koseska, Aneta; Kurths, Jürgen

    2013-11-01

    Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching types in coupled nonlinear oscillators. The transition from AD to OD has been recently realized due to the interplay between heterogeneity and coupling strength [A. Koseska et al., Phys. Rev. Lett. 111, 024103 (2013)]. We identify here the transition from AD to OD in nonlinear oscillators with couplings of distinct natures. It is demonstrated that the presence of time delay in the coupling cannot induce such a transition in identical oscillators, but it can indeed facilitate its occurrence with a low degree of heterogeneity. Moreover, it is further shown that the AD to OD transition is reliably observed in identical oscillators with dynamic and conjugate couplings. The coexistence of AD and OD and rich stable OD configurations after the transition are revealed, which are of great significance for potential applications in physics, biology, and control studies.

  4. Generation of entanglement in quantum parametric oscillators using phase control.

    PubMed

    Gonzalez-Henao, J C; Pugliese, E; Euzzor, S; Abdalah, S F; Meucci, R; Roversi, J A

    2015-08-19

    The control of quantum entanglement in systems in contact with environment plays an important role in information processing, cryptography and quantum computing. However, interactions with the environment, even when very weak, entail decoherence in the system with consequent loss of entanglement. Here we consider a system of two coupled oscillators in contact with a common heat bath and with a time dependent oscillation frequency. The possibility to control the entanglement of the oscillators by means of an external sinusoidal perturbation applied to the oscillation frequency has been theoretically explored. We demonstrate that the oscillators become entangled exactly in the region where the classical counterpart is unstable, otherwise when the classical system is stable, entanglement is not possible. Therefore, we can control the entanglement swapping from stable to unstable regions by adjusting amplitude and phase of our external controller. We also show that the entanglement rate is approximately proportional to the real part of the Floquet coefficient of the classical counterpart of the oscillators. Our results have the intriguing peculiarity of manipulating quantum information operating on a classical system.

  5. Genetic influences on phase synchrony of brain oscillations supporting response inhibition.

    PubMed

    Müller, Viktor; Anokhin, Andrey P; Lindenberger, Ulman

    2017-05-01

    Phase synchronization of neuronal oscillations is a fundamental mechanism underlying cognitive processing and behavior, including context-dependent response production and inhibition. Abnormalities in neural synchrony can lead to abnormal information processing and contribute to cognitive and behavioral deficits in neuropsychiatric disorders. However, little is known about genetic and environmental contributions to individual differences in cortical oscillatory dynamics underlying response inhibition. This study examined heritability of event-related phase synchronization of brain oscillations in 302 young female twins including 94 MZ and 57 DZ pairs performing a cued Go/No-Go version of the Continuous Performance Test (CPT). We used the Phase Locking Index (PLI) to assess inter-trial phase clustering (synchrony) in several frequency bands in two time intervals after stimulus onset (0-300 and 301-600ms). Response inhibition (i.e., successful response suppression in No-Go trials) was characterized by a transient increase in phase synchronization of delta- and theta-band oscillations in the fronto-central midline region. Genetic analysis showed significant heritability of the phase locking measures related to response inhibition, with 30 to 49% of inter-individual variability being accounted for by genetic factors. This is the first study providing evidence for heritability of task-related neural synchrony. The present results suggest that PLI can serve as an indicator of genetically transmitted individual differences in neural substrates of response inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Robust Entrainment of Circadian Oscillators Requires Specific Phase Response Curves

    PubMed Central

    Pfeuty, Benjamin; Thommen, Quentin; Lefranc, Marc

    2011-01-01

    The circadian clocks keeping time in many living organisms rely on self-sustained biochemical oscillations entrained by external cues, such as light, to the 24-h cycle induced by Earth's rotation. However, environmental cues are unreliable due to the variability of habitats, weather conditions, or cue-sensing mechanisms among individuals. A tempting hypothesis is that circadian clocks have evolved so as to be robust to fluctuations in the signal that entrains them. To support this hypothesis, we analyze the synchronization behavior of weakly and periodically forced oscillators in terms of their phase response curve (PRC), which measures phase changes induced by a perturbation applied at different times of the cycle. We establish a general relationship between the robustness of key entrainment properties, such as stability and oscillator phase, on the one hand, and the shape of the PRC as characterized by a specific curvature or the existence of a dead zone, on the other hand. The criteria obtained are applied to computational models of circadian clocks and account for the disparate robustness properties of various forcing schemes. Finally, the analysis of PRCs measured experimentally in several organisms strongly suggests a case of convergent evolution toward an optimal strategy for maintaining a clock that is accurate and robust to environmental fluctuations. PMID:21641300

  7. Spatiotemporal coding of inputs for a system of globally coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wordsworth, John; Ashwin, Peter

    2008-12-01

    We investigate the spatiotemporal coding of low amplitude inputs to a simple system of globally coupled phase oscillators with coupling function g(ϕ)=-sin(ϕ+α)+rsin(2ϕ+β) that has robust heteroclinic cycles (slow switching between cluster states). The inputs correspond to detuning of the oscillators. It was recently noted that globally coupled phase oscillators can encode their frequencies in the form of spatiotemporal codes of a sequence of cluster states [P. Ashwin, G. Orosz, J. Wordsworth, and S. Townley, SIAM J. Appl. Dyn. Syst. 6, 728 (2007)]. Concentrating on the case of N=5 oscillators we show in detail how the spatiotemporal coding can be used to resolve all of the information that relates the individual inputs to each other, providing that a long enough time series is considered. We investigate robustness to the addition of noise and find a remarkable stability, especially of the temporal coding, to the addition of noise even for noise of a comparable magnitude to the inputs.

  8. Synchronization of Coupled Mechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Kennedy, Linda; Andereck, Barbara

    2007-10-01

    The Kuramoto model is used to describe synchronization of non-linear oscillators in biological, chemical, and physics systems. Using identical metronomes with similar frequencies on a movable platform, as per J. Pantaleone Am. J. Phys. 70, 992 (2002), we hope to realize a mechanical example of this model. A variety of materials were used for the movable platforms that coupled the metronomes. Platforms were either allowed to roll on cylindrical supports or suspended in pendulum fashion from the ceiling. Metronomes were started out of phase and allowed to synchronize. Measurements by PASCO photogates monitored by a LabView program were used to determine the phase difference between the two metronomes as a function of time. The dynamics of the metronome coupling was described by two second-order differential equations involving four key parameters: platform coupling, oscillation angle, damping/driving strength, and intrinsic frequency difference. Outstanding agreement between theory and experiment was achieved when the vertical motion of the platform and metronomes was included in the governing equations.

  9. Robustness and fragility in coupled oscillator networks under targeted attacks.

    PubMed

    Yuan, Tianyu; Aihara, Kazuyuki; Tanaka, Gouhei

    2017-01-01

    The dynamical tolerance of coupled oscillator networks against local failures is studied. As the fraction of failed oscillator nodes gradually increases, the mean oscillation amplitude in the entire network decreases and then suddenly vanishes at a critical fraction as a phase transition. This critical fraction, widely used as a measure of the network robustness, was analytically derived for random failures but not for targeted attacks so far. Here we derive the general formula for the critical fraction, which can be applied to both random failures and targeted attacks. We consider the effects of targeting oscillator nodes based on their degrees. First we deal with coupled identical oscillators with homogeneous edge weights. Then our theory is applied to networks with heterogeneous edge weights and to those with nonidentical oscillators. The analytical results are validated by numerical experiments. Our results reveal the key factors governing the robustness and fragility of oscillator networks.

  10. Opto-Electronic Oscillator Using Suppressed Phase Modulation

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Yu, Nan

    2007-01-01

    A proposed opto-electronic oscillator (OEO) would generate a microwave signal having degrees of frequency stability and spectral purity greater than those achieved in prior OEOs. The design of this system provides for reduction of noise levels (including the level of phase noise in the final output microwave signal) to below some of the fundamental limits of the prior OEOs while retaining the advantages of photonic generation of microwaves.

  11. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.

    PubMed

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-16

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  12. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    NASA Astrophysics Data System (ADS)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  13. Time Delay in the Kuramoto Model of Coupled Oscillators

    NASA Astrophysics Data System (ADS)

    Yeung, M. K. Stephen; Strogatz, Steven H.

    1999-01-01

    We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.

  14. Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.

    2016-02-01

    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.

  15. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    PubMed

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (p<0.01). Data simulations showed that elevated CFC could not be attributed to the presence of sharp transients or other signal properties. The phase of low frequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. EEG oscillations entrain their phase to high-level features of speech sound.

    PubMed

    Zoefel, Benedikt; VanRullen, Rufin

    2016-01-01

    Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Chemomechanical synchronization in heterogeneous self-oscillating gels

    NASA Astrophysics Data System (ADS)

    Yashin, Victor V.; Balazs, Anna C.

    2008-04-01

    Using computational modeling, we introduce patches of self-oscillating gels undergoing the Belousov-Zhabotinsky (BZ) reaction into a nonreactive polymer network and thereby demonstrate how these BZ gels can be harnessed to impart remarkable functionality to the entire system. By first focusing on two adjacent patches of BZ gels, we show that the patches’ oscillations can become synchronized in phase or out of phase, with the oscillation frequency depending on the synchronization mode and the spatial separation between these domains. We then apply these results to an array of five adjacent BZ patches and by varying the distance between these pieces, we dramatically alter the dynamical behavior of the patterned gel. For example, the sample can be made to exhibit a unidirectional traveling wave or display a concerted expansion and contraction, properties that are valuable for creating gel-based devices, such as micropumps and microactuators. The findings point to a “modular” design approach, which can impart different functionality simply by arranging identical pieces of BZ gels into distinct spatial arrangements within a polymer matrix.

  18. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    PubMed Central

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-01-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959

  19. Direction of coupling from phases of interacting oscillators: An information-theoretic approach

    NASA Astrophysics Data System (ADS)

    Paluš, Milan; Stefanovska, Aneta

    2003-05-01

    A directionality index based on conditional mutual information is proposed for application to the instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are demonstrated using numerical examples of quasiperiodic, chaotic, and noisy oscillators, as well as real human cardiorespiratory data.

  20. Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfrum, Matthias; Omel'chenko, Oleh E.; Sieber, Jan

    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doublingmore » cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.« less

  1. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    NASA Astrophysics Data System (ADS)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  2. Cluster synchronization in networks of identical oscillators with α-function pulse coupling.

    PubMed

    Chen, Bolun; Engelbrecht, Jan R; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α-function pulses, weighted by a coupling parameter K. Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K, i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N-1,1) states, which have synchronized clusters of sizes N-1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K=0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N=2-4. The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014)CHAOEH1054-150010.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N-1,1) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ-neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  3. Cluster synchronization in networks of identical oscillators with α -function pulse coupling

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-02-01

    We study a network of N identical leaky integrate-and-fire model neurons coupled by α -function pulses, weighted by a coupling parameter K . Studies of the dynamics of this system have mostly focused on the stability of the fully synchronized and the fully asynchronous splay states, which naturally depends on the sign of K , i.e., excitation vs inhibition. We find that there is also a rich set of attractors consisting of clusters of fully synchronized oscillators, such as fixed (N -1 ,1 ) states, which have synchronized clusters of sizes N -1 and 1, as well as splay states of clusters with equal sizes greater than 1. Additionally, we find limit cycles that clarify the stability of previously observed quasiperiodic behavior. Our framework exploits the neutrality of the dynamics for K =0 which allows us to implement a dimensional reduction strategy that simplifies the dynamics to a continuous flow on a codimension 3 subspace with the sign of K determining the flow direction. This reduction framework naturally incorporates a hierarchy of partially synchronized subspaces in which the new attracting states lie. Using high-precision numerical simulations, we describe completely the sequence of bifurcations and the stability of all fixed points and limit cycles for N =2 -4 . The set of possible attracting states can be used to distinguish different classes of neuron models. For instance from our previous work [Chaos 24, 013114 (2014), 10.1063/1.4858458] we know that of the types of partially synchronized states discussed here, only the (N -1 ,1 ) states can be stable in systems of identical coupled sinusoidal (i.e., Kuramoto type) oscillators, such as θ -neuron models. Upon introducing a small variation in individual neuron parameters, the attracting fixed points we discuss here generalize to equivalent fixed points in which neurons need not fire coincidently.

  4. Voltage controlled oscillator is easily aligned, has low phase noise

    NASA Technical Reports Server (NTRS)

    Sydnor, R. L.

    1965-01-01

    Voltage Controlled Oscillator /VCO/, represented by an equivalent RF circuit, is easily adjusted for optimum performance by varying the circuit parameter. It contains a crystal drive level which is also easily adjusted to obtain minimum phase noise.

  5. Input-dependent frequency modulation of cortical gamma oscillations shapes spatial synchronization and enables phase coding.

    PubMed

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-02-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25-80Hz) may play a significant role in information processing, for example by neural grouping ('binding') and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency codes

  6. Input-Dependent Frequency Modulation of Cortical Gamma Oscillations Shapes Spatial Synchronization and Enables Phase Coding

    PubMed Central

    Lowet, Eric; Roberts, Mark; Hadjipapas, Avgis; Peter, Alina; van der Eerden, Jan; De Weerd, Peter

    2015-01-01

    Fine-scale temporal organization of cortical activity in the gamma range (∼25–80Hz) may play a significant role in information processing, for example by neural grouping (‘binding’) and phase coding. Recent experimental studies have shown that the precise frequency of gamma oscillations varies with input drive (e.g. visual contrast) and that it can differ among nearby cortical locations. This has challenged theories assuming widespread gamma synchronization at a fixed common frequency. In the present study, we investigated which principles govern gamma synchronization in the presence of input-dependent frequency modulations and whether they are detrimental for meaningful input-dependent gamma-mediated temporal organization. To this aim, we constructed a biophysically realistic excitatory-inhibitory network able to express different oscillation frequencies at nearby spatial locations. Similarly to cortical networks, the model was topographically organized with spatially local connectivity and spatially-varying input drive. We analyzed gamma synchronization with respect to phase-locking, phase-relations and frequency differences, and quantified the stimulus-related information represented by gamma phase and frequency. By stepwise simplification of our models, we found that the gamma-mediated temporal organization could be reduced to basic synchronization principles of weakly coupled oscillators, where input drive determines the intrinsic (natural) frequency of oscillators. The gamma phase-locking, the precise phase relation and the emergent (measurable) frequencies were determined by two principal factors: the detuning (intrinsic frequency difference, i.e. local input difference) and the coupling strength. In addition to frequency coding, gamma phase contained complementary stimulus information. Crucially, the phase code reflected input differences, but not the absolute input level. This property of relative input-to-phase conversion, contrasting with latency

  7. Fiber ring resonator based opto-electronic oscillator: phase noise optimisation and thermal stability study

    NASA Astrophysics Data System (ADS)

    Saleh, K.; Bouchier, A.; Merrer, P. H.; Llopis, O.; Cibiel, G.

    2011-03-01

    In the microwave domain and among many other advantages, optics represents an elegant solution to increase the quality Q factor in a system. Different types of optical resonators lead to Q factors above 109, and these resonators can be used as an alternative to optical delay lines to set up the frequency in optoelectronic oscillators (OEO). However, microwave-optics is also a complex field, and if the use of optical resonators in high spectral purity frequency generation systems like OEO has been already demonstrated, many aspects of these OEOs are still incompletely understood, especially the contribution to the oscillator phase noise of the different optical and microwave elements used in the oscillator system. In order to improve the phase noise of a fiber ring resonator based OEO, this oscillator has been theoretically studied in term of white frequency noise. In this paper, we present a theoretical study that has lead us to optimize a fiber ring resonator and the experimental phase noise results obtained for an OEO based on an optimized optical resonator. The OEO thermal stability is also investigated in this paper.

  8. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2018-04-02

    We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.

  9. Phase and frequency structure of superradiance pulses generated by relativistic Ka-band backward-wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Elchaninov, A. A.

    2016-08-15

    Phase and frequency stability of electromagnetic oscillations in sub-gigawatt superradiance (SR) pulses generated by an extensive slow-wave structure of a relativistic Ka-band backward-wave oscillator were experimentally investigated. Data on the frequency tuning and radiation phase stability of SR pulses with a variation of the energy and current of electron beam were obtained.

  10. Cessation of oscillations in a chemo-mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit

    2018-06-01

    In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.

  11. Relative phase of oscillations of cerebral oxy-hemoglobin and deoxy-hemoglobin concentrations during sleep

    NASA Astrophysics Data System (ADS)

    Pierro, Michele L.; Sassaroli, Angelo; Bergethon, Peter R.; Fantini, Sergio

    2012-02-01

    We present a near-infrared spectroscopy study of the instantaneous phase difference between spontaneous oscillations of cerebral deoxy-hemoglobin and oxy-hemoglobin concentrations ([Hb] and [HbO], respectively) in the low-frequency range, namely 0.04-0.12 Hz. We report phase measurements during the transitions between different sleep stages in a whole-night study of a human subject. We have found that the phase difference between [Hb] and [HbO] low-frequency oscillations tends to be greater in deep sleep (by ~96° on average) and REM sleep (by ~77° on average) compared to the awake state. In particular, we have observed progressive phase increases as the subject transitions from awake conditions into non-REM sleep stages N1, N2, and N3. Corresponding phase decreases were recorded in the reversed transitions from sleep stages N3 to N2, and N2 to awake. These results illustrate the physiological information content of phase measurements of [Hb] and [HbO] oscillations that reflect the different cerebral hemodynamic conditions of the different sleep stages, and that can find broader applicability in a wide range of near-infrared spectroscopy brain studies.

  12. How to couple identical ring oscillators to get quasiperiodicity, extended chaos, multistability, and the loss of symmetry

    NASA Astrophysics Data System (ADS)

    Hellen, Edward H.; Volkov, Evgeny

    2018-09-01

    We study the dynamical regimes demonstrated by a pair of identical 3-element ring oscillators (reduced version of synthetic 3-gene genetic Repressilator) coupled using the design of the 'quorum sensing (QS)' process natural for interbacterial communications. In this work QS is implemented as an additional network incorporating elements of the ring as both the source and the activation target of the fast diffusion QS signal. This version of indirect nonlinear coupling, in cooperation with the reasonable extension of the parameters which control properties of the isolated oscillators, exhibits the formation of a very rich array of attractors. Using a parameter-space defined by the individual oscillator amplitude and the coupling strength, we found the extended area of parameter-space where the identical oscillators demonstrate quasiperiodicity, which evolves to chaos via the period doubling of either resonant limit cycles or complex antiphase symmetric limit cycles with five winding numbers. The symmetric chaos extends over large parameter areas up to its loss of stability, followed by a system transition to an unexpected mode: an asymmetric limit cycle with a winding number of 1:2. In turn, after long evolution across the parameter-space, this cycle demonstrates a period doubling cascade which restores the symmetry of dynamics by formation of symmetric chaos, which nevertheless preserves the memory of the asymmetric limit cycles in the form of stochastic alternating "polarization" of the time series. All stable attractors coexist with some others, forming remarkable and complex multistability including the coexistence of torus and limit cycles, chaos and regular attractors, symmetric and asymmetric regimes. We traced the paths and bifurcations leading to all areas of chaos, and presented a detailed map of all transformations of the dynamics.

  13. Phase diagram for the Winfree model of coupled nonlinear oscillators.

    PubMed

    Ariaratnam, J T; Strogatz, S H

    2001-05-07

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  14. Phase Diagram for the Winfree Model of Coupled Nonlinear Oscillators

    NASA Astrophysics Data System (ADS)

    Ariaratnam, Joel T.; Strogatz, Steven H.

    2001-05-01

    In 1967 Winfree proposed a mean-field model for the spontaneous synchronization of chorusing crickets, flashing fireflies, circadian pacemaker cells, or other large populations of biological oscillators. Here we give the first bifurcation analysis of the model, for a tractable special case. The system displays rich collective dynamics as a function of the coupling strength and the spread of natural frequencies. Besides incoherence, frequency locking, and oscillator death, there exist hybrid solutions that combine two or more of these states. We present the phase diagram and derive several of the stability boundaries analytically.

  15. On the relationship between the stratospheric quasi-biennial oscillation and the tropospheric Southern oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, J.S.

    1992-05-01

    Two quasi-periodic oscillations in the tropical atmosphere with similar oscillation period-the stratospheric quasi-biennial and the Southern oscillations-and the relationship between these two oscillations are examined using the Principal Oscillation Pattern (POP) analysis technique. The POP analysis of the equatorial stratospheric dataset provides a compact description of the QBO. The oscillation features identified by the POP analysis, namely, the spatial structure, the characteristic times of the oscillation, and the asymmetry in downward propagation, are almost identical to those found by earlier studies using more conventional analyses. The simultaneous POP analysis of the equatorial zonal surface wind and sea surface temperature indicatesmore » a well-defined cyclic behavior of the SO. In contrast to the very regular QBO, the SO appears to be much more noisy with intermittent quiet phases. A spectral analysis of the complex POP coefficient time series and the SO index reveals a negligible correlation between the two processes. A POP analysis of the combined equatorial dataset of stratospheric wind, zonal surface wind, and SST also indicates no relation between the QBO and the SO. Two independent modes are identified, one of them completely describing the QBO and the other representing the entire SO. No linear relationship is found between the two modes either in space or in time. It is concluded that the SO and the QBO are two independent processes in the tropical atmosphere with similar time scales. 26 refs., 17 figs.« less

  16. Phase measurement for driven spin oscillations in a storage ring

    NASA Astrophysics Data System (ADS)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  17. Phase-transition oscillations induced by a strongly focused laser beam

    NASA Astrophysics Data System (ADS)

    Devailly, Clémence; Crauste-Thibierge, Caroline; Petrosyan, Artyom; Ciliberto, Sergio

    2015-11-01

    We report the observation of a surprising phenomenon consisting in a oscillating phase transition which appears in a binary mixture when this is enlightened by a strongly focused infrared laser beam. The mixture is poly-methyl-meth-acrylate (PMMA)-3-octanone, which has an upper critical solution temperature at Tc=306.6 K and volume fraction ϕc=12.8 % [Crauste et al., arXiv:1310.6720, 2013]. We describe the dynamical properties of the oscillations, which are produced by a competition between various effects: the local accumulation of PMMA produced by the laser beam, thermophoresis, and nonlinear diffusion. We show that the main properties of this kind of oscillations can be reproduced in the Landau theory for a binary mixture in which a local driving mechanism, simulating the laser beam, is introduced.

  18. Breathing chimera in a system of phase oscillators

    NASA Astrophysics Data System (ADS)

    Bolotov, M. I.; Smirnov, L. A.; Osipov, G. V.; Pikovsky, A. S.

    2017-09-01

    Chimera states consisting of synchronous and asynchronous domains in a medium of nonlinearly coupled phase oscillators have been considered. Stationary inhomogeneous solutions of the Ott-Antonsen equation for a complex order parameter that correspond to fundamental chimeras have been constructed. The direct numerical simulation has shown that these structures under certain conditions are transformed to oscillatory (breathing) chimera regimes because of the development of instability.

  19. Quantum phase transitions in the noncommutative Dirac oscillator

    NASA Astrophysics Data System (ADS)

    Panella, O.; Roy, P.

    2014-10-01

    We study the (2 + 1)-dimensional Dirac oscillator in a homogeneous magnetic field in the noncommutative plane. It is shown that the effect of noncommutativity is twofold: (i) momentum noncommuting coordinates simply shift the critical value (Bcr) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); (ii) noncommutativity in the space coordinates induces a new critical value of the magnetic field, Bcr*, where there is a second quantum phase transition (right-left): this critical point disappears in the commutative limit. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetization of the system. Possible applications to the physics of silicene and graphene are briefly discussed.

  20. Geometric Phase of a Transported Oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dittirich, W.

    2004-02-25

    An oscillator constrained to a plane that is transported along some surface will rotate by an angle dependent only on the path and the surface, not on the speed at which it is transported. This is thus an example of a geometric phase. We analyze this phase using the methods of parallel transport. This concept plays a key role in General Relativity, but it can also be applied in classical mechanics. The Foucault pendulum can be seen as an application of this analysis, where the surface is a sphere and the curve is a line of constant latitude. In viewmore » of some considerable confusion and erroneous treatments in the recent literature, we here present a rather simple way for visualizing the motion of the Foucault pendulum using concepts that are based on Frenet's formulae and the methods of parallel displacement.« less

  1. Complex behavior in chains of nonlinear oscillators.

    PubMed

    Alonso, Leandro M

    2017-06-01

    This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.

  2. Interaction of a magnetic island chain in a tokamak plasma with a resonant magnetic perturbation of rapidly oscillating phase

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2017-12-01

    An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.

  3. Phase noise analysis of a 10-GHz optical injection-locked vertical-cavity surface-emitting laser-based optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Coronel, Juan; Varón, Margarita; Rissons, Angélique

    2016-09-01

    The optical injection locking (OIL) technique is proposed to reduce the phase noise of a carrier generated for a vertical-cavity surface-emitting laser (VCSEL)-based optoelectronic oscillator. The OIL technique permits the enhancement of the VCSEL direct modulation bandwidth as well as the stabilization of the optical noise of the laser. A 2-km delay line, 10-GHz optical injection-locked VCSEL-based optoelectronic oscillator (OILVBO) was implemented. The internal noise sources of the optoelectronic oscillator components were characterized and analyzed to understand the noise conversion of the system into phase noise in the oscillator carrier. The implemented OILVBO phase noise was -105.7 dBc/Hz at 10 kHz from the carrier; this value agrees well with the performed simulated analysis. From the computed and measured phase noise curves, it is possible to infer the noise processes that take place inside the OILVBO. As a second measurement of the oscillation quality, a time-domain analysis was done through the Allan's standard deviation measurement, reported for first time for an optoelectronic oscillator using the OIL technique.

  4. Light Evokes Rapid Circadian Network Oscillator Desynchrony Followed by Gradual Phase Retuning of Synchrony

    PubMed Central

    Roberts, Logan; Leise, Tanya L.; Noguchi, Takako; Galschiodt, Alexis M.; Houl, Jerry H.; Welsh, David K.; Holmes, Todd C.

    2015-01-01

    Summary Background Circadian neural circuits generate near 24 hr physiological rhythms that can be entrained by light to coordinate animal physiology with daily solar cycles. To examine how a circadian circuit reorganizes its activity in response to light, we imaged period (per) clock gene cycling for up to 6 days at single neuron resolution in whole brain explant cultures prepared from per-luciferase transgenic flies. We compared cultures subjected to a phase-advancing light pulse (LP) to cultures maintained in darkness (DD). Results In DD, individual neuronal oscillators in all circadian subgroups are initially well synchronized, then show monotonic decrease in oscillator rhythm amplitude and synchrony with time. The s-LNvs and LNds exhibit this decrease at a slower relative rate. In contrast, the LP evokes a rapid loss of oscillator synchrony between and within most circadian neuronal subgroups followed by gradual phase retuning of whole circuit oscillator synchrony. The LNds maintain high rhythmic amplitude and synchrony following the LP along with the most rapid coherent phase advance. Immunocytochemical analysis of PER show these dynamics in DD and LP are recapitulated in vivo. Anatomically distinct circadian neuronal subgroups vary in their response to the LP, showing differences in the degree and kinetics of their loss, recovery and/or strengthening of synchrony and rhythmicity. Conclusions Transient desynchrony appears to be an integral feature of light response of the Drosophila multicellular circadian clock. Individual oscillators in different neuronal subgroups of the circadian circuit show distinct kinetic signatures of light response and phase retuning. PMID:25754644

  5. Quantifying interactions between real oscillators with information theory and phase models: application to cardiorespiratory coupling.

    PubMed

    Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R; Dick, Thomas E; Jacono, Frank J; Galán, Roberto F

    2013-02-01

    Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. E 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. E 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.

  6. Pulsations of the Free Oscillations of the Earth in an Hourly Period Range

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Zakrzhevskaya, N. A.; Akatova, K. N.

    2018-05-01

    The records from 161 identical broadband seismic stations located in different regions of the world after the strong earthquakes off Sumatra Island on December 26, 2004 with magnitude M = 9.1, in Chile on February 27, 2010 with M = 8.8, and the Tohoku earthquake in Japan on March 11, 2011 with M = 9.0 are studied. Oscillations with a period of 11 h are analyzed. They are observed as pulsations in the free radial oscillations of the Earth lasting more than one week. The stations located a few hundred kilometers apart from each other demonstrate identical records. As the distance between the stations becomes larger, the structure of the records becomes different. At interstation distances of about 3800 km, the records at the stations have opposite phases, and at distances of 7600 km, the phases coincide. This is reflected in the spatial structure of the areas of the positive and negative phases of the oscillations on the Earth's surface. This structure recurs at the same time instant after the three considered earthquakes, which indicates that this effect is independent of the properties of the sources. The spatial positions of the areas of positive and negative phases are also not correlated to the geological conditions in the vicinity of the stations which are located both in the subduction zone and within the platform. The structure of the pulsations and their spatial distribution differ from the variations of the Earth's tides.

  7. Ultra-stable, low phase noise dielectric resonator stabilized oscillators for military and commercial systems

    NASA Technical Reports Server (NTRS)

    Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana

    1993-01-01

    EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.

  8. Experimental study of an X-band phase-locked relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.

    2015-11-15

    To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase differencemore » between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.« less

  9. Multichannel X-Band Dielectric-Resonator Oscillator

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan; Dennis, Matthew; Cook, Brian

    2006-01-01

    A multichannel dielectric-resonator oscillator (DRO), built as a prototype of a local oscillator for an X-band transmitter or receiver, is capable of being electrically tuned among and within 26 adjacent frequency channels, each 1.16 MHz wide, in a band ranging from 7,040 to 7,070 GHz. The tunability of this oscillator is what sets it apart from other DROs, making it possible to use mass-produced oscillator units of identical design in diverse X-band applications in which there are requirements to use different fixed frequencies or to switch among frequency channels. The oscillator (see figure) includes a custom-designed voltage-controlled-oscillator (VCO) monolithic microwave integrated circuit (MMIC), a dielectric resonator disk (puck), and two varactor-coupling circuits, all laid out on a 25-mil (0.635-mm)-thick alumina substrate having a length and width of 17.8 mm. The resonator disk has a diameter of 8.89 mm and a thickness of 4.01 mm. The oscillator is mounted in an 8.9-mm-deep cavity in a metal housing. The VCO MMIC incorporates a negative- resistance oscillator amplifier along with a buffer amplifier. The resonator disk is coupled to a microstrip transmission line connected to the negative-resistance port of the VCO MMIC. The two varactor-coupling circuits include microstrip lines, laid out orthogonally to each other, for coupling with the resonator disk. Each varactor microstrip line is DC-coupled to an external port via a microwave choke. One varactor is used for coarse tuning to select a channel; the other varactor is used (1) for fine tuning across the 1.16-MHz width of each channel and (2) as a feedback port for a phase-lock loop. The resonator disk is positioned to obtain (1) the most desirable bandwidth, (2) relatively tight coupling with the microstrip connected to the coarse-tuning varactor, and (3) relatively loose coupling with the microstrip connected to the fine-tuning varactor. Measurements of performance showed that the oscillator can be

  10. Dynamical modes of two almost identical chemical oscillators connected via both pulsatile and diffusive coupling.

    PubMed

    Safonov, Dmitry A; Vanag, Vladimir K

    2018-05-03

    The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.

  11. Phase locking route behind complex periodic windows in a forced oscillator

    NASA Astrophysics Data System (ADS)

    Jan, Hengtai; Tsai, Kuo-Ting; Kuo, Li-wei

    2013-09-01

    Chaotic systems have complex reactions against an external driving force; even in cases with low-dimension oscillators, the routes to synchronization are diverse. We proposed a stroboscope-based method for analyzing driven chaotic systems in their phase space. According to two statistic quantities generated from time series, we could realize the system state and the driving behavior simultaneously. We demonstrated our method in a driven bi-stable system, which showed complex period windows under a proper driving force. With increasing periodic driving force, a route from interior periodic oscillation to phase synchronization through the chaos state could be found. Periodic windows could also be identified and the circumstances under which they occurred distinguished. Statistical results were supported by conditional Lyapunov exponent analysis to show the power in analyzing the unknown time series.

  12. Resurgence of oscillation in coupled oscillators under delayed cyclic interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar

    2017-07-01

    This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.

  13. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    NASA Astrophysics Data System (ADS)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  14. Clock-Talk: Interactions between Central and Peripheral Circadian Oscillators in Mammals.

    PubMed

    Schibler, Ueli; Gotic, Ivana; Saini, Camille; Gos, Pascal; Curie, Thomas; Emmenegger, Yann; Sinturel, Flore; Gosselin, Pauline; Gerber, Alan; Fleury-Olela, Fabienne; Rando, Gianpaolo; Demarque, Maud; Franken, Paul

    2015-01-01

    In mammals, including humans, nearly all physiological processes are subject to daily oscillations that are governed by a circadian timing system with a complex hierarchical structure. The central pacemaker, residing in the suprachiasmatic nucleus (SCN) of the ventral hypothalamus, is synchronized daily by photic cues transmitted from the retina to SCN neurons via the retinohypothalamic tract. In turn, the SCN must establish phase coherence between self-sustained and cell-autonomous oscillators present in most peripheral cell types. The synchronization signals (Zeitgebers) can be controlled more or less directly by the SCN. In mice and rats, feeding-fasting rhythms, which are driven by the SCN through rest-activity cycles, are the most potent Zeitgebers for the circadian oscillators of peripheral organs. Signaling through the glucocorticoid receptor and the serum response factor also participate in the phase entrainment of peripheral clocks, and these two pathways are controlled by the SCN independently of feeding-fasting rhythms. Body temperature rhythms, governed by the SCN directly and indirectly through rest-activity cycles, are perhaps the most surprising cues for peripheral oscillators. Although the molecular makeup of circadian oscillators is nearly identical in all cells, these oscillators are used for different purposes in the SCN and in peripheral organs. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meehl, Gerald A.; Hu, Aixue; Teng, Haiyan

    The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. Here, a proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Nino/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Nino3.4 SSTs thatmore » have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015-2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013-2022 period consistent with a positive IPO phase.« less

  16. Initialized decadal prediction for transition to positive phase of the Interdecadal Pacific Oscillation

    DOE PAGES

    Meehl, Gerald A.; Hu, Aixue; Teng, Haiyan

    2016-06-02

    The negative phase of the Interdecadal Pacific Oscillation (IPO), a dominant mode of multi-decadal variability of sea surface temperatures (SSTs) in the Pacific, contributed to the reduced rate of global surface temperature warming in the early 2000s. Here, a proposed mechanism for IPO multidecadal variability indicates that the presence of decadal timescale upper ocean heat content in the off-equatorial western tropical Pacific can provide conditions for an interannual El Nino/Southern Oscillation event to trigger a transition of tropical Pacific SSTs to the opposite IPO phase. Here we show that a decadal prediction initialized in 2013 simulates predicted Nino3.4 SSTs thatmore » have qualitatively tracked the observations through 2015. The year three to seven average prediction (2015-2019) from the 2013 initial state shows a transition to the positive phase of the IPO from the previous negative phase and a resumption of larger rates of global warming over the 2013-2022 period consistent with a positive IPO phase.« less

  17. Quantifying interactions between real oscillators with information theory and phase models: Application to cardiorespiratory coupling

    NASA Astrophysics Data System (ADS)

    Zhu, Yenan; Hsieh, Yee-Hsee; Dhingra, Rishi R.; Dick, Thomas E.; Jacono, Frank J.; Galán, Roberto F.

    2013-02-01

    Interactions between oscillators can be investigated with standard tools of time series analysis. However, these methods are insensitive to the directionality of the coupling, i.e., the asymmetry of the interactions. An elegant alternative was proposed by Rosenblum and collaborators [M. G. Rosenblum, L. Cimponeriu, A. Bezerianos, A. Patzak, and R. Mrowka, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.65.041909 65, 041909 (2002); M. G. Rosenblum and A. S. Pikovsky, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.64.045202 64, 045202 (2001)] which consists in fitting the empirical phases to a generic model of two weakly coupled phase oscillators. This allows one to obtain the interaction functions defining the coupling and its directionality. A limitation of this approach is that a solution always exists in the least-squares sense, even in the absence of coupling. To preclude spurious results, we propose a three-step protocol: (1) Determine if a statistical dependency exists in the data by evaluating the mutual information of the phases; (2) if so, compute the interaction functions of the oscillators; and (3) validate the empirical oscillator model by comparing the joint probability of the phases obtained from simulating the model with that of the empirical phases. We apply this protocol to a model of two coupled Stuart-Landau oscillators and show that it reliably detects genuine coupling. We also apply this protocol to investigate cardiorespiratory coupling in anesthetized rats. We observe reciprocal coupling between respiration and heartbeat and that the influence of respiration on the heartbeat is generally much stronger than vice versa. In addition, we find that the vagus nerve mediates coupling in both directions.

  18. An analogue of the Berry phase for simple harmonic oscillators

    NASA Astrophysics Data System (ADS)

    Suslov, S. K.

    2013-03-01

    We evaluate a variant of Berry's phase for a ‘missing’ family of the square integrable wavefunctions for the linear harmonic oscillator, which cannot be derived by the separation of variables (in a natural way). Instead, it is obtained by the action of the maximal kinematical invariance group on the standard solutions. A simple closed formula for the phase (in terms of elementary functions) is found here by integration with the help of a computer algebra system.

  19. Partial synchronization in networks of non-linearly coupled oscillators: The Deserter Hubs Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, Celso, E-mail: cbnfreitas@gmail.com; Macau, Elbert, E-mail: elbert.macau@inpe.br; Pikovsky, Arkady, E-mail: pikovsky@uni-potsdam.de

    2015-04-15

    We study the Deserter Hubs Model: a Kuramoto-like model of coupled identical phase oscillators on a network, where attractive and repulsive couplings are balanced dynamically due to nonlinearity of interactions. Under weak force, an oscillator tends to follow the phase of its neighbors, but if an oscillator is compelled to follow its peers by a sufficient large number of cohesive neighbors, then it actually starts to act in the opposite manner, i.e., in anti-phase with the majority. Analytic results yield that if the repulsion parameter is small enough in comparison with the degree of the maximum hub, then the fullmore » synchronization state is locally stable. Numerical experiments are performed to explore the model beyond this threshold, where the overall cohesion is lost. We report in detail partially synchronous dynamical regimes, like stationary phase-locking, multistability, periodic and chaotic states. Via statistical analysis of different network organizations like tree, scale-free, and random ones, we found a measure allowing one to predict relative abundance of partially synchronous stationary states in comparison to time-dependent ones.« less

  20. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network

    NASA Astrophysics Data System (ADS)

    Kagawa, Yuki; Takamatsu, Atsuko

    2009-04-01

    To reveal the relation between network structures found in two-dimensional biological systems, such as protoplasmic tube networks in the plasmodium of true slime mold, and spatiotemporal oscillation patterns emerged on the networks, we constructed coupled phase oscillators on weighted planar networks and investigated their dynamics. Results showed that the distribution of edge weights in the networks strongly affects (i) the propensity for global synchronization and (ii) emerging ratios of oscillation patterns, such as traveling and concentric waves, even if the total weight is fixed. In-phase locking, traveling wave, and concentric wave patterns were, respectively, observed most frequently in uniformly weighted, center weighted treelike, and periphery weighted ring-shaped networks. Controlling the global spatiotemporal patterns with the weight distribution given by the local weighting (coupling) rules might be useful in biological network systems including the plasmodial networks and neural networks in the brain.

  1. Optoelectronic oscillator with improved phase noise and frequency stability

    NASA Astrophysics Data System (ADS)

    Eliyahu, Danny; Sariri, Kouros; Taylor, Joseph; Maleki, Lute

    2003-07-01

    In this paper we report on recent improvements in phase noise and frequency stability of a 10 GHz opto-electronic oscillator. In our OEO loop, the high Q elements (the optical fiber and the narrow bandpass microwave filter) are thermally stabilized using resistive heaters and temperature controllers, keeping their temperature above ambient. The thermally stabilized free running OEO demonstrates a short-term frequency stability of 0.02 ppm (over several hours) and frequency vs. temperature slope of -0.1 ppm/°C (compared to -8.3 ppm/°C for non thermally stabilized OEO). We obtained an exceptional spectral purity with phase noise level of -143 dBc/Hz at 10 kHz of offset frequency. We also describe the multi-loop configuration that reduces dramatically the spurious level at offset frequencies related to the loop round trip harmonic frequency. The multi-loop configuration has stronger mode selectivity due to interference between signals having different cavity lengths. A drop of the spurious level below -90 dBc was demonstrated. The effect of the oscillator aging on the frequency stability was studied as well by recording the oscillator frequency (in a chamber) over several weeks. We observed reversal in aging direction with logarithmic behavior of A ln(B t+1)-C ln(D t+1), where t is the time and A, B, C, D are constants. Initially, in the first several days, the positive aging dominates. However, later the negative aging mechanism dominates. We have concluded that the long-term aging behavioral model is consistent with the experimental results.

  2. Generating macroscopic chaos in a network of globally coupled phase oscillators

    PubMed Central

    So, Paul; Barreto, Ernest

    2011-01-01

    We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662

  3. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    PubMed

    Pallesen, Karen Johanne; Bailey, Christopher J; Brattico, Elvira; Gjedde, Albert; Palva, J Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz) alpha (8-14 Hz), beta- (14-30 Hz) and gamma- (30-80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  4. Reduction of phase noise in nanowire spin orbit torque oscillators

    PubMed Central

    Yang, Liu; Verba, Roman; Tiberkevich, Vasil; Schneider, Tobias; Smith, Andrew; Duan, Zheng; Youngblood, Brian; Lenz, Kilian; Lindner, Jürgen; Slavin, Andrei N.; Krivorotov, Ilya N.

    2015-01-01

    Spin torque oscillators (STOs) are compact, tunable sources of microwave radiation that serve as a test bed for studies of nonlinear magnetization dynamics at the nanometer length scale. The spin torque in an STO can be created by spin-orbit interaction, but low spectral purity of the microwave signals generated by spin orbit torque oscillators hinders practical applications of these magnetic nanodevices. Here we demonstrate a method for decreasing the phase noise of spin orbit torque oscillators based on Pt/Ni80Fe20 nanowires. We experimentally demonstrate that tapering of the nanowire, which serves as the STO active region, significantly decreases the spectral linewidth of the generated signal. We explain the observed linewidth narrowing in the framework of the Ginzburg-Landau auto-oscillator model. The model reveals that spatial non-uniformity of the spin current density in the tapered nanowire geometry hinders the excitation of higher order spin-wave modes, thus stabilizing the single-mode generation regime. This non-uniformity also generates a restoring force acting on the excited self-oscillatory mode, which reduces thermal fluctuations of the mode spatial position along the wire. Both these effects improve the STO spectral purity. PMID:26592432

  5. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    NASA Astrophysics Data System (ADS)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  6. Relationship between phases of quasi-decadal oscillations of total ozone and the 11-year solar cycle

    NASA Astrophysics Data System (ADS)

    Visheratin, K. N.

    2012-02-01

    Temporal variability of the relationship between the phases of quasi-decadal oscillations (QDOs) of total ozone (TO), measured at the Arosa station, and the Ri international sunspot number have been analyzed for the period of 1932-2009. Before the 1970s, the maximum phase of ozone QDOs lagged behind solar activity variations by about 2.5-2.8 years and later outstripped by about 1.5 years. We assumed that the TO QDOs in midlatitudes of the Northern Hemisphere were close to being in resonance with solar activity oscillations in the period from the mid-1960s to the mid-1970s and assessed the characteristic delay period of TO QDOs. The global distribution of phases and amplitudes of TO QDOs have been studied for the period from 1979 to 2008 based on satellite data. The maximum phase of TO QDOs first onsets in northern middle and high latitudes and coincides with the end of the growth phase of the 11-year solar cycle. In the tropics, the maximum oscillation phase lags behind by 0.5-1 year. The maximum phase lag near 40-50° S is about two years. The latitudinal variations of the phase of TO QDOs have been approximated.

  7. Limits to detection of generalized synchronization in delay-coupled chaotic oscillators.

    PubMed

    Kato, Hideyuki; Soriano, Miguel C; Pereda, Ernesto; Fischer, Ingo; Mirasso, Claudio R

    2013-12-01

    We study how reliably generalized synchronization can be detected and characterized from time-series analysis. To that end, we analyze synchronization in a generalized sense of delay-coupled chaotic oscillators in unidirectional ring configurations. The generalized synchronization condition can be verified via the auxiliary system approach; however, in practice, this might not always be possible. Therefore, in this study, widely used indicators to directly quantify generalized and phase synchronization from noise-free time series of two oscillators are employed complementarily to the auxiliary system approach. In our analysis, none of the indices provide the consistent results of the auxiliary system approach. Our findings indicate that it is a major challenge to directly detect synchronization in a generalized sense between two oscillators that are connected via a chain of other oscillators, even if the oscillators are identical. This has major consequences for the interpretation of the dynamics of coupled systems and applications thereof.

  8. Oscillator Noise Analysis

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2005-08-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, that exist in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter. These are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In noise analysis for oscillators, the key is figuring out how the various disturbances and noise sources in the oscillator end up as phase fluctuations. In doing so, one first computes transfer functions from the noise sources to the oscillator phase, or the sensitivity of the oscillator phase to these noise sources. In this paper, we first provide a discussion explaining the origins and the proper definition of this transfer or sensitivity function, followed by a critical review of the various numerical techniques for its computation that have been proposed by various authors over the past fifteen years.

  9. Conditions and Linear Stability Analysis at the Transition to Synchronization of Three Coupled Phase Oscillators in a Ring

    NASA Astrophysics Data System (ADS)

    El-Nashar, Hassan F.

    2017-06-01

    We consider a system of three nonidentical coupled phase oscillators in a ring topology. We explore the conditions that must be satisfied in order to obtain the phases at the transition to a synchrony state. These conditions lead to the correct mathematical expressions of phases that aid to find a simple analytic formula for critical coupling when the oscillators transit to a synchronization state having a common frequency value. The finding of a simple expression for the critical coupling allows us to perform a linear stability analysis at the transition to the synchronization stage. The obtained analytic forms of the eigenvalues show that the three coupled phase oscillators with periodic boundary conditions transit to a synchrony state when a saddle-node bifurcation occurs.

  10. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave duringmore » the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.« less

  11. Frequency-locked chaotic opto-RF oscillator.

    PubMed

    Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc

    2016-06-15

    A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.

  12. First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background.

    PubMed

    Follin, Brent; Knox, Lloyd; Millea, Marius; Pan, Zhen

    2015-08-28

    The unimpeded relativistic propagation of cosmological neutrinos prior to recombination of the baryon-photon plasma alters gravitational potentials and therefore the details of the time-dependent gravitational driving of acoustic oscillations. We report here a first detection of the resulting shifts in the temporal phase of the oscillations, which we infer from their signature in the cosmic microwave background temperature power spectrum.

  13. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators.

    PubMed

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-03-15

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles.

  14. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators

    PubMed Central

    Saini, Camille; Morf, Jörg; Stratmann, Markus; Gos, Pascal; Schibler, Ueli

    2012-01-01

    The circadian pacemaker in the suprachiasmatic nuclei (SCN) of the hypothalamus maintains phase coherence in peripheral cells through metabolic, neuronal, and humoral signaling pathways. Here, we investigated the role of daily body temperature fluctuations as possible systemic cues in the resetting of peripheral oscillators. Using precise temperature devices in conjunction with real-time monitoring of the bioluminescence produced by circadian luciferase reporter genes, we showed that simulated body temperature cycles of mice and even humans, with daily temperature differences of only 3°C and 1°C, respectively, could gradually synchronize circadian gene expression in cultured fibroblasts. The time required for establishing the new steady-state phase depended on the reporter gene, but after a few days, the expression of each gene oscillated with a precise phase relative to that of the temperature cycles. Smooth temperature oscillations with a very small amplitude could synchronize fibroblast clocks over a wide temperature range, and such temperature rhythms were also capable of entraining gene expression cycles to periods significantly longer or shorter than 24 h. As revealed by genetic loss-of-function experiments, heat-shock factor 1 (HSF1), but not HSF2, was required for the efficient synchronization of fibroblast oscillators to simulated body temperature cycles. PMID:22379191

  15. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  16. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise

    PubMed Central

    Pallesen, Karen Johanne; Bailey, Christopher J.; Brattico, Elvira; Gjedde, Albert; Palva, J. Matias; Palva, Satu

    2015-01-01

    Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL) and amplitude modulations (AM) of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG) while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4–8 Hz) alpha (8–14 Hz), beta- (14–30 Hz) and gamma- (30–80 Hz) bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms) gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats) of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality. PMID:26291324

  17. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    NASA Astrophysics Data System (ADS)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  18. Spatio-Temporal Variability of the Phase of Total Ozone Quasi-Decennial Oscillations

    NASA Astrophysics Data System (ADS)

    Visheratin, K. N.

    2017-12-01

    The SBUV/SBUV2 (65° S-65° N) and Bodeker Scientific (90° S-90° N) satellite databases have been used for composite and cross-wavelet analyses of the spatio-temporal variability of phase relations between a 11-year cycle of solar activity (SA) and quasi-decennial oscillations (QDOs) of total ozone content (TOC). For globally average TOC values, the QDO maxima coincide in phase with the solar-activity maxima, and amplitude variations of TOC correlate with those of the 11-year solar cycle. According to the analysis of amplitude and phase of QDOs for the zonal average TOC fields, a QDO amplitude is about 6-7 Dobson Units (DU) in the high northern and southern latitudes, and it does not exceed 2-3 DU in the tropic regions. The latitudinal TOC variations are distinguished by a delay of the quasi-decennial oscillation phase in the southern latitudes in comparison with the northern latitudes. The TOC maxima phase coincides with the SA maxima phase in the tropic regions; the TOC variations go ahead of the SA variations, on average, in moderate and high latitudes of the Northern Hemisphere; the TOC variations are behind the SA variations in the Southern Hemisphere. The phase delay between TOC QDO maxima in the northern and southern latitudes appears to increase in the course of time, and the TOC quasi-decennial variations in the Arctic and Antarctic subpolar regions occur approximately in an antiphase over the last two decades.

  19. Conformists and contrarians in a Kuramoto model with identical natural frequencies

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk; Strogatz, Steven H.

    2011-10-01

    We consider a variant of the Kuramoto model in which all the oscillators are now assumed to have the same natural frequency, but some of them are negatively coupled to the mean field. These contrarian oscillators tend to align in antiphase with the mean field, whereas, the positively coupled conformist oscillators favor an in-phase relationship. The interplay between these effects can lead to rich dynamics. In addition to a splitting of the population into two diametrically opposed factions, the system can also display traveling waves, complete incoherence, and a blurred version of the two-faction state. Exact solutions for these states and their bifurcations are obtained by means of the Watanabe-Strogatz transformation and the Ott-Antonsen ansatz. Curiously, this system of oscillators with identical frequencies turns out to exhibit more complicated dynamics than its counterpart with heterogeneous natural frequencies.

  20. Conformists and contrarians in a Kuramoto model with identical natural frequencies.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2011-10-01

    We consider a variant of the Kuramoto model in which all the oscillators are now assumed to have the same natural frequency, but some of them are negatively coupled to the mean field. These contrarian oscillators tend to align in antiphase with the mean field, whereas, the positively coupled conformist oscillators favor an in-phase relationship. The interplay between these effects can lead to rich dynamics. In addition to a splitting of the population into two diametrically opposed factions, the system can also display traveling waves, complete incoherence, and a blurred version of the two-faction state. Exact solutions for these states and their bifurcations are obtained by means of the Watanabe-Strogatz transformation and the Ott-Antonsen ansatz. Curiously, this system of oscillators with identical frequencies turns out to exhibit more complicated dynamics than its counterpart with heterogeneous natural frequencies.

  1. An integrated low phase noise radiation-pressure-driven optomechanical oscillator chipset

    PubMed Central

    Luan, Xingsheng; Huang, Yongjun; Li, Ying; McMillan, James F.; Zheng, Jiangjun; Huang, Shu-Wei; Hsieh, Pin-Chun; Gu, Tingyi; Wang, Di; Hati, Archita; Howe, David A.; Wen, Guangjun; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Wong, Chee Wei

    2014-01-01

    High-quality frequency references are the cornerstones in position, navigation and timing applications of both scientific and commercial domains. Optomechanical oscillators, with direct coupling to continuous-wave light and non-material-limited f × Q product, are long regarded as a potential platform for frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple frequency tones for applications in both frequency multipliers and dividers. The phase noise is measured down to −125 dBc/Hz at 10 kHz offset at ~400 μW dropped-in powers, one of the lowest noise optomechanical oscillators to date and in room-temperature and atmospheric non-vacuum operating conditions. These characteristics enable optomechanical oscillators as a frequency reference platform for radio-frequency-photonic information processing. PMID:25354711

  2. Phase coherence of 0.1 Hz microvascular tone oscillations during the local heating

    NASA Astrophysics Data System (ADS)

    Mizeva, I. A.

    2017-06-01

    The origin of the mechanisms of blood flow oscillations at low frequencies is discussed. It is known that even isolated arteriole demonstrates oscillations with the frequency close to 0.1 Hz, which is caused by the synchronous activity of myocyte cells. On the other hand, oscillations with close frequency are found in the heart rate, which are associated with quite different mechanism. The main purpose of this work is to study phase coherence of the blood flow oscillations in the peripheral vessels under basal and perturbed conditions. Local heating which locally influences the microvascular tone, as one of currently elucidated in sufficient detail physiological test, was chosen. During such provocation blood flow though the small vessels significantly increases because of vasodilation induced by the local synthesis of nitric oxide. In the first part of the paper microvascular response to the local test is quantified in healthy and pathological conditions of diabetes mellitus type 1. It is obtained that regardless of the pathology, subjects with high basal perfusion had lower reserve for vasodilation, which can be caused by the low elasticity of microvascular structure. Further synchronization of pulsations of the heated and undisturbed skin was evaluated on the base of wavelet phase coherency analysis. Being highly synchronised in basal conditions 0.1 Hz pulsations became more independent during heating, especially during NO-mediated vasodilation.

  3. Phase correlated adequate afferent action potentials as a drive of human spinal oscillators.

    PubMed

    Schalow, G

    1993-12-01

    1. By recording, with 2 pairs of wire electrodes, single-fibre action potentials (APs) from lower sacral nerve roots of a brain-dead human and a patient with spinal cord lesion, impulse patterns of afferent APs and impulse trains of oscillatory firing motoneurons could be identified and correlated. 2. Two highly activated secondary muscle spindle afferents increased and decreased their activity at about 0.3 Hz. The duration of the doublet interspike interval of a secondary spindle afferent fibre showed no correlation to the oscillation period of the motoneuron. 3. A continuously oscillatory firing motoneuron innervating the external and sphincter showed more transient breaks with the reduction of the number of phase correlated APs from 2 spindle afferents, indicating a looser oscillation. A transient brake of a 157 msec period alpha 2-oscillation could be correlated to the shift of a interspike interval distribution peak from 150 to 180 msec of the adequate afferent input, which suggests a transient loss of the necessary phase relation. 4. Oscillatory firing alpha 2-motoneurons innervating the external bladder and anal sphincters fired independently according to their phase correlated APs from the urinary bladder stretch receptor and muscle spindle afferents respectively; the bladder motoneuron slightly inhibited the anal motoneuron. 5. Receptors of the afferents and innervation sites of oscillatory firing motoneurons could be located within the urinary tract and the anal canal.

  4. State diagram of magnetostatic coupling phase-locked spin-torque oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mengwei; Wang, Longze; Wei, Dan, E-mail: weidan@mail.tsinghua.edu.cn

    2015-05-07

    The state diagram of magnetostatic coupling phase-locked spin torque oscillator (STO) with perpendicular reference layer and planar field generation layer (FGL) is studied by the macrospin model and the micromagnetic model. The state diagrams of current densities are calculated under various external fields. The simulation shows that there are two phase-lock current density regions. In the phase-locked STOs in low current region I, the spin configuration of FGL is uniform; in high current region II, the spin configuration of FGL is highly nonuniform. In addition, the results with different STOs separation L{sub s} are compared, and the coupling between twomore » STOs is largely decreased when L{sub s} is increased from 40 nm to 60 nm.« less

  5. Microwave oscillator with reduced phase noise by negative feedback incorporating microwave signals with suppressed carrier

    NASA Technical Reports Server (NTRS)

    Dick, G. J.; Saunders, J.

    1989-01-01

    Oscillator configurations which reduce the effect of 1/f noise sources for both direct feedback and stabilized local oscillator (STALO) circuits are developed and analyzed. By appropriate use of carrier suppression, a small signal is generated which suffers no loss of loop phase information or signal-to-noise ratio. This small signal can be amplified without degradation by multiplicative amplifier noise, and can be detected without saturation of the detector. Together with recent advances in microwave resonator Qs, these circuit improvements will make possible lower phase noise than can be presently achieved without the use of cryogenic devices.

  6. Frequency domain phase noise analysis of dual injection-locked optoelectronic oscillators.

    PubMed

    Jahanbakht, Sajad

    2016-10-01

    Dual injection-locked optoelectronic oscillators (DIL-OEOs) have been introduced as a means to achieve very low-noise microwave oscillations while avoiding the large spurious peaks that occur in the phase noise of the conventional single-loop OEOs. In these systems, two OEOs are inter-injection locked to each other. The OEO with the longer optical fiber delay line is called the master OEO, and the other is called the slave OEO. Here, a frequency domain approach for simulating the phase noise spectrum of each of the OEOs in a DIL-OEO system and based on the conversion matrix approach is presented. The validity of the new approach is verified by comparing its results with previously published data in the literature. In the new approach, first, in each of the master or slave OEOs, the power spectral densities (PSDs) of two white and 1/f noise sources are optimized such that the resulting simulated phase noise of any of the master or slave OEOs in the free-running state matches the measured phase noise of that OEO. After that, the proposed approach is able to simulate the phase noise PSD of both OEOs at the injection-locked state. Because of the short run-time requirements, especially compared to previously proposed time domain approaches, the new approach is suitable for optimizing the power injection ratios (PIRs), and potentially other circuit parameters, in order to achieve good performance regarding the phase noise in each of the OEOs. Through various numerical simulations, the optimum PIRs for achieving good phase noise performance are presented and discussed; they are in agreement with the previously published results. This further verifies the applicability of the new approach. Moreover, some other interesting results regarding the spur levels are also presented.

  7. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  8. A Master-Oscillator-Power-Amplifier 2-micron Laser Using Fiber Phase-conjugate Mirror

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Bai, Yingxin; Shkunov, V.; Rockwell, D.; Betin, A.; Wang, J.; Petros, M.; Petzar, Paul; Trieu, Bo

    2007-01-01

    For the first time, a 2-micron master-oscillator-power-amplifier laser using a fiber based phase conjugation mirror has been demonstrated. The beam quality improvement and 56% of the PCM reflectivity have been achieved.

  9. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle.

    PubMed

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C; Downey, Mike J; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A; Bretschneider, Till; van der Horst, Gijsbertus T J; Delaunay, Franck; Rand, David A

    2014-07-08

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer.

  10. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    PubMed Central

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Oostenveld, Robert

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (>40 Hz) occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC). However, the CFC patterns might be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 or 1.5 mg of lorazepam (LZP; GABAergic enhancer) in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM), we were able to demonstrate that posterior alpha (8–12 Hz) phase was coupled to beta-low gamma band (20–45 Hz) amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh) values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD). Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs. Furthermore, we

  11. Role of phase breaking processes on resonant spin transfer torque nano-oscillators

    NASA Astrophysics Data System (ADS)

    Sharma, Abhishek; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran

    2018-05-01

    Spin transfer torque nano-oscillators (STNOs) based on magnetoresistance and spin transfer torque effects find potential applications in miniaturized wireless communication devices. Using the non-coherent non-equilibrium Green's function spin transport formalism self-consistently coupled with the stochastic Landau-Lifshitz-Gilbert-Slonczewski's equation and the Poisson's equation, we elucidate the role of elastic phase breaking on the proposed STNO design featuring double barrier resonant tunneling. Demonstrating the immunity of our proposed design, we predict that despite the presence of elastic dephasing, the resonant tunneling magnetic tunnel junction structures facilitate oscillator designs featuring a large enhancement in microwave power up to 8μW delivered to a 50Ω load.

  12. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  13. Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Lin, Z. R.; Inomata, K.; Koshino, K.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S.; Yamamoto, T.

    2014-07-01

    The parametric phase-locked oscillator (PPLO) is a class of frequency-conversion device, originally based on a nonlinear element such as a ferrite ring, that served as a fundamental logic element for digital computers more than 50 years ago. Although it has long since been overtaken by the transistor, there have been numerous efforts more recently to realize PPLOs in different physical systems such as optical photons, trapped atoms, and electromechanical resonators. This renewed interest is based not only on the fundamental physics of nonlinear systems, but also on the realization of new, high-performance computing devices with unprecedented capabilities. Here we realize a PPLO with Josephson-junction circuitry and operate it as a sensitive phase detector. Using a PPLO, we demonstrate the demodulation of a weak binary phase-shift keying microwave signal of the order of a femtowatt. We apply PPLO to dispersive readout of a superconducting qubit, and achieved high-fidelity, single-shot and non-destructive readout with Rabi-oscillation contrast exceeding 90%.

  14. Epochs of phase coherence between El Niño/Southern Oscillation and Indian monsoon

    NASA Astrophysics Data System (ADS)

    Maraun, D.; Kurths, J.

    2005-08-01

    We present a modern method used in nonlinear time series analysis to investigate the relation of two oscillating systems with respect to their phases, independently of their amplitudes. We study the difference of the phase dynamics between El Niño/Southern Oscillation (ENSO) and the Indian Monsoon on inter-annual time scales. We identify distinct epochs, especially two intervals of phase coherence, 1886-1908 and 1964-1980, corroborating earlier findings from a new point of view. A significance test shows that the coherence is very unlikely to be the result of stochastic fluctuations. We also detect so far unknown periods of coupling which are invisible to linear methods. These findings suggest that the decreasing correlation during the last decades might be a typical epoch of the ENSO/Monsoon system having occurred repeatedly. The high time resolution of the method enables us to present an interpretation of how volcanic radiative forcing could cause the coupling.

  15. Phase Properties of Photon-Added Coherent States for Nonharmonic Oscillators in a Nonlinear Kerr Medium

    NASA Astrophysics Data System (ADS)

    Jahanbakhsh, F.; Honarasa, G.

    2018-04-01

    The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.

  16. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    PubMed Central

    Feillet, Céline; Krusche, Peter; Tamanini, Filippo; Janssens, Roel C.; Downey, Mike J.; Martin, Patrick; Teboul, Michèle; Saito, Shoko; Lévi, Francis A.; Bretschneider, Till; van der Horst, Gijsbertus T. J.; Delaunay, Franck; Rand, David A.

    2014-01-01

    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer. PMID:24958884

  17. Analysis on Patterns of Globally Coupled Phase Oscillators with Attractive and Repulsive Interactions

    NASA Astrophysics Data System (ADS)

    Wang, Peng-Fei; Ruan, Xiao-Dong; Xu, Zhong-Bin; Fu, Xin

    2015-11-01

    The Hong-Strogatz (HS) model of globally coupled phase oscillators with attractive and repulsive interactions reflects the fact that each individual (oscillator) has its own attitude (attractive or repulsive) to the same environment (mean field). Previous studies on HS model focused mainly on the stable states on Ott-Antonsen (OA) manifold. In this paper, the eigenvalues of the Jacobi matrix of each fixed point in HS model are explicitly derived, with the aim to understand the local dynamics around each fixed point. Phase transitions are described according to relative population and coupling strength. Besides, the dynamics off OA manifold is studied. Supported by the National Basic Research Program of China under Grant No. 2015CB057301, the Applied Research Project of Public Welfare Technology of Zhejiang Province under Grant No. 201SC31109 and China Postdoctoral Science Foundation under Grant No. 2014M560483

  18. Density-of-state oscillation of quasiparticle excitation in the spin density wave phase of (TMTSF)2ClO4.

    PubMed

    Uji, S; Kimata, M; Moriyama, S; Yamada, J; Graf, D; Brooks, J S

    2010-12-31

    Systematic measurements of the magnetocaloric effect, heat capacity, and magnetic torque under a high magnetic field up to 35 T are performed in the spin density wave (SDW) phase of a quasi-one-dimensional organic conductor (TMTSF)2ClO4. In the SDW phase above 26 T, where the quantum Hall effect is broken, rapid oscillations (ROs) in these thermodynamic quantities are observed, which provides clear evidence of the density-of-state (DOS) oscillation near the Fermi level. The resistance is semiconducting and the heat capacity divided by temperature is extrapolated to zero at 0 K in the SDW phase, showing that all the energy bands are gapped, and there is no DOS at the Fermi level. The results show that the ROs are ascribed to the DOS oscillation of the quasiparticle excitation.

  19. Carrier-phase control among subharmonic pulses in a femtosecond optical parametric oscillator.

    PubMed

    Kobayashi, Y; Torizuka, K

    2001-08-15

    We have generated femtosecond subharmonic pulses by using an optical parametric oscillator. The optical frequencies of the idler and the signal are one third and two thirds, respectively, of the optical frequency of the pump pulse. The carrier phase of the signal pulse relative to that of the pump pulse was locked by electronic feedback. The carrier-envelope phase slip frequency of the signal pulse relative to that of the pump was locked to F/6 , where F is defined as the repetition frequency.

  20. Enhancing synchrony in chaotic oscillators by dynamic relaying

    NASA Astrophysics Data System (ADS)

    Banerjee, Ranjib; Ghosh, Dibakar; Padmanaban, E.; Ramaswamy, R.; Pecora, L. M.; Dana, Syamal K.

    2012-02-01

    In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of the Lorenz system, in the Rössler system in the absence of coupling delay, and in the Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in the electronic circuit of Rössler oscillators.

  1. Collective behavior of coupled nonuniform stochastic oscillators

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2012-02-01

    Theoretical studies of synchronization are usually based on models of coupled phase oscillators which, when isolated, have constant angular frequency. Stochastic discrete versions of these uniform oscillators have also appeared in the literature, with equal transition rates among the states. Here we start from the model recently introduced by Wood et al. [K. Wood, C. Van den Broeck, R. Kawai, K. Lindenberg, Universality of synchrony: critical behavior in a discrete model of stochastic phase-coupled oscillators, Phys. Rev. Lett. 96 (2006) 145701], which has a collectively synchronized phase, and parametrically modify the phase-coupled oscillators to render them (stochastically) nonuniform. We show that, depending on the nonuniformity parameter 0≤α≤1, a mean field analysis predicts the occurrence of several phase transitions. In particular, the phase with collective oscillations is stable for the complete graph only for α≤α‧<1. At α=1 the oscillators become excitable elements and the system has an absorbing state. In the excitable regime, no collective oscillations were found in the model.

  2. Revealing determinants of two-phase dynamics of P53 network under gamma irradiation based on a reduced 2D relaxation oscillator model.

    PubMed

    Demirkıran, Gökhan; Kalaycı Demir, Güleser; Güzeliş, Cüneyt

    2018-02-01

    This study proposes a two-dimensional (2D) oscillator model of p53 network, which is derived via reducing the multidimensional two-phase dynamics model into a model of ataxia telangiectasia mutated (ATM) and Wip1 variables, and studies the impact of p53-regulators on cell fate decision. First, the authors identify a 6D core oscillator module, then reduce this module into a 2D oscillator model while preserving the qualitative behaviours. The introduced 2D model is shown to be an excitable relaxation oscillator. This oscillator provides a mechanism that leads diverse modes underpinning cell fate, each corresponding to a cell state. To investigate the effects of p53 inhibitors and the intrinsic time delay of Wip1 on the characteristics of oscillations, they introduce also a delay differential equation version of the 2D oscillator. They observe that the suppression of p53 inhibitors decreases the amplitudes of p53 oscillation, though the suppression increases the sustained level of p53. They identify Wip1 and P53DINP1 as possible targets for cancer therapies considering their impact on the oscillator, supported by biological findings. They model some mutations as critical changes of the phase space characteristics. Possible cancer therapeutic strategies are then proposed for preventing these mutations' effects using the phase space approach.

  3. Deck the Halls. Animated Displays: Coupled Mechanical Oscillators.

    ERIC Educational Resources Information Center

    Pizzo, Joe, Ed.

    1992-01-01

    Describes a set of displays on the theme of coupled mechanical oscillators. Displays encompass three common demonstrations: (1) a coupled pair of identical pendulums; (2) a multiple-pendulum resonance demonstration; and (3) a Wilberforce coupled oscillator. (MDH)

  4. SNDR Limits of Oscillator-Based Sensor Readout Circuits.

    PubMed

    Cardes, Fernando; Quintero, Andres; Gutierrez, Eric; Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-02-03

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms.

  5. SNDR Limits of Oscillator-Based Sensor Readout Circuits

    PubMed Central

    Buffa, Cesare; Wiesbauer, Andreas; Hernandez, Luis

    2018-01-01

    This paper analyzes the influence of phase noise and distortion on the performance of oscillator-based sensor data acquisition systems. Circuit noise inherent to the oscillator circuit manifests as phase noise and limits the SNR. Moreover, oscillator nonlinearity generates distortion for large input signals. Phase noise analysis of oscillators is well known in the literature, but the relationship between phase noise and the SNR of an oscillator-based sensor is not straightforward. This paper proposes a model to estimate the influence of phase noise in the performance of an oscillator-based system by reflecting the phase noise to the oscillator input. The proposed model is based on periodic steady-state analysis tools to predict the SNR of the oscillator. The accuracy of this model has been validated by both simulation and experiment in a 130 nm CMOS prototype. We also propose a method to estimate the SNDR and the dynamic range of an oscillator-based readout circuit that improves by more than one order of magnitude the simulation time compared to standard time domain simulations. This speed up enables the optimization and verification of this kind of systems with iterative algorithms. PMID:29401646

  6. Differential Resonant Ring YIG Tuned Oscillator

    NASA Technical Reports Server (NTRS)

    Parrott, Ronald A.

    2010-01-01

    A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n

  7. Amplitude and phase fluctuations of Van der Pol oscillator under external random forcing

    NASA Astrophysics Data System (ADS)

    Singh, Aman K.; Yadava, R. D. S.

    2018-05-01

    The paper presents an analytical study of noise in Van der Pol oscillator output subjected to an external force noise assumed to be characterized by delta function (white noise). The external fluctuations are assumed to be small in comparison to the average response of the noise free system. The autocorrelation function and power spectrum are calculated under the condition of weak nonlinearity. The latter ensures limit cycle oscillations. The total spectral power density is dominated by the contributions from the phase fluctuations. The amplitude fluctuations are at least two orders of magnitude smaller. The analysis is shown to be useful to interpretation microcantilever based biosensing data.

  8. Superradiant phase transitions with three-level systems

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-02-01

    We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.

  9. Phase-locked cluster oscillations in periodically forced integrate-and-fire-or-burst neuronal populations.

    PubMed

    Langdon, Angela J; Breakspear, Michael; Coombes, Stephen

    2012-12-01

    The minimal integrate-and-fire-or-burst neuron model succinctly describes both tonic firing and postinhibitory rebound bursting of thalamocortical cells in the sensory relay. Networks of integrate-and-fire-or-burst (IFB) neurons with slow inhibitory synaptic interactions have been shown to support stable rhythmic states, including globally synchronous and cluster oscillations, in which network-mediated inhibition cyclically generates bursting in coherent subgroups of neurons. In this paper, we introduce a reduced IFB neuronal population model to study synchronization of inhibition-mediated oscillatory bursting states to periodic excitatory input. Using numeric methods, we demonstrate the existence and stability of 1:1 phase-locked bursting oscillations in the sinusoidally forced IFB neuronal population model. Phase locking is shown to arise when periodic excitation is sufficient to pace the onset of bursting in an IFB cluster without counteracting the inhibitory interactions necessary for burst generation. Phase-locked bursting states are thus found to destabilize when periodic excitation increases in strength or frequency. Further study of the IFB neuronal population model with pulse-like periodic excitatory input illustrates that this synchronization mechanism generalizes to a broad range of n:m phase-locked bursting states across both globally synchronous and clustered oscillatory regimes.

  10. Spin pumping driven auto-oscillator for phase-encoded logic—device design and material requirements

    NASA Astrophysics Data System (ADS)

    Rakheja, S.; Kani, N.

    2017-05-01

    In this work, we propose a spin nano-oscillator (SNO) device where information is encoded in the phase (time-shift) of the output oscillations. The spin current required to set up the oscillations in the device is generated through spin pumping from an input nanomagnet that is precessing at RF frequencies. We discuss the operation of the SNO device, in which either the in-plane (IP) or out-of-plane (OOP) magnetization oscillations are utilized toward implementing ultra-low-power circuits. Using physical models of the nanomagnet dynamics and the spin transport through non-magnetic channels, we quantify the reliability of the SNO device using a "scaling ratio". Material requirements for the nanomagnet and the channel to ensure correct logic functionality are identified using the scaling ratio metric. SNO devices consume (2-5)× lower energy compared to CMOS devices and other spin-based devices with similar device sizes and material parameters. The analytical models presented in this work can be used to optimize the performance and scaling of SNO devices in comparison to CMOS devices at ultra-scaled technology nodes.

  11. Period variability of coupled noisy oscillators

    NASA Astrophysics Data System (ADS)

    Mori, Fumito; Kori, Hiroshi

    2013-03-01

    Period variability, quantified by the standard deviation (SD) of the cycle-to-cycle period, is investigated for noisy phase oscillators. We define the checkpoint phase as the beginning or end point of one oscillation cycle and derive an expression for the SD as a function of this phase. We find that the SD is dependent on the checkpoint phase only when oscillators are coupled. The applicability of our theory is verified using a realistic model. Our work clarifies the relationship between period variability and synchronization from which valuable information regarding coupling can be inferred.

  12. Synchronisation Induced by Repulsive Interactions in a System of van der Pol Oscillators

    NASA Astrophysics Data System (ADS)

    Martins, T. V.; Toral, R.

    2011-09-01

    We consider a system of identical van der Pol oscillators, globally coupled through their velocities, and study how the presence of competitive interactions affects its synchronisation properties. We will address the question from two points of view. Firstly, we will investigate the role of competitive interactions on the synchronisation among identical oscillators. Then, we will show that the presence of a fraction of repulsive links results in the appearance of macroscopic oscillations at that signal's rhythm, in regions where the individual oscillator is unable to synchronise with a weak external signal.

  13. Decay-less kink oscillations in coronal loops

    NASA Astrophysics Data System (ADS)

    Anfinogentov, S.; Nisticò, G.; Nakariakov, V. M.

    2013-12-01

    Context. Kink oscillations of coronal loops in an off-limb active region are detected with the Imaging Assembly Array (AIA) instruments of the Solar Dynamics Observatory (SDO) at 171 Å. Aims: We aim to measure periods and amplitudes of kink oscillations of different loops and to determinate the evolution of the oscillation phase along the oscillating loop. Methods: Oscillating coronal loops were visually identified in the field of view of SDO/AIA and STEREO/EUVI-A: the loop length was derived by three-dimensional analysis. Several slits were taken along the loops to assemble time-distance maps. We identified oscillatory patterns and retrieved periods and amplitudes of the oscillations. We applied the cross-correlation technique to estimate the phase shift between oscillations at different segments of oscillating loops. Results: We found that all analysed loops show low-amplitude undamped transverse oscillations. Oscillation periods of loops in the same active region range from 2.5 to 11 min, and are different for different loops. The displacement amplitude is lower than 1 Mm. The oscillation phase is constant along each analysed loop. The spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We conclude that the observed behaviour is consistent with the empirical model in terms of a damped harmonic resonator affected by a non-resonant continuously operating external force. A movie is available in electronic form at http://www.aanda.org

  14. Multivariate Time Series Decomposition into Oscillation Components.

    PubMed

    Matsuda, Takeru; Komaki, Fumiyasu

    2017-08-01

    Many time series are considered to be a superposition of several oscillation components. We have proposed a method for decomposing univariate time series into oscillation components and estimating their phases (Matsuda & Komaki, 2017 ). In this study, we extend that method to multivariate time series. We assume that several oscillators underlie the given multivariate time series and that each variable corresponds to a superposition of the projections of the oscillators. Thus, the oscillators superpose on each variable with amplitude and phase modulation. Based on this idea, we develop gaussian linear state-space models and use them to decompose the given multivariate time series. The model parameters are estimated from data using the empirical Bayes method, and the number of oscillators is determined using the Akaike information criterion. Therefore, the proposed method extracts underlying oscillators in a data-driven manner and enables investigation of phase dynamics in a given multivariate time series. Numerical results show the effectiveness of the proposed method. From monthly mean north-south sunspot number data, the proposed method reveals an interesting phase relationship.

  15. Desynchronization of stochastically synchronized chemical oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snari, Razan; Tinsley, Mark R., E-mail: mark.tinsley@mail.wvu.edu, E-mail: kshowalt@wvu.edu; Faramarzi, Sadegh

    Experimental and theoretical studies are presented on the design of perturbations that enhance desynchronization in populations of oscillators that are synchronized by periodic entrainment. A phase reduction approach is used to determine optimal perturbation timing based upon experimentally measured phase response curves. The effectiveness of the perturbation waveforms is tested experimentally in populations of periodically and stochastically synchronized chemical oscillators. The relevance of the approach to therapeutic methods for disrupting phase coherence in groups of stochastically synchronized neuronal oscillators is discussed.

  16. Virtual Oscillator Controls | Grid Modernization | NREL

    Science.gov Websites

    Virtual Oscillator Controls Virtual Oscillator Controls NREL is developing virtual oscillator Santa-Barbara, and SunPower. Publications Synthesizing Virtual Oscillators To Control Islanded Inverters Synchronization of Parallel Single-Phase Inverters Using Virtual Oscillator Control, IEEE Transactions on Power

  17. Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations?

    NASA Astrophysics Data System (ADS)

    Martin, R. R.; Montero, S.; Silva, E.; Bizzarri, M.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M.

    2017-11-01

    Experimental evidence confirms the existence of glycolytic oscillations in cancer, which allows it to self-organize in time and space far from thermodynamic equilibrium, and provides it with high robustness, complexity and adaptability. A kinetic model is proposed for HeLa tumor cells grown in hypoxia conditions. It shows oscillations in a wide range of parameters. Two control parameters (glucose and inorganic phosphate concentration) were varied to explore the phase space, showing also the presence of limit cycles and bifurcations. The complexity of the system was evaluated by focusing on stationary state stability and Lempel-Ziv complexity. Moreover, the calculated entropy production rate was demonstrated behaving as a Lyapunov function.

  18. On the role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation

    NASA Technical Reports Server (NTRS)

    Dunkerton, T.

    1979-01-01

    The role of the Kelvin wave, discovered by Hirota (1978), in producing the westerly accelerations of the semiannual zonal wind oscillation in the tropical upper stratosphere is examined quantitatively. It is shown that, for reasonable values of the wave parameters, this Kelvin wave could indeed give rise to the observed accelerations. For the thermal damping rates of Dickinson (1973), the most likely range of phase speeds for a wavenumber 1 disturbance is from 45 to 60 m/sec. For 'photochemically accelerated' damping rates (Blake and Lindzen, 1973), a phase speed in excess of 70 m/sec would be required. The possibility of a significant modulation of the semiannual westerlies by the quasi-biennial oscillation is also suggested.

  19. Emergence of amplitude death scenario in a network of oscillators under repulsive delay interaction

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Hens, Chittaranjan; Ghosh, Dibakar

    2016-07-01

    We report the existence of amplitude death in a network of identical oscillators under repulsive mean coupling. Amplitude death appears in a globally coupled network of identical oscillators with instantaneous repulsive mean coupling only when the number of oscillators is more than two. We further investigate that, amplitude death may emerge even in two coupled oscillators as well as network of oscillators if we introduce delay time in the repulsive mean coupling. We have analytically derived the region of amplitude death island and find out how strength of delay controls the death regime in two coupled or a large network of coupled oscillators. We have verified our results on network of delayed Mackey-Glass systems where parameters are set in hyperchaotic regime. We have also tested our coupling approach in two paradigmatic limit cycle oscillators: Stuart-Landau and Van der Pol oscillators.

  20. Interaction function of oscillating coupled neurons

    PubMed Central

    Dodla, Ramana; Wilson, Charles J.

    2013-01-01

    Large scale simulations of electrically coupled neuronal oscillators often employ the phase coupled oscillator paradigm to understand and predict network behavior. We study the nature of the interaction between such coupled oscillators using weakly coupled oscillator theory. By employing piecewise linear approximations for phase response curves and voltage time courses, and parameterizing their shapes, we compute the interaction function for all such possible shapes and express it in terms of discrete Fourier modes. We find that reasonably good approximation is achieved with four Fourier modes that comprise of both sine and cosine terms. PMID:24229210

  1. Perfect and robust phase-locking of a spin transfer vortex nano-oscillator to an external microwave source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O.

    2014-01-13

    We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-lockingmore » holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.« less

  2. Dynamics of heterogeneous oscillator ensembles in terms of collective variables

    NASA Astrophysics Data System (ADS)

    Pikovsky, Arkady; Rosenblum, Michael

    2011-04-01

    We consider general heterogeneous ensembles of phase oscillators, sine coupled to arbitrary external fields. Starting with the infinitely large ensembles, we extend the Watanabe-Strogatz theory, valid for identical oscillators, to cover the case of an arbitrary parameter distribution. The obtained equations yield the description of the ensemble dynamics in terms of collective variables and constants of motion. As a particular case of the general setup we consider hierarchically organized ensembles, consisting of a finite number of subpopulations, whereas the number of elements in a subpopulation can be both finite or infinite. Next, we link the Watanabe-Strogatz and Ott-Antonsen theories and demonstrate that the latter one corresponds to a particular choice of constants of motion. The approach is applied to the standard Kuramoto-Sakaguchi model, to its extension for the case of nonlinear coupling, and to the description of two interacting subpopulations, exhibiting a chimera state. With these examples we illustrate that, although the asymptotic dynamics can be found within the framework of the Ott-Antonsen theory, the transients depend on the constants of motion. The most dramatic effect is the dependence of the basins of attraction of different synchronous regimes on the initial configuration of phases.

  3. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits

    NASA Astrophysics Data System (ADS)

    Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.

    2017-05-01

    Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.

  4. Comparing Optical Oscillators across the Air to Milliradians in Phase and 10^{-17} in Frequency.

    PubMed

    Sinclair, Laura C; Bergeron, Hugo; Swann, William C; Baumann, Esther; Deschênes, Jean-Daniel; Newbury, Nathan R

    2018-02-02

    We demonstrate carrier-phase optical two-way time-frequency transfer (carrier-phase OTWTFT) through the two-way exchange of frequency comb pulses. Carrier-phase OTWTFT achieves frequency comparisons with a residual instability of 1.2×10^{-17} at 1 s across a turbulent 4-km free space link, surpassing previous OTWTFT by 10-20 times and enabling future high-precision optical clock networks. Furthermore, by exploiting the carrier phase, this approach is able to continuously track changes in the relative optical phase of distant optical oscillators to 9 mrad (7 as) at 1 s averaging, effectively extending optical phase coherence over a broad spatial network for applications such as correlated spectroscopy between distant atomic clocks.

  5. THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS: Neutrino Oscillation Induced by Chiral Phase Transition

    NASA Astrophysics Data System (ADS)

    Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei

    2009-03-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  6. Transition from amplitude to oscillation death in a network of oscillators

    NASA Astrophysics Data System (ADS)

    Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  7. Decoding synchronized oscillations within the brain: phase-delayed inhibition provides a robust mechanism for creating a sharp synchrony filter.

    PubMed

    Patel, Mainak; Joshi, Badal

    2013-10-07

    The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. X-Ray Burst Oscillations: From Flame Spreading to the Cooling Wake

    NASA Technical Reports Server (NTRS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2016-01-01

    Type I X-ray bursts are thermonuclear flashes observed from the surfaces of accreting neutron stars (NSs) in low mass X-ray binaries. Oscillations have been observed during the rise and/or decay of some of these X-ray bursts. Those seen during the rise can be well explained by a spreading hot spot model, but large amplitude oscillations in the decay phase remain mysterious because of the absence of a clear-cut source of asymmetry. To date there have not been any quantitative studies that consistently track the oscillation amplitude both during the rise and decay (cooling tail) of bursts. Here we compute the light curves and amplitudes of oscillations in X-ray burst models that realistically account for both flame spreading and subsequent cooling. We present results for several such "cooling wake" models, a "canonical" cooling model where each patch on the NS surface heats and cools identically, or with a latitude-dependent cooling timescale set by the local effective gravity, and an "asymmetric" model where parts of the star cool at significantly different rates. We show that while the canonical cooling models can generate oscillations in the tails of bursts, they cannot easily produce the highest observed modulation amplitudes. Alternatively, a simple phenomenological model with asymmetric cooling can achieve higher amplitudes consistent with the observations.

  9. Coexisting synchronous and asynchronous states in locally coupled array of oscillators by partial self-feedback control

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Parmananda, Punit; Osipov, G. V.; Dana, Syamal K.

    2017-07-01

    We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

  10. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo.

    PubMed

    Gan, Jian; Weng, Shih-Ming; Pernía-Andrade, Alejandro J; Csicsvari, Jozsef; Jonas, Peter

    2017-01-18

    Sharp wave-ripple (SWR) oscillations play a key role in memory consolidation during non-rapid eye movement sleep, immobility, and consummatory behavior. However, whether temporally modulated synaptic excitation or inhibition underlies the ripples is controversial. To address this question, we performed simultaneous recordings of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) and local field potentials (LFPs) in the CA1 region of awake mice in vivo. During SWRs, inhibition dominated over excitation, with a peak conductance ratio of 4.1 ± 0.5. Furthermore, the amplitude of SWR-associated IPSCs was positively correlated with SWR magnitude, whereas that of EPSCs was not. Finally, phase analysis indicated that IPSCs were phase-locked to individual ripple cycles, whereas EPSCs were uniformly distributed in phase space. Optogenetic inhibition indicated that PV + interneurons provided a major contribution to SWR-associated IPSCs. Thus, phasic inhibition, but not excitation, shapes SWR oscillations in the hippocampal CA1 region in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Kim, Jason Z.; Kurths, Jürgen; Bassett, Danielle S.

    2017-07-01

    Synchronization of non-identical oscillators coupled through complex networks is an important example of collective behavior, and it is interesting to ask how the structural organization of network interactions influences this process. Several studies have explored and uncovered optimal topologies for synchronization by making purposeful alterations to a network. On the other hand, the connectivity patterns of many natural systems are often not static, but are rather modulated over time according to their dynamics. However, this co-evolution and the extent to which the dynamics of the individual units can shape the organization of the network itself are less well understood. Here, we study initially randomly connected but locally adaptive networks of Kuramoto oscillators. In particular, the system employs a co-evolutionary rewiring strategy that depends only on the instantaneous, pairwise phase differences of neighboring oscillators, and that conserves the total number of edges, allowing the effects of local reorganization to be isolated. We find that a simple rule—which preserves connections between more out-of-phase oscillators while rewiring connections between more in-phase oscillators—can cause initially disordered networks to organize into more structured topologies that support enhanced synchronization dynamics. We examine how this process unfolds over time, finding a dependence on the intrinsic frequencies of the oscillators, the global coupling, and the network density, in terms of how the adaptive mechanism reorganizes the network and influences the dynamics. Importantly, for large enough coupling and after sufficient adaptation, the resulting networks exhibit interesting characteristics, including degree-frequency and frequency-neighbor frequency correlations. These properties have previously been associated with optimal synchronization or explosive transitions in which the networks were constructed using global information. On the contrary, by

  12. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.

    PubMed

    Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  13. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  14. The Fate of Incoming Stimuli during NREM Sleep is Determined by Spindles and the Phase of the Slow Oscillation.

    PubMed

    Schabus, Manuel; Dang-Vu, Thien Thanh; Heib, Dominik Philip Johannes; Boly, Mélanie; Desseilles, Martin; Vandewalle, Gilles; Schmidt, Christina; Albouy, Geneviève; Darsaud, Annabelle; Gais, Steffen; Degueldre, Christian; Balteau, Evelyne; Phillips, Christophe; Luxen, André; Maquet, Pierre

    2012-01-01

    The present study aimed at identifying the neurophysiological responses associated with auditory stimulation during non-rapid eye movement (NREM) sleep using simultaneous electroencephalography (EEG)/functional magnetic resonance imaging (fMRI) recordings. It was reported earlier that auditory stimuli produce bilateral activation in auditory cortex, thalamus, and caudate during both wakefulness and NREM sleep. However, due to the spontaneous membrane potential fluctuations cortical responses may be highly variable during NREM. Here we now examine the modulation of cerebral responses to tones depending on the presence or absence of sleep spindles and the phase of the slow oscillation. Thirteen healthy young subjects were scanned successfully during stage 2-4 NREM sleep in the first half of the night in a 3 T scanner. Subjects were not sleep-deprived and sounds were post hoc classified according to (i) the presence of sleep spindles or (ii) the phase of the slow oscillation during (±300 ms) tone delivery. These detected sounds were then entered as regressors of interest in fMRI analyses. Interestingly wake-like responses - although somewhat altered in size and location - persisted during NREM sleep, except during present spindles (as previously published in Dang-Vu et al., 2011) and the negative going phase of the slow oscillation during which responses became less consistent or even absent. While the phase of the slow oscillation did not alter brain responses in primary sensory cortex, it did modulate responses at higher cortical levels. In addition EEG analyses show a distinct N550 response to tones during the presence of light sleep spindles and suggest that in deep NREM sleep the brain is more responsive during the positive going slope of the slow oscillation. The presence of short temporal windows during which the brain is open to external stimuli is consistent with the fact that even during deep sleep meaningful events can be detected. Altogether, our

  15. Self-oscillation

    NASA Astrophysics Data System (ADS)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  16. Cycle-Averaged Phase-Space States for the Harmonic and the Morse Oscillators, and the Corresponding Uncertainty Relations

    ERIC Educational Resources Information Center

    Nicolaides, Cleanthes A.; Constantoudis, Vasilios

    2009-01-01

    In Planck's model of the harmonic oscillator (HO) a century ago, both the energy and the phase space were quantized according to epsilon[subscript n] = nhv, n = 0, 1, 2..., and [double integral]dp[subscript x] dx = h. By referring to just these two relations, we show how the adoption of "cycle-averaged phase-space states" (CAPSSs) leads to the…

  17. A novel photonic oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  18. Recent progress in opto-electronic oscillator

    NASA Technical Reports Server (NTRS)

    Maleki, Lute

    2005-01-01

    The optoelectronic oscillator (OEO) is a unique device based on photonics techniques to generate highly spectrally pure microwave signals [1]. The development of the OEO was motivated by the need for high performance oscillators in the frequency range larger than 10 GHz, where conventional electronic oscillators have a number of limitations. These limitations typically stem from the product of fQ, where f is the oscillator frequency and Q is the quality factor of the resonator in the oscillator. In conventional resonators, whether electromagnetic or piezoelectric, this product is usually a constant. Thus, as the oscillator frequency is pushed higher, the quality factor degrades, resulting in degradation of the phase noise of the oscillator. An approach to mitigate the problem is to start with a very high quality signal in the 5 to 100 MHz range generated by a quartz oscillator and multiply the frequency to achieve the desired microwave signal. Here again, frequency multiplication also results in an increase of the phase noise by a factor of 2010gN, where N is the multiplication factor.

  19. Constraints on Io's interior from auroral spot oscillations

    NASA Astrophysics Data System (ADS)

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D.; Blöcker, Aljona; Strobel, Darrell F.; Feldman, Paul D.

    2017-02-01

    The morphology of Io's aurora is dominated by bright spots near the equator that oscillate up and down in approximate correlation with the oscillating orientation of the Jovian magnetospheric field. Analyzing Hubble Space Telescope images, we find that the auroral spots oscillate in phase with the time-variable Jovian magnetic field at Io and that the amplitude of the spot oscillations is reduced by 15% (±5%) with respect to the amplitude of the magnetic field oscillation. We investigate the effects of Io's plasma interaction and magnetic induction in the moon's interior on the magnetic field topology and the aurora oscillations using a magnetohydrodynamic (MHD) simulation and an analytical induction model. The results from the MHD simulation suggest that the plasma interaction has minor effects on the oscillations, while the magnetic induction generally reduces magnetic field oscillations near the surface. However, the analytical model shows that induction in any near-surface layer for which the skin depth is larger than the thickness—like a conductive magma ocean—would induce a phase shift, in conflict with the observations. Under the assumption that the spot oscillations represent the magnetic field oscillation, we constrain the conductance of a near-surface layer to 1 × 103 S or lower. A magma ocean with conductances of 104 S or higher as derived from Galileo magnetometer measurements would cause overly strong attenuation of the amplitude in addition to the irreconcilable phase shift. The observed weakly attenuated, in-phase spot oscillation is consistent with induction in a deep, highly conductive layer like Io's metallic core.

  20. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  1. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  2. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    NASA Astrophysics Data System (ADS)

    Bai, Xianchen; Zhang, Jiande; Yang, Jianhua; Jin, Zhenxing

    2012-12-01

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of the WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of ˜22 MW, an output power of ˜230 MW with the power gain of ˜10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than ±15° in a single shot, and phase jitter of ±11° is obtained within a series of shots with duration of about 40 ns.

  3. Transition from amplitude to oscillation death in a network of oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandan, Mauparna; Department of Mathematics, National Institute of Technology, Durgapur 713209; Hens, C. R.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determinemore » the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.« less

  4. Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Integrated Component Systems, Inc. incorporated information from a NASA Tech Briefs article into a voltage-controlled oscillator it designed for a customer. The company then applied the technology to its series of phase-locked loop synthesizers, which offer superior phase noise performance.

  5. Oscillations in a Sunspot with Light Bridges

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Nakariakov, Valery M.; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minute oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.

  6. Oscillations in a sunspot with light bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ding; Su, Jiangtao; Yan, Yihua

    2014-09-01

    The Solar Optical Telescope on board Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 2013 August 31. We analyzed a two-hour Ca II H emission intensity data set and detected strong five-minute oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that the five-minute oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from underneath it. The slit taken along the central axis of the wide LB exhibits a standing wave feature. However, at the center of the wide bridge, the five-minutemore » oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves, which originated at the bridge's sides. Thus, the five-minute oscillations on the wide bridge also resemble the properties of running penumbral waves. The five-minute oscillations are suppressed in the umbra, while the three-minute oscillations occupy all three cores of the sunspot's umbra, separated by the LBs. The three-minute oscillations were found to be in phase at both sides of the LBs. This may indicate that either LBs do not affect umbral oscillations, or that umbral oscillations at different umbral cores share the same source. It also indicates that LBs are rather shallow objects situated in the upper part of the umbra. We found that umbral flashes (UFs) follow the life cycles of umbral oscillations with much larger amplitudes. They cannot propagate across LBs. UFs dominate the three-minute oscillation power within each core; however, they do not disrupt the phase of umbral oscillation.« less

  7. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION

    PubMed Central

    Taylor, Dane; Skardal, Per Sebastian; Sun, Jie

    2016-01-01

    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments. PMID:27872501

  8. Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate

    NASA Astrophysics Data System (ADS)

    Voronova, N. S.; Elistratov, A. A.; Lozovik, Yu. E.

    2015-10-01

    We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations consist of the particle exchange between the photon and exciton states in the polariton system without any oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover from Rabi-like to Josephson-like oscillations is predicted.

  9. Evidence for Harmonic Content and Frequency Evolution of Oscillations During the Rising Phase of X-ray Bursts From 4U 1636-536

    NASA Technical Reports Server (NTRS)

    Bgattacharyya, Sudip; Strohmayer, E.

    2005-01-01

    We report on a study of the evolution of burst oscillation properties during the rising phase of X-ray bursts from 4U 1636-536 observed with the proportional counter array (PCA) on board the Rossi X-Ray Timing Explorer (RXTE) . We present evidence for significant harmonic structure of burst oscillation pulses during the early rising phases of bursts. This is the first such detection in burst rise oscillations, and is very important for constraining neutron star structure parameters and the equation of state models of matter at the core of a neutron star. The detection of harmonic content only during the initial portions of the burst rise is consistent with the theoretical expectation that with time the thermonuclear burning region becomes larger, and hence the fundamental and harmonic amplitudes both diminish. We also find, for the first time from this source, strong evidence of oscillation frequency increase during the burst rise. The timing behavior of harmonic content, amplitude, and frequency of burst rise oscillations may be important in understanding the spreading of thermonuclear flames under the extreme physical conditions on neutron star surfaces.

  10. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  11. The Investigation and Semi-Empirical Modeling of Thermoacoustic Phase Relationships in a Lean Premixed Prevapourized Combustor at Elevated Pressure

    NASA Astrophysics Data System (ADS)

    Cirtwill, Joseph Daniel Maxim

    This document presents an investigation of the self-excited coupling mechanisms that occur to produce both low-amplitude intermittent, as well as high-amplitude limit-cycle pressure oscillations in an aeronautical gas turbine combustor. Measurements of a lean premixed prevapourized combustor at elevated pressure were conducted using OH* chemiluminescence, pressure transducers, stereoscopic particle image velocimetry and droplet laser scattering. Analysis of the spectra and phase relationships between the measured variables is performed to determine and describe the coupling mechanisms. A semi-empirical model is presented to explain differences in the limit-cycle pressure amplitudes observed under nominally identical operating conditions. Evidence suggests that an oscillating flux of fuel into the combustor is responsible for both intermittent and limit-cycle oscillations, though different coupling relationships are observed in each case. The final amplitude of limit-cycle oscillations is shown to be correlated with changes in the phase difference between the fuel oscillations and the pressure.

  12. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    NASA Astrophysics Data System (ADS)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  13. Phase locking of an S-band wide-gap klystron amplifier with high power injection driven by a relativistic backward wave oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2012-12-15

    Theoretical analyses and preliminary experiments on the phase-locking characteristics of an inductively loaded 2-cavity wide-gap klystron amplifier (WKA) with high power injection driven by a GW-class relativistic backward wave oscillator (RBWO) are presented. Electric power of the amplifier and oscillator is supplied by a single accelerator being capable of producing dual electron beams. The well phase-locking effect of the RBWO-WKA system requires the oscillator have good frequency reproducibility and stability from pulse to pulse. Thus, the main switch of the accelerator is externally triggered to stabilize the diode voltage and then the working frequency. In the experiment, frequency of themore » WKA is linearly locked by the RBWO. With a diode voltage of 530 kV and an input power of {approx}22 MW, an output power of {approx}230 MW with the power gain of {approx}10.2 dB is obtained from the WKA. As the main switch is triggered, the relative phase difference between the RBWO and the WKA is less than {+-}15 Degree-Sign in a single shot, and phase jitter of {+-}11 Degree-Sign is obtained within a series of shots with duration of about 40 ns.« less

  14. Active hydrodynamics of synchronization and ordering in moving oscillators

    NASA Astrophysics Data System (ADS)

    Banerjee, Tirthankar; Basu, Abhik

    2017-08-01

    The nature of emergent collective behaviors of moving interacting physical agents is a long-standing open issue in physical and biological systems alike. This calls for studies on the control of synchronization and the degree of order in a collection of diffusively moving noisy oscillators. We address this by constructing a generic hydrodynamic theory for active phase fluctuations in a collection of a large number of nearly-phase-coherent moving oscillators in two dimensions. Our theory describes the general situation where phase fluctuations and oscillator mobility mutually affect each other. We show that the interplay between the active effects and the mobility of the oscillators leads to a variety of phenomena, ranging from synchronization with long-range, nearly-long-range, and quasi-long-range orders to instabilities and desynchronization with short-range order of the oscillator phases. We highlight the complex dependences of synchronization on the active effects. These should be testable in wide-ranging systems, e.g., oscillating chemical reactions in the presence of different reaction inhibitors and facilitators, live oriented cytoskeletal extracts, and vertebrate segmentation clocks.

  15. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  16. Monolithically integrated InGaAsP/InP laser/modulator using identical layer approach for opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Chi; Keo, Sam A.; Yao, X. S.; Turner, Tasha E.; Davis, Lawrence J.; Young, Martin G.; Maleki, Lute; Forouhar, Siamak

    1998-08-01

    The microwave optoelectronic oscillator (OEO) has been demonstrated on a breadboard. The future trend is to integrate the whole OEO on a chip, which requires the development of high power and high efficiency integrated photonic components. In this paper, we will present the design and fabrication of an integrated semiconductor laser/modulator using the identical active layer approach on InGaAsP/InP material. The best devices have threshold currents of 50-mA at room temperature for CW operation. The device length is approximately 3-mm, resulting in a mode spacing of 14 GHz. For only 5-dBm microwave power applied to the modulator section, modulation response with 30 dB resonate enhancement has been observed. This work shows the promise for an on-chip integrated OEO.

  17. Reflection Matrix for Optical Resonators in FEL (Free Electron Lasers) Oscillators

    DTIC Science & Technology

    1988-09-22

    is the dominant factor determining the reflction coefficient. The effects of deflecting tho’ light beam enter as small corrections, of first order in...RESONATORS IN FEL OSCILLATORS I. INTRODUCTION 1-7 Free Electron Lasers (FEL) operating as oscillators require the 8-10 trapping of light pulses between...The simplest oscillator configuration is that of an open resonator with two opposed identical mirrors. The radiation vector potential for this

  18. Synchrony and entrainment properties of robust circadian oscillators

    PubMed Central

    Bagheri, Neda; Taylor, Stephanie R.; Meeker, Kirsten; Petzold, Linda R.; Doyle, Francis J.

    2008-01-01

    Systems theoretic tools (i.e. mathematical modelling, control, and feedback design) advance the understanding of robust performance in complex biological networks. We highlight phase entrainment as a key performance measure used to investigate dynamics of a single deterministic circadian oscillator for the purpose of generating insight into the behaviour of a population of (synchronized) oscillators. More specifically, the analysis of phase characteristics may facilitate the identification of appropriate coupling mechanisms for the ensemble of noisy (stochastic) circadian clocks. Phase also serves as a critical control objective to correct mismatch between the biological clock and its environment. Thus, we introduce methods of investigating synchrony and entrainment in both stochastic and deterministic frameworks, and as a property of a single oscillator or population of coupled oscillators. PMID:18426774

  19. Clustering and phase synchronization in populations of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Cascallares, Guadalupe; Gleiser, Pablo M.

    2015-10-01

    In many species daily rhythms are endogenously generated by groups of coupled neurons that play the role of a circadian pacemaker. The adaptation of the circadian clock to environmental and seasonal changes has been proposed to be regulated by a dual oscillator system. In order to gain insight into this model, we analyzed the synchronization properties of two fully coupled groups of Kuramoto oscillators. Each group has an internal coupling parameter and the interaction between the two groups can be controlled by two parameters allowing for symmetric or non-symmetric coupling. We show that even for such a simple model counterintuitive behaviours take place, such as a global decrease in synchrony when the coupling between the groups is increased. Through a detailed analysis of the local synchronization processes we explain this behaviour.

  20. Automatic oscillator frequency control system

    NASA Technical Reports Server (NTRS)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  1. Standing waves, clustering, and phase waves in 1D simulations of kinetic relaxation oscillations in NO+NH 3 on Pt(1 0 0) coupled by diffusion

    NASA Astrophysics Data System (ADS)

    Uecker, Hannes

    2004-04-01

    The Lombardo-Imbihl-Fink (LFI) ODE model of the NO+NH 3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH 3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH 3 and H.

  2. Suppressed cellular oscillations in after-hours mutant mice are associated with enhanced circadian phase-resetting

    PubMed Central

    Guilding, Clare; Scott, Fiona; Bechtold, David A; Brown, Timothy M; Wegner, Sven; Piggins, Hugh D

    2013-01-01

    Within the core molecular clock, protein phosphorylation and degradation play a vital role in determining circadian period. The ‘after-hours’ (Afh) mutation in mouse slows the degradation of the core clock protein Cryptochrome, lengthening the period of the molecular clock in the suprachiasmatic nuclei (SCN) and behavioural wheel-running rhythms. However, we do not yet know how the Afh mutation affects other aspects of physiology or the activity of circadian oscillators in other brain regions. Here we report that daily rhythms of metabolism and ingestive behaviours are altered in these animals, as are PERIOD2::LUCIFERASE (PER2::LUC) rhythms in mediobasal hypothalamic nuclei, which influence these behaviours. Overall there is a trend towards period lengthening and a decrease in amplitude of PER2::LUC rhythms throughout the brain. Imaging of single cells from the arcuate and dorsomedial hypothalamic nuclei revealed this reduction in tissue oscillator amplitude to be due to a decrease in the amplitude, rather than a desynchrony, of single cells. Consistent with existing models of oscillator function, this cellular phenotype was associated with a greater susceptibility to phase-shifting stimuli in vivo and in vitro, with light evoking high-amplitude Type 0 resetting in Afh mutant mice. Together, these findings reveal unexpected consequences of the Afh mutation on the amplitude and synchrony of individual cellular oscillators in the SCN. PMID:23207594

  3. Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.

    PubMed

    Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining

    2017-10-01

    This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.

  4. Single-trial Phase Entrainment of Theta Oscillations in Sensory Regions Predicts Human Associative Memory Performance.

    PubMed

    Wang, Danying; Clouter, Andrew; Chen, Qiaoyu; Shapiro, Kimron L; Hanslmayr, Simon

    2018-06-13

    Episodic memories are rich in sensory information and often contain integrated information from different sensory modalities. For instance, we can store memories of a recent concert with visual and auditory impressions being integrated in one episode. Theta oscillations have recently been implicated in playing a causal role synchronizing and effectively binding the different modalities together in memory. However, an open question is whether momentary fluctuations in theta synchronization predict the likelihood of associative memory formation for multisensory events. To address this question we entrained the visual and auditory cortex at theta frequency (4 Hz) and in a synchronous or asynchronous manner by modulating the luminance and volume of movies and sounds at 4 Hz, with a phase offset at 0° or 180°. EEG activity from human subjects (both sexes) was recorded while they memorized the association between a movie and a sound. Associative memory performance was significantly enhanced in the 0° compared to the 180° condition. Source-level analysis demonstrated that the physical stimuli effectively entrained their respective cortical areas with a corresponding phase offset. The findings suggested a successful replication of a previous study (Clouter et al., 2017). Importantly, the strength of entrainment during encoding correlated with the efficacy of associative memory such that small phase differences between visual and auditory cortex predicted a high likelihood of correct retrieval in a later recall test. These findings suggest that theta oscillations serve a specific function in the episodic memory system: Binding the contents of different modalities into coherent memory episodes. SIGNIFICANCE STATEMENT How multi-sensory experiences are bound to form a coherent episodic memory representation is one of the fundamental questions in human episodic memory research. Evidence from animal literature suggests that the relative timing between an input and theta

  5. Integrated optoelectronic oscillator.

    PubMed

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  6. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  7. Method and apparatus for detecting timing errors in a system oscillator

    DOEpatents

    Gliebe, Ronald J.; Kramer, William R.

    1993-01-01

    A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

  8. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  9. Impact of the quasi-biennial oscillation on predictability of the Madden-Julian oscillation

    NASA Astrophysics Data System (ADS)

    Marshall, Andrew G.; Hendon, Harry H.; Son, Seok-Woo; Lim, Yuna

    2017-08-01

    The Madden-Julian oscillation (MJO) during boreal winter is observed to be stronger during the easterly phase of the quasi-biennial oscillation (QBO) than during the westerly phase, with the QBO zonal wind at 50 hPa leading enhanced MJO activity by about 1 month. Using 30 years of retrospective forecasts from the POAMA coupled model forecast system, we show that this strengthened MJO activity during the easterly QBO phase translates to improved prediction of the MJO and its convective anomalies across the tropical Indo-Pacific region by about 8 days lead time relative to that during westerly QBO phases. These improvements in forecast skill result not just from the fact that forecasts initialized with stronger MJO events, such as occurs during QBO easterly phases, have greater skill, but also from the more persistent behaviour of the MJO for a similar initial amplitude during QBO easterly phases as compared to QBO westerly phases. The QBO is thus an untapped source of subseasonal predictability that can provide a window of opportunity for improved prediction of global climate.

  10. Gamma oscillations: precise temporal coordination without a metronome.

    PubMed

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Synchronization Properties of Slow Cortical Oscillations

    NASA Astrophysics Data System (ADS)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  12. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    PubMed

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also

  13. OBSERVATIONS OF MAGNETIC FLUX-ROPE OSCILLATION DURING THE PRECURSOR PHASE OF A SOLAR ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, G. P.; Wang, J. X.; Zhang, J., E-mail: gpzhou@nao.cas.cn, E-mail: wangjx@nao.cas.cn, E-mail: jzhang7@gmu.edu

    2016-05-20

    Based on combined observations from the Interface Region Imaging Spectrograph (IRIS) spectrometer with the coronal emission line of Fe xxi at 1354.08 Å and SDO /AIA images in multiple passbands, we report the finding of the precursor activity manifested as the transverse oscillation of a sigmoid, which is likely a pre-existing magnetic flux rope (MFR), that led to the onset of an X class flare and a fast halo coronal mass ejection (CME) on 2014 September 10. The IRIS slit is situated at a fixed position that is almost vertical to the main axis of the sigmoid structure that hasmore » a length of about 1.8 × 10{sup 5} km. This precursor oscillation lasts for about 13 minutes in the MFR and has velocities in the range of [−9, 11] km s{sup −1} and a period of ∼280 s. Our analysis, which is based on the temperature, density, length, and magnetic field strength of the observed sigmoid, indicates that the nature of the oscillation is a standing wave of fast magnetoacoustic kink mode. We further find that the precursor oscillation is excited by the energy released through an external magnetic reconnection between the unstable MFR and the ambient magnetic field. It is proposed that this precursor activity leads to the dynamic formation of a current sheet underneath the MFR that subsequently reconnects to trigger the onset of the main phase of the flare and the CME.« less

  14. Global dynamics of a stochastic neuronal oscillator

    NASA Astrophysics Data System (ADS)

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  15. Global dynamics of a stochastic neuronal oscillator.

    PubMed

    Yamanobe, Takanobu

    2013-11-01

    Nonlinear oscillators have been used to model neurons that fire periodically in the absence of input. These oscillators, which are called neuronal oscillators, share some common response structures with other biological oscillations such as cardiac cells. In this study, we analyze the dependence of the global dynamics of an impulse-driven stochastic neuronal oscillator on the relaxation rate to the limit cycle, the strength of the intrinsic noise, and the impulsive input parameters. To do this, we use a Markov operator that both reflects the density evolution of the oscillator and is an extension of the phase transition curve, which describes the phase shift due to a single isolated impulse. Previously, we derived the Markov operator for the finite relaxation rate that describes the dynamics of the entire phase plane. Here, we construct a Markov operator for the infinite relaxation rate that describes the stochastic dynamics restricted to the limit cycle. In both cases, the response of the stochastic neuronal oscillator to time-varying impulses is described by a product of Markov operators. Furthermore, we calculate the number of spikes between two consecutive impulses to relate the dynamics of the oscillator to the number of spikes per unit time and the interspike interval density. Specifically, we analyze the dynamics of the number of spikes per unit time based on the properties of the Markov operators. Each Markov operator can be decomposed into stationary and transient components based on the properties of the eigenvalues and eigenfunctions. This allows us to evaluate the difference in the number of spikes per unit time between the stationary and transient responses of the oscillator, which we show to be based on the dependence of the oscillator on past activity. Our analysis shows how the duration of the past neuronal activity depends on the relaxation rate, the noise strength, and the impulsive input parameters.

  16. Solitary states for coupled oscillators with inertia.

    PubMed

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  17. Solitary states for coupled oscillators with inertia

    NASA Astrophysics Data System (ADS)

    Jaros, Patrycja; Brezetsky, Serhiy; Levchenko, Roman; Dudkowski, Dawid; Kapitaniak, Tomasz; Maistrenko, Yuri

    2018-01-01

    Networks of identical oscillators with inertia can display remarkable spatiotemporal patterns in which one or a few oscillators split off from the main synchronized cluster and oscillate with different averaged frequency. Such "solitary states" are impossible for the classical Kuramoto model with sinusoidal coupling. However, if inertia is introduced, these states represent a solid part of the system dynamics, where each solitary state is characterized by the number of isolated oscillators and their disposition in space. We present system parameter regions for the existence of solitary states in the case of local, non-local, and global network couplings and show that they preserve in both thermodynamic and conservative limits. We give evidence that solitary states arise in a homoclinic bifurcation of a saddle-type synchronized state and die eventually in a crisis bifurcation after essential variation of the parameters.

  18. 2.49 GHz low phase-noise optoelectronic oscillator using 1.55μm VCSEL for avionics and aerospace applications

    NASA Astrophysics Data System (ADS)

    Hayat, Ahmad; Bacou, Alexandre; Rissons, Angelique; Mollier, Jean-Claude

    2009-02-01

    We present here a 1.55 μm single mode Vertical-Cavity Surface-Emitting Laser (VCSEL) based low phasenoise ring optoelectronic (OEO) oscillator operating at 2.49 GHz for aerospace, avionics and embedded systems applications. Experiments using optical fibers of different lengths have been carried out to obtain optimal results. A phase-noise measurement of -107 dBc/Hz at an offset of 10 kHz from the carrier is obtained. A 3-dB linewidth of 16 Hz for this oscillator signal has been measured. An analysis of lateral mode spacing or Free Spectral Range (FSR) as a function of fiber length has been carried out. A parametric comparison with DFB Laser-based and multimode VCSEL-based opto-electronic oscillators is also presented.

  19. Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music.

    PubMed

    Ruiz, María Herrojo; Koelsch, Stefan; Bhattacharya, Joydeep

    2009-04-01

    The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early ( approximately 200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (<8 Hz) brain oscillations. Further, we found that music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9-10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late ( approximately 500 ms) decrease in gamma band (38-50 Hz) oscillations over fronto-central brain regions. These results indicate a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations. 2008 Wiley-Liss, Inc.

  20. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.

    PubMed

    Ngo, Hong-Viet V; Martinetz, Thomas; Born, Jan; Mölle, Matthias

    2013-05-08

    Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. First Neutrino Oscillation Results from the NOvA experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachdev, Kanika

    2016-11-29

    NOvA is a long-baseline neutrino oscillation experiment on the NuMI muon neutrino beam at Fermilab. It consists of two functionally identical, nearly fully-active liquid-scintillator tracking calorimeters. The Near Detector (ND) at Fermilab is used to study the neutrino beam spectrum and composition before oscillations occur. The Far Detector in northern Minnesota, 810 km away, observes the oscillated beam and is used to extract the oscillation parameters. NOvA is designed to observe oscillations in two channels: disappearance channel ( ν μ → ν μ ) and ν e appearance channel ( ν μ → ν e ). This paper reports themore » measurements of both these channels based on the first NOvA data taken from February 16, 2014 till May 15, 2015« less

  2. Coupled Oscillators System in the True Slime Mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, A.; Fujii, T.; Endo, I.

    The Plasmodium of true slime mold, Physarum polycephalum, which shows various oscillatory phenomena, can be regarded as a coupled nonlinear oscillators system. The partial bodies of the Plasmodium are interconnected by microscale tubes, whose dimension can be related to the coupling strength between the plasmodial oscillators. Investigation on the collective behavior of the oscillators under the condition that the configuration of the tube structure can be manipulated gives significant information on the characteristics of the Plasmodium from the viewpoint of nonlinear dynamics. In this study, we propose a living coupled oscillators system. Using a microfabricated structure, we patterned the geometry and the dimensions of the microscale tube structure of the Plasmodium. As the first step, the Plasmodium was grown in the microstructure for coupled two oscillators system that has two wells (oscillator part) and a microchannel (coupling part). We investigated the oscillation bahavior by monitoring the thickness oscillation of Plasmodium in the strucutre with various width (W) and length (L) of microchannel. We found that there are various types of oscillation bahavior, such as anti-phase and in-phase oscillations depending on the channel dimension W and L. The present method is suitable for further studies of the network of the Plasmodium as a collective nonlinear oscillators system.

  3. Solvable model for chimera states of coupled oscillators.

    PubMed

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  4. Multimode and multistate ladder oscillator and frequency recognition device

    NASA Technical Reports Server (NTRS)

    Aumann, Herbert M. (Inventor)

    1976-01-01

    A ladder oscillator composed of capacitive and inductive impedances connected together to form a ladder network which has a chosen number N oscillation modes at N different frequencies. Each oscillation mode is characterized by a unique standing wave voltage pattern along the nodes of the ladder oscillator, with the mode in which the ladder oscillator is oscillating being determinable from the amplitudes or phase of the oscillations at the nodes. A logic circuit may be connected to the nodes of the oscillator to compare the phases of selected nodes and thereby determine which mode the oscillator is oscillating in. A ladder oscillator composed of passive capacitive and inductive impedances can be utilized as a frequency recognition device, since the passive ladder oscillator will display the characteristic standing wave patterns if an input signal impressed upon the ladder oscillator is close to one of the mode frequencies of the oscillator. A CL ladder oscillator having series capacitive impedances and shunt inductive impedances can exhibit sustained and autonomous oscillations if active nonlinear devices are connected in parallel with the shunt inductive impedances. The active CL ladder oscillator can be synchronized to input frequencies impressed upon the oscillator, and will continue to oscillate after the input signal has been removed at a mode frequency which is, in general, nearest to the input signal frequency. Autonomous oscillations may also be obtained as desired from the active CL ladder oscillator at the mode frequencies.

  5. The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach

    ERIC Educational Resources Information Center

    Lee, Keeyung

    2009-01-01

    The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…

  6. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    PubMed

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  7. Differences in Vertical Structure of the Madden-Julian Oscillation Associated With the Quasi-Biennial Oscillation

    NASA Astrophysics Data System (ADS)

    Hendon, Harry H.; Abhik, S.

    2018-05-01

    The Madden-Julian Oscillation (MJO) during boreal winter is more active and propagates eastward farther into the western Pacific during the easterly phase of quasi-biennial oscillation (QBO). Using atmospheric reanalyses for 1980-2012, we show that the MJO-induced upper tropospheric positive temperature anomaly and overriding cold cap anomaly are stronger and more in-phase with the equatorial MJO-convective anomaly during the easterly phase of the QBO. These temperature anomalies combine to destabilize the upper troposphere more in-phase with MJO convection, thus acting to promote stronger MJO convection during the easterly phase of the QBO especially eastward of the Maritime Continent. This enhanced destabilization is promoted by the negative temperature anomaly at the tropopause resulting from the QBO during its easterly phase. These findings can account for the enhanced strength and farther eastward propagation of the MJO during the easterly phase of the QBO, but await confirmation by theoretical and modeling studies that can isolate these effects.

  8. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    NASA Astrophysics Data System (ADS)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  9. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, George A.; Gemmen, Randall S.

    1998-01-01

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value.

  10. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from themore » NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.« less

  11. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    NASA Astrophysics Data System (ADS)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  12. High-frequency optical oscillation during the flare phase of the red dwarf EV Lac

    NASA Astrophysics Data System (ADS)

    Contadakis, M.; Avgoloupis, S.; Seiradakis, J.

    2006-01-01

    The observational support of the presence of high frequency low amplitude oscillations reported by Zhillyaev et al. 2000 and Contadakis et al. 2004, is highly demanding and will be done by the future observations and by carefully reanalysing the data from our files. In this paper we present the results of the analysis of the B-light curve for a flare of magnitude 1.01,which was observed on September,1993. Despite the low time resolution (sampling interval 12s) we were able to detect transient low amplitude oscillations with period ranging between 30s and 125s with a confidence level higher than 70%. This result is in favour of (or does not contradict) the suggested explanation i.e the evolution of a fast mode magneto-acoustic wave generated at the impulsive phase of the flare and travelling through the magnetic loop From: Michael E.Contadakis Address: kodadaki@vergina.eng.auth.gr Database: phy

  13. The color bar phase meter: A simple and economical method for calibrating crystal oscillators

    NASA Technical Reports Server (NTRS)

    Davis, D. D.

    1973-01-01

    Comparison of crystal oscillators to the rubidium stabilized color burst is made easy and inexpensive by use of the color bar phase meter. Required equipment consists of an unmodified color TV receiver, a color bar synthesizer and a stop watch (a wrist watch or clock with sweep second hand may be used with reduced precision). Measurement precision of 1 x 10 to the minus 10th power can be realized in measurement times of less than two minutes. If the color bar synthesizer were commercially available, user cost should be less than $200.00, exclusive of the TV receiver. Parts cost for the color bar synthesizer which translates the crystal oscillator frequency to 3.579MHz and modulates the received RF signal before it is fed to the receiver antenna terminals is about $25.00. A more sophisticated automated version, with precision of 1 x 10 to the minus 11th power would cost about twice as much.

  14. Nonanalytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable one-dimensional model for evaporation

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Dunkel, Jörn

    2006-07-01

    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.

  15. Source phase shift - A new phenomenon in wave propagation due to anelasticity. [in free oscillations of earth model

    NASA Technical Reports Server (NTRS)

    Buland, R.; Yuen, D. A.; Konstanty, K.; Widmer, R.

    1985-01-01

    The free oscillations of an anelastic earth model due to earthquakes were calculated directly by means of the correspondence principle from wave propagation theory. The formulation made it possible to find the source phase which is not predictable using first order perturbation theory. The predicted source phase was largest for toroidal modes with source components proportional to the radial strain scalar instead of the radial displacement scalar. The source phase increased in relation to the overtone number. In addition, large relative differences were found in the excitation modulus and the phase when the elastic excitation was small. The effect was sufficient to bias estimates of source properties and elastic structure.

  16. Calculations of combustion response profiles and oscillations

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.; Breisacher, Kevin J.

    1993-01-01

    The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Pressure and velocity oscillations calculated using this procedure are presented for the Space Shuttle Main Engine (SSME) to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Results of calculations to determine local combustion responses using detailed physical models for injection, atomization, and vaporization with gas phase oscillations in baffled and unbaffled SSME combustors are presented. The contributions of the various physical phenomena occurring in a combustor to oscillations in combustion response were determined.

  17. A New Neutrino Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parke, Stephen J.; /Fermilab

    2011-07-01

    Starting in the late 1960s, neutrino detectors began to see signs that neutrinos, now known to come in the flavors electron ({nu}{sub e}), muon ({nu}{sub {mu}}), and tau ({nu}{sub {tau}}), could transform from one flavor to another. The findings implied that neutrinos must have mass, since massless particles travel at the speed of light and their clocks, so to speak, don't tick, thus they cannot change. What has since been discovered is that neutrinos oscillate at two distinct scales, 500 km/GeV and 15,000 km/GeV, which are defined by the baseline (L) of the experiment (the distance the neutrino travels) dividedmore » by the neutrino energy (E). Neutrinos of one flavor can oscillate into neutrinos of another flavor at both L/E scales, but the amplitude of these oscillations is different for the two scales and depends on the initial and final flavor of the neutrinos. The neutrino states that propogate unchanged in time, the mass eigenstates {nu}1, {nu}2, {nu}3, are quantum mechanical mixtures of the electron, muon, and tau neutrino flavors, and the fraction of each flavor in a given mass eigenstate is controlled by three mixing angles and a complex phase. Two of these mixing angles are known with reasonable precision. An upper bound exists for the third angle, called {theta}{sub 13}, which controls the size of the muon neutrino to electron neutrino oscillation at an L/E of 500 km/GeV. The phase is completely unknown. The existence of this phase has important implications for the asymmetry between matter and antimatter we observe in the universe today. Experiments around the world have steadily assembled this picture of neutrino oscillation, but evidence of muon neutrino to electron neutrino oscillation at 500 km/GeV has remained elusive. Now, a paper from the T2K (Tokai to Kamioka) experiment in Japan, reports the first possible observation of muon neutrinos oscillating into electron neutrinos at 500 km/GeV. They see 6 candidate signal events, above an expected

  18. Combustor oscillation attenuation via the control of fuel-supply line dynamics

    DOEpatents

    Richards, G.A.; Gemmen, R.S.

    1998-09-22

    Combustion oscillation control in combustion systems using hydrocarbon fuels is provided by acoustically tuning a fuel-delivery line to a desired phase of the combustion oscillations for providing a pulse of a fuel-rich region at the oscillating flame front at each time when the oscillation produced pressure in the combustion chamber is in a low pressure phase. The additional heat release produced by burning such fuel-rich regions during low combustion chamber pressure effectively attenuates the combustion oscillations to a selected value. 9 figs.

  19. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling.

    PubMed

    Bondarenko, Vladimir E; Cymbalyuk, Gennady S; Patel, Girish; Deweerth, Stephen P; Calabrese, Ronald L

    2004-12-01

    Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed.

  20. Identity-by-Descent-Based Phasing and Imputation in Founder Populations Using Graphical Models

    PubMed Central

    Palin, Kimmo; Campbell, Harry; Wright, Alan F; Wilson, James F; Durbin, Richard

    2011-01-01

    Accurate knowledge of haplotypes, the combination of alleles co-residing on a single copy of a chromosome, enables powerful gene mapping and sequence imputation methods. Since humans are diploid, haplotypes must be derived from genotypes by a phasing process. In this study, we present a new computational model for haplotype phasing based on pairwise sharing of haplotypes inferred to be Identical-By-Descent (IBD). We apply the Bayesian network based model in a new phasing algorithm, called systematic long-range phasing (SLRP), that can capitalize on the close genetic relationships in isolated founder populations, and show with simulated and real genome-wide genotype data that SLRP substantially reduces the rate of phasing errors compared to previous phasing algorithms. Furthermore, the method accurately identifies regions of IBD, enabling linkage-like studies without pedigrees, and can be used to impute most genotypes with very low error rate. Genet. Epidemiol. 2011. © 2011 Wiley Periodicals, Inc.35:853-860, 2011 PMID:22006673

  1. Nondegenerate parametric oscillations in a tunable superconducting resonator

    NASA Astrophysics Data System (ADS)

    Bengtsson, Andreas; Krantz, Philip; Simoen, Michaël; Svensson, Ida-Maria; Schneider, Ben; Shumeiko, Vitaly; Delsing, Per; Bylander, Jonas

    2018-04-01

    We investigate nondegenerate parametric oscillations in a superconducting microwave multimode resonator that is terminated by a superconducting quantum interference device (SQUID). The parametric effect is achieved by modulating magnetic flux through the SQUID at a frequency close to the sum of two resonator-mode frequencies. For modulation amplitudes exceeding an instability threshold, self-sustained oscillations are observed in both modes. The amplitudes of these oscillations show good quantitative agreement with a theoretical model. The oscillation phases are found to be correlated and exhibit strong fluctuations which broaden the oscillation spectral linewidths. These linewidths are significantly reduced by applying a weak on-resonant tone, which also suppresses the phase fluctuations. When the weak tone is detuned, we observe synchronization of the oscillation frequency with the frequency of the input. For the detuned input, we also observe an emergence of three idlers in the output. This observation is in agreement with theory indicating four-mode amplification and squeezing of a coherent input.

  2. Small X-Band Oscillator Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Miranda, Felix A.; Clark, Eric B.; Wilt, David M.; Mueller, Carl H.; Kory, Carol L.; Lambert, Kevin M.

    2009-01-01

    A small, segmented microstrip patch antenna integrated with an X-band feedback oscillator on a high-permittivity substrate has been built and tested. This oscillator antenna is a prototype for demonstrating the feasibility of such devices as compact, low-power-consumption building blocks of advanced, lightweight, phased antenna arrays that would generate steerable beams for communication and remotesensing applications.

  3. PROSPECT - A Precision Oscillation and Spectrum Experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Xianyi; Prospect Collaboration

    2017-01-01

    PROSPECT, the PRecision Oscillation and SPECTrum Experiment, is a multi-phased short baseline reactor antineutrino experiment that aims to precisely measure the U-235 antineutrino spectrum and prob for oscillation effects involving a possible Δm2 1 eV2 scale sterile neutrino. In PROSPECT Phase-I, an optically segmented Li-6 loaded liquid scintillator detector will be deployed at at the baseline of 7-12m from the High Flux Isotope Reactor at the Oak Ridge National Laboratory. PROSPECT will measure the spectrum of U-235 to aid in resolving the unexplained inconsistency between predictive spectral models and recent experimental measurements using LEU cores, while the oscillation measurement will probe the best fit region suggested by global fitting studies within 1-year data taking. This talk will introduce the design of PROSPECT Phase-I, the discovery potential of the experiment, and the progress the collaboration has made toward realizing PROSPECT Phase-I. Department of Energy

  4. Quantum correlation in degenerate optical parametric oscillators with mutual injections

    NASA Astrophysics Data System (ADS)

    Takata, Kenta; Marandi, Alireza; Yamamoto, Yoshihisa

    2015-10-01

    We theoretically and numerically study the quantum dynamics of two degenerate optical parametric oscillators with mutual injections. The cavity mode in the optical coupling path between the two oscillator facets is explicitly considered. Stochastic equations for the oscillators and mutual injection path based on the positive P representation are derived. The system of two gradually pumped oscillators with out-of-phase mutual injections is simulated, and its quantum state is investigated. When the incoherent loss of the oscillators other than the mutual injections is small, the squeezed quadratic amplitudes p ̂ in the oscillators are positively correlated near the oscillation threshold. It indicates finite quantum correlation, estimated via Gaussian quantum discord, and the entanglement between the intracavity subharmonic fields. When the loss in the injection path is low, each oscillator around the phase transition point forms macroscopic superposition even under a small pump noise. It suggests that the squeezed field stored in the low-loss injection path weakens the decoherence in the oscillators.

  5. Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information.

    PubMed

    Brunetti, Enzo; Maldonado, Pedro E; Aboitiz, Francisco

    2013-01-01

    During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on "kept in mind" rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.

  6. Recent Developments in the Analysis of Couple Oscillator Arrays

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    This presentation considers linear arrays of coupled oscillators. Our purpose in coupling oscillators together is to achieve high radiated power through the spatial power combining which results when the oscillators are injection locked to each other. York, et. al. have shown that, left to themselves, the ensemble of injection locked oscillators oscillate at the average of the tuning frequencies of all the oscillators. Coupling these arrays achieves high radiated power through coherent spatial power combining. The coupled oscillators are usually designed to produce constant aperture phase. Oscillators are injection locked to each other or to a master oscillator to produce coherent radiation. Oscillators do not necessarily oscillate at their tuning frequency.

  7. Eyeballing oscillators for pulsed Doppler radar

    NASA Astrophysics Data System (ADS)

    Goldman, S.

    1985-03-01

    The visibility of small targets to a Doppler radar system in the presence of large targets is limited by phase noise. Such limitations occur when an airborne radar searches the ground for a mobile vehicle. Under these conditions, the performance of the Doppler radar depends greatly on the specifications of its phased-locked oscillator. Goldman (1984) has discussed the steps required to evaluate the noise resulting from a pulsed Doppler radar system. In the present investigation, these techniques are applied in reverse to determine system specifications for oscillator noise. A 95-GHz pulsed Doppler radar system is used as an example of specifying system phase noise.

  8. Unstable Resonator Optical Parametric Oscillator Based on Quasi-Phase-Matched RbTiOAsO(4).

    PubMed

    Hansson, G; Karlsson, H; Laurell, F

    2001-10-20

    We demonstrate improved signal and idler-beam quality of a 3-mm-aperture quasi-phase-matched RbTiOAsO(4) optical parametric oscillator through use of a confocal unstable resonator as compared with a plane-parallel resonator. Both oscillators were singly resonant, and the periodically poled RbTiOAsO(4) crystal generated a signal at 1.56 mum and an idler at 3.33 mum when pumped at 1.064 mum. We compared the beam quality produced by the 1.2-magnification confocal unstable resonator with the beam quality produced by the plane-parallel resonator by measuring the signal and the idler beam M(2) value. We also investigated the effect of pump-beam intensity distribution by comparing the result of a Gaussian and a top-hat intensity profile pump beam. We generated a signal beam of M(2) approximately 7 and an idler beam of M(2) approximately 2.5 through use of an unstable resonator and a Gaussian intensity profile pump beam. This corresponds to an increase of a factor of approximately 2 in beam quality for the signal and a factor of 3 for the idler, compared with the beam quality of the plane-parallel resonator optical parametric oscillator.

  9. Phased-array vector velocity estimation using transverse oscillations.

    PubMed

    Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A

    2012-12-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9

  10. Stability of two-mode internal resonance in a nonlinear oscillator

    NASA Astrophysics Data System (ADS)

    Zanette, Damián H.

    2018-05-01

    We analyze the stability of synchronized periodic motion for two coupled oscillators, representing two interacting oscillation modes in a nonlinear vibrating beam. The main oscillation mode is governed by the forced Duffing equation, while the other mode is linear. By means of the multiple-scale approach, the system is studied in two situations: an open-loop configuration, where the excitation is an external force, and a closed-loop configuration, where the system is fed back with an excitation obtained from the oscillation itself. The latter is relevant to the functioning of time-keeping micromechanical devices. While the accessible amplitudes and frequencies of stationary oscillations are identical in the two situations, their stability properties are substantially different. Emphasis is put on resonant oscillations, where energy transfer between the two coupled modes is maximized and, consequently, the strong interdependence between frequency and amplitude caused by nonlinearity is largely suppressed.

  11. Investigation of oscillating cascade aerodynamics by an experimental influence coefficient technique

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1988-01-01

    Fundamental experiments are performed in the NASA Lewis Transonic Oscillating Cascade Facility to investigate the torsion mode unsteady aerodynamics of a biconvex airfoil cascade at realistic values of the reduced frequency for all interblade phase angles at a specified mean flow condition. In particular, an unsteady aerodynamic influence coefficient technique is developed and utilized in which only one airfoil in the cascade is oscillated at a time and the resulting airfoil surface unsteady pressure distribution measured on one dynamically instrumented airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils oscillating at a specified interblade phase angle are then determined through a vector summation of these data. These influence coefficient determined oscillation cascade data are correlated with data obtained in this cascade with all airfoils oscillating at several interblade phase angle values. The influence coefficients are then utilized to determine the unsteady aerodynamics of the cascade for all interblade phase angles, with these unique data subsequently correlated with predictions from a linearized unsteady cascade model.

  12. Angular phase shift in polarization-angle dependence of microwave-induced magnetoresistance oscillations

    NASA Astrophysics Data System (ADS)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Mani, R. G.; Reichl, C.; Wegscheider, W.

    2016-12-01

    We examine the microwave frequency (f ) variation of the angular phase shift, θ0, observed in the polarization-angle dependence of microwave-induced magnetoresistance oscillations in a high-mobility GaAs/AlGaAs two-dimensional electron system. By fitting the diagonal resistance Rx x versus θ plots to an empirical cosine square law, we extract θ0 and trace its quasicontinuous variation with f . The results suggest that the overall average of θ0 extracted from Hall bar device sections with length-to-width ratios of L /W =1 and 2 is the same. We compare the observations with expectations arising from the "ponderomotive force" theory for microwave radiation-induced transport phenomena.

  13. Rayleigh-type parametric chemical oscillation.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  14. Phase locking of vortex cores in two coupled magnetic nanopillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. Thismore » work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.« less

  15. Synchronization of an ensemble of oscillators regulated by their spatial movement.

    PubMed

    Sarkar, Sumantra; Parmananda, P

    2010-12-01

    Synchronization for a collection of oscillators residing in a finite two dimensional plane is explored. The coupling between any two oscillators in this array is unidirectional, viz., master-slave configuration. Initially the oscillators are distributed randomly in space and their autonomous time-periods follow a Gaussian distribution. The duty cycles of these oscillators, which work under an on-off scenario, are normally distributed as well. It is realized that random hopping of oscillators is a necessary condition for observing global synchronization in this ensemble of oscillators. Global synchronization in the context of the present work is defined as the state in which all the oscillators are rendered identical. Furthermore, there exists an optimal amplitude of random hopping for which the attainment of this global synchronization is the fastest. The present work is deemed to be of relevance to the synchronization phenomena exhibited by pulse coupled oscillators such as a collection of fireflies. © 2010 American Institute of Physics.

  16. Properties of quasi-periodic oscillations in accreting magnetic white dwarfs

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Chanmugam, G.; Shaviv, G.

    1992-01-01

    Previous studies of time-dependent accretion onto magnetic white dwarfs, in which the cooling was assumed to be due to bremsstrahlung emission, have shown that the accretion shock undergoes oscillations. However, when cyclotron cooling is also included, the oscillations are damped for sufficiently strong magnetic fields. Here we demonstrate that the oscillations can be sustained by accretion-fluctuation-induced excitations. The frequency of the QPOs are shown to increase quadratically with the magnetic field strength. We interpret the oscillations as a two-phase process in which bremsstrahlung cooling dominates in one half-cycle and cyclotron cooling in the other. Such a process may have very different consequences compared to a single-phase process where the functional form of the cooling is essentially the same throughout the cycle. If in the two-phase process damping occurs mainly in the cyclotron cooling half-cycle, there will be a universal effective damping factor which tends to suppress all oscillation modes indiscriminately. The oscillations of the accretion shock also could be a limit cycle process in which the system vacillates between two branches.

  17. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the

  18. Neutrino oscillations refitted

    NASA Astrophysics Data System (ADS)

    Forero, D. V.; Tórtola, M.; Valle, J. W. F.

    2014-11-01

    Here, we update our previous global fit of neutrino oscillations by including the recent results that have appeared since the Neutrino 2012 conference. These include the measurements of reactor antineutrino disappearance reported by Daya Bay and RENO, together with latest T2K and MINOS data including both disappearance and appearance channels. We also include the revised results from the third solar phase of Super-Kamiokande, SK-III, as well as new solar results from the fourth phase of Super-Kamiokande, SK-IV. We find that the preferred global determination of the atmospheric angle θ23 is consistent with maximal mixing. We also determine the impact of the new data upon all the other neutrino oscillation parameters with an emphasis on the increasing sensitivity to the C P phase, thanks to the interplay between accelerator and reactor data. In the Appendix, we present the updated results obtained after the inclusion of new reactor data presented at the Neutrino 2014 conference. We discuss their impact on the global neutrino analysis.

  19. [Low-Frequency Flow Oscillation

    NASA Technical Reports Server (NTRS)

    Bragg, Michael B.

    1997-01-01

    tests where the leading-edge bubble and trailing-edge separation were altered and the affect on the flow-oscillation studied. Balow found that by tripping the airfoil boundary-layer with "zigzag" tape ahead of bubble separation, the bubble was effectively eliminated mid the oscillation suppressed. Wake survey drag measurements showed a drastic reduction in airfoil drag when the bubble and oscillation were eliminated. Using the "zigzag" tape, the trailing-edge separation was moved downstream approximately 5 percent chord. This was found to reduce the amplitude of the oscillation, particularly in the onset stage at low angle of attack (around 14 degrees). Through detailed analysis of the wake behind the airfoil during the unsteady flow oscillation, Balow provided a better understanding of the wake flowfield. Broeren studied the oscillating flowfield in detail at Reynolds number equal 3 x 10 exp 5 and an angle of attack of 15 degrees using laser Doppler velocimetry (LDV). Two-dimensional LDV data were acquired at 687 grid points above the model upper surface while hot-wire data were taken simultaneously in the wake. Using the hot-wire signal, the LDV data were phase averaged into 24 bins to represent a single ensemble average of one oscillation cycle. The velocity data showed a flowfield oscillation that could be divided into three flow regimes. In the first regime, the flow over the airfoil was completely separated initially, the flowfield reattached from the leading edge and the reattachment point moved downstream with increasing time or phase. Broeren referred to this as the reattachment regime. The bubble development regime followed, where a leading-edge separation bubble formed at the leading edge and grew with increasing time. During the initial part of this regime the trailing-edge separation continued to move downstream. However, during the last 30 degrees of phase the trailing-edge separation moved rapidly forward and appeared to merge with the leading-edge bubble

  20. Transverse mode instability of fiber oscillators in comparison with fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Hejaz, Kamran; Shayganmanesh, Mahdi; Azizi, Saeed; Abedinajafi, Ali; Roohforouz, Ali; Rezaei-Nasirabad, Reza; Vatani, Vahid

    2018-05-01

    Transverse mode instability (TMI) is experimentally investigated in a fiber oscillator and a fiber amplifier. For a reasonable comparison of TMI in these two configurations, the same optical components and design parameters are applied to both. Our experimental results show that the TMI power threshold in a fiber oscillator is lower than in a corresponding fiber amplifier. By using simulation software, a fiber oscillator and an amplifier are designed with similar characteristics, to provide identical conditions for all effective parameters on TMI in both of them. Since the signal propagation in fiber oscillators is different from that of single-pass fiber amplifiers, and also since both forward and backward propagating signals in fiber oscillators can generate thermo-optic index gratings, the observed lower TMI threshold in the fiber oscillator is due to its different interaction of light with index gratings.

  1. Stability of entrainment of a continuum of coupled oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  2. Stability of entrainment of a continuum of coupled oscillators

    DOE PAGES

    Snyder, Jordan; Zlotnik, Anatoly; Hagberg, Aric

    2017-10-05

    Complex natural and engineered systems are ubiquitous, and their behavior is challenging to characterize and control. Here, we examine the design of the entrainment process for an uncountably infinite collection of coupled phase oscillators that are all subject to the same periodic driving signal. In the absence of coupling, an appropriately designed input can result in each oscillator attaining the frequency of the driving signal, with a phase offset determined by its natural frequency. We also consider a special case of interacting oscillators in which the coupling tends to destabilize the phase configuration to which the driving signal would sendmore » the collection in the absence of coupling. In this setting, we derive stability results that characterize the trade-off between the effects of driving and coupling, and compare these results to the well-known Kuramoto model of a collection of free-running coupled oscillators.« less

  3. Target-in-the-loop phasing of a fiber laser array fed by a linewidth-broadened master oscillator

    NASA Astrophysics Data System (ADS)

    Hyde, Milo W.; Tyler, Glenn A.; Rosado Garcia, Carlos

    2017-05-01

    In a recent paper [J. Opt. Soc. Am. A 33, 1931-1937 (2016)], the target-in-the-loop (TIL) phasing of an RF-modulated or multi-phase-dithered fiber laser array, fed by a linewidth-broadened master oscillator (MO) source, was investigated. It was found that TIL phasing was possible even on a target with scattering features separated by more than the MO's coherence length as long as the received, backscattered irradiance changed with the array's modulation or phase dither. To simplify the problem and gain insight into how temporal coherence affects TIL phasing, speckle and atmospheric turbulence were omitted from the analysis. Here, the scenario analyzed in the prior work is generalized by including speckle and turbulence. First, the key analytical result from the prior paper is reviewed. Simulations, including speckle and turbulence, are then performed to test whether the conclusions derived from that result hold under more realistic conditions.

  4. The Effect of Doppler Frequency Shift, Frequency Offset of the Local Oscillators, and Phase Noise on the Performance of Coherent OFDM Receivers

    NASA Technical Reports Server (NTRS)

    Xiong, Fuqin; Andro, Monty

    2001-01-01

    This paper first shows that the Doppler frequency shift affects the frequencies of the RF carrier, subcarriers, envelope, and symbol timing by the same percentage in an Orthogonal Frequency Division Multiplexing (OFDM) signal or any other modulated signals. Then the SNR degradation of an OFDM system due to Doppler frequency shift, frequency offset of the local oscillators and phase noise is analyzed. Expressions are given and values for 4-, 16-, 64-, and 256-QAM OFDM systems are calculated and plotted. The calculations show that the Doppler shift of the D3 project is about 305 kHz, and the degradation due to it is about 0.01 to 0.04 dB, which is negligible. The degradation due to frequency offset and phase noise of local oscillators will be the main source of degradation. To keep the SNR degradation under 0.1 dB, the relative frequency offset due to local oscillators must be below 0.01 for the 16 QAM-OFDM. This translates to an offset of 1.55 MHz (0.01 x 155 MHz) or a stability of 77.5 ppm (0.01 x 155 MHz/20 GHz) for the DI project. To keep the SNR degradation under 0.1 dB, the relative linewidth (0) due to phase noise of the local oscillators must be below 0.0004 for the 16 QAM-OFDM. This translates to a linewidth of 0.062 MHz (0.0004 x 155 MHz) of the 20 GHz RIF carrier. For a degradation of 1 dB, beta = 0.04, and the linewidth can be relaxed to 6.2 MHz.

  5. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It's About Time.

    PubMed

    Mathalon, Daniel H; Sohal, Vikaas S

    2015-08-01

    Neural oscillations are rhythmic fluctuations over time in the activity or excitability of single neurons, local neuronal populations or "assemblies," and/or multiple regionally distributed neuronal assemblies. Synchronized oscillations among large numbers of neurons are evident in electrocorticographic, electroencephalographic, magnetoencephalographic, and local field potential recordings and are generally understood to depend on inhibition that paces assemblies of excitatory neurons to produce alternating temporal windows of reduced and increased excitability. Synchronization of neural oscillations is supported by the extensive networks of local and long-range feedforward and feedback bidirectional connections between neurons. Here, we review some of the major methods and measures used to characterize neural oscillations, with a focus on gamma oscillations. Distinctions are drawn between stimulus-independent oscillations recorded during resting states or intervals between task events, stimulus-induced oscillations that are time locked but not phase locked to stimuli, and stimulus-evoked oscillations that are both time and phase locked to stimuli. Synchrony of oscillations between recording sites, and between the amplitudes and phases of oscillations of different frequencies (cross-frequency coupling), is described and illustrated. Molecular mechanisms underlying gamma oscillations are also reviewed. Ultimately, understanding the temporal organization of neuronal network activity, including interactions between neural oscillations, is critical for elucidating brain dysfunction in neuropsychiatric disorders.

  6. The Aharonov-Bohm oscillation in the BiSbTe3 topological insulator macroflake

    NASA Astrophysics Data System (ADS)

    Huang, Shiu-Ming; Wang, Pin-Chun; Lin, Chien; You, Sheng-Yu; Lin, Wei-Cheng; Lin, Lin-Jie; Yan, You-Jhih; Yu, Shih-Hsun; Chou, M. C.

    2018-05-01

    We report the Aharonov-Bohm (AB) oscillation in the BiSbTe3 topological insulator macroflake. The magnetoresistance reveals periodic oscillations. The oscillation index number reveals the Berry phase is π which supports the oscillation originates from the surface state. The AB oscillation frequency increases as temperature decreases, and the corresponding phase coherence length is consistent with that extracted from the weak antilocalization. The phase coherence length is proportional to T-1/2. The magnetoresistance ratio reaches 700% (1000%) at 9 T (14 T) and 2 K, and it is proportional to the carrier mobility. The magnetoresistance ratio is larger than all reported values in (Bi, Sb)2(Te, Se)3 topological insulators.

  7. A Dual-Loop Opto-Electronic Oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. S.; Maleki, L.; Ji, Y.; Lutes, G.; Tu, M.

    1998-07-01

    We describe and demonstrate a multiloop technique for single-mode selection in an opto-electronic oscillator (OEO). We present experimental results of a dual-loop OEO free running at 10 GHz that has the lowest phase noise (-140 dBc/Hz at 10 kHz from the carrier) of all free-running room-temperature oscillators to date.

  8. Analysis of high-frequency oscillations in mutually-coupled nano-lasers.

    PubMed

    Han, Hong; Shore, K Alan

    2018-04-16

    The dynamics of mutually coupled nano-lasers has been analyzed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that in the mutually-coupled system, small-amplitude oscillations with frequencies of order 100 GHz are generated and are maintained with remarkable stability. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. In mutually-coupled nano-lasers the oscillation frequency changes linearly with the frequency detuning between the lasers. For non-identical bias currents, the oscillation frequency of mutually-coupled nano-lasers also increases with bias current. The stability of the oscillations which appear in mutually coupled nano-lasers offers opportunities for their practical applications and notably in photonic integrated circuits.

  9. Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi T.

    1998-01-01

    A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K

  10. Nonlinear evolution of baryon acoustic oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, Martin; Institut de Ciencies de l'Espai, IEEC-CSIC, Campus UAB, Facultat de Ciencies, Torre C5 par-2, Barcelona 08193; Scoccimarro, Roman

    2008-01-15

    We study the nonlinear evolution of baryon acoustic oscillations in the dark matter power spectrum and the correlation function using renormalized perturbation theory. In a previous paper we showed that renormalized perturbation theory successfully predicts the damping of acoustic oscillations; here we extend our calculation to the enhancement of power due to mode coupling. We show that mode coupling generates additional oscillations that are out of phase with those in the linear spectrum, leading to shifts in the scales of oscillation nodes defined with respect to a smooth spectrum. When Fourier transformed, these out-of-phase oscillations induce percent-level shifts in themore » acoustic peak of the two-point correlation function. We present predictions for these shifts as a function of redshift; these should be considered as a robust lower limit to the more realistic case that includes, in addition, redshift distortions and galaxy bias. We show that these nonlinear effects occur at very large scales, leading to a breakdown of linear theory at scales much larger than commonly thought. We discuss why virialized halo profiles are not responsible for these effects, which can be understood from basic physics of gravitational instability. Our results are in excellent agreement with numerical simulations, and can be used as a starting point for modeling baryon acoustic oscillations in future observations. To meet this end, we suggest a simple physically motivated model to correct for the shifts caused by mode coupling.« less

  11. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    NASA Technical Reports Server (NTRS)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  12. Chemical factors determine olfactory system beta oscillations in waking rats.

    PubMed

    Lowry, Catherine A; Kay, Leslie M

    2007-07-01

    Recent studies have pointed to olfactory system beta oscillations of the local field potential (15-30 Hz) and their roles both in learning and as specific responses to predator odors. To describe odorant physical properties, resultant behavioral responses and changes in the central olfactory system that may induce these oscillations without associative learning, we tested rats with 26 monomolecular odorants spanning 6 log units of theoretical vapor pressure (estimate of relative vapor phase concentration) and 10 different odor mixtures. We found odorant vapor phase concentration to be inversely correlated with investigation time on the first presentation, after which investigation times were brief and not different across odorants. Analysis of local field potentials from the olfactory bulb and anterior piriform cortex shows that beta oscillations in waking rats occur specifically in response to the class of volatile organic compounds with vapor pressures of 1-120 mmHg. Beta oscillations develop over the first three to four presentations and are weakly present for some odorants in anesthetized rats. Gamma oscillations show a smaller effect that is not restricted to the same range of odorants. Olfactory bulb theta oscillations were also examined as a measure of effective afferent input strength, and the power of these oscillations did not vary systematically with vapor pressure, suggesting that it is not olfactory bulb drive strength that determines the presence of beta oscillations. Theta band coherence analysis shows that coupling strength between the olfactory bulb and piriform cortex increases linearly with vapor phase concentration, which may facilitate beta oscillations above a threshold.

  13. Synchronization of a self-sustained cold-atom oscillator

    NASA Astrophysics Data System (ADS)

    Heimonen, H.; Kwek, L. C.; Kaiser, R.; Labeyrie, G.

    2018-04-01

    Nonlinear oscillations and synchronization phenomena are ubiquitous in nature. We study the synchronization of self-oscillating magneto-optically trapped cold atoms to a weak external driving. The oscillations arise from a dynamical instability due the competition between the screened magneto-optical trapping force and the interatomic repulsion due to multiple scattering of light. A weak modulation of the trapping force allows the oscillations of the cloud to synchronize to the driving. The synchronization frequency range increases with the forcing amplitude. The corresponding Arnold tongue is experimentally measured and compared to theoretical predictions. Phase locking between the oscillator and drive is also observed.

  14. Phase response curves for models of earthquake fault dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franović, Igor, E-mail: franovic@ipb.ac.rs; Kostić, Srdjan; Perc, Matjaž

    We systematically study effects of external perturbations on models describing earthquake fault dynamics. The latter are based on the framework of the Burridge-Knopoff spring-block system, including the cases of a simple mono-block fault, as well as the paradigmatic complex faults made up of two identical or distinct blocks. The blocks exhibit relaxation oscillations, which are representative for the stick-slip behavior typical for earthquake dynamics. Our analysis is carried out by determining the phase response curves of first and second order. For a mono-block fault, we consider the impact of a single and two successive pulse perturbations, further demonstrating how themore » profile of phase response curves depends on the fault parameters. For a homogeneous two-block fault, our focus is on the scenario where each of the blocks is influenced by a single pulse, whereas for heterogeneous faults, we analyze how the response of the system depends on whether the stimulus is applied to the block having a shorter or a longer oscillation period.« less

  15. Opto-electronic oscillators having optical resonators

    NASA Technical Reports Server (NTRS)

    Yao, Xiaotian Steve (Inventor); Maleki, Lutfollah (Inventor); Ilchenko, Vladimir (Inventor)

    2003-01-01

    Systems and techniques of incorporating an optical resonator in an optical part of a feedback loop in opto-electronic oscillators. This optical resonator provides a sufficiently long energy storage time and hence to produce an oscillation of a narrow linewidth and low phase noise. Certain mode matching conditions are required. For example, the mode spacing of the optical resonator is equal to one mode spacing, or a multiplicity of the mode spacing, of an opto-electronic feedback loop that receives a modulated optical signal and to produce an electrical oscillating signal.

  16. Detailed Characterization of Local Field Potential Oscillations and Their Relationship to Spike Timing in the Antennal Lobe of the Moth Manduca sexta

    PubMed Central

    Daly, Kevin C.; Galán, Roberto F.; Peters, Oakland J.; Staudacher, Erich M.

    2011-01-01

    The transient oscillatory model of odor identity encoding seeks to explain how odorants with spatially overlapped patterns of input into primary olfactory networks can be discriminated. This model provides several testable predictions about the distributed nature of network oscillations and how they control spike timing. To test these predictions, 16 channel electrode arrays were placed within the antennal lobe (AL) of the moth Manduca sexta. Unitary spiking and multi site local field potential (LFP) recordings were made during spontaneous activity and in response to repeated presentations of an odor panel. We quantified oscillatory frequency, cross correlations between LFP recording sites, and spike–LFP phase relationships. We show that odor-driven AL oscillations in Manduca are frequency modulating (FM) from ∼100 to 30 Hz; this was odorant and stimulus duration dependent. FM oscillatory responses were localized to one or two recording sites suggesting a localized (perhaps glomerular) not distributed source. LFP cross correlations further demonstrated that only a small (r < 0.05) distributed and oscillatory component was present. Cross spectral density analysis demonstrated the frequency of these weakly distributed oscillations was state dependent (spontaneous activity = 25–55 Hz; odor-driven = 55–85 Hz). Surprisingly, vector strength analysis indicated that unitary phase locking of spikes to the LFP was strongest during spontaneous activity and dropped significantly during responses. Application of bicuculline, a GABAA receptor antagonist, significantly lowered the frequency content of odor-driven distributed oscillatory activity. Bicuculline significantly reduced spike phase locking generally, but the ubiquitous pattern of increased phase locking during spontaneous activity persisted. Collectively, these results indicate that oscillations perform poorly as a stimulus-mediated spike synchronizing mechanism for Manduca and hence are

  17. Quantum synchronization of quantum van der Pol oscillators with trapped ions.

    PubMed

    Lee, Tony E; Sadeghpour, H R

    2013-12-06

    The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.

  18. Ergodicity of a singly-thermostated harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Hoover, William Graham; Sprott, Julien Clinton; Hoover, Carol Griswold

    2016-03-01

    Although Nosé's thermostated mechanics is formally consistent with Gibbs' canonical ensemble, the thermostated Nosé-Hoover (harmonic) oscillator, with its mean kinetic temperature controlled, is far from ergodic. Much of its phase space is occupied by regular conservative tori. Oscillator ergodicity has previously been achieved by controlling two oscillator moments with two thermostat variables. Here we use computerized searches in conjunction with visualization to find singly-thermostated motion equations for the oscillator which are consistent with Gibbs' canonical distribution. Such models are the simplest able to bridge the gap between Gibbs' statistical ensembles and Newtonian single-particle dynamics.

  19. Synchronous Oscillations in Microtubule Polymerization

    NASA Astrophysics Data System (ADS)

    Carlier, M. F.; Melki, R.; Pantaloni, D.; Hill, T. L.; Chen, Y.

    1987-08-01

    Under conditions where microtubule nucleation and growth are fast (i.e., high magnesium ion and tubulin concentrations and absence of glycerol), microtubule assembly in vitro exhibits an oscillatory regime preceding the establishment of steady state. The amplitude of the oscillations can represent >50% of the maximum turbidity change and oscillations persist for up to 20 periods of 80 s each. Oscillations are accompanied by extensive length redistribution of microtubules. Preliminary work suggests that the oscillatory kinetics can be simulated using a model in which many microtubules undergo synchronous transitions between growing and rapidly depolymerizing phases, complicated by the kinetically limiting rate of nucleotide exchange on free tubulin.

  20. Missing energy and the measurement of the CP-violating phase in neutrino oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankowski, Artur M.; Coloma, Pilar; Huber, Patrick

    In the next generation of long-baseline neutrino oscillation experiments aiming to determine the charge-parity-violating phase δ CP in the appearance channel, fine-grained time-projection chambers are expected to play an important role. In this study, we analyze an influence of realistic detector capabilities on the δ CP sensitivity for a setup similar to that of the Deep Underground Neutrino Experiment. We find that the effect of the missing energy carried out by undetected particles is sizable. Although the reconstructed neutrino energy can be corrected for the missing energy, the accuracy of such procedure has to exceed 20%, to avoid a sizablemore » bias in the extracted δ CP value.« less

  1. Missing energy and the measurement of the CP-violating phase in neutrino oscillations

    DOE PAGES

    Ankowski, Artur M.; Coloma, Pilar; Huber, Patrick; ...

    2015-11-30

    In the next generation of long-baseline neutrino oscillation experiments aiming to determine the charge-parity-violating phase δ CP in the appearance channel, fine-grained time-projection chambers are expected to play an important role. In this study, we analyze an influence of realistic detector capabilities on the δ CP sensitivity for a setup similar to that of the Deep Underground Neutrino Experiment. We find that the effect of the missing energy carried out by undetected particles is sizable. Although the reconstructed neutrino energy can be corrected for the missing energy, the accuracy of such procedure has to exceed 20%, to avoid a sizablemore » bias in the extracted δ CP value.« less

  2. Oscillations and Waves in Radio Source of Drifting Pulsation Structures

    NASA Astrophysics Data System (ADS)

    Karlický, Marian; Rybák, Ján; Bárta, Miroslav

    2018-04-01

    Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800 - 2000 MHz Ondřejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized ("infinite" frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from -17 to +287 MHz s^{-1}. We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.

  3. Frequency modulation entrains slow neural oscillations and optimizes human listening behavior

    PubMed Central

    Henry, Molly J.; Obleser, Jonas

    2012-01-01

    The human ability to continuously track dynamic environmental stimuli, in particular speech, is proposed to profit from “entrainment” of endogenous neural oscillations, which involves phase reorganization such that “optimal” phase comes into line with temporally expected critical events, resulting in improved processing. The current experiment goes beyond previous work in this domain by addressing two thus far unanswered questions. First, how general is neural entrainment to environmental rhythms: Can neural oscillations be entrained by temporal dynamics of ongoing rhythmic stimuli without abrupt onsets? Second, does neural entrainment optimize performance of the perceptual system: Does human auditory perception benefit from neural phase reorganization? In a human electroencephalography study, listeners detected short gaps distributed uniformly with respect to the phase angle of a 3-Hz frequency-modulated stimulus. Listeners’ ability to detect gaps in the frequency-modulated sound was not uniformly distributed in time, but clustered in certain preferred phases of the modulation. Moreover, the optimal stimulus phase was individually determined by the neural delta oscillation entrained by the stimulus. Finally, delta phase predicted behavior better than stimulus phase or the event-related potential after the gap. This study demonstrates behavioral benefits of phase realignment in response to frequency-modulated auditory stimuli, overall suggesting that frequency fluctuations in natural environmental input provide a pacing signal for endogenous neural oscillations, thereby influencing perceptual processing. PMID:23151506

  4. Olivary subthreshold oscillations and burst activity revisited

    PubMed Central

    Bazzigaluppi, Paolo; De Gruijl, Jornt R.; van der Giessen, Ruben S.; Khosrovani, Sara; De Zeeuw, Chris I.; de Jeu, Marcel T. G.

    2012-01-01

    The inferior olive (IO) forms one of the major gateways for information that travels to the cerebellar cortex. Olivary neurons process sensory and motor signals that are subsequently relayed to Purkinje cells. The intrinsic subthreshold membrane potential oscillations of the olivary neurons are thought to be important for gating this flow of information. In vitro studies have revealed that the phase of the subthreshold oscillation determines the size of the olivary burst and may gate the information flow or encode the temporal state of the olivary network. Here, we investigated whether the same phenomenon occurred in murine olivary cells in an intact olivocerebellar system using the in vivo whole-cell recording technique. Our in vivo findings revealed that the number of wavelets within the olivary burst did not encode the timing of the spike relative to the phase of the oscillation but was related to the amplitude of the oscillation. Manipulating the oscillation amplitude by applying Harmaline confirmed the inverse relationship between the amplitude of oscillation and the number of wavelets within the olivary burst. Furthermore, we demonstrated that electrotonic coupling between olivary neurons affect this modulation of the olivary burst size. Based on these results, we suggest that the olivary burst size might reflect the “expectancy” of a spike to occur rather than the spike timing, and that this process requires the presence of gap junction coupling. PMID:23189043

  5. Modeling the Interaction of the Madden-Julian Oscillation and Quasi-biennial Oscillation

    NASA Astrophysics Data System (ADS)

    Martin, Z.; Wang, S.; Nie, J.; Sobel, A. H.

    2017-12-01

    The stratospheric quasi-biennial oscillation (QBO) and the intra-seasonal Madden-Julian oscillation (MJO) are two hallmark features of the tropical atmosphere. Recent observational results have demonstrated a strong correlation between the MJO and the QBO, particularly in boreal winter, with enhanced MJO activity and increased predictability during the easterly phase of the QBO. Despite the robustness of the observational result, the physical processes through which the MJO and QBO interact are unknown and largely unstudied. We demonstrate that the MJO can be simulated in the WRF cloud-resolving model with large-scale forcing taken from the DYNAMO field campaign, during a period when two MJO events were observed and the QBO was in a neutral phase. We look at the effect of forcing the model MJO with idealized temperature anomalies around the tropopause, representative of the easterly and westerly QBO phases. While the model demonstrates some robust relationships between the MJO and QBO - including an increase in the vertical velocity and cloud fraction, and a decrease in OLR during the easterly QBO phase - other variables, such as precipitation, depend on the QBO phase and the particular MJO event in a more complicated manner. We conclude with some preliminary results towards understanding the mechanisms driving the MJO-QBO relationship through examining the effects of cloud-radiative feedback and horizontal moisture advection on the model results.

  6. Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.

    PubMed

    Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H

    2017-03-17

    Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.

  7. Clausius inequality beyond the weak-coupling limit: the quantum Brownian oscillator.

    PubMed

    Kim, Ilki; Mahler, Günter

    2010-01-01

    We consider a quantum linear oscillator coupled at an arbitrary strength to a bath at an arbitrary temperature. We find an exact closed expression for the oscillator density operator. This state is noncanonical but can be shown to be equivalent to that of an uncoupled linear oscillator at an effective temperature T*(eff) with an effective mass and an effective spring constant. We derive an effective Clausius inequality deltaQ*(eff)< or =T*(eff)dS , where deltaQ*(eff) is the heat exchanged between the effective (weakly coupled) oscillator and the bath, and S represents a thermal entropy of the effective oscillator, being identical to the von-Neumann entropy of the coupled oscillator. Using this inequality (for a cyclic process in terms of a variation of the coupling strength) we confirm the validity of the second law. For a fixed coupling strength this inequality can also be tested for a process in terms of a variation of either the oscillator mass or its spring constant. Then it is never violated. The properly defined Clausius inequality is thus more robust than assumed previously.

  8. Low phase noise oscillator using two parallel connected amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1987-01-01

    A high frequency oscillator is provided by connecting two amplifier circuits in parallel where each amplifier circuit provides the other amplifier circuit with the conditions necessary for oscillation. The inherent noise present in both amplifier circuits causes the quiescent current, and in turn, the generated frequency, to change. The changes in quiescent current cause the transconductance and the load impedance of each amplifier circuit to vary, and this in turn results in opposing changes in the input susceptance of each amplifier circuit. Because the changes in input susceptance oppose each other, the changes in quiescent current also oppose each other. The net result is that frequency stability is enhanced.

  9. On controlling networks of limit-cycle oscillators

    NASA Astrophysics Data System (ADS)

    Skardal, Per Sebastian; Arenas, Alex

    2016-09-01

    The control of network-coupled nonlinear dynamical systems is an active area of research in the nonlinear science community. Coupled oscillator networks represent a particularly important family of nonlinear systems, with applications ranging from the power grid to cardiac excitation. Here, we study the control of network-coupled limit cycle oscillators, extending the previous work that focused on phase oscillators. Based on stabilizing a target fixed point, our method aims to attain complete frequency synchronization, i.e., consensus, by applying control to as few oscillators as possible. We develop two types of controls. The first type directs oscillators towards larger amplitudes, while the second does not. We present numerical examples of both control types and comment on the potential failures of the method.

  10. On the phase propagation of extratropical ozone quasi-biennial oscillation in the observational data

    NASA Astrophysics Data System (ADS)

    Yang, Hu; Tung, Ka Kit

    1995-05-01

    Global column ozone data from total ozone mapping spectrometer (TOMS), backscattered ultraviolet (BUV) and Dobson stations are analyzed to determine the pattern and phase property of the ozone quasi-biennial oscillation (QBO) signal. It is found that the ozone QBO signal is strongest in middle and high latitudes and is present mainly in the winter-spring season in both hemispheres. The extratropical ozone QBO signal is out of phase with the equatorial ozone QBO, which is itself in phase with the QBO in equatorial zonal wind. There are three distinctive regions, namely tropical, midlatitudinal, and polar regions, in each of which the ozone QBO signal has a fairly constant phase with respect to latitude. There is a phase reversal (sign change) between the equatorial and the extratropical regions associated with the return branch of the equatorial QBO secondary circulation, and this sign reversal occurs at ±12° of latitude symmetric about the equator. In the northern hemisphere between the midlatitudinal and polar regions, there is another possible phase reversal in some (but not all) years possibly in connection with the presence or absence of midwinter sudden warming, which creates a positive or negative anomaly relative to the region outside the polar vortex. In the southern hemisphere polar latitudes, the ozone QBO signal is usually delayed until spring in connection with the final warming. These properties are found in all data sets analyzed by the same method. Evidence does not support a gradual phase propagation from the subtropical region to the high-latitude region. Previous reported evidence for phase propagation is reexamined and is found to be artifacts of data processing.

  11. Induced theta oscillations as biomarkers for alcoholism.

    PubMed

    Andrew, Colin; Fein, George

    2010-03-01

    Studies have suggested that non-phase-locked event-related oscillations (ERO) in target stimulus processing might provide biomarkers of alcoholism. This study investigates the discriminatory power of non-phase-locked oscillations in a group of long-term abstinent alcoholics (LTAAs) and non-alcoholic controls (NACs). EEGs were recorded from 48 LTAAs and 48 age and gender comparable NACs during rest with eyes open (EO) and during the performance of a three-condition visual target detection task. The data were analyzed to extract resting power, ERP amplitude and non-phase-locked ERO power measures. Data were analyzed using MANCOVA to determine the discriminatory power of induced theta ERO vs. resting theta power vs. P300 ERP measures in differentiating the LTAA and NAC groups. Both groups showed significantly more theta power in the pre-stimulus reference period of the task vs. the resting EO condition. The resting theta power did not discriminate the groups, while the LTAAs showed significantly less pre-stimulus theta power vs. the NACs. The LTAAs showed a significantly larger theta event-related synchronization (ERS) to the target stimulus vs. the NACs, even after accounting for pre-stimulus theta power levels. ERS to non-target stimuli showed smaller induced oscillations vs. target stimuli with no group differences. Alcohol use variables, a family history of alcohol problems, and the duration of alcohol abstinence were not associated with any theta power measures. While reference theta power in the task and induced theta oscillations to target stimuli both discriminate LTAAs and NACs, induced theta oscillations better discriminate the groups. Induced theta power measures are also more powerful and independent group discriminators than the P3b amplitude. Induced frontal theta oscillations promise to provide biomarkers of alcoholism that complement the well-established P300 ERP discriminators.

  12. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  13. Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery.

    PubMed

    Wood, Daniel K; Gu, Chao; Corneil, Brian D; Gribble, Paul L; Goodale, Melvyn A

    2015-08-01

    We recorded muscle activity from an upper limb muscle while human subjects reached towards peripheral targets. We tested the hypothesis that the transient visual response sweeps not only through the central nervous system, but also through the peripheral nervous system. Like the transient visual response in the central nervous system, stimulus-locked muscle responses (< 100 ms) were sensitive to stimulus contrast, and were temporally and spatially dissociable from voluntary orienting activity. Also, the arrival of visual responses reduced the variability of muscle activity by resetting the phase of ongoing low-frequency oscillations. This latter finding critically extends the emerging evidence that the feedforward visual sweep reduces neural variability via phase resetting. We conclude that, when sensory information is relevant to a particular effector, detailed information about the sensorimotor transformation, even from the earliest stages, is found in the peripheral nervous system. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Filterless low-phase-noise frequency-quadrupled microwave generation based on a multimode optoelectronic oscillator

    NASA Astrophysics Data System (ADS)

    Teng, Yichao; Zhang, Pin; Zhang, Baofu; Chen, Yiwang

    2018-02-01

    A scheme to realize low-phase-noise frequency-quadrupled microwave generation without any filter is demonstrated. In this scheme, a multimode optoelectronic oscillator is mainly contributed by dual-parallel Mach-Zehnder modulators, fiber, photodetector, and microwave amplifier. The local source signal is modulated by a child MZM (MZMa), which is worked at maximum transmission point. Through properly adjusting the bias voltages of the other child MZM (MZMb) and the parent MZM (MZMc), optical carrier is effectively suppressed and second sidebands are retained, then the survived optical signal is fed back to the photodetector and MZMb to form an optoelectronic hybrid resonator and realize frequency-quadrupled signal generation. Due to the high Q-factor and mode selection effect of the optoelectronic hybrid resonator, compared with the source signal, the generated frequency-quadrupled signal has a lower phase noise. The approach has verified by experiments, and 18, 22, and 26 GHz frequency-quadrupled signal are generated by 4.5, 5.5, and 6.5 GHz local source signals. Compared with 4.5 GHz source signal, the phase noise of generated 18 GHz signal at 10 kHz frequency offset has 26.5 dB reduction.

  15. A light-induced microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We describe a novel oscillator that converts continuous light energy into sta ble and spectrally pure microwave signals. This light-induced microwave oscillator (LIMO) consists of a pump laser and a feedback circuit, including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter. We develop a quasilinear theory and obtain expressions for the threshold condition, the amplitude, the frequency, the line width, and the spectral power density of the oscillation. We also present experimental data to compare with the theoretical results. Our findings indicate that the LIMO can generate ultrastable, spectrally pure microwave reference signals up to 75 GHz with a phase noise lower than -140 dBc/Hz at 10 kHz.

  16. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    NASA Astrophysics Data System (ADS)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  17. Excitatory motor neurons are local oscillators for backward locomotion

    PubMed Central

    Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher

    2018-01-01

    Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron’s oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron’s intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. PMID:29360035

  18. Excitatory motor neurons are local oscillators for backward locomotion.

    PubMed

    Gao, Shangbang; Guan, Sihui Asuka; Fouad, Anthony D; Meng, Jun; Kawano, Taizo; Huang, Yung-Chi; Li, Yi; Alcaire, Salvador; Hung, Wesley; Lu, Yangning; Qi, Yingchuan Billy; Jin, Yishi; Alkema, Mark; Fang-Yen, Christopher; Zhen, Mei

    2018-01-23

    Cell- or network-driven oscillators underlie motor rhythmicity. The identity of C. elegans oscillators remains unknown. Through cell ablation, electrophysiology, and calcium imaging, we show: (1) forward and backward locomotion is driven by different oscillators; (2) the cholinergic and excitatory A-class motor neurons exhibit intrinsic and oscillatory activity that is sufficient to drive backward locomotion in the absence of premotor interneurons; (3) the UNC-2 P/Q/N high-voltage-activated calcium current underlies A motor neuron's oscillation; (4) descending premotor interneurons AVA, via an evolutionarily conserved, mixed gap junction and chemical synapse configuration, exert state-dependent inhibition and potentiation of A motor neuron's intrinsic activity to regulate backward locomotion. Thus, motor neurons themselves derive rhythms, which are dually regulated by the descending interneurons to control the reversal motor state. These and previous findings exemplify compression: essential circuit properties are conserved but executed by fewer numbers and layers of neurons in a small locomotor network. © 2017, Gao et al.

  19. Wind tunnel wall effects in a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1991-01-01

    Experiments in a linear oscillating cascade reveal that the wind tunnel walls enclosing the airfoils have, in some cases, a detrimental effect on the oscillating cascade aerodynamics. In a subsonic flow field, biconvex airfoils are driven simultaneously in harmonic, torsion-mode oscillations for a range of interblade phase angle values. It is found that the cascade dynamic periodicity - the airfoil to airfoil variation in unsteady surface pressure - is good for some values of interblade phase angle but poor for others. Correlation of the unsteady pressure data with oscillating flat plate cascade predictions is generally good for conditions where the periodicity is good and poor where the periodicity is poor. Calculations based upon linearized unsteady aerodynamic theory indicate that pressure waves reflected from the wind tunnel walls are responsible for the cases where there is poor periodicity and poor correlation with the predictions.

  20. Ultrastable Cryogenic Microwave Oscillators

    NASA Astrophysics Data System (ADS)

    Mann, Anthony G.

    Ultrastable cryogenic microwave oscillators are secondary frequency standards in the microwave domain. The best of these oscillators have demonstrated a short term frequency stability in the range 10-14 to a few times 10-16. The main application for these oscillators is as flywheel oscillators for the next generation of passive atomic frequency standards, and as local oscillators in space telemetry ground stations to clean up the transmitter close in phase noise. Fractional frequency stabilities of passive atomic frequency standards are now approaching 3 x10^-14 /τ where τ is the measurement time, limited only by the number of atoms that are being interrogated. This requires an interrogation oscillator whose short-term stability is of the order of 10-14 or better, which cannot be provided by present-day quartz technology. Ultrastable cryogenic microwave oscillators are based on resonators which have very high electrical Q-factors. The resolution of the resonator's linewidth is typically limited by electronics noise to about 1ppm and hence Q-factors in excess of 108 are required. As these are only attained in superconducting cavities or sapphire resonators at low temperatures, use of liquid helium cooling is mandatory, which has so far restricted these oscillators to the research or metrology laboratory. Recently, there has been an effort to dispense with the need for liquid helium and make compact flywheel oscillators for the new generation of primary frequency standards. Work is under way to achieve this goal in space-borne and mobile liquid-nitrogen-cooled systems. The best cryogenic oscillators developed to date are the ``whispering gallery'' (WG) mode sapphire resonator-oscillators of NASA's Jet Propulsion Laboratory (JPL) and the University of Western Australia (UWA), as well as Stanford University's superconducting cavity stabilized oscillator (SCSO). All of these oscillators have demonstrated frequency

  1. Investigation of an Oscillating Surface Plasma for Turbulent Drag Reduction

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.

    2003-01-01

    An oscillating, weakly ionized surface plasma has been investigated for use in turbulent boundary layer viscous drag reduction. The study was based on reports showing that mechanical spanwise oscillations of a wall can reduce viscous drag due to a turbulent boundary layer by up to 40%. It was hypothesized that the plasma induced body force in high electric field gradients of a surface plasma along strip electrodes could also be configured to oscillate the flow. Thin dielectric panels with millimeter-scale, flush- mounted, triad electrode arrays with one and two-phase high voltage excitation were tested. Results showed that while a small oscillation could be obtained, the effect was lost at a low frequency (less than 100Hz). Furthermore, a mean flow was generated during the oscillation that complicates the effect. Hot-wire and pitot probe diagnostics are presented along with phase-averaged images revealing plasma structure.

  2. Local linear approximation of the Jacobian matrix better captures phase resetting of neural limit cycle oscillators.

    PubMed

    Oprisan, Sorinel Adrian

    2014-01-01

    One effect of any external perturbations, such as presynaptic inputs, received by limit cycle oscillators when they are part of larger neural networks is a transient change in their firing rate, or phase resetting. A brief external perturbation moves the figurative point outside the limit cycle, a geometric perturbation that we mapped into a transient change in the firing rate, or a temporal phase resetting. In order to gain a better qualitative understanding of the link between the geometry of the limit cycle and the phase resetting curve (PRC), we used a moving reference frame with one axis tangent and the others normal to the limit cycle. We found that the stability coefficients associated with the unperturbed limit cycle provided good quantitative predictions of both the tangent and the normal geometric displacements induced by external perturbations. A geometric-to-temporal mapping allowed us to correctly predict the PRC while preserving the intuitive nature of this geometric approach.

  3. Synchronization of unidirectionally delay-coupled chaotic oscillators with memory

    NASA Astrophysics Data System (ADS)

    Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.

    2016-11-01

    We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.

  4. Opto-electronic microwave oscillator

    NASA Astrophysics Data System (ADS)

    Yao, X. Steve; Maleki, Lute

    1996-12-01

    Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.

  5. The Dynamics of Networks of Identical Theta Neurons.

    PubMed

    Laing, Carlo R

    2018-02-05

    We consider finite and infinite all-to-all coupled networks of identical theta neurons. Two types of synaptic interactions are investigated: instantaneous and delayed (via first-order synaptic processing). Extensive use is made of the Watanabe/Strogatz (WS) ansatz for reducing the dimension of networks of identical sinusoidally-coupled oscillators. As well as the degeneracy associated with the constants of motion of the WS ansatz, we also find continuous families of solutions for instantaneously coupled neurons, resulting from the reversibility of the reduced model and the form of the synaptic input. We also investigate a number of similar related models. We conclude that the dynamics of networks of all-to-all coupled identical neurons can be surprisingly complicated.

  6. Aerodynamics of a linear oscillating cascade

    NASA Technical Reports Server (NTRS)

    Buffum, Daniel H.; Fleeter, Sanford

    1990-01-01

    The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: simultaneous oscillation of all the cascaded airfoils at various values of interblade phase angle, and the unsteady aerodynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a detrimental effect on the cascade unsteady aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to incorporate improved upstream and downstream boundary conditions and also the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.

  7. Oscillating-Coolant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.; Blosser, Max L.; Camarda, Charles J.

    1992-01-01

    Devices useful in situations in which heat pipes inadequate. Conceptual oscillating-coolant heat exchanger (OCHEX) transports heat from its hotter portions to cooler portions. Heat transported by oscillation of single-phase fluid, called primary coolant, in coolant passages. No time-averaged flow in tubes, so either heat removed from end reservoirs on every cycle or heat removed indirectly by cooling sides of channels with another coolant. Devices include leading-edge cooling devices in hypersonic aircraft and "frost-free" heat exchangers. Also used in any situation in which heat pipe used and in other situations in which heat pipes not usable.

  8. U.S. Hail Frequency and the Global Wind Oscillation

    NASA Astrophysics Data System (ADS)

    Gensini, Vittorio A.; Allen, John T.

    2018-02-01

    Changes in Earth relative atmospheric angular momentum can be described by an index known as the Global Wind Oscillation. This global index accounts for changes in Earth's atmospheric budget of relative angular momentum through interactions of tropical convection anomalies, extratropical dynamics, and engagement of surface torques (e.g., friction and mountain). It is shown herein that U.S. hail events are more (less) likely to occur in low (high) atmospheric angular momentum base states when excluding weak Global Wind Oscillation days, with the strongest relationships found in the boreal spring and fall. Severe, significant severe, and giant hail events are more likely to occur during Global Wind Oscillation phases 8, 1, 2, and 3 during the peak of U.S. severe weather season. Lower frequencies of hail events are generally found in Global Wind Oscillation phases 4-7 but vary based on Global Wind Oscillation amplitude and month. In addition, probabilistic anomalies of atmospheric ingredients supportive of hail producing supercell thunderstorms closely mimic locations of reported hail frequency, helping to corroborate report results.

  9. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  10. A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology

    NASA Astrophysics Data System (ADS)

    Qiu, Qi-Lin; Yu, Xiao-Peng; Sui, Wen-Quan

    2017-11-01

    In this paper, the design challenges of the injection-locked oscillator (ILO)-based phase shifter are reviewed and analyzed. The key design considerations such as the operating frequency, locking range, and linearity of the phase shifters are analysed in detail. It is possible to optimize the phase shifter in certain parameters such as ultra-low power while meeting the requirements of a certain system. As a design example, a K-band phase shifter is implemented using a commercial 0.13 μm CMOS technology, where a conventional LC tank based topology is implemented but optimised with a good balance among power consumption, working range, sensitivity, and silicon area, etc. Measurement results show that the proposed phase shift is able to work at 22-23.4 GHz with a range of 180∘ while consuming 3.14 mW from a 1.2 V supply voltage.

  11. New kind of injection-locked oscillator and its corresponding long-term stability control.

    PubMed

    Hong, Jun; Liu, An; Wang, Xiao-hu; Yao, Sheng-xing; Li, Zu-ling

    2015-09-20

    A new type of opto-electronic hybrid oscillator is proposed for the first time, to the best of our knowledge, and verified by experiments in this paper. Typical electronic oscillator-dielectric resonator oscillator as the first injection source is used to injection lock the first long-fiber loop-based opto-electronic oscillator (OEO); then its output is used to injection lock the second long-fiber opto-electronic oscillator. Using this method, low-phase noise output signal can be obtained. Experiments show that single side-band (SSB) phase noise of a 9.5 GHz oscillation signal at 10 kHz offset frequency decreases from -123 to -135  dBc/Hz after the first injection, then, through the second injection, the SSB phase noise drops down to -146  dBc/Hz. In order to solve the long-term stability problem of the above oscillator, a new stability-control circuit also is designed and verified by experiments. Experiments show that the Allan deviation decreases from 9.0×10(-11) to 2.2×10(-12) during 1 s after the long-term stability-control circuit being used.

  12. Characterization of edge oscillation in a traveling-wave field-effect transistor.

    PubMed

    Narahara, Koichi

    2013-07-01

    In this study, we characterize the oscillating pulse edges developed in a traveling-wave field-effect transistor (TWFET). Recently, it has been found that a stable shock front can develop on a TWFET, which can travel in one direction only. Once the reflected pulse edge at the far end is transmitted to the input, the shock front develops and begins to travel on the device again. This process establishes a permanent edge oscillation. This paper discusses the device setup necessary to excite such oscillations and how pulse edges oscillate on a TWFET. By applying the phase reduction scheme to the transmission equations of a TWFET, we obtain phase sensitivity, which appropriately explains the measured spatial dependence of the locking range in frequency. Moreover, multiple oscillating edges can develop simultaneously, which are mutually synchronized. The dynamics of these multiple edges are also described.

  13. Theta oscillations locked to intended actions rhythmically modulate perception.

    PubMed

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  14. Improving the frequency precision of oscillators by synchronization.

    PubMed

    Cross, M C

    2012-04-01

    Improving the frequency precision by synchronizing a lattice of N oscillators with disparate frequencies is studied in the phase reduction limit. In the general case where the coupling is not purely dissipative the synchronized state consists of targetlike waves radiating from a local source, which is a region of higher-frequency oscillators. In this state the improvement of the frequency precision is shown to be independent of N for large N, but instead depends on the disorder and reflects the dependence of the frequency of the synchronized state on just those oscillators in the source region of the waves. These results are obtained by a mapping of the nonlinear phase dynamics onto the linear Anderson problem of the quantum mechanics of electrons on a random lattice in the tight-binding approximation.

  15. Kuramoto model of coupled oscillators with positive and negative coupling parameters: an example of conformist and contrarian oscillators.

    PubMed

    Hong, Hyunsuk; Strogatz, Steven H

    2011-02-04

    We consider a generalization of the Kuramoto model in which the oscillators are coupled to the mean field with random signs. Oscillators with positive coupling are "conformists"; they are attracted to the mean field and tend to synchronize with it. Oscillators with negative coupling are "contrarians"; they are repelled by the mean field and prefer a phase diametrically opposed to it. The model is simple and exactly solvable, yet some of its behavior is surprising. Along with the stationary states one might have expected (a desynchronized state, and a partially-synchronized state, with conformists and contrarians locked in antiphase), it also displays a traveling wave, in which the mean field oscillates at a frequency different from the population's mean natural frequency.

  16. Decreased oscillation threshold of a continuous-wave OPO using a semiconductor gain mirror.

    PubMed

    Siltanen, Mikael; Leinonen, Tomi; Halonen, Lauri

    2011-09-26

    We have constructed a singly resonant, continuous-wave optical parametric oscillator, where the signal beam resonates and is amplified by a semiconductor gain mirror. The gain mirror can significantly decrease the oscillation threshold compared to an identical system with conventional mirrors. The largest idler beam tuning range reached by changing the pump laser wavelength alone is from 3.6 to 4.7 µm. The single mode output power is limited but can be continuously scanned for at least 220 GHz by adding optical components in the oscillator cavity for increased stability. © 2011 Optical Society of America

  17. Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.

    PubMed

    Blakely, Jonathan N; Stahl, Mark T; Corron, Ned J

    2009-12-01

    We examine chains of unidirectionally coupled oscillators in which time-shifted synchronization occurs without explicit delays in the coupling. In numerical simulations and in an experimental system of electronic oscillators, we examine the time shift and the degree of distortion (primarily in the form of attenuation) of the waveforms of the oscillators located far from the drive oscillator. Surprisingly, under weak coupling we observe minimal attenuation in spite of a significant total time shift. In contrast, at higher coupling strengths the observed attenuation increases dramatically and approaches the value predicted by an analytically derived estimate. In this regime, we verify directly that generalized synchronization is maintained over the entire chain length despite severe attenuation. These results suggest that weak coupling generally may produce higher quality synchronization in systems for which truly identical synchronization is not possible.

  18. Modeling Two-Oscillator Circadian Systems Entrained by Two Environmental Cycles

    PubMed Central

    Oda, Gisele A.; Friesen, W. Otto

    2011-01-01

    Several experimental studies have altered the phase relationship between photic and non-photic environmental, 24 h cycles (zeitgebers) in order to assess their role in the synchronization of circadian rhythms. To assist in the interpretation of the complex activity patterns that emerge from these “conflicting zeitgeber” protocols, we present computer simulations of coupled circadian oscillators forced by two independent zeitgebers. This circadian system configuration was first employed by Pittendrigh and Bruce (1959), to model their studies of the light and temperature entrainment of the eclosion oscillator in Drosophila. Whereas most of the recent experiments have restricted conflicting zeitgeber experiments to two experimental conditions, by comparing circadian oscillator phases under two distinct phase relationships between zeitgebers (usually 0 and 12 h), Pittendrigh and Bruce compared eclosion phase under 12 distinct phase relationships, spanning the 24 h interval. Our simulations using non-linear differential equations replicated complex non-linear phenomena, such as “phase jumps” and sudden switches in zeitgeber preferences, which had previously been difficult to interpret. Our simulations reveal that these phenomena generally arise when inter-oscillator coupling is high in relation to the zeitgeber strength. Manipulations in the structural symmetry of the model indicated that these results can be expected to apply to a wide range of system configurations. Finally, our studies recommend the use of the complete protocol employed by Pittendrigh and Bruce, because different system configurations can generate similar results when a “conflicting zeitgeber experiment” incorporates only two phase relationships between zeitgebers. PMID:21886835

  19. Transition from homogeneous to inhomogeneous limit cycles: Effect of local filtering in coupled oscillators

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata; Ghosh, Debarati; Bandyopadhyay, Biswabibek; Kurths, Jürgen

    2018-04-01

    We report an interesting symmetry-breaking transition in coupled identical oscillators, namely, the continuous transition from homogeneous to inhomogeneous limit cycle oscillations. The observed transition is the oscillatory analog of the Turing-type symmetry-breaking transition from amplitude death (i.e., stable homogeneous steady state) to oscillation death (i.e., stable inhomogeneous steady state). This novel transition occurs in the parametric zone of occurrence of rhythmogenesis and oscillation death as a consequence of the presence of local filtering in the coupling path. We consider paradigmatic oscillators, such as Stuart-Landau and van der Pol oscillators, under mean-field coupling with low-pass or all-pass filtered self-feedback and through a rigorous bifurcation analysis we explore the genesis of this transition. Further, we experimentally demonstrate the observed transition, which establishes its robustness in the presence of parameter fluctuations and noise.

  20. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    NASA Astrophysics Data System (ADS)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  1. Frequency-stabilization of mode-locked laser-based photonic microwave oscillator

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Tu, Meirong; Salik, Ertan; Maleki, Lute

    2005-01-01

    In this paper, we will describe our recent phase-noise measurements of photonic microwave oscillators. We will aslo discuss our investigation of the frequency stability link between the optical and microwave frequencies in the coupled oscillator.

  2. Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. [EOF (empirical orthogonal function)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, J.M.; Panetta, R.L.; Estberg, J.

    1993-06-15

    A 35-year record of monthly mean zonal wind data for the equatorial stratosphere is represented in terms of a vector (radius and phase angle) in a two-dimensional phase space defined by the normalized expansion coefficients of the two leading empirical orthogonal functions (EOFs) of the vertical structure. The tip of the vector completes one nearly circular loop during each cycle of the quasi-biennial oscillation (QBO). Hence, its position and rate of progress along the orbit of the point provide a measure of the instantaneous amplitude and rate of phase progression of the QBO. Although the phase of the QBO bearsmore » little if any relation to calendar month, the rate of phase progression is strongly modulated by the first and second harmonics of the annual cycle, with a primary maximum in April/May, in agreement with previous studies based on the descent rates of easterly and westerly regimes. A simple linear prediction model is developed for the rate of phase progression, based on the phase of the QBO and the phase of the annual cycle. The model is capable of hindcasting the phase of the QBO to within a specified degree of accuracy approximately 50% longer than a default scheme based on the mean observed rate of phase progression of the QBO (1 cycle per 28.1 months). If the seasonal dependence is ignored, the prediction equation corresponds to the [open quotes]circle map,[close quotes] for which an extensive literature exists in dynamical systems theory. 17 refs., 14 figs., 2 tabs.« less

  3. Flexible mechanism of magnetic microbeads chains in an oscillating field

    NASA Astrophysics Data System (ADS)

    Li, Yan-Hom; Yen, Chia-Yen

    2018-05-01

    To investigate the use of magnetic microbeads for swimming at low Reynolds number, the flexible structure of microchains comprising superparamagnetic microbeads under the influence of oscillating magnetic fields is examined experimentally and theoretically. For a ductile chain, each particle has its own phase angle trajectory and phase-lag angle to the overall field. This present study thoroughly discusses the synchronicity of the local phase angle trajectory between each dyad of beads and the external field. The prominently asynchronous trajectories between the central and outer beads significantly dominate the flexible structure of the oscillating chain. In addition, the dimensionless local Mason number (Mnl) is derived as the solo controlling parameter to evaluate the structure of each dyad of beads in a flexible chain. The evolution of the local Mason number within an oscillating period implies the most unstable position locates near the center of the chain around 0.6Poscillating field would behave the most significant deformation and have the most flexible structure.

  4. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: METSAT Phase Locked Oscillator Assembly, P/N 1348360-1, S/N's F09

    NASA Technical Reports Server (NTRS)

    Pines, D.

    1999-01-01

    This is the Performance Verification Report, METSAT (Meteorological Satellites) Phase Locked Oscillator Assembly, P/N 1348360-1, S/N F09 and F10, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  5. Coupled Optoelectronic Oscillators:. Application to Low-Jitter Pulse Generation

    NASA Astrophysics Data System (ADS)

    Yu, N.; Tu, M.; Maleki, L.

    2002-04-01

    Actively mode-locked Erbium-doped fiber lasers (EDFL) have been studied for generating stable ultra-fast pulses (< 2 ps) at high repetition rates (> 5 GHz) [1,2]. These devices can be compact and environmentally stable, quite suitable for fiber-based high-data-rate communications and optical ultra-fast analog-to-digital conversions (ADC) [3]. The pulse-to-pulse jitter of an EDFL-based pulse generator will be ultimately limited by the phase noise of the mode-locking microwave source (typically electronic frequency synthesizers). On the other hand, opto-electronic oscillators (OEO) using fibers have been demonstrated to generate ultra-low phase noise microwaves at 10 GHz and higher [4]. The overall phase noise of an OEO can be much lower than commercially available synthesizers at the offset-frequency range above 100 Hz. Clearly, ultra-low jitter pulses can be generated by taking advantage of the low phase noise of OEOs. In this paper, we report the progress in developing a new low-jitter pulse generator by combing the two technologies. In our approach, the optical oscillator (mode-locked EDFL) and the microwave oscillator (OEO) are coupled through a common Mach-Zehnder (MZ) modulator, thus named coupled opto-electronic oscillator (COEO) [5]. Based on the results of previous OEO study, we can expect a 10 GHz pulse train with jitters less than 10 fs.

  6. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    PubMed

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  7. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    NASA Astrophysics Data System (ADS)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  8. Power-rate synchronization of coupled genetic oscillators with unbounded time-varying delay.

    PubMed

    Alofi, Abdulaziz; Ren, Fengli; Al-Mazrooei, Abdullah; Elaiw, Ahmed; Cao, Jinde

    2015-10-01

    In this paper, a new synchronization problem for the collective dynamics among genetic oscillators with unbounded time-varying delay is investigated. The dynamical system under consideration consists of an array of linearly coupled identical genetic oscillators with each oscillators having unbounded time-delays. A new concept called power-rate synchronization, which is different from both the asymptotical synchronization and the exponential synchronization, is put forward to facilitate handling the unbounded time-varying delays. By using a combination of the Lyapunov functional method, matrix inequality techniques and properties of Kronecker product, we derive several sufficient conditions that ensure the coupled genetic oscillators to be power-rate synchronized. The criteria obtained in this paper are in the form of matrix inequalities. Illustrative example is presented to show the effectiveness of the obtained results.

  9. The degenerate parametric oscillator and Ince's equation

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo; Suslov, Sergei K.

    2011-01-01

    We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.

  10. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  11. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  12. Multiple time scale analysis of pressure oscillations in solid rocket motors

    NASA Astrophysics Data System (ADS)

    Ahmed, Waqas; Maqsood, Adnan; Riaz, Rizwan

    2018-03-01

    In this study, acoustic pressure oscillations for single and coupled longitudinal acoustic modes in Solid Rocket Motor (SRM) are investigated using Multiple Time Scales (MTS) method. Two independent time scales are introduced. The oscillations occur on fast time scale whereas the amplitude and phase changes on slow time scale. Hopf bifurcation is employed to investigate the properties of the solution. The supercritical bifurcation phenomenon is observed for linearly unstable system. The amplitude of the oscillations result from equal energy gain and loss rates of longitudinal acoustic modes. The effect of linear instability and frequency of longitudinal modes on amplitude and phase of oscillations are determined for both single and coupled modes. For both cases, the maximum amplitude of oscillations decreases with the frequency of acoustic mode and linear instability of SRM. The comparison of analytical MTS results and numerical simulations demonstrate an excellent agreement.

  13. Solar filament material oscillations and drainage before eruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bi, Yi; Jiang, Yunchun; Yang, Jiayan

    Both large-amplitude longitudinal (LAL) oscillations and material drainage in a solar filament are associated with the flow of material along the filament axis, often followed by an eruption. However, the relationship between these two motions and a subsequent eruption event is poorly understood. We analyze a filament eruption using EUV imaging data captured by the Atmospheric Imaging Array on board the Solar Dynamics Observatory and the Hα images from the Global Oscillation Network Group. Hours before the eruption, the filament was activated, with one of its legs undergoing a slow rising motion. The asymmetric activation inclined the filament relative tomore » the solar surface. After the active phase, LAL oscillations were observed in the inclined filament. The oscillation period increased slightly over time, which may suggest that the magnetic fields supporting the filament evolve to be flatter during the slow rising phase. After the oscillations, a significant amount of filament material was drained toward one filament endpoint, followed immediately by the violent eruption of the filament. The material drainage may further support the change in magnetic topology prior to the eruption. Moreover, we suggest that the filament material drainage could play a role in the transition from a slow to a fast rise of the erupting filament.« less

  14. Brain Oscillations Elicited by the Cold Pressor Test: A Putative Index of Untreated Essential Hypertension.

    PubMed

    Papageorgiou, Christos; Manios, Efstathios; Tsaltas, Eleftheria; Koroboki, Eleni; Alevizaki, Maria; Angelopoulos, Elias; Dimopoulos, Meletios-Athanasios; Papageorgiou, Charalabos; Zakopoulos, Nikolaos

    2017-01-01

    Essential hypertension is associated with reduced pain sensitivity of unclear aetiology. This study explores this issue using the Cold Pressor Test (CPT), a reliable pain/stress model, comparing CPT-related EEG activity in first episode hypertensives and controls. 22 untreated hypertensives and 18 matched normotensives underwent 24-hour ambulatory blood pressure monitoring (ABPM). EEG recordings were taken before, during, and after CPT exposure. Significant group differences in CPT-induced EEG oscillations were covaried with the most robust cardiovascular differentiators by means of a Canonical Analysis. Positive correlations were noted between ABPM variables and Delta (1-4 Hz) oscillations during the tolerance phase; in high-alpha (10-12 Hz) oscillations during the stress unit and posttest phase; and in low-alpha (8-10 Hz) oscillations during CPT phases overall. Negative correlations were found between ABPM variables and Beta2 oscillations (16.5-20 Hz) during the posttest phase and Gamma (28.5-45 Hz) oscillations during the CPT phases overall. These relationships were localised at several sites across the cerebral hemispheres with predominance in the right hemisphere and left frontal lobe. These findings provide a starting point for increasing our understanding of the complex relationships between cerebral activation and cardiovascular functioning involved in regulating blood pressure changes.

  15. Digital phase shifter synchronizes local oscillators

    NASA Technical Reports Server (NTRS)

    Ali, S. M.

    1978-01-01

    Digital phase-shifting network is used as synchronous frequency multiplier for applications such as phase-locking two signals that may differ in frequency. Circuit has various phase-shift capability. Possible applications include data-communication systems and hybrid digital/analog phase-locked loops.

  16. Electrical switching and oscillations in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Pergament, Alexander; Velichko, Andrey; Belyaev, Maksim; Putrolaynen, Vadim

    2018-05-01

    We have studied electrical switching with S-shaped I-V characteristics in two-terminal MOM devices based on vanadium dioxide thin films. The switching effect is associated with the metal-insulator phase transition. Relaxation oscillations are observed in circuits with VO2-based switches. Dependences of the oscillator critical frequency Fmax, threshold power and voltage, as well as the time of current rise, on the switching structure size are obtained by numerical simulation. The empirical dependence of the threshold voltage on the switching region dimensions and film thickness is found. It is shown that, for the VO2 channel sizes of 10 × 10 nm, Fmax can reach the value of 300 MHz at a film thickness of 20 nm. Next, it is shown that oscillatory neural networks can be implemented on the basis of coupled VO2 oscillators. For the weak capacitive coupling, we revealed the dependence of the phase difference upon synchronization on the coupling capacitance value. When the switches are scaled down, the limiting time of synchronization is reduced to Ts 13 μs, and the number of oscillation periods for the entering to the synchronization mode remains constant, Ns 17. In the case of weak thermal coupling in the synchronization mode, we observe in-phase behavior of oscillators, and there is a certain range of parameters of the supply current, in which the synchronization effect becomes possible. With a decrease in dimensions, a decrease in the thermal coupling action radius is observed, which can vary in the range from 0.5 to 50 μm for structures with characteristic dimensions of 0.1-5 μm, respectively. Thermal coupling may have a promising effect for realization of a 3D integrated oscillatory neural network.

  17. Generation and preservation of the slow underlying membrane potential oscillation in model bursting neurons.

    PubMed

    Franklin, Clarence C; Ball, John M; Schulz, David J; Nair, Satish S

    2010-09-01

    The underlying membrane potential oscillation of both forced and endogenous slow-wave bursting cells affects the number of spikes per burst, which in turn affects outputs downstream. We use a biophysical model of a class of slow-wave bursting cells with six active currents to investigate and generalize correlations among maximal current conductances that might generate and preserve its underlying oscillation. We propose three phases for the underlying oscillation for this class of cells: generation, maintenance, and termination and suggest that different current modules coregulate to preserve the characteristics of each phase. Coregulation of I(Burst) and I(A) currents within distinct boundaries maintains the dynamics during the generation phase. Similarly, coregulation of I(CaT) and I(Kd) maintains the peak and duration of the underlying oscillation, whereas the calcium-activated I(KCa) ensures appropriate termination of the oscillation and adjusts the duration independent of peak.

  18. Large-amplitude Longitudinal Oscillations in a Solar Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q. M.; Su, Y. N.; Ji, H. S.

    In this paper, we report our multiwavelength observations of the large-amplitude longitudinal oscillations of a filament observed on 2015 May 3. Located next to active region 12335, the sigmoidal filament was observed by the ground-based H α telescopes from the Global Oscillation Network Group and by the Atmospheric Imaging Assembly instrument on board the Solar Dynamics Observatory . The filament oscillations were most probably triggered by the magnetic reconnection in the filament channel, which is characterized by the bidirectional flows, brightenings in EUV and soft X-ray, and magnetic cancellation in the photosphere. The directions of oscillations have angles of 4°–36°more » with respect to the filament axis. The whole filament did not oscillate in phase as a rigid body. Meanwhile, the oscillation periods (3100–4400 s) have a spatial dependence, implying that the curvature radii ( R ) of the magnetic dips are different at different positions. The values of R are estimated to be 69.4–133.9 Mm, and the minimum transverse magnetic field of the dips is estimated to be 15 G. The amplitudes of S5-S8 grew with time, while the amplitudes of S9-S14 damped with time. The oscillation amplitudes range from a few to ten Mm, and the maximum velocity can reach 30 km s{sup −1}. Interestingly, the filament experienced mass drainage southward at a speed of ∼27 km s{sup −1}. The oscillations continued after the mass drainage and lasted for more than 11 hr. After the mass drainage, the oscillation phases did not change much. The periods of S5-S8 decreased, while the periods of S9-S14 increased. The amplitudes of S5-S8 damped with time, while the amplitudes of S9-S14 grew. Most of the damping (growing) ratios are between −9 and 14. We offer a schematic cartoon to explain the complex behaviors of oscillations by introducing thread-thread interaction.« less

  19. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    NASA Astrophysics Data System (ADS)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  20. GROWING TRANSVERSE OSCILLATIONS OF A MULTISTRANDED LOOP OBSERVED BY SDO/AIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Tongjiang; Ofman, Leon; Su, Yang

    The first evidence of transverse oscillations of a multistranded loop with growing amplitudes and internal coupling observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory is presented. The loop oscillation event occurred on 2011 March 8, triggered by a coronal mass ejection (CME). The multiwavelength analysis reveals the presence of multithermal strands in the oscillating loop, whose dynamic behaviors are temperature-dependent, showing differences in their oscillation amplitudes, phases, and emission evolution. The physical parameters of growing oscillations of two strands in 171 A are measured and the three-dimensional loop geometry is determined using STEREO-A/EUVI data. These strandsmore » have very similar frequencies, and between two 193 A strands a quarter-period phase delay sets up. These features suggest the coupling between kink oscillations of neighboring strands and the interpretation by the collective kink mode as predicted by some models. However, the temperature dependence of the multistranded loop oscillations was not studied previously and needs further investigation. The transverse loop oscillations are associated with intensity and loop width variations. We suggest that the amplitude-growing kink oscillations may be a result of continuous non-periodic driving by magnetic deformation of the CME, which deposits energy into the loop system at a rate faster than its loss.« less

  1. Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Sebek, Michael; Kiss, István Z.

    2017-10-01

    We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.

  2. Autonomous cycling between excitatory and inhibitory coupling in photosensitive chemical oscillators

    NASA Astrophysics Data System (ADS)

    Yengi, Desmond; Tinsley, Mark R.; Showalter, Kenneth

    2018-04-01

    Photochemically coupled Belousov-Zhabotinsky micro-oscillators are studied in experiments and simulations. The photosensitive oscillators exhibit excitatory or inhibitory coupling depending on the surrounding reaction mixture composition, which can be systematically varied. In-phase or out-of-phase synchronization is observed with predominantly excitatory or inhibitory coupling, respectively, and complex frequency cycling between excitatory and inhibitory coupling is found between these extremes. The dynamical behavior is characterized in terms of the corresponding phase response curves, and a map representation of the dynamics is presented.

  3. Local complexity predicts global synchronization of hierarchically networked oscillators

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Park, Dong-Ho; Jo, Junghyo

    2017-07-01

    We study the global synchronization of hierarchically-organized Stuart-Landau oscillators, where each subsystem consists of three oscillators with activity-dependent couplings. We considered all possible coupling signs between the three oscillators, and found that they can generate different numbers of phase attractors depending on the network motif. Here, the subsystems are coupled through mean activities of total oscillators. Under weak inter-subsystem couplings, we demonstrate that the synchronization between subsystems is highly correlated with the number of attractors in uncoupled subsystems. Among the network motifs, perfect anti-symmetric ones are unique to generate both single and multiple attractors depending on the activities of oscillators. The flexible local complexity can make global synchronization controllable.

  4. The dynamics of phase locking and points of resonance in a forced magnetic oscillator

    NASA Astrophysics Data System (ADS)

    Bryant, Paul; Jeffries, Carson

    1987-03-01

    We report data on an experimental system: a forced symmetric oscillator containing a saturable inductor with magnetic hysteresis. It displays a Hopf bifurcation to quasiperiodicity, entrainment horns, and chaos. We study in detail the bifurcations and hysteresis occurring near points of resonance (particularly “ strong resonance”) and show how the observed behavior can be understood using Arnold's theory. Much of the behavior relating to the entrainment horns is explored: period doubling and symmetry breaking bifurcations; homoclinic bifurcations; and crises and other bifurcations taking place at the horn boundaries. Important features of the behavior related to symmetry properties of the oscillator are studied and explained through the concept of a half-cycle map. The system is shown to exhibit a Hopf bifurcation from a phase-locked state to periodic “islands”, similar to those found in Hamiltonian systems. An initialization technique is used to observe the manifolds of saddle orbits and other hidden structure. An unusual differential equation model is developed which is irreversible and generates a noninvertible Poincaré map of the plane. Noninvertibility of this planar map has important effects on the behavior observed. The Poincaré map may also be approximated through experimental measurements, resulting in a planar map with parameter dependence. This model gives good correspondence with the system in a region of the parameter space.

  5. Coupled Oscillator Based Agile Beam Transmitters and Receivers: A Review of Work at JPL

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2006-01-01

    This is a review of the work done at Caltech's Jet Propulsion Laboratory during the past decade on development of the coupled oscillator technology in phased array applications to spacecraft telecommunications. First, some historical background is provided to set the work in context. However, this is by no means intended to be a comprehensive review of all work in this area. Rather, the focus is on the JPL contribution with some mention of other work which provided either insight or motivation. In the mid 1990's, R. A. York, and collaborators proposed that an array of mutually injection locked electronic oscillators could provide appropriately phased signals to the radiating elements of an array antenna such that the radiated beam could be steered merely by tuning the end or perimeter oscillators of the array. York, et al. also proposed a receiving system based on such oscillator arrays in which the oscillators provide properly phased local oscillator signals to be mixed with the signals received by the array elements to remove the phase due to angle of arrival of the incident wave. These concepts were viewed as a promising simplification of the beam steering control system that could result in significant cost, mass, and prime power reduction and were therefore attractive for possible space application.

  6. Frequency stability improvement for piezoresistive micromechanical oscillators via synchronization

    NASA Astrophysics Data System (ADS)

    Pu, Dong; Huan, Ronghua; Wei, Xueyong

    2017-03-01

    Synchronization phenomenon first discovered in Huygens' clock shows that the rhythms of oscillating objects can be adjusted via an interaction. Here we show that the frequency stability of a piezoresistive micromechanical oscillator can be enhanced via synchronization. The micromechanical clamped-clamped beam oscillator is built up using the electrostatic driving and piezoresistive sensing technique and the synchronization phenomenon is observed after coupling it to an external oscillator. An enhancement of frequency stability is obtained in the synchronization state. The influences of the synchronizing perturbation intensity and frequency detuning applied on the oscillator are studied experimentally. A theoretical analysis of phase noise leads to an analytical formula for predicting Allan deviation of the frequency output of the piezoresistive oscillator, which successfully explains the experimental observations and the mechanism of frequency stability enhancement via synchronization.

  7. CLOCKΔ19 mutation modifies the manner of synchrony among oscillation neurons in the suprachiasmatic nucleus.

    PubMed

    Sujino, Mitsugu; Asakawa, Takeshi; Nagano, Mamoru; Koinuma, Satoshi; Masumoto, Koh-Hei; Shigeyoshi, Yasufumi

    2018-01-16

    In mammals, the principal circadian oscillator exists in the hypothalamic suprachiasmatic nucleus (SCN). In the SCN, CLOCK works as an essential component of molecular circadian oscillation, and ClockΔ19 mutant mice show unique characteristics of circadian rhythms such as extended free running periods, amplitude attenuation, and high-magnitude phase-resetting responses. Here we investigated what modifications occur in the spatiotemporal organization of clock gene expression in the SCN of ClockΔ19 mutants. The cultured SCN, sampled from neonatal homozygous ClockΔ19 mice on an ICR strain comprising PERIOD2::LUCIFERASE, demonstrated that the Clock gene mutation not only extends the circadian period, but also affects the spatial phase and period distribution of circadian oscillations in the SCN. In addition, disruption of the synchronization among neurons markedly attenuated the amplitude of the circadian rhythm of individual oscillating neurons in the mutant SCN. Further, with numerical simulations based on the present studies, the findings suggested that, in the SCN of the ClockΔ19 mutant mice, stable oscillation was preserved by the interaction among oscillating neurons, and that the orderly phase and period distribution that makes a phase wave are dependent on the functionality of CLOCK.

  8. The Identity Mapping Project: Demographic differences in patterns of distributed identity.

    PubMed

    Gilbert, Richard L; Dionisio, John David N; Forney, Andrew; Dorin, Philip

    2015-01-01

    The advent of cloud computing and a multi-platform digital environment is giving rise to a new phase of human identity called "The Distributed Self." In this conception, aspects of the self are distributed into a variety of 2D and 3D digital personas with the capacity to reflect any number of combinations of now malleable personality traits. In this way, the source of human identity remains internal and embodied, but the expression or enactment of the self becomes increasingly external, disembodied, and distributed on demand. The Identity Mapping Project (IMP) is an interdisciplinary collaboration between psychology and computer Science designed to empirically investigate the development of distributed forms of identity. Methodologically, it collects a large database of "identity maps" - computerized graphical representations of how active someone is online and how their identity is expressed and distributed across 7 core digital domains: email, blogs/personal websites, social networks, online forums, online dating sites, character based digital games, and virtual worlds. The current paper reports on gender and age differences in online identity based on an initial database of distributed identity profiles.

  9. Oscillation Rules as the Pacific Cools

    NASA Image and Video Library

    2008-12-13

    The latest image of sea-surface height measurements from NASA U.S./French Jason-1 oceanography satellite shows the Pacific Ocean remains locked in a strong, cool phase of the Pacific Decadal Oscillation.

  10. Antiphase synchronization in coupled chaotic oscillators.

    PubMed

    Liu, Weiqing; Xiao, Jinghua; Qian, Xiaolan; Yang, Junzhong

    2006-05-01

    Anti-phase synchronization (AS) in coupled chaotic oscillators is investigated. The necessary condition for AS is given and the stability of AS is studied. Results are demonstrated with numerical simulations and electronic circuits.

  11. Solar oscillations and the problem of the internal structure of the sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Severnyi, A.B.; Kotov, V.A.; Tsap, T.T.

    1979-11-01

    Analysis of five years of Doppler-shift measurements of global solar oscillations (1974--1978, more than 1000 h of observation, 215 days) demonstrates that the sun oscillates with a period of 160x/sup m/010 +- 0x/sup m/004 and an amplitude of approx. =1 m/sec. The phases of oscillation recorded in the Crimea and at Stanford, Kitt Peak, and Pic du Midi are in good agreement, so it is unlikely the oscillations are of telluric origin. Two effects are found: 1) a slow shift (synchronized at Stanford and in the Crimea) in the phase of maximum velocity from year to year; 2) a dependencemore » of the amplitude on the phase of the sun's 27/sup d/ rotation period, in accord with the idea that the oscillations are of quadrupole character (Z=2). These facts, as well as the absence of waves in concurrent observations of a telluric spectral line, preclude any interpretation of the results as a statistical artifact (as harmonics of the form 24/sup h//m in the quasiperiodic diurnal window). Differential extinction effects would induce oscillations smaller than observed by an order of magnitude. The general magnetic field of the sun as a star, its brightness, and its radio emission all seem to fluctuate in synchronism with the velocity oscillations. From time to time the oscillations disappear, possibly because of supergranules crossing the solar disk. The oscillations observed impose new constraints on the sun's internal structure. They suggest that nonradiative heat transfer may occur in the solar interior, thereby helping to resolve the problem of low neutrino flux.« less

  12. Visualization of entry flow separation for oscillating flow in tubes

    NASA Technical Reports Server (NTRS)

    Qiu, Songgang; Simon, Terence W.

    1992-01-01

    Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.

  13. Diffusion of extracellular K+ can synchronize bursting oscillations in a model islet of Langerhans.

    PubMed Central

    Stokes, C L; Rinzel, J

    1993-01-01

    Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet. Images FIGURE 1 PMID

  14. Plasma oscillations in a 6-kW magnetically shielded Hall thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorns, Benjamin A., E-mail: benjamin.a.jorns@jpl.nasa.gov; Hofer, Richard R.

    2014-05-15

    Plasma oscillations from 0–100 kHz in a 6-kW magnetically shielded Hall thruster are experimentally characterized with a high-speed, optical camera. Two modes are identified at 7–12 kHz and 70–90 kHz. The low frequency mode is found to be azimuthally uniform across the thruster face, while the high frequency oscillation is peaked close to the centerline-mounted cathode with an m = 1 azimuthal dependence. An analysis of these results in the context of wave-based theory suggests that the low frequency wave is the breathing mode oscillation, while the higher frequency mode is gradient-driven. The effect of these oscillations on thruster operation is examined through an analysismore » of thruster discharge current and a comparison with published observations from an unshielded variant of the thruster. Most notably, it is found that although the oscillation spectra of the two thrusters are different, they exhibit nearly identical steady-state behavior.« less

  15. Membrane Resonance Enables Stable and Robust Gamma Oscillations

    PubMed Central

    Moca, Vasile V.; Nikolić, Danko; Singer, Wolf; Mureşan, Raul C.

    2014-01-01

    Neuronal mechanisms underlying beta/gamma oscillations (20–80 Hz) are not completely understood. Here, we show that in vivo beta/gamma oscillations in the cat visual cortex sometimes exhibit remarkably stable frequency even when inputs fluctuate dramatically. Enhanced frequency stability is associated with stronger oscillations measured in individual units and larger power in the local field potential. Simulations of neuronal circuitry demonstrate that membrane properties of inhibitory interneurons strongly determine the characteristics of emergent oscillations. Exploration of networks containing either integrator or resonator inhibitory interneurons revealed that: (i) Resonance, as opposed to integration, promotes robust oscillations with large power and stable frequency via a mechanism called RING (Resonance INduced Gamma); resonance favors synchronization by reducing phase delays between interneurons and imposes bounds on oscillation cycle duration; (ii) Stability of frequency and robustness of the oscillation also depend on the relative timing of excitatory and inhibitory volleys within the oscillation cycle; (iii) RING can reproduce characteristics of both Pyramidal INterneuron Gamma (PING) and INterneuron Gamma (ING), transcending such classifications; (iv) In RING, robust gamma oscillations are promoted by slow but are impaired by fast inputs. Results suggest that interneuronal membrane resonance can be an important ingredient for generation of robust gamma oscillations having stable frequency. PMID:23042733

  16. Progress on 10 Kelvin cryo-cooled sapphire oscillator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Dick, G. John; Diener, William A.

    2004-01-01

    We present recent progress on the 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO). Included are incorporation of a new pulse tube cryocooler, cryocooler vibration comparisons between G-M and pulse-tube types, phase noise, and frequency stability tests. For the advantage of a single stage pulse tube cryocooler, we also present results for a 40K Compensated Sapphire Oscillator (40K CSO).

  17. Cholinergic Plasticity of Oscillating Neuronal Assemblies in Mouse Hippocampal Slices

    PubMed Central

    Zylla, Maura M.; Zhang, Xiaomin; Reichinnek, Susanne; Draguhn, Andreas; Both, Martin

    2013-01-01

    The mammalian hippocampus expresses several types of network oscillations which entrain neurons into transiently stable assemblies. These groups of co-active neurons are believed to support the formation, consolidation and recall of context-dependent memories. Formation of new assemblies occurs during theta- and gamma-oscillations under conditions of high cholinergic activity. Memory consolidation is linked to sharp wave-ripple oscillations (SPW-R) during decreased cholinergic tone. We hypothesized that increased cholinergic tone supports plastic changes of assemblies while low cholinergic tone favors their stability. Coherent spatiotemporal network patterns were measured during SPW-R activity in mouse hippocampal slices. We compared neuronal activity within the oscillating assemblies before and after a transient phase of carbachol-induced gamma oscillations. Single units maintained their coupling to SPW-R throughout the experiment and could be re-identified after the transient phase of gamma oscillations. However, the frequency of SPW-R-related unit firing was enhanced after muscarinic stimulation. At the network level, these changes resulted in altered patterns of extracellularly recorded SPW-R waveforms. In contrast, recording of ongoing SPW-R activity without intermittent cholinergic stimulation revealed remarkably stable repetitive activation of assemblies. These results show that activation of cholinergic receptors induces plasticity at the level of oscillating hippocampal assemblies, in line with the different role of gamma- and SPW-R network activity for memory formation and –consolidation, respectively. PMID:24260462

  18. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator

    PubMed Central

    Rust, Michael J.; Golden, Susan S.; O'Shea, Erin K.

    2012-01-01

    Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Though this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and ATP are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ATP/ADP ratio. When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock. PMID:21233390

  19. Inferring phase equations from multivariate time series.

    PubMed

    Tokuda, Isao T; Jain, Swati; Kiss, István Z; Hudson, John L

    2007-08-10

    An approach is presented for extracting phase equations from multivariate time series data recorded from a network of weakly coupled limit cycle oscillators. Our aim is to estimate important properties of the phase equations including natural frequencies and interaction functions between the oscillators. Our approach requires the measurement of an experimental observable of the oscillators; in contrast with previous methods it does not require measurements in isolated single or two-oscillator setups. This noninvasive technique can be advantageous in biological systems, where extraction of few oscillators may be a difficult task. The method is most efficient when data are taken from the nonsynchronized regime. Applicability to experimental systems is demonstrated by using a network of electrochemical oscillators; the obtained phase model is utilized to predict the synchronization diagram of the system.

  20. Brain Oscillations Elicited by the Cold Pressor Test: A Putative Index of Untreated Essential Hypertension

    PubMed Central

    Tsaltas, Eleftheria; Koroboki, Eleni; Alevizaki, Maria; Angelopoulos, Elias; Dimopoulos, Meletios-Athanasios; Papageorgiou, Charalabos; Zakopoulos, Nikolaos

    2017-01-01

    Objective Essential hypertension is associated with reduced pain sensitivity of unclear aetiology. This study explores this issue using the Cold Pressor Test (CPT), a reliable pain/stress model, comparing CPT-related EEG activity in first episode hypertensives and controls. Method 22 untreated hypertensives and 18 matched normotensives underwent 24-hour ambulatory blood pressure monitoring (ABPM). EEG recordings were taken before, during, and after CPT exposure. Results Significant group differences in CPT-induced EEG oscillations were covaried with the most robust cardiovascular differentiators by means of a Canonical Analysis. Positive correlations were noted between ABPM variables and Delta (1–4 Hz) oscillations during the tolerance phase; in high-alpha (10–12 Hz) oscillations during the stress unit and posttest phase; and in low-alpha (8–10 Hz) oscillations during CPT phases overall. Negative correlations were found between ABPM variables and Beta2 oscillations (16.5–20 Hz) during the posttest phase and Gamma (28.5–45 Hz) oscillations during the CPT phases overall. These relationships were localised at several sites across the cerebral hemispheres with predominance in the right hemisphere and left frontal lobe. Conclusions These findings provide a starting point for increasing our understanding of the complex relationships between cerebral activation and cardiovascular functioning involved in regulating blood pressure changes. PMID:28573048

  1. Stellar Oscillations Network Group

    NASA Astrophysics Data System (ADS)

    Grundahl, F.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Arentoft, T.; Frandsen, S.

    2007-06-01

    Stellar Oscillations Network Group (SONG) is an initiative aimed at designing and building a network of 1m-class telescopes dedicated to asteroseismology and planet hunting. SONG will have 8 identical telescope nodes each equipped with a high-resolution spectrograph and an iodine cell for obtaining precision radial velocities and a CCD camera for guiding and imaging purposes. The main asteroseismology targets for the network are the brightest (V < 6) stars. In order to improve performance and reduce maintenance costs the instrumentation will only have very few modes of operation. In this contribution we describe the motivations for establishing a network, the basic outline of SONG and the expected performance.

  2. GLOBAL SAUSAGE OSCILLATION OF SOLAR FLARE LOOPS DETECTED BY THE INTERFACE REGION IMAGING SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Hui; He, Jiansen; Young, Peter R.

    An observation from the Interface Region Imaging Spectrograph reveals coherent oscillations in the loops of an M1.6 flare on 2015 March 12. Both the intensity and Doppler shift of Fe xxi 1354.08 Å show clear oscillations with a period of ∼25 s. Remarkably similar oscillations were also detected in the soft X-ray flux recorded by the Geostationary Operational Environmental Satellites ( GOES ). With an estimated phase speed of ∼2420 km s{sup −1} and a derived electron density of at least 5.4 × 10{sup 10} cm{sup −3}, the observed short-period oscillation is most likely the global fast sausage mode ofmore » a hot flare loop. We find a phase shift of ∼ π /2 (1/4 period) between the Doppler shift oscillation and the intensity/ GOES oscillations, which is consistent with a recent forward modeling study of the sausage mode. The observed oscillation requires a density contrast between the flare loop and coronal background of a factor ≥42. The estimated phase speed of the global mode provides a lower limit of the Alfvén speed outside the flare loop. We also find an increase of the oscillation period, which might be caused by the separation of the loop footpoints with time.« less

  3. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    NASA Astrophysics Data System (ADS)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  4. Spiral wave chimera states in large populations of coupled chemical oscillators

    NASA Astrophysics Data System (ADS)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  5. Spectral variation during one quasi-periodic oscillation cycle in the black hole candidate H1743-322

    NASA Astrophysics Data System (ADS)

    Sarathi Pal, Partha; Debnath, Dipak; Chakrabarti, Sandip Kumar

    2016-07-01

    From the nature of energy dependence of the power density spectra, it is believed that the oscillation of the Compton cloud may be related to low frequency quasi-periodic oscillations (LFQPOs). In the context of two component advective flow (TCAF) solution, the centrifugal pressure supported boundary layer of a transonic flow acts as the Compton cloud. This region undergoes resonance oscillation when cooling time scale roughly agrees with infall time scale as matter crosses this region. By carefully separating photons emitted at different phases of a complete oscillation, we establish beyond reasonable doubt that such an oscillation is the cause of LFQPOs. We show that the degree of Comptonization and therefore the spectral properties of the flow oscillate systematically with the phase of LFQPOs. We analysis the properties of a 0.2Hz LFQPO exhibited by a black hole candidate H 1743-322 using the 3-80 keV data from NuSTAR satellite. This object was chosen because of availability of high quality data for a relatively low frequency oscillation, rendering easy phase-wise of separation of the light curve data.

  6. Neutrino Phenomenology: Highlights of Oscillation Results and Future Prospects

    NASA Astrophysics Data System (ADS)

    Goswami, Srubabati

    2016-04-01

    In this talk the current status of neutrino oscillation parameters are presented. The prospects of determination of neutrino mass hierarchy, octant of θ23 and the CP phase δCP in future long-baseline and atmospheric experiments are reviewed. The impact of precision measurement of oscillation parameters on neutrino mass models are also discussed.

  7. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  8. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less

  9. Statistics of work performed on a forced quantum oscillator.

    PubMed

    Talkner, Peter; Burada, P Sekhar; Hänggi, Peter

    2008-07-01

    Various aspects of the statistics of work performed by an external classical force on a quantum mechanical system are elucidated for a driven harmonic oscillator. In this special case two parameters are introduced that are sufficient to completely characterize the force protocol. Explicit results for the characteristic function of work and the corresponding probability distribution are provided and discussed for three different types of initial states of the oscillator: microcanonical, canonical, and coherent states. Depending on the choice of the initial state the probability distributions of the performed work may greatly differ. This result in particular also holds true for identical force protocols. General fluctuation and work theorems holding for microcanonical and canonical initial states are confirmed.

  10. New type of synchronization of oscillators with hard excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovaleva, M. A., E-mail: margo.kovaleva@gmail.com; Manevich, L. I., E-mail: manevichleonid3@gmail.com; Pilipchuk, V. N.

    2013-08-15

    It is shown that stable limiting cycles corresponding to nonlinear beats with complete energy exchange between oscillators can exist in a system of two weakly coupled active oscillators (generators). The oscillatory regime of this type, which implements a new type of synchronization in an active system, is an alternative to the well-studied synchronization in a regime close to a nonlinear normal mode. In this case, the ranges of dissipative parameters corresponding to different types of synchronization do not intersect. The analytic description of attractors revealed in analysis is based on the concept of limiting phase trajectories, which was developed earliermore » by one of the authors for conservative systems. A transition (in the parametric space) from the complete energy exchange between oscillators to predominant localization of energy in one of the oscillators can be naturally described using this concept. The localized normal mode is an attractor in the range of parameters in which neither the limiting phase trajectory nor any of the collective normal modes is an attractor.« less

  11. Periodic synchronization and chimera in conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk

    2014-06-01

    We consider a system of phase oscillators that couple with both attractive and repulsive interaction under a pinning force and explore collective behavior of the system. The oscillators can be divided into two subpopulations of "conformist" oscillators with attractive interaction and "contrarian" ones with repulsive interaction. We find that the interplay between the pinning force and the opposite relationship of the conformist and contrarian oscillators induce peculiar dynamic states: periodic synchronization, breathing chimera, and fully pinned state depending on the fraction of the conformists. Using the Watanabe-Strogatz transformation, we reduce the dynamics into a low-dimensional one and find that the above dynamic states are generated from the reduced dynamics.

  12. The Autonomous Cryocooled Sapphire Oscillator: A Reference for Frequency Stability and Phase Noise Measurements

    NASA Astrophysics Data System (ADS)

    Giordano, V.; Grop, S.; Fluhr, C.; Dubois, B.; Kersalé, Y.; Rubiola, E.

    2016-06-01

    The Cryogenic Sapphire Oscillator (CSO) is the microwave oscillator which feature the highest short-term stability. Our best units exhibit Allan deviation σy (τ) of 4.5x10-16 at 1s, ≈ 1.5x10-16 at 100 s ≤ t ≤ 5,000 s (floor), and ≤ 5x10-15 at one day. The use of a Pulse-Tube cryocooler enables full two year operation with virtually no maintenance. Starting with a short history of the CSO in our lab, we go through the architecture and we provide more details about the resonator, the cryostat, the oscillator loop, and the servo electronics. We implemented three similar oscillators, which enable the evaluation of each with the three- cornered hat method, and provide the potential for Allan deviation measurements at parts of 10-17 level. One of our CSOs (ULISS) is transportable, and goes with a small customized truck. The unique feature of ULISS is that its σy (τ) can be validated at destination by measuring before and after the roundtrip. To this extent, ULISS can be regarded as a traveling standard of frequency stability. The CSOs are a part of the Oscillator IMP project, a platform dedicated to the measurement of noise and short-term stability of oscillators and devices in the whole radio spectrum (from MHz to THz), including microwave photonics. The scope spans from routine measurements to the research on new oscillators, components, and measurement methods.

  13. Simultaneous Transverse and Longitudinal Oscillations in a Quiescent Prominence Triggered by a Coronal Jet

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Li, D.; Ning, Z. J.

    2017-12-01

    In this paper, we report our multiwavelength observations of the simultaneous transverse and longitudinal oscillations in a quiescent prominence. The prominence was observed by the Global Oscillation Network Group and by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory on 2015 June 29. A GOES C2.4 flare took place in NOAA active region 12373, which was associated with a pair of short ribbons and a remote ribbon. During the impulsive phase of the flare, a coronal jet spurted out of the primary flare site and propagated in the northwest direction at an apparent speed of ∼224 km s‑1. Part of the jet stopped near the remote ribbon. The remaining part continued moving forward before stopping to the east of the prominence. Once the jet encountered the prominence, it pushed the prominence to oscillate periodically. The transverse oscillation of the eastern part (EP) of prominence can be divided into two phases. In phase I, the initial amplitude, velocity, period, and damping timescale are ∼4.5 Mm, ∼20 km s‑1, ∼25 minutes, and ∼7.5 hr, respectively. The oscillation lasted for two cycles. In phase II, the initial amplitude increases to ∼11.3 Mm, while the initial velocity halves to ∼10 km s‑1. The period increases by a factor of ∼3.5. With a damping timescale of ∼4.4 hr, the oscillation lasted for about three cycles. The western part of prominence also experienced transverse oscillation. The initial amplitude is only ∼2 Mm and the velocity is less than 10 km s‑1. The period (∼27 minutes) is slightly longer than that of the EP in phase I. The oscillation lasted for about four cycles with the shortest damping timescale (∼1.7 hr). To the east of prominence, a handful of horizontal threads experienced longitudinal oscillation. The initial amplitude, velocity, period, and damping timescale are ∼52 Mm, ∼50 km s‑1, ∼99 minutes, and 2.5 hr, respectively. To our knowledge, this is the first report of simultaneous

  14. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  15. State and Spectral Properties of Chloride Oscillations in Pollen

    PubMed Central

    Zonia, Laura; Feijó, José A.

    2003-01-01

    Pollen tube growth is a dynamic system expressing a number of oscillating circuits. Our recent work identified a new circuit, oscillatory efflux of Cl− anion from the pollen tube apex. Cl− efflux is the first ion signal found to be coupled in phase with growth oscillations. Functional analyses indicate an active role for Cl− flux in pollen tube growth. In this report the dynamical properties of Cl− efflux are examined. Phase space analysis demonstrates that the system trajectory converges on a limit cycle. Fourier analysis reveals that two harmonic frequencies characterize normal growth. Cl− efflux is inhibited by the channel blocker DIDS, is stimulated by hypoosmotic treatment, and is antagonized by the signal encoded in inositol 3,4,5,6-tetrakisphosphate. These perturbations induce transitions of the limit cycle to new metastable states or cause system collapse to a static attractor centered near the origin. These perturbations also transform the spectral profile, inducing subharmonic frequencies, transitions to period doubling and tripling, superharmonic resonance, and chaos. These results indicate that Cl− signals in pollen tubes display features that are characteristic of active oscillators that carry frequency-encoded information. A reaction network of the Cl− oscillator coupled to two nonlinear feedback circuits that may drive pollen tube growth oscillations is considered. PMID:12547818

  16. Space shuttle pilot-induced-oscillation research testing

    NASA Technical Reports Server (NTRS)

    Powers, B. G.

    1984-01-01

    The simulation requirements for investigation of pilot-induced-oscillation (PIO) characteristics during the landing phase are discussed. Orbiters simulations and F-8 digital fly-by-wire aircraft tests are addressed.

  17. Little-Parks oscillations in superconducting ring with Josephson junctions

    NASA Astrophysics Data System (ADS)

    Sharon, Omri J.; Sharoni, Amos; Berger, Jorge; Shaulov, Avner; Yeshurun, Yosi

    2018-03-01

    Nb nano-rings connected serially by Nb wires exhibit, at low bias currents, the typical parabolic Little-Parks magnetoresistance oscillations. As the bias current increases, these oscillations become sinusoidal. This result is ascribed to the generation of Josephson junctions caused by the combined effect of current-induced phase slips and the non-uniformity of the order parameter along each ring due to the Nb wires attached to it. This interpretation is validated by further increasing the bias current, which results in magnetoresistance oscillations typical of a SQUID.

  18. Triple grouping and period-three oscillations in minority-game dynamics.

    PubMed

    Dong, Jia-Qi; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng

    2014-12-01

    Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

  19. Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Roberto F.; Urban, Nathaniel N.; Center for the Neural Basis of Cognition, Mellon Institute, Pittsburgh, Pennsylvania 15213

    We have investigated the effect of the phase response curve on the dynamics of oscillators driven by noise in two limit cases that are especially relevant for neuroscience. Using the finite element method to solve the Fokker-Planck equation we have studied (i) the impact of noise on the regularity of the oscillations quantified as the coefficient of variation, (ii) stochastic synchronization of two uncoupled phase oscillators driven by correlated noise, and (iii) their cross-correlation function. We show that, in general, the limit of type II oscillators is more robust to noise and more efficient at synchronizing by correlated noise thanmore » type I.« less

  20. Modeling of termokinetic oscillations at partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Arutyunov, A. V.; Belyaev, A. A.; Inovenkov, I. N.; Nefedov, V. V.

    2017-12-01

    Partial oxidation of natural gas at moderate temperatures below 1500 K has significant interest for a number of industrial applications. But such processes can proceed at different unstable regimes including oscillating modes. Nonlinear phenomena at partial oxidation of methane were observed at different conditions. The investigation of the complex nonlinear system of equations that describes this process is a real method to insure its stability at industrial conditions and, at the same time, is an effective tool for its further enhancement. Numerical analysis of methane oxidation kinetics in the continuous stirred-tank reactor, with the use of detailed kinetic model has shown the possibility of the appearance of oscillating modes in the appropriate range of reaction parameters that characterize the composition, pressure, reagents flow, thermophysical features of the system, and geometry of the reactor. The appearance of oscillating modes is connected both with the reaction kinetics, heat release and sink and reagents introduction and removing. At that, oscillations appear only at a limited range of parameters, but can be accompanied by significant change in the yield of products. We have determined the range of initial temperature and pressure at which oscillations can be observed, if all other parameters remained fixed. The boundaries of existence of oscillations on the phase plane were calculated. It was shown that depending on the position inside the oscillation region the oscillations have different frequency and amplitude. It was reviled the role of heat exchange with the environment: at the absence of heat exchange the oscillating modes are impossible. In the vicinity of the boundary of phase range, where oscillations exist, significant change of concentration of some products were observed, for example, that of CO2, which in this case one of the principal products is. At that, insignificant increase in pressure not only change the character of CO2 behaving

  1. The Oscillations of Coronal Loops Including the Shell

    NASA Astrophysics Data System (ADS)

    Mikhalyaev, B. B.; Solov'ev, A. A.

    2005-04-01

    We investigate the MHD waves in a double magnetic flux tube embedded in a uniform external magnetic field. The tube consists of a dense hot cylindrical cord surrounded by a co-axial shell. The plasma and the magnetic field are taken to be uniform inside the cord and also inside the shell. Two slow and two fast magnetosonic modes can exist in the thin double tube. The first slow mode is trapped by the cord, the other is trapped by the shell. The oscillations of the second mode have opposite phases inside the cord and shell. The speeds of the slow modes propagating along the tube are close to the tube speeds inside the cord and the shell. The behavior of the fast modes depends on the magnitude of Alfvén speed inside the shell. If it is less than the Alfvén speed inside the cord and in the environment, then the fast mode is trapped by the shell and the other may be trapped under the certain conditions. In the opposite case when the Alfvén speed in the shell is greater than those inside the cord and in the environment, then the fast mode is radiated by the tube and the other may also be radiated under certain conditions. The oscillation of the cord and the shell with opposite phases is the distinctive feature of the process. The proposed model allows to explain the basic phenomena connected to the coronal oscillations: i) the damping of oscillations stipulated in the double tube model by the radiative loss, ii) the presence of two different modes of perturbations propagating along the loop with close speeds, iii) the opposite phases of oscillations of modulated radio emission, coming from the near coronal sources having sharply different densities.

  2. Oscillator circuit for use with high loss quartz resonator sensors

    DOEpatents

    Wessendorf, Otto

    1995-01-01

    The disclosure is directed to a Lever oscillator for use in high resistance resonator applications, especially for use with quartz resonator sensors. The oscillator is designed to operate over a wide dynamic range of resonator resistance due to damping of the resonator in mediums such as liquids. An oscillator design is presented that allows both frequency and loss (R.sub.m) of the resonator to be determined over a wide dynamic range of resonator loss. The Lever oscillator uses negative feedback in a differential amplifier configuration to actively and variably divide (or leverage) the resonator impedance such that the oscillator can maintain the phase and gain of the loop over a wide range of resonator resistance.

  3. Dysrhythmias of the respiratory oscillator

    NASA Astrophysics Data System (ADS)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  4. Generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Deng, Yuqun; Chen, Changhua; Shi, Yanchao; Sun, Jun

    2018-03-01

    We demonstrate both theoretically and experimentally the possibility of the generation of powerful microwave pulses by channel power summation of two X-band phase-locked relativistic backward wave oscillators (RBWOs). A modulated electron beam induced by an external signal can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the initial phase of the external signal. A high-current dual-beam accelerator was built to drive the two RBWOs. An external signal was divided into two channels with an adjusted relative phase and injected into the two RBWOs through two TE10-TEM mode converters. The generated microwaves were combined with a power combiner consisting of two TM01-TE11 serpentine mode converters with a common output. In the experiments, as the input power for each channel was 150 kW, the two RBWOs output 3.1 GW and 3.7 GW, respectively, the jitter of the relative phase of two output microwaves was about 20°, and the summation power from the power combiner is 6.2 GW, corresponding to a combination efficiency of 91%.

  5. Open-loop control of quasiperiodic thermoacoustic oscillations

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Gupta, Vikrant; Kashinath, Karthik; Li, Larry K. B.

    2017-11-01

    The open-loop application of periodic acoustic forcing has been shown to be a potentially effective strategy for controlling periodic thermoacoustic oscillations, but its effectiveness on aperiodic thermoacoustic oscillations is less clear. In this experimental study, we apply periodic acoustic forcing to a ducted premixed flame oscillating quasiperiodically at two incommensurate natural frequencies, f1 and f2. We find that (i) above a critical forcing amplitude, the system locks into the forcing by oscillating only at the forcing frequency ff, producing a closed periodic orbit in phase space with no evidence of the original T2 torus attractor; (ii) the critical forcing amplitude required for lock-in decreases as ff approaches either f1 or f2, resulting in characteristic ∨-shaped lock-in boundaries around the two natural modes; and (iii) for a wide range of forcing frequencies, the system's oscillation amplitude can be reduced to less than 20% of that of the unforced system. These findings show that the open-loop application of periodic acoustic forcing can be an effective strategy for controlling aperiodic thermoacoustic oscillations. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).

  6. Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms.

    PubMed Central

    Mills, J N; Minors, D S; Waterhouse, J M

    1978-01-01

    1. Thirty-six subjects in an isolation unit were subjected to time shifts of 12 hr, or of 8 hr in either direction. 2. The rhythms of body temperature and excretion of eight urinary constituents were studied before and after the shift, both on a usual nychthemeral routine and during 24 hr when they remained under constant conditions, awake, engaged in light, mainly sedentary activity, and consuming identical food and fluid every hour. 3. The rhythms on nychthemeral routine were defined by fitting cosine curves. On constant routine the rhythm after the shift was cross-correlated with the original rhythm, either with variable delay (or advance) or with an additive mixture between this variably shifted rhythm and the unshifted or a fully shifted rhythm. The process yielding the highest correlation coefficient was accepted as the best descriptor of the nature of adaptation. 4. A combination of two rhythms was observed more often for urinary sodium, chloride and phosphate than for other variables. 5. Adaptation appeared to have proceeded further after westward than eastward shifts, and this difference was particularly noticeable for urinary potassium, sodium and chloride. 6. Partial adaptation usually involved a phase delay, even after an eastward shift when a cumulative delay of 16 hr would be needed to achieve full adaptation and re-entrainment. 7. Observations under nychthemeral conditions often gave a false idea of the degree of adaptation. In particular, after an eastward shift the phase of the rhythms appeared to shift in the appropriate direction when studied under nychthemeral conditions whereas the endogenous oscillator either showed no consistent behaviour or, in the control of urate excretion, a shift in the wrong direction. 8. The implications for people undergoing time shifts, in the course of shift work or transmeridional flights, are indicated. PMID:745108

  7. Collective signaling behavior in a networked-oscillator model

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  8. Digital phase-lock loop

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess B. (Inventor)

    1991-01-01

    An improved digital phase lock loop incorporates several distinctive features that attain better performance at high loop gain and better phase accuracy. These features include: phase feedback to a number-controlled oscillator in addition to phase rate; analytical tracking of phase (both integer and fractional cycles); an amplitude-insensitive phase extractor; a more accurate method for extracting measured phase; a method for changing loop gain during a track without loss of lock; and a method for avoiding loss of sampled data during computation delay, while maintaining excellent tracking performance. The advantages of using phase and phase-rate feedback are demonstrated by comparing performance with that of rate-only feedback. Extraction of phase by the method of modeling provides accurate phase measurements even when the number-controlled oscillator phase is discontinuously updated.

  9. Widely tunable opto-electronic oscillator

    NASA Astrophysics Data System (ADS)

    Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.

    2012-03-01

    We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.

  10. Phase transformation of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Korolev, Alexei; Isaac, George

    2003-01-01

    The glaciation time of a mixed-phase cloud due to the Wegener-Bergeron-Findeisen mechanism is calculated using an adiabatic one-dimensional numerical model for the cases of zero, ascending, descending and oscillating vertical velocities. The characteristic values of the glaciation time are obtained for different concentrations of ice particles and liquid-water content. Steady state is not possible for the ice-water content/total water content ratio in a uniformly vertically moving mixed-phase parcel. The vertical oscillation of a cloud parcel may result in a periodic evaporation and activation of liquid droplets in the presence of ice particles during infinite time. After a certain time, the average ice-water content and liquid-water content reach a steady state. This phenomenon may explain the existence of long-lived mixed-phase stratiform layers. The obtained results are important for understanding the mechanisms of formation and life cycle of mixed-phase clouds.

  11. Selective Coupling between Theta Phase and Neocortical Fast Gamma Oscillations during REM-Sleep in Mice

    PubMed Central

    Scheffzük, Claudia; Kukushka, Valeriy I.; Vyssotski, Alexei L.; Draguhn, Andreas

    2011-01-01

    Background The mammalian brain expresses a wide range of state-dependent network oscillations which vary in frequency and spatial extension. Such rhythms can entrain multiple neurons into coherent patterns of activity, consistent with a role in behaviour, cognition and memory formation. Recent evidence suggests that locally generated fast network oscillations can be systematically aligned to long-range slow oscillations. It is likely that such cross-frequency coupling supports specific tasks including behavioural choice and working memory. Principal Findings We analyzed temporal coupling between high-frequency oscillations and EEG theta activity (4–12 Hz) in recordings from mouse parietal neocortex. Theta was exclusively present during active wakefulness and REM-sleep. Fast oscillations occurred in two separate frequency bands: gamma (40–100 Hz) and fast gamma (120–160 Hz). Theta, gamma and fast gamma were more prominent during active wakefulness as compared to REM-sleep. Coupling between theta and the two types of fast oscillations, however, was more pronounced during REM-sleep. This state-dependent cross-frequency coupling was particularly strong for theta-fast gamma interaction which increased 9-fold during REM as compared to active wakefulness. Theta-gamma coupling increased only by 1.5-fold. Significance State-dependent cross-frequency-coupling provides a new functional characteristic of REM-sleep and establishes a unique property of neocortical fast gamma oscillations. Interactions between defined patterns of slow and fast network oscillations may serve selective functions in sleep-dependent information processing. PMID:22163023

  12. An alternating voltage battery with two salt-water oscillators

    NASA Astrophysics Data System (ADS)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  13. Creation and perturbation of planar networks of chemical oscillators

    PubMed Central

    Tompkins, Nathan; Cambria, Matthew Carl; Wang, Adam L.; Heymann, Michael; Fraden, Seth

    2015-01-01

    Methods for creating custom planar networks of diffusively coupled chemical oscillators and perturbing individual oscillators within the network are presented. The oscillators consist of the Belousov-Zhabotinsky (BZ) reaction contained in an emulsion. Networks of drops of the BZ reaction are created with either Dirichlet (constant-concentration) or Neumann (no-flux) boundary conditions in a custom planar configuration using programmable illumination for the perturbations. The differences between the observed network dynamics for each boundary condition are described. Using light, we demonstrate the ability to control the initial conditions of the network and to cause individual oscillators within the network to undergo sustained period elongation or a one-time phase delay. PMID:26117136

  14. Emergent Oscillations in Networks of Stochastic Spiking Neurons

    PubMed Central

    van Drongelen, Wim; Cowan, Jack D.

    2011-01-01

    Networks of neurons produce diverse patterns of oscillations, arising from the network's global properties, the propensity of individual neurons to oscillate, or a mixture of the two. Here we describe noisy limit cycles and quasi-cycles, two related mechanisms underlying emergent oscillations in neuronal networks whose individual components, stochastic spiking neurons, do not themselves oscillate. Both mechanisms are shown to produce gamma band oscillations at the population level while individual neurons fire at a rate much lower than the population frequency. Spike trains in a network undergoing noisy limit cycles display a preferred period which is not found in the case of quasi-cycles, due to the even faster decay of phase information in quasi-cycles. These oscillations persist in sparsely connected networks, and variation of the network's connectivity results in variation of the oscillation frequency. A network of such neurons behaves as a stochastic perturbation of the deterministic Wilson-Cowan equations, and the network undergoes noisy limit cycles or quasi-cycles depending on whether these have limit cycles or a weakly stable focus. These mechanisms provide a new perspective on the emergence of rhythmic firing in neural networks, showing the coexistence of population-level oscillations with very irregular individual spike trains in a simple and general framework. PMID:21573105

  15. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  16. The effects of oscillating forces upon the flow of dental cements.

    PubMed

    Judge, R B; Wilson, P R

    1999-11-01

    The aim of this study was to evaluate the effect of oscillating forces upon the flow of five dental cements. A laboratory investigation was carried out using a crown and die. It showed that the application of oscillating forces improved the flow of the tested dental cements when combined with low static loads and wide crown-die separations. The oscillating forces enhanced the late, particle-dominated phase of cement flow. Further investigations characterised the nature of the oscillating forces applied in this experiment and revealed yield stress behaviour shown by one cement.

  17. Injection locking of optomechanical oscillators via acoustic waves

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-01

    Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  18. Effect of Modulation of ENSO by Decadal and Multidecadal Ocean-Atmospheric Oscillations on Continental US Streamflows

    NASA Astrophysics Data System (ADS)

    Singh, S.; Abebe, A.; Srivastava, P.; Chaubey, I.

    2017-12-01

    Evaluation of the influences of individual and coupled oceanic-atmospheric oscillations on streamflow at a regional scale in the United States is the focus of this study. The main climatic oscillations considered in this study are: El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), and North Atlantic Oscillation (NAO). Unimpacted or minimally impacted by water management streamflow data from the Model Parameter Estimation Experiment (MOPEX) were used in this study. Two robust and novel non-parametric tests, namely, the rank based partial least square (PLS) and the Joint Rank Fit (JRFit) procedures were used to identify the individual and coupled effect of oscillations on streamflow across continental U.S. (CONUS), respectively. Moreover, the interactive effects of ENSO with decadal and multidecadal cycles were tested and quantified using the JRFit interaction test. The analysis of ENSO indicated higher streamflows during La Niña phase compared to the El Niño phase in Northwest, Northeast and the lower part of Ohio Valley while the opposite occurs for rest of the climatic regions in US. Two distinct climate regions (Northwest and Southeast) were identified from the PDO analysis where PDO negative phase results in increased streamflow than PDO positive phase. Consistent negative and positive correlated regions around the CONUS were identified for AMO and NAO, respectively. The interaction test of ENSO with decadal and multidecadal oscillations showed that El Niño is modulated by the negative phase of PDO and NAO, and the positive phase of AMO, respectively, in the Upper Midwest. However, La Niña is modulated by the positive phase of AMO and PDO in Ohio Valley and Northeast while in Southeast and the South it is modulated by AMO negative phase. Results of this study will assist water managers to understand the streamflow change patterns across the CONUS at decadal and multi-decadal time scales. The

  19. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  20. The frequency-dependent response of single aerosol particles to vapour phase oscillations and its application in measuring diffusion coefficients

    DOE PAGES

    Preston, Thomas C.; Davies, James F.; Wilson, Kevin R.

    2017-01-13

    A new method for measuring diffusion in the condensed phase of single aerosol particles is proposed and demonstrated. The technique is based on the frequency-dependent response of a binary particle to oscillations in the vapour phase of one of its chemical components. Here, we discuss how this physical situation allows for what would typically be a non-linear boundary value problem to be approximately reduced to a linear boundary value problem. For the case of aqueous aerosol particles, we investigate the accuracy of the closed-form analytical solution to this linear problem through a comparison with the numerical solution of the fullmore » problem. Then, using experimentally measured whispering gallery modes to track the frequency-dependent response of aqueous particles to relative humidity oscillations, we determine diffusion coefficients as a function of water activity. The measured diffusion coefficients are compared to previously reported values found using the two common experiments: (i) the analysis of the sorption/desorption of water from a particle after a step-wise change to the surrounding relative humidity and (ii) the isotopic exchange of water between a particle and the vapour phase. The technique presented here has two main strengths: first, when compared to the sorption/desorption experiment, it does not require the numerical evaluation of a boundary value problem during the fitting process as a closed-form expression is available. Second, when compared to the isotope exchange experiment, it does not require the use of labeled molecules. Therefore, the frequency-dependent experiment retains the advantages of these two commonly used methods but does not suffer from their drawbacks.« less

  1. Non-conventional synchronization of weakly coupled active oscillators

    NASA Astrophysics Data System (ADS)

    Manevitch, L. I.; Kovaleva, M. A.; Pilipchuk, V. N.

    2013-03-01

    We present a new type of self-sustained vibrations in the fundamental physical model covering a broad area of applications from wave generation in radiophysics and nonlinear optics to the heart muscle contraction and eyesight disorder in biophysics. Such a diversity of applications is due to the universal physical phenomenon of synchronization. Previous studies of this phenomenon, originating from Huygens famous observation, are based mainly on the model of two weakly coupled Van der Pol oscillators and usually deal with their synchronization in the regimes close to nonlinear normal modes (NNMs). In this work, we show for the first time that, in the important case of threshold excitation, an alternative synchronization mechanism can develop when the conventional synchronization becomes impossible. We identify this mechanism as an appearance of dynamic attractor with the complete periodic energy exchange between the oscillators, which is the dissipative analogue of highly intensive beats in a conservative system. This type of motion is therefore opposite to the NNM-type synchronization with no energy exchange by definition. The analytical description of these vibrations employs the concept of Limiting Phase Trajectories (LPTs) introduced by one of the authors earlier for conservative systems. Finally, within the LPT approach, we describe the transition from the complete energy exchange between the oscillators to the energy localization mostly on one of the two oscillators. The localized mode is an attractor in the range of model parameters wherein the LPT as well as the in-phase and out-of-phase NNMs become unstable.

  2. Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation.

    PubMed

    Cassou, Christophe

    2008-09-25

    Bridging the traditional gap between the spatio-temporal scales of weather and climate is a significant challenge facing the atmospheric community. In particular, progress in both medium-range and seasonal-to-interannual climate prediction relies on our understanding of recurrent weather patterns and the identification of specific causes responsible for their favoured occurrence, persistence or transition. Within this framework, I here present evidence that the main climate intra-seasonal oscillation in the tropics-the Madden-Julian Oscillation (MJO)-controls part of the distribution and sequences of the four daily weather regimes defined over the North Atlantic-European region in winter. North Atlantic Oscillation (NAO) regimes are the most affected, allowing for medium-range predictability of their phase far exceeding the limit of around one week that is usually quoted. The tropical-extratropical lagged relationship is asymmetrical. Positive NAO events mostly respond to a mid-latitude low-frequency wave train initiated by the MJO in the western-central tropical Pacific and propagating eastwards. Precursors for negative NAO events are found in the eastern tropical Pacific-western Atlantic, leading to changes along the North Atlantic storm track. Wave-breaking diagnostics tend to support the MJO preconditioning and the role of transient eddies in setting the phase of the NAO. I present a simple statistical model to quantitatively assess the potential predictability of the daily NAO index or the sign of the NAO regimes when they occur. Forecasts are successful in approximately 70 per cent of the cases based on the knowledge of the previous approximately 12-day MJO phase used as a predictor. This promising skill could be of importance considering the tight link between weather regimes and both mean conditions and the chances of extreme events occurring over Europe. These findings are useful for further stressing the need to better simulate and forecast the tropical

  3. Global competition and local cooperation in a network of neural oscillators

    NASA Astrophysics Data System (ADS)

    Terman, David; Wang, DeLiang

    An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate the model's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene segmentation and figure/ ground segregation.

  4. Encoding of Olfactory Information with Oscillating Neural Assemblies

    NASA Astrophysics Data System (ADS)

    Laurent, Gilles; Davidowitz, Hananel

    1994-09-01

    In the brain, fast oscillations of local field potentials, which are thought to arise from the coherent and rhythmic activity of large numbers of neurons, were observed first in the olfactory system and have since been described in many neocortical areas. The importance of these oscillations in information coding, however, is controversial. Here, local field potential and intracellular recordings were obtained from the antennal lobe and mushroom body of the locust Schistocerca americana. Different odors evoked coherent oscillations in different, but usually overlapping, ensembles of neurons. The phase of firing of individual neurons relative to the population was not dependent on the odor. The components of a coherently oscillating ensemble of neurons changed over the duration of a single exposure to an odor. It is thus proposed that odors are encoded by specific but dynamic assemblies of coherently oscillating neurons. Such distributed and temporal representation of complex sensory signals may facilitate combinatorial coding and associative learning in these, and possibly other, sensory networks.

  5. Dynamics of weakly inhomogeneous oscillator populations: perturbation theory on top of Watanabe-Strogatz integrability

    NASA Astrophysics Data System (ADS)

    Vlasov, Vladimir; Rosenblum, Michael; Pikovsky, Arkady

    2016-08-01

    As has been shown by Watanabe and Strogatz (WS) (1993 Phys. Rev. Lett. 70 2391), a population of identical phase oscillators, sine-coupled to a common field, is a partially integrable system: for any ensemble size its dynamics reduce to equations for three collective variables. Here we develop a perturbation approach for weakly nonidentical ensembles. We calculate corrections to the WS dynamics for two types of perturbations: those due to a distribution of natural frequencies and of forcing terms, and those due to small white noise. We demonstrate that in both cases, the complex mean field for which the dynamical equations are written is close to the Kuramoto order parameter, up to the leading order in the perturbation. This supports the validity of the dynamical reduction suggested by Ott and Antonsen (2008 Chaos 18 037113) for weakly inhomogeneous populations.

  6. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Aono, Masashi; Hara, Masahiko; Aihara, Kazuyuki

    2010-03-01

    We propose a widely applicable scheme of coupling that models competitions among dynamical systems for fixed amounts of resources. Two oscillators coupled in this way synchronize in antiphase. Three oscillators coupled circularly show a number of oscillation modes such as rotation and partially in-phase synchronization. Intriguingly, simple oscillators in the model also produce complex behavior such as spontaneous switching among different modes. The dynamics reproduces well the spatiotemporal oscillatory behavior of a true slime mold Physarum, which is capable of computational optimization.

  7. Oscillating field current drive experiments in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Blair, Arthur P., Jr.

    Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.

  8. Neural oscillations as a bridge between glutamatergic system and emotional behaviors in simulated microgravity-induced mice.

    PubMed

    Shang, Xueliang; Xu, Bo; Li, Qun; Zhai, Baohui; Xu, Xiaxia; Zhang, Tao

    2017-01-15

    This study aims to investigate if neural oscillations can play a role as a bridge between the alteration of glutamatergic system and emotional behaviors in simulated microgravity (SM) mice. Adult male C57BL/6J mice were randomly divided into two groups: SM and control groups. The animal model was established by hindlimb unloading (HU). The mice were exposed to HU continued for 14days. Weight and sucrose consumption were measured. The degree of anxious and depressive was evaluated by Open field test and Elevated plus maze test. Local field potentials were recorded in the hippocampal perforant path (PP) and dentate gyrus (DG) regions. The NMDAR2A/2B (NR2A/2B) subunits expression and glutamate level were measured by Western and high performance liquid chromatography (HPLC), respectively. After 14days, SM mice exhibited depressive-like and anxiety-like behaviors, while the expression of NR2A/2B subunits and the glutamate level were significantly decreased in the SM group. Moreover, the power distribution of theta (3-8Hz) was decreased by HU, which further significantly attenuated the identical-frequency strength of phase synchronization and the neural information flow at theta rhythm on the PP-DG pathway. The theta-gamma phase synchronization strength was also significantly reduced by HU. The data imply that the neural oscillations measurements is a sign of the emotional behaviors impairment and the glutamatergic system change induced by HU. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Physics prospects of future neutrino oscillation experiments in Asia

    NASA Astrophysics Data System (ADS)

    Hagiwara, Kaoru

    2004-12-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 neutrino parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the potential of HyperKamiokande (HK), the proposed 1 Mega-ton water Čerenkov detector, and then study the fate and possible detection of the off-axis beam from J-PARC in Korea, which is available free throughout the period of the T2K (Tokai-to-SuperKamiokande) and the possible T-to-HK projects. Although the CP violating phase can be measured accurately by studying ν→ν and ν→ν oscillations at HK, there appear multiple solution ambiguities which can be solved only by determining the neutrino mass hierarchy and the twofold ambiguity in the mixing angle. We show that very long baseline experiments with higher energy beams from J-PARC and a possible huge Water Čerenkov Calorimeter detector proposed in Beijing can resolve the neutrino mass hierarchy. If such a detector can be built in China, future experiments with a muon storage ring neutrino factory at J-PARC will be able to lift all the degeneracies in the three neutrino model parameters.

  10. Sinusoidal visuomotor tracking: intermittent servo-control or coupled oscillations?

    PubMed

    Russell, D M; Sternad, D

    2001-12-01

    In visuomotor tasks that involve accuracy demands, small directional changes in the trajectories have been taken as evidence of feedback-based error corrections. In the present study variability, or intermittency, in visuomanual tracking of sinusoidal targets was investigated. Two lines of analyses were pursued: First, the hypothesis that humans fundamentally act as intermittent servo-controllers was re-examined, probing the question of whether discontinuities in the movement trajectory directly imply intermittent control. Second, an alternative hypothesis was evaluated: that rhythmic tracking movements are generated by entrainment between the oscillations of the target and the actor, such that intermittency expresses the degree of stability. In 2 experiments, participants (N = 6 in each experiment) swung 1 of 2 different hand-held pendulums, tracking a rhythmic target that oscillated at different frequencies with a constant amplitude. In 1 line of analyses, the authors tested the intermittency hypothesis by using the typical kinematic error measures and spectral analysis. In a 2nd line, they examined relative phase and its variability, following analyses of rhythmic interlimb coordination. The results showed that visually guided corrective processes play a role, especially for slow movements. Intermittency, assessed as frequency and power components of the movement trajectory, was found to change as a function of both target frequency and the manipulandum's inertia. Support for entrainment was found in conditions in which task frequency was identical to or higher than the effector's eigenfrequency. The results suggest that it is the symmetry between task and effector that determines which behavioral regime is dominant.

  11. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.

    PubMed

    Gasulla, Ivana; Sancho, Juan; Capmany, José; Lloret, Juan; Sales, Salvador

    2010-12-06

    We theoretically and experimentally evaluate the propagation, generation and amplification of signal, harmonic and intermodulation distortion terms inside a Semiconductor Optical Amplifier (SOA) under Coherent Population Oscillation (CPO) regime. For that purpose, we present a general optical field model, valid for any arbitrarily-spaced radiofrequency tones, which is necessary to correctly describe the operation of CPO based slow light Microwave Photonic phase shifters which comprise an electrooptic modulator and a SOA followed by an optical filter and supplements another recently published for true time delay operation based on the propagation of optical intensities. The phase shifter performance has been evaluated in terms of the nonlinear distortion up to 3rd order, for a modulating signal constituted of two tones, in function of the electrooptic modulator input RF power and the SOA input optical power, obtaining a very good agreement between theoretical and experimental results. A complete theoretical spectral analysis is also presented which shows that under small signal operation conditions, the 3rd order intermodulation products at 2Ω1 + Ω2 and 2Ω2 + Ω1 experience a power dip/phase transition characteristic of the fundamental tones phase shifting operation.

  12. Supermode noise suppression with mutual injection locking for coupled optoelectronic oscillator.

    PubMed

    Dai, Jian; Liu, Anni; Liu, Jingliang; Zhang, Tian; Zhou, Yue; Yin, Feifei; Dai, Yitang; Liu, Yuanan; Xu, Kun

    2017-10-30

    The coupled optoelectronic oscillator (COEO) is typically used to generate high frequency spectrally pure microwave signal with serious sidemodes noise. We propose and experimentally demonstrate a simple scheme for supermode suppression with mutual injection locking between the COEO (master oscillator with multi-modes oscillation) and the embedded free-running oscillator (slave oscillator with single-mode oscillation). The master and slave oscillators share the same electrical feedback path, which means that the mutually injection-locked COEO brings no additional hardware complexity. Owing to the mode matching and mutually injection locking effect, 9.999 GHz signal has been successfully obtained by the mutually injection-locked COEO with the phase noise about -117 dBc/Hz at 10 kHz offset frequency. Besides, the supermode noise can be significantly suppressed more than 50 dB to below -120 dBc.

  13. Hyperbolic geometry of Kuramoto oscillator networks

    NASA Astrophysics Data System (ADS)

    Chen, Bolun; Engelbrecht, Jan R.; Mirollo, Renato

    2017-09-01

    Kuramoto oscillator networks have the special property that their trajectories are constrained to lie on the (at most) 3D orbits of the Möbius group acting on the state space T N (the N-fold torus). This result has been used to explain the existence of the N-3 constants of motion discovered by Watanabe and Strogatz for Kuramoto oscillator networks. In this work we investigate geometric consequences of this Möbius group action. The dynamics of Kuramoto phase models can be further reduced to 2D reduced group orbits, which have a natural geometry equivalent to the unit disk \

  14. Relativistic electron plasma oscillations in an inhomogeneous ion background

    NASA Astrophysics Data System (ADS)

    Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil

    2018-06-01

    The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.

  15. Local inertial oscillations in the surface ocean generated by time-varying winds

    NASA Astrophysics Data System (ADS)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2015-12-01

    A new relationship is presented to give a review study on the evolution of inertial oscillations in the surface ocean locally generated by time-varying wind stress. The inertial oscillation is expressed as the superposition of a previous oscillation and a newly generated oscillation, which depends upon the time-varying wind stress. This relationship is employed to investigate some idealized wind change events. For a wind series varying temporally with different rates, the induced inertial oscillation is dominated by the wind with the greatest variation. The resonant wind, which rotates anti-cyclonically at the local inertial frequency with time, produces maximal amplitude of inertial oscillations, which grows monotonically. For the wind rotating at non-inertial frequencies, the responses vary periodically, with wind injecting inertial energy when it is in phase with the currents, but removing inertial energy when it is out of phase. The wind rotating anti-cyclonically with time is much more favorable to generate inertial oscillations than the cyclonic rotating wind. The wind with a frequency closer to the inertial frequency generates stronger inertial oscillations. For a diurnal wind, the induced inertial oscillation is dependent on latitude and is most significant at 30 °. This relationship is also applied to examine idealized moving cyclones. The inertial oscillation is much stronger on the right-hand side of the cyclone path than on the left-hand side (in the northern hemisphere). This is due to the wind being anti-cyclonic with time on the right-hand side, but cyclonic on the other side. The inertial oscillation varies with the cyclone translation speed. The optimal translation speed generating the greatest inertial oscillations is 2 m/s at the latitude of 10 ° and gradually increases to 6 m/s at the latitude of 30 °.

  16. Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators

    NASA Astrophysics Data System (ADS)

    Nishimura, Joel

    2015-01-01

    We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.

  17. Location identification of closed crack based on Duffing oscillator transient transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning

    2018-02-01

    The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.

  18. External synchronization of oscillating pulse edge on a transmission line with regularly spaced tunnel diodes.

    PubMed

    Narahara, Koichi; Misono, Masatoshi; Miyakawa, Kenji

    2013-01-01

    We investigate the external synchronization of the oscillating pulse edges developed in a transmission line periodically loaded with tunnel diodes (TDs), termed a TD line. It is observed that the pulse edge oscillates on a TD line when supplied by an appropriate voltage at the end of the line. We discuss how the pulse edge oscillates on a TD line and the properties of the external synchronization of the edge oscillation driven by a sinusoidal perturbation. By applying a phase-reduction scheme to the transmission equation of a TD line, we obtain the phase sensitivity, which satisfactory explains the measured spatial dependence of the locking range on the frequency. Moreover, we successfully detect the spatiotemporal behaviors of the edge oscillation by establishing synchronization with the sampling trigger of an oscilloscope.

  19. Neurofeedback training of gamma band oscillations improves perceptual processing.

    PubMed

    Salari, Neda; Büchel, Christian; Rose, Michael

    2014-10-01

    In this study, a noninvasive electroencephalography-based neurofeedback method is applied to train volunteers to deliberately increase gamma band oscillations (40 Hz) in the visual cortex. Gamma band oscillations in the visual cortex play a functional role in perceptual processing. In a previous study, we were able to demonstrate that gamma band oscillations prior to stimulus presentation have a significant influence on perceptual processing of visual stimuli. In the present study, we aimed to investigate longer lasting effects of gamma band neurofeedback training on perceptual processing. For this purpose, a feedback group was trained to modulate oscillations in the gamma band, while a control group participated in a task with an identical design setting but without gamma band feedback. Before and after training, both groups participated in a perceptual object detection task and a spatial attention task. Our results clearly revealed that only the feedback group but not the control group exhibited a visual processing advantage and an increase in oscillatory gamma band activity in the pre-stimulus period of the processing of the visual object stimuli after the neurofeedback training. Results of the spatial attention task showed no difference between the groups, which underlines the specific role of gamma band oscillations for perceptual processing. In summary, our results show that modulation of gamma band activity selectively affects perceptual processing and therefore supports the relevant role of gamma band activity for this specific process. Furthermore, our results demonstrate the eligibility of gamma band oscillations as a valuable tool for neurofeedback applications.

  20. Effects of dendritic load on the firing frequency of oscillating neurons.

    PubMed

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  1. Evaluation of the Transverse Oscillation Technique for Cardiac Phased Array Imaging: A Theoretical Study.

    PubMed

    Heyde, Brecht; Bottenus, Nick; D'hooge, Jan; Trahey, Gregg E

    2017-02-01

    The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bilobed Gaussian apodization (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency of PWTO can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This paper is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial, and rotational motions). The Cramer-Rao lower bound was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO, and PWTO* beamforming scenarios. This framework was extended to also predict the performance for BA functions that are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared with traditional BA functions. PWTO* outperformed FOC at all investigated signal-to-noise ratio (SNR) levels but only up to a certain displacement, with the advantage rapidly decreasing when the SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when interframe displacements remain relatively low. This paper concludes by translating these findings into a clinical environment by suggesting optimal scanner settings.

  2. Evaluation of the transverse oscillation technique for cardiac phased-array imaging: A theoretical study

    PubMed Central

    Bottenus, Nick; D’hooge, Jan; Trahey, Gregg E.

    2017-01-01

    The transverse oscillation (TO) technique can improve the estimation of tissue motion perpendicular to the ultrasound beam direction. TOs can be introduced using plane wave (PW) insonification and bi-lobed Gaussian apodisation (BA) on receive (abbreviated as PWTO). Furthermore, the TO frequency can be doubled after a heterodyning demodulation process is performed (abbreviated as PWTO*). This study is concerned with identifying the limitations of the PWTO technique in the specific context of myocardial deformation imaging with phased arrays and investigating the conditions in which it remains advantageous over traditional focused (FOC) beamforming. For this purpose, several tissue phantoms were simulated using Field II, undergoing a wide range of displacement magnitudes and modes (lateral, axial and rotational motion). The Cramer-Rao lower bound (CRLB) was used to optimize TO beamforming parameters and theoretically predict the fundamental tracking performance limits associated with the FOC, PWTO and PWTO* beamforming scenarios. This framework was extended to also predict performance for BA functions which are windowed by the physical aperture of the transducer, leading to higher lateral oscillations. It was found that windowed BA functions resulted in lower jitter errors compared to tradional BA functions. PWTO* outperformed FOC at all investigated SNR levels but only up to a certain displacement, with the advantage rapidly decreasing when SNR increased. These results suggest that PWTO* improves lateral tracking performance, but only when inter-frame displacements remain relatively low. The study concludes by translating these findings to a clinical environment by suggesting optimal scanner settings. PMID:27810806

  3. Thermodynamic constraints on the amplitude of quantum oscillations

    DOE PAGES

    Shekhter, Arkady; Modic, K. A.; McDonald, R. D.; ...

    2017-03-23

    Magneto-quantum oscillation experiments in high-temperature superconductors show a strong thermally induced suppression of the oscillation amplitude approaching the critical dopings [B. J. Ramshaw et al., Science 348, 317 (2014); H. Shishido et al., Phys. Rev. Lett. 104, 057008 (2010); P. Walmsley et al., Phys. Rev. Lett. 110, 257002 (2013)]—in support of a quantum-critical origin of their phase diagrams. In this paper, we suggest that, in addition to a thermodynamic mass enhancement, these experiments may directly indicate the increasing role of quantum fluctuations that suppress the quantum oscillation amplitude through inelastic scattering. Finally, we show that the traditional theoretical approaches beyondmore » Lifshitz-Kosevich to calculate the oscillation amplitude in correlated metals result in a contradiction with the third law of thermodynamics and suggest a way to rectify this problem.« less

  4. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  5. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    NASA Technical Reports Server (NTRS)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  6. Control, synchronization, and enhanced reliability of aperiodic oscillations in the Mercury Beating Heart system

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Parmananda, P.

    2018-04-01

    Experiments involving the Mercury Beating Heart (MBH) oscillator, exhibiting irregular (aperiodic) dynamics, are performed. In the first set of experiments, control over irregular dynamics of the MBH oscillator was obtained via a superimposed periodic voltage signal. These irregular (aperiodic) dynamics were recovered once the control was switched off. Subsequently, two MBH oscillators were coupled to attain synchronization of their aperiodic oscillations. Finally, two uncoupled MBH oscillators were subjected, repeatedly, to a common stochastic forcing, resulting in an enhancement of their mutual phase correlation.

  7. Reviving oscillations in coupled nonlinear oscillators.

    PubMed

    Zou, Wei; Senthilkumar, D V; Zhan, Meng; Kurths, Jürgen

    2013-07-05

    By introducing a processing delay in the coupling, we find that it can effectively annihilate the quenching of oscillation, amplitude death (AD), in a network of coupled oscillators by switching the stability of AD. It revives the oscillation in the AD regime to retain sustained rhythmic functioning of the networks, which is in sharp contrast to the propagation delay with the tendency to induce AD. This processing delay-induced phenomenon occurs both with and without the propagation delay. Further this effect is rather general from two coupled to networks of oscillators in all known scenarios that can exhibit AD, and it has a wide range of applications where sustained oscillations should be retained for proper functioning of the systems.

  8. A Consistent Definition of Phase Resetting Using Hilbert Transform.

    PubMed

    Oprisan, Sorinel A

    2017-01-01

    A phase resetting curve (PRC) measures the transient change in the phase of a neural oscillator subject to an external perturbation. The PRC encapsulates the dynamical response of a neural oscillator and, as a result, it is often used for predicting phase-locked modes in neural networks. While phase is a fundamental concept, it has multiple definitions that may lead to contradictory results. We used the Hilbert Transform (HT) to define the phase of the membrane potential oscillations and HT amplitude to estimate the PRC of a single neural oscillator. We found that HT's amplitude and its corresponding instantaneous frequency are very sensitive to membrane potential perturbations. We also found that the phase shift of HT amplitude between the pre- and poststimulus cycles gives an accurate estimate of the PRC. Moreover, HT phase does not suffer from the shortcomings of voltage threshold or isochrone methods and, as a result, gives accurate and reliable estimations of phase resetting.

  9. Optical distribution of local oscillators in future telecommunication satellite payloads

    NASA Astrophysics Data System (ADS)

    Benazet, Benoît; Sotom, Michel; Maignan, Michel; Berthon, Jacques

    2017-11-01

    The distribution of high spectral purity reference signals over optical fibre in future telecommunication satellite payloads is presented. Several types of applications are considered, including the distribution of a reference frequency at 10 MHz (Ultra-Stable Reference Oscillator) as well as the distribution of a radiofrequency oscillator around 800 MHz (Master Local Oscillator). The results of both experimental and theoretical studies are reported. In order to meet phase noise requirements for the USRO distribution, the use of an optimised receiver circuit based on an optically synchronised oscillator is investigated. Finally, the optical distribution of microwave local oscillators at frequencies exceeding 20 GHz is described. Such a scheme paves the way to more advanced sub-systems involving optical frequency-mixing and optical transmission of microwave signals, with applications to multiple-beam active antennas.

  10. Potentiostatic current and galvanostatic potential oscillations during electrodeposition of cadmium.

    PubMed

    López-Sauri, D A; Veleva, L; Pérez-Ángel, G

    2015-09-14

    Cathodic current and potential oscillations were observed during electrodeposition of cadmium from a cyanide electrolyte on a vertical platinum electrode, in potentiostatic and galvanostatic experiments. Electrochemical impedance spectroscopy experiments revealed a region of negative real impedance in a range of non-zero frequencies, in the second descending branch with a positive slope of the N-shape current-potential curve. This kind of dynamical behaviour is characteristic of the HN-NDR oscillators (oscillators with the N-Shape current-potential curve and hidden negative differential resistance). The oscillations could be mainly attributed to the changes in the real active cathodic area, due to the adsorption of hydrogen molecules and their detachment from the surface. The instabilities of the electrochemical processes were characterized by time series, Fast Fourier Transforms and 2-D phase portraits showing quasi-periodic oscillations.

  11. Synchronization of tunable asymmetric square-wave pulses in delay-coupled optoelectronic oscillators.

    PubMed

    Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas

    2015-03-01

    We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.

  12. Synchronizing noisy nonidentical oscillators by transient uncoupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Aditya, E-mail: adityat@iitk.ac.in; Mannattil, Manu, E-mail: mmanu@iitk.ac.in; Schröder, Malte, E-mail: malte@nld.ds.mpg.de

    2016-09-15

    Synchronization is the process of achieving identical dynamics among coupled identical units. If the units are different from each other, their dynamics cannot become identical; yet, after transients, there may emerge a functional relationship between them—a phenomenon termed “generalized synchronization.” Here, we show that the concept of transient uncoupling, recently introduced for synchronizing identical units, also supports generalized synchronization among nonidentical chaotic units. Generalized synchronization can be achieved by transient uncoupling even when it is impossible by regular coupling. We furthermore demonstrate that transient uncoupling stabilizes synchronization in the presence of common noise. Transient uncoupling works best if the unitsmore » stay uncoupled whenever the driven orbit visits regions that are locally diverging in its phase space. Thus, to select a favorable uncoupling region, we propose an intuitive method that measures the local divergence at the phase points of the driven unit's trajectory by linearizing the flow and subsequently suppresses the divergence by uncoupling.« less

  13. Injection locking of optomechanical oscillators via acoustic waves.

    PubMed

    Huang, Ke; Hossein-Zadeh, Mani

    2018-04-02

    Injection locking is an effective technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators. As such, exploring new mechanisms for injection locking of emerging oscillators is important for their usage in various systems. Here, we present the first demonstration of injection locking of a radiation pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can be easily implemented on various platforms to lock different types of OMOs independent of their size and structure. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance, matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity, and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology, and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.

  14. Entrainment in nerve by a ferroelectric model (II): Quasi-periodic oscillation and the phase locking

    NASA Astrophysics Data System (ADS)

    Shirane, Kotaro; Tokimoto, Takayuki; Kushibe, Hiroyuki

    1997-09-01

    A nonlinear state equation for membrane excitation can be simplified by Leuchtag's ferroelectric model which is applied to a chemical network theory. A dissipative structure of such a membrane is described by an equilibrium space, η 3 + aη + b = 0, giving a cusp catastrophe, and the membrane is self-organized in the resting state under the condition, a < 0( T < Tc), where η corresponds to the membrane potential, and a and b imply dipole-dipole and dipole-ion interactions of channel proteins embedded in the membrane, respectively. As well known, a specific characteristic of nonlinear electrical phenomena in the membrane is a limit cycle arising through the entrainment by periodical stimuli or chaos. A phase transition between the equilibrium and the non-equilibrium states (a dissipative structure without the resting state) is described by a parameter giving the difference from thermal equilibrium. In this dynamic system, quasi-periodic oscillations which arise in periodic external fields and the phase locking, that is, entrainment, caused by changing I0 at ω ≠ ω n (ω n - the natural frequency of the membrane) are studied with parameters introduced into Zeeman's formulas of ȧ and ḃ.

  15. Synchronization of Lienard-Type Oscillators in Uniform Electrical Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Mohit; Dorfler, Florian; Johnson, Brian B.

    2016-08-01

    This paper presents a condition for global asymptotic synchronization of Lienard-type nonlinear oscillators in uniform LTI electrical networks with series R-L circuits modeling interconnections. By uniform electrical networks, we mean that the per-unit-length impedances are identical for the interconnecting lines. We derive conditions for global asymptotic synchronization for a particular feedback architecture where the derivative of the oscillator output current supplements the innate current feedback induced by simply interconnecting the oscillator to the network. Our proof leverages a coordinate transformation to a set of differential coordinates that emphasizes signal differences and the particular form of feedback permits the formulation ofmore » a quadratic Lyapunov function for this class of networks. This approach is particularly interesting since synchronization conditions are difficult to obtain by means of quadratic Lyapunov functions when only current feedback is used and for networks composed of series R-L circuits. Our synchronization condition depends on the algebraic connectivity of the underlying network, and reiterates the conventional wisdom from Lyapunov- and passivity-based arguments that strong coupling is required to ensure synchronization.« less

  16. Inertial oscillation of a vertical rotating draft with application to a supercell storm

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Stock, Larry V.

    1992-01-01

    An analytic model (vertical rotating draft) which includes the gross features of a supercell storm on an f-plane, undergoes an inertial oscillation that appears to have been overlooked in previous analytic and numerical models. The oscillation is nonlinear and consists of a long quiescent phase and a short intense phase. During the intense phase, the rotating draft has the following features of a supercell: the diameter of the core contracts as it spins up and expands as it spins down; if vertical wind shear is included, the track of the rotating draft turns to the right (an anticyclonic rotating draft turns to the left); this turning point is followed by a predominantly upward flow; and the horizontal pressure gradient is very small (a property of most tornadoless supercells). The rapid spin-up during the intense phase and the high Rossby numbers obtainable establish the ability of the Coriolis force to spin up single cyclonic or anticyclonic supercells by means of this inertial oscillation. This surprising result has implications for numerical supercell simulations, which generally do not rely on the Coriolis force as a source of rotation. The physics and mathematics of the inertial oscillation are given, and the solution is applied to a documented supercell.

  17. Phase modulation of the bucket stops bunch oscillations at the Fermilab Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, C.Y.; Burov, A.; /Fermilab

    2012-04-02

    Bunches in the Tevatron are known to exhibit longitudinal oscillations which persist indefinitely. These oscillations are colloquially called 'dancing bunches.' Although the dancing proton bunches do not cause single bunch emittance growth or beam loss at injection, they lead to bunch lengthening at collisions. In Tevatron operations, a longitudinal damper has been built which stops this dance and damps out coupled bunch modes. Recent theoretical work predicts that the dance can also be stopped by an appropriate change in the bunch distribution. This paper describes the Tevatron experiments which support this theory.

  18. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  19. Oscillations of a sessile droplet in open air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korenchenko, A. E., E-mail: korenchenko@physics.susu.ac.ru; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy ofmore » measurement of the surface tension by sessile drop method.« less

  20. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  1. Early Oscillation Detection for Hybrid DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    This paper describes a novel fault detection technique for hybrid DC/DC converter oscillation diagnosis. The technique is based on principles of feedback control loop oscillation and RF signal modulations, and Is realized by using signal spectral analysis. Real-circuit simulation and analytical study reveal critical factors of the oscillation and indicate significant correlations between the spectral analysis method and the gain/phase margin method. A stability diagnosis index (SDI) is developed as a quantitative measure to accurately assign a degree of stability to the DC/DC converter. This technique Is capable of detecting oscillation at an early stage without interfering with DC/DC converter's normal operation and without limitations of probing to the converter.

  2. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.

    PubMed

    Cohen, Michael X; Donner, Tobias H

    2013-12-01

    Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to reflect neural oscillations that support conflict detection and resolution processes. However, it has remained unclear whether this frequency-band-specific activity reflects neural oscillations or nonoscillatory responses (i.e., event-related potentials). Here, we show that removing the phase-locked component of the EEG did not reduce the strength of the conflict-related modulation of the residual (i.e., non-phase-locked) theta power over midfrontal cortex. Furthermore, within-subject regression analyses revealed that the non-phase-locked theta power was a significantly better predictor of the conflict condition than was the time-domain phase-locked EEG component. Finally, non-phase-locked theta power showed robust and condition-specific (high- vs. low-conflict) cross-trial correlations with reaction time, whereas the phase-locked component did not. Taken together, our results indicate that most of the conflict-related and behaviorally relevant midfrontal EEG signal reflects a modulation of ongoing theta-band oscillations that occurs during the decision process but is not phase-locked to the stimulus or to the response.

  3. Photospheric Origin of Three-minute Oscillations in a Sunspot

    NASA Astrophysics Data System (ADS)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk; Cho, Kyungsuk; Yurchyshyn, Vasyl

    2017-02-01

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni I λ5436, Fe I λ5435, and Na I D2 λ5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  4. Time Delay Effect in a Living Coupled Oscillator System with the Plasmodium of Physarum polycephalum

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko; Fujii, Teruo; Endo, Isao

    2000-08-01

    A living coupled oscillator system was constructed by a cell patterning method with a plasmodial slime mold, in which parameters such as coupling strength and distance between the oscillators can be systematically controlled. Rich oscillation phenomena between the two-coupled oscillators, namely, desynchronizing and antiphase/in-phase synchronization were observed according to these parameters. Both experimental and theoretical approaches showed that these phenomena are closely related to the time delay effect in interactions between the oscillators.

  5. Quantum oscillations in a biaxial pair density wave state.

    PubMed

    Norman, M R; Davis, J C Séamus

    2018-05-22

    There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic-field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state. Copyright © 2018 the Author(s). Published by PNAS.

  6. Traveling wave in a three-dimensional array of conformist and contrarian oscillators

    NASA Astrophysics Data System (ADS)

    Hoang, Danh-Tai; Jo, Junghyo; Hong, Hyunsuk

    2015-03-01

    We consider a system of conformist and contrarian oscillators coupled locally in a three-dimensional cubic lattice and explore collective behavior of the system. The conformist oscillators attractively interact with the neighbor oscillators and therefore tend to be aligned with the neighbors' phase. The contrarian oscillators interact repulsively with the neighbors and therefore tend to be out of phase with them. In this paper, we investigate whether many peculiar dynamics that have been observed in the mean-field system with global coupling can emerge even with local coupling. In particular, we pay attention to the possibility that a traveling wave may arise. We find that the traveling wave occurs due to coupling asymmetry and not by global coupling; this observation confirms that the global coupling is not essential to the occurrence of a traveling wave in the system. The traveling wave can be a mechanism for the coherent rhythm generation of the circadian clock or of hormone secretion in biological systems under local coupling.

  7. Fishbone Oscillations in the Experimental Advanced Superconductivity Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Li-Qing; Hu, Li-Qun; Yuan, Yi; Li, Ying-Ying; Zhong, Guo-Qiang; Liu, Hai-Qing; Chen, Kai-Yun; Shi, Tong-Hui; Duan, Yan-Min

    2018-03-01

    A fishbone oscillation was observed in the neutral beam injection plasma at Experimental Advanced Superconductivity Tokamak (EAST). This m = 1/n = 1 ( m, n: poloidal, toroidal mode numbers, respectively) typical internal kink mode travels in the ion-diamagnetism direction in the poloidal section with a rotation speed close to the ion diamagnetic drift frequency. A high thermal plasma beta and high amounts of energetic ions are necessary for the mode to develop. Fishbone oscillations can expel heavy impurities in the core, which favors sustaining a high-performance plasma. The born frequency of the fishbone oscillation is the ion diamagnetic drift frequency and the chirping down of the frequency during the initial growth phase is the result of a drop in iondiamagnetic drift frequency. The excitation energy is thought to be due to the thermal plasma pressure gradient; however, the development of a fishbone oscillation is related to energetic ions.

  8. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: phase, amplitude, and clustering effects.

    PubMed

    Minati, Ludovico

    2014-12-01

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.

  9. Experimental synchronization of chaos in a large ring of mutually coupled single-transistor oscillators: Phase, amplitude, and clustering effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it

    In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less

  10. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-01-01

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may

  11. Weak synchronization and large-scale collective oscillation in dense bacterial suspensions.

    PubMed

    Chen, Chong; Liu, Song; Shi, Xia-Qing; Chaté, Hugues; Wu, Yilin

    2017-02-09

    Collective oscillatory behaviour is ubiquitous in nature, having a vital role in many biological processes from embryogenesis and organ development to pace-making in neuron networks. Elucidating the mechanisms that give rise to synchronization is essential to the understanding of biological self-organization. Collective oscillations in biological multicellular systems often arise from long-range coupling mediated by diffusive chemicals, by electrochemical mechanisms, or by biomechanical interaction between cells and their physical environment. In these examples, the phase of some oscillatory intracellular degree of freedom is synchronized. Here, in contrast, we report the discovery of a weak synchronization mechanism that does not require long-range coupling or inherent oscillation of individual cells. We find that millions of motile cells in dense bacterial suspensions can self-organize into highly robust collective oscillatory motion, while individual cells move in an erratic manner, without obvious periodic motion but with frequent, abrupt and random directional changes. So erratic are individual trajectories that uncovering the collective oscillations of our micrometre-sized cells requires individual velocities to be averaged over tens or hundreds of micrometres. On such large scales, the oscillations appear to be in phase and the mean position of cells typically describes a regular elliptic trajectory. We found that the phase of the oscillations is organized into a centimetre-scale travelling wave. We present a model of noisy self-propelled particles with strictly local interactions that accounts faithfully for our observations, suggesting that self-organized collective oscillatory motion results from spontaneous chiral and rotational symmetry breaking. These findings reveal a previously unseen type of long-range order in active matter systems (those in which energy is spent locally to produce non-random motion). This mechanism of collective oscillation may

  12. Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on global land dry-wet changes.

    PubMed

    Wang, Shanshan; Huang, Jianping; He, Yongli; Guan, Yuping

    2014-10-17

    The effects of natural variability, especially El Niño-Southern Oscillation (ENSO) effects, have been the focus of several recent studies on the change of drought patterns with climate change. The interannual relationship between ENSO and the global climate is not stationary and can be modulated by the Pacific Decadal Oscillation (PDO). However, the global land distribution of the dry-wet changes associated with the combination of ENSO and the PDO remains unclear. In the present study, this is investigated using a revised Palmer Drought Severity Index dataset (sc_PDSI_pm). We find that the effect of ENSO on dry-wet changes varies with the PDO phase. When in phase with the PDO, ENSO-induced dry-wet changes are magnified with respect to the canonical pattern. When out of phase, these dry-wet variations weaken or even disappear. This remarkable contrast in ENSO's influence between the two phases of the PDO highlights exciting new avenues for obtaining improved global climate predictions. In recent decades, the PDO has turned negative with more La Niña events, implying more rain and flooding over land. La Niña-induced wet areas become wetter and the dry areas become drier and smaller due to the effects of the cold PDO phase.

  13. Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold

    NASA Astrophysics Data System (ADS)

    Takamatsu, Atsuko

    2006-11-01

    Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.

  14. A Look at Damped Harmonic Oscillators through the Phase Plane

    ERIC Educational Resources Information Center

    Daneshbod, Yousef; Latulippe, Joe

    2011-01-01

    Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…

  15. Crystal oscillators using negative voltage gain, single pole response amplifiers

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.

  16. Intermittent and sustained periodic windows in networked chaotic Rössler oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhiwei; Sun, Yong; University of the Chinese Academy of Sciences, Beijing 100049

    Route to chaos (or periodicity) in dynamical systems is one of fundamental problems. Here, dynamical behaviors of coupled chaotic Rössler oscillators on complex networks are investigated and two different types of periodic windows with the variation of coupling strength are found. Under a moderate coupling, the periodic window is intermittent, and the attractors within the window extremely sensitively depend on the initial conditions, coupling parameter, and topology of the network. Therefore, after adding or removing one edge of network, the periodic attractor can be destroyed and substituted by a chaotic one, or vice versa. In contrast, under an extremely weakmore » coupling, another type of periodic window appears, which insensitively depends on the initial conditions, coupling parameter, and network. It is sustained and unchanged for different types of network structure. It is also found that the phase differences of the oscillators are almost discrete and randomly distributed except that directly linked oscillators more likely have different phases. These dynamical behaviors have also been generally observed in other networked chaotic oscillators.« less

  17. Locally excitatory, globally inhibitory oscillator networks: theory and application to scene segmentation

    NASA Astrophysics Data System (ADS)

    Wang, DeLiang; Terman, David

    1995-01-01

    A novel class of locally excitatory, globally inhibitory oscillator networks (LEGION) is proposed and investigated analytically and by computer simulation. The model of each oscillator corresponds to a standard relaxation oscillator with two time scales. The network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its active phase rapidly recruits the oscillators stimulated by the same pattern, while preventing other oscillators from jumping up. We show analytically that with the selective gating mechanism the network rapidly achieves both synchronization within blocks of oscillators that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate LEGION's promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation for the oscillatory correlation theory of feature binding, and may provide an effective computational framework for scene segmentation and figure/ground segregation.

  18. Dynamic Transition and Resonance in Coupled Oscillators Under Symmetry-Breaking Fields

    NASA Astrophysics Data System (ADS)

    Choi, J.; Choi, M. Y.; Chung, M. S.; Yoon, B.-G.

    2013-06-01

    We investigate numerically the dynamic properties of a system of globally coupled oscillators driven by periodic symmetry-breaking fields in the presence of noise. The phase distribution of the oscillators is computed and a dynamic transition is disclosed. It is further found that the stochastic resonance is closely related to the behavior of the dynamic order parameter, which is in turn explained by the formation of a bi-cluster in the system. Here noise tends to symmetrize the motion of the oscillators, facilitating the bi-cluster formation. The observed resonance appears to be of the same class as the resonance present in the two-dimensional Ising model under oscillating fields.

  19. A coupled-oscillator model of olfactory bulb gamma oscillations

    PubMed Central

    2017-01-01

    The olfactory bulb transforms not only the information content of the primary sensory representation, but also its underlying coding metric. High-variance, slow-timescale primary odor representations are transformed by bulbar circuitry into secondary representations based on principal neuron spike patterns that are tightly regulated in time. This emergent fast timescale for signaling is reflected in gamma-band local field potentials, presumably serving to efficiently integrate olfactory sensory information into the temporally regulated information networks of the central nervous system. To understand this transformation and its integration with interareal coordination mechanisms requires that we understand its fundamental dynamical principles. Using a biophysically explicit, multiscale model of olfactory bulb circuitry, we here demonstrate that an inhibition-coupled intrinsic oscillator framework, pyramidal resonance interneuron network gamma (PRING), best captures the diversity of physiological properties exhibited by the olfactory bulb. Most importantly, these properties include global zero-phase synchronization in the gamma band, the phase-restriction of informative spikes in principal neurons with respect to this common clock, and the robustness of this synchronous oscillatory regime to multiple challenging conditions observed in the biological system. These conditions include substantial heterogeneities in afferent activation levels and excitatory synaptic weights, high levels of uncorrelated background activity among principal neurons, and spike frequencies in both principal neurons and interneurons that are irregular in time and much lower than the gamma frequency. This coupled cellular oscillator architecture permits stable and replicable ensemble responses to diverse sensory stimuli under various external conditions as well as to changes in network parameters arising from learning-dependent synaptic plasticity. PMID:29140973

  20. Laser Metrology Heterodyne Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Loya, Frank; Halverson, Peter

    2009-01-01

    A method reduces sensitivity to noise in a signal from a laser heterodyne interferometer. The phase-locked loop (PLL) removes glitches that occur in a zero-crossing detector s output [that can happen if the signal-to-noise ratio (SNR) of the heterodyne signal is low] by the use of an internal oscillator that produces a square-wave signal at a frequency that is inherently close to the heterodyne frequency. It also contains phase-locking circuits that lock the phase of the oscillator to the output of the zero-crossing detector. Because the PLL output is an oscillator signal, it is glitch-free. This enables the ability to make accurate phase measurements in spite of low SNR, creates an immunity to phase error caused by shifts in the heterodyne frequency (i.e. if the target moves causing Doppler shift), and maintains a valid phase even when the signal drops out for brief periods of time, such as when the laser is blocked by a stray object.