Sample records for identical two-level atoms

  1. Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field

    NASA Technical Reports Server (NTRS)

    Konkov, L. E.; Prants, S. V.

    1996-01-01

    Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.

  2. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    NASA Astrophysics Data System (ADS)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  3. Quantum dynamics of a two-atom-qubit system

    NASA Astrophysics Data System (ADS)

    Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha

    2009-09-01

    A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.

  4. Cavity-QED interactions of two correlated atoms

    NASA Astrophysics Data System (ADS)

    Esfandiarpour, Saeideh; Safari, Hassan; Bennett, Robert; Yoshi Buhmann, Stefan

    2018-05-01

    We consider the resonant van der Waals (vdW) interaction between two correlated identical two-level atoms (at least one of which being excited) within the framework of macroscopic cavity quantum electrodynamics in linear, dispersing and absorbing media. The interaction of both atoms with the body-assisted electromagnetic field of the cavity is assumed to be strong. Our time-independent evaluation is based on an extended Jaynes–Cummings model. For a system prepared in a superposition of its dressed states, we derive the general form of the vdW forces, using a Lorentzian single-mode approximation. We demonstrate the applicability of this approach by considering the case of a planar cavity and showing the position dependence of Rabi oscillations. We also show that in the limiting case of weak coupling, our results reproduce the perturbative ones for the case where the field is initially in vacuum state while the atomic state is in a superposition of two correlated states sharing one excitation.

  5. Radiative process of two entanglement atoms in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2018-05-01

    We investigate the radiative processes of a quantum system composed by two identical two-level atoms in the de Sitter spacetime, interacting with a conformally coupled massless scalar field prepared in the de Sitter-invariant vacuum. We discuss the structure of the rate of variations of the atomic energy for two static atoms. Following a procedure developed by Dalibard, Dupont-Roc, and Cohen-Tannoudji, our intention is to identify in a quantitative way the contributions of vacuum fluctuations and the radiation reaction to the generation of quantum entanglement and to the degradation of entangled states. We find that when the distance between two atoms larger than the characteristic length scale, the rate of variation of atomic energy in the de Sitter-invariant vacuum behaves differently compared with that in the thermal Minkowski spacetime. In particular, the generation and degradation of quantum entanglement can be enhanced or inhibited, which are dependent not only on the specific entangled state but also on the distance between the atoms.

  6. Relative Energy Shift of a Two-Level Atom in a Cylindrical Spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Lin

    2012-11-01

    We investigate the evolution dynamics of a two-level atom system interacting with the massless scalar field in a Cylindrical spacetime. We find that both the energy shifts of ground state and excited state can be separated into two parts due to the vacuum fluctuations. One is the corresponding energy shift for a rest atom in four-dimensional Minkowski space without spatial compactification, the other is just the modification of the spatial compactified periodic length. It will reveal that the influence of the presence of one spatial compactified dimension can not be neglected in Lamb shift as the relative energy level shift of an atom.

  7. Two-mode mazer injected with V-type three-level atoms

    NASA Astrophysics Data System (ADS)

    Liang, Wen-Qing; Zhang, Zhi-Ming; Xie, Sheng-Wu

    2003-12-01

    The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the one-atom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.

  8. Quantum Treatment of Two Coupled Oscillators in Interaction with a Two-Level Atom:

    NASA Astrophysics Data System (ADS)

    Khalil, E. M.; Abdalla, M. Sebawe; Obada, A. S.-F.

    In this communication we handle a modified model representing the interaction between a two-level atom and two modes of the electromagnetic field in a cavity. The interaction between the modes is assumed to be of a parametric amplifier type. The model consists of two different systems, one represents the Jaynes-Cummings model (atom-field interaction) and the other represents the two mode parametric amplifier model (field-field interaction). After some canonical transformations the constants of the motion have been obtained and used to derive the time evolution operator. The wave function in the Schrödinger picture is constructed and employed to discuss some statistical properties related to the system. Further discussion related to the statistical properties of some physical quantities is given where we have taken into account an initial correlated pair-coherent state for the modes. We concentrate in our examination on the system behavior that occurred as a result of the variation of the parametric amplifier coupling parameter as well as the detuning parameter. It has been shown that the interaction of the parametric amplifier term increases the revival period and consequently longer period of strong interaction between the atom and the fields.

  9. Two-probe STM experiments at the atomic level.

    PubMed

    Kolmer, Marek; Olszowski, Piotr; Zuzak, Rafal; Godlewski, Szymon; Joachim, Christian; Szymonski, Marek

    2017-11-08

    Direct characterization of planar atomic or molecular scale devices and circuits on a supporting surface by multi-probe measurements requires unprecedented stability of single atom contacts and manipulation of scanning probes over large, nanometer scale area with atomic precision. In this work, we describe the full methodology behind atomically defined two-probe scanning tunneling microscopy (STM) experiments performed on a model system: dangling bond dimer wire supported on a hydrogenated germanium (0 0 1) surface. We show that 70 nm long atomic wire can be simultaneously approached by two independent STM scanners with exact probe to probe distance reaching down to 30 nm. This allows direct wire characterization by two-probe I-V characteristics at distances below 50 nm. Our technical results presented in this work open a new area for multi-probe research, which can be now performed with precision so far accessible only by single-probe scanning probe microscopy (SPM) experiments.

  10. Generation of long-living entanglement between two distant three-level atoms in non-Markovian environments.

    PubMed

    Li, Chuang; Yang, Sen; Song, Jie; Xia, Yan; Ding, Weiqiang

    2017-05-15

    In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.

  11. Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci

    In the framework of open quantum systems, we study the dynamics of a static polarizable two-level atom interacting with a bath of fluctuating vacuum electromagnetic field and explore under which conditions the coherence of the open quantum system is unaffected by the environment. For both a single-qubit and two-qubit systems, we find that the quantum coherence cannot be protected from noise when the atom interacts with a non-boundary electromagnetic field. However, with the presence of a boundary, the dynamical conditions for the insusceptible of quantum coherence are fulfilled only when the atom is close to the boundary and is transverselymore » polarizable. Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction. -- Highlights: •We study the dynamics of a two-level atom interacting with a bath of fluctuating vacuum electromagnetic field. •For both a single and two-qubit systems, the quantum coherence cannot be protected from noise without a boundary. •The insusceptible of the quantum coherence can be fulfilled only when the atom is close to the boundary and is transversely polarizable. •Otherwise, the quantum coherence can only be protected in some degree in other polarizable direction.« less

  12. Time evolution, Lamb shift, and emission spectra of spontaneous emission of two identical atoms

    NASA Astrophysics Data System (ADS)

    Wang, Da-Wei; Li, Zheng-Hong; Zheng, Hang; Zhu, Shi-Yao

    2010-04-01

    A unitary transformation method is used to investigate the dynamic evolution of two multilevel atoms, in the basis of symmetric and antisymmetric states, with one atom being initially prepared in the first excited state and the other in the ground state. The unitary transformation guarantees that our calculations are based on the ground state of the atom-field system and the self-energy is subtracted at the beginning. The total Lamb shifts of the symmetric and antisymmetric states are divided into transformed shift and dynamic shift. The transformed shift is due to emitting and reabsorbing of virtual photons, by a single atom (nondynamic single atomic shift) and between the two atoms (quasi-static shift). The dynamic shift is due to the emitting and reabsorbing of real photons, by a single atom (dynamic single atomic shift) and between the two atoms (dynamic interatomic shift). The emitting and reabsorbing of virtual and real photons between the two atoms result in the interatomic shift, which does not exist for the one-atom case. The spectra at the long-time limit are calculated. If the distance between the two atoms is shorter than or comparable to the wavelength, the strong coupling between the two atoms splits the spectrum into two peaks, one from the symmetric state and the other from the antisymmetric state. The origin of the red or blue shifts for the symmetric and antisymmetric states mainly lies in the negative or positive interaction energy between the two atoms. In the investigation of the short time evolution, we find the modification of the effective density of states by the interaction between two atoms can modulate the quantum Zeno and quantum anti-Zeno effects in the decays of the symmetric and antisymmetric states.

  13. Interference of resonance fluorescence from two four-level atoms

    NASA Astrophysics Data System (ADS)

    Wong, T.; Tan, S. M.; Collett, M. J.; Walls, D. F.

    1997-02-01

    In a recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)], polarization-sensitive measurements of the fluorescence from two four-level ions driven by a linearly polarized laser were made. Depending on the polarization chosen, different degrees of interference were observed. We carry out a theoretical and numerical study of this system, showing that the results can largely be understood by treating the atoms as independent radiators which are synchronized by the phase of the incident laser field. The interference and its loss may be described in terms of the difference between coherent and incoherent driving of the various atomic transitions in the steady state. In the numerical simulations, which are carried out using the Monte Carlo wave-function method, we remove the assumption that the atoms radiate independently and consider the photodetection process in detail. This allows us to see the total interference pattern build up from individual photodetections and also to see the effects of superfluorescence, which become important when the atomic separation is comparable to an optical wavelength. The results of the calculations are compared with the experiment. We also carry out simulations in the non-steady-state regime and discuss the relationship between the visibility of the interference pattern and which-path considerations.

  14. Absorption spectrum of a two-level atom in a bad cavity with injected squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Swain, S.

    1996-02-01

    We study the absorption spectrum of a coherently driven two-level atom interacting with a resonant cavity mode which is coupled to a broadband squeezed vacuum through its input-output mirror in the bad cavity limit. We study the modification of the two-photon correlation strength of the injected squeezed vacuum inside the cavity, and show that the equations describing probe absorption in the cavity environment are formally identical to these in free space, but with modified parameters describing the squeezed vacuum. The two photon correlations induced by the squeezed vacuum are always weaker than in free space. We pay particular attention to the spectral behaviour at line centre in the region of intermediate trength driving intensities, where anomalous spectral features such as hole-burning and dispersive profiles are displayed. These unusual spectral features are very sensitive to the squeezing phase and the Rabi frequency of the driving field. We also derive the threshold value of the Rabi frequency which gives rise to the transparency of the probe beam at the driving frequency. When the Rabi frequency is less than the threshold value, the probe beam is absorbed, whilst the probe beam is amplified (without population inversion under certain conditions) when the Rabi frequency is larger than this threshold. The anomalous spectral features all take place in the vicinity of the critical point dividing the different dynamical regimes, probe absorption and amplification, of the atomic radiation. The physical origin of the strong amplification without population inversion, and the feasibility of observing it, are discussed.

  15. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  16. Revealing the planar chemistry of two-dimensional heterostructures at the atomic level.

    PubMed

    Chou, Harry; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney S; Dolocan, Andrei

    2015-06-23

    Two-dimensional (2D) atomic crystals and their heterostructures are an intense area of study owing to their unique properties that result from structural planar confinement. Intrinsically, the performance of a planar vertical device is linked to the quality of its 2D components and their interfaces, therefore requiring characterization tools that can reveal both its planar chemistry and morphology. Here, we propose a characterization methodology combining (micro-) Raman spectroscopy, atomic force microscopy and time-of-flight secondary ion mass spectrometry to provide structural information, morphology and planar chemical composition at virtually the atomic level, aimed specifically at studying 2D vertical heterostructures. As an example system, a graphene-on-h-BN heterostructure is analysed to reveal, with an unprecedented level of detail, the subtle chemistry and interactions within its layer structure that can be assigned to specific fabrication steps. Such detailed chemical information is of crucial importance for the complete integration of 2D heterostructures into functional devices.

  17. Influence of atomic densities on propagation property for ultrashort pulses in a two-level medium

    NASA Astrophysics Data System (ADS)

    Liu, Bingxin; Gong, Shangqing; Song, Xiaohong; Jin, Shiqi

    2005-05-01

    The influence of atomic densities on the propagation property for ultrashort pulses in a two-level atom (TLA) medium is investigated. With higher atomic densities, the self-induced transparency (SIT) cannot be recovered even for 2? ultrashort pulses. New features such as pulse splitting, red-shift and blue-shift of the corresponding spectra arise, and the component of central frequency gradually disappears.

  18. Geometric phase for a static two-level atom in cosmic string spacetime

    NASA Astrophysics Data System (ADS)

    Cai, Huabing; Ren, Zhongzhou

    2018-05-01

    We investigate the geometric phase of a static two-level atom immersed in a bath of fluctuating vacuum electromagnetic field in the background of a cosmic string. Our results indicate that due to the existence of the string, the geometric phase depends crucially on the position and the polarizability of the atom relative to the string. This can be ascribed to the fact that the presence of the string profoundly modify the distribution of electric field in Minkowski spacetime. So in principle, we can detect the cosmic string by experiments involving geometric phase.

  19. High-precision two-dimensional atom localization from four-wave mixing in a double-Λ four-level atomic system

    NASA Astrophysics Data System (ADS)

    Shui, Tao; Yang, Wen-Xing; Chen, Ai-Xi; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu

    2018-03-01

    We propose a scheme for high-precision two-dimensional (2D) atom localization via the four-wave mixing (FWM) in a four-level double-Λ atomic system. Due to the position-dependent atom-field interaction, the 2D position information of the atoms can be directly determined by the measurement of the normalized light intensity of output FWM-generated field. We further show that, when the position-dependent generated FWM field has become sufficiently intense, efficient back-coupling to the FWM generating state becomes important. This back-coupling pathway leads to competitive multiphoton destructive interference of the FWM generating state by three supplied and one internally generated fields. We find that the precision of 2D atom localization can be improved significantly by the multiphoton destructive interference and depends sensitively on the frequency detunings and the pump field intensity. Interestingly enough, we show that adjusting the frequency detunings and the pump field intensity can modify significantly the FWM efficiency, and consequently lead to a redistribution of the atoms. As a result, the atom can be localized in one of four quadrants with holding the precision of atom localization.

  20. Complementarity and Young's interference fringes from two atoms

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Bollinger, J. J.; Wineland, D. J.; Eichmann, U.; Raizen, M. G.

    1998-06-01

    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. The thermal motion of the atoms is included. Agreement is obtained with experiments [U. Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.

  1. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    NASA Astrophysics Data System (ADS)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  2. Time-dependent interaction between a two-level atom and a su(1,1) Lie algebra quantum system

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebaweh; Khalil, E. M.; Obada, A.-S. F.

    2017-06-01

    The problem of the interaction between a two-level atom and a two-mode field in the parametric amplifier-type is considered. A similar problem appears in an ion trapped in a two-dimensional trap. The problem is transformed into an interaction governed by su(1,1) Lie algebraic operators with phase and coupling parameter depending on time. Under an integrability condition, that relates phase and coupling, a solution to the wavefunction is obtained using the Schrödinger equation. The effects of the functional dependence of the coupling and the initial state of the two-level atom on atomic inversion, the degree of entanglement, the fidelity and the Glauber second-order correlation function are investigated. It is shown that the acceleration term plays an important role in controlling the function behavior of the considered quantities.

  3. Entanglement between two spatially separated atomic modes

    NASA Astrophysics Data System (ADS)

    Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten

    2018-04-01

    Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

  4. Stability of various entanglements in the interaction between two two-level atoms with a quantized field under the influences of several decay sources

    NASA Astrophysics Data System (ADS)

    Valizadeh, Sh.; Tavassoly, M. K.; Yazdanpanah, N.

    2018-02-01

    In this paper the interaction between two two-level atoms with a single-mode quantized field is studied. To achieve exact information about the physical properties of the system, one should take into account various sources of dissipation such as photon leakage of cavity, spontaneous emission rate of atoms, internal thermal radiation of cavity and dipole-dipole interaction between the two atoms. In order to achieve the desired goals, we obtain the time evolution of the associated density operator by solving the time-dependent Lindblad equation corresponding to the system. Then, we evaluate the temporal behavior of total population inversion and quantum entanglement between the evolved subsystems, numerically. We clearly show that how the damping parameters affect on the dynamics of considered properties. By analyzing the numerical results, we observe that increasing each of the damping sources leads to faster decay of total population inversion. Also, it is observed that, after starting the interaction, the entanglement between one atom with other parts of the system as well as the entanglement between "atom-atom" subsystem and the "field", tend to some constant values very soon. Moreover, the stable values of entanglement are reduced via increasing the damping factor Γ A (ΓA^{(1)} = ΓA^{(2)} = ΓA ) where ΓA is the spontaneous emission rate of each atom. In addition, we find that by increasing the thermal photons, the entropies (entanglements) tend sooner to some increased stable values. Accordingly, we study the atom-atom entanglement by evaluating the concurrence under the influence of dissipation sources, too. At last, the effects of dissipation sources on the genuine tripartite entanglement between the three subsystems include of two two-level atoms and a quantized field are numerically studied. Due to the important role of stationary entanglement in quantum information processing, our results may provide useful hints for practical protocols which require

  5. Simultaneously exciting two atoms with photon-mediated Raman interactions

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-06-01

    We propose an approach to simultaneously excite two atoms by using a cavity-assisted Raman process in combination with a cavity-photon-mediated interaction. The system consists of a two-level atom and a Λ -type or V -type three-level atom, which are coupled together with a cavity mode. Having derived the effective Hamiltonian, we find that under certain circumstances a single photon can simultaneously excite two atoms. In addition, multiple photons and even a classical field can also simultaneously excite two atoms. As an example, we show a scheme to realize our proposal in a circuit QED setup, which is artificial atoms coupled with a cavity. The dynamics and the quantum-statistical properties of the process are investigated with experimentally feasible parameters.

  6. Validity of the two-level approximation in the interaction of few-cycle light pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng Jing; Zhou Jianying

    2003-04-01

    The validity of the two-level approximation (TLA) in the interaction of atoms with few-cycle light pulses is studied by investigating a simple (V)-type three-level atom model. Even the transition frequency between the ground state and the third level is far away from the spectrum of the pulse; this additional transition can make the TLA inaccuracy. For a sufficiently large transition frequency or a weak coupling between the ground state and the third level, the TLA is a reasonable approximation and can be used safely. When decreasing the pulse width or increasing the pulse area, the TLA will give rise tomore » non-negligible errors compared with the precise results.« less

  7. Validity of the two-level approximation in the interaction of few-cycle light pulses with atoms

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Zhou, Jianying

    2003-04-01

    The validity of the two-level approximation (TLA) in the interaction of atoms with few-cycle light pulses is studied by investigating a simple V-type three-level atom model. Even the transition frequency between the ground state and the third level is far away from the spectrum of the pulse; this additional transition can make the TLA inaccuracy. For a sufficiently large transition frequency or a weak coupling between the ground state and the third level, the TLA is a reasonable approximation and can be used safely. When decreasing the pulse width or increasing the pulse area, the TLA will give rise to non-negligible errors compared with the precise results.

  8. Polarizability and the optical theorem for a two-level atom with radiative broadening

    NASA Astrophysics Data System (ADS)

    Berman, Paul R.; Boyd, Robert W.; Milonni, Peter W.

    2006-11-01

    The effect of spontaneous decay on the linear polarizability of an atom is typically included by adding imaginary parts to the frequency denominators that appear in the Kramers-Heisenberg formula. It has been shown for a two-level atom with radiative broadening that these (frequency-dependent) imaginary parts must be included in both the resonant and antiresonant frequency denominators [P. W. Milonni and R. W. Boyd, Phys. Rev. A 69, 023814 (2004)]; however, the expression obtained by Milonni and Boyd for the polarizability does not satisfy the optical theorem, if contributions from non-rotating-wave terms are included. In this paper, we derive a more accurate expression for the polarizability. The calculations are rather complicated and require that we go beyond the standard Weisskopf-Wigner approximation. We present calculations carried out in both the Heisenberg and Schrödinger pictures, since they offer complementary methods for understanding the dynamics of the Rayleigh scattering associated with the atomic polarizability. Moreover, it is shown that the shifts associated with the excited state are not the Lamb shifts of an isolated atom, but depend on the dynamics of the atom-field interaction. Our results for the polarizability are consistent with those obtained recently by Loudon and Barnett using a Green’s-function approach.

  9. On the non-linear spectroscopy including saturated absorption and four-wave mixing in two and multi-level atoms: a computational study

    NASA Astrophysics Data System (ADS)

    Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.

    2017-10-01

    In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.

  10. Approximate conditional teleportation of a Λ-type three-level atomic state based on cavity QED method beyond Bell-state measurement

    NASA Astrophysics Data System (ADS)

    Sehati, N.; Tavassoly, M. K.

    2017-08-01

    Inspiring from the scheme proposed in (Zheng in Phys Rev A 69:064,302 2004), our aim is to teleport an unknown qubit atomic state using the cavity QED method without using the explicit Bell-state measurement, and so the additional atom is not required. Two identical Λ-type three-level atoms are interacted separately and subsequently with a two-mode quantized cavity field where each mode is expressed with a single-photon field state. The interaction between atoms and field is well described via the Jaynes-Cummings model. It is then shown that how if the atomic detection results a particular state of atom 1, an unknown state can be appropriately teleported from atom 1 to atom 2. This teleportation procedure successfully leads to the high fidelity F (success probability P_g) in between 69%≲ F≲ 100% (0.14≲ P_g≲ 0.56). At last, we illustrated that our scheme considerably improves similar previous proposals.

  11. Resonance fluorescence based two- and three-dimensional atom localization

    NASA Astrophysics Data System (ADS)

    Wahab, Abdul; Rahmatullah; Qamar, Sajid

    2016-06-01

    Two- and three-dimensional atom localization in a two-level atom-field system via resonance fluorescence is suggested. For the two-dimensional localization, the atom interacts with two orthogonal standing-wave fields, whereas for the three-dimensional atom localization, the atom interacts with three orthogonal standing-wave fields. The effect of the detuning and phase shifts associated with the corresponding standing-wave fields is investigated. A precision enhancement in position measurement of the single atom can be noticed via the control of the detuning and phase shifts.

  12. Electro-Optic Quantum Memory for Light Using Two-Level Atoms

    NASA Astrophysics Data System (ADS)

    Hétet, G.; Longdell, J. J.; Alexander, A. L.; Lam, P. K.; Sellars, M. J.

    2008-01-01

    We present a simple quantum memory scheme that allows for the storage of a light field in an ensemble of two-level atoms. The technique is analogous to the NMR gradient echo for which the imprinting and recalling of the input field are performed by controlling a linearly varying broadening. Our protocol is perfectly efficient in the limit of high optical depths and the output pulse is emitted in the forward direction. We provide a numerical analysis of the protocol together with an experiment performed in a solid state system. In close agreement with our model, the experiment shows a total efficiency of up to 15%, and a recall efficiency of 26%. We suggest simple realizable improvements for the experiment to surpass the no-cloning limit.

  13. Electro-optic quantum memory for light using two-level atoms.

    PubMed

    Hétet, G; Longdell, J J; Alexander, A L; Lam, P K; Sellars, M J

    2008-01-18

    We present a simple quantum memory scheme that allows for the storage of a light field in an ensemble of two-level atoms. The technique is analogous to the NMR gradient echo for which the imprinting and recalling of the input field are performed by controlling a linearly varying broadening. Our protocol is perfectly efficient in the limit of high optical depths and the output pulse is emitted in the forward direction. We provide a numerical analysis of the protocol together with an experiment performed in a solid state system. In close agreement with our model, the experiment shows a total efficiency of up to 15%, and a recall efficiency of 26%. We suggest simple realizable improvements for the experiment to surpass the no-cloning limit.

  14. Two wide-angle imaging neutral-atom spectrometers (TWINS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McComas, D.J.; Blake, B.; Burch, J.

    1998-11-01

    Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will providemore » a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach.« less

  15. Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.

    In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.

  16. Analysis of spatial correlations in a model two-dimensional liquid through eigenvalues and eigenvectors of atomic-level stress matrices.

    PubMed

    Levashov, V A; Stepanov, M G

    2016-01-01

    Considerations of local atomic-level stresses associated with each atom represent a particular approach to address structures of disordered materials at the atomic level. We studied structural correlations in a two-dimensional model liquid using molecular dynamics simulations in the following way. We diagonalized the atomic-level stress tensor of every atom and investigated correlations between the eigenvalues and orientations of the eigenvectors of different atoms as a function of distance between them. It is demonstrated that the suggested approach can be used to characterize structural correlations in disordered materials. In particular, we found that changes in the stress correlation functions on decrease of temperature are the most pronounced for the pairs of atoms with separation distance that corresponds to the first minimum in the pair density function. We also show that the angular dependencies of the stress correlation functions previously reported by Wu et al. [Phys. Rev. E 91, 032301 (2015)10.1103/PhysRevE.91.032301] do not represent the anisotropic Eshelby's stress fields, as it is suggested, but originate in the rotational properties of the stress tensors.

  17. Spectral Effects for an Ultrashort Pulse Train Propagating in a Two-Level Atom Medium

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Xin; Gong, Shang-Qing; Song, Xiao-Hong; Li, Ru-Xin; Xu, Zhi-Zhan

    2005-06-01

    We investigate the spectra of a femtosecond pulse train propagating in a resonant two-level atom (TLA) medium. It is found that higher spectral components can be produced even for a 2π femtosecond pulse train. Furthermore, the spectral effects depend crucially on both the relative shift Φ and the delay time τ between the successive pulses of the femtosecond pulse train.

  18. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  19. Magnus expansion method for two-level atom interacting with few-cycle pulse

    NASA Astrophysics Data System (ADS)

    Begzjav, T.; Ben-Benjamin, J. S.; Eleuch, H.; Nessler, R.; Rostovtsev, Y.; Shchedrin, G.

    2018-06-01

    Using the Magnus expansion to the fourth order, we obtain analytic expressions for the atomic state of a two-level system driven by a laser pulse of arbitrary shape with small pulse area. We also determine the limitation of our obtained formulas due to limited range of convergence of the Magnus series. We compare our method to the recently developed method of Rostovtsev et al. (PRA 2009, 79, 063833) for several detunings. Our analysis shows that our technique based on the Magnus expansion can be used as a complementary method to the one in PRA 2009.

  20. Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre

    2018-05-01

    We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.

  1. Masters Level Graduate Student Writing Groups: Exploring Academic Identity

    ERIC Educational Resources Information Center

    Ruggles, Tosha M.

    2012-01-01

    This action research project explores masters level graduate student writing and academic identity during one semester in an interdisciplinary masters program. Informing this study is a two part theoretical framework including the Academic Literacy Model (Lea and Street) and Wenger's concept of identity. The purpose of this exploration was to…

  2. Attending to the Role of Identity Exploration in Self-Esteem: Longitudinal Associations between Identity Styles and Two Features of Self-Esteem

    ERIC Educational Resources Information Center

    Soenens, Bart; Berzonsky, Michael D.; Papini, Dennis R.

    2016-01-01

    Although research suggests an interplay between identity development and self-esteem, most studies focused on the role of identity commitment and measured only level of self-esteem. This study examined longitudinal associations between Berzonsky's (2011) styles of identity exploration and two distinct features of self-esteem: level of self-esteem…

  3. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  4. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  5. Controlling resonant photonic transport along optical waveguides by two-level atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Conghua; College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068; Wei Lianfu

    2011-10-15

    Recent works [Shen et al., Phys. Rev. Lett. 95, 213001 (2005); Zhou et al., Phys. Rev. Lett. 101, 100501 (2008)] showed that the incident photons cannot transmit along an optical waveguide containing a resonant two-level atom (TLA). Here we propose an approach to overcome such a difficulty by using asymmetric couplings between the photons and a TLA. Our numerical results show that the transmission spectrum of the photon depends on both the frequency of the incident photons and the photon-TLA couplings. Consequently, this system can serve as a controllable photon attenuator, by which the transmission probability of the resonantly incidentmore » photons can be changed from 0% to 100%. A possible application to explain the recent experimental observations [Astafiev et al., Science 327, 840 (2010)] is also discussed.« less

  6. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    NASA Astrophysics Data System (ADS)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  7. Characteristics of a Two-Dimensional Hydrogenlike Atom

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2018-06-01

    Using the customary and well-known representation of the radiation probability of a hydrogen-like atom in the three-dimensional case, a general expression for the probability of single-photon emission of a twodimensional atom has been obtained along with an expression for the particular case of the transition from the first excited state to the ground state, in the latter case in comparison with corresponding expressions for the three-dimensional atom and the one-dimensional atom. Arguments are presented in support of the claim that this method of calculation gives a value of the probability that is identical to the value given by exact methods of QED extended to the subspace {0, 1, 2}. Relativistic corrections (Zα)4 to the usual Schrödinger value of the energy ( (Zα)2) are also discussed.

  8. Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules

    NASA Astrophysics Data System (ADS)

    Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.

    2018-02-01

    In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.

  9. Entangling two unequal atoms through a common bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benatti, F.; Marzolino, U.; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste

    The evolution of two, noninteracting, two-level atoms immersed in a weakly coupled bath can be described by a refined, time-coarse-grained Markovian evolution, still preserving complete positivity. We find that this improved, reduced dynamics is able to entangle the two atoms even when their internal frequencies are unequal, an effect that appears impossible in the standard weak-coupling-limit approach. We study in detail this phenomenon for an environment made of quantum fields.

  10. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  11. Hybrid quantum logic and a test of Bell's inequality using two different atomic isotopes.

    PubMed

    Ballance, C J; Schäfer, V M; Home, J P; Szwer, D J; Webster, S C; Allcock, D T C; Linke, N M; Harty, T P; Aude Craik, D P L; Stacey, D N; Steane, A M; Lucas, D M

    2015-12-17

    Entanglement is one of the most fundamental properties of quantum mechanics, and is the key resource for quantum information processing (QIP). Bipartite entangled states of identical particles have been generated and studied in several experiments, and post-selected or heralded entangled states involving pairs of photons, single photons and single atoms, or different nuclei in the solid state, have also been produced. Here we use a deterministic quantum logic gate to generate a 'hybrid' entangled state of two trapped-ion qubits held in different isotopes of calcium, perform full tomography of the state produced, and make a test of Bell's inequality with non-identical atoms. We use a laser-driven two-qubit gate, whose mechanism is insensitive to the qubits' energy splittings, to produce a maximally entangled state of one (40)Ca(+) qubit and one (43)Ca(+) qubit, held 3.5 micrometres apart in the same ion trap, with 99.8 ± 0.6 per cent fidelity. We test the CHSH (Clauser-Horne-Shimony-Holt) version of Bell's inequality for this novel entangled state and find that it is violated by 15 standard deviations; in this test, we close the detection loophole but not the locality loophole. Mixed-species quantum logic is a powerful technique for the construction of a quantum computer based on trapped ions, as it allows protection of memory qubits while other qubits undergo logic operations or are used as photonic interfaces to other processing units. The entangling gate mechanism used here can also be applied to qubits stored in different atomic elements; this would allow both memory and logic gate errors caused by photon scattering to be reduced below the levels required for fault-tolerant quantum error correction, which is an essential prerequisite for general-purpose quantum computing.

  12. Identity-level representations affect unfamiliar face matching performance in sequential but not simultaneous tasks.

    PubMed

    Menon, Nadia; White, David; Kemp, Richard I

    2015-01-01

    According to cognitive and neurological models of the face-processing system, faces are represented at two levels of abstraction. First, image-based pictorial representations code a particular instance of a face and include information that is unrelated to identity-such as lighting, pose, and expression. Second, at a more abstract level, identity-specific representations combine information from various encounters with a single face. Here we tested whether identity-level representations mediate unfamiliar face matching performance. Across three experiments we manipulated identity attributions to pairs of target images and measured the effect on subsequent identification decisions. Participants were instructed that target images were either two photos of the same person (1ID condition) or photos of two different people (2ID condition). This manipulation consistently affected performance in sequential matching: 1ID instructions improved accuracy on "match" trials and caused participants to adopt a more liberal response bias than the 2ID condition. However, this manipulation did not affect performance in simultaneous matching. We conclude that identity-level representations, generated in working memory, influence the amount of variation tolerated between images, when making identity judgements in sequential face matching.

  13. Controlling resonant photonic transport along optical waveguides by two-level atoms

    NASA Astrophysics Data System (ADS)

    Yan, Cong-Hua; Wei, Lian-Fu; Jia, Wen-Zhi; Shen, Jung-Tsung

    2011-10-01

    Recent works [Shen , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.213001 95, 213001 (2005); Zhou , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.100501 101, 100501 (2008)] showed that the incident photons cannot transmit along an optical waveguide containing a resonant two-level atom (TLA). Here we propose an approach to overcome such a difficulty by using asymmetric couplings between the photons and a TLA. Our numerical results show that the transmission spectrum of the photon depends on both the frequency of the incident photons and the photon-TLA couplings. Consequently, this system can serve as a controllable photon attenuator, by which the transmission probability of the resonantly incident photons can be changed from 0% to 100%. A possible application to explain the recent experimental observations [Astafiev , ScienceSCIEAS0036-807510.1126/science.1181918 327, 840 (2010)] is also discussed.

  14. Robust sub-millihertz-level offset locking for transferring optical frequency accuracy and for atomic two-photon spectroscopy.

    PubMed

    Cheng, Wang-Yau; Chen, Ting-Ju; Lin, Chia-Wei; Chen, Bo-Wei; Yang, Ya-Po; Hsu, Hung Yi

    2017-02-06

    Robust sub-millihertz-level offset locking was achieved with a simple scheme, by which we were able to transfer the laser frequency stability and accuracy from either cesium-stabilized diode laser or comb laser to the other diode lasers who had serious frequency jitter previously. The offset lock developed in this paper played an important role in atomic two-photon spectroscopy with which record resolution and new determination on the hyperfine constants of cesium atom were achieved. A quantum-interference experiment was performed to show the improvement of light coherence as an extended design was implemented.

  15. Performance analysis of quantum Diesel heat engines with a two-level atom as working substance

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Shang, Y. F.; Guo, D. Y.; Yu, Qian; Sun, Qi

    2017-07-01

    A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.

  16. Strain-Tuning Atomic Substitution in Two-Dimensional Atomic Crystals.

    PubMed

    Li, Honglai; Liu, Hongjun; Zhou, Linwei; Wu, Xueping; Pan, Yuhao; Ji, Wei; Zheng, Biyuan; Zhang, Qinglin; Zhuang, Xiujuan; Zhu, Xiaoli; Wang, Xiao; Duan, Xiangfeng; Pan, Anlian

    2018-05-22

    Atomic substitution offers an important route to achieve compositionally engineered two-dimensional nanostructures and their heterostructures. Despite the recent research progress, the fundamental understanding of the reaction mechanism has still remained unclear. Here, we reveal the atomic substitution mechanism of two-dimensional atomic layered materials. We found that the atomic substitution process depends on the varying lattice constant (strain) in monolayer crystals, dominated by two strain-tuning (self-promoted and self-limited) mechanisms using density functional theory calculations. These mechanisms were experimentally confirmed by the controllable realization of a graded substitution ratio in the monolayers by controlling the substitution temperature and time and further theoretically verified by kinetic Monte Carlo simulations. The strain-tuning atomic substitution processes are of general importance to other two-dimensional layered materials, which offers an interesting route for tailoring electronic and optical properties of these materials.

  17. Role of initial coherence in the generation of harmonics and sidebands from a strongly driven two-level atom

    NASA Astrophysics Data System (ADS)

    Gauthey, F. I.; Keitel, C. H.; Knight, P. L.; Maquet, A.

    1995-07-01

    We investigate the coherent and incoherent contributions of the scattering spectrum of strongly driven two-level atoms as a function of the initial preparation of the atomic system. The initial ``phasing'' of the coherent superposition of the excited and ground states is shown to influence strongly the generation of both harmonics and hyper-Raman lines. In particular, we point out conditions under which harmonic generation can be inhibited at the expense of the hyper-Raman lines. Our numerical findings are supported by approximate analytical evaluation in the dressed state picture.

  18. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    NASA Astrophysics Data System (ADS)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  19. Two Identities for the Bernoulli-Euler Numbers

    ERIC Educational Resources Information Center

    Gauthier, N.

    2008-01-01

    Two identities for the Bernoulli and for the Euler numbers are derived. These identities involve two special cases of central combinatorial numbers. The approach is based on a set of differential identities for the powers of the secant. Generalizations of the Mittag-Leffler series for the secant are introduced and used to obtain closed-form…

  20. Effect of dispersion forces on squeezing with Rydberg atoms

    NASA Technical Reports Server (NTRS)

    Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.

    1994-01-01

    We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.

  1. Resonance line polarization and the Hanle effect in optically thick media. I - Formulation for the two-level atom

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.

    1990-08-01

    A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).

  2. Enhancing optical nonreciprocity by an atomic ensemble in two coupled cavities

    NASA Astrophysics Data System (ADS)

    Song, L. N.; Wang, Z. H.; Li, Yong

    2018-05-01

    We study the optical nonreciprocal propagation in an optical molecule of two coupled cavities with one of them interacting with a two-level atomic ensemble. The effect of increasing the number of atoms on the optical isolation ratio of the system is studied. We demonstrate that the significant nonlinearity supplied by the coupling of the atomic ensemble with the cavity leads to the realization of greatly-enhanced optical nonreciprocity compared with the case of single atom.

  3. Atomic-batched tensor decomposed two-electron repulsion integrals

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  4. Atomic-batched tensor decomposed two-electron repulsion integrals.

    PubMed

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-07

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  5. Control and Transfer of Entanglement between Two Atoms Driven by Classical Fields under Dressed-State Representation

    NASA Astrophysics Data System (ADS)

    Liao, Qing-Hong; Zhang, Qi; Xu, Juan; Yan, Qiu-Rong; Liu, Ye; Chen, An

    2016-06-01

    We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays. Supported by National Natural Science Foundation of China under Grant Nos. 11247213, 61368002, 11304010, 11264030, 61168001, China Postdoctoral Science Foundation under Grant No. 2013M531558, Jiangxi Postdoctoral Research Project under Grant No. 2013KY33, the Natural Science Foundation of Jiangxi Province under Grant No. 20142BAB217001, the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) under Grant No. 20122BCB23002, the Research Foundation of the Education Department of Jiangxi Province under Grant Nos. GJJ13051, GJJ13057, and the Graduate Innovation Special Fund of Nanchang University under Grant No. cx2015137

  6. Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2016-08-01

    Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.

  7. FAST TRACK COMMUNICATION: Controllable optical bistability and multistability in a double two-level atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Lü, Xin-You; Zheng, Li-Li

    2010-08-01

    We theoretically investigate the behaviour of optical bistability (OB) and optical multistability (OM) in a generic double two-level atomic system driven by two orthogonally polarized fields (a π-polarized control field and a σ-polarized probe field). It is found that the behaviour of OB can be controlled by adjusting the intensity or the frequency detuning of the control field. Interestingly enough, our numerical results also show that it is easy to realize the transition from OB to OM or vice versa by adjusting the relative phase between the control and probe fields. This investigation can be used for the development of new types of devices for realizing an all-optic switching process.

  8. Coherent control of the group velocity in a dielectric slab doped with duplicated two-level atoms

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang; Qamar, Sajid

    2016-01-01

    Coherent control of reflected and transmitted pulses is investigated theoretically through a slab doped with atoms in a duplicated two-level configuration. When a strong control field and a relatively weak probe field are employed, coherent control of the group velocity is achieved via changing the phase shift ϕ between control and probe fields. Furthermore, the peak values in the delay time of the reflected and transmitted pulses are also studied by varying the phase shift ϕ.

  9. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping

    PubMed Central

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-01-01

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122

  10. Quantum Synchronization of three-level atoms

    NASA Astrophysics Data System (ADS)

    He, Peiru; Rey, Ana Maria; Holland, Murray

    2015-05-01

    Recent studies show that quantum synchronization, the spontaneous alignment of the quantum phase between different oscillators, can be used to build superradiant lasers with ultranarrow linewidth. We theoretically investigate the effect of quantum synchronization on many coupled three-level atoms where there are richer phase diagrams than the standard two-level system. This three-level model allows two-color ultranarrow coherent light to be produced where more than one phase must be simultaneously synchronized. Of particular interest, we study the V-type geometry that is relevant to current 87 Sr experiments in JILA. As well as the synchronization phenomenon, we explore other quantum effects such as photon correlations and squeezing. This work is supported by the DARPA QuASAR program, the NSF, and NIST.

  11. Electromagnetically induced absorption and transparency in degenerate two level systems of metastable Kr atoms and measurement of Landé g-factor

    NASA Astrophysics Data System (ADS)

    Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.

    2016-12-01

    We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.

  12. Coherent control of strong-field two-pulse ionization of Rydberg atoms.

    PubMed

    Fedorov, M; Poluektov, N

    2000-02-28

    Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.

  13. Two-Photon Transitions in Hydrogen-Like Atoms

    NASA Astrophysics Data System (ADS)

    Martinis, Mladen; Stojić, Marko

    Different methods for evaluating two-photon transition amplitudes in hydrogen-like atoms are compared with the improved method of direct summation. Three separate contributions to the two-photon transition probabilities in hydrogen-like atoms are calculated. The first one coming from the summation over discrete intermediate states is performed up to nc(max) = 35. The second contribution from the integration over the continuum states is performed numerically. The third contribution coming from the summation from nc(max) to infinity is calculated in an approximate way using the mean level energy for this region. It is found that the choice of nc(max) controls the numerical error in the calculations and can be used to increase the accuracy of the results much more efficiently than in other methods.

  14. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  15. Precise calculation of quasienergies of a driven two-level atom based on the Guo-Wu-Van Woerkom solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Yi; Zhang Jingtao; Xu Zhizhan

    2010-07-15

    The exact algebraic solution recently obtained by Guo, Wu, and Van Woerkom (Phys. Rev. A 73 (2006) 023419) made possible accurate calculations of quasienergies of a driven two-level atom with an arbitrary original energy spacing and laser intensity. Due to the complication of the analytic solutions that involves an infinite number of infinite determinants, many mathematical difficulties must be overcome to obtain precise values of quasienergies. In this paper, with a further developed algebraic method, we show how to solve the computational problem completely and results are presented in a data table. With this table, one can easily obtain allmore » quasienergies of a driven two-level atom with an arbitrary original energy spacing and arbitrary intensity and frequency of the driving laser. The numerical solution technique developed here can be applied to the calculation of Freeman resonances in photoelectron energy spectra. As an example for applications, we show how to use the data table to calculate the peak laser intensity at which a Freeman resonance occurs in the transition between the ground Xe 5p P{sub 3/2} state and the Rydberg state Xe 8p P{sub 3/2}.« less

  16. A simple atomic-level hydrophobicity scale reveals protein interfacial structure.

    PubMed

    Kapcha, Lauren H; Rossky, Peter J

    2014-01-23

    Many amino acid residue hydrophobicity scales have been created in an effort to better understand and rapidly characterize water-protein interactions based only on protein structure and sequence. There is surprisingly low consistency in the ranking of residue hydrophobicity between scales, and their ability to provide insightful characterization varies substantially across subject proteins. All current scales characterize hydrophobicity based on entire amino acid residue units. We introduce a simple binary but atomic-level hydrophobicity scale that allows for the classification of polar and non-polar moieties within single residues, including backbone atoms. This simple scale is first shown to capture the anticipated hydrophobic character for those whole residues that align in classification among most scales. Examination of a set of protein binding interfaces establishes good agreement between residue-based and atomic-level descriptions of hydrophobicity for five residues, while the remaining residues produce discrepancies. We then show that the atomistic scale properly classifies the hydrophobicity of functionally important regions where residue-based scales fail. To illustrate the utility of the new approach, we show that the atomic-level scale rationalizes the hydration of two hydrophobic pockets and the presence of a void in a third pocket within a single protein and that it appropriately classifies all of the functionally important hydrophilic sites within two otherwise hydrophobic pores. We suggest that an atomic level of detail is, in general, necessary for the reliable depiction of hydrophobicity for all protein surfaces. The present formulation can be implemented simply in a manner no more complex than current residue-based approaches. © 2013.

  17. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  18. Signatures of two-photon pulses from a quantum two-level system

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Hanschke, Lukas; Wierzbowski, Jakob; Simmet, Tobias; Dory, Constantin; Finley, Jonathan J.; Vučković, Jelena; Müller, Kai

    2017-07-01

    A two-level atom can generate a strong many-body interaction with light under pulsed excitation. The best known effect is single-photon generation, where a short Gaussian laser pulse is converted into a Lorentzian single-photon wavepacket. However, recent studies suggested that scattering of intense laser fields off a two-level atom may generate oscillations in two-photon emission that come out of phase with the Rabi oscillations, as the power of the pulse increases. Here, we provide an intuitive explanation for these oscillations using a quantum trajectory approach and show how they may preferentially result in emission of two-photon pulses. Experimentally, we observe the signatures of these oscillations by measuring the bunching of photon pulses scattered off a two-level quantum system. Our theory and measurements provide insight into the re-excitation process that plagues on-demand single-photon sources while suggesting the possibility of producing new multi-photon states.

  19. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.

    PubMed

    Notararigo, Valentina; Passante, Roberto; Rizzuto, Lucia

    2018-03-26

    We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r 2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.

  20. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  1. Identities, Education and Reentry (Part One of Two): Identities and Performative Spaces

    ERIC Educational Resources Information Center

    Wright, Randall

    2014-01-01

    This is part one of a two-part interdisciplinary paper that examines the various forces (discourses and institutional processes) that shape prisoner-student identities. Discourses of officers from a correctional website serve as a limited, single case study of discourses that ascribe dehumanized, stigmatized identities to "the prisoner."…

  2. Method for generating maximally entangled states of multiple three-level atoms in cavity QED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Guangsheng; Li Shushen; Feng Songlin

    2004-03-01

    We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

  3. Atomic level characterization in corrosion studies

    NASA Astrophysics Data System (ADS)

    Marcus, Philippe; Maurice, Vincent

    2017-06-01

    Atomic level characterization brings fundamental insight into the mechanisms of self-protection against corrosion of metals and alloys by oxide passive films and into how localized corrosion is initiated on passivated metal surfaces. This is illustrated in this overview with selected data obtained at the subnanometre, i.e. atomic or molecular, scale and also at the nanometre scale on single-crystal copper, nickel, chromium and stainless steel surfaces passivated in well-controlled conditions and analysed in situ and/or ex situ by scanning tunnelling microscopy/spectroscopy and atomic force microscopy. A selected example of corrosion modelling by ab initio density functional theory is also presented. The discussed aspects include the surface reconstruction induced by hydroxide adsorption and formation of two-dimensional (hydr)oxide precursors, the atomic structure, orientation and surface hydroxylation of three-dimensional ultrathin oxide passive films, the effect of grain boundaries in polycrystalline passive films acting as preferential sites of passivity breakdown, the differences in local electronic properties measured at grain boundaries of passive films and the role of step edges at the exposed surface of oxide grains on the dissolution of the passive film. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  4. Building chemistry one atom at a time: An investigation of the effects of two curricula in students' understanding of covalent bonding and atomic size

    NASA Astrophysics Data System (ADS)

    Bull, Barbara Jeanne

    Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four

  5. Entanglement and nonlocality versus spontaneous emission in two-atom systems

    NASA Astrophysics Data System (ADS)

    Jakóbczyk, L.; Jamróz, A.

    2003-11-01

    We study evolution of entanglement of two two-level atoms in the presence of dissipation caused by spontaneous emission. We find explicit formulas for the amount of entanglement as a function of time, in the case of destruction of the initial entanglement and possible creation of a transient entanglement between atoms. We also discuss how spontaneous emission influences nonlocality of states expressed by violation of Bell-CHSH inequality. It is shown that evolving system very quickly becomes local, even if entanglement is still present or produced.

  6. Evolution in time of an N-atom system. II. Calculation of the eigenstates

    NASA Astrophysics Data System (ADS)

    Rudolph, Terry; Yavin, Itay; Freedhoff, Helen

    2004-01-01

    We calculate the energy eigenvalues and eigenstates corresponding to coherent single and multiple excitations of a number of different arrays of N identical two-level atoms (TLA’s) or qubits, including polygons, “diamond” structures, polygon multilayers, icosahedra, and dodecahedra. We assume only that the coupling occurs via an exchange interaction which depends on the separation between the atoms. We include the interactions between all pairs of atoms, and our results are valid for arbitrary separations relative to the radiation wavelength.

  7. Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities.

    PubMed

    Neumann, Piotr; Tittmann, Kai

    2014-12-01

    Although general principles of enzyme catalysis are fairly well understood nowadays, many important details of how exactly the substrate is bound and processed in an enzyme remain often invisible and as such elusive. In fortunate cases, structural analysis of enzymes can be accomplished at true atomic resolution thus making possible to shed light on otherwise concealed fine-structural traits of bound substrates, intermediates, cofactors and protein groups. We highlight recent structural studies of enzymes using ultrahigh-resolution X-ray protein crystallography showcasing its enormous potential as a tool in the elucidation of enzymatic mechanisms and in unveiling fundamental principles of enzyme catalysis. We discuss the observation of seemingly hyper-reactive, physically distorted cofactors and intermediates with elongated scissile substrate bonds, the detection of 'hidden' conformational and chemical equilibria and the analysis of protonation states with surprising findings. In delicate cases, atomic resolution is required to unambiguously disclose the identity of atoms as demonstrated for the metal cluster in nitrogenase. In addition to the pivotal structural findings and the implications for our understanding of enzyme catalysis, we further provide a practical framework for resolution enhancement through optimized data acquisition and processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-01

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  9. Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse

    NASA Astrophysics Data System (ADS)

    Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang

    2017-09-01

    Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.

  10. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen; He, Qian; Lupini, Andrew R.

    2015-10-19

    We demonstrate atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous layer in a scanning transmission electron microscope (STEM). Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. We further demonstrate fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulkmore » atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing.« less

  11. Quantum interference between two phonon paths and reduced heat transport in diamond lattice with atomic-scale planar defects

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Strelnikov, I. A.

    2018-02-01

    Destructive quantum interference between the waves propagating through laterally inhomogeneous layer can result in their total reflection, which in turn reduces energy flux carried by these waves. We consider the systems of Ge atoms, which fully or partly, in the chequer-wise order, fill a crystal plane in diamond-like Si lattice. We have revealed that a single type of the atomic defects, which are placed in identical positions in different unit cells in the defect crystal plane, can result in double transmission antiresonances of phonon wave packets. This new effect we relate with the complex structure of the diamond-like unit cell, which comprises two atoms in different positions and results in two distinct vibration resonances in two interfering phonon paths. We also consider the propagation of phonon wave packets in the superlatticies made of the defect planes, half-filled in the chequer-wise order with Ge atoms. We have revealed relatively broad phonon stop bands with center frequencies at the transmission antiresonances. We elaborate the equivalent analytical quasi-1D lattice model of the two phonon paths through the complex planar defect in the diamond-like lattice and describe the reduction of phonon heat transfer through the atomic-scale planar defects.

  12. Discrimination, racial identity, and cytokine levels among African-American adolescents.

    PubMed

    Brody, Gene H; Yu, Tianyi; Miller, Gregory E; Chen, Edith

    2015-05-01

    Low-grade inflammation, measured by circulating levels of cytokines, is a pathogenic mechanism for several chronic diseases of aging. Identifying factors related to inflammation among African-American youths may yield insights into mechanisms underlying racial disparities in health. The purpose of the study was to determine whether (1) reported racial discrimination from ages 17-19 years forecasts heightened cytokine levels at the age of 22 years and (2) this association is lower for youths with positive racial identities. A longitudinal research design was used with a community sample of 160 African-Americans who were aged 17 years at the beginning of the study. Discrimination and racial identity were measured with questionnaires, and blood was drawn to measure basal cytokine levels. Ordinary least squares regression analyses were used to examine the hypotheses. After controlling for socioeconomic risk, life stress, depressive symptoms, and body mass index, racial discrimination (β = .307; p < .01), racial identity (β = -.179; p < .05), and their interaction (β = -.180; p < .05) forecast cytokine levels. Youths exposed to high levels of racial discrimination evinced elevated cytokine levels 3 years later. This association was not significant for young adults with positive racial identities. High levels of interpersonal racial discrimination and the development of a positive racial identity operate jointly to determine low-grade inflammation levels that have been found to forecast chronic diseases of aging, such as coronary disease and stroke. Copyright © 2015 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  13. Discrimination, Racial Identity, and Cytokine Levels Among African American Adolescents

    PubMed Central

    Brody, Gene H.; Yu, Tianyi; Miller, Gregory E.; Chen, Edith

    2015-01-01

    Purpose Low-grade inflammation, measured by circulating levels of cytokines, is a pathogenic mechanism for several chronic diseases of aging. Identifying factors related to inflammation among African American youths may yield insights into mechanisms underlying racial disparities in health. The purpose of the study was to determine whether (a) reported racial discrimination from ages 17 to 19 forecast heightened cytokine levels at age 22, and (b) this association is lower for youths with positive racial identities. Methods A longitudinal research design was used with a community sample of 160 African Americans who were 17 at the beginning of the study. Discrimination and racial identity were measured with questionnaires, and blood was drawn to measure basal cytokine levels. Ordinary least squares regression analyses were used to examine the hypotheses. Results After controlling for socioeconomic risk, life stress, depressive symptoms, and body mass index, racial discrimination (β = .307, p < .01), racial identity (β = −.179, p < .05), and their interaction (β = −.180, p < .05) forecast cytokine levels. Youths exposed to high levels of racial discrimination evinced elevated cytokine levels 3 years later. This association was not significant for young adults with positive racial identities. Conclusions High levels of interpersonal racial discrimination and the development of a positive racial identity operate jointly to determine low-grade inflammation levels that have been found to forecast chronic diseases of aging, such as coronary disease and stroke. PMID:25907649

  14. Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision.

    PubMed

    Jesse, Stephen; He, Qian; Lupini, Andrew R; Leonard, Donovan N; Oxley, Mark P; Ovchinnikov, Oleg; Unocic, Raymond R; Tselev, Alexander; Fuentes-Cabrera, Miguel; Sumpter, Bobby G; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y

    2015-11-25

    The atomic-level sculpting of 3D crystalline oxide nanostructures from metastable amorphous films in a scanning transmission electron microscope (STEM) is demonstrated. Strontium titanate nanostructures grow epitaxially from the crystalline substrate following the beam path. This method can be used for fabricating crystalline structures as small as 1-2 nm and the process can be observed in situ with atomic resolution. The fabrication of arbitrary shape structures via control of the position and scan speed of the electron beam is further demonstrated. Combined with broad availability of the atomic resolved electron microscopy platforms, these observations suggest the feasibility of large scale implementation of bulk atomic-level fabrication as a new enabling tool of nanoscience and technology, providing a bottom-up, atomic-level complement to 3D printing. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Quantum synchronization of many coupled atoms for an ultranarrow linewidth laser

    NASA Astrophysics Data System (ADS)

    He, Peiru; Xu, Minghui; Tieri, David; Zhu, Bihui; Rey, Ana Maria; Hazzard, Kaden; Holland, Murray

    2014-05-01

    We theoretically investigate the effect of quantum synchronization on many coupled two-level atoms acting as high quality oscillators. We show that quantum synchronization - the spontaneous alignment of the phase (of the two-level superposition) between different atoms - provides a potential approach to produce robust atomic coherences and coherent light with ultranarrow linewidth and extreme phase stability. The atoms may be coupled either through their direct dipole-dipole interactions or, as in a superradiant laser, through an optical cavity. We develop a variety of analytic and computational approaches for this problem, including exact open quantum system methods for small systems, semiclassical theories, and approaches that make use of the permutation symmetry of identically coupled ensembles. We investigate the first and second order coherence properties of both the optical and atomic degrees of freedom. We study synchronization in both the steady-state, as well as during the dynamically applied pulse sequences of Rabi and Ramsey interferometry. This work was supported by the DARPA QuASAR program, the NSF, and NIST.

  16. The Helium Atom and Isoelectronic Ions in Two Dimensions

    ERIC Educational Resources Information Center

    Patil, S. H.

    2008-01-01

    The energy levels of the helium atom and isoelectronic ions in two dimensions are considered. The difficulties encountered in the analytical evaluation of the perturbative and variational expressions for the ground state, promote an interesting factorization of the inter-electronic interaction, leading to simple expressions for the energy. This…

  17. Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.

    2018-05-01

    We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.

  18. Squeezed light from multi-level closed-cycling atomic systems

    NASA Technical Reports Server (NTRS)

    Xiao, Min; Zhu, Yi-Fu

    1994-01-01

    Amplitude squeezing is calculated for multi-level closed-cycling atomic systems. These systems can last without atomic population inversion in any atomic bases. Maximum squeezing is obtained for the parameters in the region of lasing without inversion. A practical four-level system and an ideal three-level system are presented. The latter system is analyzed in some detail and the mechanism of generating amplitude squeezing is discussed.

  19. The Adapted Italian Version of the Baller Identity Measurement Scale to Evaluate the Student-Athletes' Identity in Relation to Gender, Age, Type of Sport, and Competition Level.

    PubMed

    Lupo, Corrado; Mosso, Cristina Onesta; Guidotti, Flavia; Cugliari, Giovanni; Pizzigalli, Luisa; Rainoldi, Alberto

    2017-01-01

    The purpose of this paper is twofold: to validate the properties of the Italian version of the Baller Identity Measurement Scale (i.e., BIMS-IT), a self-report questionnaire based on the athletic and academic identities; and to investigate differences in psychosocial factors such as gender, age, type of sport, and competition level. The dimensionality of the BIMS-IT was explored by means of the exploratory factor analysis, considering the scale's internal consistency too (Confirmatory Factor Analysis). Results related to exploratory and confirmatory factor analysis supported a model of measurement composed of two correlated factors: the athletic and academic identities and affectivity related to identities. For both factors, differences emerged between age, and competition level sub groups. In particular, higher identity scores emerged for ≤ 24 years old student-athletes with respect to their age counterparts. National sub-elite student-athletes reported lower identity values than those of national elite and international levels. Results suggest that the Italian version of the BIMS-IT is psychometrically robust and could be adopted for empirical uses. The higher identity scores reported by younger and higher competition level participants suggest a correspondent higher involvement into the student-athlete role. However, BIMS-IT represents a distinct model with respect to the original American BIMS, determining the need of further research on the student-athletes' identity to better clarify any socio-cultural contest effects.

  20. The Adapted Italian Version of the Baller Identity Measurement Scale to Evaluate the Student-Athletes’ Identity in Relation to Gender, Age, Type of Sport, and Competition Level

    PubMed Central

    Cugliari, Giovanni; Pizzigalli, Luisa

    2017-01-01

    The purpose of this paper is twofold: to validate the properties of the Italian version of the Baller Identity Measurement Scale (i.e., BIMS-IT), a self-report questionnaire based on the athletic and academic identities; and to investigate differences in psychosocial factors such as gender, age, type of sport, and competition level. The dimensionality of the BIMS-IT was explored by means of the exploratory factor analysis, considering the scale’s internal consistency too (Confirmatory Factor Analysis). Results related to exploratory and confirmatory factor analysis supported a model of measurement composed of two correlated factors: the athletic and academic identities and affectivity related to identities. For both factors, differences emerged between age, and competition level sub groups. In particular, higher identity scores emerged for ≤ 24 years old student-athletes with respect to their age counterparts. National sub-elite student-athletes reported lower identity values than those of national elite and international levels. Results suggest that the Italian version of the BIMS-IT is psychometrically robust and could be adopted for empirical uses. The higher identity scores reported by younger and higher competition level participants suggest a correspondent higher involvement into the student-athlete role. However, BIMS-IT represents a distinct model with respect to the original American BIMS, determining the need of further research on the student-athletes’ identity to better clarify any socio-cultural contest effects. PMID:28056046

  1. Vacuum fluctuations and radiation reaction contributions to the resonance dipole-dipole interaction between two atoms near a reflecting boundary

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Rizzuto, Lucia; Passante, Roberto

    2018-04-01

    We investigate the resonance dipole-dipole interaction energy between two identical atoms, one in the ground state and the other in the excited state, interacting with the electromagnetic field in the presence of a perfectly reflecting plane boundary. The atoms are prepared in a correlated (symmetric or antisymmetric) Bell-type state. Following a procedure due to Dalibard et al. [J. Dalibard et al., J. Phys. (Paris) 43, 1617 (1982);, 10.1051/jphys:0198200430110161700 J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], we separate the contributions of vacuum fluctuations and radiation reaction (source) field to the resonance interaction energy between the two atoms and show that only the source field contributes to the interatomic interaction, while vacuum field fluctuations do not. By considering specific geometric configurations of the two-atom system with respect to the mirror and specific choices of dipole orientations, we show that the presence of the mirror significantly affects the resonance interaction energy and that different features appear with respect to the case of atoms in free space, for example, a change in the spatial dependence of the interaction. Our findings also suggest that the presence of a boundary can be exploited to tailor and control the resonance interaction between two atoms, as well as the related energy transfer process. The possibility of observing these phenomena is also discussed.

  2. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    PubMed

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  3. Modification of optical properties by adiabatic shifting of resonances in a four-level atom

    NASA Astrophysics Data System (ADS)

    Dutta, Bibhas Kumar; Panchadhyayee, Pradipta

    2018-04-01

    We describe the linear and nonlinear optical properties of a four-level atomic system, after reducing it to an effective two-level atomic model under the condition of adiabatic shifting of resonances driven by two coherent off-resonant fields. The reduced form of the Hamiltonian corresponding to the two-level system is obtained by employing an adiabatic elimination procedure in the rate equations of the probability amplitudes for the proposed four-level model. For a weak probe field operating in the system, the nonlinear dependence of complex susceptibility on the Rabi frequencies and the detuning parameters of the off-resonant driving fields makes it possible to exhibit coherent control of single-photon and two-photon absorption and transparency, the evolution of enhanced Self-Kerr nonlinearity and noticeable dispersive switching. We have shown how the quantum interference results in the generic four-level model at the adiabatic limit. The present scheme describes the appearance of single-photon transparency without invoking any exact two-photon resonance.

  4. A Grounded Theory of Master's-Level Counselor Research Identity

    ERIC Educational Resources Information Center

    Jorgensen, Maribeth F.; Duncan, Kelly

    2015-01-01

    A grounded theory approach was used to examine the research identity of 17 master's-level counseling trainees and practitioners. The emergent theory gave an understanding to sources of variation in the process and outcome of research identity. The authors provide recommendations for counselor educators to use with current and former students.

  5. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  6. Phase-space quantum mechanics study of two identical particles in an external oscillatory potential

    NASA Technical Reports Server (NTRS)

    Nieto, Luis M.; Gadella, Manuel

    1993-01-01

    This simple example is used to show how the formalism of Moyal works when it is applied to systems of identical particles. The symmetric and antisymmetric Moyal propagators are evaluated for this case; from them, the correct energy levels of energy are obtained, as well as the Wigner functions for the symmetric and antisymmetric states of the two identical particle system. Finally, the solution of the Bloch equation is straightforwardly obtained from the expressions of the Moyal propagators.

  7. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  8. Atomic-Layer-Confined Doping for Atomic-Level Insights into Visible-Light Water Splitting.

    PubMed

    Lei, Fengcai; Zhang, Lei; Sun, Yongfu; Liang, Liang; Liu, Katong; Xu, Jiaqi; Zhang, Qun; Pan, Bicai; Luo, Yi; Xie, Yi

    2015-08-03

    A model of doping confined in atomic layers is proposed for atomic-level insights into the effect of doping on photocatalysis. Co doping confined in three atomic layers of In2S3 was implemented with a lamellar hybrid intermediate strategy. Density functional calculations reveal that the introduction of Co ions brings about several new energy levels and increased density of states at the conduction band minimum, leading to sharply increased visible-light absorption and three times higher carrier concentration. Ultrafast transient absorption spectroscopy reveals that the electron transfer time of about 1.6 ps from the valence band to newly formed localized states is due to Co doping. The 25-fold increase in average recovery lifetime is believed to be responsible for the increased of electron-hole separation. The synthesized Co-doped In2S3 (three atomic layers) yield a photocurrent of 1.17 mA cm(-2) at 1.5 V vs. RHE, nearly 10 and 17 times higher than that of the perfect In2S3 (three atomic layers) and the bulk counterpart, respectively. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. National Identity from a Social Psychological Perspective: Two Brazilian Case Studies.

    ERIC Educational Resources Information Center

    Morse, Stanley J.

    Four aspects of national identity are investigated that seem relevant to an understanding of the complex sociopsychological ties which bind individuals to the nation-state. The four aspects of national identity are self-identity, consciousness of national identity, perception of nation-state, and citizenship role within nation-state. Two parallel…

  10. Entanglement of two individual neutral atoms using Rydberg blockade.

    PubMed

    Wilk, T; Gaëtan, A; Evellin, C; Wolters, J; Miroshnychenko, Y; Grangier, P; Browaeys, A

    2010-01-08

    We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 microm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.

  11. Core-level photoemission investigation of atomic-fluorine adsorption on GaAs(110)

    NASA Astrophysics Data System (ADS)

    McLean, A. B.; Terminello, L. J.; McFeely, F. R.

    1989-12-01

    The adsorption of atomic F on the cleaved GaAs(110) surface has been studied with use of high-resolution core-level photoelectron spectroscopy by exposing the GaAs(110) surfaces to XeF2, which adsorbs dissociatively, leaving atomic F behind. This surface reaction produces two chemically shifted components in the Ga 3d core-level emission which are attributed to an interfacial monofluoride and a stable trifluoride reaction product, respectively. The As 3d core level develops only one chemically shifted component and from its exposure-dependent behavior it is attributed to an interfacial monofluoride. Least-squares analysis of the core-level line shapes revealed that (i) the F bonds to both the anion and the cation , (ii) the GaF3 component (characteristic of strong interfacial reaction) and the surface core-level shifted component (characteristic of a well ordered, atomically clean surface) are present together over a relatively large range of XeF2 exposures, and (iii) it is the initial disruption of the GaAs(110) surface that is the rate-limiting step in this surface reaction. These results are compared with similar studies of Cl and O adsorption on GaAs(110).

  12. Wigner functions for nonclassical states of a collection of two-level atoms

    NASA Technical Reports Server (NTRS)

    Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.

    1993-01-01

    The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.

  13. The Dynamics of Quantum Discord and Entanglement of Three Atoms Coupled to Three Spatially Separate Cavities

    NASA Astrophysics Data System (ADS)

    He, Juan; Wu, Tao; Ye, Liu

    2013-10-01

    In this paper, we study the dynamics of quantum discord and entanglement of three identical two-level atoms simultaneously resonantly interacting with three spatially separate single-mode of high- Q cavities respectively. Taking advantage of the depiction quantum discord and entanglement of formation (EoF), we conclude that the discord and entanglement of atoms and cavities can be mediated by changing some parameters and the maximum values of discord and entanglement are independent on the couplings of cavities and atoms. In particular, there also exists quantum discord sudden death as well as entanglement sudden death and the time interval of the former is shorter than that of the later in the proposed quantum system. It is shown that the discord and entanglement of any two atoms among three atoms can be transferred to the corresponding cavities, and there exists discord and entanglement exchanging between the atoms and the corresponding cavities.

  14. Non-universal bound states of two identical heavy fermions and one light particle

    NASA Astrophysics Data System (ADS)

    Safavi, Arghavan; Rittenhouse, Seth; Blume, Dorte; Sadeghpour, Hossein

    2013-05-01

    We study a system of two identical heavy fermions of mass M and light particle of mass m. The interspecies interaction is modeled using a short-range two-body potential with positive s-wave scattering length. We impose a short-range boundary condition on the logarithmic derivative of the hyperradial wavefunction and show that, in the regime where Efimov states are absent, a non-universal three-body state ``cuts through'' the universal three-body states previously described by Kartavtsev and Malykh [O. I. Kartavtsev and A. V. Malykh, J. Phys. B 40, 1429 (2007)]. We study the effect of the non-universal state on the behavior of the universal states and use a simple quantum defect theory, utilizing hyperspherical coordinates, to explain the existence of the non-universal state. An empirical two-state model is employed to quantify the coupling of the non-universal state to the universal states. This work was supported by NSF through a grant for the Institute for Theoretical Atomic, Molecular and Optical Physics at Harvard University and Smithsonian Astrophysical Observatory and through grant PHY-1205443.

  15. Novice nurses' level of global interdependence identity: a quantitative research study.

    PubMed

    Kozlowski-Gibson, Maria

    2015-01-01

    Often, therapeutic relationships are cross-cultural in nature, which places both nurses and patients at risk for stress, depression, and anxiety. The purpose of this investigation was to describe novice nurses' level of global interdependence identity, as manifested by worldminded attitudes, and identify the strongest predictors of worldminded attitudes. Prospective descriptive with multiple regression study. The various nursing units of a large hospital in the great Cleveland, OH, area. The participants were novice nurses up to two years after graduation from nursing school and employed as hospital clinicians. Descriptive statistics with the mean and standard deviation of the scores was used for the delineation of the development of the participants. The study relied on a survey instrument, the Scale to Measure Worldminded Attitudes developed by Sampson and Smith (1957). The numerical data was scored and organized on a Microsoft Excel spreadsheet. The Statistical Package for Social Sciences (SPSS) version 21 was the program used to assist with analysis. The assessment of the models created through regression was completed using the model summary and analysis of variance (ANOVA). The nurses' mean level of global interdependence identity was slightly above the neutral point between extreme national-mindedness and full development of global interdependence identity. The best predictors of worldminded attitudes were immigration, patriotism, and war conceptualized under a global frame of reference. Novice nurses did not demonstrate an optimum developmental status of global interdependence identity to safeguard cross-cultural encounters with patients. The recommendation is the inclusion of immigration, patriotism, and war in the nursing curriculum and co-curriculum to promote student development and a turnaround improvement in patient experience. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Any Effects of Different Levels of Online User Identity Revelation?

    ERIC Educational Resources Information Center

    Yu, Fu-Yun

    2012-01-01

    This study examined the effects of different levels of identity revelation in relation to aspects most relevant to engaged online learning activities. An online learning system supporting question-generation and peer-assessment was adopted. Three 7th grade classes (N=101) were assigned to three identity revelation modes (real-name, nickname and…

  17. Collective dynamics and entanglement of two distant atoms embedded into single-negative index material.

    PubMed

    Fang, Wei; Li, Gao-Xiang; Yang, Yaping; Ficek, Zbigniew

    2017-02-06

    We study the dynamics of two two-level atoms embedded near to the interface of paired meta-material slabs, one of negative permeability and the other of negative permittivity. This combination generates a strong surface plasmon field at the interface between the meta-materials. It is found that the symmetric and antisymmetric modes of the two-atom system couple to the plasmonic field with different Rabi frequencies. Including the Ohmic losses of the materials we find that the Rabi frequencies exhibit threshold behaviour which distinguish between the non-Markovian (memory preserving) and Markovian (memoryless) regimes of the evolution. Moreover, it is found that significantly different dynamics occur for the resonant and an off-resonant couplings of the plasmon field to the atoms. In the case of the resonant coupling, the field does not appear as a dissipative reservoir to the atoms. We adopt the image method and show that the dynamics of the two atoms coupled to the plasmon field are analogous to the dynamics of a four-atom system in a rectangular configuration. A large and long living entanglement mediated by the plasmonic field in both Markovian and non-Markovian regimes of the evolution is predicted. We also show that a simultaneous Markovian and non-Markovian regime of the evolution may occur in which the memory effects exist over a finite evolution time. In the case of an off-resonant coupling of the atoms to the plasmon field, the atoms interact with each other by exchanging virtual photons which results in the dynamics corresponding to those of two atoms coupled to a common reservoir. In addition, the entanglement is significantly enhanced.

  18. Coupling of a nanomechanical oscillator and an atomic three-level medium

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Eisfeld, A.; Wüster, S.; Rost, J.-M.

    2016-02-01

    We theoretically investigate the coupling of an ultracold three-level atomic gas and a nanomechanical mirror via classical electromagnetic radiation. The radiation pressure on the mirror is modulated by absorption of a probe light field, caused by the atoms which are electromagnetically rendered nearly transparent, allowing the gas to affect the mirror. In turn, the mirror can affect the gas as its vibrations generate optomechanical sidebands in the control field. We show that the sidebands cause modulations of the probe intensity at the mirror frequency, which can be enhanced near atomic resonances. Through the radiation pressure from the probe beam onto the mirror, this results in resonant driving of the mirror. Controllable by the two-photon detuning, the phase relation of the driving to the mirror motion decides upon amplification or damping of mirror vibrations. This permits direct phase locking of laser amplitude modulations to the motion of a nanomechanical element opening a perspective for cavity-free cooling through coupling to an atomic gas.

  19. Coherent population trapping resonances at lower atomic levels of Doppler broadened optical lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şahin, E; Hamid, R; Çelik, M

    2014-11-30

    We have detected and analysed narrow high-contrast coherent population trapping (CPT) resonances, which are induced in absorption of a weak monochromatic probe light beam by counterpropagating two-frequency pump radiation in a cell with rarefied caesium vapour. The experimental investigations have been performed by the example of nonclosed three level Λ-systems formed by spectral components of the D{sub 2} line of caesium atoms. The applied method allows one to analyse features of the CPT phenomenon directly at a given low long-lived level of the selected Λ-system even in sufficiently complicated spectra of atomic gases with large Doppler broadening. We have establishedmore » that CPT resonances in transmission of the probe beam exhibit not only a higher contrast but also a much lesser width in comparison with well- known CPT resonances in transmission of the corresponding two-frequency pump radiation. The results obtained can be used in selective photophysics, photochemistry and ultra-high resolution atomic (molecular) spectroscopy. (laser applications and other topics in quantum electronics)« less

  20. Spray characteristics of two combined jet atomizers

    NASA Astrophysics Data System (ADS)

    Tambour, Y.; Portnoy, D.

    The downstream changes in droplet volume concentration of a vaporizing fuel spray produced by two jet atomizers which form an overlapping zone of influence is theoretically analyzed, employing experimental data of Yule et al. (1982) for a single jet atomizer as initial conditions. One of the atomizers is located below the other at a certain distance downstream. Such an injection geometry can be found in afterburners of modern jet engines. The influence of various vertical and horizontal distances between the two atomizers on the downstream spray characteristics is investigated for a vaporizing kerosene spray in a 'cold' (293 K) and a 'hot' (450 K) environment. The analysis shows how one can control the downstream spray characteristics via the geometry of injection. Such geometrical considerations may be of great importance in the design of afterburner wall geometry and in the reduction of wall thermal damage. The injection geometry may also affect the intensity of the spray distribution which determines the mode of droplet group combustion. The latter plays an important role in improving afterburner combustion efficiency.

  1. Light-front Ward-Takahashi identity for two-fermion systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinho, J. A. O.; Frederico, T.; Pace, E.

    We propose a three-dimensional electromagnetic current operator within light-front dynamics that satisfies a light-front Ward-Takahashi identity for two-fermion systems. The light-front current operator is obtained by a quasipotential reduction of the four-dimensional current operator and acts on the light-front valence component of bound or scattering states. A relation between the light-front valence wave function and the four-dimensional Bethe-Salpeter amplitude both for bound or scattering states is also derived, such that the matrix elements of the four-dimensional current operator can be fully recovered from the corresponding light-front ones. The light-front current operator can be perturbatively calculated through a quasipotential expansion, andmore » the divergence of the proposed current satisfies a Ward-Takahashi identity at any given order of the expansion. In the quasipotential expansion the instantaneous terms of the fermion propagator are accounted for by the effective interaction and two-body currents. We exemplify our theoretical construction in the Yukawa model in the ladder approximation, investigating in detail the current operator at the lowest nontrivial order of the quasipotential expansion of the Bethe-Salpeter equation. The explicit realization of the light-front form of the Ward-Takahashi identity is verified. We also show the relevance of instantaneous terms and of the pair contribution to the two-body current and the Ward-Takahashi identity.« less

  2. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  3. Preparation of Ultracold Atom Clouds at the Shot Noise Level.

    PubMed

    Gajdacz, M; Hilliard, A J; Kristensen, M A; Pedersen, P L; Klempt, C; Arlt, J J; Sherson, J F

    2016-08-12

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔNatom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level.

  4. Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity

    NASA Astrophysics Data System (ADS)

    Yuan, H.; Wei, L. F.

    2013-10-01

    It is known that the violation of Svetlichny's inequality (SI), rather than the usual Mermin's inequality (MI), is a robust criterion to confirm the existence of genuine multipartite quantum nonlocality. In this paper, we propose a feasible approach to test SI with three two-level atoms (TLAs) dispersively coupled to a driven cavity. The proposal is based on the joint measurements of the states of three TLAs by probing the steady-state transmission spectra of the driven cavity: each peak marks one of the computational basis states and its relative height corresponds to the probability superposed in the detected three-TLA state. With these kinds of joint measurements, the correlation functions in SI can be directly calculated, and thus the SI can be efficiently tested for typical tripartite entanglement, i.e., genuine tripartite entanglement [e.g., Greenberger-Horne-Zeilinger (GHZ) and W states] and biseparable three-qubit entangled states (e.g., |χ>12|ξ>3). Our numerical experiments show that the SI is violated only by three-qubit GHZ and W states, not by biseparable three-qubit entangled state |χ>12|ξ>3, while the MI can still be violated by biseparable three-qubit entangled states. Thus the violation of SI can be regarded as a robust criterion for the existence of genuine tripartite entanglement.

  5. Critical screening in the one- and two-electron Yukawa atoms

    NASA Astrophysics Data System (ADS)

    Montgomery, H. E.; Sen, K. D.; Katriel, Jacob

    2018-02-01

    The one- and two-electron Yukawa atoms, also referred to as the Debye-Hückel or screened Coulomb atoms, have been topics of considerable interest both for intrinsic reasons and because of their relevance to terrestrial and astrophysical plasmas. At sufficiently high screening the one-electron Yukawa atom ceases to be bound. Some calculations appeared to suggest that as the screening increases in the ground state of the two-electron Yukawa atom (in which both the one-particle attraction and the interparticle repulsion are screened) the two electrons are detached simultaneously, at the same screening constant at which the one-electron atom becomes unbound. Our results rule this scenario out, offering an alternative that is not less interesting. In particular, it is found that for Z <1 a mild amount of screening actually increases the binding energy of the second electron. At the nuclear charge Zc≈0.911028 ... , at which the bare Coulomb two-electron atom becomes unbound, and even over a range of lower nuclear charges, an appropriate amount of screening gives rise to a bound two-electron system.

  6. Ground Levels and Ionization Energies for the Neutral Atoms

    National Institute of Standards and Technology Data Gateway

    SRD 111 Ground Levels and Ionization Energies for the Neutral Atoms (Web, free access)   Data for ground state electron configurations and ionization energies for the neutral atoms (Z = 1-104) including references.

  7. Molecules Without Atoms

    NASA Astrophysics Data System (ADS)

    Ruth, Anthony; Collins, Laura; Gomes, Kenjiro; Janko, Boldizsar

    We present a real-space representation of molecules which results in the normal bonding rules and electronic structure of chemistry without atom-centered coulomb potentials. Using a simple mapping, we can generate atomless molecules from the structure of real molecules. Additionally, molecules without atoms show similar covalent bonding energies and transfer of charge in ionic bonds as real molecules. The atomless molecules contain only the valence and conduction electronic structure of the real molecule. Using the framework of the Atoms in Molecules (AIM) theory of Bader, we prove that the topological features of the valence charge distribution of molecules without atoms are identical to that of real molecules. In particular, the charge basins of atomless molecules show identical location and quantities of representative charge. We compare the accuracy, computational cost, and intuition gained from electronic structure calculations of molecules without atoms with the use of pseudopotentials to represent atomic cores in density functional theory. A. R. acknowledges support from a NASA Space Technology Research Fellowship.

  8. Atomic-level characterization of the structural dynamics of proteins.

    PubMed

    Shaw, David E; Maragakis, Paul; Lindorff-Larsen, Kresten; Piana, Stefano; Dror, Ron O; Eastwood, Michael P; Bank, Joseph A; Jumper, John M; Salmon, John K; Shan, Yibing; Wriggers, Willy

    2010-10-15

    Molecular dynamics (MD) simulations are widely used to study protein motions at an atomic level of detail, but they have been limited to time scales shorter than those of many biologically critical conformational changes. We examined two fundamental processes in protein dynamics--protein folding and conformational change within the folded state--by means of extremely long all-atom MD simulations conducted on a special-purpose machine. Equilibrium simulations of a WW protein domain captured multiple folding and unfolding events that consistently follow a well-defined folding pathway; separate simulations of the protein's constituent substructures shed light on possible determinants of this pathway. A 1-millisecond simulation of the folded protein BPTI reveals a small number of structurally distinct conformational states whose reversible interconversion is slower than local relaxations within those states by a factor of more than 1000.

  9. Gender identity and substance use among students in two high schools in Monterrey, Mexico.

    PubMed

    Kulis, Stephen; Marsiglia, Flavio Francisco; Lingard, Erin Chase; Nieri, Tanya; Nagoshi, Julieann

    2008-06-01

    This study explored relationships between several hypothesized dimensions of gender identity and substance use outcomes within a non-probability sample of adolescents in Monterrey, Mexico. Based on Mexican concepts of machismo and marianismo, four gender identity constructs were measured: aggressive masculinity, assertive masculinity, affective femininity and submissive femininity. The study assessed how well these gender identity measures predicted substance use behaviors, substance use intentions, expectancies, and normative approval, and exposure and vulnerability to substance offers. Data were drawn from questionnaires completed by 327 students from 2 Monterrey secondary schools. Multivariate ordered logistic and linear regression analyses, adjusted for school level effects, indicated that aggressive masculinity was associated with higher risk of drug use on most outcomes, while affective femininity was associated with lower risk on selected outcomes. Assertive masculinity was associated with only one of the outcomes examined and submissive femininity with none of them. Most gender identity effects persisted after controlling for biological sex, academic performance, age, and other gender identity measures. For two of the outcomes, the gender identity measures had significantly stronger effects for males than for females. The findings are interpreted in light of males' higher risk for drug use and changes in gender roles and gendered behavior that are now occurring in Mexico as in the U.S.

  10. Gender identity and substance use among students in two high schools in Monterrey, Mexico

    PubMed Central

    Kulis, Stephen; Marsiglia, Flavio Francisco; Lingard, Erin Chase; Nieri, Tanya; Nagoshi, Julieann

    2011-01-01

    This study explored relationships between several hypothesized dimensions of gender identity and substance use outcomes within a non-probability sample of adolescents in Monterrey, Mexico. Based on Mexican concepts of machismo and marianismo, four gender identity constructs were measured: aggressive masculinity, assertive masculinity, affective femininity and submissive femininity. The study assessed how well these gender identity measures predicted substance use behaviors, substance use intentions, expectancies, and normative approval, and exposure and vulnerability to substance offers. Data were drawn from questionnaires completed by 327 students from 2 Monterrey secondary schools. Multivariate ordered logistic and linear regression analyses, adjusted for school level effects, indicated that aggressive masculinity was associated with higher risk of drug use on most outcomes, while affective femininity was associated with lower risk on selected outcomes. Assertive masculinity was associated with only one of the outcomes examined and submissive femininity with none of them. Most gender identity effects persisted after controlling for biological sex, academic performance, age, and other gender identity measures. For two of the outcomes, the gender identity measures had significantly stronger effects for males than for females. The findings are interpreted in light of males’ higher risk for drug use and changes in gender roles and gendered behavior that are now occurring in Mexico as in the U.S. PMID:18329826

  11. A Phenomenological Investigation of Master's-Level Counselor Research Identity Development Stages

    ERIC Educational Resources Information Center

    Jorgensen, Maribeth F.; Duncan, Kelly

    2015-01-01

    This study explored counselor research identity, an aspect of professional identity, in master's-level counseling students. Twelve students participated in individual interviews; six of the participants were involved in a focus group interview and visual representation process. The three data sources supported the emergence of five themes. The…

  12. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  13. Foreign Language Identity and Its Relationship with Travelling and Educational Level

    ERIC Educational Resources Information Center

    Khodadady, Ebrahim

    2012-01-01

    This study explored the relationship between identity and learning English by designing and administering a 30-item Foreign Language Identity Scale (FLIS) to 470 female participants enrolled in English courses offered at advanced levels in private institutes in Mashhad, Iran. The application of the principal axis factoring to the responses and…

  14. Thermal Casimir-Polder forces on a V-type three-level atom

    NASA Astrophysics Data System (ADS)

    Xu, Chen-Ran; Xu, Jing-Ping; Al-amri, M.; Zhu, Cheng-Jie; Xie, Shuang-Yuan; Yang, Ya-Ping

    2017-09-01

    We study the thermal Casimir-Polder (CP) forces on a V-type three-level atom. The competition between the thermal effect and the quantum interference of the two transition dipoles on the force is investigated. To shed light onto the role of the quantum interference, we analyze two kinds of initial states of the atom, i.e., the superradiant state and the subradiant state. Considering the atom being in the thermal reservoir, the resonant CP force arising from the real photon emission dominates in the evolution of the CP force. Under the zero-temperature condition, the quantum interference can effectively modify the amplitude and the evolution of the force, leading to a long-time force or even the cancellation of the force. Our results reveal that in the finite-temperature case, the thermal photons can enhance the amplitude of all force elements, but have no influence on the net resonant CP force in the steady state, which means that the second law of thermodynamics still works. For the ideal degenerate V-type atom with parallel dipoles under the initial subradiant state, the robust destructive quantum interference overrides the thermal fluctuations, leading to the trapping of the atom in the subradiant state and the disappearance of the CP force. However, in terms of a realistic Zeeman atom, the thermal photons play a significant role during the evolution of the CP force. The thermal fluctuations can enhance the amplitude of the initial CP force by increasing the temperature, and weaken the influence of the quantum interference on the evolution of the CP force from the initial superradiant (subradiant) state to the steady state.

  15. Effects of the professional identity development programme on the professional identity, job satisfaction and burnout levels of nurses: A pilot study.

    PubMed

    Sabancıogullari, Selma; Dogan, Selma

    2015-12-01

    The aim of this study was to evaluate the effects of the Professional Identity Development Program on the professional identity, job satisfaction and burnout levels of registered nurses. This study was conducted as a quasi-experimental one with 63 nurses working in a university hospital. Data were gathered using the Personal Information Questionnaire, the Professional Self Concept Inventory, Minnesota Job Satisfaction Inventory and the Maslach Burnout Inventory. The Professional Identity Development Program which consists of ten sessions was implemented to the study group once a week. The Program significantly improved the professional identity of the nurses in the study group compared to that of the control group. During the research period, burnout levels significantly decreased in the study group while those of the control group increased. The programme did not create any significant differences in the job satisfaction levels of the nurses. The programme had a positive impact on the professional identity of the nurses. It is recommended that the programme should be implemented in different hospitals with different samples of nurses, and that its effectiveness should be evaluated. © 2014 Wiley Publishing Asia Pty Ltd.

  16. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  17. Two photon excitation of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Pindzola, M. S.

    1977-01-01

    A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.

  18. Physics Identity Development: A Snapshot of the Stages of Development of Upper-Level Physics Students

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2013-01-01

    As part of a longitudinal study into identity development in upper-level physics students a phenomenographic research method is employed to assess the stages of identity development of a group of upper-level students. Three categories of description were discovered which indicate the three different stages of identity development for this group…

  19. Study of multi-level atomic systems with the application of magnetic field

    NASA Astrophysics Data System (ADS)

    Hu, Jianping; Roy, Subhankar; Ummal Momeen, M.

    2018-04-01

    The complexity of multiple energy levels associated with each atomic system determines the various processes related to light- matter interactions. It is necessary to understand the influence of different levels in a given atomic system. In this work we focus on multi- level atomic schemes with the application of magnetic field. We analyze the different EIT windows which appears in the presence of moderately high magnetic field (∼ 10 G) strength.

  20. Two-level tunneling systems in amorphous alumina

    NASA Astrophysics Data System (ADS)

    Lebedeva, Irina V.; Paz, Alejandro P.; Tokatly, Ilya V.; Rubio, Angel

    2014-03-01

    The decades of research on thermal properties of amorphous solids at temperatures below 1 K suggest that their anomalous behaviour can be related to quantum mechanical tunneling of atoms between two nearly equivalent states that can be described as a two-level system (TLS). This theory is also supported by recent studies on microwave spectroscopy of superconducting qubits. However, the microscopic nature of the TLS remains unknown. To identify structural motifs for TLSs in amorphous alumina we have performed extensive classical molecular dynamics simulations. Several bistable motifs with only one or two atoms jumping by considerable distance ~ 0.5 Å were found at T=25 K. Accounting for the surrounding environment relaxation was shown to be important up to distances ~ 7 Å. The energy asymmetry and barrier for the detected motifs lied in the ranges 0.5 - 2 meV and 4 - 15 meV, respectively, while their density was about 1 motif per 10 000 atoms. Tuning of motif asymmetry by strain was demonstrated with the coupling coefficient below 1 eV. The tunnel splitting for the symmetrized motifs was estimated on the order of 0.1 meV. The discovered motifs are in good agreement with the available experimental data. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  1. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl; Repisky, Michal, E-mail: michal.repisky@uit.no

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate themore » effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.« less

  2. Probabilistic Cloning of two Single-Atom States via Thermal Cavity

    NASA Astrophysics Data System (ADS)

    Rui, Pin-Shu; Liu, Dao-Jun

    2016-12-01

    We propose a cavity QED scheme for implementing the 1 → 2 probabilistic quantum cloning (PQC) of two single-atom states. In our scheme, after the to-be-cloned atom and the assistant atom passing through the first cavity, a measurement is carried out on the assistant atom. Based on the measurement outcome we can judge whether the PQC should be continued. If the cloning fails, the other operations are omitted. This makes our scheme economical. If the PQC is continued (with the optimal probability) according to the measurement outcome, two more cavities and some unitary operations are used for achieving the PQC in a deterministic way. Our scheme is insensitive to the decays of the cavities and the atoms.

  3. Atomic-like high-harmonic generation from two-dimensional materials.

    PubMed

    Tancogne-Dejean, Nicolas; Rubio, Angel

    2018-02-01

    The generation of high-order harmonics from atomic and molecular gases enables the production of high-energy photons and ultrashort isolated pulses. Obtaining efficiently similar photon energy from solid-state systems could lead, for instance, to more compact extreme ultraviolet and soft x-ray sources. We demonstrate from ab initio simulations that it is possible to generate high-order harmonics from free-standing monolayer materials, with an energy cutoff similar to that of atomic and molecular gases. In the limit in which electrons are driven by the pump laser perpendicularly to the monolayer, they behave qualitatively the same as the electrons responsible for high-harmonic generation (HHG) in atoms, where their trajectories are described by the widely used semiclassical model, and exhibit real-space trajectories similar to those of the atomic case. Despite the similarities, the first and last steps of the well-established three-step model for atomic HHG are remarkably different in the two-dimensional materials from gases. Moreover, we show that the electron-electron interaction plays an important role in harmonic generation from monolayer materials because of strong local-field effects, which modify how the material is ionized. The recombination of the accelerated electron wave packet is also found to be modified because of the infinite extension of the material in the monolayer plane, thus leading to a more favorable wavelength scaling of the harmonic yield than in atomic HHG. Our results establish a novel and efficient way of generating high-order harmonics based on a solid-state device, with an energy cutoff and a more favorable wavelength scaling of the harmonic yield similar to those of atomic and molecular gases. Two-dimensional materials offer a unique platform where both bulk and atomic HHG can be investigated, depending on the angle of incidence. Devices based on two-dimensional materials can extend the limit of existing sources.

  4. The Master Equation for Two-Level Accelerated Systems at Finite Temperature

    NASA Astrophysics Data System (ADS)

    Tomazelli, J. L.; Cunha, R. O.

    2016-10-01

    In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.

  5. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    PubMed Central

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  6. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    PubMed Central

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  7. Atomic-level simulation of ferroelectricity in perovskite solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sepliarsky, M.; Instituto de Fisica Rosario, CONICET-UNR, Rosario,; Phillpot, S. R.

    2000-06-26

    Building on the insights gained from electronic-structure calculations and from experience obtained with an earlier atomic-level method, we developed an atomic-level simulation approach based on the traditional Buckingham potential with shell model which correctly reproduces the ferroelectric phase behavior and dielectric and piezoelectric properties of KNbO{sub 3}. This approach now enables the simulation of solid solutions and defected systems; we illustrate this capability by elucidating the ferroelectric properties of a KTa{sub 0.5}Nb{sub 0.5}O{sub 3} random solid solution. (c) 2000 American Institute of Physics.

  8. Interference and partial which-way information: A quantitative test of duality in two-atom resonance

    NASA Astrophysics Data System (ADS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    2000-01-01

    We propose for the experimental verification of an inequality concerning wave-particle duality by Englert [Phys. Rev. Lett. 77, 2154 (1996)] relating (or setting) an upper limit on distinguishability and visibility in a two-way interferometer. The inequality, quantifies the concept of wave-particle duality. The considered two-way interferometer is a Young's double-slit experiment involving two four-level atoms and is a slightly modified version of that of the recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)]. The fringe visibility depends on the detected polarization direction of the scattered light and a read out of the internal state of one of the two atoms provides a partial which-way information.

  9. Dissociative Identity Disorders in Korea: Two Recent Cases.

    PubMed

    Kim, Ilbin; Kim, Daeho; Jung, Hyun-Jin

    2016-03-01

    Although dissociative identity disorder (DID), the most severe of the dissociative disorders, has retained its own diagnostic entity since its introduction in the DSM-III, cases of DID are rarely seen in South and East Asia, likely due to the higher prevalence of possession disorder. We report two patients with DID who were recently admitted to our inpatient psychiatric unit and demonstrated distinct transitions to several identities. Their diagnoses were confirmed through a structured interview for dissociative disorders and possible differential diagnoses were ruled out by psychological, neuroimaging, and laboratory tests. The rapid transition to a Westernized, individualized society along with an increase in child abuse, might contribute to an increase in DID, previously under-diagnosed in this region.

  10. Analytical solutions for the dynamics of two trapped interacting ultracold atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Zbigniew; Calarco, Tommaso; CNR-INFM BEC Center, I-38050 Povo

    2006-08-15

    We discuss exact solutions of the Schroedinger equation for the system of two ultracold atoms confined in an axially symmetric harmonic potential. We investigate different geometries of the trapping potential, in particular we study the properties of eigenenergies and eigenfunctions for quasi-one-dimensional and quasi-two-dimensional traps. We show that the quasi-one-dimensional and the quasi-two-dimensional regimes for two atoms can be already realized in the traps with moderately large (or small) ratios of the trapping frequencies in the axial and the transverse directions. Finally, we apply our theory to Feshbach resonances for trapped atoms. Introducing in our description an energy-dependent scattering lengthmore » we calculate analytically the eigenenergies for two trapped atoms in the presence of a Feshbach resonance.« less

  11. Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

    NASA Astrophysics Data System (ADS)

    Yin, Miao; Zhang, Xiongfeng; Deng, Yunlong; Deng, Huaqiu

    2018-07-01

    By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.

  12. New energy levels of atomic niobium (Nb I) discovered by laser-spectroscopic investigations

    NASA Astrophysics Data System (ADS)

    Kröger, S.; Windholz, L.; Başar, Gü.; Başar, Gö.

    2018-06-01

    We report the discovery of 9 previously unknown energy levels of the atomic niobium, all having even parity. Two levels have energies below 19,500 cm-1 and angular momentum J = 3/2, while the energies of the others are located between 39,700 and 43,420 cm-1. The levels were discovered by laser excitation of several unclassified spectral lines in the wavelength range between 554 nm and 650 nm and detection of laser-induced fluorescence with a monochromator.

  13. Entanglement between two Rydberg atoms induced by a thermal field

    NASA Astrophysics Data System (ADS)

    Mastyugina, T. S.; Bashkirov, E. K.

    2017-11-01

    We investigated two Rydberg atoms successively passing a vacuum or a thermal cavity taking into account the detuning. The atoms was assumed to be initially prepared in the Bell types entangled atomic states. Calculating the negativity we investigated the dynamics of atom-atom entanglement both for the vacuum and the thermal field. The special features of negativity behavior have been studied comprehensively foe small and large values of detunings. For thermal field and small detunings we established the effect of sudden death and birth of entanglement.

  14. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  15. An Elementary Teacher's Narrative Identity Work at Two Points in Time Two Decades Apart

    ERIC Educational Resources Information Center

    Lutovac, Sonja; Kaasila, Raimo

    2018-01-01

    The number of studies on how the process of identity work takes place in pre- and in-service teacher training contexts has recently increased. This narrative study contributes to this body of work by examining one elementary teacher's identity work in the context of teaching mathematics at two points in time--the present, as an experienced…

  16. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms

    NASA Astrophysics Data System (ADS)

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-10-01

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.

  17. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms.

    PubMed

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-10-12

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L 2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.

  18. Detecting the Curvature of de Sitter Universe with Two Entangled Atoms

    PubMed Central

    Tian, Zehua; Wang, Jieci; Jing, Jiliang; Dragan, Andrzej

    2016-01-01

    Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L2 power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes. PMID:27731419

  19. Two-Particle Four-Mode Interferometer for Atoms

    NASA Astrophysics Data System (ADS)

    Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.

    2017-10-01

    We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.

  20. The Dynamics of a Five-level (Double Λ)-type Atom Interacting with Two-mode Field in a Cross Kerr-like Medium

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.

    2018-04-01

    In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.

  1. Polarization effects in the interaction between multi-level atoms and two optical fields

    NASA Astrophysics Data System (ADS)

    Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.

    2015-06-01

    Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.

  2. Hund's Rule in Two-Electron Atomic Systems

    ERIC Educational Resources Information Center

    Harriman, John E.

    2008-01-01

    A model proposed by Rioux to explain Hund's rule is investigated. Although the largest contribution to the singlet-triplet splitting in the two-electron atomic systems is the nuclear attraction term, this arises from different optimum scale factors in the two states and that difference is driven by the electron-electron exchange term. The…

  3. Two-level structural sparsity regularization for identifying lattices and defects in noisy images

    DOE PAGES

    Li, Xin; Belianinov, Alex; Dyck, Ondrej E.; ...

    2018-03-09

    Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less

  4. Two-level structural sparsity regularization for identifying lattices and defects in noisy images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Belianinov, Alex; Dyck, Ondrej E.

    Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less

  5. Building one molecule from a reservoir of two atoms

    NASA Astrophysics Data System (ADS)

    Liu, L. R.; Hood, J. D.; Yu, Y.; Zhang, J. T.; Hutzler, N. R.; Rosenband, T.; Ni, K.-K.

    2018-05-01

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits.

  6. Exploring athletic identity in elite-level English youth football: a cross-sectional approach.

    PubMed

    Mitchell, Tom O; Nesti, Mark; Richardson, David; Midgley, Adrian W; Eubank, Martin; Littlewood, Martin

    2014-01-01

    This study is the first empirical investigation that has explored levels of athletic identity in elite-level English professional football. The importance of understanding athletes' psychological well-being within professional sport has been well documented. This is especially important within the professional football industry, given the high attrition rate (Anderson, G., & Miller, R. M. (2011). The academy system in English professional football: Business value or following the herd? University of Liverpool, Management School Research Paper Series. Retrieved from http://www.liv.ac.uk/managementschool/research/working%20papers/wp201143.pdf ) and distinct occupational practices (Roderick, M. (2006). The work of professional football. A labour of love? London: Routledge). A total of 168 elite youth footballers from the English professional football leagues completed the Athletic Identity Measurement Scale (AIMS). Multilevel modelling was used to examine the effect of playing level, living arrangements and year of apprentice on the total AIMS score and its subscales (i.e., social identity, exclusivity and negative affectivity). Football club explained 30% of the variance in exclusivity among players (P = .022). Mean social identity was significantly higher for those players in the first year of their apprenticeship compared to the second year (P = .025). All other effects were not statistically significant (P > .05). The novel and unique findings have practical implications in the design and implementation of career support strategies with respect to social identity. This may facilitate the maintenance of motivation over a 2-year apprenticeship and positively impact on performance levels within the professional football environment.

  7. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.

    PubMed

    Juchmann, Wolfgang; Luque, Jorge; Jeffries, Jay B

    2005-11-01

    Atomic hydrogen in the plume of a dc-arcjet plasma is monitored by use of two-photon excited laser-induced fluorescence (LIF) during the deposition of diamond film. The effluent of a dc-arc discharge in hydrogen and argon forms a luminous plume as it flows through a converging-diverging nozzle into a reactor. When a trace of methane (< 2%) is added to the flow in the diverging part of the nozzle, diamond thin film grows on a water-cooled molybdenum substrate from the reactive mixture. LIF of atomic hydrogen in the arcjet plume is excited to the 3S and 3D levels with two photons near 205 nm, and the subsequent fluorescence is observed at Balmer-alpha near 656 nm. Spatially resolved LIF measurements of atomic hydrogen are made as a function of the ratio of hydrogen to argon feedstock gas, methane addition, and reactor pressure. At lower reactor pressures, time-resolved LIF measurements are used to verify our collisional quenching correction algorithm. The quenching rate coefficients for collisions with the major species in the arcjet (Ar, H, and H2) do not change with gas temperature variations in the plume (T < 2300 K). Corrections of the LIF intensity measurements for the spatial variation of collisional quenching are important to determine relative distributions of the atomic hydrogen concentration. The relative atomic hydrogen concentrations measured here are calibrated with an earlier calorimetric determination of the feedstock hydrogen dissociation to provide quantitative hydrogen-atom concentration distributions.

  8. Development of a microlesson in teaching energy levels of atoms

    NASA Astrophysics Data System (ADS)

    Rodriguez, Cherilyn A.; Buan, Amelia T.

    2018-01-01

    Energy levels of atoms is one of the difficult topics in understanding atomic structure of matter. It appears tobe abstract, theoretical and needs visual representation and images. Hence, in this study a microlesson in teaching the high school chemistry concept on the energy levels of atoms is developed and validated. The researchers utilized backward curriculum design in planning the microlesson to meet the standards of the science K-12 curriculum. The planning process of the microlesson involved a) Identifying the learning competencies in K-12 science curriculum b) write learning objectives c) planning of assessment tools d) making a storyboard e) designing the microlesson and validate and revise the microlesson. The microlesson made use of varied resources in the internet from which the students accessed and collected information about energy levels of atoms. Working in groups, the students synthesized the information on how and why fireworks produce various colors of light through a post card. Findings of the study showed that there was an increase of achievement in learning the content and the students were highly motivated to learn chemistry. Furthermore, the students perceived that the microlesson helped them to understand the chemistry concept through the use of appropriate multimedia activities.

  9. Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model

    NASA Technical Reports Server (NTRS)

    Dong, Zhengchao; Zhao, Yonglin

    1996-01-01

    In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.

  10. Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time

    NASA Astrophysics Data System (ADS)

    Bragg, Arthur E.; Glover, William J.; Schwartz, Benjamin J.

    2010-06-01

    We use mixed quantum-classical molecular dynamics simulations and ultrafast transient hole-burning spectroscopy to build a molecular-level picture of the motions of solvent molecules around Na atoms in liquid tetrahydrofuran. We find that even at room temperature, the solvation of Na atoms occurs in discrete steps, with the number of solvent molecules nearest the atom changing one at a time. This explains why the rate of solvent relaxation differs for different initial nonequilibrium states, and reveals how the solvent helps determine the identity of atomic species in liquids.

  11. Entanglement dynamics and position-momentum entropic uncertainty relation of a Λ-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hooshmandasl, M. R.

    2013-05-01

    In this paper, the interaction between a $\\Lambda$-type three-level atom and two-mode cavity field is discussed. The detuning parameters and cross-Kerr nonlinearity are taken into account and it is assumed that atom-field coupling and Kerr medium to be $f$-deformed. Even though the system seems to be complicated, the analytical form of the state vector of the entire system for considered model is exactly obtained. The time evolution of nonclassical properties such as quantum entanglement and position-momentum entropic uncertainty relation (entropy squeezing) of the field are investigated. In each case, the influences of the detuning parameters, generalized Kerr medium and intensity-dependent coupling on the latter nonclassicality signs are analyzed, in detail.

  12. Frequency redistribution function for the polarized two-term atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casini, R.; Landi Degl'Innocenti, M.; Manso Sainz, R.

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  13. Two-Photon Excitation of Launched Cold Atoms in Flight

    NASA Astrophysics Data System (ADS)

    Goodsell, Anne; Gonzalez, Rene; Alejandro, Eduardo; Erwin, Emma

    2017-04-01

    We demonstrate two-photon bi-chromatic excitation of cold rubidium atoms in flight, using the pathway 5S1 / 2 -> 5P3 / 2 -> 5D5 / 2 with two resonant photons. In our experiment, atoms are laser-cooled in a magneto-optical trap and launched upward in discrete clouds with a controllable vertical speed of 7.1 +/-0.6 m/s and a velocity spread that is less than 10% of the launch speed. Outside the cooling beams, as high as 14 mm above the original center of the trap, the launched cold atoms are illuminated simultaneously by spatially-localized horizontal excitation beams at 780 nm (5S1 / 2 -> 5P3 / 2) and 776 nm (5P3 / 2 -> 5D5 / 2). We monitor transmission of the 780-nm beam over a range of intensities of 780-nm and 776-nm light. As the center of the moving cloud passes the excitation beams, we observe as much as 97.9 +/-1.2% transmission when the rate of two-photon absorption is high and the 5S1 / 2 and 5P3 / 2 states are depopulated, compared to 87.6 +/-0.9% transmission if only the 780-nm beam is present. This demonstrates two-photon excitation of a launched cold-atom source with controllable launch velocity and narrow velocity spread, as a foundation for three-photon excitation to Rydberg states. Research supported by Middlebury College Bicentennial Fund, Palen Fund, and Gladstone Award.

  14. Two atoms in an anisotropic harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Calarco, T.

    2005-05-15

    We consider the system of two interacting atoms confined in axially symmetric harmonic trap. Within the pseudopotential approximation, we solve the Schroedinger equation exactly, discussing the limits of quasi-one-and quasi-two-dimensional geometries. Finally, we discuss the application of an energy-dependent pseudopotential, which allows us to extend the validity of our results to the case of tight traps and large scattering lengths.

  15. Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Bagheri Harouni, M.

    2014-04-01

    In this paper, we study the interaction between a Λ-type three-level atom and two quantized electromagnetic fields which are simultaneously injected in a bichromatic cavity surrounded by a Kerr medium in the presence of field-field interaction (parametric down conversion) and detuning parameters. By applying a canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions which may be prepared for the atom and the field, the time evolution of the state vector of the entire system is analytically evaluated. Then, the dynamics of the atom is studied through the evolution of the atomic population inversion. In addition, two different measures of entanglement between the tripartite system (three entities make the system: two field modes and one atom), i.e., von Neumann and linear entropy are investigated. Also, two kinds of entropic uncertainty relations, from which entropy squeezing can be obtained, are discussed. In each case, the influences of the detuning parameters and Kerr medium on the above nonclassicality features are analyzed in detail via numerical results. It is illustrated that the amount of the above-mentioned physical phenomena can be tuned by choosing the evolved parameters, appropriately.

  16. Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects

    NASA Astrophysics Data System (ADS)

    Faghihi, Mohammad Javad; Tavassoly, Mohammad Kazem

    2013-11-01

    In this paper, we follow our presented model in J. Opt. Soc. Am. B {\\bf 30}, 1109--1117 (2013), in which the interaction between a $\\Lambda$-type three-level atom and a quantized two-mode radiation field in a cavity in the presence of nonlinearities is studied. After giving a brief review on the procedure of obtaining the state vector of the atom-field system, some further interesting and important physical features (which are of particular interest in the quantum optics field of research) of the whole system state, i.e., the number-phase entropic uncertainty relation (based on the two-mode Pegg-Barnett formalism) and some of the nonclassicality signs consist of sub-Poissonian statistics, Cauchy-Schwartz inequality and two kinds of squeezing phenomenon are investigated. During our presentation, the effects of intensity-dependent coupling, deformed Kerr medium and the detuning parameters on the depth and domain of each of the mentioned nonclassical criteria of the considered quantum system are studied, in detail. It is shown that each of the mentioned nonclassicality aspects can be obtained by appropriately choosing the related parameters.

  17. Dissociative Identity Disorder in Felonious Offenders: Two Case Studies.

    ERIC Educational Resources Information Center

    Culiner, Ty

    1997-01-01

    Describes the case studies of two inmates detained in a maximum security prison having been diagnosed with Dissociative Identity Disorder and receiving individual therapy. Although treatment is ongoing, mid-treatment progress indicates the treatment is successful and the prognosis is excellent. Accentuates the practicality and rewards of working…

  18. Quantum Synchronization of Two Ensembles of Atoms

    NASA Astrophysics Data System (ADS)

    Xu, Minghui; Tieri, David; Fine, Effie; Thompson, James; Holland, Murray

    2014-05-01

    We present a system that exhibits quantum synchronization as a modern analogue of the Huygens experiment which is implemented using state-of-the-art neutral atom lattice clocks of the highest precision. In particular, we study the correlated phase dynamics of two mesoscopic ensembles of atoms through their collective coupling to an optical cavity. We find a dynamical quantum phase transition induced by pump noise and cavity output-coupling. The spectral properties of the superradiant light emitted from the cavity show that at a critical pump rate the system undergoes a transition from the independent behavior of two disparate oscillators to the phase-locking that is the signature of quantum synchronization. Besides being of fundamental importance in nonequilibrium quantum many-body physics, this work could have broad implications for many practical applications of ultrastable lasers and precision measurements. This work was supported by the DARPA QuASAR program, the NSF, and NIST.

  19. Difference of Self-identity Levels between Strabismus Patients and Normal Controls.

    PubMed

    Kim, Youngjun; Kim, Cheron; Kim, Seongjae; Han, Yongseop; Chung, Inyoung; Seo, Seongwook; Park, Jongmoon; Yoo, Jimyong

    2016-12-01

    To evaluate differences in self-identity in patients diagnosed with strabismus, patients who underwent strabismus surgery, and healthy control individuals. Self-identity testing was done during a military service physical examination. There were three subject groups: subjects with strabismus (group 1), subjects who had undergone corrective strabismus surgery (group 2), and subjects free of strabismus (group 3). The self-identity test was comprised of six sub-sections (subjectivity, self-acceptance, future confidence, goal orientation, initiative, and familiarity). Statistical significance of the sub-sections was compared across the three groups. Correlations in age at the time of surgery and across the six sub-sections were investigated in group 2. A total of 351 subjects were enrolled in the study; 96 subjects were in group 1, 108 subjects were in group 2, and 147 subjects were in group 3. Significant differences were evident in subjectivity, self-acceptance, initiative and familiarity between groups 1 and 3. No significant differences were found between groups 2 and 3. In group 2, statistical significance was evident between age at surgery and initiative and familiarity (r = -0.333, p < 0.001; r = -0.433, p < 0.001, respectively). Self-identity is greater in non-strabismus subjects than strabismus subjects. Correction of strabismus may increase self-identity levels.

  20. South Asian women: identities and conflicts.

    PubMed

    Inman, Arpana G

    2006-04-01

    This study investigated the effects of education, level of religiosity, ethnic identity (internal and external), and racial identity statuses (conformity, dissonance, resistance, and awareness) on cultural value conflict for first and second generation South Asian women (N = 193). Cultural value conflict was examined in two areas, intimate relations and sex-role expectations. Results revealed that level of religiosity was more predictive of intimate relations conflict for second generation than first generation women. Furthermore, higher ratings in internal ethnic identity predicted greater intimate relations conflict in first generation women, while both internal and external ethnic identity predicted intimate relations conflict in second generation women. Finally, higher dissonance scores in racial identity predicted greater conflicts in sex-role expectations for second generation women alone.

  1. Building one molecule from a reservoir of two atoms.

    PubMed

    Liu, L R; Hood, J D; Yu, Y; Zhang, J T; Hutzler, N R; Rosenband, T; Ni, K-K

    2018-05-25

    Chemical reactions typically proceed via stochastic encounters between reactants. Going beyond this paradigm, we combined exactly two atoms in a single, controlled reaction. The experimental apparatus traps two individual laser-cooled atoms [one sodium (Na) and one cesium (Cs)] in separate optical tweezers and then merges them into one optical dipole trap. Subsequently, photoassociation forms an excited-state NaCs molecule. The discovery of previously unseen resonances near the molecular dissociation threshold and measurement of collision rates are enabled by the tightly trapped ultracold sample of atoms. As laser-cooling and trapping capabilities are extended to more elements, the technique will enable the study of more diverse, and eventually more complex, molecules in an isolated environment, as well as synthesis of designer molecules for qubits. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Interaction-induced decay of a heteronuclear two-atom system

    PubMed Central

    Xu, Peng; Yang, Jiaheng; Liu, Min; He, Xiaodong; Zeng, Yong; Wang, Kunpeng; Wang, Jin; Papoular, D. J.; Shlyapnikov, G. V.; Zhan, Mingsheng

    2015-01-01

    Two-atom systems in small traps are of fundamental interest for understanding the role of interactions in degenerate cold gases and for the creation of quantum gates in quantum information processing with single-atom traps. One of the key quantities is the inelastic relaxation (decay) time when one of the atoms or both are in a higher hyperfine state. Here we measure this quantity in a heteronuclear system of 87Rb and 85Rb in a micro optical trap and demonstrate experimentally and theoretically the presence of both fast and slow relaxation processes, depending on the choice of the initial hyperfine states. This experimental method allows us to single out a particular relaxation process thus provides an extremely clean platform for collisional physics studies. Our results have also implications for engineering of quantum states via controlled collisions and creation of two-qubit quantum gates. PMID:26199051

  3. Tunneling and traversal of ultracold three-level atoms through vacuum-induced potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badshah, Fazal; Irfan, Muhammad; Qamar, Shahid

    2011-09-15

    The passage of ultracold three-level atoms through the potential induced by the vacuum cavity mode is discussed using cascade atomic configuration. We study the tunneling or traversal time of the ultracold atoms via a bimodal high-Q cavity. It is found that the phase time, which may be considered as a measure for the time required to traverse the cavity, exhibits superclassical and subclassical behaviors. Further, the dark states and interference effects in cascade atomic configuration may influence the passage time of the atom through the cavity.

  4. Atom chips with free-standing two-dimensional electron gases: advantages and challenges

    NASA Astrophysics Data System (ADS)

    Sinuco-León, G. A.; Krüger, P.; Fromhold, T. M.

    2018-03-01

    In this work, we consider the advantages and challenges of using free-standing two-dimensional electron gases (2DEG) as active components in atom chips for manipulating ultracold ensembles of alkali atoms. We calculate trapping parameters achievable with typical high-mobility 2DEGs in an atom chip configuration and identify advantages of this system for trapping atoms at sub-micron distances from the atom chip. We show how the sensitivity of atomic gases to magnetic field inhomogeneity can be exploited for controlling the atoms with quantum electronic devices and, conversely, using the atoms to probe the structural and transport properties of semiconductor devices.

  5. The Relationship Between Ego Identity, Personal Responsibility, and Facilitative Communication

    ERIC Educational Resources Information Center

    Neuber, Keith; Genthner, Robert

    1977-01-01

    Provides empirical evidence supporting Erikson's postulation of two ego identity status groups (identity achievement and identity diffusion). Shows that persons high in ego identity development demonstrate higher levels of intrapersonal and interpersonal psychological adjustment than persons low in ego identity. (RL)

  6. To acquire more detailed radiation drive by use of ``quasi-steady'' approximation in atomic kinetics

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin

    2012-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM) in NLTE plasma description. However, the detailed experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum- number(nl-level) average atom model is a natural consideration, however the nl-level in-line calculation needs much more computational resource. By distinguishing the rapid bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to build up a more detailed bound electron distribution(nl-level even nlm-level) using in-line n-level calculated plasma conditions(temperature, density, and average ionization degree). We name this method ``quasi-steady approximation'' in atomic kinetics. Using this method, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more fine frequency-denpending spectrum structure which appears only in nl-level transition with same n number(n=0) .

  7. Toward a nanoscience emulator with two dimensional atomic gases

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Ma, Q.; Dutta, S.; Chen, Yong P.

    2009-05-01

    We report our experimental progress in constructing a cold atom apparatus for emulating phenomena in nanoscience using low dimensional atom gases. Our first experiments will be performed with a 2D ^87Rb Bose-Einstein condensate created in an optical lattice. Our compact vacuum system consists of two AR-coated glass cells --- a low vacuum magneto-optical trap (MOT) chamber and a high vacuum ``science chamber'', connected by a 15cm-long tube for differential pumping. We have used elliptically shaped cooling laser beams and magnet field coils to realize an elongated MOT in the first chamber, and transferred the atoms to a second MOT in the science chamber by a push laser beam. In the science chamber, a 50W, 1550nm single frequency erbium fiber laser is used to produce an optical dipole trap and optical lattice.In addition, controllable disorder can be introduced with laser speckle and inter-atomic interactions can be tuned by atomic density or Feshbach resonance. We plan to explore important phenomena in nanoscience, such as 2D disorder-induced conductor-insulator transition, quantum Hall effect and graphene-like physics in such a tunable 2D atomic gas in optical lattices.

  8. Fostering a Provincial Identity: Two Eras in Alberta Schooling

    ERIC Educational Resources Information Center

    von Heyking, Amy

    2006-01-01

    In this article, I analyse how schools in Alberta have defined the province's identity and its role in Confederation. During two eras, the 1930s and the 1980s, social studies curriculum and teaching resources contained assertions of provincial uniqueness. In the late 1930s, the progressive curriculum implemented in Alberta's schools represented…

  9. Dissociative excitation of the manganese atom quartet levels by collisions e-MnBr2

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu M.

    2017-04-01

    Dissociative excitation of quartet levels of the manganese atom was studied in collisions of electrons with manganese dibromide molecules. Eighty-two cross-sections for transitions originating at odd levels and eleven cross-sections for transitions originating at even levels have been measured at an incident electron energy of 100 eV. An optical excitation function has been recorded in the electron energy range of 0-100 eV for transitions originating from 3d 64p z 4 F° levels. For the majority of transitions, a comparison of the resulting cross-section values to cross-sections produced by direct excitation is provided.

  10. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties.

    PubMed

    Yang, Yong; Yang, Yang; Chen, Shuangming; Lu, Qichen; Song, Li; Wei, Yen; Wang, Xun

    2017-11-16

    Superthin nanostructures, particularly with atomic-level thicknesses, typically display unique optical properties because of their exceptional light-matter interactions. Here, we report a facile strategy for the synthesis of sulfur-doped molybdenum oxide nanorings with an atomic-level size (thickness of 0.5 nm) and a tunable ring-in-ring architecture. These atomic-level nanorings displayed strong photo-absorption in both the visible and infrared-light ranges and acted as a photothermal agent. Under irradiation with an 808 nm laser with an intensity of 1 W/cm 2 , a composite of the nanorings embedded in polydimethylsiloxane showed an ultrafast photothermal effect, delivering a local temperature of up to 400 °C within 20 s, which to the best of our knowledge is the highest temperature by light irradiation reported to date. Meanwhile, the resulting nanorings were also employed as a photoinitiator to remotely induce a visible-light shape memory response, self-healing, reshaping performance and reversible actuation of dynamic three-dimensional structures. This study demonstrates an advancement towards controlling atomic-level-sized nanostructures and achieving greatly enhanced optical performances for optoelectronics.

  11. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a sampling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less effected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  12. Agreement between experimental and theoretical effects of nitrogen gas flowrate on liquid jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1987-01-01

    Two-phase flows were investigated by using high velocity nitrogen gas streams to atomize small-diameter liquid jets. Tests were conducted primarily in the acceleration-wave regime for liquid jet atomization, where it was found that the loss of droplets due to vaporization had a marked effect on drop-size measurements. In addition, four identically designed two-fluid atomizers were fabricated and tested for similarity of spray profiles. A scattered-light scanner was used to measure a characteristic drop diameter, which was correlated with nitrogen gas flowrate. The exponent of 1.33 for nitrogen gas flowrate is identical to that predicted by atomization theory for liquid jet breakup in the acceleration-wave regime. This is higher than the value of 1.2 which was previously obtained at a smapling distance of 4.4 cm downstream of the atomizer. The difference is attributed to the fact that drop-size measurements obtained at a 2.2 cm sampling distance are less affected by vaporization and dispersion of small droplets and therefore should give better agreement with atomization theory. Profiles of characteristic drop diameters were also obtained by making at least five line-of-sight measurements across the spray at several horizontal positions above and below the center line of the spray.

  13. SuperIdentity: Fusion of Identity across Real and Cyber Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Sue; Creese, Sadie; Guest, Richard

    Under both benign and malign circumstances, people now manage a spectrum of identities across both real-world and cyber domains. Our belief, however, is that all these instances ultimately track back for an individual to reflect a single 'SuperIdentity'. This paper outlines the assumptions underpinning the SuperIdentity Project, describing the innovative use of data fusion to incorporate novel real-world and cyber cues into a rich framework appropriate for modern identity. The proposed combinatorial model will support a robust identification or authentication decision, with confidence indexed both by the level of trust in data provenance, and the diagnosticity of the identity factorsmore » being used. Additionally, the exploration of correlations between factors may underpin the more intelligent use of identity information so that known information may be used to predict previously hidden information. With modern living supporting the 'distribution of identity' across real and cyber domains, and with criminal elements operating in increasingly sophisticated ways in the hinterland between the two, this approach is suggested as a way forwards, and is discussed in terms of its impact on privacy, security, and the detection of threat.« less

  14. Identical twins with mature cystic teratomas treated with laparoscopic surgery: Two case reports.

    PubMed

    Mabuchi, Yasushi; Ota, Nami; Kobayashi, Aya; Tanizaki, Yuko; Minami, Sawako; Ino, Kazuhiko

    2017-02-01

    Mature cystic teratomas are the most common among all ovarian neoplasms, representing 30-40% of the cases. However, to the best of our knowledge, there have been only two reports of mature cystic teratomas occurring in identical twins to date. We herein report a case of identical twins with mature cystic teratomas who were treated with laparoscopic surgery. A 32-year-old woman was referred to our hospital due to a tumor in the right ovary. The patient underwent laparoscopic resection of the ovarian tumor and the pathological diagnosis was benign mature cystic teratoma. Two years later, the identical twin of the abovementioned patient was referred to our hospital also due to a right ovarian tumor. The patient underwent laparoscopic resection of the ovarian tumor and the pathological diagnosis was benign mature cystic teratoma. Therefore, for early diagnosis, it may be important to consider the possibility of mature cystic teratoma in the identical twin of a patient, even in the absence of symptoms.

  15. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    PubMed

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. V. The two-term atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2017-11-01

    Context. In previous papers of this series, we presented a formalism able to account for both statistical equilibrium of a multilevel atom and coherent and incoherent scatterings (partial redistribution). Aims: This paper provides theoretical expressions of the redistribution function for the two-term atom. This redistribution function includes both coherent (RII) and incoherent (RIII) scattering contributions with their branching ratios. Methods: The expressions were derived by applying the formalism outlined above. The statistical equilibrium equation for the atomic density matrix is first formally solved in the case of the two-term atom with unpolarized and infinitely sharp lower levels. Then the redistribution function is derived by substituting this solution for the expression of the emissivity. Results: Expressions are provided for both magnetic and non-magnetic cases. Atomic fine structure is taken into account. Expressions are also separately provided under zero and non-zero hyperfine structure. Conclusions: Redistribution functions are widely used in radiative transfer codes. In our formulation, collisional transitions between Zeeman sublevels within an atomic level (depolarizing collisions effect) are taken into account when possible (I.e., in the non-magnetic case). However, the need for a formal solution of the statistical equilibrium as a preliminary step prevents us from taking into account collisional transfers between the levels of the upper term. Accounting for these collisional transfers could be done via a numerical solution of the statistical equilibrium equation system.

  17. Difference of Self-identity Levels between Strabismus Patients and Normal Controls

    PubMed Central

    Kim, Youngjun; Kim, Cheron; Kim, Seongjae; Han, Yongseop; Chung, Inyoung; Seo, Seongwook; Park, Jongmoon

    2016-01-01

    Purpose To evaluate differences in self-identity in patients diagnosed with strabismus, patients who underwent strabismus surgery, and healthy control individuals. Methods Self-identity testing was done during a military service physical examination. There were three subject groups: subjects with strabismus (group 1), subjects who had undergone corrective strabismus surgery (group 2), and subjects free of strabismus (group 3). The self-identity test was comprised of six sub-sections (subjectivity, self-acceptance, future confidence, goal orientation, initiative, and familiarity). Statistical significance of the sub-sections was compared across the three groups. Correlations in age at the time of surgery and across the six sub-sections were investigated in group 2. Results A total of 351 subjects were enrolled in the study; 96 subjects were in group 1, 108 subjects were in group 2, and 147 subjects were in group 3. Significant differences were evident in subjectivity, self-acceptance, initiative and familiarity between groups 1 and 3. No significant differences were found between groups 2 and 3. In group 2, statistical significance was evident between age at surgery and initiative and familiarity (r = −0.333, p < 0.001; r = −0.433, p < 0.001, respectively). Conclusions Self-identity is greater in non-strabismus subjects than strabismus subjects. Correction of strabismus may increase self-identity levels. PMID:27980359

  18. Anorexia nervosa and gender identity disorder in biologic males: a report of two cases.

    PubMed

    Winston, Anthony P; Acharya, Sudha; Chaudhuri, Shreemantee; Fellowes, Lynette

    2004-07-01

    Gender identity disorder is a rare disorder of uncertain etiology. The emphasis on body shape in this disorder suggests that there may be an association with anorexia nervosa. We report two cases of anorexia nervosa and gender identity disorder in biologic males who presented to an eating disorders service. One was treated successfully as an outpatient and subsequently underwent gender reassignment surgery. The other patient required admission and prolonged psychotherapy. Differences between the two cases are discussed. Issues of gender identity should be considered in the assessment of male patients presenting with anorexia nervosa. Copyright 2004 by Wiley Periodicals, Inc.

  19. A Study of Social Identity in Two Ethnic Groups in India and Bangladesh.

    ERIC Educational Resources Information Center

    Ghosh, E. S. K.; Huq, M. M.

    1985-01-01

    Reports two studies which examined the social identity of Hindu and Muslim subjects under three frames of reference: self, own group, and outgroup evaluations cross-nationally. Findings are examined in relation to the interplay of specific socio-contextual experiences in the differential pattern of social identity processes. (SED)

  20. Two-photon decay in gold atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunford, R. W.; Kanter, E. P.; Kraessig, B.

    2006-07-15

    We have measured the energy differential transition probabilities for the two-photon decay of K vacancies in gold atoms (nuclear charge Z=79). This is the heaviest atom for which this information has been obtained, and so is most sensitive to relativistic effects. The experiment determined the shape of the continuum radiation for the transitions 2s{yields}1s, 3s{yields}1s, 3d{yields}1s, and (4s+4d){yields}1s at an emission pair opening angle {theta}={pi}/2. Our results for 3d{yields}1s and (4s+4d){yields}1s extend to energies above and below the region of the intermediate state resonances. No relativistic calculations exist for Au, so we compare with calculations by Mu and Crasemann andmore » Tong et al. for Ag (Z=47) and Xe (Z=54). For equal-energy, back-to-back two-photon decay, the calculations show an increase in transition probability with Z for the 2s{yields}1s and 3d{yields}1s transitions. In contrast, our data, at Z=79, corrected for the angular distribution, give a smaller transition probability than the lower-Z experimental results of Ilakovac et al. and Mokler et al. for Ag and Xe. The shapes of the two-photon continua in our data are in general agreement with theory except that we find anomalously high values for the differential two-photon transition probability for the 3s{yields}1s transition near y=0.35, where y is the fraction of the transition energy carried by the lower-energy photon.« less

  1. Girls and A level physics : Identity and choices

    NASA Astrophysics Data System (ADS)

    Thorley, Amelia Deborah Maud

    This thesis addresses the question of how physics identity and physics self efficacy influence girls' choices to study or not to study physics post-16. This question is important because only 20% of the overall 16-18 physics cohort in England and Wales is female. A theoretical framework for physics identity is proposed using socio-cultural theories. An extensive review of the current literature on the issue of girls in physics, physics identity and physics self efficacy was used to support this framework.A mixed methods methodology with a funnelling approach to selecting participants was used. Two schools were selected because they had in the past demonstrated a higher than average progression rate for girls onto post-16 physics. An initial questionnaire was completed by 458 14 and 15 year old pupils. From the answers given on the questionnaire, 43 girls were selected to participate in three rounds of small group interviews. These girls were ones who were both thinking of studying physics post-16 and those who were not. Finally, extended narratives of four girls were developed to illustrate the links between physics identity, physics self efficacy and physics choice. Descriptive analysis of the questionnaire data was used to give a background picture of the pupils' overall views about science and physics, science and physics teachers and lessons and how they felt about physics. The group interview data was analysed thematically drawing on the themes identified in the literature review and themes that emerged from the data. The stories of four girls were analysed using narrative methodology. The results show that the issues of girls' engagement in physics cannot be resolved unless a holistic view is taken; that developing identification with physics occurs within the wider identity development of the girls that takes place in the many figured worlds that they inhabit. Particular notice needs to be taken of how girls' identification with physics develops due to

  2. Changes in the Levels of Relatedness in Identity Exploration among Japanese Female Late Adolescents.

    ERIC Educational Resources Information Center

    Sugimura, Kazumi

    This study examines the changes of relatedness levels in identity exploration among female adolescents along with the factors associated with the changes. The expanded Ego Identity Interview, which covers the domains of occupation, friendships, dating, and sex roles, was administered to university students (N=31) during their first semester as…

  3. Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments

    DOE PAGES

    Lopes, Pietro P.; Strmcnik, Dusan; Tripkovic, Dusan; ...

    2016-03-07

    The development of alternative energy systems for clean production, storage and conversion of energy is strongly dependent on our ability to understand, at atomic-molecular-levels, functional links between activity and stability of electrochemical interfaces. Whereas structure-activity relationships are rapidly evolving, the corresponding structure-stability relationships are still missing. Primarily, this is because there is no adequate experimental approach capable of monitoring in situ stability of well-defined single crystals. Here, by blending the power of Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) connected to a stationary probe to measure in situ and real time dissolution rates of surface atoms (at above 0.4 pg cm-2s-1 levels)more » and a rotating disk electrode method for monitoring simultaneously the kinetic rates of electrochemical reactions in a single unite, it was possible to establish almost “atom-by-atom” the structure-stability-activity relationships for platinum single crystals in both acidic and alkaline environments. Furthermore, we found that the degree of stability is strongly dependent on the coordination of surface atoms (less coordinated yields less stable), the nature of covalent (adsorption of hydroxyl, oxygen atoms and halides species), and non-covalent interactions (interactions between hydrated Li cations and surface oxide), the thermodynamic driving force for Pt complexation (Pt ion speciation in solution) and the nature of the electrochemical reaction (the oxygen reduction/evolution and CO oxidation reactions). Consequently, these findings are opening new opportunities for elucidating key fundamental descriptors that govern both activity and stability trends, that ultimately, will assist to develop real energy conversion and storage systems.« less

  4. A new method for calculating time-dependent atomic level populations

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.

    1981-01-01

    A method is described for reducing the number of levels to be dealt with in calculating time-dependent populations of atoms or ions in plasmas. The procedure effectively extends the collisional-radiative model to consecutive stages of ionization, treating ground and metastable levels explicitly and excited levels implicitly. Direct comparisons of full and simulated systems are carried out for five-level models.

  5. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    PubMed

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  6. Sensitivity of MSE measurements on the beam atomic level population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, C., E-mail: carlos.ruiz@wisc.edu; Kumar, S. T. A.; Anderson, F. S. B.

    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam aremore » simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.« less

  7. Atomic structure of a metal-supported two-dimensional germania film

    NASA Astrophysics Data System (ADS)

    Lewandowski, Adrián Leandro; Schlexer, Philomena; Büchner, Christin; Davis, Earl M.; Burrall, Hannah; Burson, Kristen M.; Schneider, Wolf-Dieter; Heyde, Markus; Pacchioni, Gianfranco; Freund, Hans-Joachim

    2018-03-01

    The growth and microscopic characterization of two-dimensional germania films is presented. Germanium oxide monolayer films were grown on Ru(0001) by physical vapor deposition and subsequent annealing in oxygen. We obtain a comprehensive image of the germania film structure by combining intensity-voltage low-energy electron diffraction (I/V-LEED) and ab initio density functional theory (DFT) analysis with atomic-resolution scanning tunneling microscopy (STM) imaging. For benchmarking purposes, the bare Ru(0001) substrate and the (2 ×2 )3 O covered Ru(0001) were analyzed with I/V-LEED with respect to previous reports. STM topographic images of the germania film reveal a hexagonal network where the oxygen and germanium atom positions appear in different imaging contrasts. For quantitative LEED, the best agreement has been achieved with DFT structures where the germanium atoms are located preferentially on the top and fcc hollow sites of the Ru(0001) substrate. Moreover, in these atomically flat germania films, local site geometries, i.e., tetrahedral building blocks, ring structures, and domain boundaries, have been identified, indicating possible pathways towards two-dimensional amorphous networks.

  8. When moral identity symbolization motivates prosocial behavior: the role of recognition and moral identity internalization.

    PubMed

    Winterich, Karen Page; Aquino, Karl; Mittal, Vikas; Swartz, Richard

    2013-09-01

    This article examines the role of moral identity symbolization in motivating prosocial behaviors. We propose a 3-way interaction of moral identity symbolization, internalization, and recognition to predict prosocial behavior. When moral identity internalization is low, we hypothesize that high moral identity symbolization motivates recognized prosocial behavior due to the opportunity to present one's moral characteristics to others. In contrast, when moral identity internalization is high, prosocial behavior is motivated irrespective of the level of symbolization and recognition. Two studies provide support for this pattern examining volunteering of time. Our results provide a framework for predicting prosocial behavior by combining the 2 dimensions of moral identity with the situational factor of recognition. PsycINFO Database Record (c) 2013 APA, all rights reserved

  9. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  10. Quantum Statistical Properties of the Codirectional Kerr Nonlinear Coupler in Terms of su (2 ) Lie Group in Interaction with a Two-level Atom

    NASA Astrophysics Data System (ADS)

    Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.

    2017-08-01

    The problem of the codirectional Kerr coupler has been considered several times from different point of view. In the present paper we introduce the interaction between a two-level atom and the codirectional Kerr nonlinear coupler in terms of su (2 ) Lie algebra. Under certain conditions we have adjusted the Kerr coupler and consequently we have managed to handle the problem. The wave function is obtained by using the evolution operator where the Heisnberg equation of motion is invoked to get the constants of the motion. We note that the Kerr parameter χ as well as the quantum number j plays the role of controlling the atomic inversion behavior. Also the maximum entanglement occurs after a short period of time when χ = 0. On the other hand for the entropy and the variance squeezing we observe that there is exchange between the quadrature variances. Furthermore, the variation in the quantum number j as well as in the parameter χ leads to increase or decrease in the number of fluctuations. Finally we examined the second order correlation function where classical and nonclassical phenomena are observed.

  11. The effect of leveling coatings on the atomic oxygen durability of solar concentrator surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Dever, Therese M.; Quinn, William F.

    1990-01-01

    Space power systems for Space Station Freedom will be exposed to the harsh environment of low earth orbit (LEO). Neutral atomic oxygen is the major constituent in LEO and has the potential of severely reducing the efficiency of solar dynamic power systems through degradation of the concentrator surfaces. Several transparent dielectric thin films have been found to provide atomic oxygen protection, but atomic oxygen undercutting at inherent defect sites is still a threat to solar dynamic power system survivability. Leveling coatings smooth microscopically rough surfaces, thus eliminating potential defect sites prone to oxidation attack on concentrator surfaces. The ability of leveling coatings to improve the atomic oxygen durability of concentrator surfaces was investigated. The application of a EPO-TEK 377 epoxy leveling coating on a graphite epoxy substrate resulted in an increase in solar specular reflectance, a decrease in the atomic oxygen defect density by an order of magnitude and a corresponding order of magnitude decrease in the percent loss of specular reflectance during atomic oxygen plasma ashing.

  12. Inter-identity autobiographical amnesia in patients with dissociative identity disorder.

    PubMed

    Huntjens, Rafaële J C; Verschuere, Bruno; McNally, Richard J

    2012-01-01

    A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature.

  13. Formation and structural phase transition in Co atomic chains on a Cu(775) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.

    The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomicmore » spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.« less

  14. Ethnic Identity in Everyday Life: The Influence of Identity Development Status

    PubMed Central

    Yip, Tiffany

    2013-01-01

    The current study explores the intersection of ethnic identity development and significance in a sample of 354 diverse adolescents (mean age 14). Adolescents completed surveys 5 times a day for 1 week. Cluster analyses revealed 4 identity clusters: diffused, foreclosed, moratorium, achieved. Achieved adolescents reported the highest levels of identity salience across situations, followed by moratorium adolescents. Achieved and moratorium adolescents also reported a positive association between identity salience and private regard. For foreclosed and achieved adolescents reporting low levels of centrality, identity salience was associated with lower private regard. For foreclosed and achieved adolescents reporting high levels of centrality, identity salience was associated with higher private regard. PMID:23581701

  15. Profiling Teachers' Sense of Professional Identity

    ERIC Educational Resources Information Center

    Canrinus, Esther T.; Helms-Lorenz, Michelle; Beijaard, Douwe; Buitink, Jaap; Hofman, Adriaan

    2011-01-01

    This study shows that professional identity should not be viewed as a composed variable with a uniform structure. Based on the literature and previous research, we view teachers' job satisfaction, self-efficacy, occupational commitment and change in the level of motivation as indicators of teachers' professional identity. Using two-step cluster…

  16. Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena

    2015-11-02

    Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.

  17. Resonance of an unshared electron pair between two atoms connected by a single bond

    PubMed Central

    Pauling, Linus

    1983-01-01

    The reported structure of the dimer of a compound of bicovalent tin indicates that the tin-tin bond is of a new type. It can be described as involving resonance between two structures in which there is transfer of an electron pair from one tin atom to the other. The tin atoms are connected by a single covalent bond (each also forms two covalent bonds with carbon atoms), and an unshared electron pair resonates between the fourth sp3 orbitals of the two atoms. Similar structures probably occur in digermene and distannene. PMID:16593329

  18. Energy Levels and Spectral Lines of Li Atoms in White Dwarf Strength Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Zhao, L. B.

    2018-04-01

    A theoretical approach based on B-splines has been developed to calculate atomic structures and discrete spectra of Li atoms in a strong magnetic field typical of magnetic white dwarf stars. Energy levels are presented for 20 electronic states with the symmetries 20+, 20‑, 2(‑1)+, 2(‑1)‑, and 2(‑2)+. The magnetic field strengths involved range from 0 to 2350 MG. The wavelengths and oscillator strengths for the electric dipole transitions relevant to these magnetized atomic states are reported. The current results are compared to the limited theoretical data in the literature. A good agreement has been found for the lower energy levels, but a significant discrepancy is clearly visible for the higher energy levels. The existing discrepancies of the wavelengths and oscillator strengths are also discussed. Our investigation shows that the spectrum data of magnetized Li atoms previously published are obviously far from meeting requirements of analyzing discrete atomic spectra of magnetic white dwarfs with lithium atmospheres.

  19. Considering lesbian identity from a social-psychological perspective: two different models of "being a lesbian".

    PubMed

    Tate, Charlotte Chuck

    2012-01-01

    One long-standing project within lesbian studies has been to develop a satisfactory working definition of "lesbian." This article proposes two new models of a definition using principles of social psychology. Each model (a) utilizes the premise that gender lacks a categorical essence and (b) separates behavioral adherence to cultural stereotypes of femininity and masculinity from one's gender self-categorization. From these premises, I generate and critique two internally coherent models of lesbian identity that are inclusive (to different degrees) of various gender identities. For each model, the potential inclusion of trans men, trans women, genderqueers, and lesbian-identified cisgender men is evaluated. The explanatory power of these models is twofold. One, the models can serve as theoretical perspectives for scholars who study the intersection of gender and sexual identity. Two, the models can also characterize the everyday experience of people who have tacit working definitions of lesbian identity.

  20. Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay

    We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.

  1. Efficient atom localization via probe absorption in an inverted-Y atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  2. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  3. Inter-Identity Autobiographical Amnesia in Patients with Dissociative Identity Disorder

    PubMed Central

    Huntjens, Rafaële J. C.; Verschuere, Bruno; McNally, Richard J.

    2012-01-01

    Background A major symptom of Dissociative Identity Disorder (DID; formerly Multiple Personality Disorder) is dissociative amnesia, the inability to recall important personal information. Only two case studies have directly addressed autobiographical memory in DID. Both provided evidence suggestive of dissociative amnesia. The aim of the current study was to objectively assess transfer of autobiographical information between identities in a larger sample of DID patients. Methods Using a concealed information task, we assessed recognition of autobiographical details in an amnesic identity. Eleven DID patients, 27 normal controls, and 23 controls simulating DID participated. Controls and simulators were matched to patients on age, education level, and type of autobiographical memory tested. Findings Although patients subjectively reported amnesia for the autobiographical details included in the task, the results indicated transfer of information between identities. Conclusion The results call for a revision of the DID definition. The amnesia criterion should be modified to emphasize its subjective nature. PMID:22815769

  4. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  5. Identity recognition in response to different levels of genetic relatedness in commercial soya bean

    PubMed Central

    Van Acker, Rene; Rajcan, Istvan; Swanton, Clarence J.

    2017-01-01

    Identity recognition systems allow plants to tailor competitive phenotypes in response to the genetic relatedness of neighbours. There is limited evidence for the existence of recognition systems in crop species and whether they operate at a level that would allow for identification of different degrees of relatedness. Here, we test the responses of commercial soya bean cultivars to neighbours of varying genetic relatedness consisting of other commercial cultivars (intraspecific), its wild progenitor Glycine soja, and another leguminous species Phaseolus vulgaris (interspecific). We found, for the first time to our knowledge, that a commercial soya bean cultivar, OAC Wallace, showed identity recognition responses to neighbours at different levels of genetic relatedness. OAC Wallace showed no response when grown with other commercial soya bean cultivars (intra-specific neighbours), showed increased allocation to leaves compared with stems with wild soya beans (highly related wild progenitor species), and increased allocation to leaves compared with stems and roots with white beans (interspecific neighbours). Wild soya bean also responded to identity recognition but these responses involved changes in biomass allocation towards stems instead of leaves suggesting that identity recognition responses are species-specific and consistent with the ecology of the species. In conclusion, elucidating identity recognition in crops may provide further knowledge into mechanisms of crop competition and the relationship between crop density and yield. PMID:28280587

  6. Comparison of femtosecond- and nanosecond-two-photon-absorption laser-induced fluorescence (TALIF) of atomic oxygen in atmospheric-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Sands, Brian; Scofield, James; Gord, James R.; Roy, Sukesh

    2017-05-01

    Absolute number densities of atomic species produced by nanosecond (ns)-duration, repetitively pulsed electric discharges are measured by two-photon-absorption laser-induced fluorescence (TALIF). Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF) that offers a number of advantages over more conventional nanosecond (ns)-pulse-duration laser techniques, such as higher-fidelity quenching rate measurements over a wide pressure range, significantly reduced photolytic interference (including photo-dissociation and photo-ionization), ability to collect two-dimensional images of atomic-species number densities with high spatial resolution aided by higher signal level, and efficient and accurate measurements of atomic-species number densities due to the higher repetition rates of the laser. For full quantification of these advantages, atomic-oxygen TALIF signals are collected from an atmospheric-pressure plasma jet employing both ns- and fs-duration laser-excitation pulses and the results are compared and contrasted.

  7. Evolution in time of an N-atom system. I. A physical basis set for the projection of the master equation

    NASA Astrophysics Data System (ADS)

    Freedhoff, Helen

    2004-01-01

    We study an aggregate of N identical two-level atoms (TLA’s) coupled by the retarded interatomic interaction, using the Lehmberg-Agarwal master equation. First, we calculate the entangled eigenstates of the system; then, we use these eigenstates as a basis set for the projection of the master equation. We demonstrate that in this basis the equations of motion for the level populations, as well as the expressions for the emission and absorption spectra, assume a simple mathematical structure and allow for a transparent physical interpretation. To illustrate the use of the general theory in emission processes, we study an isosceles triangle of atoms, and present in the long wavelength limit the (cascade) emission spectrum for a hexagon of atoms fully excited at t=0. To illustrate its use for absorption processes, we tabulate (in the same limit) the biexciton absorption frequencies, linewidths, and relative intensities for polygons consisting of N=2,…,9 TLA’s.

  8. Making two dysprosium atoms rotate —Einstein-de Haas effect revisited

    NASA Astrophysics Data System (ADS)

    Górecki, Wojciech; Rzążewski, Kazimierz

    2016-10-01

    We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time-dependent homogeneous magnetic field. Using a simplified description of the short-range interaction and the full expression for the dipole-dipole forces we show that under experimentally realisable conditions two dysprosium atoms may be pumped to a high (l > 20) value of the relative orbital angular momentum.

  9. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi

    2017-02-01

    The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.

  10. The two-electron atomic systems. S-states

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2010-01-01

    A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the

  11. Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system

    NASA Astrophysics Data System (ADS)

    Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail

    2018-05-01

    We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.

  12. Deciphering chemical order/disorder and material properties at the single-atom level.

    PubMed

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M C; Ophus, Colin; Xu, Rui; Pryor, Alan; Wu, Li; Sun, Fan; Theis, Wolfgang; Zhou, Jihan; Eisenbach, Markus; Kent, Paul R C; Sabirianov, Renat F; Zeng, Hao; Ercius, Peter; Miao, Jianwei

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling 'real' materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily on average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. This work combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure-property relationships at the fundamental level.

  13. Deciphering chemical order/disorder and material properties at the single-atom level

    DOE PAGES

    Yang, Yongsoo; Chen, Chien-Chun; Scott, M. C.; ...

    2017-02-01

    Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Such disruption in periodicity strongly affects material properties and functionality. Despite rapid development of quantitative material characterization methods, correlating three-dimensional (3D) atomic arrangements of chemical order/disorder and crystal defects with material properties remains a challenge. On a parallel front, quantum mechanics calculations such as density functional theory (DFT) have progressed from the modelling of ideal bulk systems to modelling ‘real’ materials with dopants, dislocations, grain boundaries and interfaces; but these calculations rely heavily onmore » average atomic models extracted from crystallography. To improve the predictive power of first-principles calculations, there is a pressing need to use atomic coordinates of real systems beyond average crystallographic measurements. Here we determine the 3D coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chemical order/disorder and crystal defects with material properties at the single-atom level. We identify rich structural variety with unprecedented 3D detail including atomic composition, grain boundaries, anti-phase boundaries, anti-site point defects and swap defects. We show that the experimentally measured coordinates and chemical species with 22 picometre precision can be used as direct input for DFT calculations of material properties such as atomic spin and orbital magnetic moments and local magnetocrystalline anisotropy. The work presented here combines 3D atomic structure determination of crystal defects with DFT calculations, which is expected to advance our understanding of structure–property relationships at the fundamental level.« less

  14. Atom-Level Understanding of the Sodiation Process in Silicon Anode Material.

    PubMed

    Jung, Sung Chul; Jung, Dae Soo; Choi, Jang Wook; Han, Young-Kyu

    2014-04-03

    Despite the exceptionally large capacities in Li ion batteries, Si has been considered inappropriate for applications in Na ion batteries. We report an atomic-level study on the applicability of a Si anode in Na ion batteries using ab initio molecular dynamics simulations. While crystalline Si is not suitable for alloying with Na atoms, amorphous Si can accommodate 0.76 Na atoms per Si atom, corresponding to a specific capacity of 725 mA h g(-1). Bader charge analyses reveal that the sodiation of an amorphous Si electrode continues until before the local Na-rich clusters containing neutral Na atoms are formed. The amorphous Na0.76Si phase undergoes a volume expansion of 114% and shows a Na diffusivity of 7 × 10(-10) cm(2) s(-1) at room temperature. Overall, the amorphous Si phase turns out quite attractive in performance compared to other alloy-type anode materials. This work suggests that amorphous Si might be a competitive candidate for Na ion battery anodes.

  15. Revisiting the two formulations of Bianchi identities and their implications on moduli stabilization

    NASA Astrophysics Data System (ADS)

    Shukla, Pramod

    2016-08-01

    In the context of non-geometric type II orientifold compactifications, there have been two formulations for representing the various NS-NS Bianchi-identities. In the first formulation, the standard three-form flux ( H 3), the geometric flux ( ω) and the non-geometric fluxes ( Q and R) are expressed by using the real six-dimensional indices (e.g. {H}_{ijk}, {ω_{ij}}^k, {Q_i}{_{jk}} and R ijk ), and this formulation has been heavily utilized for simplifying the scalar potentials in toroidal-orientifolds. On the other hand, relevant for the studies beyond toroidal backgrounds, a second formulation is utilized in which all flux components are written in terms of various involutively even/odd (2 , 1)- and (1 , 1)-cohomologies of the complex threefold. In the lights of recent model building interests and some observations made in [1, 2], in this article, we revisit two most commonly studied toroidal examples in detail to illustrate that the present forms of these two formulations are not completely equivalent. To demonstrate the same, we translate all the identities of the first formulation into cohomology ingredients, and after a tedious reshuffling of the subsequent constraints, interestingly we find that all the identities of the second formulation are embedded into the first formulation which has some additional constraints. In addition, we look for the possible solutions of these Bianchi identities in a detailed analysis, and we find that some solutions can reduce the size of scalar potential very significantly, and in some cases are too strong to break the no-scale structure completely. Finally, we also comment on the influence of imposing some of the solutions of Bianchi identities in studying moduli stabilization.

  16. Identity, Investment and Language Learning Strategies of Two Syrian Students in Syria and Britain

    ERIC Educational Resources Information Center

    Hajar, Anas

    2017-01-01

    This paper reports on a longitudinal phenomenographic inquiry into understanding how two postgraduate Syrian students' ways of approaching English language learning in their homelands influenced the shape of their personal study abroad goals, language strategy use and L2 identity. It is guided by Norton's [(2013). "Identity and language…

  17. Stimulated emission from ladder-type two-photon coherent atomic ensemble.

    PubMed

    Park, Jiho; Moon, Han Seb

    2018-05-28

    We investigated the stimulated emission from a ladder-type two-photon coherent atomic ensemble, for the 5S 1/2 - 5P 3/2 - 5D 5/2 transition of 87 Rb atoms. Under the ladder-type two-photon resonance condition obtained using pump and coupling lasers, we observed broad four-wave mixing (FWM) light stimulated from two-photon coherence induced by the seed laser coupled between the ground state of 5S 1/2 and the first excited state of 5P 3/2 . A dip in the FWM spectrum was obtained for three-photon resonance due to V-type two-photon coherence using the pump and seed lasers. From the FWM spectra obtained for varying frequency detuning and seed-laser power, we determined that the seed laser acts as a stimulator for FWM generation, but also acts as a disturber of FWM due to V-type two-photon coherence.

  18. Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.

    Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less

  19. Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition

    DOE PAGES

    Wang, Qi; Chapleski, Robert C.; Plonka, Anna M.; ...

    2017-04-10

    Ambient pressure in situ synchrotron-based spectroscopic techniques have been correlated to illuminate atomic-level details of bond breaking and formation during the hydrolysis of a chemical warfare nerve agent simulant over a polyoxometalate catalyst. Specifically, a Cs 8[Nb 6O 19] polyoxoniobate catalyst has been shown to react readily with dimethyl methylphosphonate (DMMP). The atomic-level transformations of all reactant moieties, the [Nb 6O 19] 8- polyanion, its Cs + counterions, and the DMMP substrate, were tracked under ambient conditions by a combination of X-ray absorption fine structure spectroscopy, Raman spectroscopy, and X-ray diffraction. Results reveal that the reaction mechanism follows general basemore » (in contrast to specific base) hydrolysis. Together with computational results, the work demonstrates that the ultimate fate of DMMP hydrolysis at the Cs 8[Nb 6O 19] catalyst is strong binding of the (methyl) methylphosphonic acid ((M)MPA) product to the polyanions, which ultimately inhibits catalytic turnover.« less

  20. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    DOE PAGES

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; ...

    2015-10-19

    Four complex intermetallic compounds BaAu 6±xGa 6±y (x = 1, y = 0.9) (I), BaAu 6±xAl 6±y (x = 0.9, y = 0.6) (II), EuAu 6.2Ga 5.8 (III), and EuAu 6.1Al 5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn 13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce 2Ni 17Si 9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupationmore » by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu 6Tr 6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu 6Tr 6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu 6.2Ga 5.8 (III) and EuAu 6.1Al 5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at T C = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less

  1. Interaction of sodium atoms with stacking faults in silicon with different Fermi levels

    NASA Astrophysics Data System (ADS)

    Ohno, Yutaka; Morito, Haruhiko; Kutsukake, Kentaro; Yonenaga, Ichiro; Yokoi, Tatsuya; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2018-06-01

    Variation in the formation energy of stacking faults (SFs) with the contamination of Na atoms was examined in Si crystals with different Fermi levels. Na atoms agglomerated at SFs under an electronic interaction, reducing the SF formation energy. The energy decreased with the decrease of the Fermi level: it was reduced by more than 10 mJ/m2 in p-type Si, whereas it was barely reduced in n-type Si. Owing to the energy reduction, Na atoms agglomerating at SFs in p-type Si are stable compared with those in n-type Si, and this hypothesis was supported by ab initio calculations.

  2. About Essence of the Wave Function on Atomic Level and in Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikulov, A. V.

    The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less

  3. Unraveling atomic-level self-organization at the plasma-material interface

    NASA Astrophysics Data System (ADS)

    Allain, J. P.; Shetty, A.

    2017-07-01

    The intrinsic dynamic interactions at the plasma-material interface and critical role of irradiation-driven mechanisms at the atomic scale during exposure to energetic particles require a priori the use of in situ surface characterization techniques. Characterization of ‘active’ surfaces during modification at atomic-scale levels is becoming more important as advances in processing modalities are limited by an understanding of the behavior of these surfaces under realistic environmental conditions. Self-organization from exposure to non-equilibrium and thermalized plasmas enable dramatic control of surface morphology, topography, composition, chemistry and structure yielding the ability to tune material properties with an unprecedented level of control. Deciphering self-organization mechanisms of nanoscale morphology (e.g. nanodots, ripples) and composition on a variety of materials including: compound semiconductors, semiconductors, ceramics, polymers and polycrystalline metals via low-energy ion-beam assisted plasma irradiation are critical to manipulate functionality in nanostructured systems. By operating at ultra-low energies near the damage threshold, irradiation-driven defect engineering can be optimized and surface-driven mechanisms controlled. Tunability of optical, electronic, magnetic and bioactive properties is realized by reaching metastable phases controlled by atomic-scale irradiation-driven mechanisms elucidated by novel in situ diagnosis coupled to atomistic-level computational tools. Emphasis will be made on tailored surface modification from plasma-enhanced environments on particle-surface interactions and their subsequent modification of hard and soft matter interfaces. In this review, we examine current trends towards in situ and in operando surface and sub-surface characterization to unravel atomic-scale mechanisms at the plasma-material interface. This work will emphasize on recent advances in the field of plasma and ion

  4. Accurate calculation of dynamic Stark shifts and depopulation rates of Rydberg energy levels induced by blackbody radiation. Hydrogen, helium, and alkali-metal atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farley, J.W.; Wing, W.H.

    1981-05-01

    A highly excited (Rydberg) atom bathed in blackbody radiation is perturbed in two ways. A dynamic Stark shift is induced by the off-resonant components of the blackbody radiation. Additionally, electric-dipole transitions to other atomic energy levels are induced by the resonant components of the blackbody radiation. This depopulation effect shortens the Rydberg-state lifetime, thereby broadening the energy level. Calculations of these two effects in many states of hydrogen, helium, and the alkali-metal atoms Li, Na, K, Rb, and Cs are presented for T = 300 K. Contributions from the entire blackbody spectrum and from both discrete and continuous perturbing statesmore » are included. The accuracy is considerably greater than that of previous estimates.« less

  5. Microcavities coupled to multilevel atoms

    NASA Astrophysics Data System (ADS)

    Schmid, Sandra Isabelle; Evers, Jörg

    2011-11-01

    A three-level atom in the Λ configuration coupled to a microcavity is studied. The two transitions of the atom are assumed to couple to different counterpropagating mode pairs in the cavity. We analyze the dynamics both in the strong-coupling and the bad-cavity limits. We find that, compared to a two-level setup, the third atomic state and the additional control field modes crucially modify the system dynamics and enable more advanced control schemes. All results are explained using appropriate dressed-state and eigenmode representations. As potential applications, we discuss optical switching and turnstile operations and detection of particles close to the resonator surface.

  6. Constructing Identities: The Ethno-National and Nationalistic Identities of White and Turkish Students in Two English Secondary Schools

    ERIC Educational Resources Information Center

    Faas, Daniel

    2008-01-01

    This article investigates how 15-year-old white and Turkish students in two Inner London comprehensive schools, one in a predominantly working-class area (Millroad School) and the other in a more middle-class environment (Darwin School), construct their identities. Drawing on mainly qualitative data from documentary sources, focus groups and…

  7. Two-body loss rates for reactive collisions of cold atoms

    NASA Astrophysics Data System (ADS)

    Cop, C.; Walser, R.

    2018-01-01

    We present an effective two-channel model for reactive collisions of cold atoms. It augments elastic molecular channels with an irreversible, inelastic loss channel. Scattering is studied with the distorted-wave Born approximation and yields general expressions for angular momentum resolved cross sections as well as two-body loss rates. Explicit expressions are obtained for piecewise constant potentials. A pole expansion reveals simple universal shape functions for cross sections and two-body loss rates in agreement with the Wigner threshold laws. This is applied to collisions of metastable 20Ne and 21Ne atoms, which decay primarily through exothermic Penning or associative ionization processes. From a numerical solution of the multichannel Schrödinger equation using the best currently available molecular potentials, we have obtained synthetic scattering data. Using the two-body loss shape functions derived in this paper, we can match these scattering data very well.

  8. On the spatial coordinate measurement of two identical particles

    NASA Astrophysics Data System (ADS)

    Marchewka, Avi; Granot, Er'el; Schuss, Zeev

    2016-04-01

    Theoretically, the coordinate measurement of two identical particles at a point by two narrowly separated narrow detectors, is interpreted in the limit of shrinking width and separation, as the detection of two particles by a single narrow detector. Ordinarily, the ratio between probabilities of point measurements is independent of the width of the narrow detectors. We show here that not only this is not the case, but that in some scenarios the results depend on the way the dimensions shrink to zero. The ratio between the width and the separation determines the detection result. In particular, it is shown that the bunching parameter of bosons is not a well-defined physical property. Moreover, it may suggests that there is a difficulty in quantum measurement theory in the interpretation of coordinate measurement of two particles.

  9. Two-photon Direct Frequency Comb Spectroscopy of Alkali Atoms

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoa; Pradhananga, Trinity; Palm, Christopher; Stalnaker, Jason; Kimball, Derek Jackson

    2012-06-01

    We are using direct frequency comb spectroscopy to study transition frequencies and excited state hyperfine structure in potassium and rubidium using 2-photon transitions excited directly with the frequency-doubled output of a erbium fiber optical frequency comb. The frequency comb output is directed in two counterpropagating directions through a vapor cell containing the atomic vapor of interest. A pair of optical filters is used to select teeth of the comb in order to identify the transition wavelengths. A photomultiplier tube (PMT) measures fluorescence from a decay channel wavelength selected with another optical filter. Using different combinations of filters enables a wide range of transitions to be investigated. By scanning the repetition rate, a Doppler-free spectrum can be obtained enabling kHz-resolution spectral measurements. The thermal motion of the atoms in the vapor cell actually eliminates the need to fine-tune the offset frequency and repetition rate, alleviating a somewhat challenging requirement for spectroscopy of cold atoms. Our investigations are laying the groundwork for a long-term research program to use direct frequency comb spectroscopy to understand the complex spectra of rare-earth atoms.

  10. Two-photon excitation cross section in light and intermediate atoms in frozen-core LS-coupling approximation

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    Using the method of explicit summation over the intermediate states two-photon absorption cross sections in light and intermediate atoms based on the simplistic frozen-core approximation and LS coupling have been formulated. Formulas for the cross section in terms of integrals over radial wave functions are given. Two selection rules, one exact and one approximate, valid within the stated approximations are derived. The formulas are applied to two-photon absorptions in nitrogen, oxygen, and chlorine. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum-defect method have been used. A relationship between the cross section and the oscillator strengths is derived.

  11. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Li, Xin; Hohlraum Physics Team

    2014-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum-number (n-level) average atom model (AAM) in NLTE plasma description. The more sophisticated atomic kinetics description is better choice, but the in-line calculation consumes much more resource. By distinguishing the much more fast bound-bound atomic processes from the relative slow bound-free atomic processes, we found a method to built up a bound electron distribution (n-level or nl-level) using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using this method and the plasma condition calculated under n-level, we re-build the nl-level bound electron distribution (Pnl), and acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures. Also we use this method in the benchmark gold sphere experiment, the constructed nl-level radiation drive resembles the experimental results and DCA results, while the n-level raditation does not.

  12. Identity: empirical contribution. Changes in the identity integration of adolescents in treatment for personality disorders.

    PubMed

    Feenstra, Dine J; Hutsebaut, Joost; Verheul, Roel; van Limbeek, Jacques

    2014-02-01

    A renewed interest in identity as one of the core markers of personality disorders has been introduced by the DSM-5 Level of Personality Functioning Scale. However, little is known about the utility of the construct of identity in children and adolescents. This study aimed to broaden the knowledge of identity integration as a core component of personality functioning in adolescents. The authors investigated levels of identity integration, as measured by the Severity Indices of Personality Problems (SIPP-118; Verheul et al., 2008), in adolescents in both normal (n = 406) and clinical populations (n = 285). Furthermore, changes in levels of identity integration during treatment were investigated in a clinical subsample (n = 76). Levels of identity integration were not associated with age. They were, however, associated with the absence or presence of personality pathology. Most adolescents receiving inpatient psychotherapy gradually changed toward more healthy levels of identity integration; a significant number, however, remained at maladaptive levels of identity functioning after intensive psychotherapy.

  13. Optical cascade pumping of the 7P{sub 3/2} level in cesium atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargapol'tsev, Sergei V; Velichansky, Vladimir L; Yarovitsky, Alexander V

    2005-07-31

    Doppler-free absorption spectra of resonance laser fields are studied upon two-stage excitation of cesium atoms according to the schemes 6S{sub 1/2{yields}}6P{sub 3/2{yields}}6D{sub 5/2} and 6S{sub 1/2{yields}}6P{sub 3/2{yields}}8S{sub 1/2}. The obtained experimental results are in qualitative agreement with the theory. In the case of weak absorption saturation, the width of resonances is mainly determined by two-photon transitions. The efficiencies of the two variants of two-stage excitation of the 7P{sub 3/2} level are compared. The possibility of fabrication of a gas laser operating on the 455-nm 7P{sub 3/2{yields}}6S{sub 1/2} transition with the optical depopulation of the lower operating level by an additionalmore » laser is discussed. (active media)« less

  14. Long-range sound-mediated dark-soliton interactions in trapped atomic condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A. J.; Jackson, D. P.; Barenghi, C. F.

    2011-01-15

    A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double-well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction.

  15. Strain-engineered diffusive atomic switching in two-dimensional crystals

    PubMed Central

    Kalikka, Janne; Zhou, Xilin; Dilcher, Eric; Wall, Simon; Li, Ju; Simpson, Robert E.

    2016-01-01

    Strain engineering is an emerging route for tuning the bandgap, carrier mobility, chemical reactivity and diffusivity of materials. Here we show how strain can be used to control atomic diffusion in van der Waals heterostructures of two-dimensional (2D) crystals. We use strain to increase the diffusivity of Ge and Te atoms that are confined to 5 Å thick 2D planes within an Sb2Te3–GeTe van der Waals superlattice. The number of quintuple Sb2Te3 2D crystal layers dictates the strain in the GeTe layers and consequently its diffusive atomic disordering. By identifying four critical rules for the superlattice configuration we lay the foundation for a generalizable approach to the design of switchable van der Waals heterostructures. As Sb2Te3–GeTe is a topological insulator, we envision these rules enabling methods to control spin and topological properties of materials in reversible and energy efficient ways. PMID:27329563

  16. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    NASA Astrophysics Data System (ADS)

    Welte, Stephan; Hacker, Bastian; Daiss, Severin; Ritter, Stephan; Rempe, Gerhard

    2018-02-01

    Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2 μ s . We show an entangling operation between the two atoms by generating a Bell state with 76(2)% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6)% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8)%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  17. Analytic solution and pulse area theorem for three-level atoms

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.

    2015-12-01

    We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.

  18. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    PubMed

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  19. Study of atomic coherence effects in multi-level V+Ξ system involving Rydberg state

    NASA Astrophysics Data System (ADS)

    Kaur, Amanjot; Singh, Neeraj; Kaur, Paramjit

    2018-06-01

    We present theoretical model to investigate the influence of hyperfine levels on the atomic coherences of V+Ξ Rydberg system. Using density matrix formulation, an analytical expression of atomic coherence for weak probe field is derived. The closely spaced hyperfine levels cause asymmetry and red shift while wavelength mismatching induced due to Rydberg state leads to reduction in magnitude and broadening of group index, absorption and dispersion profiles for moving atoms. Our system shows both Rydberg Electromagnetically induced transparency (EIT) with subluminal behavior and Rydberg Electromagnetically induced absorption (EIA) with superluminal propagation by adjusting the strengths of control and switching fields. Variation of group index with probe detuning reveals anomalous dispersion regions at Autler-Townes doublet positions. Group index for Doppler-broadened atoms at resonance condition has lower magnitude as compared to the stationary atoms and hence the group delay time of the pulse is also reduced. We also explore in-depth non-degenerate four-wave mixing (FWM) which is ignited due to the presence of three electromagnetic (e.m.) fields and concurrently, establish relationship between FWM and multi-photon atomic coherence. The transient behavior is also studied for practical realization of our considered system as optical switch.

  20. Two-probe atomic-force microscope manipulator and its applications.

    PubMed

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  1. From Single Atoms to Nanoparticles — Spectroscopy on the Atomic Level

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2003-12-01

    The scanning tunneling microscope is not only a well-established tool for a topographic characterization of the sample surface on the atomic scale. It also provides a variety of spectroscopic techniques to examine electronic, magnetic, vibrational and optical properties of a localized system. The following presentation gives an overview, how scanning tunneling spectroscopy, inelastic electron tunneling spectroscopy and photon emission spectroscopy with the STM can be employed to investigate spatially confined metal systems and their interaction with molecular gases. The experiments were performed on single Pd and Au atoms, mono-atomic chains and individual Ag clusters on a NiAl support and a Al2O3 thin film.

  2. Identity Styles and Religiosity: Examining the Role of Identity Commitment

    ERIC Educational Resources Information Center

    Grajales, Tevni E.; Sommers, Brittany

    2016-01-01

    This study observed the role of identity styles, identity commitment, and identity statuses in predicting religiosity in a sample of undergraduate students attending a Seventh-day Adventist university (N = 138). Two structural models were evaluated via path analysis. Results revealed two strong models for the prediction of religiosity. Identity…

  3. Group membership and social identity in addiction recovery.

    PubMed

    Buckingham, Sarah A; Frings, Daniel; Albery, Ian P

    2013-12-01

    Despite a growing interest in how group membership can positively impact health, little research has addressed directly the role social identity processes can have on recovery from addiction. Drawing on social identity theory and self-categorization theory, the present study investigated how recovery group membership can introduce a new social identity associated with recovery, compared to the social identity associated with addiction. We hypothesized that two processes--evaluative differentiation and identity preference--would be linked with higher self-efficacy and positive health outcomes (i.e., reduced relapse, lower levels of appetitive behavior, and elevated feelings of social connectedness [Study 2]). Study 1 recruited members (N = 61) from United Kingdom based mutual aid groups of Alcoholics Anonymous and Narcotics Anonymous. Study 2 recruited ex-smokers (N = 81) from online sources. In Study 1, evaluative differentiation was significantly related to lowered relapse and reduced appetitive behavior. Identity preference was related to higher levels of self-efficacy, which was related to months drug-free and reduced levels of appetitive behaviors. In Study 2, evaluative differentiation was related to identity preference. Identity preference was also related to higher self-efficacy, which in turn was related to lower relapse. Although exploratory, these results suggest that developing a social identity as a "recovering addict" or an "ex-smoker" and subsequently highlighting the difference between such identities may be a useful strategy for reducing relapse among people with problems associated with addictive behaviors. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. Entanglement evaluation with atomic Fisher information

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Abdel-Khalek, S.

    2010-02-01

    In this paper, the concept of atomic Fisher information (AFI) is introduced. The marginal distributions of the AFI are defined. This quantity is used as a parameter of entanglement and compared with linear and atomic Wehrl entropies of the two-level atom. The evolution of the atomic Fisher information and atomic Wehrl entropy for only the pure state (or dissipation-free) of the Jaynes-Cummings model is analyzed. We demonstrate the connections between these measures.

  5. The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields

    NASA Technical Reports Server (NTRS)

    Liu, Tang-Kun

    1996-01-01

    The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.

  6. Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…

  7. Cooperative resonances in light scattering from two-dimensional atomic arrays

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne

    2017-04-01

    We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can shape the emission pattern from an individual quantum emitter into a well-defined, collimated beam, and operate as a nearly perfect mirror for a wide range of incident angles and frequencies. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics. We acknowledge the financial support of the NSF and the MIT-Harvard Center for Ultracold Atoms.

  8. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors

    NASA Astrophysics Data System (ADS)

    Cui, S. T.

    The stress-stress correlation function and the viscosity of a united-atom model of liquid decane are studied by equilibrium molecular dynamics simulation using two different formalisms for the stress tensor: the atomic and the molecular formalisms. The atomic and molecular correlation functions show dramatic difference in short-time behaviour. The integrals of the two correlation functions, however, become identical after a short transient period whichis significantly shorter than the rotational relaxation time of the molecule. Both reach the same plateau value in a time period corresponding to this relaxation time. These results provide a convenient guide for the choice of the upper integral time limit in calculating the viscosity by the Green-Kubo formula.

  9. Covalent bond orders and atomic valences from correlated wavefunctions

    NASA Astrophysics Data System (ADS)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  10. Atom-by-atom assembly

    NASA Astrophysics Data System (ADS)

    Hla, Saw Wai

    2014-05-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.

  11. Atom-dimer scattering in a heteronuclear mixture with a finite intraspecies scattering length

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Zhang, Peng

    2018-04-01

    We study the three-body problem of two ultracold identical bosonic atoms (denoted by B ) and one extra atom (denoted by X ), where the scattering length aB X between each bosonic atom and atom X is resonantly large and positive. We calculate the scattering length aad between one bosonic atom and the shallow dimer formed by the other bosonic atom and atom X , and investigate the effect induced by the interaction between the two bosonic atoms. We find that even if this interaction is weak (i.e., the corresponding scattering length aB B is of the same order of the van der Waals length rvdW or even smaller), it can still induce a significant effect for the atom-dimer scattering length aad. Explicitly, an atom-dimer scattering resonance can always occur when the value of aB B varies in the region with | aB B|≲ rvdW . As a result, both the sign and the absolute value of aad, as well as the behavior of the aad-aB X function, depends sensitively on the exact value of aB B. Our results show that, for a good quantitative theory, the intraspecies interaction is required to be taken into account for this heteronuclear system, even if this interaction is weak.

  12. Rydberg interaction induced enhanced excitation in thermal atomic vapor.

    PubMed

    Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K

    2018-03-27

    We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.

  13. A longitudinal integration of identity styles and educational identity processes in adolescence.

    PubMed

    Negru-Subtirica, Oana; Pop, Eleonora Ioana; Crocetti, Elisabetta

    2017-11-01

    Identity formation is a main adolescent psychosocial developmental task. The complex interconnection between different processes that are at the basis of one's identity is a research and applied intervention priority. In this context, the identity style model focuses on social-cognitive strategies (i.e., informational, normative, and diffuse-avoidant) that individuals can use to deal with identity formation. The 3-factor identity dimensional model examines the interplay between identity processes of commitment, in-depth exploration, and reconsideration of commitment in different life domains. Theoretical integrations between these models have been proposed, but there is a dearth of studies unraveling their longitudinal links in specific identity domains. We addressed this gap by testing in a 3-wave longitudinal study the bidirectional associations between identity styles and educational identity processes measured during 1 academic year. Participants were 1,151 adolescents (58.7% female). Results highlighted that the informational style was related over time to higher levels of educational commitment and in-depth exploration, whereas the diffuse-avoidant style was related to lower levels of commitment and higher levels of reconsideration of commitment. Educational commitment was positively related to the informational and normative styles; in-depth exploration was positively related to the informational style; and reconsideration of commitment was positively related to the diffuse-avoidant style. These relations were not moderated by adolescents' gender and age. Hence, identity styles and educational identity processes reinforce each other during 1 academic year. Theoretical integrations between these models, suggestions for integration with other identity approaches (e.g., narrative identity models), and practical implications are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Understanding the atomic-level Green-Kubo stress correlation function for a liquid through phonons in a model crystal

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.

    2014-11-01

    In order to gain insight into the connection between the vibrational dynamics and the atomic-level Green-Kubo stress correlation function in liquids, we consider this connection in a model crystal instead. Of course, vibrational dynamics in liquids and crystals are quite different and it is not expected that the results obtained on a model crystal should be valid for liquids. However, these considerations provide a benchmark to which the results of the previous molecular dynamics simulations can be compared. Thus, assuming that vibrations are plane waves, we derive analytical expressions for the atomic-level stress correlation functions in the classical limit and analyze them. These results provide, in particular, a recipe for analysis of the atomic-level stress correlation functions in Fourier space and extraction of the wave-vector and frequency-dependent information. We also evaluate the energies of the atomic-level stresses. The energies obtained are significantly smaller than the energies previously determined in molecular dynamics simulations of several model liquids. This result suggests that the average energies of the atomic-level stresses in liquids and glasses are largely determined by the structural disorder. We discuss this result in the context of equipartition of the atomic-level stress energies. Analysis of the previously published data suggests that it is possible to speak about configurational and vibrational contributions to the average energies of the atomic-level stresses in a glass state. However, this separation in a liquid state is problematic. We also introduce and briefly consider the atomic-level transverse current correlation function. Finally, we address the broadening of the peaks in the pair distribution function with increase of distance. We find that the peaks' broadening (by ≈40 % ) occurs due to the transverse vibrational modes, while contribution from the longitudinal modes does not change with distance.

  15. Issues of Motivation and Identity Positioning: Two Teachers' Motivational Practices for Engaging Immigrant Children in Learning Heritage Languages

    ERIC Educational Resources Information Center

    Kim, Jung-In

    2017-01-01

    This study investigates two Korean heritage language teachers' motivational practices in relation to their identity positioning as heritage language (HL) teachers. Constant-comparative analyses of teachers' interviews and classroom practices showed that the two teachers' identity positioning as HL teachers was partially shaped by their earlier…

  16. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  17. Young Adult Identities and Their Pathways: A Developmental and Life Course Model

    PubMed Central

    Benson, Janel E.; Elder, Glen H.

    2013-01-01

    Developmental and life course studies of young adult identities have focused on two dimensions, subjective age and psychosocial maturity. This study examines the developmental synchrony of these two processes. In a longitudinal sample of young adults from Add Health (18 to 22), a person-centered analysis of indicators of these dimensions identified four identity profiles. Two depict early and late patterns of identity; the others represent contrasting types of discordance, “pseudo-adult”, subjective age more advanced than maturation level and “anticipatory”, with subjective age less advanced than maturational level. The profiles vary by gender, socioeconomic status, and race-ethnicity as well as by adolescent (ages12–16) pubertal maturation, psychosocial adjustment, and family context. These results provide support for a more holistic, interdisciplinary understanding of adult identity, and show that young adult identities in the Add Health sample follow differentiated paths into the adult years, with largely unknown consequences for the subsequent life course. PMID:21668096

  18. Marginalized identities, discrimination burden, and mental health: Empirical exploration of an interpersonal-level approach to modeling intersectionality

    PubMed Central

    Seng, Julia S; Lopez, William D; Sperlich, Mickey; Hamama, Lydia; Meldrum, Caroline D Reed

    2012-01-01

    Intersectionality is a term used to describe the intersecting effects of race, class, gender, and other marginalizing characteristics that contribute to social identity and affect health. Adverse health effects are thought to occur via social processes including discrimination and structural inequalities (i.e., reduced opportunities for education and income). Although intersectionality has been well-described conceptually, approaches to modeling it in quantitative studies of health outcomes are still emerging. Strategies to date have focused on modeling demographic characteristics as proxies for structural inequality. Our objective was to extend these methodological efforts by modeling intersectionality across three levels: structural, contextual, and interpersonal, consistent with a social-ecological framework. We conducted a secondary analysis of a database that included two components of a widely used survey instrument, the Everyday Discrimination Scale. We operationalized a meso- or interpersonal-level of intersectionality using two variables, the frequency score of discrimination experiences and the sum of characteristics listed as reasons for these (i.e., the person’s race, ethnicity, gender, sexual orientation, nationality, religion, disability or pregnancy status, or physical appearance). We controlled for two structural inequality factors (low education, poverty) and three contextual factors (high crime neighborhood, racial minority status, and trauma exposures). The outcome variables we modeled were posttraumatic stress disorder symptoms and a quality of life index score. We used data from 619 women who completed the Everyday Discrimination Scale for a perinatal study in the U.S. state of Michigan. Statistical results indicated that the two interpersonal-level variables (i.e., number of marginalized identities, frequency of discrimination) explained 15% of variance in posttraumatic stress symptoms and 13% of variance in quality of life scores, improving

  19. Marginalized identities, discrimination burden, and mental health: empirical exploration of an interpersonal-level approach to modeling intersectionality.

    PubMed

    Seng, Julia S; Lopez, William D; Sperlich, Mickey; Hamama, Lydia; Reed Meldrum, Caroline D

    2012-12-01

    Intersectionality is a term used to describe the intersecting effects of race, class, gender, and other marginalizing characteristics that contribute to social identity and affect health. Adverse health effects are thought to occur via social processes including discrimination and structural inequalities (i.e., reduced opportunities for education and income). Although intersectionality has been well-described conceptually, approaches to modeling it in quantitative studies of health outcomes are still emerging. Strategies to date have focused on modeling demographic characteristics as proxies for structural inequality. Our objective was to extend these methodological efforts by modeling intersectionality across three levels: structural, contextual, and interpersonal, consistent with a social-ecological framework. We conducted a secondary analysis of a database that included two components of a widely used survey instrument, the Everyday Discrimination Scale. We operationalized a meso- or interpersonal-level of intersectionality using two variables, the frequency score of discrimination experiences and the sum of characteristics listed as reasons for these (i.e., the person's race, ethnicity, gender, sexual orientation, nationality, religion, disability or pregnancy status, or physical appearance). We controlled for two structural inequality factors (low education, poverty) and three contextual factors (high crime neighborhood, racial minority status, and trauma exposures). The outcome variables we modeled were posttraumatic stress disorder symptoms and a quality of life index score. We used data from 619 women who completed the Everyday Discrimination Scale for a perinatal study in the U.S. state of Michigan. Statistical results indicated that the two interpersonal-level variables (i.e., number of marginalized identities, frequency of discrimination) explained 15% of variance in posttraumatic stress symptoms and 13% of variance in quality of life scores, improving

  20. Zn or O? An Atomic Level Comparison on Antibacterial Activities of Zinc Oxides.

    PubMed

    Yu, Fen; Fang, Xuan; Jia, Huimin; Liu, Miaoxing; Shi, Xiaotong; Xue, Chaowen; Chen, Tingtao; Wei, Zhipeng; Fang, Fang; Zhu, Hui; Xin, Hongbo; Feng, Jing; Wang, Xiaolei

    2016-06-06

    For the first time, the influence of different types of atoms (Zn and O) on the antibacterial activities of nanosized ZnO was quantitatively evaluated with the aid of a 3D-printing-manufactured evaluation system. Two different outermost atomic layers were manufactured separately by using an ALD (atomic layer deposition) method. Interestingly, we found that each outermost atomic layer exhibited certain differences against gram-positive or gram-negative bacterial species. Zinc atoms as outermost layer (ZnO-Zn) showed a more pronounced antibacterial effect towards gram-negative E. coli (Escherichia coli), whereas oxygen atoms (ZnO-O) showed a stronger antibacterial activity against gram-positive S. aureus (Staphylococcus aureus). A possible antibacterial mechanism has been comprehensively discussed from different perspectives, including Zn(2+) concentrations, oxygen vacancies, photocatalytic activities and the DNA structural characteristics of different bacterial species. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  2. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  3. Coupled transverse and torsional vibrations in a mechanical system with two identical beams

    NASA Astrophysics Data System (ADS)

    Vlase, S.; Marin, M.; Scutaru, M. L.; Munteanu, R.

    2017-06-01

    The paper aims to study a plane system with bars, with certain symmetries. Such problems can be encountered frequently in industry and civil engineering. Considerations related to the economy of the design process, constructive simplicity, cost and logistics make the use of identical parts a frequent procedure. The paper aims to determine the properties of the eigenvalues and eigenmodes for transverse and torsional vibrations of a mechanical system where two of the three component bars are identical. The determination of these properties allows the calculus effort and the computation time and thus increases the accuracy of the results in such matters.

  4. Dynamics of entanglement between two atomic samples with spontaneous scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio

    2004-07-01

    We investigate the effects of spontaneous scattering on the evolution of entanglement of two atomic samples, probed by phase-shift measurements on optical beams interacting with both samples. We develop a formalism of conditional quantum evolutions and present a wave function analysis implemented in numerical simulations of the state vector dynamics. This method allows us to track the evolution of entanglement and to compare it with the predictions obtained when spontaneous scattering is neglected. We provide numerical evidence that the interferometric scheme to entangle atomic samples is only marginally affected by the presence of spontaneous scattering and should thus be robustmore » even in more realistic situations.« less

  5. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    NASA Astrophysics Data System (ADS)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  6. Athletic identity, descriptive norms, and drinking among athletes transitioning to college

    PubMed Central

    Grossbard, Joel R.; Geisner, Irene M.; Mastroleo, Nadine R.; Kilmer, Jason R.; Turrisi, Rob; Larimer, Mary E.

    2010-01-01

    College student–athletes are at risk for heavy alcohol consumption and related consequences. The present study evaluated the influence of college student and college athlete descriptive norms and levels of athletic identity on drinking and related consequences among incoming college students attending two universities (N = 1119). Prior to the beginning of their first year of college, students indicating high school athletic participation completed assessments of athletic identity, alcohol consumption, drinking-related consequences, and normative perceptions of alcohol use. Estimations of drinking by college students and student–athletes were significantly greater than self-reported drinking. Athletic identity moderated associations among gender, perceived norms, drinking, and related consequences. Athlete-specific norms had a stronger effect on drinking among those reporting higher levels of athletic identity, and higher levels of athletic identity exclusively protected males from experiencing drinking-related consequences. Implications of the role of athletic identity in the development of social norms interventions targeted at high school athletes transitioning to college are discussed. PMID:19095359

  7. The application of quasi-steady approximation in atomic kinetics in simulation of hohlraum radiation drive

    NASA Astrophysics Data System (ADS)

    Ren, Guoli; Pei, Wenbing; Lan, Ke; Gu, Peijun; Li, Xin; Institute of Applied Physics; Computional Mathematics Team

    2011-10-01

    In current routine 2D simulation of hohlraum physics, we adopt the principal-quantum- number(n-level) average atom model(AAM). However, the experimental frequency-dependant radiative drive differs from our n-level simulated drive, which reminds us the need of a more detailed atomic kinetics description. The orbital-quantum-number(nl-level) AAM is a natural consideration but the in-line calculation consumes much more resources. We use a new method to built up a nl-level bound electron distribution using in-line n-level calculated plasma condition (such as temperature, density, average ionization degree). We name this method ``quasi-steady approximation.'' Using the re-built nl-level bound electron distribution (Pnl) , we acquire a new hohlraum radiative drive by post-processing. Comparison with the n-level post-processed hohlraum drive shows that we get an almost identical radiation flux but with more-detailed frequency-dependant structures.

  8. Noise squeezing of fields that bichromatically excite atoms in a cavity.

    PubMed

    Li, Lingchao; Hu, Xiangming; Rao, Shi; Xu, Jun

    2016-11-14

    It is well known that bichromatic excitation on one common transition can tune the emission or absorption spectra of atoms due to the modulation frequency dependent non-linearities. However little attention has been focused on the quantum dynamics of fields under bichromatic excitation. Here we present dissipative effects on noise correlations of fields in bichromatic interactions with atoms in cavities. We first consider an ensemble of two-level atoms that interacts with the two cavity fields of different frequencies and considerable amplitudes. By transferring the atom-field nonlinearities to the dressed atoms we separate out the dissipative interactions of Bogoliubov modes with the dressed atoms. The Bogoliubov mode dissipation establishes stable two-photon processes of two involved fields and therefore leads to two-mode squeezing. As a generalization, we then consider an ensemble of three-level Λ atoms for cascade bichromatic interactions. We extract the Bogoliubov-like four-mode interactions, which establish a quadrilateral of the two-photon processes of four involved fields and thus result in four-mode squeezing.

  9. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    NASA Astrophysics Data System (ADS)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  10. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.

    2017-12-01

    Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.

  11. Theoretical Study of Energy Levels and Transition Probabilities of Boron Atom

    NASA Astrophysics Data System (ADS)

    Tian Yi, Zhang; Neng Wu, Zheng

    2009-08-01

    Full Text PDF Though the electrons configuration for boron atom is simple and boron atom has long been of interest for many researchers, the theoretical studies for properties of BI are not systematic, there are only few results reported on energy levels of high excited states of boron, and transition measurements are generally restricted to transitions involving ground states and low excited states without considering fine structure effects, provided only multiplet results, values for transitions between high excited states are seldom performed. In this article, by using the scheme of the weakest bound electron potential model theory calculations for energy levels of five series are performed and with the same method we give the transition probabilities between excited states with considering fine structure effects. The comprehensive set of calculations attempted in this paper could be of some value to workers in the field because of the lack of published calculations for the BI systems. The perturbations coming from foreign perturbers are taken into account in studying the energy levels. Good agreement between our results and the accepted values taken from NIST has been obtained. We also reported some values of energy levels and transition probabilities not existing on the NIST data bases.

  12. Using a two-step method to measure transgender identity in Latin America/the Caribbean, Portugal, and Spain.

    PubMed

    Reisner, Sari L; Biello, Katie; Rosenberger, Joshua G; Austin, S Bryn; Haneuse, Sebastien; Perez-Brumer, Amaya; Novak, David S; Mimiaga, Matthew J

    2014-11-01

    Few comparative data are available internationally to examine health differences by transgender identity. A barrier to monitoring the health and well-being of transgender people is the lack of inclusion of measures to assess natal sex/gender identity status in surveys. Data were from a cross-sectional anonymous online survey of members (n > 36,000) of a sexual networking website targeting men who have sex with men in Spanish- and Portuguese-speaking countries/territories in Latin America/the Caribbean, Portugal, and Spain. Natal sex/gender identity status was assessed using a two-step method (Step 1: assigned birth sex, Step 2: current gender identity). Male-to-female (MTF) and female-to-male (FTM) participants were compared to non-transgender males in age-adjusted regression models on socioeconomic status (SES) (education, income, sex work), masculine gender conformity, psychological health and well-being (lifetime suicidality, past-week depressive distress, positive self-worth, general self-rated health, gender related stressors), and sexual health (HIV-infection, past-year STIs, past-3 month unprotected anal or vaginal sex). The two-step method identified 190 transgender participants (0.54%; 158 MTF, 32 FTM). Of the 12 health-related variables, six showed significant differences between the three groups: SES, masculine gender conformity, lifetime suicidality, depressive distress, positive self-worth, and past-year genital herpes. A two-step approach is recommended for health surveillance efforts to assess natal sex/gender identity status. Cognitive testing to formally validate assigned birth sex and current gender identity survey items in Spanish and Portuguese is encouraged.

  13. Using a Two-Step Method to Measure Transgender Identity in Latin America/the Caribbean, Portugal, and Spain

    PubMed Central

    Reisner, Sari L.; Biello, Katie; Rosenberger, Joshua G.; Austin, S. Bryn; Haneuse, Sebastien; Perez-Brumer, Amaya; Novak, David S.; Mimiaga, Matthew J.

    2014-01-01

    Few comparative data are available internationally to examine health differences by transgender identity. A barrier to monitoring the health and well-being of transgender people is the lack of inclusion of measures to assess natal sex/gender identity status in surveys. Data were from a cross-sectional anonymous online survey of members (n > 36,000) of a sexual networking website targeting men who have sex with men in Spanish- and Portuguese-speaking countries/ territories in Latin America/the Caribbean, Portugal, and Spain. Natal sex/gender identity status was assessed using a two-step method (Step 1: assigned birth sex, Step 2: current gender identity). Male-to-female (MTF) and female-to-male (FTM) participants were compared to non-transgender males in age-adjusted regression models on socioeconomic status (SES) (education, income, sex work), masculine gender conformity, psychological health and well-being (lifetime suicidality, past-week depressive distress, positive self-worth, general self-rated health, gender related stressors), and sexual health (HIV-infection, past-year STIs, past-3 month unprotected anal or vaginal sex). The two-step method identified 190 transgender participants (0.54%; 158 MTF, 32 FTM). Of the 12 health-related variables, six showed significant differences between the three groups: SES, masculine gender conformity, lifetime suicidality, depressive distress, positive self-worth, and past-year genital herpes. A two-step approach is recommended for health surveillance efforts to assess natal sex/gender identity status. Cognitive testing to formally validate assigned birth sex and current gender identity survey items in Spanish and Portuguese is encouraged. PMID:25030120

  14. Detecting level crossings without solving the Hamiltonian. II. Applications to atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, M.; Raman, C.

    2007-03-15

    A number of interesting phenomena occur at points where the energy levels of an atom or a molecule (anti) cross as a function of some parameter such as an external field. In a previous paper [M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405 (2006)] we have outlined powerful mathematical techniques useful in identifying the parameter values at which such (avoided) crossings occur. In the accompanying article [M. Bhattacharya and C. Raman, Phys. Rev A 75, 033405 (2007)] we have developed the mathematical basis of these algebraic techniques in some detail. In this article we apply these level-crossing methodsmore » to the spectra of atoms and molecules in a magnetic field. In the case of atoms the final result is the derivation of a class of invariants of the Breit-Rabi Hamiltonian of magnetic resonance. These invariants completely describe the parametric symmetries of the Hamiltonian. In the case of molecules we present an indicator which can tell when the Born-Oppenheimer approximation breaks down without using any information about the molecular potentials other than the fact that they are real. We frame our discussion in the context of Feshbach resonances in the atom-pair {sup 23}Na-{sup 85}Rb which are of current interest.« less

  15. Two-Centre Convergent Close-Coupling Approach to Ion-Atom Collisions: Current Progress

    NASA Astrophysics Data System (ADS)

    Kadyrov, Alisher; Abdurakhmanov, Ilkhom; Bailey, Jackson; Bray, Igor

    2016-09-01

    There are two versions of the convergent close-coupling (CCC) approach to ion-atom collisions: quantum-mechanical (QM-CCC) and semi-classical (SC-CCC). Recently, both implementations have been extended to include electron-transfer channels. The SC-CCC approach has been applied to study the excitation and the electron-capture processes in proton-hydrogen collisions. The integral alignment parameter A20 for polarization of Lyman- α emission and the cross sections for excitation and electron-capture into the lowest excited states have been calculated for a wide range of the proton impact energies. It has been established that for convergence of the results a very wide range of impact parameters (typically, 0-50 a.u.) is required due to extremely long tails of transition probabilities for transitions into the 2 p states at high energies. The QM-CCC approach allowed to obtain an accurate solution of proton-hydrogen scattering problem including all underlying processes, namely, direct scattering and ionisation, and electron capture into bound and continuum states of the projectile. In this presentation we give a general overview of current progress in applications of the two-centre CCC approach to ion-atom and atom-atom collisions. The work is supported by the Australian Research Council.

  16. Adolescent identity development and distress in a clinical sample.

    PubMed

    Wiley, Rachel E; Berman, Steven L

    2013-12-01

    The purpose of this study was to examine the relationships of identity development and identity distress to psychological adjustment within adolescents affected by psychological problems. Participants included 88 adolescents (43.2% female) ranging from 11 to 20 years of age who were receiving services from a community mental health center. A high proportion of the participants (22.7%) met the Diagnostic and Statistical Manual of Mental Disorders Fourth Edition Text Revision criteria for Identity Problem. Regression analyses found psychopathology symptom score was associated with identity distress, identity exploration, and identity commitment, while identity distress was only related to psychopathology symptom score and not the other two identity variables. Adolescents with a clinical diagnosis may report significant levels of identity distress. Given that the relationship between psychopathology and identity distress may be reciprocal, assessing for identity issues might be prudent when conducting clinical diagnostic interviews and useful in treatment planning. © 2013 Wiley Periodicals, Inc.

  17. Atom Interferometry on Atom Chips - A Novel Approach Towards Precision Inertial Navigation System - PINS

    DTIC Science & Technology

    2010-06-01

    Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles

  18. Comparison of depression level and identity styles between students in Allameh University and Islamic Seminary.

    PubMed

    Mahdavi, A; Aghaei, M; Besharat, M A; Khaki Seddigh, F; Akbari, S H; Hamidifar, Z

    2015-01-01

    This research was conducted to compare the depression level and the identity styles between students in Allameh University and Islamic Seminary in Tehran city. The research method was the ex post facto or causal-comparative kind. In this research, all the students of Allameh University and Islamic Seminary were chosen as the research population. Among the statistical population, by using the convenience sampling method, a sample consisting of 100 male students was chosen (50-50 from both universities). Afterwards, the Identity Styles Inventory (ISI-6G) and the Beck Depression Inventory (21 questions) were employed in order to collect the data. By using ANOVA and systematic regression, the collected data were analyzed. The findings of the research indicated that the average values of the normative component (p-value = 0.03) and the depression level (p-value = 0.000) of seminary's students were higher compared to the ones specific for the Allameh's students. Among the various identity styles, commitment style could totally predict 16% of depression variable changes of Allameh's students. Moreover, information and normative styles could totally predict 19% of the depression variable changes of the seminary's students.

  19. Comparison of depression level and identity styles between students in Allameh University and Islamic Seminary

    PubMed Central

    Mahdavi, A; Aghaei, M; Besharat, MA; Khaki Seddigh, F; Akbari, SH; Hamidifar, Z

    2015-01-01

    This research was conducted to compare the depression level and the identity styles between students in Allameh University and Islamic Seminary in Tehran city. The research method was the ex post facto or causal-comparative kind. In this research, all the students of Allameh University and Islamic Seminary were chosen as the research population. Among the statistical population, by using the convenience sampling method, a sample consisting of 100 male students was chosen (50-50 from both universities). Afterwards, the Identity Styles Inventory (ISI-6G) and the Beck Depression Inventory (21 questions) were employed in order to collect the data. By using ANOVA and systematic regression, the collected data were analyzed. The findings of the research indicated that the average values of the normative component (p-value = 0.03) and the depression level (p-value = 0.000) of seminary’s students were higher compared to the ones specific for the Allameh’s students. Among the various identity styles, commitment style could totally predict 16% of depression variable changes of Allameh’s students. Moreover, information and normative styles could totally predict 19% of the depression variable changes of the seminary’s students. PMID:28316715

  20. Guided mass spectrum labelling in atom probe tomography.

    PubMed

    Haley, D; Choi, P; Raabe, D

    2015-12-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 "significant figures" (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  2. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  3. Accelerating NLTE radiative transfer by means of the Forth-and-Back Implicit Lambda Iteration: A two-level atom line formation in 2D Cartesian coordinates

    NASA Astrophysics Data System (ADS)

    Milić, Ivan; Atanacković, Olga

    2014-10-01

    State-of-the-art methods in multidimensional NLTE radiative transfer are based on the use of local approximate lambda operator within either Jacobi or Gauss-Seidel iterative schemes. Here we propose another approach to the solution of 2D NLTE RT problems, Forth-and-Back Implicit Lambda Iteration (FBILI), developed earlier for 1D geometry. In order to present the method and examine its convergence properties we use the well-known instance of the two-level atom line formation with complete frequency redistribution. In the formal solution of the RT equation we employ short characteristics with two-point algorithm. Using an implicit representation of the source function in the computation of the specific intensities, we compute and store the coefficients of the linear relations J=a+bS between the mean intensity J and the corresponding source function S. The use of iteration factors in the ‘local’ coefficients of these implicit relations in two ‘inward’ sweeps of 2D grid, along with the update of the source function in other two ‘outward’ sweeps leads to four times faster solution than the Jacobi’s one. Moreover, the update made in all four consecutive sweeps of the grid leads to an acceleration by a factor of 6-7 compared to the Jacobi iterative scheme.

  4. Conjunctive search for one and two identical targets.

    PubMed

    Ward, R; McClelland, J L

    1989-11-01

    The assumptions of feature integration theory as a blind, serial, self-terminating search (SSTS) mechanism are extended to displays containing 2 identical targets. The SSTS predicts no differences in negative-response displays, which require an exhaustive search of the display. Quantitative predictions are confirmed for the positive responses, but not for the negatives, suggesting that the SSTS model is incorrect. Two possible explanations for the results in the negative conditions, differential search rates and early quitting in the negatives, are rejected. It is suggested that using any self-terminating search mechanism will lead to difficulty in interpreting the results, including accounts for which the search is parallel over small groups of items. A resource-limited parallel model, which is based on the diffusion model of Ratcliff (1978), appears to fit the data well.

  5. Does Everyone Have a Musical Identity?: Reflections on "Musical Identities"

    ERIC Educational Resources Information Center

    Gracyk, Theodore

    2004-01-01

    The book, "Musical Identities" (Raymond MacDonald, David Hargreaves, Dorothy Miell, eds.; Oxford and New York: Oxford University Press, 2002) consists of 11 essays on the psychology of music. The editors divided the essays into two groups: those on developing musical identities ("identities in music" involving recognizable…

  6. Mixing of gaseous reactants in chemical generation of atomic iodine for COIL: two-dimensional study

    NASA Astrophysics Data System (ADS)

    Jirasek, Vit; Spalek, Otomar; Kodymova, Jarmila; Censky, Miroslav

    2003-11-01

    Two-dimensional CFD model was applied for the study of mixing and reaction between gaseous chlorine dioxide and nitrogen monoxide diluted with nitrogen during atomic iodine generation. The influence of molecular diffusion on the production of atomic chlorine as a precursor of atomic iodine was predominantly studied. The results were compared with one-dimensional modeling of the system.

  7. Exploring the Impact of Identity on the Experiences of Entry-Level Men in Student Affairs

    ERIC Educational Resources Information Center

    Calhoun, Daniel W.

    2010-01-01

    The purpose of this study was to understand the experiences of men at the entry-level of the student affairs profession. Using the concepts found in the existing literature related to gender identity as a framework, the research was focused upon the meanings constructed by entry-level men within the field of student affairs and how those meanings…

  8. Teleporting entanglements of cavity-field states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pires, Geisa; Baseia, B.; Almeida, N.G. de

    2004-08-01

    We present a scheme to teleport an entanglement of zero- and one-photon states from one cavity to another. The scheme, which has 100% success probability, relies on two perfect and identical bimodal cavities, a collection of two kinds of two-level atoms, a three-level atom in a ladder configuration driven by a classical field, Ramsey zones, and selective atomic-state detectors.

  9. Any Two Learning Algorithms Are (Almost) Exactly Identical

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.

    2000-01-01

    This paper shows that if one is provided with a loss function, it can be used in a natural way to specify a distance measure quantifying the similarity of any two supervised learning algorithms, even non-parametric algorithms. Intuitively, this measure gives the fraction of targets and training sets for which the expected performance of the two algorithms differs significantly. Bounds on the value of this distance are calculated for the case of binary outputs and 0-1 loss, indicating that any two learning algorithms are almost exactly identical for such scenarios. As an example, for any two algorithms A and B, even for small input spaces and training sets, for less than 2e(-50) of all targets will the difference between A's and B's generalization performance of exceed 1%. In particular, this is true if B is bagging applied to A, or boosting applied to A. These bounds can be viewed alternatively as telling us, for example, that the simple English phrase 'I expect that algorithm A will generalize from the training set with an accuracy of at least 75% on the rest of the target' conveys 20,000 bytes of information concerning the target. The paper ends by discussing some of the subtleties of extending the distance measure to give a full (non-parametric) differential geometry of the manifold of learning algorithms.

  10. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE PAGES

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    2017-12-21

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  11. New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.

    Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less

  12. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    NASA Astrophysics Data System (ADS)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  13. Contorting Identities: Figuring Literacy and Identity in Adolescent Worlds

    ERIC Educational Resources Information Center

    Quinlan, A.; Curtin, A.

    2017-01-01

    This paper explores connections and disconnects between identity and literacy for a group of adolescents in a second level classroom setting. We build on Mead and Vygotsky's conceptualisations of identity formation as an intricate emergent happening constantly formed/reformed by people, in their interactions with others [Mead, G. H. 1999.…

  14. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil.

    PubMed

    Penchaszadeh, Victor B; Schuler-Faccini, Lavinia

    2014-03-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  15. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    PubMed Central

    Penchaszadeh, Victor B.; Schuler-Faccini, Lavinia

    2014-01-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976–1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program “Reencontro”, which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind. PMID:24764764

  16. Computational techniques in tribology and material science at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  17. A Simple Approach for the Calculation of Energy Levels of Light Atoms

    ERIC Educational Resources Information Center

    Woodyard, Jack R., Sr.

    1972-01-01

    Describes a method for direct calculation of energy levels by using elementary techniques. Describes the limitations of the approach but also claims that with a minimum amount of labor a student can get greater understanding of atomic physics problems. (PS)

  18. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    PubMed

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  19. SHORT COMMUNICATION: Comparison between two mobile absolute gravimeters: optical versus atomic interferometers

    NASA Astrophysics Data System (ADS)

    Merlet, S.; Bodart, Q.; Malossi, N.; Landragin, A.; Pereira Dos Santos, F.; Gitlein, O.; Timmen, L.

    2010-08-01

    We report a comparison between two absolute gravimeters: the LNE-SYRTE cold atom gravimeter and FG5#220 of Leibniz Universität of Hannover. They rely on different principles of operation: atomic and optical interferometry. Both are movable which enabled them to participate in the last International Comparison of Absolute Gravimeters (ICAG'09) at BIPM. Immediately after, their bilateral comparison took place in the LNE watt balance laboratory and showed an agreement of (4.3 ± 6.4) µGal.

  20. Religious Fragmentation, Social Identity and Conflict: Evidence from an Artefactual Field Experiment in India.

    PubMed

    Chakravarty, Surajeet; Fonseca, Miguel A; Ghosh, Sudeep; Marjit, Sugata

    2016-01-01

    We examine the impact of religious identity and village-level religious fragmentation on behavior in Tullock contests. We report on a series of two-player Tullock contest experiments conducted on a sample of 516 Hindu and Muslim participants in rural West Bengal, India. Our treatments are the identity of the two players and the degree of religious fragmentation in the village where subjects reside. Our main finding is that the effect of social identity is small and inconsistent across the two religious groups in our study. While we find small but statistically significant results in line with our hypotheses in the Hindu sample, we find no statistically significant effects in the Muslim sample. This is in contrast to evidence from Chakravarty et al. (2016), who report significant differences in cooperation levels in prisoners' dilemma and stag hunt games, both in terms of village composition and identity. We attribute this to the fact that social identity may have a more powerful effect on cooperation than on conflict.

  1. On the bosonic atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  2. Calculated gadolinium atomic electron energy levels and Auger electron emission probability as a function of atomic number Z

    NASA Astrophysics Data System (ADS)

    Miloshevsky, G. V.; Tolkach, V. I.; Shani, Gad; Rozin, Semion

    2002-06-01

    Auger electron interaction with matter is gaining importance in particular in medical application of radiation. The production probability and energy spectrum is therefore of great importance. A good source of Auger electrons is the 157Gd(n,γ) 158Gd reaction. The present article describes calculations of electron levels in Gd atoms and provides missing data of outer electron energy levels. The energy of these electron levels missing in published tables, was found to be in the 23-24 and 6-7 eV energy ranges respectively. The probability of Auger emission was calculated as an interaction of wave function of the initial and final electron states. The wave functions were calculated using the Hartree-Fock-Slater approximation with relativistic correction. The equations were solved using a spherical symmetry potential. The error for inner shell level is less than 10%, it is increased to the order of 10-15% for the outer shells. The width of the Auger process changes from 0.1 to 1.2 eV for atomic number Z from 5 to 70. The fluorescence yield width changes five orders of magnitude in this range. Auger electron emission width from the K shell changes from 10 -2 to ˜1 eV with Z changing from 10 to 64, depending on the final state. For the L shell it changes from 0 to 0.25 when it Z changes from 20 to 64.

  3. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity.

    PubMed

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan

    2015-05-04

    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  4. Modeling of atomic systems for atomic clocks and quantum information

    NASA Astrophysics Data System (ADS)

    Arora, Bindiya

    /2 state in Na, K, Rb, and Cs atoms and evaluate the uncertainties of these values. Both scalar and tensor part of the p state polarizability were calculated. This made the calculations complicated owing to the contributions from p--d transitions. The static polarizability values are found to be in excellent agreement with previous experimental and theoretical results. We used our calculations to identify the "magic" wavelengths at which the ac polarizabilities of the alkali-metal atoms in the ground state are equal to the ac polarizabilities in the excited npj states facilitating state-insensitive cooling and trapping. We list the results for the np 1/2 and np3/2 states separately. Depending on the mj sub levels, the total polarizability of the np3/2 state was calculated either as the sum or as the difference of scalar and tensor contributions. We pointed out the complications involved in the magic wavelength calculations for the mj = +/-3/2 sub levels. We also study the magic wavelengths for transitions between particular np3/2 F'M' and nsFM hyperfine sub levels. We have proposed a scheme for state-insensitive trapping of neutral atoms by using two-color light at convenient wavelengths. In this scheme, we predict the values of trap and control wavelengths for which the 5s and 5p3/2 levels in Rb atom have same ac Stark shifts in the presence of two laser fields. We also list the trap and control wavelength combinations where one of the laser wavelengths is double the other. The results were listed at same and different trap and control laser intensities. This scheme allows to select convenient and easily available laser wavelength for experiments where it is essential to precisely localize and control neutral atoms with minimum decoherence. Motivated by the prospect of an optical frequency standard based on 43Ca+, we calculate the blackbody radiation (BBR) shift of the 4s1/2-3d5/2 clock transition of an optical frequency standard based on 43Ca+. We describe the study of

  5. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.

    PubMed

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.

  6. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    DOE PAGES

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; ...

    2017-07-17

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less

  7. Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin

    The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less

  8. Tools for Understanding Identity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creese, Sadie; Gibson-Robinson, Thomas; Goldsmith, Michael

    Identity attribution and enrichment is critical to many aspects of law-enforcement and intelligence gathering; this identity typically spans a number of domains in the natural-world such as biographic information (factual information – e.g. names, addresses), biometric information (e.g. fingerprints) and psychological information. In addition to these natural-world projections of identity, identity elements are projected in the cyber-world. Conversely, undesirable elements may use similar techniques to target individuals for spear-phishing attacks (or worse), and potential targets or their organizations may want to determine how to minimize the attack surface exposed. Our research has been exploring the construction of a mathematical modelmore » for identity that supports such holistic identities. The model captures the ways in which an identity is constructed through a combination of data elements (e.g. a username on a forum, an address, a telephone number). Some of these elements may allow new characteristics to be inferred, hence enriching the holistic view of the identity. An example use-case would be the inference of real names from usernames, the ‘path’ created by inferring new elements of identity is highlighted in the ‘critical information’ panel. Individual attribution exercises can be understood as paths through a number of elements. Intuitively the entire realizable ‘capability’ can be modeled as a directed graph, where the elements are nodes and the inferences are represented by links connecting one or more antecedents with a conclusion. The model can be operationalized with two levels of tool support described in this paper, the first is a working prototype, the second is expected to reach prototype by July 2013: Understanding the Model The tool allows a user to easily determine, given a particular set of inferences and attributes, which elements or inferences are of most value to an investigator (or an attacker). The tool is also able

  9. Using Bayesian variable selection to analyze regular resolution IV two-level fractional factorial designs

    DOE PAGES

    Chipman, Hugh A.; Hamada, Michael S.

    2016-06-02

    Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.

  10. Using Bayesian variable selection to analyze regular resolution IV two-level fractional factorial designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipman, Hugh A.; Hamada, Michael S.

    Regular two-level fractional factorial designs have complete aliasing in which the associated columns of multiple effects are identical. Here, we show how Bayesian variable selection can be used to analyze experiments that use such designs. In addition to sparsity and hierarchy, Bayesian variable selection naturally incorporates heredity . This prior information is used to identify the most likely combinations of active terms. We also demonstrate the method on simulated and real experiments.

  11. Bloch equation and atom-field entanglement scenario in three-level systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Surajit; Nath, Mihir Ranjan; Dey, Tushar Kanti

    2011-09-23

    We study the exact solution of the lambda, vee and cascade type of three-level system with distinct Hamiltonian for each configuration expressed in the SU(3) basis. The semiclassical models are solved by solving respective Bloch equation and the existence of distinct non-linear constants are discussed which are different for different configuration. Apart from proposing a qutrit wave function, the atom-field entanglement is studied for the quantized three-level systems using the Phoenix-Knight formalism and corresponding population inversion are compared.

  12. Investigation of infrared radiation in rubidium vapor upon two-photon and step-by-step excitations of the initial level

    NASA Astrophysics Data System (ADS)

    Bimagambetov, T. S.

    2011-12-01

    Stimulated infrared (IR) 5.231-μm line radiation is obtained upon two-photon and step-by-step excitations of the initial level. Dependences of the line power on the concentration of atoms and laser frequency are investigated. The mechanism of initial level occupation is explained.

  13. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.

    PubMed

    Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng

    2015-12-21

    The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

  14. Using a generalised identity reference model with archetypes to support interoperability of demographics information in electronic health record systems.

    PubMed

    Xu Chen; Berry, Damon; Stephens, Gaye

    2015-01-01

    Computerised identity management is in general encountered as a low-level mechanism that enables users in a particular system or region to securely access resources. In the Electronic Health Record (EHR), the identifying information of both the healthcare professionals who access the EHR and the patients whose EHR is accessed, are subject to change. Demographics services have been developed to manage federated patient and healthcare professional identities and to support challenging healthcare-specific use cases in the presence of diverse and sometimes conflicting demographic identities. Demographics services are not the only use for identities in healthcare. Nevertheless, contemporary EHR specifications limit the types of entities that can be the actor or subject of a record to health professionals and patients, thus limiting the use of two level models in other healthcare information systems. Demographics are ubiquitous in healthcare, so for a general identity model to be usable, it should be capable of managing demographic information. In this paper, we introduce a generalised identity reference model (GIRM) based on key characteristics of five surveyed demographic models. We evaluate the GIRM by using it to express the EN13606 demographics model in an extensible way at the metadata level and show how two-level modelling can support the exchange of instances of demographic identities. This use of the GIRM to express demographics information shows its application for standards-compliant two-level modelling alongside heterogeneous demographics models. We advocate this approach to facilitate the interoperability of identities between two-level model-based EHR systems and show the validity and the extensibility of using GIRM for the expression of other health-related identities.

  15. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    PubMed

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ < 332 nm. The obtained results clearly show that H-atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared

  16. Resolving an identity crisis: Implicit drinking identity and implicit alcohol identity are related but not the same.

    PubMed

    Ramirez, Jason J; Olin, Cecilia C; Lindgren, Kristen P

    2017-09-01

    Two variations of the Implicit Association Test (IAT), the Drinking Identity IAT and the Alcohol Identity IAT, assess implicit associations held in memory between one's identity and alcohol-related constructs. Both have been shown to predict numerous drinking outcomes, but these IATs have never been directly compared to one another. The purpose of this study was to compare these IATs and evaluate their incremental predictive validity. US undergraduate students (N=64, 50% female, mean age=21.98years) completed the Drinking Identity IAT, the Alcohol Identity IAT, an explicit measure of drinking identity, as well as measures of typical alcohol consumption and hazardous drinking. When evaluated in separate regression models that controlled for explicit drinking identity, results indicated that the Drinking Identity IAT and the Alcohol Identity IAT were significant, positive predictors of typical alcohol consumption, and that the Drinking Identity IAT, but not the Alcohol Identity IAT, was a significant predictor of hazardous drinking. When evaluated in the same regression models, the Drinking Identity IAT, but not the Alcohol Identity IAT, was significantly associated with typical and hazardous drinking. These results suggest that the Drinking Identity IAT and Alcohol Identity IAT are related but not redundant. Moreover, given that the Drinking Identity IAT, but not the Alcohol Identity IAT, incrementally predicted variance in drinking outcomes, identification with drinking behavior and social groups, as opposed to identification with alcohol itself, may be an especially strong predictor of drinking outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Memory transfer for emotionally valenced words between identities in dissociative identity disorder.

    PubMed

    Huntjens, Rafaële J C; Peters, Madelon L; Woertman, Liesbeth; van der Hart, Onno; Postma, Albert

    2007-04-01

    The present study aimed to determine interidentity retrieval of emotionally valenced words in dissociative identity disorder (DID). Twenty-two DID patients participated together with 25 normal controls and 25 controls instructed to simulate DID. Two wordlists A and B were constructed including neutral, positive and negative material. List A was shown to one identity, while list B was shown to another identity claiming total amnesia for the words learned by the first identity. The identity claiming amnesia was tested for intrusions from list A words into the recall of words from list B and recognition of the words learned by both identities. Test results indicated no evidence of total interidentity amnesia for emotionally valenced material in DID. It is argued that dissociative amnesia in DID may more adequately be described as a disturbance in meta-memory functioning instead of an actual retrieval inability.

  18. Towards Precision Measurement of the 21S0-31D2 Two-Photon Transition in Atomic Helium

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jan; Guan, Yu-Chan; Suen, Te-Hwei; Wang, Li-Bang; Shy, Jow-Tsong

    2017-04-01

    We intend to accurately measure the frequency for 2S-3D two-photon transition and to deduce the 2S ionization energy to an accuracy below 100 kHz from the theoretical calculation of the 3D state. In this talk, we present a precision measurement of the 21S0 -31D2 two-photon transition in atomic helium at 1009 nm. A master oscillator power amplifier (MOPA) is seeded by an external cavity diode laser (ECDL) is constructed to generate more than 700 mW laser power with TEM00 beam profile at 1009 nm. To observe the two-photon transition, a helium cell is placed inside a power enhancement optical cavity and the helium atoms at 21S metastable level are prepared by a pulsed RF discharge and monitor the 668 nm 31D2 to 21P1 fluorescence after RF discharge is turned off . The absolute frequency metrology of the ECDL is carried out by an Er-fiber optical frequency comb (OFC). The two-photon spectrum is obtained by tuning the repetition frequency of the OFC. The 21S0-31D2 frequency is determined to be 594414291.967 (80) MHz in He-4. More results will be presented at the annual meeting.

  19. Heat transport through atomic contacts.

    PubMed

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-05-01

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  20. Induced dipole-dipole coupling between two atoms at a migration resonance

    NASA Astrophysics Data System (ADS)

    Kaur, Maninder; Mian, Mahmood

    2018-05-01

    Results of numerical simulations for the resonant energy exchange phenomenon called Migration reaction between two cold Rydberg atoms are presented. The effect of spatial interatomic distance on the onset of peculiar coherent mechanism is investigated. Observation of Rabi-like population inversion oscillation at the resonance provides a clear signature of dipole induced exchange of electronic excitations between the atoms. Further we present the results for the dependence of expectation value of the interaction hamiltonian on the interatomic distance, which is responsible for energy exchange process. The results of this observation endorse the range of inter atomic distance within which the excitation exchange process occurs completely or partially. Migration process enhance the Rydberg-Rydberg interaction in the absence of an external field, under the condition of the zero permanent dipole moments. Our next observation sheds light on the fundamental mechanism of induced electric fields initiated by the oscillating dipoles in such energy exchange processes. We explore the dependence of induced electric field on the interatomic distance and angle between the dipoles highlighting the inverse power law dependence and anisotropic property of the field. We put forward an idea to utilise the coherent energy exchange process to build efficient and fast energy transfer channels by incorporating more atoms organised at successive distances with decreasing distance gradient.

  1. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    PubMed

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Identity Dystopias, Empire Framing and Theoretical Hegemonies: Two Case Studies, India and Ireland

    ERIC Educational Resources Information Center

    Allender, Tim; O'Donoghue, Tom

    2014-01-01

    This article explores the connections between official contemporary identity formation and colonial pasts. Using the case studies of India and Ireland the article explores how different traditions of theorisation are powerful in these formations. India and Ireland were two colonial domains that had many linkages outside the ambit of the British.…

  3. Quantum Properties of the Superposition of Two Nearly Identical Coherent States

    NASA Astrophysics Data System (ADS)

    Othman, Anas; Yevick, David

    2018-04-01

    In this paper, we examine the properties of the state obtained when two nearly identical coherent states are superimposed. We found that this state exhibits many nonclassical properties such as sub-Poissonian statistics, squeezing and a partially negative Wigner function. These and other properties indicate that such states, here termed near coherent states, are significantly closer to coherent states more than the generalized Schrördinger cat states. We finally provide an experimental procedure for generating the near coherent states.

  4. Professional Identity Formation and the Clinician-Scientist: A Paradigm for a Clinical Career Combining Two Distinct Disciplines.

    PubMed

    Rosenblum, Norman D; Kluijtmans, Manon; Ten Cate, Olle

    2016-12-01

    The clinician-scientist role is critical to the future of health care, and in 2010, the Carnegie Report on Educating Physicians focused attention on the professional identity of practicing clinicians. Although limited in number, published studies on the topic suggest that professional identity is likely a critical factor that determines career sustainability. In contrast to clinicians with a singular focus on clinical practice, clinician-scientists combine two major disciplines, clinical medicine and scientific research, to bridge discovery and clinical care. Despite its importance to advancing medical practice, the clinician-scientist career faced a variety of threats, which have been identified recently by the 2014 National Institutes of Health Physician Scientist Workforce. Yet, professional identity development in this career pathway is poorly understood. This Perspective focuses on the challenges to the clinician-scientist's professional identity and its development. First, the authors identify the particular challenges that arise from the different cultures of clinical care and science and the implications for clinician-scientist professional identity formation. Next, the authors synthesize insights about professional identity development within a dual-discipline career and apply their analysis to a discussion about the implications for clinician-scientist identity formation. Although not purposely developed to address identity formation, the authors highlight those elements within clinician-scientist training and career development programs that may implicitly support identity development. Finally, the authors highlight a need to identify empirically the elements that compose and determine clinician-scientist professional identity and the processes that shape its formation and sustainability.

  5. A new look at the atomic level virial stress: on continuum-molecular system equivalence

    NASA Astrophysics Data System (ADS)

    Zhou, Min

    2003-09-01

    The virial stress is the most commonly used definition of stress in discrete particle systems. This quantity includes two parts. The first part depends on the mass and velocity (or, in some versions, the fluctuation part of the velocity) of atomic particles, reflecting an assertion that mass transfer causes mechanical stress to be applied on stationary spatial surfaces external to an atomic-particle system. The second part depends on interatomic forces and atomic positions, providing a continuum measure for the internal mechanical interactions between particles. Historic derivations of the virial stress include generalization from the virial theorem of Clausius (1870) for gas pressure and solution of the spatial equation of balance of momentum. The virial stress is stress-like a measure for momentum change in space. This paper shows that, contrary to the generally accepted view, the virial stress is not a measure for mechanical force between material points and cannot be regarded as a measure for mechanical stress in any sense. The lack of physical significance is both at the individual atom level in a time-resolved sense and at the system level in a statistical sense. It is demonstrated that the interatomic force term alone is a valid stress measure and can be identified with the Cauchy stress. The proof in this paper consists of two parts. First, for the simple conditions of rigid translation, uniform tension and tension with thermal oscillations, the virial stress yields clearly erroneous interpretations of stress. Second, the conceptual flaw in the generalization from the virial theorem for gas pressure to stress and the confusion over spatial and material equations of balance of momentum in theoretical derivations of the virial stress that led to its erroneous acceptance as the Cauchy stress are pointed out. Interpretation of the virial stress as a measure for mechanical force violates balance of momentum and is inconsistent with the basic definition of stress

  6. Essentialism Versus Complexity: Conceptions of Racial Identity Construction in Educational Scholarship

    ERIC Educational Resources Information Center

    Gosine, Kevin

    2002-01-01

    In this article, I critically review North American education-related literature on identity construction among Black youth. I integrate this body of scholarship to reveal an implicit two-pronged model for examining identity among racialized persons. The first level of analysis involves unveiling collective strivings for a coherent racial identity…

  7. Atomically-thick two-dimensional crystals: electronic structure regulation and energy device construction.

    PubMed

    Sun, Yongfu; Gao, Shan; Xie, Yi

    2014-01-21

    Atomically-thick two-dimensional crystals can provide promising opportunities to satisfy people's requirement of next-generation flexible and transparent nanodevices. However, the characterization of these low-dimensional structures and the understanding of their clear structure-property relationship encounter many great difficulties, owing to the lack of long-range order in the third dimensionality. In this review, we survey the recent progress in fine structure characterization by X-ray absorption fine structure spectroscopy and also overview electronic structure modulation by density-functional calculations in the ultrathin two-dimensional crystals. In addition, we highlight their structure-property relationship, transparent and flexible device construction as well as wide applications in photoelectrochemical water splitting, photodetectors, thermoelectric conversion, touchless moisture sensing, supercapacitors and lithium ion batteries. Finally, we outline the major challenges and opportunities that face the atomically-thick two-dimensional crystals. It is anticipated that the present review will deepen people's understanding of this field and hence contribute to guide the future design of high-efficiency energy-related devices.

  8. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  9. A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.

    PubMed

    Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang

    2012-07-01

    We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.

  10. Adolescence: Search for an Identity

    ERIC Educational Resources Information Center

    Kasinath, H. M.

    2013-01-01

    James Marcia (1991, 1994, 1999, 2002) expanded on Erikson's theory of identity formation. Specifically, he focused on two essential processes in achieving a mature identity: exploration and commitment. Erikson's observations about identity were extended by Marcia, who described four identity statuses: identity diffusion, foreclosure, moratorium…

  11. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models

    NASA Astrophysics Data System (ADS)

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-01

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.

  12. What Does It Mean to Be a Reader? Identity and Positioning in Two High School Literacy Intervention Classes

    ERIC Educational Resources Information Center

    Frankel, Katherine K.

    2017-01-01

    Studies of high school literacy intervention classes have measured reading gains through standardized assessments, but few have considered the impact on students' identities. In this embedded case study, I used theories of identity and positioning to answer two research questions: How did institutional and interpersonal acts of positioning in two…

  13. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  14. Steady state quantum discord for circularly accelerated atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less

  15. Brand Identity.

    ERIC Educational Resources Information Center

    Lawlor, John

    1998-01-01

    Instead of differentiating themselves by building "brand identities," colleges and universities often focus on competing with price. As a result, fewer and fewer institutions base their identities on value, the combination of quality and price. Methods of building two concepts to influence customers' brand image and brand loyalty are…

  16. Religious Fragmentation, Social Identity and Conflict: Evidence from an Artefactual Field Experiment in India

    PubMed Central

    2016-01-01

    We examine the impact of religious identity and village-level religious fragmentation on behavior in Tullock contests. We report on a series of two-player Tullock contest experiments conducted on a sample of 516 Hindu and Muslim participants in rural West Bengal, India. Our treatments are the identity of the two players and the degree of religious fragmentation in the village where subjects reside. Our main finding is that the effect of social identity is small and inconsistent across the two religious groups in our study. While we find small but statistically significant results in line with our hypotheses in the Hindu sample, we find no statistically significant effects in the Muslim sample. This is in contrast to evidence from Chakravarty et al. (2016), who report significant differences in cooperation levels in prisoners’ dilemma and stag hunt games, both in terms of village composition and identity. We attribute this to the fact that social identity may have a more powerful effect on cooperation than on conflict. PMID:27768713

  17. Swiss identity smells like chocolate: Social identity shapes olfactory judgments

    PubMed Central

    Coppin, Géraldine; Pool, Eva; Delplanque, Sylvain; Oud, Bastiaan; Margot, Christian; Sander, David; Van Bavel, Jay J.

    2016-01-01

    There is extensive evidence that social identities can shape people’s attitudes and behavior, but what about sensory judgments? We examined the possibility that social identity concerns may also shape the judgment of non-social properties—namely, olfactory judgment. In two experiments, we presented Swiss and non-Swiss participants with the odor of chocolate, for which Switzerland is world-famous, and a control odor (popcorn). Swiss participants primed with Swiss identity reported the odor of chocolate (but not popcorn) as more intense than non-Swiss participants (Experiments 1 and 2) and than Swiss participants primed with individual identity or not primed (Experiment 2). The self-reported intensity of chocolate smell tended to increase as identity accessibility increased—but only among Swiss participants (Experiment 1). These results suggest that identity priming can counter-act classic sensory habituation effects, allowing identity-relevant smells to maintain their intensity after repeated presentations. This suggests that social identity dynamically influences sensory judgment. We discuss the potential implications for models of social identity and chemosensory perception. PMID:27725715

  18. Swiss identity smells like chocolate: Social identity shapes olfactory judgments.

    PubMed

    Coppin, Géraldine; Pool, Eva; Delplanque, Sylvain; Oud, Bastiaan; Margot, Christian; Sander, David; Van Bavel, Jay J

    2016-10-11

    There is extensive evidence that social identities can shape people's attitudes and behavior, but what about sensory judgments? We examined the possibility that social identity concerns may also shape the judgment of non-social properties-namely, olfactory judgment. In two experiments, we presented Swiss and non-Swiss participants with the odor of chocolate, for which Switzerland is world-famous, and a control odor (popcorn). Swiss participants primed with Swiss identity reported the odor of chocolate (but not popcorn) as more intense than non-Swiss participants (Experiments 1 and 2) and than Swiss participants primed with individual identity or not primed (Experiment 2). The self-reported intensity of chocolate smell tended to increase as identity accessibility increased-but only among Swiss participants (Experiment 1). These results suggest that identity priming can counter-act classic sensory habituation effects, allowing identity-relevant smells to maintain their intensity after repeated presentations. This suggests that social identity dynamically influences sensory judgment. We discuss the potential implications for models of social identity and chemosensory perception.

  19. Narrating and Performing Identity: Literacy Specialists' Writing Identities

    ERIC Educational Resources Information Center

    McKinney, Marilyn; Giorgis, Cyndi

    2009-01-01

    In this study, we explored ways that four literacy specialists who worked in three schools that were part of one state's Reading Excellence Act (REA) grant constructed their identities as writers and as teachers of writing. We also explored how they negotiated the performance of those identities in different contexts over a two-year period.…

  20. Translanguaging Pedagogies for Positive Identities in Two-Way Dual Language Bilingual Education

    ERIC Educational Resources Information Center

    García-Mateus, Suzanne; Palmer, Deborah

    2017-01-01

    Research suggests that identity matters for school success and that language and identity are powerfully intertwined. A monolingual solitudes understanding of bilingualism undermines children's bilingual identities, yet in most bilingual education classrooms, academic instruction is segregated by language and children are encouraged to engage in…

  1. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  2. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-01-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793

  3. Defect propagation in one-, two-, and three-dimensional compounds doped by magnetic atoms

    DOE PAGES

    Furrer, A.; Podlesnyak, A.; Krämer, K. W.; ...

    2014-10-29

    Inelastic neutron scattering experiments were performed to study manganese(II) dimer excitations in the diluted one-, two-, and three-dimensional compounds CsMn xMg 1-xBr 3, K 2Mn xZn 1-xF 4, and KMn xZn 1-xF 3 (x≤0.10), respectively. The transitions from the ground-state singlet to the excited triplet, split into a doublet and a singlet due to the single-ion anisotropy, exhibit remarkable fine structures. These unusual features are attributed to local structural inhomogeneities induced by the dopant Mn atoms which act like lattice defects. Statistical models support the theoretically predicted decay of atomic displacements according to 1/r 2, 1/r, and constant (for three-,more » two-, and one-dimensional compounds, respectively) where r denotes the distance of the displaced atoms from the defect. In conclusion, the observed fine structures allow a direct determination of the local exchange interactions J, and the local intradimer distances R can be derived through the linear law dJ/dR.« less

  4. Quantum-projection-noise-limited interferometry with coherent atoms in a Ramsey-type setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doering, D.; McDonald, G.; Debs, J. E.

    2010-04-15

    Every measurement of the population in an uncorrelated ensemble of two-level systems is limited by what is known as the quantum projection noise limit. Here, we present quantum-projection-noise-limited performance of a Ramsey-type interferometer using freely propagating coherent atoms. The experimental setup is based on an electro-optic modulator in an inherently stable Sagnac interferometer, optically coupling the two interfering atomic states via a two-photon Raman transition. Going beyond the quantum projection noise limit requires the use of reduced quantum uncertainty (squeezed) states. The experiment described demonstrates atom interferometry at the fundamental noise level and allows the observation of possible squeezing effectsmore » in an atom laser, potentially leading to improved sensitivity in atom interferometers.« less

  5. Large atom number Bose-Einstein condensate machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.

    2006-02-15

    We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.

  6. Squeezing via two-photon transitions

    NASA Astrophysics Data System (ADS)

    Savage, C. M.; Walls, D. F.

    1986-05-01

    The squeezing spectrum for a cavity field mode interacting with an ensemble of three-level 'Lambda-configuration' atoms by an effective two-photon transition is calculated. The advantage of the three-level Lambda system as a squeezing medium, that is, optical nonlinearity without atomic saturation, has recently been pointed out by Reid, Walls, and Dalton. Perfect squeezing is predicted at the turning points for dispersive optical bistability and good squeezing for a range of other cases. Three-level ladder atoms interacting by an effective two-photon transition are also shown to give perfect squeezing in the dispersive limit.

  7. Entanglement manipulation via Coulomb interaction in an optomechanical cavity assisted by two-level cold atoms

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tian, Xue-Dong; Liu, Yi-Mou; Cui, Cui-Li; Wu, Jin-Hui

    2018-06-01

    We investigate the stationary entanglement properties in a hybrid system consisting of an optical cavity, a mechanical resonator, a charged object, and an atomic ensemble. Numerical results show that this hybrid system exhibits three kinds of controllable bipartite entanglements in an experimentally accessible parameter regime with the help of the charged object. More importantly, it is viable to enhance on demand each bipartite entanglement at the expense of reducing others by modulating the Coulomb coupling strength. Last but not least, these bipartite entanglements seem more robust against on the environmental temperature for the positive Coulomb interaction.

  8. Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Kuminecz, J.; Leger, L.; Nordine, P.

    1988-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material.

  9. Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon

    NASA Astrophysics Data System (ADS)

    Stübner, R.; Scheffler, L.; Kolkovsky, Vl.; Weber, J.

    2016-05-01

    In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are EC-0.06 eV (E42) and EC-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier for electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH1AB configuration, where one H atom is directly bound to carbon in the anti-bonding position.

  10. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems.

    PubMed

    Jorgensen, William L; Tirado-Rives, Julian

    2005-05-10

    An overview is provided on the development and status of potential energy functions that are used in atomic-level statistical mechanics and molecular dynamics simulations of water and of organic and biomolecular systems. Some topics that are considered are the form of force fields, their parameterization and performance, simulations of organic liquids, computation of free energies of hydration, universal extension for organic molecules, and choice of atomic charges. The discussion of water models covers some history, performance issues, and special topics such as nuclear quantum effects.

  11. Fourier-Legendre expansion of the one-electron density matrix of ground-state two-electron atoms.

    PubMed

    Ragot, Sébastien; Ruiz, María Belén

    2008-09-28

    The density matrix rho(r,r(')) of a spherically symmetric system can be expanded as a Fourier-Legendre series of Legendre polynomials P(l)(cos theta=rr(')rr(')). Application is here made to harmonically trapped electron pairs (i.e., Moshinsky's and Hooke's atoms), for which exact wavefunctions are known, and to the helium atom, using a near-exact wavefunction. In the present approach, generic closed form expressions are derived for the series coefficients of rho(r,r(')). The series expansions are shown to converge rapidly in each case, with respect to both the electron number and the kinetic energy. In practice, a two-term expansion accounts for most of the correlation effects, so that the correlated density matrices of the atoms at issue are essentially a linear functions of P(l)(cos theta)=cos theta. For example, in the case of Hooke's atom, a two-term expansion takes in 99.9% of the electrons and 99.6% of the kinetic energy. The correlated density matrices obtained are finally compared to their determinantal counterparts, using a simplified representation of the density matrix rho(r,r(')), suggested by the Legendre expansion. Interestingly, two-particle correlation is shown to impact the angular delocalization of each electron, in the one-particle space spanned by the r and r(') variables.

  12. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less

  13. A Dual Identity Approach for Conceptualizing and Measuring Children's Gender Identity.

    PubMed

    Martin, Carol Lynn; Andrews, Naomi C Z; England, Dawn E; Zosuls, Kristina; Ruble, Diane N

    2017-01-01

    The goal was to test a new dual identity perspective on gender identity by asking children (n = 467) in three grades (M age  = 5.7, 7.6, 9.5) to consider the relation of the self to both boys and girls. This change shifted the conceptualization of gender identity from one to two dimensions, provided insights into the meaning and measurement of gender identity, and allowed for revisiting ideas about the roles of gender identity in adjustment. Using a graphical measure to allow assessment of identity in young children and cluster analyses to determine types of identity, it was found that individual and developmental differences in how similar children feel to both genders, and these variations matter for many important personal and social outcomes. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.

  14. Combining Identity and Integration: Comparative Analysis of Schools for Two Minority Groups in Ukraine

    ERIC Educational Resources Information Center

    Kulyk, Volodymyr

    2013-01-01

    This article analyses school systems for two of Ukraine's minorities, the Hungarians and the Crimean Tatars with the aim of assessing their success in promoting ethnocultural identity and social integration of the minority youth. I demonstrate that the exclusive instruction in Hungarian ensures the reproduction of group language knowledge and…

  15. Reciprocal Associations between Identity and Civic Engagement in Adolescence: A Two-Wave Longitudinal Study

    ERIC Educational Resources Information Center

    Crocetti, Elisabetta; Garckija, Renata; Gabrialaviciute, Ingrida; Vosylis, Rimantas; Zukauskiene, Rita

    2014-01-01

    The purpose of this two-wave longitudinal study was to analyze reciprocal associations between identity styles (i.e., socio-cognitive strategies that individuals adopt in processing, structuring, utilizing, and revising self-relevant information) and civic engagement in adolescence. Participants were 1,308 high school students (9-11 grades; 52.9%…

  16. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    NASA Astrophysics Data System (ADS)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  17. It takes two to tango: information-sharing with offspring among heterosexual parents following identity-release sperm donation.

    PubMed

    Isaksson, S; Skoog-Svanberg, A; Sydsjö, G; Linell, L; Lampic, C

    2016-01-01

    How do heterosexual parents reason about and experience information-sharing with offspring following identity-release sperm donation? Sharing information about using donor-conception with offspring is a complex process at several levels, with the parent's personal beliefs and the child's responses serving as driving or impeding forces for the information-sharing process. The overall view of disclosure in gamete donation has shifted from secrecy to openness, but there is still uncertainty among parents concerning how and when to tell the child about his/her genetic origin. Most research on donor-conceived families has focused on donation treatment under anonymous or known circumstances, and there is a lack of studies in settings with identity-release donations. A qualitative interview study among 30 parents following identity-release sperm donation treatment. Interviews were conducted from February 2014 to March 2015. The present study is part of the prospective longitudinal Swedish Study on Gamete Donation (SSGD), including all fertility clinics performing gamete donation in Sweden. A sample of participants in the SSGD, consisting of heterosexual parents with children aged 7-8 years following identity-release sperm donation, participated in individual semi-structured interviews. The analysis revealed one main theme: information-sharing is a process, with three subthemes; (i) the parent as process manager, (ii) the child as force or friction and (iii) being in the process. The first two subthemes were viewed as being linked together and their content served as driving or impeding forces in the information-sharing process. The fact that the study was performed within the context of the Swedish legislation on identity-release donation must be taken into consideration as regards transferability to other populations, as this may affect parents' reasoning concerning their information-sharing with the child. The present findings highlight the role of the donor

  18. Atoms and Molecules Interacting with Light

    NASA Astrophysics Data System (ADS)

    van der Straten, Peter; Metcalf, Harold

    2016-02-01

    Part I. Atom-Light Interaction: 1. The classical physics pathway; Appendix 1.A. Damping force on an accelerating charge; Appendix 1.B. Hanle effect; Appendix 1.C. Optical tweezers; 2. Interaction of two-level atoms and light; Appendix 2.A. Pauli matrices for motion of the bloch vector; Appendix 2.B. The Ramsey method; Appendix 2.C. Echoes and interferometry; Appendix 2.D. Adiabatic rapid passage; Appendix 2.E Superposition and entanglement; 3. The atom-light interaction; Appendix 3.A. Proof of the oscillator strength theorem; Appendix 3.B. Electromagnetic fields; Appendix 3.C. The dipole approximation; Appendix 3.D. Time resolved fluorescence from multi-level atoms; 4. 'Forbidden' transitions; Appendix 4.A. Higher order approximations; 5. Spontaneous emission; Appendix 5.A. The quantum mechanical harmonic oscillator; Appendix 5.B. Field quantization; Appendix 5.C. Alternative theories to QED; 6. The density matrix; Appendix 6.A. The Liouville-von Neumann equation; Part II. Internal Structure: 7. The hydrogen atom; Appendix 7.A. Center-of-mass motion; Appendix 7.B. Coordinate systems; Appendix 7.C. Commuting operators; Appendix 7.D. Matrix elements of the radial wavefunctions; 8. Fine structure; Appendix 8.A. The Sommerfeld fine-structure constant; Appendix 8.B. Measurements of the fine structure 9. Effects of the nucleus; Appendix 9.A. Interacting magnetic dipoles; Appendix 9.B. Hyperfine structure for two spin =2 particles; Appendix 9.C. The hydrogen maser; 10. The alkali-metal atoms; Appendix 10.A. Quantum defects for the alkalis; Appendix 10.B. Numerov method; 11. Atoms in magnetic fields; Appendix 11.A. The ground state of atomic hydrogen; Appendix 11.B. Positronium; Appendix 11.C. The non-crossing theorem; Appendix 11.D. Passage through an anticrossing: Landau-Zener transitions; 12. Atoms in electric fields; 13. Rydberg atoms; 14. The helium atom; Appendix 14.A. Variational calculations; Appendix 14.B. Detail on the variational calculations of the ground state

  19. Atomic Energy Levels in Crystals

    DTIC Science & Technology

    1961-02-24

    testing, evaluation, calibration services, and various consultation and information servics. Research projecta are also performed for other government...agencies when the woric relates to and aupplementi the basic program of the Bureau or when the Bureau’s unique competence is requed aThe scope of...Johns Hopkins University, with the support of the U.S. Atomic Energy Commission, initiated a program of experimental studies of the sharp line

  20. Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges.

    PubMed

    Bellunato, Amedeo; Vrbica, Sasha D; Sabater, Carlos; de Vos, Erik W; Fermin, Remko; Kanneworff, Kirsten N; Galli, Federica; van Ruitenbeek, Jan M; Schneider, Grégory F

    2018-04-11

    The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene.

  1. Dynamic Tunneling Junctions at the Atomic Intersection of Two Twisted Graphene Edges

    PubMed Central

    2018-01-01

    The investigation of the transport properties of single molecules by flowing tunneling currents across extremely narrow gaps is relevant for challenges as diverse as the development of molecular electronics and sequencing of DNA. The achievement of well-defined electrode architectures remains a technical challenge, especially due to the necessity of high precision fabrication processes and the chemical instability of most bulk metals. Here, we illustrate a continuously adjustable tunneling junction between the edges of two twisted graphene sheets. The unique property of the graphene electrodes is that the sheets are rigidly supported all the way to the atomic edge. By analyzing the tunneling current characteristics, we also demonstrate that the spacing across the gap junction can be controllably adjusted. Finally, we demonstrate the transition from the tunneling regime to contact and the formation of an atomic-sized junction between the two edges of graphene. PMID:29513997

  2. The Quest for Identity in Adolescence: Heterogeneity in Daily Identity Formation and Psychosocial Adjustment across 5 Years

    ERIC Educational Resources Information Center

    Becht, Andrik I.; Nelemans, Stefanie A.; Branje, Susan J. T.; Vollebergh, Wilma A. M.; Koot, Hans M.; Denissen, Jaap J. A.; Meeus, Wim H. J.

    2016-01-01

    Identity formation is one of the key developmental tasks in adolescence. According to Erikson (1968) experiencing identity uncertainty is normative in adolescence. However, empirical studies investigating identity uncertainty on a daily basis are lacking. Hence, studying individual differences in daily certainty (i.e., identity commitment levels)…

  3. Quasideterministic generation of maximally entangled states of two mesoscopic atomic ensembles by adiabatic quantum feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lisi, Antonio; De Siena, Silvio; Illuminati, Fabrizio

    2005-09-15

    We introduce an efficient, quasideterministic scheme to generate maximally entangled states of two atomic ensembles. The scheme is based on quantum nondemolition measurements of total atomic populations and on adiabatic quantum feedback conditioned by the measurements outputs. The high efficiency of the scheme is tested and confirmed numerically for ideal photodetection as well as in the presence of losses.

  4. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    NASA Astrophysics Data System (ADS)

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  5. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    NASA Astrophysics Data System (ADS)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  6. Identity Development in Deaf Adolescents

    ERIC Educational Resources Information Center

    Kunnen, E. Saskia

    2014-01-01

    We studied identity development during 5 years in seven deaf adolescents who attended a school for deaf children in the highest level of regular secondary education (age between 14 and 18 years), administering identity interviews every year. Identity development is conceptualized as the processes of exploration and commitment formation (Bosma,…

  7. Effect of atomic disorder on the magnetic phase separation

    NASA Astrophysics Data System (ADS)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  8. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  9. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  10. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; McCollum, T.; Anzic, J.

    1992-11-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  11. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, K. K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept for enhancing the lifetime of materials in low Earth orbits is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  12. Leveling coatings for reducing the atomic oxygen defect density in protected graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Degroh, Kim K.; Podojil, G.; Mccollum, T.; Anzic, J.

    1992-01-01

    Pinholes or other defect sites in a protective oxide coating provide pathways for atomic oxygen in low Earth orbit to reach underlying material. One concept of enhancing the lifetime of materials in low Earth orbit is to apply a leveling coating to the material prior to applying any reflective and protective coatings. Using a surface tension leveling coating concept, a low viscosity epoxy was applied to the surface of several composite coupons. A protective layer of 1000 A of SiO2 was deposited on top of the leveling coating, and the coupons were exposed to an atomic oxygen environment in a plasma asher. Pinhole populations per unit area were estimated by counting the number of undercut sites observed by scanning electron microscopy. Defect density values of 180,000 defects/sq cm were reduced to about 1000 defects/sq cm as a result of the applied leveling coating. These improvements occur at a mass penalty of about 2.5 mg/sq cm.

  13. Two-photon decay of K-shell vacancies in silver atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokler, P.H.; University of Giessen, Giessen; Schaeffer, H.W.

    2004-09-01

    The spectral distributions for the two-photon decay modes of singly K-shell ionized silver atoms are determined by x-ray-x-ray coincidence measurements. Ag K-shell vacancies were induced by nuclear electron capture decay of radioactive cadmium isotopes {sup 109}Cd and two-photon coincidences were taken back to back (180 deg.) and at a 90 deg. opening angle for the emission. Each of the two-photon transitions from the 2s, 3s, and 3d states exhibits unique angular and spectral distributions. The measurements agree nicely with relativistic self-consistent field calculations of Tong et al. Our results also confirm and extend the earlier experimental data of Ilakovac andmore » co-workers with improved accuracy.« less

  14. Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    NASA Astrophysics Data System (ADS)

    Amaran, Saieswari; Kosloff, Ronnie; Tomza, Michał; Skomorowski, Wojciech; Pawłowski, Filip; Moszynski, Robert; Rybak, Leonid; Levin, Liat; Amitay, Zohar; Berglund, J. Martin; Reich, Daniel M.; Koch, Christiane P.

    2013-10-01

    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining ab initio quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011)]. Random phase thermal wavefunctions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects.

  15. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  16. A Longitudinal Examination of Early Adolescence Ethnic Identity Trajectories

    PubMed Central

    Huang, Cindy Y.; Stormshak, Elizabeth A.

    2011-01-01

    Early adolescence is marked by transitions for adolescents, and is also a time for identity exploration. Ethnic identity is an essential component of youths’ sense of self. In this study we examined the trajectories of ethnic identity for adolescents from ethnic minority backgrounds during a 4-year period. Six latent class trajectories were identified in the study: the majority of adolescents (41.8%) displayed growth in ethnic identity over 4 years, followed by 30.1% whose high levels of ethnic identity remained stable, then by those who experienced moderate decreases in ethnic identity (10.8 percent). Another class of adolescents (7.3%) showed significant declines in ethnic identity level, followed by 5.5% of adolescents with significant increases, and finally by 4.5% of adolescents with low stable levels of ethnic identity during this developmental period. The classes differed by ethnicity, and adolescents with increasing high levels of ethnic identity reported better parent–child relationships. Findings and implications are discussed. PMID:21787058

  17. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    PubMed

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  18. Do pedophiles have a weaker identity structure compared with nonsexual offenders?

    PubMed

    Tardi, M; Van Gijseghem, H

    2001-10-01

    The aim of this study was to determine whether pedophiles have a weaker identity structure compared with nonsexual offenders. The recruitment process secured the participation of 87 male adult subjects, divided into three groups: 27 pedophiles who abused male victims (X = 38.6 years), 30 pedophiles who abused female victims (X = 35.5 years), 30 nonsexual offenders (X = 29.8 years). The concept of identity was examined on the basis of two factors: body image limits and ego identity. Two objective tests, the Minnesota Multiphasic Personality Inventory (MMPI) and the Ego Identity Scale, and one projective test, the Rorschach scored according to the Fisher and Cleveland method, were used. A multivariate analysis of covariance, at a significance threshold of p < .05, indicated that pedophiles who abused female victims and pedophiles who abused male victims have more fragile body image limits, as measured by the penetration score, and present a higher level of social introversion (Si scale) than do nonsexual offenders. Moreover, pedophiles who abused male victims have a weaker ego (Es scale) than do pedophiles who abused female victims and nonsexual offenders. In other respects, no significant intergroup difference emerged in terms of body image limits as measured by the barrier score and of strength of ego identity (Ego Identity Scale). Conceptual and empirical elements related to body image and ego identity are addressed to shed light on the potential disturbances in the identity of pedophile subjects. These results imply not only that certain impairments exist at the level of the basis structures of the personality, but also that these impairments should be taken into account in formulating a program and devising a therapeutic process for pedophiles.

  19. A Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  20. Coherent Radiation in Atomic Systems

    NASA Astrophysics Data System (ADS)

    Sutherland, Robert Tyler

    Over the last century, quantum mechanics has dramatically altered our understanding of light and matter. Impressively, exploring the relationship between the two continues to provide important insights into the physics of many-body systems. In this thesis, we add to this still growing field of study. Specifically, we discuss superradiant line-broadening and cooperative dipole-dipole interactions for cold atom clouds in the linear-optics regime. We then discuss how coherent radiation changes both the photon scattering properties and the excitation distribution of atomic arrays. After that, we explore the nature of superradiance in initially inverted clouds of multi-level atoms. Finally, we explore the physics of clouds with degenerate Zeeman ground states, and show that this creates quantum effects that fundamentally change the photon scattering of atomic ensembles.

  1. Investigating the Prospective Teachers' Level of Adjustment in Terms of Perceived Identity, Values, and Needs

    ERIC Educational Resources Information Center

    Erdogdu, M. Yuksel

    2013-01-01

    The main purpose of this study is to investigate the prospective teachers' level of adjustment in terms of perceived identity, values, and needs. The searching group includes a total of 273 prospective teachers, 178 of whom are females, and 95 of whom are males. They are either working as paid teachers in the state schools within the boundaries of…

  2. Lande gJ factors for even-parity electronic levels in the holmium atom

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.

    2018-05-01

    In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.

  3. An integrated developmental model for studying identity content in context.

    PubMed

    Galliher, Renee V; McLean, Kate C; Syed, Moin

    2017-11-01

    Historically, identity researchers have placed greater emphasis on processes of identity development (how people develop their identities) and less on the content of identity (what the identity is). The relative neglect of identity content may reflect the lack of a comprehensive framework to guide research. In this article, we provide such a comprehensive framework for the study of the content of identity, including 4 levels of analysis. At the broadest level, we situate individual identity within historical, cultural, and political contexts, elaborating on identity development within the context of shifting cultural norms, values, and attitudes. Histories of prejudice and discrimination are relevant in shaping intersections among historically marginalized identities. Second, we examine social roles as unique and central contexts for identity development, such that relationship labels become integrated into a larger identity constellation. Third, domains of individual or personal identity content intersect to yield a sense of self in which various aspects are subjectively experienced as an integrated whole. We explore the negotiation of culturally marginalized and dominant identity labels, as well as idiosyncratic aspects of identities based on unique characteristics or group memberships. Finally, we argue that the content of identity is enacted at the level of everyday interactions, the "micro-level" of identity. The concepts of identity conflict, coherence, and compartmentalization are presented as strategies used to navigate identity content across these 4 levels. This framework serves as an organizing tool for the current literature, as well as for designing future studies on the identity development. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Cooperative single-photon subradiant states in a three-dimensional atomic array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less

  5. Uncovering Visitor Identity: A Citywide Utilization of the Falk Visitor-Identity Model

    ERIC Educational Resources Information Center

    Trainer, Laureen; Steele-Inama, Marley; Christopher, Amber

    2012-01-01

    In his book, "Identity and the Museum Visitor Experience," John Falk makes the case that by understanding the underlying motivations that drive a visitor, a museum can create an experience that reflects a person's identity and therefore satisfy their motivation for visiting. According to Falk, this level of personal connection increases…

  6. Atomization and merging of two Al and W wires driven by a 1 kA, 10 ns current pulse

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Lu, Yihan; Lebedev, S. V.; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2016-11-01

    Possibility of preconditioning of wires in wire array Z-pinch loads by an auxiliary low-level current pulse was investigated in experiments with two aluminum or two polyimide-coated tungsten wires. It was found that the application of a 1 kA, 10 ns current pulse could convert all the length of the Al wires (1 cm long, 15 μm diameter) and ˜70% of length of the W wires (1 cm long, 15 μm diameter, 2 μm polyimide coating) into a gaseous state via ohmic heating. The expansion and merging of the wires, positioned at separations of 1-3 mm, were investigated with two-wavelength (532 nm and 1064 nm) laser interferometry. The gasified wire expanded freely in a vacuum and its density distribution at different times could be well described using an analytic model for the expansion of the gas into vacuum. Under an energy deposition around its atomization enthalpy of the wire material, the aluminum vapor column had an expansion velocity of 5-7 km/s, larger than the value of ˜4 km/s from tungsten wires. The dynamic atomic polarizabilities of tungsten for 532 nm and 1064 nm were also estimated.

  7. Entanglement between collective fields via atomic coherence effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiu; Department of Physics, Xiaogan University, Xiaogan 432000; Hu Xiangming

    2010-01-15

    We explore the quantum entanglement between two collective fields via atomic coherence effects. For three-level atoms in V configuration driven by two applied fields on two-photon resonance, one coherent superposition of the excited states is not excited, which is the counterpart of coherent population trapping. The coherence-induced depopulation makes two cavity fields in each collection combine into a quantum-beat, i.e., equivalently, the difference mode of the two components decouples from the driven atoms. The two sum modes, when they are arranged in the four-wave mixinglike interactions, can be prepared in Einstein-Podolsky-Rosen entangled state. Correspondingly, any two individual fields from differentmore » collective modes are entangled with each other. Furthermore, the effects of thermal reservoir and laser linewidths are discussed, and a generalization is given to the case in which each quantum beat involves more than two modes.« less

  8. A three-level atomicity model for decentralized workflow management systems

    NASA Astrophysics Data System (ADS)

    Ben-Shaul, Israel Z.; Heineman, George T.

    1996-12-01

    A workflow management system (WFMS) employs a workflow manager (WM) to execute and automate the various activities within a workflow. To protect the consistency of data, the WM encapsulates each activity with a transaction; a transaction manager (TM) then guarantees the atomicity of activities. Since workflows often group several activities together, the TM is responsible for guaranteeing the atomicity of these units. There are scalability issues, however, with centralized WFMSs. Decentralized WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus accommodating multiple workflows and geographically-dispersed teams. When atomic units are composed of activities spread across multiple WFMSs, however, there is a conflict between global atomicity and local autonomy of each WFMS. This paper describes a decentralized atomicity model that enables workflow administrators to specify the scope of multi-site atomicity based upon the desired semantics of multi-site tasks in the decentralized WFMS. We describe an architecture that realizes our model and execution paradigm.

  9. Atomic frequency reference at 1033 nm for ytterbium (Yb)-doped fiber lasers and applications exploiting a rubidium (Rb) 5S_1/2 to 4D_5/2 one-colour two-photon transition

    NASA Astrophysics Data System (ADS)

    Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn

    2017-04-01

    We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.

  10. Comparison of Y-jet and OIL effervescent atomizers based on internal and external two-phase flow characteristics

    NASA Astrophysics Data System (ADS)

    Mlkvik, Marek; Zaremba, Matous; Jedelsky, Jan; Jicha, Miroslav

    2016-03-01

    Presented paper focuses on spraying of two viscous liquids (μ = 60 and 143 mPa·s) by two types of twinfluid atomizers with internal mixing. We compared the well-known Y-jet atomizer with the less known, "outside in liquid" (OIL), configuration of the effervescent atomizer. The required liquid viscosity was achieved by using the water-maltodextrin solutions of different concentrations. Both the liquids were sprayed at two gas inlet pressures (Δp = 0.14 and 0.28 MPa) and various gas-to-liquid ratios (GLR = 2.5%, 5%, 10% and 20%). The comparison was focused on four characteristics: liquid flow-rate (for the same working regimes, defined by Δp and GLR), internal flow regimes, Weber numbers of a liquid breakup (We) and droplet sizes. A high-speed camera and Malvern Spraytec laser diffraction system were used to obtain necessary experimental data. Comparing the results of our experiments, we can state that for both the liquids the OIL atomizer reached higher liquid flow-rates at corresponding working regimes, it was typical by annular internal flow and higher We in the near-nozzle region at all the working regimes. As a result, it produced considerably smaller droplets than the second tested atomizing device, especially for GLR < 10%.

  11. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity

    PubMed Central

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person’s identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants’ gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow. PMID:26924995

  12. Optimal Experience and Optimal Identity: A Multinational Study of the Associations Between Flow and Social Identity.

    PubMed

    Mao, Yanhui; Roberts, Scott; Pagliaro, Stefano; Csikszentmihalyi, Mihaly; Bonaiuto, Marino

    2016-01-01

    Eudaimonistic identity theory posits a link between activity and identity, where a self-defining activity promotes the strength of a person's identity. An activity engaged in with high enjoyment, full involvement, and high concentration can facilitate the subjective experience of flow. In the present paper, we hypothesized in accordance with the theory of psychological selection that beyond the promotion of individual development and complexity at the personal level, the relationship between flow and identity at the social level is also positive through participation in self-defining activities. Three different samples (i.e., American, Chinese, and Spanish) filled in measures for flow and social identity, with reference to four previously self-reported activities, characterized by four different combinations of skills (low vs. high) and challenges (low vs. high). Findings indicated that flow was positively associated with social identity across each of the above samples, regardless of participants' gender and age. The results have implications for increasing social identity via participation in self-defining group activities that could facilitate flow.

  13. Microspherical photonics: Sorting resonant photonic atoms by using light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu

    2014-09-22

    A method of sorting microspheres by resonant light forces in vacuum, air, or liquid is proposed. Based on a two-dimensional model, it is shown that the sorting can be realized by allowing spherical particles to traverse a focused beam. Under resonance with the whispering gallery modes, the particles acquire significant velocity along the beam direction. This opens a unique way of large-volume sorting of nearly identical photonic atoms with 1/Q accuracy, where Q is the resonance quality factor. This is an enabling technology for developing super-low-loss coupled-cavity structures and devices.

  14. Relationships between Physical Activity Levels, Self-Identity, Body Dissatisfaction and Motivation among Spanish High School Students

    PubMed Central

    Sánchez-Miguel, Pedro Antonio; Leo, Francisco Miguel; Amado, Diana; Pulido, Juan José; Sánchez-Oliva, David

    2017-01-01

    Abstract The aim of this study was to examine the relationships between gender and the educational grade on the one hand, and physical activity levels, motivation, self-identity, body dissatisfaction, the intention to be physically active and daily sitting time on the other, in a sample of Spanish high school adolescents. The sample consisted of 2087 Spanish students from the 3rd (n = 1141) and 4th grade (n = 946), both male (n = 1046) and female (n = 1041), ranging in age from 15 to 17 years old (M = 15.42; SD = .86). Students completed questionnaires to assess their levels of physical activity, self-identity, motivation, intention to be physically active and daily sitting time. The students’ perceptions of their body height and mass were also tested. With the exception of walking MET values, the results showed gender differences in the variables tested. Male participants showed higher intrinsic motivation and lower amotivation than female participants. Furthermore, male students revealed higher levels of physical activity than female students. Finally, the research concluded with the importance of promoting intrinsic reasons for physical activity in order to encourage positive consequences in high school students. PMID:29134046

  15. Relationships between Physical Activity Levels, Self-Identity, Body Dissatisfaction and Motivation among Spanish High School Students.

    PubMed

    Sánchez-Miguel, Pedro Antonio; Leo, Francisco Miguel; Amado, Diana; Pulido, Juan José; Sánchez-Oliva, David

    2017-10-01

    The aim of this study was to examine the relationships between gender and the educational grade on the one hand, and physical activity levels, motivation, self-identity, body dissatisfaction, the intention to be physically active and daily sitting time on the other, in a sample of Spanish high school adolescents. The sample consisted of 2087 Spanish students from the 3rd (n = 1141) and 4th grade (n = 946), both male (n = 1046) and female (n = 1041), ranging in age from 15 to 17 years old (M = 15.42; SD = .86). Students completed questionnaires to assess their levels of physical activity, self-identity, motivation, intention to be physically active and daily sitting time. The students' perceptions of their body height and mass were also tested. With the exception of walking MET values, the results showed gender differences in the variables tested. Male participants showed higher intrinsic motivation and lower amotivation than female participants. Furthermore, male students revealed higher levels of physical activity than female students. Finally, the research concluded with the importance of promoting intrinsic reasons for physical activity in order to encourage positive consequences in high school students.

  16. Solving Identity Management and Interoperability Problems at Pan-European Level

    NASA Astrophysics Data System (ADS)

    Sánchez García, Sergio; Gómez Oliva, Ana

    In a globalized digital world, it is essential for persons and entities to have a recognized and unambiguous electronic identity that allows them to communicate with one another. The management of this identity by public administrations is an important challenge that becomes even more crucial when interoperability among public administrations of different countries becomes necessary, as persons and entities have different credentials depending on their own national legal frameworks. More specifically, different credentials and legal frameworks cause interoperability problems that prevent reliable access to public services in a cross-border scenarios like today's European Union. Work in this doctoral thesis try to analyze the problem in a carefully detailed manner by studying existing proposals (basically in Europe), proposing improvements in defined architectures and performing practical work to test the viability of solutions. Moreover, this thesis will also address the long-standing security problem of identity delegation, which is especially important in complex and heterogeneous service delivery environments like those mentioned above. This is a position paper.

  17. Athletic Engagement and Athletic Identity in Top Croatian Sprint Runners.

    PubMed

    Babić, Vesna; Sarac, Jelena; Missoni, Sasa; Sindik, Josko

    2015-09-01

    The aim of the research was to determine construct validity and reliability for two questionnaires (Athlete Engagement Questionnaire-AEQ and Athletic Identity Measurement Scale-AIMS), applied on elite Croatian athletes-sprinters, as well as the correlations among the dimensions in these measuring instruments. Then, we have determined the differences in the dimensions of sport engagement and sport identity, according to gender, education level and winning medals on international competitions. A total of 71 elite athletes-sprinters (former and still active) are examined, from which 27 (38%) females and 44 (62%) males. The results of factor analyses revealed the existence of dimensions very similar as in the original instruments, which showed moderate to-high reliabilities. A small number of statistically significant correlations have been found between the dimensions of sport engagement and sport identity, mainly in male sprinter runners. Small number of statistically significant differences in the dimensions of sport engagement and sport identity have been found according to the gender, education level and winning medals on the international competitions. The most reasonable explanation of these differences could be given in terms of very similar characteristics of elite athletes on the same level of sport excellence.

  18. Study on electrical defects level in single layer two-dimensional Ta2O5

    NASA Astrophysics Data System (ADS)

    Dahai, Li; Xiongfei, Song; Linfeng, Hu; Ziyi, Wang; Rongjun, Zhang; Liangyao, Chen; David, Wei Zhang; Peng, Zhou

    2016-04-01

    Two-dimensional atomic-layered material is a recent research focus, and single layer Ta2O5 used as gate dielectric in field-effect transistors is obtained via assemblies of Ta2O5 nanosheets. However, the electrical performance is seriously affected by electronic defects existing in Ta2O5. Therefore, spectroscopic ellipsometry is used to calculate the transition energies and corresponding probabilities for two different charged oxygen vacancies, whose existence is revealed by x-ray photoelectron spectroscopy analysis. Spectroscopic ellipsometry fitting also calculates the thickness of single layer Ta2O5, exhibiting good agreement with atomic force microscopy measurement. Nondestructive and noncontact spectroscopic ellipsometry is appropriate for detecting the electrical defects level of single layer Ta2O5. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174058 and 61376093), the Fund from Shanghai Municipal Science and Technology Commission (Grant No. 13QA1400400), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 12ZZ010).

  19. Atomically thin two-dimensional organic-inorganic hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Dou, Letian; Wong, Andrew B.; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W.; Fu, Anthony; Bischak, Connor G.; Ma, Jie; Ding, Tina; Ginsberg, Naomi S.; Wang, Lin-Wang; Alivisatos, A. Paul; Yang, Peidong

    2015-09-01

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials.

  20. Perspectives on Sexual Identity Formation, Identity Practices, and Identity Transitions Among Men Who Have Sex With Men in India.

    PubMed

    Tomori, Cecilia; Srikrishnan, Aylur K; Ridgeway, Kathleen; Solomon, Sunil S; Mehta, Shruti H; Solomon, Suniti; Celentano, David D

    2018-01-01

    Men who have sex with men (MSM) remain at high risk for HIV infection. Culturally specific sexual identities, encompassing sexual roles, behavior, and appearance, may shape MSM's experiences of stigmatization and discrimination, and affect their vulnerability to HIV. This multi-site qualitative study (n = 363) encompassing 31 focus group discussions (FGDs) and 121 in-depth interviews (IDIs) across 15 sites in India investigated sexual identity formation, identity practices, and transitions and their implications for HIV prevention. IDIs and FGDs were transcribed, translated, and underwent thematic analysis. Our findings document heterogeneous sexual identity formation, with MSM who have more gender nonconforming behaviors or appearance reporting greater family- and community-level disapproval, harassment, violence, and exclusion. Concealing feminine aspects of sexual identities was important in daily life, especially for married MSM. Some participants negotiated their identity practices in accordance with socioeconomic and cultural pressures, including taking on identity characteristics to suit consumer demand in sex work and on extended periods of joining communities of hijras (sometimes called TG or transgender women). Participants also reported that some MSM transition toward more feminine and hijra or transgender women identities, motivated by intersecting desires for feminine gender expression and by social exclusion and economic marginalization. Future studies should collect information on gender nonconformity stigma, and any changes in sexual identity practices or plans for transitions to other identities over time, in relation to HIV risk behaviors and outcomes.

  1. Attempted Training of Alcohol Approach and Drinking Identity Associations in US Undergraduate Drinkers: Null Results from Two Studies

    PubMed Central

    Lindgren, Kristen P.; Wiers, Reinout W.; Teachman, Bethany A.; Gasser, Melissa L.; Westgate, Erin C.; Cousijn, Janna; Enkema, Matthew C.; Neighbors, Clayton

    2015-01-01

    There is preliminary evidence that approach avoid training can shift implicit alcohol associations and improve treatment outcomes. We sought to replicate and extend those findings in US undergraduate social drinkers (Study 1) and at-risk drinkers (Study 2). Three adaptations of the approach avoid task (AAT) were tested. The first adaptation – the approach avoid training – was a replication and targeted implicit alcohol approach associations. The remaining two adaptations – the general identity and personalized identity trainings – targeted implicit drinking identity associations, which are robust predictors of hazardous drinking in US undergraduates. Study 1 included 300 undergraduate social drinkers. They were randomly assigned to real or sham training conditions for one of the three training adaptations, and completed two training sessions, spaced one week apart. Study 2 included 288 undergraduates at risk for alcohol use disorders. The same training procedures were used, but the two training sessions occurred within a single week. Results were not as expected. Across both studies, the approach avoid training yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes. The general identity training also yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes with one exception; individuals who completed real training demonstrated no changes in drinking refusal self-efficacy whereas individuals who completed sham training had reductions in self-efficacy. Finally, across both studies, the personalized identity training yielded no evidence of training effects on implicit alcohol associations or alcohol outcomes. Despite having relatively large samples and using a well-validated training task, study results indicated all three training adaptations were ineffective at this dose in US undergraduates. These findings are important because training studies are costly and labor-intensive. Future

  2. Superradiant phase transition in a model of three-level-Λ systems interacting with two bosonic modes

    NASA Astrophysics Data System (ADS)

    Hayn, Mathias; Emary, Clive; Brandes, Tobias

    2012-12-01

    We consider an ensemble of three-level particles in Lambda configuration interacting with two bosonic modes. The Hamiltonian has the form of a generalized Dicke model. We show that in the thermodynamic limit this model supports a superradiant quantum phase transition. Remarkably, this can be both a first- and a second-order phase transition. A connection of the phase diagram to the symmetries of the Hamiltonian is also given. In addition, we show that this model can describe atoms interacting with an electromagnetic field in which the microscopic Hamiltonian includes a diamagnetic contribution. Even though the parameters of the atomic system respect the Thomas-Reiche-Kuhn sum rule, the system still shows a superradiant phase transition.

  3. Two-Dimensional Arrays of Neutral Atom Quantum Gates

    DTIC Science & Technology

    2012-10-20

    Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum computing , Rydberg atoms, entanglement Mark Saffman University of...Nature Physics, (01 2009): 0. doi: 10.1038/nphys1178 10/19/2012 9.00 K. Mølmer, M. Saffman. Scaling the neutral-atom Rydberg gate quantum computer by...Saffman, E. Brion, K. Mølmer. Error Correction in Ensemble Registers for Quantum Repeaters and Quantum Computers , Physical Review Letters, (3 2008): 0

  4. A program to compute the two-step excitation of mesospheric sodium atoms for the Polychromatic Laser Guide Star Project

    NASA Astrophysics Data System (ADS)

    Bellanger, Véronique; Courcelle, Arnaud; Petit, Alain

    2004-09-01

    A program to compute the two-step excitation of sodium atoms ( 3S→3P→4D) using the density-matrix formalism is presented. The BEACON program calculates population evolution and the number of photons emitted by fluorescence from the 3P, 4D, 4P, 4S levels. Program summaryTitle of program: BEACON Catalogue identifier:ADSX Program Summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADSX Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Operating systems under which the program has been tested: Win; Unix Programming language used: FORTRAN 77 Memory required to execute with typical data: 1 Mw Number of bits in a word: 32 Number of processors used: 1 (a parallel version of this code is also available and can be obtained on request) Number of lines in distributed program, including test data, etc.: 29 287 Number of bytes in distributed program, including test data, etc.: 830 331 Distribution format: tar.gz CPC Program Library subprograms used: none Nature of physical problem: Resolution of the Bloch equations in the case of the two-step laser excitation of sodium atoms. Method of solution: The program BEACON calculates the evolution of level population versus time using the density-matrix formalism. The number of photons emitted from the 3P, 4D and 4P levels is calculated using the branching ratios and the level lifetimes. Restriction on the complexity of the problem: Since the backscatter emission is calculated after the excitation process, excitation with laser pulse duration longer than the 4D level lifetime cannot be rigorously treated. Particularly, cw laser excitation cannot be calculated with this code. Typical running time:12 h

  5. Experimental purification of two-atom entanglement.

    PubMed

    Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J

    2006-10-19

    Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

  6. SPECIAL ISSUE DEVOTED TO THE 80TH BIRTHDAY OF S.A. AKHMANOV: Excitation of coherent polaritons in a two-dimensional atomic lattice

    NASA Astrophysics Data System (ADS)

    Barinov, I. O.; Alodzhants, A. P.; Arakelyan, Sergei M.

    2009-07-01

    We describe a new type of spatially periodic structure (lattice models): a polaritonic crystal formed by a two-dimensional lattice of trapped two-level atoms interacting with the electromagnetic field in a cavity (or in a one-dimensional array of tunnelling-coupled microcavities), which allows polaritons to be fully localised. Using a one-dimensional polaritonic crystal as an example, we analyse conditions for quantum degeneracy of a lower-polariton gas and those for quantum optical information recording and storage.

  7. Spontaneous emission and atomic line shift in causal perturbation theory

    NASA Astrophysics Data System (ADS)

    Marzlin, Karl-Peter; Fitzgerald, Bryce

    2018-04-01

    We derive a spontaneous emission rate and line shift for two-level atoms coupled to the radiation field using causal perturbation theory. In this approach, employing the theory of distribution splitting prevents the occurrence of divergent integrals. Our method confirms the result for an atomic decay rate but suggests that the cutoff frequency for the atomic line shift is determined by the atomic mass, rather than the Bohr radius or electron mass.

  8. Absorption and emission spectra of Li atoms trapped in rare gas matrices

    NASA Astrophysics Data System (ADS)

    Wright, J. J.; Balling, L. C.

    1980-10-01

    Pulsed-dye-laser excitation has been used to investigate the optical absorption and emission spectra of Li atoms trapped in Ar, Kr, and Xe matrices at 10 °K. Attempts to stabilize Li atoms in a Ne matrix at 2 °K were unsuccessful. Results for all three rare gases were qualitatively the same. White light absorption scans showed a single absorption with three peaks centered near the free-atom 2s→2p transition wavelength. The intensity of fluorescence produced by dye-laser excitation within this absorption band was measured as a function of emission wavelength. Excitation of the longest- and shortest-wavelength absorption peaks produced identical emission profiles, but no distinct fluorescence signal was detected when the laser was tuned to the central absorption peaks, indicating that the apparent absorption triplet is actually the superposition of a singlet and a doublet absorption originating from two different trapping sites. No additional absorption bands were detected.

  9. Atomic level characterization of cadmium selenide nanocrystal systems using atomic number contrast scanning transmission electron microscopy and Rutherford backscattering spectroscopy

    NASA Astrophysics Data System (ADS)

    McBride, James R.

    This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.

  10. Diagrammatic technique for calculating matrix elements of collective operators in superradiance. [eigenstates for N two-level atom systems

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1975-01-01

    Adopting the so-called genealogical construction, one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicity the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes.

  11. St. John Health integrating new corporate identity, brand. Brand/logo to be rolled out over two-year period.

    PubMed

    Rees, Tom

    2003-01-01

    St. John Health, Warren, Mich., is integrating a new corporate identity and brand strategy for its network of nine wholly-owned and two affiliated hospital, along with more than 100 physician offices and specialty centers in southeast Michigan. "A new identity is a great rallying cry. It automatically says. 'We have a new mission. We have a new system. We are reaching new people,'" said Eunice O'Loughlan, VP, corporate communications for St. John Health.

  12. Effect of atomic disorder on the magnetic phase separation.

    PubMed

    Groshev, A G; Arzhnikov, A K

    2018-05-10

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  13. It takes two to tango: information-sharing with offspring among heterosexual parents following identity-release sperm donation

    PubMed Central

    Isaksson, S.; Skoog-Svanberg, A.; Sydsjö, G.; Linell, L.; Lampic, C.

    2016-01-01

    STUDY QUESTION How do heterosexual parents reason about and experience information-sharing with offspring following identity-release sperm donation? SUMMARY ANSWER Sharing information about using donor-conception with offspring is a complex process at several levels, with the parent's personal beliefs and the child's responses serving as driving or impeding forces for the information-sharing process. WHAT IS KNOWN ALREADY The overall view of disclosure in gamete donation has shifted from secrecy to openness, but there is still uncertainty among parents concerning how and when to tell the child about his/her genetic origin. Most research on donor-conceived families has focused on donation treatment under anonymous or known circumstances, and there is a lack of studies in settings with identity-release donations. STUDY DESIGN, SIZE, DURATION A qualitative interview study among 30 parents following identity-release sperm donation treatment. Interviews were conducted from February 2014 to March 2015. PARTICIPANTS/MATERIALS, SETTING, METHODS The present study is part of the prospective longitudinal Swedish Study on Gamete Donation (SSGD), including all fertility clinics performing gamete donation in Sweden. A sample of participants in the SSGD, consisting of heterosexual parents with children aged 7–8 years following identity-release sperm donation, participated in individual semi-structured interviews. MAIN RESULTS AND THE ROLE OF CHANCE The analysis revealed one main theme: information-sharing is a process, with three subthemes; (i) the parent as process manager, (ii) the child as force or friction and (iii) being in the process. The first two subthemes were viewed as being linked together and their content served as driving or impeding forces in the information-sharing process. LIMITATIONS, REASONS FOR CAUTION The fact that the study was performed within the context of the Swedish legislation on identity-release donation must be taken into consideration as regards

  14. On the tunneling time of ultracold atoms through a system of two mazer cavities.

    PubMed

    Badshah, Fazal; Ge, Guo-Qin; Irfan, Muhammad; Qamar, Sajid; Qamar, Shahid

    2018-01-30

    We study the resonant tunneling of ultraslow atoms through a system of high quality microwave cavities. We find that the phase tunneling time across the two coupled cavities exhibits more frequent resonances as compared to the single cavity interaction. The increased resonances are instrumental in the display of an alternate sub and superclassical character of the tunneling time along the momentum axis with increasing energies of the incident slow atoms. Here, the intercavity separation appears as an additional controlling parameter of the system that provides an efficient control of the superclassical behavior of the phase tunneling time. Further, we find that the phase time characteristics through two cavity system has the combined features of the tunneling through a double barrier and a double well arrangements.

  15. Preparation of Greenberger-Horne-Zeilinger Entangled States in the Atom-Cavity Systems

    NASA Astrophysics Data System (ADS)

    Xu, Nan

    2018-02-01

    We present a new simple scheme for the preparation of Greenberger-Horne-Zeilinger maximally entangled states of two two-level atoms. The distinct feature of the effective Hamiltonian is that there is no energy exchange between the atoms and the cavity.. Thus the scheme is insensitive to the effect of cavity field and the atom radiation.This protocol may be realizable in the realm of current physical experiment.

  16. Two-Year Institution Part-Time Nurse Faculty Experiences During Role Transition and Identity Development: A Phenomenological Study.

    PubMed

    Owens, Rhoda A

    This study explored two-year institution part-time nurse faculty's perceptions of their experiences during their role transitions from nurses in clinical practice to part-time clinical instructors. Part-time nurse faculty enter academia as expert clinicians, but most have little or no training in the pedagogy of effective student learning. A phenomenological study was used to explore the faculty role transition experiences. Findings support the proposition that six participants transitioned from their expert clinician to instructor identities; however, two continue in the process. Critical to this process are relationships with individuals in their environments, past and present experiences, the incentive to learn to be better instructors, and the importance of support and training. A model emerged, Process of Role Transition and Professional Identity Formation for Part-Time Clinical Instructors at Two-Year Institutions, that is potentially useful for administrators in developing individualized orientation and professional development programs.

  17. Atom-atom entanglement by single-photon detection.

    PubMed

    Slodička, L; Hétet, G; Röck, N; Schindler, P; Hennrich, M; Blatt, R

    2013-02-22

    A scheme for entangling distant atoms is realized, as proposed in the seminal paper by [C. Cabrillo et al., Phys. Rev. A 59, 1025 (1999)]. The protocol is based on quantum interference and detection of a single photon scattered from two effectively one meter distant laser cooled and trapped atomic ions. The detection of a single photon heralds entanglement of two internal states of the trapped ions with high rate and with a fidelity limited mostly by atomic motion. Control of the entangled state phase is demonstrated by changing the path length of the single-photon interferometer.

  18. Single and double acceptor-levels of a carbon-hydrogen defect in n-type silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stübner, R.; Scheffler, L.; Kolkovsky, Vl., E-mail: kolkov@ifpan.edu.pl

    In the present study, we discuss the origin of two dominant deep levels (E42 and E262) observed in n-type Si, which is subjected to hydrogenation by wet chemical etching or a dc H-plasma treatment. Their activation enthalpies determined from Laplace deep level transient spectroscopy measurements are E{sub C}-0.06 eV (E42) and E{sub C}-0.51 eV (E262). The similar annealing behavior and identical depth profiles of E42 and E262 correlate them with two different charge states of the same defect. E262 is attributed to a single acceptor state due to the absence of the Poole-Frenkel effect and the lack of a capture barrier formore » electrons. The emission rate of E42 shows a characteristic enhancement with the electric field, which is consistent with the assignment to a double acceptor state. In samples with different carbon and hydrogen content, the depth profiles of E262 can be explained by a defect with one H-atom and one C-atom. From a comparison with earlier calculations [Andersen et al., Phys. Rev. B 66, 235205 (2002)], we attribute E42 to the double acceptor and E262 to the single acceptor state of the CH{sub 1AB} configuration, where one H atom is directly bound to carbon in the anti-bonding position.« less

  19. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    PubMed

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  20. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, V. Y. F.; Complex Photonic Systems; Pijn, D. R. M.

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined atmore » an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.« less

  1. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  2. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    NASA Astrophysics Data System (ADS)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  3. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses

    NASA Astrophysics Data System (ADS)

    Wong-Campos, J. D.; Moses, S. A.; Johnson, K. G.; Monroe, C.

    2017-12-01

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ˜20 ps duration, and demonstrate an entangled Bell state with (76 ±1 )% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  4. Demonstration of Two-Atom Entanglement with Ultrafast Optical Pulses.

    PubMed

    Wong-Campos, J D; Moses, S A; Johnson, K G; Monroe, C

    2017-12-08

    We demonstrate quantum entanglement of two trapped atomic ion qubits using a sequence of ultrafast laser pulses. Unlike previous demonstrations of entanglement mediated by the Coulomb interaction, this scheme does not require confinement to the Lamb-Dicke regime and can be less sensitive to ambient noise due to its speed. To elucidate the physics of an ultrafast phase gate, we generate a high entanglement rate using just ten pulses, each of ∼20  ps duration, and demonstrate an entangled Bell state with (76±1)% fidelity. These results pave the way for entanglement operations within a large collection of qubits by exciting only local modes of motion.

  5. Shared Negative Experiences Lead to Identity Fusion via Personal Reflection.

    PubMed

    Jong, Jonathan; Whitehouse, Harvey; Kavanagh, Christopher; Lane, Justin

    2015-01-01

    Across three studies, we examined the role of shared negative experiences in the formation of strong social bonds--identity fusion--previously associated with individuals' willingness to self-sacrifice for the sake of their groups. Studies 1 and 2 were correlational studies conducted on two different populations. In Study 1, we found that the extent to which Northern Irish Republicans and Unionists experienced shared negative experiences was associated with levels of identity fusion, and that this relationship was mediated by their reflection on these experiences. In Study 2, we replicated this finding among Bostonians, looking at their experiences of the 2013 Boston Marathon Bombings. These correlational studies provide initial evidence for the plausibility of our causal model; however, an experiment was required for a more direct test. Thus, in Study 3, we experimentally manipulated the salience of the Boston Marathon Bombings, and found that this increased state levels of identity fusion among those who experienced it negatively. Taken together, these three studies provide evidence that shared negative experience leads to identity fusion, and that this process involves personal reflection.

  6. Atomically thin two-dimensional organic-inorganic hybrid perovskites.

    PubMed

    Dou, Letian; Wong, Andrew B; Yu, Yi; Lai, Minliang; Kornienko, Nikolay; Eaton, Samuel W; Fu, Anthony; Bischak, Connor G; Ma, Jie; Ding, Tina; Ginsberg, Naomi S; Wang, Lin-Wang; Alivisatos, A Paul; Yang, Peidong

    2015-09-25

    Organic-inorganic hybrid perovskites, which have proved to be promising semiconductor materials for photovoltaic applications, have been made into atomically thin two-dimensional (2D) sheets. We report the solution-phase growth of single- and few-unit-cell-thick single-crystalline 2D hybrid perovskites of (C4H9NH3)2PbBr4 with well-defined square shape and large size. In contrast to other 2D materials, the hybrid perovskite sheets exhibit an unusual structural relaxation, and this structural change leads to a band gap shift as compared to the bulk crystal. The high-quality 2D crystals exhibit efficient photoluminescence, and color tuning could be achieved by changing sheet thickness as well as composition via the synthesis of related materials. Copyright © 2015, American Association for the Advancement of Science.

  7. Diode laser-based thermometry using two-line atomic fluorescence of indium and gallium

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Weng, Wubin; Hosseinnia, Ali; Bengtsson, Per-Erik; Aldén, Marcus; Li, Zhongshan

    2017-12-01

    A robust and relatively compact calibration-free thermometric technique using diode lasers two-line atomic fluorescence (TLAF) for reactive flows at atmospheric pressures is investigated. TLAF temperature measurements were conducted using indium and, for the first time, gallium atoms as temperature markers. The temperature was measured in a multi-jet burner running methane/air flames providing variable temperatures ranging from 1600 to 2000 K. Indium and gallium were found to provide a similar accuracy of 2.7% and precision of 1% over the measured temperature range. The reliability of the TLAF thermometry was further tested by performing simultaneous rotational CARS measurements in the same experiments.

  8. Identity, gender, and subjective well-being.

    PubMed

    Chang, Wen-Chun

    2011-01-01

    Using the self-reported level of happiness as a measure of subjective well-being, this study examines the relationship between gender identity and subjective well-being with data from Taiwan. The findings suggest that an individual's perceptions about the ideals of women's gender roles in the labor market, the family, and politics are strongly related to his or her assigned social category, the prescriptions and characteristics associated with the social category, and the actions taken to match the ideals of gender identity. Consistent with Akerlof and Kranton's (2000) identity model, it is also found that an individual's gains or losses in gender identity lead to increases or decreases in the level of happiness.

  9. Atomistic study of two-level systems in amorphous silica

    NASA Astrophysics Data System (ADS)

    Damart, T.; Rodney, D.

    2018-01-01

    Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.

  10. Synthesis of two-dimensional TlxBi1−x compounds and Archimedean encoding of their atomic structure

    PubMed Central

    Gruznev, Dimitry V.; Bondarenko, Leonid V.; Matetskiy, Andrey V.; Mihalyuk, Alexey N.; Tupchaya, Alexandra Y.; Utas, Oleg A.; Eremeev, Sergey V.; Hsing, Cheng-Rong; Chou, Jyh-Pin; Wei, Ching-Ming; Zotov, Andrey V.; Saranin, Alexander A.

    2016-01-01

    Crystalline atomic layers on solid surfaces are composed of a single building block, unit cell, that is copied and stacked together to form the entire two-dimensional crystal structure. However, it appears that this is not an unique possibility. We report here on synthesis and characterization of the one-atomic-layer-thick TlxBi1−x compounds which display quite a different arrangement. It represents a quasi-periodic tiling structures that are built by a set of tiling elements as building blocks. Though the layer is lacking strict periodicity, it shows up as an ideally-packed tiling of basic elements without any skips or halting. The two-dimensional TlxBi1−x compounds were formed by depositing Bi onto the Tl-covered Si(111) surface where Bi atoms substitute appropriate amount of Tl atoms. Atomic structure of each tiling element as well as arrangement of TlxBi1−x compounds were established in a detail. Electronic properties and spin texture of the selected compounds having periodic structures were characterized. The shown example demonstrates possibility for the formation of the exotic low-dimensional materials via unusual growth mechanisms. PMID:26781340

  11. Broken identity: the impact of the Holocaust on identity in Romanian and Polish Jews.

    PubMed

    Prot, Katarzyna

    2008-01-01

    The paper is based on interviews conducted with Holocaust survivors in Poland (30 interviews) and Romania (55 interviews). It describes how the Holocaust affected survivor identity. Two aspects of identity are analyzed the sense of personal identity and social identity. Each affects the other but they are largely independent and the trauma of the Holocaust impacted each of them differently. Personal identity seems to be unrelated to either the type of trauma or the survivor's social situation. There are no significant differences in that aspect between Polish and Romanian survivors. Social identity is more related to the survivors' social situation prior to and after the trauma. The sense of identity, both personal and social, is dynamic and changes over time.

  12. Chimeralike states in two distinct groups of identical populations of coupled Stuart-Landau oscillators

    NASA Astrophysics Data System (ADS)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2017-02-01

    We show the existence of chimeralike states in two distinct groups of identical populations of globally coupled Stuart-Landau oscillators. The existence of chimeralike states occurs only for a small range of frequency difference between the two populations, and these states disappear for an increase of mismatch between the frequencies. Here the chimeralike states are characterized by the synchronized oscillations in one population and desynchronized oscillations in another population. We also find that such states observed in two distinct groups of identical populations of nonlocally coupled oscillators are different from the above case in which coexisting domains of synchronized and desynchronized oscillations are observed in one population and the second population exhibits synchronized oscillations for spatially prepared initial conditions. Perturbation from such spatially prepared initial condition leads to the existence of imperfectly synchronized states. An imperfectly synchronized state represents the existence of solitary oscillators which escape from the synchronized group in population I and synchronized oscillations in population II. Also the existence of chimera state is independent of the increase of frequency mismatch between the populations. We also find the coexistence of different dynamical states with respect to different initial conditions, which causes multistability in the globally coupled system. In the case of nonlocal coupling, the system does not show multistability except in the cluster state region.

  13. Two barriers to realizing the benefits of biometrics: a chain perspective on biometrics and identity fraud as biometrics' real challenge

    NASA Astrophysics Data System (ADS)

    Grijpink, Jan

    2004-06-01

    Along at least twelve dimensions biometric systems might vary. We need to exploit this variety to manoeuvre biometrics into place to be able to realise its social potential. Subsequently, two perspectives on biometrics are proposed revealing that biometrics will probably be ineffective in combating identity fraud, organised crime and terrorism: (1) the value chain perspective explains the first barrier: our strong preference for large scale biometric systems for general compulsory use. These biometric systems cause successful infringements to spread unnoticed. A biometric system will only function adequately if biometrics is indispensable for solving the dominant chain problem. Multi-chain use of biometrics takes it beyond the boundaries of good manageability. (2) the identity fraud perspective exposes the second barrier: our traditional approach to identity verification. We focus on identity documents, neglecting the person and the situation involved. Moreover, western legal cultures have made identity verification procedures known, transparent, uniform and predictable. Thus, we have developed a blind spot to identity fraud. Biometrics provides good potential to better checking persons, but will probably be used to enhance identity documents. Biometrics will only pay off if it confronts the identity fraudster with less predictable verification processes and more risks of his identity fraud being spotted. Standardised large scale applications of biometrics for general compulsory use without countervailing measures will probably produce the reverse. This contribution tentatively presents a few headlines for an overall biometrics strategy that could better resist identity fraud.

  14. QED theory of multiphoton transitions in atoms and ions

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  15. Engineering quantum hyperentangled states in atomic systems

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  16. Exploring medical identity theft.

    PubMed

    Mancilla, Desla; Moczygemba, Jackie

    2009-09-16

    The crime of medical identity theft is a growing concern in healthcare institutions. A mixed-method study design including a two-stage electronic survey, telephone survey follow-up, and on-site observations was used to evaluate current practices in admitting and registration departments to reduce the occurrence of medical identity theft. Survey participants were chief compliance officers in acute healthcare organizations and members of the Health Care Compliance Association. Study results indicate variance in whether or how patient identity is confirmed in healthcare settings. The findings of this study suggest that information systems need to be designed for more efficient identity management. Admitting and registration staff must be trained, and compliance with medical identity theft policies and procedures must be monitored. Finally, biometric identity management solutions should be considered for stronger patient identification verification.

  17. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder.

    PubMed

    Kurahashi, Hiroaki; Watanabe, Masami; Sugimoto, Morito; Ariyoshi, Yuichi; Mahmood, Sabina; Araki, Motoo; Ishii, Kazushi; Nasu, Yasutomo; Nagai, Atsushi; Kumon, Hiromi

    2013-01-01

    Gender identity disorder (GID) results from a disagreement between a person's biological sex and the gender to which he or she identifies. With respect to the treatment of female to male GID, testosterone replacement therapy (TRT) is available. The uric acid (UA) level can be influenced by testosterone; however, the early effects and dose-dependency of TRT on the serum UA concentration have not been evaluated in this population. We herein conducted a dose-response analysis of TRT in 160 patients with female to male GID. The TRT consisted of three treatment groups who received intramuscular injections of testosterone enanthate: 125 mg every two weeks, 250 mg every three weeks and 250 mg every two weeks. Consequently, serum UA elevation was observed after three months of TRT and there was a tendency toward testosterone dose-dependency. The onset of hyperuricemia was more prevalent in the group who received the higher dose. We also demonstrated a positive correlation between increased levels of serum UA and serum creatinine. Since the level of serum creatinine represents an individual's muscle volume and the muscle is a major source of purine, which induces UA upregulation, the serum UA elevation observed during TRT is at least partially attributed to an increase in muscle mass. This is the first study showing an association between serum UA elevation and a TRT-induced increase in muscle mass. The current study provides important information regarding TRT for the follow-up and management of the serum UA levels in GID patients.

  18. Breit-Rabi Zeeman states of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Dickson, R. S.; Weil, J. A.

    1991-02-01

    The magnetic field dependence of the isotropic nonrelativistic one-electron atom with nuclear spin-1/2, in its electronic ground state, is reviewed. Attention is called to the little-known fact that a level crossing exists (at field B˜17 T for 1H) between the two members of the upper spin (MS=1/2) doublet. Anisotropy of such a hydrogenic atom, due to the presence of a suitable external electric field (for instance, 1H trapped in crystalline SiO2) causes anticrossing of these levels and causes previously forbidden magnetic-dipole transitions to attain appreciable intensity in that B region.

  19. "Two Totally Different People": Dissonance of Intersecting Identities in White College Women

    ERIC Educational Resources Information Center

    Dalpra, Abby; Vianden, Jörg

    2017-01-01

    This phenomenological study explored the intersecting privileged (racial) and oppressed (gender) identities of eight White college women. Through three interviews, this study aimed to understand how the participants experience socially conflicting identities. Findings indicated that the participants felt more connected to their gender than their…

  20. Cooking up a culinary identity for Belgium. Gastrolinguistics in two Belgian cookbooks (19th century).

    PubMed

    Parys, Nathalie

    2013-12-01

    The notion of cookbooks as socio-historic markers in a society is generally accepted within food studies. As both representations and prescriptions of food practices, perceived habits and attitudes towards food, they represent a certain identity for their readers. This paper investigates the nature of the identity that Belgian cookbooks constructed through their rhetoric. An important part of this study is to explore how and to what extent explicit reference to Belgium was made. To this end recipe titles/labels and recipe comments used in two leading bourgeois cookbooks from nineteenth-century Belgium were subjected to a quantitative and qualitative content analysis. The analysis showed that clear attention was paid to national culinary preferences. In terms of a domestic culinary corpus, it became apparent that both the Dutch and French editions of these cookbooks promoted dishes that were ascribed a Belgian origin. Internationality, however, was also an important building block of Belgian culinary identity. It was part of the desire of Belgian bourgeoisie to connect with an international elite. It fit into the 'search for sophistication', which was also expressed through the high representation of the more costly meats and sweet dishes. In addition, other references associated with bourgeois norms and values, such as family, convenience and frugality, were additional building blocks of Belgian culinary identity. Other issues such as tradition, innovation and health, were also matters of concerns to these Belgian cookbooks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Towards an Einstein-Podolsky-Rosen paradox between two macroscopic atomic ensembles at room temperature

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Reid, M. D.

    2013-06-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein-Podolsky-Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our proposal would enable the first definitive confirmation of quantum EPR paradox correlations between two macroscopic objects at room temperature. This is a necessary intermediate step towards a nonlocal experiment with causal measurement separations. As well as having fundamental significance, the realization of an atomic EPR paradox could provide a resource for novel applications in quantum technology.

  2. Will a Decaying Atom Feel a Friction Force?

    PubMed

    Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M

    2017-02-03

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  3. Research on the properties and interactions of simple atomic and ionic systems

    NASA Technical Reports Server (NTRS)

    Novick, R.

    1972-01-01

    Simple ionic systems were studied, such as metastable autoionizing states of the negative He ion, two-photon decay spectrum of metastable He ion, optical excitation with low energy ions, and lifetime measurements of singly ionized Li and metastable He ion. Simple atomic systems were also investigated. Metastable autoionizing atomic energy levels in alkali elements were included, along with lifetime measurements of Cr-53, group 2A isotopes, and alkali metal atoms using level crossing and optical double resonance spectroscopy.

  4. Controlling single-photon transport in an optical waveguide coupled to an optomechanical cavity with a Λ-type three-level atom

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei

    2018-06-01

    We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.

  5. Divergent trophic levels in two cryptic sibling bat species.

    PubMed

    Siemers, Björn M; Greif, Stefan; Borissov, Ivailo; Voigt-Heucke, Silke L; Voigt, Christian C

    2011-05-01

    Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in (15)N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in (15)N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.

  6. Standard deviations of composition measurements in atom probe analyses-Part II: 3D atom probe.

    PubMed

    Danoix, F; Grancher, G; Bostel, A; Blavette, D

    2007-09-01

    In a companion paper [F. Danoix, G. Grancher, A. Bostel, D. Blavette, Surf. Interface Anal. this issue (previous paper).], the derivation of variances of the estimates of measured composition, and the underlying hypotheses, have been revisited in the the case of conventional one dimensional (1D) atom probes. In this second paper, we will concentrate on the analytical derivation of the variance when the estimate of composition is obtained from a 3D atom probe. As will be discussed, when the position information is available, compositions can be derived either from constant number of atoms, or from constant volume, blocks. The analytical treatment in the first case is identical to the one developed for conventional 1D instruments, and will not be discussed further in this paper. Conversely, in the second case, the analytical treatment is different, as well as the formula of the variance. In particular, it will be shown that the detection efficiency plays an important role in the determination of the variance.

  7. Development of the Science Data System for the International Space Station Cold Atom Lab

    NASA Technical Reports Server (NTRS)

    van Harmelen, Chris; Soriano, Melissa A.

    2015-01-01

    Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.

  8. Two-state and two-state plus continuum problems associated with the interaction of intense laser pulses with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, C. W.; Payne, M. G.

    1977-02-01

    Two mathematical methods are utilized (one a form of adiabatic approximation, and the other closely related to the Zener method from collision theory) in order to calculate the probability of three-photon ionization when strong counter propagating pulses are tuned very near a two-photon resonant state. In this case the inverted populations predicted by Grischkowsky and Loy for smooth laser pulses lead to larger ionization probabilities than would be obtained for a square pulse of equal peak power and energy per pulse. The line shape of the ionization probability is also quite unusual in this problem. A sharp onset in themore » ionization probability occurs as the lasers are tuned through the exact unperturbed two-photon resonance. Under proper conditions, the change can be from a very small value to one near unity. It occurs in a very small frequency range determined by the larger of the residual Doppler effect and the reciprocal duration of the pulse. Thus, the line shape retains a Doppler-free aspect even at power levels such that power broadening would dwarf even the full Doppler effect in the case of a square pulse of equal energy and peak power. The same mathematical methods have been used to calculate line shapes for the two-photon excitation of fluorescence when the atoms see a pulsed field due to their time of passage across a tightly focused cw laser beam. Thus,the mathematical methods used above permitted accurate analytical calculations under a set of very interesting conditions.« less

  9. Optical memory based on quantized atomic center-of-mass motion.

    PubMed

    Lopez, J P; de Almeida, A J F; Felinto, D; Tabosa, J W R

    2017-11-01

    We report a new type of optical memory using a pure two-level system of cesium atoms cooled by the magnetically assisted Sisyphus effect. The optical information of a probe field is stored in the coherence between quantized vibrational levels of the atoms in the potential wells of a 1-D optical lattice. The retrieved pulse shows Rabi oscillations with a frequency determined by the reading beam intensity and are qualitatively understood in terms of a simple theoretical model. The exploration of the external degrees of freedom of an atom may add another capability in the design of quantum-information protocols using light.

  10. Simulation of Heterogeneous Atom Probe Tip Shapes Evolution during Field Evaporation Using a Level Set Method and Different Evaporation Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijie; Li, Dongsheng; Xu, Wei

    2015-04-01

    In atom probe tomography (APT), accurate reconstruction of the spatial positions of field evaporated ions from measured detector patterns depends upon a correct understanding of the dynamic tip shape evolution and evaporation laws of component atoms. Artifacts in APT reconstructions of heterogeneous materials can be attributed to the assumption of homogeneous evaporation of all the elements in the material in addition to the assumption of a steady state hemispherical dynamic tip shape evolution. A level set method based specimen shape evolution model is developed in this study to simulate the evaporation of synthetic layered-structured APT tips. The simulation results ofmore » the shape evolution by the level set model qualitatively agree with the finite element method and the literature data using the finite difference method. The asymmetric evolving shape predicted by the level set model demonstrates the complex evaporation behavior of heterogeneous tip and the interface curvature can potentially lead to the artifacts in the APT reconstruction of such materials. Compared with other APT simulation methods, the new method provides smoother interface representation with the aid of the intrinsic sub-grid accuracy. Two evaporation models (linear and exponential evaporation laws) are implemented in the level set simulations and the effect of evaporation laws on the tip shape evolution is also presented.« less

  11. Atomic-Scale Design, Synthesis and Characterization of Two-Dimensional Material Interfaces

    NASA Astrophysics Data System (ADS)

    Kiraly, Brian Thomas

    The reduction of material dimensions to near atomic-scales leads to changes in the properties of these materials. The most recent development in reduced dimensionality is the isolation of atomically thin materials with 2 "bulk" or large-scale dimensions. The isolation of a single plane of carbon atoms has thus paved the way for the study of material properties when one of three dimensions is confined. Early studies revealed a wealth of exotic physical phenomena in these two-dimensional (2D) layers due to the valence and crystalline symmetry of the materials, focusing primarily on understanding the intrinsic properties of the system. Recent studies have begun to investigate the influence that the surroundings have on the 2D material properties and how those effects may be used to tune the composite system properties. In this thesis, I will examine the synthesis and characterization of these 2D interfaces to understand how the constituents impact the overall observations and discuss how these interfaces might be used to deliberately manipulate 2D materials. I will begin by demonstrating how ultra-high vacuum (UHV) conditions enable the preparation and synthesis of 2D materials on air-unstable surfaces by utilizing a characteristic example of crystalline silver. The lack of catalytic activity of silver toward carbon-containing precursors is overcome by using atomic carbon to grow the graphene on the surface. The resulting system provides unique insight into graphene-metal interactions as it marks the lower boundary for graphene-metal interaction strength. I will then show how new 2D materials can be grown utilizing this growth motif, demonstrating the methodology with elemental silicon. The atomically thin 2D silicon grown on the silver surfaces clearly demonstrates a diamond-cubic crystal structure, including an electronic bandgap of 1eV. This work marks the realization of both a new 2D semiconductor and the direct scaling limit for bulk sp3 silicon. The common

  12. Trajectories of Identity Formation Modes and Their Personality Context in Adolescence.

    PubMed

    Topolewska-Siedzik, Ewa; Cieciuch, Jan

    2018-04-01

    Identity formation is a dynamic process during adolescence. Trajectories of identity formation were assessed longitudinally in early and middle adolescents, taking into account the personality underpinnings of this process. Identity formation was conceptualized according to the circumplex of identity formation modes. The model distinguishes basic modes rooted in Marcia's categories of exploration and commitment. Plasticity and stability, the two higher order Big Five meta-traits, were used to assess personality underpinnings. This study includes five measurement waves over 1.5 years and involves 1,839 Polish participants; 914 early adolescents (53.9% girls) and 925 middle adolescents (63.8% girls). The results suggest that (1) the four identity formation modes change dynamically, showing linear and curvilinear growth and that (2) identity formation mode trajectories are more dynamic in middle adolescence than in early adolescence. The results also showed that, in the conditional model, (3) the higher-order personality factors and gender affect the growth factors of identity formation modes. Overall, trajectories of identity formation modes are more linear during early adolescence and more curvilinear during middle adolescence. The initial levels in identity trajectories are influenced by the personality metatraits but only plasticity is related to change among early adolescents.

  13. Exploring Medical Identity Theft

    PubMed Central

    Mancilla, Desla; Moczygemba, Jackie

    2009-01-01

    The crime of medical identity theft is a growing concern in healthcare institutions. A mixed-method study design including a two-stage electronic survey, telephone survey follow-up, and on-site observations was used to evaluate current practices in admitting and registration departments to reduce the occurrence of medical identity theft. Survey participants were chief compliance officers in acute healthcare organizations and members of the Health Care Compliance Association. Study results indicate variance in whether or how patient identity is confirmed in healthcare settings. The findings of this study suggest that information systems need to be designed for more efficient identity management. Admitting and registration staff must be trained, and compliance with medical identity theft policies and procedures must be monitored. Finally, biometric identity management solutions should be considered for stronger patient identification verification. PMID:20169017

  14. Adiabatic quantum computation with neutral atoms via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Goyal, Krittika; Deutsch, Ivan

    2011-05-01

    We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these

  15. The Kelvin-Thomson Atom. Part 2: The Many-Electron Atoms

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1977-01-01

    Presents part two of a two-part article describing the Kelvin-Thomson atom. This part discusses the arrangement of electrons within the atom and examines some of the properties predicted for elements in the Kelvin-Thomson model. (SL)

  16. Corporate identity. Brand designs.

    PubMed

    Mathieson, Steve

    2004-02-19

    The past two years have seen a steadily more consistent brand identity for the NHS. Branding will become more important as foundation status and PCT commissioning makes acute hospitals more competitive. This has put pressure on some trusts that have their own strong identities.

  17. [Diagnosing gender identity].

    PubMed

    Kaltiala-Heino, Riittakerttu; Mattila, Aino; Kärnä, Teemu; Joutsenneimi, Kaisla

    2015-01-01

    Transsexualism and other variations of gender identity are based on a stable sense of identity. The aetiology of this phenomenon is not fully known. Suffering caused by gender dysphoria is alleviated with sex reassignment. The psychiatric assessment of both adolescents and adults has been centralized in Finland to two university hospitals, the Helsinki University Hospital and Tampere University Hospital. In both hospitals, multidisciplinary teams aim at differential diagnosis by using well-known psychiatric and psychological instruments. Wishes for sex reassignment that are caused by a mental health disorder are excluded. Assessment in adolescence is challenging because the identity in youth is still forming.

  18. Phase time delay and Hartman effect in a one-dimensional photonic crystal with four-level atomic defect layer

    NASA Astrophysics Data System (ADS)

    Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid

    2017-08-01

    The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.

  19. Atomic Spectra Bibliography Databases at NIST

    NASA Astrophysics Data System (ADS)

    Kramida, Alexander

    2010-03-01

    NIST's Atomic Spectroscopy Data Center maintains three online Bibliographic Databases (BD) [http://physics.nist.gov/PhysRefData/ASBib1/index.html]: -- Atomic Energy Levels and Spectra (AEL BD), Atomic Transition Probability (ATP BD), and Atomic Spectral Line Broadening (ALB BD). This year marks new releases of these BDs -- AEL BD v.2.0, ATP BD v.9.0, and ALB DB v.3.0. These releases incorporate significant improvements in the quantity and quality of bibliographic data since the previous versions published first in 2006. The total number of papers in the three DBs grew from 20,000 to 30,000. The data search is now made easier, and the returned content is enriched with direct links to online journal articles and universal Digital Object Identifiers. Statistics show a nearly constant flow of new publications on atomic spectroscopy, about 600 new papers published each year since 1968. New papers are inserted in our BDs every two weeks on average.

  20. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  1. Expectations about person identity modulate the face-sensitive N170.

    PubMed

    Johnston, Patrick; Overell, Anne; Kaufman, Jordy; Robinson, Jonathan; Young, Andrew W

    2016-12-01

    Identifying familiar faces is a fundamentally important aspect of social perception that requires the ability to assign very different (ambient) images of a face to a common identity. The current consensus is that the brain processes face identity at approximately 250-300 msec following stimulus onset, as indexed by the N250 event related potential. However, using two experiments we show compelling evidence that where experimental paradigms induce expectations about person identity, changes in famous face identity are in fact detected at an earlier latency corresponding to the face-sensitive N170. In Experiment 1, using a rapid periodic stimulation paradigm presenting highly variable ambient images, we demonstrate robust effects of low frequency, periodic face-identity changes in N170 amplitude. In Experiment 2, we added infrequent aperiodic identity changes to show that the N170 was larger to both infrequent periodic and infrequent aperiodic identity changes than to high frequency identities. Our use of ambient stimulus images makes it unlikely that these effects are due to adaptation of low-level stimulus features. In line with current ideas about predictive coding, we therefore suggest that when expectations about the identity of a face exist, the visual system is capable of detecting identity mismatches at a latency consistent with the N170. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Tracking moving identities: after attending the right location, the identity does not come for free.

    PubMed

    Pinto, Yaïr; Scholte, H Steven; Lamme, V A F

    2012-01-01

    Although tracking identical moving objects has been studied since the 1980's, only recently the study into tracking moving objects with distinct identities has started (referred to as Multiple Identity Tracking, MIT). So far, only behavioral studies into MIT have been undertaken. These studies have left a fundamental question regarding MIT unanswered, is MIT a one-stage or a two-stage process? According to the one-stage model, after a location has been attended, the identity is released without effort. However, according to the two-stage model, there are two effortful stages in MIT, attending to a location, and attending to the identity of the object at that location. In the current study we investigated this question by measuring brain activity in response to tracking familiar and unfamiliar targets. Familiarity is known to automate effortful processes, so if attention to identify the object is needed, this should become easier. However, if no such attention is needed, familiarity can only affect other processes (such as memory for the target set). Our results revealed that on unfamiliar trials neural activity was higher in both attentional networks, and visual identification networks. These results suggest that familiarity in MIT automates attentional identification processes, thus suggesting that attentional identification is needed in MIT. This then would imply that MIT is essentially a two-stage process, since after attending the location, the identity does not seem to come for free.

  3. Atomic torsional modal analysis for high-resolution proteins.

    PubMed

    Tirion, Monique M; ben-Avraham, Daniel

    2015-03-01

    We introduce a formulation for normal mode analyses of globular proteins that significantly improves on an earlier one-parameter formulation [M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996)] that characterized the slow modes associated with protein data bank structures. Here we develop that empirical potential function that is minimized at the outset to include two features essential to reproduce the eigenspectra and associated density of states in the 0 to 300cm-1 frequency range, not merely the slow modes. First, introduction of preferred dihedral-angle configurations via use of torsional stiffness constants eliminates anomalous dispersion characteristics due to insufficiently bound surface side chains and helps fix the spectrum thin tail frequencies (100-300cm-1). Second, we take into account the atomic identities and the distance of separation of all pairwise interactions, improving the spectrum distribution in the 20 to 300cm-1 range. With these modifications, not only does the spectrum reproduce that of full atomic potentials, but we obtain stable reliable eigenmodes for the slow modes and over a wide range of frequencies.

  4. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhiming, E-mail: 465609785@qq.com; Situ, Haozhen, E-mail: situhaozhen@gmail.com

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangledmore » initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.« less

  5. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  6. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    NASA Astrophysics Data System (ADS)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  7. Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms

    DOE PAGES

    Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu; ...

    2017-04-06

    Here, we observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. The role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We also measure the normal-mode splitting and √ n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.

  8. Racial Discrimination and Racial Identity Attitudes in Relation to Self-Rated Health and Physical Pain and Impairment Among Two-Spirit American Indians/Alaska Natives

    PubMed Central

    Walters, Karina L.

    2009-01-01

    Objectives. We examined associations between racial discrimination and actualization, defined as the degree of positive integration between self-identity and racial group identity, and self-rated health and physical pain and impairment. Methods. We used logistic regressions to analyze data from 447 gay, lesbian, bisexual, and other sexual-minority American Indians/Alaska Natives. Results. Greater self-reported discrimination was associated with higher odds of physical pain and impairment (odds ratio [OR] = 1.42; 95% confidence interval [CI] = 1.13, 1.78); high levels of actualization were associated with lower odds of physical pain and impairment (OR = 0.59; 95% CI = 0.35, 0.99) and self-rated fair or poor health (OR = 0.54; 95% CI = 0.32, 0.90). Actualization also moderated the influence of discrimination on self-rated health (t = –2.33; P = .020). Discrimination was positively associated with fair or poor health among participants with low levels of actualization, but this association was weak among those with high levels of actualization. Conclusions. Among two-spirit American Indians/Alaska Natives, discrimination may be a risk factor for physical pain and impairment and for fair or poor self-rated health among those with low levels of actualization. Actualization may protect against physical pain and impairment and poor self-rated health and buffer the negative influence of discrimination. PMID:19218182

  9. Observation of polariton resonances with five-level M-type atoms in an optical cavity

    NASA Astrophysics Data System (ADS)

    Liu, Yutong; Lin, Gongwei; Ying, Kang; Liang, Lin; Niu, Yueping; Gong, Shangqing

    2017-11-01

    We study the polariton resonances with the five-level M-type atoms inside an optical cavity through the observation of the cavity transmission spectrum. The ultranarrow peaks associated with the dark-state polaritons in the system can be achieved by adjusting three coupling fields. Simple theory analysis and numerical simulations are also presented.

  10. Dynamics of atom-atom correlations in the Fermi problem

    NASA Astrophysics Data System (ADS)

    Borrelli, Massimo; Sabín, Carlos; Adesso, Gerardo; Plastina, Francesco; Maniscalco, Sabrina

    2012-10-01

    We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain, where two atoms, one initially excited and the other prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon, and various kinds of quantum correlations between the two are generated during this process. Among these, prominent examples are given by entanglement, quantum discord and non-local correlations. The aim of this paper is to analyze the role of the light cone in the emergence of such correlations.

  11. Identity Practices of Multilingual Writers in Social Networking Spaces

    ERIC Educational Resources Information Center

    Chen, Hsin-I

    2013-01-01

    This study examines the literacy practices of two multilingual writers in social networking communities. The findings show that the multilingual writers explored and reappropriated symbolic resources afforded by the social networking site as they aligned themselves with particular collective and personal identities at local and global levels.…

  12. Highly sensitive atomic based MW interferometry.

    PubMed

    Shylla, Dangka; Nyakang'o, Elijah Ogaro; Pandey, Kanhaiya

    2018-06-06

    We theoretically study a scheme to develop an atomic based micro-wave (MW) interferometry using the Rydberg states in Rb. Unlike the traditional MW interferometry, this scheme is not based upon the electrical circuits, hence the sensitivity of the phase and the amplitude/strength of the MW field is not limited by the Nyquist thermal noise. Further, this system has great advantage due to its much higher frequency range in comparision to the electrical circuit, ranging from radio frequency (RF), MW to terahertz regime. In addition, this is two orders of magnitude more sensitive to field strength as compared to the prior demonstrations on the MW electrometry using the Rydberg atomic states. Further, previously studied atomic systems are only sensitive to the field strength but not to the phase and hence this scheme provides a great opportunity to characterize the MW completely including the propagation direction and the wavefront. The atomic based MW interferometry is based upon a six-level loopy ladder system involving the Rydberg states in which two sub-systems interfere constructively or destructively depending upon the phase between the MW electric fields closing the loop. This work opens up a new field i.e. atomic based MW interferometry replacing the conventional electrical circuit in much superior fashion.

  13. Interactive Web-based Visualization of Atomic Position-time Series Data

    NASA Astrophysics Data System (ADS)

    Thapa, S.; Karki, B. B.

    2017-12-01

    Extracting and interpreting the information contained in large sets of time-varying three dimensional positional data for the constituent atoms of simulated material is a challenging task. We have recently implemented a web-based visualization system to analyze the position-time series data extracted from the local or remote hosts. It involves a pre-processing step for data reduction, which involves skipping uninteresting parts of the data uniformly (at full atomic configuration level) or non-uniformly (at atomic species level or individual atom level). Atomic configuration snapshot is rendered using the ball-stick representation and can be animated by rendering successive configurations. The entire atomic dynamics can be captured as the trajectories by rendering the atomic positions at all time steps together as points. The trajectories can be manipulated at both species and atomic levels so that we can focus on one or more trajectories of interest, and can be also superimposed with the instantaneous atomic structure. The implementation was done using WebGL and Three.js for graphical rendering, HTML5 and Javascript for GUI, and Elasticsearch and JSON for data storage and retrieval within the Grails Framework. We have applied our visualization system to the simulation datatsets for proton-bearing forsterite (Mg2SiO4) - an abundant mineral of Earths upper mantle. Visualization reveals that protons (hydrogen ions) incorporated as interstitials are much more mobile than protons substituting the host Mg and Si cation sites. The proton diffusion appears to be anisotropic with high mobility along the x-direction, showing limited discrete jumps in other two directions.

  14. Micro-Level Mechanisms of Identity Development: The Role of Emotional Experiences in Commitment Development

    ERIC Educational Resources Information Center

    van der Gaag, Mandy A. E.; Albers, Casper J.; Kunnen, E. Saskia

    2017-01-01

    Based on Marcia's theory, many researchers consider exploration and commitment as the main processes in identity development. Although some identity theorists have hypothesized that emotional experience may also be an important part of the mechanisms of identity development, empirical research to investigate this claim has been lagging behind. In…

  15. Revisiting the silence of Asian immigrant students: The negotiation of Korean immigrant students' identities in science classrooms

    NASA Astrophysics Data System (ADS)

    Ryu, Minjung

    This dissertation is a study about Korean immigrant students' identities, including academic identities related to science learning and identities along various social dimensions. I explore how Korean immigrant students participate in science classrooms and how they enact and negotiate their identities in their classroom discursive participation. My dissertation is motivated by the increasing attention in educational research to the intersectionality between science learning and various dimensions of identities (e.g., gender, race, ethnicity, social networks) and a dearth of such research addressing Asian immigrant students. Asian immigrant students are stereotyped as quiet and successful learners, particularly in science and mathematics classes, and their success is often explained by cultural differences. I confront this static and oversimplified notion of cultural differences and Asians' academic success and examine the intersectionality between science learning and identities of Asian immigrant students, with the specific case of Korean immigrants. Drawing upon cultural historical and sociolinguistic perspectives of identity, I propose a theoretical framework that underscores multiple levels of contexts (macro level, meso level, personal, and micro level contexts) in understanding and analyzing students' identities. Based on a year-long ethnographic study in two high school Advanced Placement Biology classes in a public high school, I present the meso level contexts of the focal school and biology classes, and in-depth analyses of three focal students. The findings illustrate: (1) how meso level contexts play a critical role in these students' identities and science classroom participation, (2) how the meso level contexts are reinterpreted and have different meanings to different students depending on their personal contexts, and (3) how students negotiated their positions to achieve certain identity goals. I discuss the implications of the findings for the

  16. Dynamical modes of two almost identical chemical oscillators connected via both pulsatile and diffusive coupling.

    PubMed

    Safonov, Dmitry A; Vanag, Vladimir K

    2018-05-03

    The dynamical regimes of two almost identical Belousov-Zhabotinsky oscillators with both pulsatile (with time delay) and diffusive coupling have been studied theoretically with the aid of ordinary differential equations for four combinations of these types of coupling: inhibitory diffusive and inhibitory pulsatile (IDIP); excitatory diffusive and inhibitory pulsatile; inhibitory diffusive and excitatory pulsatile; and finally, excitatory diffusive and excitatory pulsatile (EDEP). The combination of two types of coupling creates a condition for new feedback, which promotes new dynamical modes for the IDIP and EDEP coupling.

  17. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    four separate Pb images, as shown in Fig.1. Using these images, we could obtain acute and obtuse rhombohedral structures of the crystal unit cells. Moreover, the Pb-Pb correlated images reconstructed from Pb Lα holograms showed a local structure of body center-like 2a0 ×2a0 × 2a0 superlattice, proving a rigid 3D network structural model combining the two kinds of rhombohedrons. This superstructure are believed to play an important role in the relaxor behaviour of PMN at atomic level[3].jmicro;63/suppl_1/i13/DFU047F1F1DFU047F1Fig. 1.3D images of the nearest Pb and O atoms around Nb in Pb(Mg1/3Nb2/3)O3. The cube represents 1/8 of the unit cell. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Longitudinal Trajectories of Ethnic Identity during the College Years

    ERIC Educational Resources Information Center

    Syed, Moin; Azmitia, Margarita

    2009-01-01

    The goals of this study were to examine trajectories of change in ethnic identity during the college years and to explore group-level and individual-level variations. Participants were 175 diverse college students who completed indices of ethnic identity exploration and commitment, self-esteem, and domain-general identity resolution. Multilevel…

  19. Trauma and identity through two generations of the Holocaust.

    PubMed

    Hogman, F

    1998-08-01

    In summary, these four second generation women were/are in search of an equilibrium which includes integrating approach-avoidance feelings about their upbringing. They have struggled in various ways, through their own personal styles, with issues of enmeshment with their parents' ordeals, and this has helped to shape their identities. The approach-avoidance dilemma around the suffering of their parents involves finding a way to separate from, yet to include in the meaning of their lives, the suffering of their parents. In these women, empathy preserves the "good" aspect of the parent and in the end allows for separateness to be achieved. An evolution of their approach to the Holocaust occurs throughout their lives and is enhanced by their having children. Creativity and knowledge play an important role in the expression of tormented feelings in both second and third generations. The issues grappled with by the second generation reverberate in their children. This is a group of resolute, serious people who believe in the preciousness of life. They are also thoughtful, empathic youngsters, aware of social and political inequities. These third-generation members feel somewhat burdened by the legacy of the Holocaust, inasmuch as they feel obligated to stand up for Jewish identity and be successful in their own lives. Placing the suffering in a larger group context helps the second generation confront the suffering of their parents. This diminishes individual liability so that the suffering does not have to be taken on personally. The cause goes beyond the self and the family. When, as in Sylvia's case, this outlook is not achieved, the struggle against family enmeshment continues. Seeing the suffering in a group context creates a different set of responsibilities, that of allegiance and closeness to the group. It promotes a need to find meaning in the suffering, a need to cope with the sense of identification with group loss. This urge for empathy is accompanied by its

  20. Atomic clusters and atomic surfaces in icosahedral quasicrystals.

    PubMed

    Quiquandon, Marianne; Portier, Richard; Gratias, Denis

    2014-05-01

    This paper presents the basic tools commonly used to describe the atomic structures of quasicrystals with a specific focus on the icosahedral phases. After a brief recall of the main properties of quasiperiodic objects, two simple physical rules are discussed that lead one to eventually obtain a surprisingly small number of atomic structures as ideal quasiperiodic models for real quasicrystals. This is due to the fact that the atomic surfaces (ASs) used to describe all known icosahedral phases are located on high-symmetry special points in six-dimensional space. The first rule is maximizing the density using simple polyhedral ASs that leads to two possible sets of ASs according to the value of the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second rule is maximizing the number of complete orbits of high symmetry to construct as large as possible atomic clusters similar to those observed in complex intermetallic structures and approximant phases. The practical use of these two rules together is demonstrated on two typical examples of icosahedral phases, i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).