Sample records for identifiable mesozoic harvestman

  1. First identifiable Mesozoic harvestman (Opiliones: Dyspnoi) from Cretaceous Burmese amber

    PubMed Central

    Giribet, Gonzalo; Dunlop, Jason A

    2005-01-01

    Two inclusions in a piece of Upper Cretaceous (Albian) Burmese amber from Myanmar are described as a harvestman (Arachnida: Opiliones), Halitherses grimaldii new genus and species. The first Mesozoic harvestman to be named can be referred to the suborder Dyspnoi for the following reasons: prosoma divided into two regions, the posterior formed by the fusion of the meso- and metapeltidium; palp lacking a terminal claw, with clavate setae, and tarsus considerably shorter than the tibia. The bilobed, anteriorly projecting ocular tubercle is reminiscent of that of ortholasmatine nemastomatids. The status of other Mesozoic fossils referred to Opiliones is briefly reviewed. PMID:16024358

  2. Penis morphology in a Burmese amber harvestman

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; Selden, Paul A.; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters.

  3. Penis morphology in a Burmese amber harvestman.

    PubMed

    Dunlop, Jason A; Selden, Paul A; Giribet, Gonzalo

    2016-02-01

    A unique specimen of the fossil harvestman Halitherses grimaldii Giribet and Dunlop, 2005 (Arachnida: Opiliones) from the Cretaceous (ca. 99 Ma) Burmese amber of Myanmar reveals a fully extended penis. This is the first record of a male copulatory organ of this nature preserved in amber and is of special importance due to the age of the deposit. The penis has a slender, distally flattened truncus, a spatulate heart-shaped glans and a short distal stylus, twisted at the tip. In living harvestmen, the penis yields crucial characters for their systematics. Male genital morphology in H. grimaldii appears to be unique among the wider Dyspnoi clade to which this fossil belongs. The large eyes in the fossil differ markedly from other members of the subfamily Ortholasmatinae to which H. grimaldii was originally referred. Based on recent data, it has been argued that large eyes may be plesiomorphic for Palpatores (i.e. the suborders Eupnoi and Dyspnoi), potentially rendering this character plesiomorphic for the fossil too. Thus, the unique structure of the penis seen here, and the probable lack of diaphanous teeth, present in all other extant non-acropsopilionid Dyspnoi, suggest that H. grimaldii represents a new, extinct family of large-eyed dyspnoid harvestmen, Halithersidae fam. nov.; a higher taxon in amber diagnosed here on both somatic and genital characters.

  4. The disjunct pattern of the Neotropical harvestman Discocyrtus dilatatus (Gonyleptidae) explained by climate-driven range shifts in the Quaternary: Paleodistributional and molecular evidence

    PubMed Central

    Vergara, Julia; González-Ittig, Raúl E.; Vaschetto, Luis M.; Gardenal, Cristina N.

    2017-01-01

    The disjunct distribution of the harvestman Discocyrtus dilatatus (Opiliones, Gonyleptidae) is used as a case study to test the hypothesis of a trans-Chaco Pleistocene paleobridge during range expansion stages. This would have temporarily connected humid regions (‘Mesopotamia’ in northeastern Argentina, and the ‘Yungas’ in the northwest, NWA) in the subtropical and temperate South American lowlands. The present study combines two independent approaches: paleodistributional reconstruction, using the Species Distribution Modeling method MaxEnt and projection onto Quaternary paleoclimates (6 kya, 21 kya, 130 kya), and phylogeographic analyses based on the cytochrome oxidase subunit I molecular marker. Models predict a maximal shrinkage during the warm Last Interglacial (130 kya), and the rise of the hypothesized paleobridge in the Last Glacial Maximum (21 kya), revealing that cold-dry stages (not warm-humid ones, as supposed) enabled the range expansion of this species. The disjunction was formed in the mid-Holocene (6 kya) and is intensified under current conditions. The median-joining network shows that NWA haplotypes are peripherally related to different Mesopotamian lineages; haplotypes from Santa Fe and Córdoba Provinces consistently occupy central positions in the network. According to the dated phylogeny, Mesopotamia-NWA expansion events would have occurred in the last glacial period, in many cases closely associated to the Last Glacial Maximum, with most divergence events occurring shortly thereafter. Only two (out of nine) NWA haplotypes are shared with Mesopotamian localities. A single, presumably relictual NWA haplotype was found to have diverged much earlier, suggesting an ancient expansion event not recoverable by the paleodistributional models. Different measures of sequence statistics, genetic diversity, population structure and history of demographic changes are provided. This research offers the first available evidence for the historical

  5. Predator-induced macroevolutionary trends in Mesozoic crinoids

    PubMed Central

    Gorzelak, Przemysław; Salamon, Mariusz A.; Baumiller, Tomasz K.

    2012-01-01

    Sea urchins are a major component of recent marine communities where they exert a key role as grazers and benthic predators. However, their impact on past marine organisms, such as crinoids, is hard to infer in the fossil record. Analysis of bite mark frequencies on crinoid columnals and comprehensive genus-level diversity data provide unique insights into the importance of sea urchin predation through geologic time. These data show that over the Mesozoic, predation intensity on crinoids, as measured by bite mark frequencies on columnals, changed in step with diversity of sea urchins. Moreover, Mesozoic diversity changes in the predatory sea urchins show a positive correlation with diversity of motile crinoids and a negative correlation with diversity of sessile crinoids, consistent with a crinoid motility representing an effective escape strategy. We contend that the Mesozoic diversity history of crinoids likely represents a macroevolutionary response to changes in sea urchin predation pressure and that it may have set the stage for the recent pattern of crinoid diversity in which motile forms greatly predominate and sessile forms are restricted to deep-water refugia. PMID:22509040

  6. A new highly specialized cave harvestman from Brazil and the first blind species of the genus: Iandumoema smeagol sp. n. (Arachnida, Opiliones, Gonyleptidae)

    PubMed Central

    Pinto-da-Rocha, Ricardo; da Fonseca-Ferreira, Rafael; Bichuette, Maria Elina

    2015-01-01

    Abstract A new species of troglobitic harvestman, Iandumoema smeagol sp. n., is described from Toca do Geraldo, Monjolos municipality, Minas Gerais state, Brazil. Iandumoema smeagol sp. n. is distinguished from the other two species of the genus by four exclusive characteristics – dorsal scutum areas with conspicuous tubercles, enlarged retrolateral spiniform tubercle on the distal third of femur IV, eyes absent and the penial ventral process slender and of approximately the same length of the stylus. The species is the most highly modified in the genus and its distribution is restricted only to caves in that particular area of Minas Gerais state. The type locality is not inside a legally protected area, and there are anthropogenic impacts in its surroundings. Therefore, Iandumoema smeagol sp. n. is vulnerable and it must be considered in future conservation projects. PMID:26798238

  7. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity

    PubMed Central

    2016-01-01

    During the Mesozoic (242–66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species–area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. PMID:27651536

  8. Mesozoic dinosaurs from Brazil and their biogeographic implications.

    PubMed

    Bittencourt, Jonathas S; Langer, Max C

    2011-03-01

    The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.

  9. The fragmentation of Pangaea and Mesozoic terrestrial vertebrate biodiversity.

    PubMed

    Vavrek, Matthew J

    2016-09-01

    During the Mesozoic (242-66 million years ago), terrestrial regions underwent a massive shift in their size, position and connectivity. At the beginning of the era, the land masses were joined into a single supercontinent called Pangaea. However, by the end of the Mesozoic, terrestrial regions had become highly fragmented, both owing to the drifting apart of the continental plates and the extremely high sea levels that flooded and divided many regions. How terrestrial biodiversity was affected by this fragmentation and large-scale flooding of the Earth's landmasses is uncertain. Based on a model using the species-area relationship (SAR), terrestrial vertebrate biodiversity would be expected to nearly double through the Mesozoic owing to continental fragmentation, despite a decrease of 24% in total terrestrial area. Previous studies of Mesozoic vertebrates have generally found increases in terrestrial diversity towards the end of the era, although these increases are often attributed to intrinsic or climatic factors. Instead, continental fragmentation over this time may largely explain any observed increase in terrestrial biodiversity. This study demonstrates the importance that non-intrinsic effects can have on the taxonomic success of a group, and the importance of geography to understanding past biodiversity. © 2016 The Author(s).

  10. Isotopic and paleomagnetic constraints on the Mesozoic tectonic evolution of south China

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart A.; Gill, James; Coe, Robert S.; Zhao, Xixi; Liu, Zhongwei; Wang, Genxian; Yuan, Kuirong; Liu, Wenlong; Kuang, Guodun; Wu, Haoruo

    1996-07-01

    In order to better constrain the paleogeographic evolution of south China we measured Sm-Nd and Rb-Sr isotopic compositions for 23 Mesozoic granites that crop out throughout the area. Tightly grouped neodymium depleted mantle model ages (1.4 ± 0.3 Ga) suggest the region is underlain by relatively homogeneous Proterozoic crust and fail to define crustal provinces. Neither the isotopic nor geologic data suggest that a Mesozoic suture exists. However, granites possessing anomalously high Sm (>8 ppm) and Nd (>45 ppm) concentrations, relatively high initial epsilon neodymium (-4 to -8), and high but variable initial 87Sr/86Sr (0.759 to 0.713) form a northeast trending zone that coincides with two prominent Mesozoic basins. Southeast of the zone lie the majority of Mesozoic intrusives and Upper Triassic to Lower Cretaceous extensional basins found in south China. Mesozoic paleomagnetic poles are well clustered northwest of the zone. Pre-Cretaceous poles southeast of it are discordant with respect to those from the northwest. The only recognized tectonostratigraphic terrane in south China lies southeast of the zone. The terrane is bordered by a northeast trending sinistral fault that was active in the Mesozoic. Other faults in south China have similar attitudes, ages, and sense of shear. Together, the observations suggest that the Mesozoic tectonic regime in south China consisted of strike-slip activity plus concomitant rifting as terranes or fragments of similar crust were transported north along sinistral faults. The zone, defined by the granites enriched in Nd and Sm, demarcates displaced terranes to the southeast from relatively stable land to the northwest.

  11. Early Mesozoic Coexistence of Amniotes and Hepadnaviridae

    PubMed Central

    Suh, Alexander; Weber, Claudia C.; Kehlmaier, Christian; Braun, Edward L.; Green, Richard E.; Fritz, Uwe; Ray, David A.; Ellegren, Hans

    2014-01-01

    Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized >207 million years ago. This genomic “fossil” is >125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts. PMID:25501991

  12. Atlas of Mesozoic and Cenozoic Coastlines

    NASA Astrophysics Data System (ADS)

    Smith, A. G.; Smith, D. G.; Funnell, B. M.

    2004-03-01

    The inferred positions of global paleoshorelines through the 240 million years of the Mesozoic and Cenozoic are presented within this atlas. Thirty-one maps, generally corresponding to stratigraphic stages, provide a snapshot of the continents and their shorelines at approximately 8 million year intervals. The maps provide a representation of the gross changes in the distribution of land and sea throughout the Mesozoic and Cenozoic plotted on Mollweide projections of paleocontinental reconstruction. They do not distinguish between well and poorly defined shorelines, but the information sources are set out in a bibliography numbering more than 2000 primary paleographic references. This is a global compilation that presents the first attempt at delineating global shorelines at stage level, and which represents many years of work sponsored by British Petroleum International (BPI), and work by BPI themselves between 1981 and 1987.

  13. An integrated geophysical study on the Mesozoic strata distribution and hydrocarbon potential in the South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Weijian; Hao, Tianyao; Jiang, Weiwei; Xu, Ya; Zhao, Baimin; Jiang, Didi

    2015-11-01

    A series of drilling, dredge, and seismic investigations indicate that Mesozoic sediments exist in the South China Sea (SCS) which shows a bright prospect for oil and gas exploration. In order to study the distribution of Mesozoic strata and their residual thicknesses in the SCS, we carried out an integrated geophysical study based mainly on gravity data, gravity basement depth and distribution of residual Mesozoic thickness in the SCS were obtained using gravity inversion constrained with high-precision drilling and seismic data. In addition, the fine deep crustal structures and distribution characteristics of Mesozoic thicknesses of three typical profiles were obtained by gravity fitting inversion. Mesozoic strata in the SCS are mainly distributed in the south and north continental margins, and have been reformed by the later tectonic activities. They extend in NE-trending stripes are macro-controlled by the deep and large NE-trending faults, and cut by the NW-trending faults which were active in later times. The offset in NW direction of Mesozoic strata in Nansha area of the southern margin are more obvious as compared to the north margin. In the Pearl River Mouth Basin and Southwest Taiwan Basin of the north continental margin the Mesozoic sediments are continuously distributed with a relatively large thickness. In the Nansha area of the south margin the Mesozoic strata are discontinuous and their thicknesses vary considerably. According to the characteristics of Mesozoic thickness distribution and hydrocarbon potential analyses from drilling and other data, Dongsha Uplift-Chaoshan Depression, Southwest Taiwan Basin-Peikang Uplift and Liyue Bank have large thickness of the Mesozoic residual strata, have good hydrocarbon genesis capability and complete source-reservoir-cap combinations, show a bright prospect of Mesozoic oil/gas resources.

  14. Mesozoic black shales, source mixing and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Suan, Guillaume

    2016-04-01

    Over the last decades, considerable attention has been devoted to the paleoenvironmental and biogeochemical significance of Mesozoic black shales. Black shale-bearing successions indeed often display marked changes in the organic carbon isotope composition (δ13Corg), which have been commonly interpreted as evidence for dramatic perturbations of global carbon budgets and CO2 levels. Arguably the majority of these studies have discarded some more "local" explanations when interpreting δ13Corg profiles, most often because comparable profiles occur on geographically large and distant areas. Based on newly acquired data and selected examples from the literature, I will show that the changing contribution of organic components with distinct δ13C signatures exerts a major but overlooked influence of Mesozoic δ13Corg profiles. Such a bias occurs across a wide spectrum of sedimentological settings and ages, as shown by the good correlation between δ13Corg values and proxies of kerogen proportions (such as rock-eval, biomarker, palynofacies and palynological data) recorded in Mesozoic marginal to deep marine successions of Triassic, Jurassic and Cretaceous age. In most of these successions, labile, 12C-enriched amorphous organic matter of marine origin dominates strata deposited under anoxic conditions, while oxidation-resistant, 13C-rich terrestrial particles dominate strata deposited under well-oxygenated conditions. This influence is further illustrated by weathering profiles of Toarcian (Lower Jurassic) black shales from France, where weathered areas dominated by refractory organic matter show dramatic 13C-enrichment (and decreased total organic carbon and pyrite contents) compared to non-weathered portions of the same horizon. The implications of these results for chemostratigraphic correlations and pCO2 reconstructions of Mesozoic will be discussed, as well as strategies to overcome this major bias.

  15. A Mesozoic gliding mammal from northeastern China.

    PubMed

    Meng, Jin; Hu, Yaoming; Wang, Yuanqing; Wang, Xiaolin; Li, Chuankui

    2006-12-14

    Gliding flight has independently evolved many times in vertebrates. Direct evidence of gliding is rare in fossil records and is unknown in mammals from the Mesozoic era. Here we report a new Mesozoic mammal from Inner Mongolia, China, that represents a previously unknown group characterized by a highly specialized insectivorous dentition and a sizable patagium (flying membrane) for gliding flight. The patagium is covered with dense hair and supported by an elongated tail and limbs; the latter also bear many features adapted for arboreal life. This discovery extends the earliest record of gliding flight for mammals to at least 70 million years earlier in geological history, and demonstrates that early mammals were diverse in their locomotor strategies and lifestyles; they had experimented with an aerial habit at about the same time as, if not earlier than, when birds endeavoured to exploit the sky.

  16. A bottom-up perspective on ecosystem change in Mesozoic oceans

    PubMed Central

    Follows, Michael J.

    2016-01-01

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. PMID:27798303

  17. A bottom-up perspective on ecosystem change in Mesozoic oceans.

    PubMed

    Knoll, Andrew H; Follows, Michael J

    2016-10-26

    Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals. © 2016 The Authors.

  18. Toward a continuous 405-kyr-calibrated Astronomical Time Scale for the Mesozoic Era

    NASA Astrophysics Data System (ADS)

    Hinnov, Linda; Ogg, James; Huang, Chunju

    2010-05-01

    Mesozoic cyclostratigraphy is being assembled into a continuous Astronomical Time Scale (ATS) tied to the Earth's cyclic orbital parameters. Recognition of a nearly ubiquitous, dominant ~400-kyr cycling in formations throughout the era has been particularly striking. Composite formations spanning contiguous intervals up to 50 myr clearly express these long-eccentricity cycles, and in some cases, this cycling is defined by third- or fourth-order sea-level sequences. This frequency is associated with the 405-kyr orbital eccentricity cycle, which provides a basic metronome and enables the extension of the well-defined Cenozoic ATS to scale the majority of the Mesozoic Era. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, but with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS provide solutions to long-standing geologic problems of tectonics, eustasy, paleoclimate change, and rates of seafloor spreading.

  19. The inheritance of a Mesozoic landscape in western Scandinavia

    PubMed Central

    Fredin, Ola; Viola, Giulio; Zwingmann, Horst; Sørlie, Ronald; Brönner, Marco; Lie, Jan-Erik; Grandal, Else Margrethe; Müller, Axel; Margreth, Annina; Vogt, Christoph; Knies, Jochen

    2017-01-01

    In-situ weathered bedrock, saprolite, is locally found in Scandinavia, where it is commonly thought to represent pre-Pleistocene weathering possibly associated with landscape formation. The age of weathering, however, remains loosely constrained, which has an impact on existing geological and landscape evolution models and morphotectonic correlations. Here we provide new geochronological evidence that some of the low-altitude basement landforms on- and offshore southwestern Scandinavia are a rejuvenated geomorphological relic from Mesozoic times. K-Ar dating of authigenic, syn-weathering illite from saprolitic remnants constrains original basement exposure in the Late Triassic (221.3±7.0–206.2±4.2 Ma) through deep weathering in a warm climate and subsequent partial mobilization of the saprolitic mantle into the overlying sediment cascade system. The data support the bulk geomorphological development of west Scandinavia coastal basement rocks during the Mesozoic and later, long-lasting relative tectonic stability. Pleistocene glaciations played an additional geomorphological role, selectively stripping the landscape from the Mesozoic overburden and carving glacial landforms down to Plio–Pleistocene times. Saprolite K-Ar dating offers unprecedented possibilities to study past weathering and landscape evolution processes. PMID:28452366

  20. Paleozoic-Mesozoic boundary in the Berry Creek Quadrangle, northwestern Sierra Nevada, California

    USGS Publications Warehouse

    Hietanen, Anna Martta

    1977-01-01

    Structural and petrologic studies in the Berry Creek quadrangle at the north end of the western metamorphic belt of the Sierra Nevada have yielded new information that helps in distinguishing between the chemically similar Paleozoic and Mesozoic rocks. The distinguishing features are structural and textural and result from different degrees of deformation. Most Paleozoic rocks are strongly deformed and thoroughly recrystallized. Phenocrysts in meta volcanic rocks are granulated and drawn out into lenses that have sutured outlines. In contrast, the phenocrysts in the Mesozoic metavolcanic rocks show well-preserved straight crystal faces, are only slightly or not at all granulated, and contain fewer mineral inclusions than do those in the Paleozoic rocks. The groundmass in the Paleozoic rocks is recrystallized to a fairly coarse grained albite-epidote-amphibole-chlorite rock, whereas in the Mesozoic rocks the groundmass is a very fine grained feltlike mesh with only spotty occurrence of well-recrystallized finegrained albite-epidote-chlorite-actinolite rock. Primary minerals, such as augite, are locally preserved in the Mesozoic rocks but are altered to a mixture of amphibole, chlorite, and epidote in the Paleozoic rocks. In the contact aureoles of the plutons, and within the Big Bend fault zone, which crosses the area parallel to the structural trends, all rocks are thoroughly recrystallized and strongly deformed. Identification of the Paleozoic and Mesozoic rocks in these parts of the area was based on the continuity of the rock units in the field and on gradual changes in microscopic textures toward the plutons.

  1. Reconstruction of crustal blocks of California on the basis of initial strontium isotopic compositions of Mesozoic granitic rocks

    USGS Publications Warehouse

    Kistler, Ronald Wayne; Peterman, Zell E.

    1978-01-01

    Initial 87Sr/ 86 Sr was determined for samples of Mesozoic granitic rocks in the vicinity of the Garlock fault zone in California. These data along with similar data from the Sierra Nevada and along the San Andreas fault system permit a reconstruction of basement rocks offset by the Cenozoic lateral faulting along both the San Andreas and Garlock fault systems. The location of the line of initial 87Sr/ 86 Sr = 0.7060 can be related to the edge of the Precambrian continental crust in the western United States. Our model explains the present configuration of the edge of Precambrian continental crust as the result of two stages of rifting that occurred about 1,250 to 800 m.y. ago, during Belt sedimentation, and about 600 to 350 m.y. ago, prior to and during the development of the Cordilleran geosyncline and to left-lateral translation along a locus of disturbance identified in the central Mojave Desert. The variations in Rb, Sr, and initial 87Sr/ 86 Sr of the Mesozoic granitic rocks are interpreted as due to variations in composition and age of the source materials of the granitic rocks. The variations of Rb, Sr, and initial 87Sr/ 86 Sr in Mesozoic granitic rocks, the sedimentation history during the late Precambrian and Paleozoic, and the geographic position of loci of Mesozoic magmatism in the western United States are related to the development of the continental margin and different types of lithosphere during rifting.

  2. Ultrastructure of chemoreceptive tarsal sensilla in an armored harvestman and evidence of olfaction across Laniatores (Arachnida, Opiliones).

    PubMed

    Gainett, Guilherme; Michalik, Peter; Müller, Carsten H G; Giribet, Gonzalo; Talarico, Giovanni; Willemart, Rodrigo H

    2017-03-01

    Harvestmen (Arachnida, Opiliones) are especially dependent on chemical cues and are often regarded as animals that rely mainly on contact chemoreception. Information on harvestman sensilla is scarce when compared to other arachnid orders, especially concerning internal morphology. Using scanning (SEM) and transmission (TEM) electron microscopy, we investigated tarsal sensilla on the distal tarsomeres (DT) of all leg pairs in Heteromitobates discolor (Laniatores, Gonyleptidae). Furthermore, we explored the typological diversity of sensilla present on the DT I and II in members of the suborder Laniatores, which include two thirds of the formally described opilionid fauna, using species from 17 families representing all main laniatorian lineages. Our data revealed that DT I and II of H. discolor are equipped with wall-pored falciform hairs (two types), wall-pored sensilla chaetica (two types) and tip-pored sensilla chaetica, while DT III and IV are mainly covered with trichomes (non-sensory) and tip-pored sensilla chaetica. The ultrastructural characteristics support an olfactory function for all wall-pored sensilla and a dual gustatory/mechanoreceptive function for tip-pored sensilla chaetica. Based on our comparative SEM survey, we show that wall-pored sensilla occur in all investigated Laniatores, demonstrating their widespread occurrence in the suborder and highlighting the importance of both legs I and II as the sensory appendages of laniatorean harvestmen. Our results provide the first morphological evidence for olfactory receptors in Laniatores and suggest that olfaction is more important for harvestmen than previously thought. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Deformation style of the Mesozoic sedimentary rocks in southern Thailand

    NASA Astrophysics Data System (ADS)

    Kanjanapayont, Pitsanupong

    2014-10-01

    Mesozoic sedimentary rocks in southern Thailand are widespread from NNE-SSW and N-S in Chumphon and Trang provinces. The Mesozoic stratigraphic units are the marine Triassic Sai Bon Formation and the non-marine Jurassic-Cretaceous Thung Yai Group, the latter subdivided into Khlong Min, Lam Thap, Sam Chom, and Phun Phin Formations. These units overlie Permian carbonate rocks with an angular unconformity, and are overlain unconformably by Cenozoic units and the Quaternary sediments. The Mesozoic rocks have been folded to form two huge first-ordered syncline or synclinoria, the Chumphon and Surat Thani-Krabi-Trang synclinoria. These synclinoria are elongated in NNE-SSW to N-S direction, and incorporate asymmetric lower-order parasitic folds. The folds have moderately to steeply dipping eastward limbs and more gently dipping westward limbs. These folds were transected by brittle fractures in four major directions. These geologic structures indicate WNW-ESE to E-W contraction with top-to-the-east simple shear at some time before the deposition of the Cenozoic sedimentary units. No major deformation has affected the rocks subsequently, apart from the formation of the fault-controlled Cenozoic basins.

  4. Paleozoic and mesozoic evolution of East-Central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Dunne, G.C.; Greene, D.C.; Walker, J.D.; Swanson, B.J.

    1997-01-01

    East-central California, which encompasses an area located on the westernmost part of sialic North America, contains a well-preserved record of Paleozoic and Mesozoic tectonic events that reflect the evolving nature of the Cordilleran plate margin to the west. After the plate margin was formed by continental rifting in the Neoproterozoic, sediments comprising the Cordilleran miogeocline began to accumulate on the subsiding passive margin. In east-central California, sedimentation did not keep pace with subsidence, resulting in backstepping of a series of successive carbonate platforms throughout the early and middle Paleozoic. This phase of miogeoclinal development was brought to a close by the Late Devonian-Early Mississippian Antler orogeny, during the final phase of which oceanic rocks were emplaced onto the continental margin. Subsequent Late Mississippian-Pennsylvanian faulting and apparent reorientation of the carbonate platform margin are interpreted to have been associated with truncation of the continental plate on a sinistral transform fault zone. In the Early Permian, contractional deformation in east-central California led to the development of a narrow, uplifted thrust belt flanked by marine basins in which thick sequences of deep-water strata accumulated. A second episode of contractional deformation in late Early Permian to earliest Triassic time widened and further uplifted the thrust belt and produced the recently identified Inyo Crest thrust, which here is correlated with the regionally significant Last Chance thrust. In the Late Permian, about the time of the second contractional episode, extensional faulting created shallow sedimentary basins in the southern Inyo Mountains. In the El Paso Mountains to the south, deformation and plutonism record the onset of subduction and arc magmatism in late Early Permian to earliest Triassic time along this part of the margin. Tectonism had ceased in most of east-central California by middle to late Early

  5. Near-Stasis in the Long-Term Diversification of Mesozoic Tetrapods

    PubMed Central

    Benson, Roger B. J.; Butler, Richard J.; Alroy, John; Mannion, Philip D.; Carrano, Matthew T.; Lloyd, Graeme T.

    2016-01-01

    How did evolution generate the extraordinary diversity of vertebrates on land? Zero species are known prior to ~380 million years ago, and more than 30,000 are present today. An expansionist model suggests this was achieved by large and unbounded increases, leading to substantially greater diversity in the present than at any time in the geological past. This model contrasts starkly with empirical support for constrained diversification in marine animals, suggesting different macroevolutionary processes on land and in the sea. We quantify patterns of vertebrate standing diversity on land during the Mesozoic–early Paleogene interval, applying sample-standardization to a global fossil dataset containing 27,260 occurrences of 4,898 non-marine tetrapod species. Our results show a highly stable pattern of Mesozoic tetrapod diversity at regional and local levels, underpinned by a weakly positive, but near-zero, long-term net diversification rate over 190 million years. Species diversity of non-flying terrestrial tetrapods less than doubled over this interval, despite the origins of exceptionally diverse extant groups within mammals, squamates, amphibians, and dinosaurs. Therefore, although speciose groups of modern tetrapods have Mesozoic origins, rates of Mesozoic diversification inferred from the fossil record are slow compared to those inferred from molecular phylogenies. If high speciation rates did occur in the Mesozoic, then they seem to have been balanced by extinctions among older clades. An apparent 4-fold expansion of species richness after the Cretaceous/Paleogene (K/Pg) boundary deserves further examination in light of potential taxonomic biases, but is consistent with the hypothesis that global environmental disturbances such as mass extinction events can rapidly adjust limits to diversity by restructuring ecosystems, and suggests that the gradualistic evolutionary diversification of tetrapods was punctuated by brief but dramatic episodes of radiation

  6. Hotspots, polar wander, Mesozoic convection and the geoid

    NASA Astrophysics Data System (ADS)

    Anderson, D. L.

    1981-11-01

    The geoid bears little relation to present tectonic features of the earth other than trenches. The Mesozoic supercontinent of Pangea, however, apparently occupied a central position in the Atlantic-African geoid high. This and the equatorial Pacific geoid high contain most of the world's hotspots. The plateaus and rises in the western Pacific formed in the Pacific geoid high and this may have been the early Mesozoic position of Pacifica, the fragments of which are now the Pacific rim portions of the continents. Geoid highs which are unrelated to present subduction zones may be the former sites of continental aggregations and mantle insulation and, therefore, hotter than normal mantle. The pent-up heat causes rifts and hotspots and results in extensive uplift, magmatism, fragmentation and dispersal of the continents and the subsequent formation of plateaus, aseismic ridges and seamount chains. Convection in the uppermantle would then be due to lateral temperature gradients as well as heating from below and would be intrinsically episodic.

  7. Hotspots, polar wander, Mesozoic convection and the geoid

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1981-01-01

    The geoid bears little relation to present tectonic features of the earth other than trenches. The Mesozoic supercontinent of Pangea, however, apparently occupied a central position in the Atlantic-African geoid high. This and the equatorial Pacific geoid high contain most of the world's hotspots. The plateaus and rises in the western Pacific formed in the Pacific geoid high and this may have been the early Mesozoic position of Pacifica, the fragments of which are now the Pacific rim portions of the continents. Geoid highs which are unrelated to present subduction zones may be the former sites of continental aggregations and mantle insulation and, therefore, hotter than normal mantle. The pent-up heat causes rifts and hotspots and results in extensive uplift, magmatism, fragmentation and dispersal of the continents and the subsequent formation of plateaus, aseismic ridges and seamount chains. Convection in the uppermantle would then be due to lateral temperature gradients as well as heating from below and would be intrinsically episodic.

  8. A Temnospondyl Trackway from the Early Mesozoic of Western Gondwana and Its Implications for Basal Tetrapod Locomotion

    PubMed Central

    Marsicano, Claudia A.; Wilson, Jeffrey A.; Smith, Roger M. H.

    2014-01-01

    Background Temnospondyls are one of the earliest radiations of limbed vertebrates. Skeletal remains of more than 190 genera have been identified from late Paleozoic and early Mesozoic rocks. Paleozoic temnospondyls comprise mainly small to medium sized forms of diverse habits ranging from fully aquatic to fully terrestrial. Accordingly, their ichnological record includes tracks described from many Laurasian localities. Mesozoic temnospondyls, in contrast, include mostly medium to large aquatic or semi-aquatic forms. Exceedingly few fossil tracks or trackways have been attributed to Mesozoic temnospondyls, and as a consequence very little is known of their locomotor capabilities on land. Methodology/Principal Findings We report a ca. 200 Ma trackway, Episcopopus ventrosus, from Lesotho, southern Africa that was made by a 3.5 m-long animal. This relatively long trackway records the trackmaker dragging its body along a wet substrate using only the tips of its digits, which in the manus left characteristic drag marks. Based on detailed mapping, casting, and laser scanning of the best-preserved part of the trackway, we identified synapomorphies (e.g., tetradactyl manus, pentadactyl pes) and symplesiomorphies (e.g., absence of claws) in the Episcopopus trackway that indicate a temnospondyl trackmaker. Conclusions/Significance Our analysis shows that the Episcopopus trackmaker progressed with a sprawling posture, using a lateral-sequence walk. Its forelimbs were the major propulsive elements and there was little lateral bending of the trunk. We suggest this locomotor style, which differs dramatically from the hindlimb-driven locomotion of salamanders and other extant terrestrial tetrapods can be explained by the forwardly shifted center of mass resulting from the relatively large heads and heavily pectoral girdles of temnospondyls. PMID:25099971

  9. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  10. Mesozoic cyclostratigraphy, the 405-kyr orbital eccentricity metronome, and the Astronomical Time Scale (Invited)

    NASA Astrophysics Data System (ADS)

    Hinnov, L.; Ogg, J. G.

    2009-12-01

    Mesozoic cyclostratigraphy from around the world is being assessed to construct a continuous Astronomical Time Scale (ATS) based on Earth’s cyclic orbital parameters. The recognition of a prevalent sedimentary cycling with a ~400-kyr period associated with forcing by the stable 405-kyr orbital eccentricity variation is an important development. Numerous formations spanning 10 to 20 myr (and longer) intervals in the Cretaceous, Jurassic and Triassic clearly express this dominant cycle and provide a robust basis for 405-kyr-scale calibration of the ATS. This 405-kyr metronome will enable extension of the well-defined Cenozoic ATS for scaling of the past quarter-billion years of Earth history. This astronomical calibration has a resolution comparable to the 1% to 0.1% precision for radioisotope dating of Mesozoic ash beds, with the added benefit of providing continuous stratigraphic coverage between dated beds. Extended portions of the Mesozoic ATS have already provided new insights into long-standing geologic problems of seafloor spreading, tectonics, eustasy, and paleoclimate change. Ongoing work is focused on closing gaps in coverage and on collecting duplicate cyclostratigraphic records for the entire Mesozoic Era.

  11. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts

    NASA Astrophysics Data System (ADS)

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-06-01

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ~70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ~90% of that of the modern global ocean and relative amplitude varied by ~20-50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<~100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world.

  12. Field guide to the Mesozoic arc and accretionary complex of South-Central Alaska, Indian to Hatcher Pass

    USGS Publications Warehouse

    Karl, Susan M.; Oswald, P.J.; Hults, Chad P.

    2015-01-01

    This field trip traverses exposures of a multi-generation Mesozoic magmatic arc and subduction-accretion complex that had a complicated history of magmatic activity and experienced variations in composition and deformational style in response to changes in the tectonic environment. This Mesozoic arc formed at an unknown latitude to the south, was accreted to North America, and was subsequently transported along faults to its present location (Plafker and others, 1989; Hillhouse and Coe, 1994). Some of these faults are still active. Similar tectonic, igneous, and sedimentary processes to those that formed the Mesozoic arc complex persist today in southern Alaska, building on, and deforming the Mesozoic arc. The rocks we will see on this field trip provide insights on the three-dimensional composition of the modern arc, and the processes involved in the evolution of an arc and its companion accretionary complex.

  13. Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs.

    PubMed

    Charles Deeming, D; Mayr, Gerald

    2018-05-01

    Numerous new fossils have driven an interest in reproduction of early birds, but direct evidence remains elusive. No Mesozoic avian eggs can be unambiguously assigned to a species, which hampers our understanding of the evolution of contact incubation, which is a defining feature of extant birds. Compared to living species, eggs of Mesozoic birds are relatively small, but whether the eggs of Mesozoic birds could actually have borne the weight of a breeding adult has not yet been investigated. We estimated maximal egg breadth for a range of Mesozoic avian taxa from the width of the pelvic canal defined by the pubic symphysis. Known elongation ratios of Mesozoic bird eggs allowed us to predict egg mass and hence the load mass an egg could endure before cracking. These values were compared to the predicted body masses of the adult birds based on skeletal remains. Based on 21 fossil species, we show that for nonornithothoracine birds body mass was 187% of the load mass of the eggs. For Enantiornithes, body mass was 127% greater than the egg load mass, but some early Cretaceous ornithuromorphs were 179% heavier than their eggs could support. Our indirect approach provides the best evidence yet that early birds could not have sat on their eggs without running the risk of causing damage. We suggest that contact incubation evolved comparatively late in birds. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  14. Field evidences for a Mesozoic palaeo-relief through the northern Tianshan

    NASA Astrophysics Data System (ADS)

    Gumiaux, Charles; Chen, Ke; Augier, Romain; Chen, Yan; Wang, Qingchen

    2010-05-01

    identified quite high in the mountain range or even, surprisingly, directly along the northern Tianshan "front" itself. Combining available information from geological maps, field investigations and numerous drilling wells, regional-scale cross-sections have been built. Some of them show "onlap" type deposit of the Triassic to Jurassic clastic sediments on top of the Paleozoic basement that was thus significantly sloping down to the North at that time. Our study clearly evidences, at different scales, the existence of a major palaeo-relief along the northern Tianshan range during Mesozoic, and particularly during Jurassic times. Such results are compatible with previous fission tracks and sedimentology studies. From this, the Tianshan's uplift and the movements associated with along its northern front structures, which are traditionally assigned to its Cenozoic reactivation, must be reduced. These new results question on the mode and timing of reactivation of structures and on the link between topography and intra-continental collisional settings.

  15. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia: (II) Mesozoic ophiolites

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Stern, Robert J.

    2015-03-01

    Iran is a mosaic of continental terranes of Cadomian (520-600 Ma) age, stitched together along sutures decorated by Paleozoic and Mesozoic ophiolites. Here we present the current understanding of the Mesozoic (and rare Cenozoic) ophiolites of Iran for the international geoscientific audience. We summarize field, chemical and geochronological data from the literature and our own unpublished data. Mesozoic ophiolites of Iran are mostly Cretaceous in age and are related to the Neotethys and associated backarc basins on the S flank of Eurasia. These ophiolites can be subdivided into five belts: 1. Late Cretaceous Zagros outer belt ophiolites (ZOB) along the Main Zagros Thrust including Late Cretaceous-Early Paleocene Maku-Khoy-Salmas ophiolites in NW Iran as well as Kermanshah-Kurdistan, Neyriz and Esfandagheh (Haji Abad) ophiolites, also Late Cretaceous-Eocene ophiolites along the Iraq-Iran border; 2. Late Cretaceous Zagros inner belt ophiolites (ZIB) including Nain, Dehshir, Shahr-e-Babak and Balvard-Baft ophiolites along the southern periphery of the Central Iranian block and bending north into it; 3. Late Cretaceous-Early Paleocene Sabzevar-Torbat-e-Heydarieh ophiolites of NE Iran; 4. Early to Late Cretaceous Birjand-Nehbandan-Tchehel-Kureh ophiolites in eastern Iran between the Lut and Afghan blocks; and 5. Late Jurassic-Cretaceous Makran ophiolites of SE Iran including Kahnuj ophiolites. Most Mesozoic ophiolites of Iran show supra-subduction zone (SSZ) geochemical signatures, indicating that SW Asia was a site of plate convergence during Late Mesozoic time, but also include a significant proportion showing ocean-island basalt affinities, perhaps indicating the involvement of subcontinental lithospheric mantle.

  16. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts

    PubMed Central

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-01-01

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ∼70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ∼90% of that of the modern global ocean and relative amplitude varied by ∼20–50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<∼100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world. PMID:28589958

  17. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts.

    PubMed

    Ikeda, Masayuki; Tada, Ryuji; Ozaki, Kazumi

    2017-06-07

    The global silica cycle is an important component of the long-term climate system, yet its controlling factors are largely uncertain due to poorly constrained proxy records. Here we present a ∼70 Myr-long record of early Mesozoic biogenic silica (BSi) flux from radiolarian chert in Japan. Average low-mid-latitude BSi burial flux in the superocean Panthalassa is ∼90% of that of the modern global ocean and relative amplitude varied by ∼20-50% over the 100 kyr to 30 Myr orbital cycles during the early Mesozoic. We hypothesize that BSi in chert was a major sink for oceanic dissolved silica (DSi), with fluctuations proportional to DSi input from chemical weathering on timescales longer than the residence time of DSi (<∼100 Kyr). Chemical weathering rates estimated by the GEOCARBSULFvolc model support these hypotheses, excluding the volcanism-driven oceanic anoxic events of the Early-Middle Triassic and Toarcian that exceed model limits. We propose that the Mega monsoon of the supercontinent Pangea nonlinearly amplified the orbitally paced chemical weathering that drove BSi burial during the early Mesozoic greenhouse world.

  18. Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, Rongwei; Liu, Hailing; Yao, Yongjian; Wang, Yin

    2018-05-01

    The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E-N(N)W and N(N)W-S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.

  19. Sub-basaltic Imaging of Ethiopian Mesozoic Sediments Using Surface Wave Dispersion

    NASA Astrophysics Data System (ADS)

    Mammo, T.; Maguire, P.; Denton, P.; Cornwell, D.

    2003-12-01

    The Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) involved the deployment of a 400km NW-SE cross-rift profile across the Main Ethiopian Rift. The profile extended to about 150km on either side of the rift over the uplifted Ethiopian plateau characterized by voluminous Tertiary flood basalts covering a thick sequence of Mesozoic sediments. These consist of three major stratigraphic units, the Cretaceous Upper Sandstone (medium grained, friable and moderately to well-sorted) overlying the Jurassic Antalo limestone (with intercalations of marl, shale, mudstone and gypsum) above the Triassic Adigrat sandstone. These sediments are suggested to be approximately 1.5km thick at the north-western end of the profile, thickening to the south-east. They are considered a possible hydrocarbon reservoir and therefore crucial to the economy of Ethiopia. The EAGLE cross-rift profile included the deployment of 97 Guralp 6TD seismometers (30sec - 80Hz bandwidth) at a nominal 5km spacing. A 5.75 tonne explosion from the Muger quarry detonated specifically for the EAGLE project generated the surface waves used in this study. Preliminary processing involving the multiple filter technique has enabled the production of group velocity dispersion curves. These curves have been inverted to provide 1-D shear wave models, with the intention of providing an in-line cross-rift profile of Mesozoic sediment thickness. Preliminary results suggest that the sediments can be distinguished from both overlying plateau basalt and underlying basement, with their internal S-wave velocity structure possibly indicating that the three sediment units described above can be separately identified.

  20. The first iguanian lizard from the Mesozoic of Africa

    NASA Astrophysics Data System (ADS)

    Apesteguía, Sebastián; Daza, Juan D.; Simões, Tiago R.; Rage, Jean Claude

    2016-09-01

    The fossil record shows that iguanian lizards were widely distributed during the Late Cretaceous. However, the biogeographic history and early evolution of one of its most diverse and peculiar clades (acrodontans) remain poorly known. Here, we present the first Mesozoic acrodontan from Africa, which also represents the oldest iguanian lizard from that continent. The new taxon comes from the Kem Kem Beds in Morocco (Cenomanian, Late Cretaceous) and is based on a partial lower jaw. The new taxon presents a number of features that are found only among acrodontan lizards and shares greatest similarities with uromastycines, specifically. In a combined evidence phylogenetic dataset comprehensive of all major acrodontan lineages using multiple tree inference methods (traditional and implied weighting maximum-parsimony, and Bayesian inference), we found support for the placement of the new species within uromastycines, along with Gueragama sulamericana (Late Cretaceous of Brazil). The new fossil supports the previously hypothesized widespread geographical distribution of acrodontans in Gondwana during the Mesozoic. Additionally, it provides the first fossil evidence of uromastycines in the Cretaceous, and the ancestry of acrodontan iguanians in Africa.

  1. Final report. [Mesozoic tectonic history of the northeastern Great Basin (Nevada)

    NASA Technical Reports Server (NTRS)

    Zamudio, Joe

    1993-01-01

    In eastern Nevada and western Utah is an extensive terrane that has experienced a complex tectonic history of Mesozoic deformation and superposed Tertiary extension. The Mesozoic tectonic history of this area has been the subject of controversy for the past twenty or more years. The debate has centered on whether major Mesozoic geologic structures were due to compressional or extensional tectonic regimes. The goal of our research was to decipher the deformational history of the area by combining detailed geologic mapping, remote sensing data analysis, and U-Pb and K-Ar geochronology. This study area includes the Dolly Varden Mountains and adjacent Currie Hills, located in the semi-arid environment of the northeastern Great Basin in Nevada. Vegetation cover in the Dolly Varden Mountains typically ranges from about 10 percent to 50 percent, with some places along drainages and on high, north-facing slopes where vegetation cover approaches 100 percent. Sagebrush is found at less vegetated lower elevations, whereas pinon pine and juniper are prevalent above 2,000 meters. A variety of geologic materials is exposed in the study area. A sequence of Late Paleozoic and Triassic sedimentary rocks includes limestone, dolomite, chert, sandstone, siltstone and shale. A two-phase granitic stock, called the Melrose, intruded these rocks, resulting in metamorphism along the intrusive contact. Tertiary volcanic rocks cover most of the eastern part of the Dolly Varden Mountains and low-lying areas in the Currie Hills.

  2. Mesozoic evolution of northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1989-03-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. The 250 km-wide and highly differentiated Mesozoic passive margin in the Western Desert region of Egypt is developed above a broad northwest-trending Late Carboniferous basement arch. In northeastern Libya, in contrast, the passive margin is restricted to just the northernmost Cyrenaica platform, where subsidence was extremely rapid in the Jurassic and Early Cretaceous. The boundary between the Western Desertmore » basin and the Cyrenaica platform is controlled by the western flank of the basement arch. In the middle Cretaceous (100-90 Ma), subsidence accelerated over large areas of the Western desert, further enhancing a pattern of east-west-trending subbasins. This phase of rapid subsidence was abruptly ended about 80 Ma by the onset of structural inversion that uplifted the northern Cyrenaica shelf margin and further differentiated the Western Desert subbasin along a northeasterly trend.« less

  3. Diverse transitional giant fleas from the Mesozoic era of China.

    PubMed

    Huang, Diying; Engel, Michael S; Cai, Chenyang; Wu, Hao; Nel, André

    2012-02-29

    Fleas are one of the major lineages of ectoparasitic insects and are now highly specialized for feeding on the blood of birds or mammals. This has isolated them among holometabolan insect orders, although they derive from the Antliophora (scorpionflies and true flies). Like most ectoparasitic lineages, their fossil record is meagre and confined to Cenozoic-era representatives of modern families, so that we lack evidence of the origins of fleas in the Mesozoic era. The origins of the first recognized Cretaceous stem-group flea, Tarwinia, remains highly controversial. Here we report fossils of the oldest definitive fleas--giant forms from the Middle Jurassic and Early Cretaceous periods of China. They exhibit many defining features of fleas but retain primitive traits such as non-jumping hindlegs. More importantly, all have stout and elongate sucking siphons for piercing the hides of their hosts, implying that these fleas may be rooted among the pollinating 'long siphonate' scorpionflies of the Mesozoic. Their special morphology suggests that their earliest hosts were hairy or feathered 'reptilians', and that they radiated to mammalian and bird hosts later in the Cenozoic.

  4. Bone-eating Osedax worms lived on Mesozoic marine reptile deadfalls.

    PubMed

    Danise, Silvia; Higgs, Nicholas D

    2015-04-01

    We report fossil traces of Osedax, a genus of siboglinid annelids that consume the skeletons of sunken vertebrates on the ocean floor, from early-Late Cretaceous (approx. 100 Myr) plesiosaur and sea turtle bones. Although plesiosaurs went extinct at the end-Cretaceous mass extinction (66 Myr), chelonioids survived the event and diversified, and thus provided sustenance for Osedax in the 20 Myr gap preceding the radiation of cetaceans, their main modern food source. This finding shows that marine reptile carcasses, before whales, played a key role in the evolution and dispersal of Osedax and confirms that its generalist ability of colonizing different vertebrate substrates, like fishes and marine birds, besides whale bones, is an ancestral trait. A Cretaceous age for unequivocal Osedax trace fossils also dates back to the Mesozoic the origin of the entire siboglinid family, which includes chemosynthetic tubeworms living at hydrothermal vents and seeps, contrary to phylogenetic estimations of a Late Mesozoic-Cenozoic origin (approx. 50-100 Myr). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  6. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    NASA Astrophysics Data System (ADS)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  7. Functional Morphometric Analysis of the Furcula in Mesozoic Birds

    PubMed Central

    Close, Roger A.; Rayfield, Emily J.

    2012-01-01

    The furcula displays enormous morphological and structural diversity. Acting as an important origin for flight muscles involved in the downstroke, the form of this element has been shown to vary with flight mode. This study seeks to clarify the strength of this form-function relationship through the use of eigenshape morphometric analysis coupled with recently developed phylogenetic comparative methods (PCMs), including phylogenetic Flexible Discriminant Analysis (pFDA). Additionally, the morphospace derived from the furculae of extant birds is used to shed light on possible flight adaptations of Mesozoic fossil taxa. While broad conclusions of earlier work are supported (U-shaped furculae are associated with soaring, strong anteroposterior curvature with wing-propelled diving), correlations between form and function do not appear to be so clear-cut, likely due to the significantly larger dataset and wider spectrum of flight modes sampled here. Interclavicular angle is an even more powerful discriminator of flight mode than curvature, and is positively correlated with body size. With the exception of the close relatives of modern birds, the ornithuromorphs, Mesozoic taxa tend to occupy unique regions of morphospace, and thus may have either evolved unfamiliar flight styles or have arrived at similar styles through divergent musculoskeletal configurations. PMID:22666324

  8. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  9. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas.

    PubMed

    Friedman, Matt; Shimada, Kenshu; Martin, Larry D; Everhart, Michael J; Liston, Jeff; Maltese, Anthony; Triebold, Michael

    2010-02-19

    Large-bodied suspension feeders (planktivores), which include the most massive animals to have ever lived, are conspicuously absent from Mesozoic marine environments. The only clear representatives of this trophic guild in the Mesozoic have been an enigmatic and apparently short-lived Jurassic group of extinct pachycormid fishes. Here, we report several new examples of these giant bony fishes from Asia, Europe, and North America. These fossils provide the first detailed anatomical information on this poorly understood clade and extend its range from the lower Middle Jurassic to the end of the Cretaceous, showing that this group persisted for more than 100 million years. Modern large-bodied, planktivorous vertebrates diversified after the extinction of pachycormids at the Cretaceous-Paleogene boundary, which is consistent with an opportunistic refilling of vacated ecospace.

  10. Re-Os isotope evidence from Mesozoic and Cenozoic basalts for secular evolution of the mantle beneath the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Xu, Ji-Feng; Liu, Yong-Sheng; Li, Jie; Chen, Jian-Lin; Li, Xi-Yao

    2017-05-01

    The mechanism and process of lithospheric thinning beneath the North China Craton (NCC) are still debated. A key criterion in distinguishing among the proposed mechanisms is whether associated continental basalts were derived from the thinning lithospheric mantle or upwelling asthenosphere. Herein, we investigate the possible mechanisms of lithospheric thinning based on a systematic Re-Os isotopic study of Mesozoic to Cenozoic basalts from the NCC. Our whole-rock Re-Os isotopic results indicate that the Mesozoic basalts generally have high Re and Os concentrations that vary widely from 97.2 to 839.4 ppt and 74.4 to 519.6 ppt, respectively. They have high initial 187Os/188Os ratios ranging from 0.1513 to 0.3805, with corresponding variable γOs(t) values (+20 to +202). In contrast, the Re-Os concentrations and radiogenic Os isotope compositions of the Cenozoic basalts are typically lower than those of the Mesozoic basalts. The lowest initial 187Os/188Os ratios of the Cenozoic basalts are 0.1465 and 0.1479, with corresponding γOs(t) values of +15 and +16, which are within the range of ocean island basalts. These new Re-Os isotopic results, combined with the findings of previous studies, indicate that the Mesozoic basalts were a hybrid product of the melting of pyroxenite and peridotite in ancient lithospheric mantle beneath the NCC. The Cenozoic basalts were derived mainly from upwelling asthenosphere mixed with small amounts of lithospheric materials. The marked differences in geochemistry between the Mesozoic and Cenozoic basalts suggest a greatly reduced involvement of lithospheric mantle as the magma source from the Mesozoic to the Cenozoic. The subsequent lithospheric thinning of the NCC and replacement by upwelling asthenospheric mantle resulted in a change to asthenosphere-derived Cenozoic basalts.

  11. Comparison of clay mineral stratigraphy to other proxy palaeoclimate indicators in the Mesozoic of NW Europe.

    PubMed

    Ruffell, Alastair; McKinley, Jennifer M; Worden, Richard H

    2002-04-15

    This paper reviews the opportunities and pitfalls associated with using clay mineralogical analysis in palaeoclimatic reconstructions. Following this, conjunctive methods of improving the reliability of clay mineralogical analysis are reviewed. The Mesozoic succession of NW Europe is employed as a case study. This demonstrates the relationship between clay mineralogy and palaeoclimate. Proxy analyses may be integrated with clay mineralogical analysis to provide an assessment of aridity-humidity contrasts in the hinterland climate. As an example, the abundance of kaolinite through the Mesozoic shows that, while interpretations may be difficult, the Mesozoic climate of NW Europe was subject to great changes in rates of continental precipitation. We may compare sedimentological (facies, mineralogy, geochemistry) indicators of palaeoprecipitation with palaeotemperature estimates. The integration of clay mineralogical analyses with other sedimentological proxy indicators of palaeoclimate allows differentiation of palaeoclimatic effects from those of sea-level and tectonic change. We may also observe how widespread palaeoclimate changes were; whether they were diachronous or synchronous; how climate, sea level and tectonics interact to control sedimentary facies and what palaeoclimate indicators are reliable.

  12. Mesozoic Compressional Folds of the Nansha Waters, Southern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhu, R.; Liu, H.; Yao, Y.; Wang, Y.

    2017-12-01

    As an important part of the South China Sea, the southern margin of the South China Sea is fundamental to understand the interaction of the Eurasian, Pacific and Indian-Australian plates and the evolution of the South China Sea. Some multi-channel seismic profiles of the Nansha waters together with published drillings and dredge data were correlated for interpretation. The strata of the study region can be divided into the upper, middle and lower structural layers. The upper and middle structural layers with extensional tectonics are Cenozoic; the lower structural layer suffered compression is Mesozoic. Further structural restoration was done to remove the Cenozoic tectonic influence and to calculate the Mesozoic tectonic compression ratios. The results indicate that two diametrically opposite orientations of compressive stress, S(S)E towards N(N)W orientation and N(N)W towards S(S)E orientation respectively, once existed in the lower structural layer of the study area and shared the same variation trend. The compression ratio values gradually decrease both from the north to the south and from the west to the east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate of the Nansha block drifted northward in Late Jurassic to Late Cretaceous, which had pushed the Nansha block drifted northward until it collided and sutured with the Southern China Margin. Thus the opening of the present-day South China Sea may be related to this suture zone, which was tectonically weakness zone.Key words: Mesozoic compression; structural restoration; proto-South China Sea; Nansha waters; Southern South China Sea; Acknowledgements: The work was granted by the National Natural Science Foundation of China (Grant Nos. 41476039, 91328205, 41576068 and 41606080).

  13. Reinterpretation of Mesozoic and Cenozoic tectonic events, Mountain Pass area, northeastern San Bernardino County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, M.A.

    1993-04-01

    Detailed mapping, stratigraphic structural analysis in the Mountain Pass area has resulted in a reinterpretation of Mesozoic and Cenozoic tectonic events in the area. Mesozoic events are characterized by north vergent folds and thrust faults followed by east vergent thrusting. Folding created two synclines and an anticline which were than cut at different stratigraphic levels by subsequent thrust faults. Thrusting created composite tectono-stratigraphic sections containing autochthonous, para-autothonous, and allochthonous sections. Normal faults cutting these composite sections including North, Kokoweef, White Line, and Piute fault must be post-thrusting, not pre-thrusting as in previous interpretations. Detailed study of these faults results inmore » differentiation of at least three orders of faults and suggest they represent Cenozoic extension correlated with regional extensional events between 11 and 19 my. Mesozoic stratigraphy reflects regional orogenic uplift, magmatic activity, and thrusting. Inclusion of Kaibab clasts in the Chinle, Kaibab and Chinle clasts in the Aztec, and Chinle, Aztec, and previously deposited Delfonte Volcanics clasts in the younger members of the Delfonte Volcanics suggest regional uplift prior to the thrusting of Cambrian Bonanza King over Delfonte Volcanics by the Mescal Thrust fault. The absence of clasts younger than Kaibab argues against pre-thrusting activity for the Kokoweef fault.« less

  14. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taha, M.A.

    1988-08-01

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recentmore » well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.« less

  15. Extreme Mesozoic crustal thinning in the Eastern Iberia margin: The example of the Columbrets Basin (Valencia Trough)

    NASA Astrophysics Data System (ADS)

    Mohn, G.; Etheve, N.; Frizon de Lamotte, D.; Roca, E.; Tugend, J.; Gómez-Romeu, J.

    2017-12-01

    Eastern Iberia preserves a complex succession of Mesozoic rifts partly or completely inverted during the Late Cretaceous and Cenozoic in relation with Africa-Eurasia convergence. Notably, the Valencia Trough, classically viewed as part of the Cenozoic West Mediterranean basins, preserves in its southwestern part a thick Mesozoic succession (locally »10km thick) over a highly thinned continental basement (locally only »3,5km thick). This sub-basin referred to as the Columbrets Basin, represents a Late Jurassic-Early Cretaceous hyper-extended rift basin weakly overprinted by subsequent events. Its initial configuration is well preserved allowing us to unravel its 3D architecture and tectono-stratigraphic evolution in the frame of the Mesozoic evolution of eastern Iberia. The Columbrets Basin benefits from an extensive dataset combining high resolution reflection seismic profiles, drill holes, refraction seismic data and Expanding Spread Profiles. Its Mesozoic architecture is controlled by interactions between extensional deformation and halokinesis involving the Upper Triassic salt. The thick uppermost Triassic to Cretaceous succession describes a general synclinal shape, progressively stretched and dismembered towards the basin borders. The SE-border of the basin is characterized by a large extensional detachment fault acting at crustal scale and interacting locally with the Upper Triassic décollement. This extensional structure accommodates the exhumation of the continental basement and part of the crustal thinning. Eventually our results highlight the complex interaction between extreme crustal thinning and occurrence of a pre-rift salt level for the deformation style and tectono-stratigraphic evolution of hyper-extended rift basins.

  16. Mesozoic paleogeography and paleoclimates - A discussion of the diverse greenhouse and hothouse conditions of an alien world

    NASA Astrophysics Data System (ADS)

    Holz, Michael

    2015-08-01

    The Mesozoic was the time of the break-up of Pangaea, with profound consequences not only for the paleocontinental configuration, but also for paleoclimates and for the evolution of life. Cool greenhouse conditions alternated with warm greenhouse and even hothouse conditions, with global average temperatures around 6-9 °C warmer than the present ones. There are only sparse and controversial evidence for polar ice; meanwhile, extensive evaporitic and desertic deposits are well described. Global sea levels were mainly high, and the content of atmospheric O2 was varying between 15 and 25%. These conditions make the Mesozoic Earth an alien world compared to present-day conditions. Degassing from volcanism linked to the rifting process of Pangaea and methane emissions from reptilian biotas were climate-controlling factors because they enhanced atmospheric CO2 concentrations up to 16 times compared to present-day levels. The continental break-up modified paleopositions and shoreline configurations of the landmasses, generating huge epicontinental seas and altering profoundly the oceanic circulation. The Mesozoic was also a time of important impact events as probable triggers for "impact winters"; and for the Era at least nine huge (diameter > 20 km) impact structures are known. This paper presents an abridged but updated overview of the Mesozoic paleogeographic and paleoclimatic variations, characterizing each period and sub-period in terms of paleoclimatic state and main tectonic and climatic events, and provides a brief geologic, stratigraphic, paleoclimatic and taphonomic characterization of dinosaur occurrences as recorded in the Brazilian continental basins.

  17. Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California

    USGS Publications Warehouse

    Miller, C.F.; Wooden, J.L.

    1994-01-01

    A compositionally expanded array of granitic (s.l.) magmas intruded the > 2 Ga crust of the Old Woman Mountains area between 160 and 70 Ma. These magmas were emplaced near the eastern (inland) edge of the Jurassic/Cretaceous arcs of western North America, in an area where magma flux, especially during the Jurassic, was considerably lower than to the west. The Jurassic intrusives and over half of the Cretaceous intrusives are predominantly metaluminous and variable in composition; a major Cretaceous suite comprises only peraluminous monzogranite. Only the Jurassic intrusions show clear evidence for the presence of mafic liquids. All units, including the most mafic rocks, reveal isotopic evidence for a significant crustal component. However, none of the Mesozoic intrusives matches in isotopic composition either average pre-intrusion crust or any major unit of the exposed crust. Elemental inconsistencies also preclude closed system derivation from exposed crust. Emplacement of these magmas, which doubled the volume of the mid- to upper crust, did not dramatically change its elemental composition. It did, however, affect its Nd and especially Sr isotopic composition and modify some of the distinctive aspects of the elemental chemistry. We propose that Jurassic magmatism was open-system, with a major influx of mantle-derived mafic magma interacting strongly with the ancient crust. Mesozoic crustal thickening may have led to closed-system crustal melting by the Late Cretaceous, but the deep crust had been profoundly modified by earlier Mesozoic hybridization so that crustal melts did not simply reflect the original crustal composition. The clear evidence for a crustal component in magmas of the Old Woman Mountains area may not indicate any fundamental differences from the processes at work elsewhere in this or other magmatic arcs where the role of pre-existing crust is less certain. Rather, a compositionally distinctive, very old crust may simply have yielded a more

  18. Challenge for Mesozoic hydrocarbon exploration in the Eastern Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, S.; Rukmiati, M.G.; Sitompul, N.

    1996-12-31

    The eastern part of Indonesia covers approximately 3 million square kilometers, 35 percent being landmass and 65 percent covered by ocean. Only three of 38 sedimentary basins are producing hydrocarbon (Salawati, Bintuni, and Seram Basins). Oil and gas have discovered in the Lariang, Bone, Timor, Banggai, Sula and Biak Basins, however the discoveries have not developed yet. Hydrocarbon systems in Northern Australia and Papua New Guinea give the major contributions to the geological idea of Pre-Tertiary section in the less explored area in the Eastern Indonesia. The Triassic-Middle Jurassic marine carbonaceous shale sequences are the main hydrocarbon source rock inmore » the Irian Jaya and surrounding area (Buton, gula and Seram basins). The main Mesozoic reservoir are the Kembelangan Formation in the Bintuni Basin of Irian Jaya and Bobong Formation in the North Sula Region. Exploration play types in the Eastern Indonesia can be divided into five types: 1 - Peri Cratonic, 2 - Marginal Rift Graben, 3 - Thrust Fold Belt Island Arc, 4 - Early Collision and 5 -Microcontinental Block - Advanced Collision. Recent discoveries through Mesozoic section in Eastern Indonesia are: Roabiba-1 (1990) in Bintuni Basin-Irian Jaya (Kambelangan Formation); Loku- 1 (1990) in North Sula region (Pre-Tertiary sediments); Oseil-1 (1993/94) in Bula-Seram Basin (Jurassic Manusela Formation); Elang-1 (1 994); Kakaktua-1 (1994) and Laminaria-1 in North Bonaparte Basin (Upper Jurassic Sands).« less

  19. Pre-mesozoic palinspastic reconstruction of the eastern great basin (Western United States).

    PubMed

    Levy, M; Christie-Blick, N

    1989-09-29

    The Great Basin of the western United States has proven important for studies of Proterozoic and Paleozoic geology [2500 to 245 million years ago (Ma)] and has been central to the development of ideas about the mechanics of crustal shortening and extension. An understanding of the deformational history of this region during Mesozoic and Cenozoic time (245 Ma to the present) is required for palinspastic reconstruction of now isolated exposures of older geology in order to place these in an appropriate regional geographic context. Considerable advances in unraveling both the crustal shortening that took place during Mesozoic to early Cenozoic time (especially from about 150 to 50 Ma) and the extension of the past 37 million years have shown that earlier reconstructions need to be revised significantly. A new reconstruction is developed for rocks of middle Proterozoic to Early Cambrian age based on evidence that total shortening by generally east-vergent thrusts and folds was at least 104 to 135 kilometers and that the Great Basin as a whole accommodated approximately 250 kilometers of extension in the direction 287 degrees +/- 12 degrees between the Colorado Plateau and the Sierra Nevada. Extension is assumed to be equivalent at all latitudes because available paleomagnetic evidence suggests that the Sierra Nevada experienced little or no rotation with respect to the extension direction since the late Mesozoic. An estimate of the uncertainty in the amount of extension obtained from geological and paleomagnetic uncertainties increases northward from +/-56 kilometers at 36 degrees 30N to (-87)(+108) kilometers at 40 degrees N. On the basis of the reconstruction, the original width of the preserved part of the late Proterozoic and Early Cambrian basin was about 150 to 300 kilometers, about 60 percent of the present width, and the basin was oriented slightly more north-south with respect to present-day coordinates.

  20. The Mesozoic palaeo-relief and immature front belt of northern Tianshan

    NASA Astrophysics Data System (ADS)

    Chen, K.; Gumiaux, C.; Augier, R.; Chen, Y.; Wang, Q.

    2012-04-01

    The modern Tianshan (central Asia) extends east-west on about 2500 km long with an average of more than 2000 m in altitude. At first order, the finite structure of this range obviously displays a crust-scale 'pop-up' of Palaeozoic rocks surrounded by two Cenozoic foreland basins. Up to now, this range is regarded as a direct consequence of the Neogene to recent reactivation of a Palaeozoic belt due to the India - Asia collision. This study focuses on the structure of the northern front area of Tianshan and is mainly based on field structural works. In particular, relationships in between sedimentary cover and basement units allow discussing the tectonic and morphological evolution of the northern Tianshan during Mesozoic and Cenozoic times. The study area is about 250 km long, from Wusu to Urumqi, along the northern piedmont of the Tianshan. Continental sedimentary series of the basin as well as structure of the cover/basement interface can well be observed along several incised valleys. Sedimentological observations argue for a limited transport distance for Lower and Uppermost Jurassic deposits that are preserved within intra-mountainous basins or within the foreland basin, along the range front. Moreover, some of the studied geological sections show that Triassic to Jurassic sedimentary series can be continuously followed from the basin to the range where they unconformably overlie the Carboniferous basement. Such onlap type structures of the Jurassic series, on top of the Palaeozoic rock units, can also be observed at more local-scale (~a few 100 m). At different scales, our observations thus clearly evidence i) the existence of a substantial relief during Mesozoic times and ii) very limited deformation, after Mesozoic, along some segments of the northern range front. Yet, thrusting of the Palaeozoic basement on the Mesozoic or Cenozoic sedimentary series of the basin is also well exposed along some other river valleys. As a consequence, the northern front of

  1. Geochemistry of Mesozoic plutons, southern Death Valley region, California: Insights into the origin of Cordilleran interior magmatism

    USGS Publications Warehouse

    Ramo, O.T.; Calzia, J.P.; Kosunen, P.J.

    2002-01-01

    Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with ??Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with ??Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unuasually juvenile composition (??Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordillera plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.

  2. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    USGS Publications Warehouse

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  3. Correspondence of Mesozoic Eustatic Sea-Level Change with Palaeoclimate Proxies: Evidence for Glacio-Eustasy?

    NASA Astrophysics Data System (ADS)

    Simmons, M.; Davies, A.; Gréselle, B.

    2011-12-01

    Large-scale changes in stratigraphic architecture and facies that are brought about by changes in relative sea-level have been the focus of much academic and industry study over the last few decades. The authors, plus numerous colleagues, have studied over 11,000 stratigraphic sections worldwide. By applying biostratigraphic and chemostratigraphic calibration in suitable locations from this dataset it is possible to demonstrate over 250 synchronous global sequence stratigraphic events in the Phanerozoic including over 100 in the Mesozoic. This then raises the question - what causes globally synchronous eustatic sea-level change? To answer this question requires an understanding of both the pace and amplitude of the observed eustatic sea-level change. In successions where duration can be deduced from orbital forcing cycles, our observed sea-level changes appear to be relatively rapid - less than 500,000 years, for example, for sea-level rises in the Late Jurassic. The amplitude of such rises is in the order of tens of metres. Such rates and amplitudes as inferred from our global model preclude tectonism as a primary driver and implicate glacio-eustacy as a key driving mechanism, even in supposed "greenhouse times". Given the clear economic importance of understanding the underlying mechanisms driving this eustatic change we have compiled records of key isotopic proxies through the entire Mesozoic in an effort to explore the relationship between global sea-level and palaeoclimate. Our research reveals a clear link between many large-scale maximum flooding events with known episodes of palaeoclimatic warming and between climatic cooling events and lowstand intervals, further implicating glacio-eustacy. In addition to the isotopic proxy evidence we have also compiled direct indicators for the occurrence of cold polar conditions, including the presence of ice sheets, in the Mesozoic (e.g. tillites, glendonites). This has been incorporated into plate tectonic

  4. Early Mesozoic cooling from low temperature thermochronology in N Spain and N Africa

    NASA Astrophysics Data System (ADS)

    Grobe, R.; Alvarez-Marrón, J.; Glasmacher, U. A.; Menéndez-Duarte, R.

    2009-04-01

    In the western prolongation of the Pyrenees, the substratum of the Cantabrian Mountains consists of an E-W crustal section of the Gondwana continental margin involved in the Variscan collision. In Mesozoic times, the region was modified by rifting and the opening of the Atlantic and the Bay of Biscay, while in Paleogene-Neogene times it was affected by the convergence of the Iberian Plate with the Eurasian Plate resulting in the present mountains. Our thermochronological data and modelled time-temperature histories suggest an earlier, relative fast cooling period during Early Triassic to Early Jurassic. This cooling event coincides temporally with the process of rifting that caused Pangaea continental break-up and the opening of the North Atlantic. Other authors report similar cooling histories from Early Triassic to Middle Jurassic from other parts of the Iberian Peninsula (Juez-Larré, 2003; Barbero et al., 2005) as well as from the Moroccan Meseta, in N Africa (Ghorbal et al., 2008). Furthermore, the time span of this cooling event includes the period of main activity of the Central Atlantic Magmatic Province (CAMP) magmatism at around 200 Ma (Marzoli et al., 1999). Wilson (1997) postulates a relationship between this magmatic activity and upwelling of a large-scale mantle plume (super-plume) beneath the West African craton. Correlatives of this province have been identified as far as the southern Iberian Peninsula, Newfoundland, and possibly in Brittany, among other European areas (Pe-Piper et al., 1992; Jourdan et al., 2003). The current presentation aims to discuss possible African far-field effects on thermochronological data in the Cantabrian Mountains of NW Spain. References: Barbero, L.; Glasmacher, U. A.; Villaseca, C.; López García, J. A.; Martín-Romera, C. (2005). Long-term thermo-tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): constraints from apatite fission-track analysis. International Journal of Earth Sciences

  5. Possible Mesozoic age of Ellenville Zn-Pb-Cu(Ag) deposit, Shawangunk Mountains, New York

    USGS Publications Warehouse

    Friedman, J.D.; Conrad, J.E.; McKee, E.H.; Mutschler, F.E.; Zartman, R.E.

    1994-01-01

    Ore textures, epithermal open-space filling of Permian structures of the Alleghanian orogeny, and largely postorogenic mineralization of the Ellenville, New York, composite Zn-Pb-Cu(Ag) vein system, provide permissive evidence for post-Permian mineralization. Isochron ages determined by 40Ar/39Ar laser-fusion techniques for K-bearing liquid inclusions in main-stage quartz from the Ellenville deposit additionally suggest a Mesozoic time of mineralization, associated with extensional formation of the Newark basin. The best 40Ar/39Ar total-fusion age range is 165 ?? 30 to 193 ?? 35 Ma. The Mesozoic 40Ar/39Ar age agrees with that of many other dated northern Appalachian Zn-Pb-Cu(Ag) deposits with near-matching lead isotope ratios, and adds new evidence of Jurassic tectonism and mineralization as an overprint to Late Paleozoic tectonism at least as far north as Ellenville (lat. 41??43???N). ?? 1994 Springer-Verlag.

  6. Corrected Paleolatitudes for Pangea in the Early Mesozoic

    NASA Astrophysics Data System (ADS)

    Kent, D.; Tauxe, L.

    2004-12-01

    A series of continental basins that developed during rifting of the Pangea supercontinent in the early Mesozoic are now distributed along the margins of the North Atlantic and their preserved contents (mainly redbeds and CAMP basalts) have often been targets of paleomagnetic studies. A continuous record of paleolatitudinal drift and a geomagnetic polarity time scale for ~35 Myr of the Late Triassic and earliest Jurassic have been derived from several of the basins in eastern North America and provide a precise spatio-temporal framework for detailed paleogeographic analysis. However, reported paleomagnetic directions from Jameson Land in East Greenland are anomalously shallow with respect to coeval sections in North America, a discrepancy that is too large to be explained by uncertainties in the reconstruction of Greenland to North America. Therefore, either the magnetizations of the Jameson Land (and perhaps other early Mesozoic rift basin) sediments are biased by inclination error or the Late Triassic time-averaged field included significant nondipole (axial octupole) contributions. According to a new statistical geomagnetic field model (Tauxe and Kent, 2004) constrained by paleomagnetic data from young lava flows, these two phenomena result in very different distributions of paleomagnetic directions, providing a basis to diagnose and correct for inclination error in sufficiently large paleomagnetic datasets. The resulting congruence of independent data from sedimentary and igneous rocks ranging over thousands of kilometers and 10s of millions of years can be taken as strong support that a geocentric axial dipole field similar to the last 5 Myr was operative more than 200 Myr ago. The corrected paleolatitudes indicate a faster rate of poleward motion of this sector of Pangea and broader continental climate belts in the Late Triassic and earliest Jurassic.

  7. Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picard, M.D.

    1993-08-01

    During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit,more » Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.« less

  8. Paleozoic and Mesozoic deformations in the central Sierra Nevada, California

    USGS Publications Warehouse

    Nokleberg, Warren J.; Kistler, Ronald Wayne

    1980-01-01

    Analysis of structural and stratigraphic data indicates that several periods of regional deformation, consisting of combined folding, faulting, cataclasis, and regional metamorphism, occurred throughout the central Sierra Nevada during Paleozoic and Mesozoic time. The oldest regional deformation occurred alono northward trends during the Devonian and Mississippian periods in most roof pendants containing lower Paleozoic metasedimentary rocks at the center and along the crest of the range. This deformation is expressed in some roof pendants by an angular unconformity separating older thrice-deformed from younger twice-deformed Paleozoic metasedimentary rocks. The first Mesozoic deformation, which consisted of uplift and erosion and was accompanied by the onset of Andean-type volcanism during the Permian and Triassic, is expressed by an angular unconformity in several roof pendants from the Saddlebag Lake to the Mount Morrison areas. This unconformity is defined by Permian and Triassic andesitic to rhyolitic metavolcanic rocks unconformably overlying more intensely deformed Pennsylvanian, Permian(?), and older metasedimentary rocks. A later regional deformation occurred during the Triassic along N. 20?_30? W. trends in Permian and Triassic metavolcanic rocks of the Saddlebag Lake and Mount Dana roof pendants, in upper Paleozoic rocks of the Pine Creek roof pendant, and in the Calaveras Formation of the western metamorphic belt; the roof pendants are crosscut by Upper Triassic granitic rocks of the Lee Vining intrusive epoch. A still later period of Early and Middle Jurassic regional deformation occurred along N. 30?-60? E. trends in upper Paleozoic rocks of the Calaveras Formation of the western metamorphic belt. A further period of deformation was the Late Jurassic Nevadan orogeny, which occurred along N. 20?_40? W. trends in Upper Jurassic rocks of the western metamorphic belt that are crosscut by Upper Jurassic granitic rocks of the Yosemite intrusive epoch

  9. A new, well-preserved genus and species of fossil Glaphyridae (Coleoptera, Scarabaeoidea) from the Mesozoic Yixian Formation of Inner Mongolia, China

    PubMed Central

    Yan, Zhuo; Nikolajev, Georgiy V.; Ren, Dong

    2012-01-01

    Abstract A new genus and species of fossil Glaphyridae, Cretohypna cristata gen. et sp. n., is described and illustrated from the Mesozoic Yixian Formation. This new genus is characterized by the large body; large and strong mandibles; short labrum; elytra without longitudinal carina; and male meso- and possible metatibia apically modified. A list of described fossil glaphyrids of the world is provided. This significant finding broadens the known diversity of Glaphyridae in the Mesozoic China. PMID:23372414

  10. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    PubMed Central

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  11. Mesozoic evolution of the northeast African shelf margin, Libya and Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aadland, R.K.; Schamel, S.

    1988-08-01

    The present tectonic features of the northeast African shelf margin between the Nile delta and the Gulf of Sirte are products of (1) precursory late Paleozoic basement arches, (2) early Mesozoic rifting and plate separation, and (3) Late Cretaceous structural inversion. Isopach and structural maps, cross sections, and sediment accumulation (geohistory) curves constructed from 89 wells in the Western Desert and 27 wells in northeastern Libya depict the structural and stratigraphic development of the northeast African shelf margin.

  12. Mesozoic intracontinental underthrust in the SE margin of the North China Block: Insights from the Xu-Huai thrust-and-fold belt

    NASA Astrophysics Data System (ADS)

    Shu, Liangshu; Yin, Hongwei; Faure, Michel; Chen, Yan

    2017-06-01

    The Xu-Huai thrust-and-fold belt, located in the southeastern margin of the North China Block, consists mainly of thrust and folded pre-Mesozoic strata. Its geodynamic evolution and tectonic setting are topics of long debate. This paper provides new evidence from geological mapping, structural analysis, and making balance cross-sections, with restoration of cross-sections. Results suggest that this belt was subjected to two-phase deformation, including an early-phase regional-scale NW-ward thrust and fold, and a late-phase extension followed by the emplacement of dioritic, monzodioritic porphyrites dated at 131-135 Ma and locally strike-slip shearing. According to the mapping, field observations and drill-hole data, three structural units were distinguished, namely, (1) the pre-Neoproterozoic crystalline basement in the eastern segment, (2) the nappe unit or the thrust-and-fold zone in the central segment, which is composed of Neoproterozoic to Ordovician carbonate rocks and Carboniferous-Permian coal-bearing rocks, about 2600 m thick, and (3) the western frontal zone. A major decollement fault has also been identified in the base of the nappe unit, on which dozen-meter to km-scale thrust-and-fold bodies were commonly developed. All pre-Mesozoic depositional sequences were involved into a widespread thrust and fold event. Six uncompetent-rock layers with biostratigraphic ages (Nanjing University, 1996) have been recognized, and each uncompetent-rock layer occurred mainly in the top of the footwall, playing an important role in the development of the Xu-Huai thrust-and-fold belt. Geometry of the major decollement fault suggests that the nappe unit of this belt was rooted in its eastern side, near the Tan-Lu Fault Zone. Two geological cross-sections were chosen for structural balancing and restoration. From the balanced cross-sections, ramp-flat and imbricated faults as well as fault-related folds were identified. A shortening of 20.6-29.6 km was obtained from

  13. Late Mesozoic tectonics of the Southern-Thai Peninsula: from transpression to basins opening

    NASA Astrophysics Data System (ADS)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2015-04-01

    The petroleum basins of the Southern Thailand Peninsula are poorly known and their final geometry is controlled by the Tertiary stress variations applied on pre-existing Paleozoic and Mesozoic basement structures. From the end of Mesozoic times, the arrival of Indian plate was accomodated by transpressionnal deformation along the Western Margin of Sunda Plate. Evidences of this strain are the motions along several regional strike Slip Faults (Sagaing, Three Pagodas, Mae Ping, Red River, Ranong and Klong Marui Faults) as well as compressional features (folds and thrusts) evidenced onshore. Due to changes in the boundary forces, these structures were reactivated during the Tertiary, leading to the opening of basins in this part of Sundaland. We present a structural analysis based on geomorphology, fieldwork and seismic interpretation of the Southern Thai Peninsula with emphasis on the deformation's style onshore from Ranong to Satun and offshore from Eastern Mergui to Songhkla. By analyzing morphostructures and drainage anomalies from Digital Elevation Model (SRTM and ASTER), we highlight a predominance of N-S structures in the Southern Thai Peninsula: both in the granitic belt and in the sedimentary cover. The Triassic-Jurassic (Indosinian) post-collision granitic belt is intensely fractured, with 2 penetrative directions: N140 and N50. On both sides, the sedimentary units appear folded at a large wavelength (~20km). On most of the studied outcrops, Triassic to Early Cretaceous series are gently tilted and weakly fractured whereas the Paleozoic ones shows intense fracturation and steep dipping beds. Moreover, all the Paleozoic stratas display a constant N-S S1 which does not appear in the Mezosoic sediments. Althought most of the post-Mesozoic sediments do not crop out due to thick vegetal cover, several Tertiary basins can be easily seen from seismic data both onshore and offshore. These data suggest that rifting started in the Eocene and was accommodated by large

  14. The Mesozoic and Palaeozoic granitoids of north-western New Guinea

    NASA Astrophysics Data System (ADS)

    Jost, Benjamin M.; Webb, Max; White, Lloyd T.

    2018-07-01

    A large portion of the Bird's Head Peninsula of NW New Guinea is an inlier that reveals the pre-Cenozoic geological history of the northern margin of eastern Gondwana. The peninsula is dominated by a regional basement high exposing Gondwanan ('Australian') Palaeozoic metasediments intruded by Palaeozoic and Mesozoic granitoids. Here, we present the first comprehensive study of these granitoids, including field and petrographic descriptions, bulk rock geochemistry, and U-Pb zircon age data. We further revise and update previous subdivisions of granitoids in the area. Most granitoids were emplaced as small to medium-scale intrusions during two episodes in the Devonian-Carboniferous and the Late Permian-Triassic, separated by a period of apparent magmatic quiescence. The oldest rocks went unrecognised until this study, likely due to the younger intrusive events resetting the K-Ar isotopic system used in previous studies. Most of the Palaeozoic and Mesozoic granitoids are peraluminous and in large parts derived from partial melts of the country rock. This is corroborated by local migmatites and country rock xenoliths. Although rare, metaluminous and mafic rocks show that partial melts of mantle-derived material played a minor role in granitoid petrogenesis, especially during the Permian-Triassic. The Devonian-Carboniferous granitoids and associated volcanics are locally restricted, whereas the Permian-Triassic intrusions are found across NW New Guinea and further afield. The latter were likely part of an extensive active continental margin above a subduction system spanning the length of what is now New Guinea and potentially extending southward through eastern Australia and Antarctica.

  15. Geochronologic and geochemical data from Mesozoic rocks in the Black Mountain area northeast of Victorville, San Bernardino County, California

    USGS Publications Warehouse

    Stone, Paul; Barth, Andrew P.; Wooden, Joseph L.; Fohey-Breting, Nicole K.; Vazquez, Jorge A.; Priest, Susan S.

    2013-01-01

    We present geochronologic and geochemical data for Mesozoic rocks in the Black Mountain area northeast of Victorville, California, to supplement previous geologic mapping. These data, together with previously published results, limit the depositional age of the sedimentary Fairview Valley Formation to Early Jurassic, refine the ages and chemical compositions of selected units in the overlying Jurassic Sidewinder Volcanics and of related intrusive units, and limit the age of some post-Sidewinder faulting in the Black Mountain area to a brief interval in the Late Jurassic. The new information contributes to a more complete understanding of the Mesozoic magmatic and tectonic evolution of the western Mojave Desert and surrounding regions.

  16. A total petroleum system of the Browse Basin, Australia; Late Jurassic, Early Cretaceous-Mesozoic

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Browse Basin Province 3913, offshore northern Australia, contains one important petroleum system, Late Jurassic, Early Cretaceous-Mesozoic. It is comprised of Late Jurassic through Early Cretaceous source rocks deposited in restricted marine environments and various Mesozoic reservoir rocks deposited in deep-water fan to fluvial settings. Jurassic age intraformational shales and claystones and Cretaceous regional claystones seal the reservoirs. Since 1967, when exploration began in this 105,000 km2 area, fewer than 40 wells have been drilled and only one recent oil discovery is considered potentially commercial. Prior to the most recent oil discovery, on the eastern side of the basin, a giant gas field was discovered in 1971, under a modern reef on the west side of the basin. Several additional oil and gas discoveries and shows were made elsewhere. A portion of the Vulcan sub-basin lies within Province 3913 where a small field, confirmed in 1987, produced 18.8 million barrels of oil (MMBO) up to 1995 and has since been shut in.

  17. Depositional systems and stratigraphy of Paleozoic and Lower Mesozoic rocks in outcrop, Tassili region, southwest Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertig, S.P.; Tye, R.S.; Coffield, D.Q.

    1991-08-01

    Paleozoic to Lower Mesozoic strata of the southeastern Algerian Tassili are traditionally subdivided by regionally extensive unconformities such as the Pan African, Taconic, Caledonian, and Hercynian. Using outcrop data from southeastern Algeria, this classic approach is modified by reinterpreting the genesis of these unconformities and rock sequences. Five prominent sequences, defined within the Paleozoic and lower Mesozoic section, usually consist of a succession of lowstand, transgressive, and highstand system tracts separated by sequence boundaries or transgressive surfaces. The Pan-African, Taconic, Caledonian, and Hercynian unconformities are sequence boundaries. Important sequence boundaries also occur within the Ordovician and Silurian sections. These sequencesmore » correlate with subsurface data in the Illizi basin and provide a framework for renewed exploration in the subsurface of the Algerian Sahara, where more than 30 billion bbl of recoverable oil and oil equivalent have been generated and trapped.« less

  18. A drowned Mesozoic bird breeding colony from the Late Cretaceous of Transylvania.

    PubMed

    Dyke, Gareth; Vremir, Mátyás; Kaiser, Gary; Naish, Darren

    2012-06-01

    Despite a rapidly improving fossil record, the reproductive biology of Mesozoic birds remains poorly known: only a handful of undisputed, isolated Cretaceous eggs (some containing embryonic remains) are known. We report here the first fossil evidence for a breeding colony of Mesozoic birds, preserved at the Late Cretaceous (Maastrichtian) Oarda de Jos (Od) site in the Sebeş area of Transylvania, Romania. A lens of calcareous mudstone with minimum dimensions of 80 cm length, 50 cm width and 20 cm depth contains thousands of tightly packed, morphologically homogenous eggshell fragments, seven near-complete eggs and neonatal and adult avialan skeletal elements. Eggshell forms 70-80 % of the matrix, and other fossils are entirely absent. The bones exhibit clear characters of the Cretaceous avialan clade Enantiornithes, and the eggshell morphology is also consistent with this identification. Both taphonomy and lithology show that the components of this lens were deposited in a single flood event, and we conclude that it represents the drowned remains of a larger enantiornithine breeding colony, swamped by rising water, washed a short distance and deposited in a shallow, low-energy pond. The same fate often befalls modern bird colonies. Such a large concentration of breeding birds suggests aquatic feeding in this species, augments our understanding of enantiornithine biology and shows that colonial nesting was not unique to crown birds.

  19. Largest known Mesozoic multituberculate from Eurasia and implications for multituberculate evolution and biology.

    PubMed

    Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai; Zhang, Jiming; Lü, Junchang; Meng, Jin

    2015-10-22

    A new multituberculate, Yubaartar zhongyuanensis gen. and sp. nov., is reported from the Upper Cretaceous of Luanchuan County, Henan Province, China. The holotype of the new taxon is a partial skeleton with nearly complete cranium and associated lower jaws with in situ dentitions. The new species is the southern-most record of a Late Cretaceous multituberculate from outside of the Mongolian Plateau in Asia and represents the largest known Mesozoic multituberculate from Eurasia. The new specimen displays some intriguing features previously unknown in multituberculates, such as the first evidence of replacement of the ultimate upper premolar and a unique paleopathological case in Mesozoic mammals in which the animal with a severely broken right tibia could heal and survive in natural condition. The phylogenetic analysis based on craniodental characters places Yubaartar as the immediate outgroup of Taeniolabidoidea, a group consisting of a North American clade and an Asian clade. This relationship indicates at least a faunal interchange of multituberculates before the K-Pg transition. The new evidence further supports the hypothesis that disparity in dental complexity, which relates to animal diets, increased with generic richness and disparity in body size, and that an adaptive shift towards increased herbivory across the K-Pg transitional interval.

  20. Mesozoic and Cenozoic exhumation history of the SW Iberian Variscides inferred from low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Vázquez-Vílchez, Mercedes; Jabaloy-Sánchez, Antonio; Azor, Antonio; Stuart, Finlay; Persano, Cristina; Alonso-Chaves, Francisco M.; Martín-Parra, Luis Miguel; Matas, Jerónimo; García-Navarro, Encarnación

    2015-11-01

    The post-Paleozoic tectonothermal evolution of the SW Iberian Variscides is poorly known mainly due to the scarce low-temperature geochronological data available. We have obtained new apatite fission-tracks and apatite (U-Th)/He ages to constrain the Mesozoic and Cenozoic tectonic evolution of this portion of the Iberian Massif located just north of the Betic-Rif Alpine orogen. We have obtained nine apatite fission-track ages on samples from Variscan and pre-Variscan granitoids. These ages range from 174.4 (± 10.8) to 54.1 (± 4.9) Ma, with mean track lengths between 10.3 and 13.9 μm. We have also performed 5 (U-Th)/He datings on some of the same samples, obtaining ages between 74.6 (± 1.6) and 18.5 (± 1.4) Ma. Time-temperature path modeling of these low-temperature geochronological data leads us to envisage four post-Paleozoic tectonically controlled exhumation episodes in the SW Iberian Variscides. Three of these episodes occurred in Mesozoic times (Middle Triassic to Early Jurassic, Early Cretaceous, and Late Cretaceous) at rates of ≈ 1.1 to 2.5 °C Ma- 1, separated by periods with almost no cooling. We relate these Mesozoic cooling events to the formation of important marginal reliefs during the rifting and opening of the central and northern Atlantic realm. The fourth exhumation episode occurred in Cenozoic times at rates of ≈ 3.2 to 3.6 °C Ma- 1, being only recorded in samples next to faults with topographic escarpments. These samples cooled below 80 °C at ≈ 20 Ma at rates of 3-13 °C Ma- 1 due to roughly N-S oriented compressional stresses affecting the whole Iberian plate, which, in the particular case of SW Iberia, reactivated some of the previous Late Paleozoic thrusts.

  1. Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2009-01-01

    The modern Sierra Nevada and Great Basin were likely the site of a high-elevation orogenic plateau well into Cenozoic time, supported by crust thickened during Mesozoic shortening. Although crustal thickening at this scale can lead to extension, the relationship between Mesozoic shortening and subsequent formation of the Basin and Range is difficult to unravel because it is unclear which of the many documented or interpreted extensional episodes was the most significant for net widening and crustal thinning. To address this problem, we integrate geologic and geochronologic data that bear on the timing and magnitude of Cenozoic extension along an ???200km east-west transect south of Winnemucca, Battle Mountain, and Elko, Nevada. Pre-Cenozoic rocks in this region record east-west Palaeozoic and Mesozoic compression that continued into the Cretaceous. Little to no tectonism and no deposition followed until intense magmatism began in the Eocene. Eocene and Oligocene ash-flow tuffs flowed as much as 200km down palaeovalleys cut as deeply as 1.5km into underlying Palaeozoic and Mesozoic rocks in a low-relief landscape. Eocene sedimentation was otherwise limited to shallow lacustrine basins in the Elko area; extensive, thick clastic deposits are absent. Minor surface extension related to magmatism locally accompanied intense Eocene magmatism, but external drainage and little or no surface deformation apparently persisted regionally until about 16-17Ma. Major upper crustal extension began across the region ca. 16-17Ma, as determined by cross-cutting relationships, low-temperature thermochronology, and widespread deposition of clastic basin fill. Middle Miocene extension was partitioned into high-strain (50-100%) domains separated by largely unextended crustal blocks, and ended by 10-12Ma. Bimodal volcanic rocks that erupted during middle Miocene extension are present across most of the study area, but are volumetrically minor outside the northern Nevada rift. The modern

  2. Mesozoic carbonate-siliciclastic platform to basin systems of a South Tethyan margin (Egypt, East Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tassy, Aurélie; Crouzy, Emmanuel; Gorini, Christian; Rubino, Jean-Loup

    2015-04-01

    The Mesozoïc Egyptian margin is the south margin of a remnant of the Neo-Tethys Ocean, at the African northern plate boundary. East Mediterranean basin developed during the late Triassic-Early Jurassic rifting with a NW-SE opening direction (Frizon de Lamotte et al., 2011). During Mesozoïc, Egypt margin was a transform margin with a NW-SE orientation of transform faults. In the Eastern Mediterranean basin, Mesozoïc margins are characterized by mixed carbonate-siliciclastics platforms where subsidence and eustacy are the main parameters controlling the facies distribution and geometries of the platform-to-basin transition. Geometries and facies on the platform-slope-basin system, today well constrained on the Levant area, where still poorly known on the Egyptian margin. Geometries and stratigraphic architecture of the Egyptian margin are revealed, thanks to a regional seismic and well data-base provided by an industrial-academic group (GRI, Total). The objective is to understand the sismostratigraphic architecture of the platform-slope-basin system in a key area from Western Desert to Nile delta and Levant margin. Mapping of the top Jurassic and top Cretaceous show seismic geomorphology of the margin, with the cartography of the hinge line from Western Desert to Sinaï. During the Jurassic, carbonate platform show a prograding profile and a distally thickening of the external platform, non-abrupt slope profiles, and palaeovalleys incisions. Since the Cretaceous, the aggrading and retrograding mixed carbonate-siliciclastic platform show an alternation of steep NW-SE oblique segments and distally steepened segments. These structures of the platform edge are strongly controlled by the inherited tethyan transform directions. Along the hinge line, embayments are interpreted as megaslides. The basin infilling is characterised by an alternation of chaotic seismic facies and high amplitude reflectors onlaping the paleoslopes. MTC deposits can mobilize thick sedimentary

  3. Mesozoic and Cenozoic structural evolution of North Oman: New insights from high-quality 3D seismic from the Lekhwair area

    NASA Astrophysics Data System (ADS)

    Bazalgette, Loïc; Salem, Hisham

    2018-06-01

    This paper highlights the role of Triassic-Jurassic extension and late Cretaceous compression in the Mesozoic-Cenozoic (Alpine) structuring of North Oman. The syn/post-Mesozoic regional structural evolution is usually documented as a succession of two stages of deformation. The Alpine 1 phase, late Cretaceous in age, occurred in association with two ophiolite obduction stages (Semail and Masirah ophiolites). It was characterised by strike slip to extensional deformation in the North Oman foreland basin sub-surface. The Alpine 2 phase, Miocene in age, was related to the continental collision responsible for both the Zagros orogen and the uplift of the Oman Mountains. The Alpine 2 deformation was transpressional to compressional. Observation and interpretation of good quality 3D seismic in the Lekhwair High area enabled the distinction of two earlier phases. Early Mesozoic extension occurred concomitantly with the regional Triassic to Jurassic rifting, developing Jurassic-age normal faults. Late Cretaceous compression occurred prior to the main Alpine 1 phase and triggered the inversion of Jurassic-seated normal faults as well as the initiation of compressional folds in the Cretaceous overburden. These early phases have been ignored or overlooked as part of the North Oman history although they are at the origin of structures hosting major local and regional hydrocarbon accumulations.

  4. Testing co-evolutionary hypotheses over geological timescales: interactions between Mesozoic non-avian dinosaurs and cycads.

    PubMed

    Butler, Richard J; Barrett, Paul M; Kenrick, Paul; Penn, Malcolm G

    2009-02-01

    The significance of co-evolution over ecological timescales is well established, yet it remains unclear to what extent co-evolutionary processes contribute to driving large-scale evolutionary and ecological changes over geological timescales. Some of the most intriguing and pervasive long-term co-evolutionary hypotheses relate to proposed interactions between herbivorous non-avian dinosaurs and Mesozoic plants, including cycads. Dinosaurs have been proposed as key dispersers of cycad seeds during the Mesozoic, and temporal variation in cycad diversity and abundance has been linked to dinosaur faunal changes. Here we assess the evidence for proposed hypotheses of trophic and evolutionary interactions between these two groups using diversity analyses, a new database of Cretaceous dinosaur and plant co-occurrence data, and a geographical information system (GIS) as a visualisation tool. Phylogenetic evidence suggests that the origins of several key biological properties of cycads (e.g. toxins, bright-coloured seeds) likely predated the origin of dinosaurs. Direct evidence of dinosaur-cycad interactions is lacking, but evidence from extant ecosystems suggests that dinosaurs may plausibly have acted as seed dispersers for cycads, although it is likely that other vertebrate groups (e.g. birds, early mammals) also played a role. Although the Late Triassic radiations of dinosaurs and cycads appear to have been approximately contemporaneous, few significant changes in dinosaur faunas coincide with the late Early Cretaceous cycad decline. No significant spatiotemporal associations between particular dinosaur groups and cycads can be identified - GIS visualisation reveals disparities between the spatiotemporal distributions of some dinosaur groups (e.g. sauropodomorphs) and cycads that are inconsistent with co-evolutionary hypotheses. The available data provide no unequivocal support for any of the proposed co-evolutionary interactions between cycads and herbivorous dinosaurs

  5. Regulation of body temperature by some Mesozoic marine reptiles.

    PubMed

    Bernard, Aurélien; Lécuyer, Christophe; Vincent, Peggy; Amiot, Romain; Bardet, Nathalie; Buffetaut, Eric; Cuny, Gilles; Fourel, François; Martineau, François; Mazin, Jean-Michel; Prieur, Abel

    2010-06-11

    What the body temperature and thermoregulation processes of extinct vertebrates were are central questions for understanding their ecology and evolution. The thermophysiologic status of the great marine reptiles is still unknown, even though some studies have suggested that thermoregulation may have contributed to their exceptional evolutionary success as apex predators of Mesozoic aquatic ecosystems. We tested the thermal status of ichthyosaurs, plesiosaurs, and mosasaurs by comparing the oxygen isotope compositions of their tooth phosphate to those of coexisting fish. Data distribution reveals that these large marine reptiles were able to maintain a constant and high body temperature in oceanic environments ranging from tropical to cold temperate. Their estimated body temperatures, in the range from 35 degrees +/- 2 degrees C to 39 degrees +/- 2 degrees C, suggest high metabolic rates required for predation and fast swimming over large distances offshore.

  6. Diversity of developmental patterns in achelate lobsters-today and in the Mesozoic.

    PubMed

    Haug, Joachim T; Audo, Denis; Charbonnier, Sylvain; Haug, Carolin

    2013-11-01

    Modern achelate lobsters, slipper and spiny lobsters, have a specific post-embryonic developmental pattern with the following phases: phyllosoma, nisto (slipper lobsters) or puerulus (spiny lobsters), juvenile and adult. The phyllosoma is a peculiar larva, which transforms through a metamorphic moult into another larval form, the nisto or puerulus which largely resembles the juvenile. Unlike the nisto and puerulus, the phyllosoma is characterised by numerous morphological differences to the adult, e.g. a thin head shield, elongate appendages, exopods on these appendages and a special claw. Our reinvestigation of the 85 million years old fossil "Eryoneicus sahelalmae" demonstrates that it represents an unusual type of achelatan lobster larva, characterised by a mixture of phyllosoma and post-phyllosoma characters. We ascribe it to its own genus: Polzicaris nov. gen. We study its significance by comparisons with other cases of Mesozoic fossil larvae also characterised by a mixture of characters. Accordingly, all these larvae are interpreted as ontogenetic intermediates between phyllosoma and post-phyllosoma morphology. Remarkably, most of the larvae show a unique mixture of retained larval and already developed post-larval features. Considering the different-and incompatible-mixture of characters of each of these larvae and their wide geographical and temporal distribution, we interpret all these larvae as belonging to distinct species. The particular character combinations in the different larvae make it currently difficult to reconstruct an evolutionary scenario with a stepwise character acquisition. Yet, it can be concluded that a larger diversity of larval forms and developmental patterns occurred in Mesozoic than in modern faunas.

  7. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera).

    PubMed

    Yang, Qiang; Wang, Yongjie; Labandeira, Conrad C; Shih, Chungkun; Ren, Dong

    2014-06-09

    The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized.

  8. Evolution of mantis shrimps (Stomatopoda, Malacostraca) in the light of new Mesozoic fossils

    PubMed Central

    2010-01-01

    Background We describe new specimens of Mesozoic mantis shrimps (Stomatopoda, Malacostraca) that exhibit morphological and developmental information previously unknown. Results Specimens assigned to the taxon Sculda exhibit preserved pleopods, thoracopods including all four raptorial limbs as well as details of antennae and antennulae. The pleopods and the antennulae resemble those of the modern mantis shrimps, but the raptorial limbs are not as differentiated as in the modern species. In some specimens, the first raptorial limb (second thoracopod) is not significantly larger than the similar-sized posterior three pairs (as in extant species), but instead these appendages become progressively smaller along the series. In this respect they resemble certain Palaeozoic stomatopods. Another specimen, most likely belonging to another species, has one pair of large anterior raptorial thoracopods, a median-sized pair and two more pairs of small-sized raptorial appendages and, thus, shows a new, previously unknown type of morphology. A single specimen of Pseudosculda laevis also exhibits the size of the raptorial limbs; they are differentiated as in modern species, one large pair and three small pairs. Furthermore, we report additional larval specimens and show also post-larval changes, e.g., of the tail fan. Conclusions These new data are used to reconsider the phylogeny of Stomatopoda. We still need a strict taxonomical revision of the Mesozoic mantis shrimps, but this first examination already demonstrates the importance of these fossils for understanding mantis shrimp evolution and the interpretation of evolutionary pathways of particular features. PMID:20858249

  9. What can we tell from particle morphology in Mesozoic charcoal assemblages?

    NASA Astrophysics Data System (ADS)

    Crawford, Alastair; Belcher, Claire

    2015-04-01

    Sedimentary charcoal particles provide a valuable record of palaeofire activity on both human and geological timescales. Charcoal is both an unambiguous indicator of wildfire, and a means of preservation of plant material in an inert form; thus it records not only the occurrence and extent of wildfire, but also the species affected. While scanning electron microscopy can be usefully employed for precise taxonomic identification of charcoals, the time and cost associated with this limit the extent to which the technique is employed. Morphometric analysis of mesocharcoal particles (c. 125-1000 µm) potentially provides a simple method for obtaining useful information from optical microscopy images. Grass fires have been shown to produce mesocharcoal particles with a higher length-to-width ratio than woodland fuel sources. In Holocene archives, aspect ratio measurements are thus used to infer the broad taxonomic affinity of the burned vegetation. Since Mesozoic charcoals display similarly heterogeneous morphologies, we investigate whether there is a similar potential to infer the broad botanical affinities of Mesozoic charcoal assemblages from simple morphological metrics. We have used image analysis to analyse a range of Jurassic and Cretaceous sedimentary rocks representing different vegetation communities and depositional environments, and also to determine the range of charcoal particle morphologies which can be produced from different modern taxa under laboratory conditions. We find that modern charcoals break down into mesocharcoal particles of very variable aspect ratio, and this appears to be dependent on taxonomic position. Our analysis of fragmented laboratory-produced charcoals indicates that pteridophytes produce much more elongate particles than either conifers or non-grass angiosperms. We suggest that for charcoal assemblages that predate the evolution of grasses, high average aspect ratios may be a useful indicator of the burning of a pteridophyte

  10. Sedimentation History and Provenance Analysis of a Late Mesozoic Rifting Event at Tavan Har, East Gobi, Mongolia

    ERIC Educational Resources Information Center

    Davidson, Sarah Cain

    2005-01-01

    The East Gobi Basin (EGB), which covers over 1.5 million square kilometers in southeastern Mongolia, is one of several basins in eastern China and Mongolia that was formed by extension and intracontinental rifting during the late Mesozoic. For reasons that are poorly understood, the continental lithosphere covering areas that are now known as…

  11. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution

    PubMed Central

    Fuchs, Dirk; Winkelmann, Inger E.; Gilbert, M. Thomas P.; Pankey, M. Sabrina; Ribeiro, Ângela M.; Kocot, Kevin M.; Halanych, Kenneth M.; Oakley, Todd H.; da Fonseca, Rute R.

    2017-01-01

    Coleoid cephalopod molluscs comprise squid, cuttlefish and octopuses, and represent nearly the entire diversity of modern cephalopods. Sophisticated adaptations such as the use of colour for camouflage and communication, jet propulsion and the ink sac highlight the unique nature of the group. Despite these striking adaptations, there are clear parallels in ecology between coleoids and bony fishes. The coleoid fossil record is limited, however, hindering confident analysis of the tempo and pattern of their evolution. Here we use a molecular dataset (180 genes, approx. 36 000 amino acids) of 26 cephalopod species to explore the phylogeny and timing of cephalopod evolution. We show that crown cephalopods diverged in the Silurian–Devonian, while crown coleoids had origins in the latest Palaeozoic. While the deep-sea vampire squid and dumbo octopuses have ancient origins extending to the Early Mesozoic Era, 242 ± 38 Ma, incirrate octopuses and the decabrachian coleoids (10-armed squid) diversified in the Jurassic Period. These divergence estimates highlight the modern diversity of coleoid cephalopods emerging in the Mesozoic Marine Revolution, a period that also witnessed the radiation of most ray-finned fish groups in addition to several other marine vertebrates. This suggests that that the origin of modern cephalopod biodiversity was contingent on ecological competition with marine vertebrates. PMID:28250188

  12. The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America

    PubMed Central

    Rougier, Guillermo W.; Wible, John R.; Beck, Robin M. D.; Apesteguía, Sebastian

    2012-01-01

    The early Miocene mammal Necrolestes patagonensis from Patagonia, Argentina, was described in 1891 as the only known extinct placental “insectivore” from South America (SA). Since then, and despite the discovery of additional well-preserved material, the systematic status of Necrolestes has remained in flux, with earlier studies leaning toward placental affinities and more recent ones endorsing either therian or specifically metatherian relationships. We have further prepared the best-preserved specimens of Necrolestes and compared them with newly discovered nontribosphenic Mesozoic mammals from Argentina; based on this, we conclude that Necrolestes is related neither to marsupials nor placentals but is a late-surviving member of the recently recognized nontherian clade Meridiolestida, which is currently known only from SA. This conclusion is supported by a morphological phylogenetic analysis that includes a broad sampling of therian and nontherian taxa and that places Necrolestes within Meridiolestida. Thus, Necrolestes is a remnant of the highly endemic Mesozoic fauna of nontribosphenic mammals in SA and extends the known record of meridiolestidans by almost 45 million years. Together with other likely relictual mammals from earlier in the Cenozoic of SA and Antarctica, Necrolestes demonstrates the ecological diversity of mammals and the mosaic pattern of fauna replacement in SA during the Cenozoic. In contrast to northern continents, the Cenozoic faunal history of SA was characterized by a long period of interaction between endemic mammalian lineages of Mesozoic origin and metatherian and eutherian lineages that probably dispersed to SA during the latest Cretaceous or earliest Paleocene. PMID:23169652

  13. Evolution of the stress field in the southern Scotia Arc from the late Mesozoic to the present-day

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Galindo-Zaldívar, Jesús; Bohoyo, Fernando; Mink, Sandra

    2014-12-01

    The geological evolution of the Scotia Arc, which developed between Antarctica and South America, has facilitated the connection between the Pacific and Atlantic oceans and, has important global implications. To improve the knowledge of the late Mesozoic evolution of the southern Scotia Arc, over 6000 brittle mesostructures were measured over the last 20 years at different outcrops from the northern Antarctic Peninsula and the South Shetland Islands as well as the James Ross and South Orkney archipelagos. This dataset covers a length of more than 1000 km of the arc. Fault data were analysed using the Etchecopar, y-R, Right Dihedra, Stress Inversion and Search Grid Inversion Palaeostress Determination methods. A total of 275 stress tensors were obtained. The results showed that the maximum horizontal stress was in the ENE-WSW and the NW-SE orientations and that the horizontal extension tensors were oriented NE-SW and NW-SE. In addition, seismic activity and focal mechanism solutions were analysed using the Gephart method to establish the present-day stress field and characterise the active tectonics. The results obtained suggest that there is a regional NE-SW compression and a NW-SE extension regime at the present day. The Southern Scotia Arc has a complex geological history due to the different tectonic settings (transform, convergent and divergent) that have affected this sector during its geological evolution from the late Mesozoic until the present day. Six stress fields were obtained from the brittle mesostructure population analysis in the region. The NW-SE and N-S maximum horizontal stresses were related to a combination of Mesozoic oceanic subduction of the former Phoenix Plate under the Pacific margin of the Antarctic Plate, Mesozoic-Cenozoic subduction of the northern Weddell Sea and the Oligocene to the Middle Miocene dextral strike-slip movement between the Scotia and Antarctic plates along the South Scotia Ridge. The NE-SW compression was related to

  14. Brittle Deformation in the Ordos Basin in response to the Mesozoic destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Jiang, L.

    2012-12-01

    Craton is continental block that has been tectonically stable since at least Proterozoic. Some cratons, however, become unstable for some geodynamic reasons. The North China Craton (NCC) is an example. Structure geological, geochemical, and geophysical works have revealed that the NCC was destructed in Cretaceous and that lithosphere thickness beneath the eastern NCC were thinned by 120 km. The present study will focus on deformation of the western NCC, and to understand the effect of the Mesozoic destruction of the North China Craton (NCC). Structural partitioning of the Ordos Basin, which is located in the western NCC, from the eastern NCC occurred during the Mesozoic. Unlike the eastern NCC where many Cretaceous metamorphic core complexes developed, sedimentary cover of the NCC remains nearly horizontal and deformation is manifested by joint. We visited 216 sites of outcrops and got 1928 joints measurements, among which 270 from Jurassic sandstones, 1378 from the Upper Triassic sandstones, 124 from the Middle and Lower Triassic sandstones, and 156 from Paleozoic sandstones. In the interior of the Ordos Basin, joints developed quite well in the Triassic strata, while joints in the Jurassic stata developed weakly and no joint in the Cretaceous strata. The Mesozoic stratigraphic thickness are: 1000 meters for the Lower Triassic, the Middle Triassic sandstone with thickness of 800 meters, 3000 meters for the Upper Triassic, 4000 meters for the Jurassic, and 1100 meters for the Lower Cretaceous. The vertical difference in joint development might be related to the burying depth of the strata: the higher the strata, the smaller the lithostatic stress, and then the weaker the joint. Joints in all stratigraphic levels showed a similar strain direction with the sigma 1 (the maximum pressure stress) vertical and the sigma 3 (the minimum pressure stress) horizontal and running N-S. The unconformity below the Cretaceous further indicates that joints in Jurassic and Triassic

  15. Paleozoic–early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China

    USGS Publications Warehouse

    Rui, Zongyao; Goldfarb, Richard J.; Qiu, Yumin; Zhou, T.; Chen, R.; Pirajno, Franco; Yun, Grace

    2002-01-01

    border and the epithermal and replacement deposits of the Kanggurtag belt to the east in the Chol Tagh range. Gold deposits of approximately the same age in the Yili block include the Axi hot springs/epithermal deposit near the Kazakhstan border and a series of small orogenic gold deposits south of Urumqi (e.g. Wangfeng). Gold-rich porphyry copper deposits (e.g. Tuwu) define important new exploration targets in the northern Tian Shan of Xinjiang. The northern foothills of the Kunlun Shan of southern Xinjiang host scattered, small placer gold deposits. Sources for the gold have not been identified, but are hypothesized to be orogenic gold veins beneath the icefields to the south. They are predicted to have formed in the Tianshuihai terrane during its early Mesozoic accretion to the amalgamated Tarim–Qaidam–Kunlun cratonic block.

  16. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.

    PubMed

    Jenkyns, Hugh C

    2003-09-15

    ) also shows relatively more radiogenic signatures during the early Toarcian OAE, but the early Aptian and Cenomanian-Turonian OAEs show the reverse effect, implying that increased rates of sea-floor spreading and hydrothermal activity dominated over continental weathering in governing sea-water chemistry. The Cretaceous climatic optimum (late Cenomanian to mid Turonian) also shows evidence for abrupt cooling episodes characterized by episodic invasion of boreal faunas into temperate and subtropical regions and changes in terrestrial vegetation; drawdown of CO(2) related to massive marine carbon burial (OAE) may be implicated here. The absence of a pronounced negative carbon-isotope excursion preceding the Cenomanian-Turonian OAE indicates that methane release is not necessarily connected to global deposition of marine organic carbon, but relative thermal maxima are common to all OAEs. 'Cold snaps' have also been identified from the Mesozoic record but their duration, causes and effects are poorly documented.

  17. Mesozoic lacewings from China provide phylogenetic insight into evolution of the Kalligrammatidae (Neuroptera)

    PubMed Central

    2014-01-01

    Background The Kalligrammatidae are distinctive, large, conspicuous, lacewings found in Eurasia from the Middle Jurassic to mid Early Cretaceous. Because of incomplete and often inadequate fossil preservation, an absence of detailed morphology, unclear relationships, and unknown evolutionary trends, the Kalligrammatidae are poorly understood. Results We describe three new subfamilies, four new genera, twelve new species and four unassigned species from the late Middle Jurassic Jiulongshan and mid Early Cretaceous Yixian Formations of China. These kalligrammatid taxa exhibit diverse morphological characters, such as mandibulate mouthparts in one major clade and siphonate mouthparts in the remaining four major clades, the presence or absence of a variety of distinctive wing markings such as stripes, wing spots and eyespots, as well as multiple major wing shapes. Based on phylogenetic analyses, the Kalligrammatidae are divided into five principal clades: Kalligrammatinae Handlirsch, 1906, Kallihemerobiinae Ren & Engel, 2008, Meioneurinae subfam. nov., Oregrammatinae subfam. nov. and Sophogrammatinae subfam. nov., each of which is accorded subfamily-level status. Our results show significant morphological and evolutionary differentiation of the Kalligrammatidae family during a 40 million-year-interval of the mid Mesozoic. Conclusion A new phylogeny and classification of five subfamilies and their constituent genera is proposed for the Kalligrammatidae. These diverse, yet highly specialized taxa from northeastern China suggest that eastern Eurasia likely was an important diversification center for the Kalligrammatidae. Kalligrammatids possess an extraordinary morphological breadth and panoply of adaptations during the mid-Mesozoic that highlight our conclusion that their evolutionary biology is much more complex than heretofore realized. PMID:24912379

  18. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    NASA Astrophysics Data System (ADS)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  19. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  20. The Colorado Plateau Coring Project: A Continuous Cored Non-Marine Record of Early Mesozoic Environmental and Biotic Change

    NASA Astrophysics Data System (ADS)

    Irmis, Randall; Olsen, Paul; Geissman, John; Gehrels, George; Kent, Dennis; Mundil, Roland; Rasmussen, Cornelia; Giesler, Dominique; Schaller, Morgan; Kürschner, Wolfram; Parker, William; Buhedma, Hesham

    2017-04-01

    approximation of their host rock's depositional age, along with significant populations of early Paleozoic and Proterozoic zircons which will be used to identify provenance. Thermal demagnetization of paleomagnetic samples show that most Moenkopi and some fine-grained Chinle lithologies preserve a primary magnetization, and thus will allow the construction of a robust magnetostratigraphy for portions of the Triassic section. Soil carbonates are abundant throughout the cored section. All data will be integrated to construct an exportable chronostratigraphic framework that will allow us to test a number of major questions with global implications for understanding the early Mesozoic world, including: 1) do independent U-Pb ages support the accuracy of the Newark astronomically-calibrated geomagnetic polarity timescale? 2) is the mid-Late Triassic biotic turnover observable in the western US coincident with the Manicouagan bolide impact? and 3) are cyclical climate variations apparent in the cored record, and do they reflect variations in atmospheric CO2?

  1. Mesozoic invasion of crust by MORB-source asthenospheric magmas, U.S. Cordilleran interior

    NASA Astrophysics Data System (ADS)

    Leventhal, Janet A.; Reid, Mary R.; Montana, Art; Holden, Peter

    1995-05-01

    Mafic and ultramafic xenoliths entrained in lavas of the Cima volcanic field have Nd and Sr isotopic ratios indicative of a source similar to that of mid-ocean ridge basalt (MORB). Nd and Sr internal isochrons demonstrate a Late Cretaceous intrusion age. These results, combined with evidence for emplacement in the lower crust and upper mantle, indicate invasion of the lower crust by asthenospheric magmas in the Late Cretaceous. Constituting the first prima facie evidence for depleted-mantle magmatism in the Basin and Range province prior to late Cenozoic volcanism, these results lend key support to models suggesting crustal heating by ascent of asthenosphere in the Mesozoic Cordilleran interior.

  2. Palinspastic reconstruction of Lower Mesozoic stratigraphic sequences near the latitude of Las Vegas: Implications for the entire Great Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marzolf, J.E.

    1993-04-01

    On the Colorado Plateau, lower Mesozoic stratigraphy is subdivided by regional unconformities into the Lower Triassic Moenkopi, Upper Triassic Chinle, Lower and Middle( ) Jurassic Glen Canyon, and Middle Jurassic lower San Rafael tectonosequences. Palinspastic reconstruction for Cenozoic extensional and mesozoic compressional deformations near the latitude of Las Vegas indicates the Moenkopi tectono-sequence constructed a passive-margin-like architecture of modest width overlapping folded. Thrust-faulted, and intruded Permian strata, with state boundaries fixed relative to the Colorado Plateau, comparison of the location of the Early Triassic shelf-slope break near latitude 36[degree] with the palinspastically restored location of the shelf-slope break in southeasternmore » Idaho implies strata of the Moenkopi tectonosequence in the Mesozoic marine province of northwest NV lay in western utah in the Early Triassic. This reconstruction: suggests that the Galconda and Last Chance faults are part of the same thrust system; aligns late Carnian paleovalleys of the chinle tectonosequence on the Colorado Plateau with a coeval northwest-trending paleovalley cut across the Star Pea, and the Norian Cottonwood paleovalley with the coeval Grass Valley delta; defines a narrow, northward deepening back-arc basin in which the Glen Canyon tectonosequence was deposited; aligns east-facing half grabens along the back side of the arc from the Cowhole Mountains to the Clan Alpine Range; projects the volcan-arc/back-arc transition from northwest Arizona to the east side of the Idaho batholith; and predicts the abrupt facies change from silicic volcanics to marine strata of the lower San Rafael sequence lay in western Utah. The paleogeographic was altered in the late Bathonian to Callovian by back-arc extension north of a line extending from Cedar City, UT to Mina, NV. The palinspastic reconstruction implies the Paleozoic was tectonically stacked at the close of the Paleozoic.« less

  3. Seismic study of the Mesozoic carbonate basement around Mt. Somma Vesuvius, Italy

    NASA Astrophysics Data System (ADS)

    Bruno, Pier Paolo G.; Cippitelli, Giuseppe; Rapolla, Antonio

    1998-09-01

    Fifteen seismic reflection lines from AGIP surveys, in and around the Campanian Plain and Mt. Somma-Vesuvius (south Italy) have been interpreted. The attention has been focused to the horizon pertinent to the top of the Mesozoic carbonate sequence and the Quaternary faults dissecting it. As a matter of fact, both are very important elements for understanding the origin of the volcanic activity in the area, that often in the past, has been the topic of debates not supported by reliable data. In the study area, referring to the depth of the carbonate basement, comparison between the result achieved by the seismic prospecting and previous gravity studies has been made. It shows coherence in some areas but large discrepancy within others. Near the town of S. Anastasia, the gravity and seismic depth estimates differ as much as 1000 m or more. Furthermore, the seismic data show that the source of the greatest volcanic eruption in the area (the so-called `Campanian Ignimbrite') is probably not located in the Acerra depression, as suggested by other authors. A main NE-SW fault directed toward Vesuvius, considered as playing a primary role on volcanogenetic processes and previously recognised only offshore by marine seismic survey, has been now identified also inland using this new seismic information. The results presented here strengthen the hypothesis that Mt. Vesuvius is located at the crossing point of two regional Quaternary sets of fault heading NW-SE and NE-SW.

  4. Paleozoic subduction complex and Paleozoic-Mesozoic island-arc volcano-plutonic assemblages in the northern Sierra terrane

    USGS Publications Warehouse

    Hanson, Richard E.; Girty, Gary H.; Harwood, David S.; Schweickert, Richard A.

    2000-01-01

    This field trip provides an overview of the stratigraphic and structural evolution of the northern Sierra terrane, which forms a significant part of the wall rocks on the western side of the later Mesozoic Sierra Nevada batholith in California. The terrane consists of a pre-Late Devonian subduction complex (Shoo Fly Complex) overlain by submarine arc-related deposits that record the evolution of three separate island-arc systems in the Late Sevonian-Early Mississippian, Permian, and Late Triassic-Jurassic. The two Paleozoic are packages and the underlying Shoo Fly Complex have an important bearing on plate-tectonic processes affecting the convergent margin outboard of the Paleozoic Cordilleran miogeocline, although their original paleogeographic relations to North America are controversial. The third arc package represents an overlap assemblage that ties the terrane to North America by the Late Triassic and helps constrain the nature and timing of Mesozoic orogenesis. Several of the field-trip stops examine the record of pre-Late Devonian subduction contained in the Shoo Fly Complex, as well as the paleovolcanology of the overlying Devonian to Jurassic arc rocks. Excellent glaciated exposures provide the opportunity to study a cross section through a tilted Devonian volcano-plutonic association. Additional stops focus on plutonic rocks emplaced during the Middle Jurassic arc magmatism in the terrane, and during the main pulse of Cretaceous magmatism in the Sierra Nevada batholith to the east.

  5. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  6. Timing of Exhumation of the Mesozoic Blue Nile Rift, Ethiopia: A New Study from Apatite Fission Track Thermochronology

    NASA Astrophysics Data System (ADS)

    Gani, N. D.; Bowden, S. M.

    2017-12-01

    At present, tectonic features of Ethiopia are dominated by the 2.5 km high Ethiopian Plateau, and the NE-SW striking continental rift, the East African Rift System (EARS) that dissected the plateau into the northwest and southeast plateaus. The stress direction of the EARS is nearly perpendicular to the stress direction of the Mesozoic rifts of the Central African Rift System (CARS), located mostly in Sudan, Ethiopia and Kenya. During the Gondwana splitting in Mesozoic, active lithospheric extension within the CARS resulted in several NW-SE striking continental rifts including the Blue Nile, Muglad, Melut and Anza that are well documented in Sudan and Kenya, from a combination of geophysical and drill core analysis and field investigations. However, the timing and evolution of the poorly documented Blue Nile Rift in Ethiopia, now hidden in the subsurface of the Ethiopian Plateau and the EARS, is largely unknown. This study investigates, for the first time, the timing of tectono-thermal evolution of the Blue Nile Rift from cooling ages deduced from apatite fission track (AFT) thermochronology to understand the rift flank exhumation. Here, we report the AFT results from basement samples collected in a vertical transect from the Ethiopian Plateau. The fission track ages of the samples show a general trend of increasing cooling ages with elevations. The time-temperature simulations of the fission track ages illustrate that the cooling started at least 80 Ma ago with a significant amount of rapid cooling between 80 and 70 Ma, followed by a slow cooling after 70 Ma and then another accelerated cooling starting around 10 Ma. The Cretaceous rapid cooling event likely related to the flank uplift of the Blue Nile Rift and associated faulting, during which much of the exhumation occurred. Today, the Blue Nile Rift is buried under the thick cover of Mesozoic sedimentary rocks and Cenozoic volcanics. The late Neogene rapid cooling agrees well with our previous thermal model

  7. Zircon Hf-O isotopic constraints on the origin of Late Mesozoic felsic volcanic rocks from the Great Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Gong, Mingyue; Tian, Wei; Fu, Bin; Wang, Shuangyue; Dong, Jinlong

    2018-05-01

    The voluminous Late Mesozoic magmatism was related to extensive re-melting of juvenile materials that were added to the Central East Asia continent in Phanerozoic time. The most favoured magma generation mechanism of Late Mesozoic magmas is partial melting of underplated lower crust that had radiogenic Hf-Nd isotopic characteristics, but this mechanism faces difficulties when interpreting other isotopic data. The tectonic environment controlling the generation of the Late Mesozoic felsic magmas is also in dispute. In this study, we obtained new U-Pb ages, and geochemical and isotopic data of representative Jurassic (154.4 ± 1.5 Ma) and Cretaceous (140.2 ± 1.5 Ma) felsic volcanic samples. The Jurassic sample has inherited zircon cores of Permian age, with depleted mantle-like εHf(t) of +7.4 - +8.5, which is in contrast with those of the magmatic zircons (εHf(t) = +2.4 ± 0.7). Whereas the inherited cores and the magmatic zircons have identical mantle-like δ18O composition ranges (4.25-5.29‰ and 4.69-5.54‰, respectively). These Hf-O isotopic characteristics suggest a mixed source of enriched mantle materials rather than ancient crustal components and a depleted mantle source represented by the inherited Permian zircon core. This mechanism is manifested by the eruption of Jurassic alkaline basalts originated from an enriched mantle source. The Cretaceous sample has high εHf(t) of +7.0 - +10.5, suggesting re-melting of a mafic magma derived from a depleted mantle-source. However, the sub-mantle zircon δ18O values (3.70-4.58‰) suggest the depleted mantle-derived mafic source rocks had experienced high temperature hydrothermal alteration at upper crustal level. Therefore, the Cretaceous felsic magma, if not all, could be generated by re-melting of down-dropped supracrustal volcanic rocks that experienced high temperature oxygen isotope alteration. The two processes, enriched mantle-contribution and supracrustal juvenile material re-melting, are new

  8. Latitudinal diversity gradients in Mesozoic non-marine turtles

    NASA Astrophysics Data System (ADS)

    Nicholson, David B.; Holroyd, Patricia A.; Valdes, Paul; Barrett, Paul M.

    2016-11-01

    The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.

  9. Organic geochemistry, lithology, and paleontology of Tertiary and Mesozoic rocks from wells on the Alaska Peninsula

    USGS Publications Warehouse

    McLean, Hugh James

    1977-01-01

    Core chips and drill cuttings from eight of the nine wells drilled along the Bering Sea lowlands of the Alaska Peninsula were subjected to lithologic and paleontologic analyses. Results suggest that at least locally, sedimentary rocks of Tertiary age contain oil and gas source and reservoir rocks capable of generating and accumulating liquid and gas hydrocarbons. Paleogene strata rich in organic carbon are immature. However, strata in offshore basins to the north and south may have been subjected to a more productive thermal environment. Total organic carbon content of fine grained Neogene strata appears to be significantly lower than in Paleogene rocks, possibly reflecting nonmarine or brackish water environments of deposition. Neogene sandstone beds locally yield high values of porosity and permeability to depths of about 8,000 feet (2,439 m). Below this depth, reservoir potential rapidly declines. The General Petroleum, Great Basins No. 1 well drilled along the shore of Bristol Bay reached granitic rocks. Other wells drilled closer to the axis of the present volcanic arc indicate that both Tertiary and Mesozoic sedimentary rocks have been intruded by dikes and sills of andesite and basalt. Although the Alaska Peninsula has been the locus of igneous activity throughout much of Mesozoic and Tertiary time, thermal maturity indicators such as vitrinite reflectance and coal rank suggest, that on a regional scale, sedimentary rocks have not been subjected to abnormally high geothermal gradients.

  10. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plainmore » were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.« less

  11. Constraints from Mesozoic siliciclastic cover rocks and satellite image analysis on the slip history of regional E-W faults in the southeast Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Tewksbury, Barbara J.; Mehrtens, Charlotte J.; Gohlke, Steven A.; Tarabees, Elhamy A.; Hogan, John P.

    2017-12-01

    In the southeast Western Desert of Egypt, a prominent set of E-W faults and co-located domes and basins involve sedimentary cover rock as young as the early Eocene. Although earlier Mesozoic slip on faults in southern Egypt has been widely mentioned in the literature and attributed to repeated reactivation of basement faults, evidence is indirect and based on the idea that regional stresses associated with tectonic events in the Syrian Arc would likely have reactivated basement faults in south Egypt in dextral strike slip during the Mesozoic as well as the Cenozoic. Here, we present direct evidence from the rock record for the sequence of development of features along these faults. Southwest of Aswan, a small structural dome in Mesozoic Nubia facies rocks occurs where the Seiyal Fault bends northward from west to east. The dome is cut by strands of the Seiyal Fault and a related set of cataclastic deformation bands showing dominantly right lateral strike slip, as well as by younger calcite veins with related patchy poikilotopic cement. High resolution satellite image analysis of the remote southwest Kharga Valley shows a similar sequence of events: older structural domes and basins located where E-W faults bend northward from west to east, right lateral offset of domes and basins along the E-W faults, and two sets of deformation band faults that lack co-located domes and basins. We suggest that field data, image analysis, and burial depth estimates are best explained by diachronous development of features along the E-W fault system. We propose that Late Mesozoic right lateral strike slip produced domes and basins in Nubia facies rocks in stepover regions above reactivated basement faults. We further suggest that the extensively linked segments of the E-W fault system in Nubia facies rocks, plus the deformation band systems, formed during the late Eocene when basement faults were again reactivated in dominantly right lateral strike slip.

  12. Viviparity and K-selected life history in a Mesozoic marine plesiosaur (Reptilia, Sauropterygia).

    PubMed

    O'Keefe, F R; Chiappe, L M

    2011-08-12

    Viviparity is known in several clades of Mesozoic aquatic reptiles, but evidence for it is lacking in the Plesiosauria. Here, we report a Late Cretaceous plesiosaur fossil consisting of a fetus preserved within an adult of the same taxon. We interpret this occurrence as a gravid female and unborn young and hence as definitive evidence for plesiosaur viviparity. Quantitative analysis indicates that plesiosaurs gave birth to large, probably single progeny. The combination of viviparity, large offspring size, and small brood number differs markedly from the pattern seen in other marine reptiles but does resemble the K-selected strategy of all extant marine mammals and a few extant lizards. Plesiosaurs may have shared other life history traits with these clades, such as sociality and maternal care.

  13. Spatial and temporal distribution of Mesozoic adakitic rocks along the Tan-Lu fault, Eastern China: Constraints on the initiation of lithospheric thinning

    NASA Astrophysics Data System (ADS)

    Gu, Hai-Ou; Xiao, Yilin; Santosh, M.; Li, Wang-Ye; Yang, Xiaoyong; Pack, Andreas; Hou, Zhenhui

    2013-09-01

    The Mesozoic tectonics in East China is characterized by significant lithospheric thinning of the North China Craton, large-scale strike-slip movement along the Tan-Lu fault, and regional magmatism with associated metallogeny. Here we address the possible connections between these three events through a systematic investigation of the geochemistry, zircon geochronology and whole rock oxygen isotopes of the Mesozoic magmatic rocks distributed along the Tan-Lu fault in the Shandong province. The characteristic spatial and temporal distributions of high-Mg adakitic rocks along the Tan-Lu fault with emplacement ages of 134-128 Ma suggest a strong structural control for the emplacement of these intrusions, with magma generation possibly associated with the subduction of the Pacific plate in the early Cretaceous. The low-Mg adakitic rocks (127-120 Ma) in the Su-Lu orogenic belt were formed later than the high-Mg adakitic rocks, whereas in the Dabie orogenic belt, most of the low-Mg adakitic rocks (143-129 Ma) were generated earlier than the high-Mg adakitic rocks. Based on available data, we suggest that the large scale strike-slip tectonics of the Tan-Lu fault in the Mesozoic initiated cratonic destruction at the south-eastern margin of the North China Craton, significantly affecting the lower continental crust within areas near the fault. This process resulted in crustal fragments sinking into the asthenosphere and reacting with peridotites, which increased the Mg# of the adakitic melts, generating the high-Mg adakitic rocks. The gravitationally unstable lower continental crust below the Tan-Lu fault in the Su-Lu orogenic belt triggered larger volume delamination of the lower continental crust or foundering of the root.

  14. The newfoundland basin - Ocean-continent boundary and Mesozoic seafloor spreading history

    NASA Technical Reports Server (NTRS)

    Sullivan, K. D.

    1983-01-01

    It is pointed out that over the past 15 years there has been considerable progress in the refinement of predrift fits and seafloor spreading models of the North Atlantic. With the widespread acceptance of these basic models has come increasing interest in resolution of specific paleogeographic and kinematic problems. Two such problems are the initial position of Iberia with respect to North America and the geometry and chronology of early (pre-80 m.y.) relative motions between these two plates. The present investigation is concerned with geophysical data from numerous Bedford Institute/Dalhousie University cruises to the Newfoundland Basin which were undrtaken to determine the location of the ocean-continent boundary (OCB) and the Mesozoic spreading history on the western side. From the examination of magnetic data in the Newfoundland Basin, the OCB east of the Grand Banks is defined as the seaward limit of the 'smooth' magnetic domain which characterizes the surrounding continental shelves. A substantial improvement in Iberia-North America paleographic reconstructions is achieved.

  15. The geology and Mesozoic collisional history of the Cordillera Real, Ecuador

    NASA Astrophysics Data System (ADS)

    Aspden, John A.; Litherland, Martin

    1992-04-01

    The geology of the metamorphic rocks of the Cordillera Real of Ecuador is described in terms of five informal lithotectonic divisions. We deduce that during the Mesozoic repeated accretionary events occurred and that dextral transpression has been of fundamental importance in determining the tectonic evolution of this part of the Northern Andes. The oldest event recognised, of probable Late Triassic age, may be related to the break-up of western Gondwana and generated a regional belt of 'S-type' plutons. During the Jurassic, major calc-alkaline batholiths were intruded. Following this, in latest Jurassic to Early Cretaceous time, a volcano-sedimentary terrane, of possible oceanic or marginal basin origin (the Alao division), and the most westerly, gneissic Chaucha-Arenillas terrane, were accreted to continental South America. The accretion of the oceanic Western Cordillera took place in latest Cretaceous to earliest Tertiary time. This latter event coincided with widespread thermal disturbance, as evidenced by the large number of young K-Ar mineral ages recorded from the Cordillera Real.

  16. Geophysical survey within the Mesozoic magnetic anomaly sequence south of Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, G.M.; Rohr, K.

    1979-09-10

    This geophysical survey of an approximate 1/sup 0/ square covers Mesozoic magnetic anomalies M0, M2, and M4 south of Bermuda. Bathymetry, magnetics seismic reflection profiling, and seismic refraction data are presented. The isochron trend within the survey area at magnetic anomaly M4 times is 025/sup 0/. Two left lateral fracture zones exist: the southern fracture zone has an offset of <10 km at M4 time and 33 km at M0 time. The northern fracture zone has an offset of 37 km at M4 time and 26 km at M0 time. These changes in ofsett are accounted for by asymmetric spreading,more » an 11/sup 0/ change in trend of anomaly M0 relative to M4, and by M0 time, growth of a small right lateral fracture zone. Seismic refraction data provide poor control on the shallow crustal structure but suggest the presence of significant lateral inhomogeneities with layer 2.« less

  17. Preliminary Depositional and Provenance Records of Mesozoic Basin Evolution and Cenozoic Shortening in the High Andes, La Ramada Fold-Thrust Belt, Southern-Central Andes (32-33°S)

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; McKenzie, R.; Alvarado, P. M.

    2015-12-01

    The Argentinian Andes define key examples of retroarc shortening and basin evolution above a zone of active subduction. The La Ramada fold-thrust belt (RFTB) in the High Andes provides insights into the relative influence and temporal records of diverse convergent margin processes (e.g. flat-slab subduction, convergent wedge dynamics, structural inversion). The RFTB contains Mesozoic extensional basin strata deformed by later Andean shortening. New detrital zircon U-Pb analyses of Mesozoic rift sediments reveal: (1) a dominant Permo-Triassic age signature (220-280 Ma) associated with proximal sources of effective basement (Choiyoi Group) during Triassic synrift deposition; (2) upsection younging of maximum depositional ages from Late Triassic through Early Cretaceous (230 to 100 Ma) with the increasing influence of western Andean arc sources; and (3) a significant Late Cretaceous influx of Paleozoic (~350-550 Ma) and Proterozoic (~650-1300 Ma) populations during the earliest shift from back-arc post-extensional subsidence to upper-plate shortening. The Cenozoic detrital record of the Manantiales foreland basin (between the Frontal Cordillera and Precordillera) records RFTB deformation prior to flat-slab subduction. A Permo-Triassic Choiyoi age signature dominates the Miocene succession, consistent with sources in the proximal Espinacito range. Subordinate Mesozoic (~80-250 Ma) to Proterozoic (~850-1800 Ma) U-Pb populations record exhumation of the Andean magmatic arc and recycling of different structural levels in the RFTB during thrusting/inversion of Mesozoic rift basin strata and subjacent Paleozoic units. Whereas maximum depositional ages of sampled Manantiales units cluster at 18-20 Ma, the Estancia Uspallata basin (~50 km to the south) shows consistent upsection younging of Cenozoic populations attributed to proximal volcanic centers. Ongoing work will apply low-temperature thermochronology to pinpoint basin accumulation histories and thrust timing.

  18. Criteria for the recognition and correlation of sandstone units in the Precambrian and Paleozoic-Mesozoic clastic sequence in the near east

    NASA Astrophysics Data System (ADS)

    Weissbrod, T.; Perath, I.

    A systematic study of the Precambrian and Paleozoic-Mesozoic clastic sequences (Nubian Sandstone) in Israel and Sinai, and a comparative analysis of its stratigraphy in neighbouring countries, has shown that besides the conventional criteria of subdivision (lithology, field appearance, photogeological features, fossil content), additional criteria can be applied, which singly or in mutual conjuction enable the recognition of widespread units and boundaries. These criteria show lateral constancy, and recurrence of a similar vertical sequence over great distances, and are therefore acceptable for the identification of synchronous, region-wide sedimentary units (and consequently, major unconformities). They also enable, once the units are established, to identify detached (not in situ) samples, samples from isolated or discontinous outcrops, borehole material or archive material. The following rock properties were tested and found to be usefuls in stratigraphic interpretation, throughout large distribution areas of the clastic sequence: Landscape, which is basically the response of a particular textural-chemic al aggregate to atmospheric weathering. Characteristic outcrop feature — styles of roundness or massivity, fissuring or fliatin, slope profile, bedding — express a basic uniformity of these platform-type clastics. Colors are often stratigraphically constant over hundreds of kilometers, through various climates and topographies, and express some intrinsic unity of the rock bodies. Grain size and sorting, when cross-plotted, enable to differentiate existing unit. The method requires the analysis of representative numbers of samples. Vertical trends of median grain size and sorting show reversals, typically across unconformities. Feldstar content diminishes from 15-50% in Precambrian-Paleozoic rocks to a mere 5% or less in Mesozoic sandstones — a distinctive regionwide time trend. Dominance of certain feldstar types characterizes Precambrian and Paleozoic

  19. Tectono-sedimentary events and geodynamic evolution of the Mesozoic and Cenozoic basins of the Alpine Margin, Gulf of Tunis, north-eastern Tunisia offshore

    NASA Astrophysics Data System (ADS)

    Melki, Fetheddine; Zouaghi, Taher; Chelbi, Mohamed Ben; Bédir, Mourad; Zargouni, Fouad

    2010-09-01

    The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW-SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW-SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north-south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.

  20. Location of deeply buried, offshore Mesozoic transform fault along the western margin of the Gulf of Mexico inferred from gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Nguyen, L. C.; Mann, P.; Bird, D. E.

    2013-12-01

    Several workers have proposed that a Jurassic age, 500-km-long, right-lateral transform fault along the western margin of the Gulf of Mexico, possibly extending southward and onshore for another 500 km onto the isthmus area of southern Mexico, was formed as the ocean basin opened. This proposed transform fault plays a critical role in the most widely accepted tectonic model for the Mesozoic opening of the Gulf of Mexico by a ~40 degree, CCW rotation of the Yucatan block about a pole near southern Florida. Previously proposed names for the fault include the Tamaulipas-Chiapas transform fault and the Western Main transform fault for the offshore fault and the Orizaba transform fault for the southern, onland continuation of the fault into southern Mexico. There are few direct geologic or geophysical observations on the location or characteristics of the proposed offshore transform because it is buried beneath an over 10-km-thick sedimentary wedge along the continental margin of eastern Mexico. To better define this offshore fault, we identify a 500-km-long, 40-km-wide gravity anomaly, concentric with, and located about 60-70 km off the eastern coast of Mexico. Two east-west 200/1200-km-long gravity models constructed to cross the anomaly at right angles are parallel to existing multi-channel seismic lines with age-correlated stratigraphy. Both gravity models reveal an abrupt crustal thickness change beneath the gravity anomaly: from 27 km to 12 km over a distance of 65 km in the southern profile, and from 23 km to 16 km over a distance of 30 km in northern profile. The linearity of the anomaly in map view combined with the abrupt change in thickness inferred from gravity modeling is consistent with the tectonic origin of a right-lateral transform fault separating continental rocks of Mexico from Mesozoic seafloor produced by the opening of the Gulf of Mexico. Magnetic profiles were analyzed using a Werner depth-to-magnetic source technique, coincident with the gravity

  1. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with

  2. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  3. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: Field relations and geochemistry

    NASA Astrophysics Data System (ADS)

    Echeverría, Lina M.

    1980-08-01

    An exceptional occurrence of ultramafic lavas within the volcanic member of the Mesozoic (or younger) Gorgona Igneous Complex represents the first known komatiites of post-Precambrian age. Gorgona komatiites are virtually unaltered and display typical spinifex textures, with 7 10 cm long plates of olivine (Fo 88 to 91) surrounded by acicular aluminous augite, subordinate plagioclase (An 56 to 78), basaltic glass, and two spinel phases. The MgO contents of the komatiites range from 15 to 22 wt.%. Sr and Nd isotopic compositions are indicative of depletion of incompatible elements in the mantle source region, as is the case for “normal” mid-ocean ridge basalts. The komatiites are low in total REE abundances and extremely depleted in LREE. They represent primary melts generated by high degree of partial melting of the mantle. Eruption temperatures are estimated at 1,450° to 1,500° C.

  4. Structures in the transition zone of the northeast South China Sea: serpentinite dome vs mantle exhumation, or evidence of Mesozoic active subduction transferring to Cenozoic passive extension?

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Zhou, D.

    2013-12-01

    Complete sedimentary sequences and weak erosion make the transition zone of the South China Sea the optimal place to study the entire evolution history of marginal sea basins, as well as the transition mechanism from active subduction to passive extension. 2D long cable seismic profiles revealed that both Baiyun and Liwan sag in the northeast South China Sea margin were lack of large controlling faults, especially in Liwan sag, syn-rift sequences waved above the basement. Dome-like uplifts(serpetinite uplifts?) or diapirs(?) came from below the basement, caused the syn-rift sequences pushed up around 36Ma(T80). Gravity inversion based on seismic reflection indicated that the dome has a lower density and a lower layer velocity than normal crust. Also around the Continent-Ocean Boundary (COB), a small segment similar to the lower crust was exposed. Between this exposed segment and the Cenozoic oceanic crust, mantle seems to be exhumed along the breakup point. Between the COB and roughly the shelf break, high velocity lower crust was discriminated in the northeast continental margin. Structures in northeast South China Sea seems having many similarities with Newfoundland-Iberia margin, by serpentinite(?) dome and exhumed mantle, although spreading rate here is intermediate. In fact, regional background suggests that there might be another interpretation: transition from Mesozoic subduction to Cenozoic extension occurred through paleo oceanic crust breakup in the northeast, which in turn retained Mesozoic subduction system beneath the northeast continental margin. Confined with magnetic anomaly, Bouguer gravity gradient anomaly, and well drilling lithological evidences, Cenozoic Baiyun sag developed upon Mesozoic fore-arc, while Cenozoic Liwan sag developed upon Mesozoic accretionary prism. The high velocity lower crust was caused by both remnant subducted slab and by Oceanic-Continent interaction due to subduction. There might also be serpentinite dome and exhumed

  5. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  6. Paleomagnetic Constraints on the Tectonic History of the Mesozoic Ophiolite and Arc Terranes of Western Mexico

    NASA Astrophysics Data System (ADS)

    Boschman, L.; Van Hinsbergen, D. J. J.; Langereis, C. G.; Molina-Garza, R. S.; Kimbrough, D. L.

    2017-12-01

    The North American Cordillera has been shaped by a long history of accretion of arcs and other buoyant crustal fragments to the western margin of the North American Plate since the Early Mesozoic. Accretion of these terranes resulted from a complex tectonic history interpreted to include episodes of both intra-oceanic subduction within the Panthalassa/Pacific Ocean, as well as continental margin subduction along the western margin of North America. Western Mexico, at the southern end of the Cordillera, contains a Late Cretaceous-present day long-lived continental margin arc, as well as Mesozoic arc and SSZ ophiolite assemblages of which the origin is under debate. Interpretations of the origin of these subduction-related rock assemblages vary from far-travelled exotic intra-oceanic island arc character to autochthonous or parautochthonous extended continental margin origin. We present new paleomagnetic data from four localities: (1) the Norian SSZ Vizcaíno peninsula Ophiolite; (2) its Lower Jurassic sedimentary cover; and (3) Barremian and (4) Aptian sediments derived from the Guerrero arc. The data show that the Mexican ophiolite and arc terranes have a paleolatitudinal plate motion history that is equal to that of the North American continent. This suggests that these rock assemblages were part of the overriding plate and were perhaps only separated from the North American continent by temporal fore- or back-arc spreading. These spreading phases resulted in the temporal existence of tectonic plates between the North American and Farallon Plates, and upon closure of the basins, in the growth of the North American continent without addition of any far-travelled exotic terranes.

  7. Mesozoic to Cenozoic tectonic transition process in Zhanhua Sag, Bohai Bay Basin, East China

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjun; Wu, Zhiping; Lu, Shunan; Li, Xu; Lin, Chengyan; Huang, Zheng; Su, Wen; Jiang, Chao; Wang, Shouye

    2018-04-01

    The Zhanhua sag is part of the Bohai Bay intracontinental basin system that has developed since the Mesozoic in East China. The timing of this basin system coincides with the final assembly of East Asia and the development of Western Pacific-type plate margin. Here we use 3-D seismic and core log data to investigate the evolution of this basin and discuss its broad tectonic settings. Our new structural study of Zhanhua sag suggests that there are four major tectonic transitions occurred in the Bohai Bay Basin during Mesozoic and Cenozoic: (1) The first tectonic transition was from stable Craton to thrusting during the Triassic, mainly caused by the South China Block's subduction northward beneath the North China Block, which induced the formation of the NW-striking thrust faults. (2) The second tectonic transition was mainly characterized by a change from compression to extension, which can be further divided into two-stages. At the first stage, two episodes of NW-SE shortening occurred in East Asia during Early-Middle Jurassic and Late Jurassic-earliest Cretaceous, respectively. At the second stage, the extension and left-lateral shearing took place during Early Cretaceous while compression occurred during Late Cretaceous. The NW-striking thrust faults changed to normal faults and the NNE-striking left-lateral strike-slip faults started to influence the eastern part of the basin. (3) The third transition occurred when the NW-SE extension and NNE-striking right-lateral shearing started to form during Paleogene, and the peak deformation happen around 40 Ma due to the change of the subduction direction of Pacific Plate relative to Eurasia Plate. The NE-striking normal faults are the main structure, and the pre-existing NNE-striking strike-slip faults changed from left-lateral to right-lateral. (4) The fourth transition saw the regional subsidence during Neogene, which was probably caused by the India-Asia "Hard collision" between 25 and 20 Ma.

  8. The first Mesozoic microwhip scorpion (Palpigradi): a new genus and species in mid-Cretaceous amber from Myanmar

    NASA Astrophysics Data System (ADS)

    Engel, Michael S.; Breitkreuz, Laura C. V.; Cai, Chenyang; Alvarado, Mabel; Azar, Dany; Huang, Diying

    2016-04-01

    A fossil palpigrade is described and figured from mid-Cretaceous (Cenomanian) amber from northern Myanmar. Electrokoenenia yaksha Engel and Huang, gen. n. et sp. n., is the first Mesozoic fossil of its order and the only one known as an inclusion in amber, the only other fossil being a series of individuals encased in Pliocene onyx marble and 94-97 million years younger than E. yaksha. The genus is distinguished from other members of the order but is remarkably consistent in observable morphological details when compared to extant relatives, likely reflecting a consistent microhabitat and biological preferences over the last 100 million years.

  9. Mesozoic-Early Cenozoic Retroarc Basin Evolution in Response to Changing Tectonic Regimes, Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C.; Horton, B. K.; Fuentes, F.; Constenius, K. N.; Stockli, D. F.

    2017-12-01

    Spatial and temporal variations in pre-Andean deformation, inherited lithospheric discontinuities, and subduction geometry have been documented for the southern Central Andes (27-40°S). However, the influence of inherited crustal structures and changing subduction zone dynamics on along-strike (N-S) and across-strike (E-W) variations in upper-plate deformation and basin evolution remains poorly understood. The La Ramada Basin in the High Andes at 32°S preserves the northernmost succession correlated with the well-studied Neuquen Basin to the south. New maximum depositional ages and provenance information provided by detrital zircon U-Pb geochronology refine the chronostratigraphic and provenance framework of La Ramada Basin deposits and improve reconstructions of structural activity and subsidence mechanisms during polyphase basin evolution. Updated along- and across-strike comparisons with Neuquen and intraplate depocenters provide an unparalleled opportunity to examine long-term fluctuations in stress regime, modes of variable plate coupling, structural reactivation, and basin evolution. Zircon U-Pb age distributions constrain Mesozoic-Cenozoic ages of La Ramada clastic units and identify a previously unrecognized period of Paleogene nonmarine deposition. Late Triassic-Jurassic synrift and post-rift deposits record sediment derivation from the eastern half-graben footwall and western Andean volcanic arc during periods of slab rollback and thermal subsidence. Uplift of the Coastal Cordillera and introduction of Coastal Cordillera sediment at 107 Ma represents the first signature of initial Andean uplift associated with accumulation in the La Ramada Basin. Finally, newly identified Paleogene extensional structures and intra-arc deposits in the western La Ramada Basin are correlated with the extensional Abanico Basin system ( 28°S-44°S) to the west in Chile. Development and inversion of this system of intra-arc depocenters suggests that shortening and uplift in

  10. Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery

    2016-04-01

    The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence

  11. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Wang, Tao; Zhang, Chengli

    2013-08-01

    The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U-Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979-711 Ma), Paleozoic (507-400 Ma), and Early (252-185 Ma) and Late (158-100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979-911 Ma, weakly deformed I-type granites at 894-815 Ma, and A-type granites at 759-711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507-470 Ma, 460-422 Ma and ˜415-400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507-470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460-422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ˜415-400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225-200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250-240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction

  12. Long lasting paleolandscapes stability of the French Massif Central during the Mesozoic

    NASA Astrophysics Data System (ADS)

    Ricordel-Prognon, C.; Thiry, M.; Theveniaut, H.; Lagroix, F.

    2009-04-01

    Cretaceous) in the northern parts of the massif (Ricordel et al., 2005; Ricordel, 2007;). These new ages, fairly older than the expected ones, bring considerable changes in the palaeogeographic evolution of the Massif Central during Mesozoic and Cenozoic. Basement rocks (granites, gneiss, rhyolites and even Permo-Carboniferous sediments) show often pinkish facies throughout the Massif Central. It has been shown that these pink facies are albitised (mainly pseudomorphic replacement of the primary plagioclases into albite and alteration of the biotite into chlorite) (Schmitt, 1992; Parcerisa et al., 2009). These albitised facies are arranged in a clear succession against (?) the Triassic unconformity that gives significant constraints about their development in relation with the Triassic palaeosurface. Secondary albite and chlorite contain minute hematite inclusions, which have been dated, using paleomagnetism, to be Triassic in age (245 Ma) (Ricordel et al., 2007). Given that the alterations are of the same age as the unconformity, it then follows that the albitised facies be related to the Triassic palaeosurface and be used to track back the Triassic palaeosurface through wide crystalline areas, even far away from the Mesozoic cover. Palaeomagnetic analyses allowed dating a large range of paleoweathering features for which no objective datings were previously available. Spatial and temporal distributions of the paleoweathering features and related unconformities provide key arguments to unravel the geodynamic evolution of the Massif Central. Triassic, Late Jurassic and Tertiary unconformities are superimposed on large areas of the Massif Centrall. This implies very little erosion of the crystalline basement since Triassic time, as shown by the widespread preservation of the Triassic albitized facies. Since the red kaolinitic paleosols of Late Jurassic/Early Cretaceous age rest directly on the basement rocks, large areas of the Massif Central were uncovered at this period

  13. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin

    NASA Astrophysics Data System (ADS)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen

    2018-04-01

    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  14. Paleozoic and Lower Mesozoic magmas from the eastern Klamath Mountains (North California) and the geodynamic evolution of northwestern America

    NASA Astrophysics Data System (ADS)

    Lapierre, H.; Brouxel, M.; Albarede, F.; Coulin, C.; Lecuyer, C.; Martin, P.; Mascle, G.; Rouer, O.

    1987-09-01

    The Paleozoic to Early Mesozoic geology of the eastern Klamath Mountains (N California) is characterized by three major magmatic events of Ordovician, Late Ordovician to Early Devonian, and Permo-Triassic ages. The Ordovician event is represented by a calc-alkalic island-arc sequence (Lovers Leap Butte sequence) developed in the vicinity of a continental margin. The Late Ordovician to Early Devonian event consists of the 430-480 Ma old Trinity ophiolite formed during the early development of a marginal basin, and a series of low-K tholeiitic volcanic suites (Lovers Leap Basalt—Keratophyre unit, Copley and Balaklala Formations) belonging to intraoceanic island-arcs. Finally, the Permo-Triassic event gave rise to three successives phases of volcanic activity (Nosoni, Dekkas and Bully Hill) represented by the highly differentiated basalt-to-rhyolite low-K tholeiitic series of mature island-arcs. The Permo-Triassic sediments are indicative of shallow to moderate depth in an open, warm sea. The geodynamic evolution of the eastern Klamath Mountains during Paleozoic to Early Mesozoic times is therefore constrained by the geological, petrological and geochemical features of its island-arcs and related marginal basin. A consistent plate-tectonic model is proposed for the area, consisting of six main stages: (1) development during Ordovician times of a calc-alkalic island-arc in the vicinity of a continental margin; (2) extrusion during Late Ordovician to Silurian times of a primitive basalt-andesite intraoceanic island-arc suite, which terminated with boninites, the latter suggest rifting in the fore-arc, followed by the breakup of the arc; (3) opening and development of the Trinity back-arc basin around 430-480 Ma ago; (4) eruption of the Balaklala Rhyolite either in the arc or in the fore-arc, ending in Early Devonian time with intrusion of the 400 Ma Mule Mountain stock; (5) break in volcanic activity from the Early Devonian to the Early Permian; and (6) development of

  15. Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators.

    PubMed

    Kotov, Alexey A; Taylor, Derek J

    2011-05-19

    The timescale of the origins of Daphnia O. F. Mueller (Crustacea: Cladocera) remains controversial. The origin of the two main subgenera has been associated with the breakup of the supercontinent Pangaea. This vicariance hypothesis is supported by reciprocal monophyly, present day associations with the former Gondwanaland and Laurasia regions, and mitochondrial DNA divergence estimates. However, previous multilocus nuclear DNA sequence divergence estimates at < 10 Million years are inconsistent with the breakup of Pangaea. We examined new and existing cladoceran fossils from a Mesozoic Mongolian site, in hopes of gaining insights into the timescale of the evolution of Daphnia. We describe new fossils of ephippia from the Khotont site in Mongolia associated with the Jurassic-Cretaceous boundary (about 145 MYA) that are morphologically similar to several modern genera of the family Daphniidae, including the two major subgenera of Daphnia, i.e., Daphnia s. str. and Ctenodaphnia. The daphniid fossils co-occurred with fossils of the predaceous phantom midge (Chaoboridae). Our findings indicate that the main subgenera of Daphnia are likely much older than previously known from fossils (at least 100 MY older) or from nuclear DNA estimates of divergence. The results showing co-occurrence of the main subgenera far from the presumed Laurasia/Gondwanaland dispersal barrier shortly after formation suggests that vicariance from the breakup of Pangaea is an unlikely explanation for the origin of the main subgenera. The fossil impressions also reveal that the coevolution of a dipteran predator (Chaoboridae) with the subgenus Daphnia is much older than previously known -- since the Mesozoic.

  16. Diets of giants: the nutritional value of herbivorous dinosaur diet during the Mesozoic

    NASA Astrophysics Data System (ADS)

    Gill, Fiona; Hummel, Juergen; Sharifi, Reza; Lee, Alexandra; Lomax, Barry

    2017-04-01

    A major uncertainty in estimating energy budgets and population densities of extinct animals is the carrying capacity of their ecosystems, constrained by net primary productivity (NPP) and digestible energy content of that NPP. The hypothesis that increases in NPP of land plants due to elevated atmospheric CO2 contributed to the unparalleled size of the sauropods, the largest ever land animals, has recently been rejected, based on modern studies on herbivorous insects. However, the nutritional value of plants grown under elevated CO2 levels might be very different for vertebrate megaherbivores with more complex digestive systems and different protein:energy requirements than insects. Here we show that the metabolisable energy (ME) value of five species of potential dinosaur food plants does not decline consistently with increasing CO2 growth concentrations, with maxima observed at 1200 ppm CO2. Our data potentially rebut the hypothesis of constraints on herbivore diet quality in the Mesozoic due to CO2 levels.

  17. A transitional alkalic dolerite dike suite of Mesozoic age in Southeastern New England

    NASA Astrophysics Data System (ADS)

    Hermes, O. Don; Rao, J. M.; Dickenson, M. P.; Pierce, T. A.

    1984-12-01

    Dike rocks from the New England platform of Rhode Island and adjacent Massachusetts consist of premetamorphic and post-metamorphic suites. The older group includes metamorphosed dolerite, minette, and schistose dioritic rocks. Post-metamorphic dikes consist of dolerite and sparse monchiquite. The post-metamorphic dolerites are of comparable age to the Eastern North American dolerite suite associated with the Mesozoic basins along the eastern seaboard of North America. However, the southeastern New England dolerites exhibit mineralogy and chemistry more typical of a transitional alkalic suite compared to the more subalkalic tholeiitic dolerites of the Eastern North American suite. Both suites are compatible with a rift tectonic setting, but the more alkalic dolerites may represent a deeper source of small volume melts compared to the Eastern North American dolerites. These more alkaline melts may have concentrated at local centers, or they may be typical of flank dolerites as opposed to the less alkalic varieties that occur within the central axial rift.

  18. Accretion of a Small Continental Fragment to a Larger Continental Plate: Mesozoic Ecuador as a Case-Study Area

    NASA Astrophysics Data System (ADS)

    Massonne, H.

    2013-05-01

    Only a few regions on Earth are appropriate to study processes that have happened in deeper crustal levels during the accretion of a microplate to a larger continental plate. Ecuador is one of these regions where in middle Mesozoic times a small continental fragment collided with the South-American plate. Along the suture between both plates, which occurs close to the present volcanic belt of Ecuador, high-pressure (HP) metamorphic rocks developed. These rocks, which are metapelites, metabasites, and metagranitoids, record processes during the microcontinent-continent collision (Massonne and Toulkeridis, 2012, Int. Geol. Rev. 54). The pressures, determined for the HP rocks, were as high as 14 kbar at temperatures somewhat above 500°C. The HP stage was followed by slight heating at the early exhumation. Peak temperatures up to 560°C were reached at pressures ≥10 kbar. This HP metamorphism was caused by the collision of the microplate with the South-American plate resulting in crustal thickening. The ascent of the HP rocks occurred in an exhumation channel. Before the collision, an oceanic basin existed between these plates. Probably, it was narrow as eclogite bodies are lacking in the N-S trending HP belt of Ecuador. Such bodies, especially if the eclogites had experienced pressures in excess of 20 kbar, are markers of a collision of major continental plates in Phanerozoic times with originally extended oceanic basins between these plates. In a more global context, the narrow ocean between the microplate and the South American continent is assumed to have been the westernmost portion of the Neo-Tethys which had extended to completely separate the two major fragments of former Pangaea before the opening of the southern Atlantic Ocean. This opening caused the closure of the narrow Neo-Tethys segment between the colliding microplate and the South American plate. This segment was bordered by E-W trending transform faults. A fault system (La Palma - El Guayabo fault

  19. A comparative study of diversification events: the early Paleozoic versus the Mesozoic

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.; Valentine, J. W.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1987-01-01

    We compare two major long-term diversifications of marine animal families that began during periods of low diversity but produced strikingly different numbers of phyla, classes, and orders. The first is the early-Paleozoic diversification (late Vendian-Ordovician; 182 MY duration) and the other the Mesozoic phase of the post-Paleozoic diversification (183 MY duration). The earlier diversification was associated with a great burst of morphological invention producing many phyla, classes, and orders and displaying high per taxon rates of family origination. The later diversification lacked novel morphologies recognized as phyla and classes, produced fewer orders, and displayed lower per taxon rates of family appearances. The chief difference between the diversifications appears to be that the earlier one proceeded from relatively narrow portions of adaptive space, whereas the latter proceeded from species widely scattered among adaptive zones and representing a variety of body plans. This difference is believed to explain the major differences in the products of these great radiations. Our data support those models that hold that evolutionary opportunity is a major factor in the outcome of evolutionary processes.

  20. Mesozoic contractile and extensional structures in the Boyer Gap area, northern Dome Rock Mountains, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boettcher, S.S.

    1993-04-01

    Mesozoic polyphase contractile and superposed ductile extensional structures affect Proterozoic augen gneiss, Paleozoic metasedimentary rocks, and Jurassic granitoids in the Boyer Gap area of the northern Dome Rock Mtns, W-central Arizona. The nappe-style contractile structures are preserved in the footwall of the Tyson Thrust shear zone, which is one of the structurally lowest thrust faults in the E-trending Jurassic and Cretaceous Maria fold and thrust belt. Contractile deformation preceded emplacement of Late Cretaceous granite (ca 80 Ma, U-Pb zircon) and some may be older than variably deformed Late Jurassic leucogranite. Specifically, detailed structural mapping reveals the presence of a km-scalemore » antiformal syncline that apparently formed as a result of superposition of tight to isoclinal, south-facing folds on an earlier, north-facing recumbent fold. The stratigraphic sequence of metamorphosed Paleozoic cratonal strata is largely intact in the northern Dome Rock Mtns, such that overturned and upright stratigraphic units can be distinguished. A third phase of folding in the Boyer Gap area is distinguished by intersection lineations that are folded obliquely across the hinges of open to tight, sheath folds. The axial planes of the sheet folds are subparallel to the mylonitic foliation in top-to-the-northeast extensional shear zones. The timing of ductile extensional structures in the northern Dome Rock is constrained by [sup 40]Ar/[sup 39]Ar isochron ages of 56 Ma and 48 Ma on biotite from mylonitic rocks in both the hanging wall and footwall of the Tyson Thrust shear zone. The two early phases of folding are the dominant mechanism by which shortening was accommodated in the Boyer Gap area, as opposed to deformation along discrete thrust faults with large offset. All of the ductile extensional structures are spectacularly displayed at an outcrop scale but are not of sufficient magnitude to obliterate the km-scale Mesozoic polyphase contractile

  1. Paleomagnetic data from Sarawak, Malaysia (Borneo) and the late Mesozoic and Cenozoic tectonics of Sundaland

    NASA Astrophysics Data System (ADS)

    Schmidtke, Eric A.; Fuller, Michael D.; Haston, Roger B.

    1990-02-01

    Paleomagnetic data from 231 samples from 31 sites in rocks of Upper Jurassic to Miocene age in Sarawak (Malaysian Borneo) reveal a trend of increasing counterclockwise (CCW) declination deflection with age. Six sites in Tertiary hypabyssal intrusions show 8° to 52° of CCW deflection. The intrusion deflected 52° CCW was K-Ar dated at 26 m.y. (Upper Oligocene), while one deflected 22° CCW gives a 17 m. y. age (Lower Miocene). Three sites in the Upper Eocene to Miocene(?) Silantek Formation show an average 40° of CCW deflection. Prefolding directions, showing 90° of CCW deflection, are isolated in 4 sites (including two positive fold tests) in Upper Jurassic and Cretaceous rocks of the Bau Limestone and Pedawan Formations. A postfolding, Cenozoic remagnetization with an average of 60° of CCW deflection is found in five Bau Limestone sites. Three sites in the Upper Jurassic Kedadom Formation show an average of 50° of CCW deflection. CCW declination deflections found in Mesozoic and Cenozoic rocks as far as 400 km east and 150 km south of Sarawak, in Kalimantan (Indonesian Borneo), also fit the trend of deflection versus age. On the basis of the regional consistency of declination deflection versus age, along with geologic evidence the data are considered to be evidence of a regional (rather than a local block or distributed shear) rotation. The domain of CCW rotation extends into West Malaysia, suggesting that West Borneo and the Malay Peninsula may have been a stable block during the latest Cretaceous and Cenozoic. West Malaysia and Borneo may have had different histories in the rest of the Mesozoic. The data imply up to 108° CCW rotation of Borneo with respect to stable Eurasia, sometime during the Cretaceous and Cenozoic. Cenozoic rotation may also have occurred between Indochina and Borneo. The sense of rotation shown by the data does not support the "propagating extrusion tectonics" model for Cenozoic Southeast Asia.

  2. Revisiting Mesozoic felsic intrusions in eastern South China: spatial and temporal variations and tectonic significance

    NASA Astrophysics Data System (ADS)

    Zhu, Kong-Yang; Li, Zheng-Xiang; Xia, Qun-Ke; Xu, Xi-Sheng; Wilde, Simon A.; Chen, Han-Lin

    2017-12-01

    Whole-rock and mineral geochemical data are used to place new constraints on the petrogenesis and tectonic setting of Mesozoic granitoids (including syenites) in eastern South China. In the Early Mesozoic, granitoids of variable compositions were intruded in the Cathaysia Block which by this time had developed a thickened and highly differentiated Paleoproterozoic crust through the influence of subduction. Late Triassic ( 225 Ma) syenites are significantly different from Jurassic-Cretaceous syenites in South China and from most trachytes (GEOROC database) in terms of their high Th/U, La/Nb and Gd/Yb ratios. Their low Rb contents, coupled with their high K/Rb and Nb/Ta, and low 87Sr/86Sr and 206Pb/204Pb ratios suggest a source that had undergone granulite-facies metamorphism at the base of thickened (> 45 km thick) continental crust where garnet and rutile are stable. The Late Triassic alkaline intrusions thus appear not to be related to continental rifting. Compared with the Late Triassic syenites, contemporaneous syenogranites have higher Ga/Al and Rb/K ratios and ISr values. Their Ga/Al ratios are positively correlated with ISr values, and their higher Ga/Al ratios likewise do not appear to be related to a rift setting but reflect the composition of the source. New Pb isotopic data from Cretaceous magmatic rocks reveal that 120-100 Ma I-type granitoids in Zhejiang Province were likely derived from mixing of three components: contemporaneous basaltic magma, an enriched crustal component and a depleted crustal component. Pb isotopes of both the I-type granitoids and the basalts become more radiogenic towards the coast, where the ca. 100 Ma intrusions dominate. Furthermore, zircon-melt partition of Ce and hornblende oxygen barometries indicate that the Early Cretaceous intrusions also became more oxidized towards the coast. In addition, the ca. 100 Ma granitoids have higher Gd/Yb and lower Fe/Mg ratios than those of the 120-110 Ma suite, implying crustal thickening

  3. 76 FR 7577 - Endangered and Threatened Species Permit Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    .../absence surveys for the following species: Texas blind salamander (Typhlomolge rathbuni), Barton Springs salamander (Eurycea sosorum), Mexican long-nosed bat (Leptonycteris nivalis), American burying beetle... cupido attwateri) Barton Springs salamander (Eurycea sosorum) Bee Creek Cave harvestman (Texella reddelli...

  4. Paleoclimatic and paleolatitude settings of accumulation of radiolarian siliceous-volcanogenic sequences in the middle Mesozoic Pacific: Evidence from allochthons of East Asia

    NASA Astrophysics Data System (ADS)

    Vishnevskaya, V. S.; Filatova, N. I.

    2017-09-01

    Jurassic-Cretaceous siliceous-volcanogenic rocks from nappes of tectonostratigraphic sequences of the East Asia Middle Cretaceous Okhotsk-Koryak orogenic belt are represented by a wide range of geodynamic sedimentation settings: oceanic (near-spreading zones, seamounts, and deep-water basins), marginal seas, and island arcs. The taxonomic compositions of radiolarian communities are used as paleolatitude indicators in the Northern Pacific. In addition, a tendency toward climate change in the Mesozoic is revealed based on these communities: from the warm Triassic to the cold Jurassic with intense warming from the Late Jurassic to the Early Cretaceous. Cretaceous warming led to heating of ocean waters even at moderately high latitudes and to the development of Tethyan radiolarians there. These data are confirmed by a global Cretaceous temperature peak coinciding with a high-activity pulse of the planetary mantle superplume system, which created thermal anomalies and the greenhouse effect. In addition, the Pacific superplume attributed to this system caused accelerated movement of oceanic plates, which resulted in a compression setting on the periphery of the Pacific and the formation of the Okhotsk-Koryak orogenic belt on its northwestern framing in the Middle Cretaceous, where Mesozoic rocks of different geodynamic and latitudinal-climate settings were juxtaposed into allochthonous units.

  5. A large accumulation of avian eggs from the late cretaceous of patagonia (Argentina) reveals a novel nesting strategy in mesozoic birds.

    PubMed

    Fernández, Mariela S; García, Rodolfo A; Fiorelli, Lucas; Scolaro, Alejandro; Salvador, Rodrigo B; Cotaro, Carlos N; Kaiser, Gary W; Dyke, Gareth J

    2013-01-01

    We report the first evidence for a nesting colony of mesozoic birds on Gondwana: a fossil accumulation in Late Cretaceous rocks mapped and collected from within the campus of the National University of Comahue, Neuquén City, Patagonia (Argentina). Here, Cretaceous ornithothoracine birds, almost certainly Enanthiornithes, nested in an arid, shallow basinal environment among sand dunes close to an ephemeral water-course. We mapped and collected 65 complete, near-complete, and broken eggs across an area of more than 55 m(2). These eggs were laid either singly, or occasionally in pairs, onto a sandy substrate. All eggs were found apparently in, or close to, their original nest site; they all occur within the same bedding plane and may represent the product of a single nesting season or a short series of nesting attempts. Although there is no evidence for nesting structures, all but one of the Comahue eggs were half-buried upright in the sand with their pointed end downwards, a position that would have exposed the pole containing the air cell and precluded egg turning. This egg position is not seen in living birds, with the exception of the basal galliform megapodes who place their eggs within mounds of vegetation or burrows. This accumulation reveals a novel nesting behaviour in Mesozoic Aves that was perhaps shared with the non-avian and phylogenetically more basal troodontid theropods.

  6. A Large Accumulation of Avian Eggs from the Late Cretaceous of Patagonia (Argentina) Reveals a Novel Nesting Strategy in Mesozoic Birds

    PubMed Central

    Fernández, Mariela S.; García, Rodolfo A.; Fiorelli, Lucas; Scolaro, Alejandro; Salvador, Rodrigo B.; Cotaro, Carlos N.; Kaiser, Gary W.; Dyke, Gareth J.

    2013-01-01

    We report the first evidence for a nesting colony of Mesozoic birds on Gondwana: a fossil accumulation in Late Cretaceous rocks mapped and collected from within the campus of the National University of Comahue, Neuquén City, Patagonia (Argentina). Here, Cretaceous ornithothoracine birds, almost certainly Enanthiornithes, nested in an arid, shallow basinal environment among sand dunes close to an ephemeral water-course. We mapped and collected 65 complete, near-complete, and broken eggs across an area of more than 55 m2. These eggs were laid either singly, or occasionally in pairs, onto a sandy substrate. All eggs were found apparently in, or close to, their original nest site; they all occur within the same bedding plane and may represent the product of a single nesting season or a short series of nesting attempts. Although there is no evidence for nesting structures, all but one of the Comahue eggs were half-buried upright in the sand with their pointed end downwards, a position that would have exposed the pole containing the air cell and precluded egg turning. This egg position is not seen in living birds, with the exception of the basal galliform megapodes who place their eggs within mounds of vegetation or burrows. This accumulation reveals a novel nesting behaviour in Mesozoic Aves that was perhaps shared with the non-avian and phylogenetically more basal troodontid theropods. PMID:23613776

  7. Anomalous isotopic compositions of Sr, Ar and O in the Mesozoic diabase dikes of Liberia, West Africa

    NASA Astrophysics Data System (ADS)

    Mauche, Renée; Faure, Gunter; Jones, Lois M.; Hoefs, Jochen

    1989-01-01

    The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using λ(87Rb)=1.42 × 10-11y-1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents. New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock. The δ 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.

  8. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, F.J.; Boudjema, A.; Lounis, R.

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less

  9. Paleogeographic atlas project-Mesozoic-Cenozoic tectonic map of the world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, D.B.; Ziegler, A.M.; Hulver, M.

    1985-01-01

    A Mesozoic-Cenozoic tectonic map of the world has been compiled in order to provide the basis for detailed paleogeographic, first-order palin-spastic and paleo-tectonic reconstructions. The map is plotted from a digital database on two polar stereographic projections that depict both time and type of tectonic activity. Time of activity is shown using six colors, with each color representing approximately 40 m.y. intervals. The time divisions correspond with, and are defined on the basis of times of major changes in plate motions. Tectonic activity is divided into 7 major types: (1) Platformal regions unaffected by major tectonism; (2) Region as underlainmore » by oceanic lithosphere; (3) Regions affected by extensional tectonism-characterized by thinning and stretching of the crust, including Atlantic-type margins, Basin and Range, back-arc and pull-apart basin development; (4) Regions of crustal shortening and thickening, as in collisional orogens and Andean-type foreland-fold systems; (5) Strike-slip systems associated with little or no change in crustal thickness; (6) Subduction accretion prisms, associated with tectonic outbuilding of continental crust, and marking sutures within continents; and (7) Large scale oceanic volcanic/magmatic arcs and plateaus characterized by increased crustal thickness and buoyancy of the lithosphere. The map provides a basis for understanding the assembly of Asia, the Circum-Pacific, and the disaggregation of Pangea.« less

  10. Mesozoic tectonic history and geochronology of the Kular Dome, Russia and Bendeleben Mountains, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Harris, Daniel B.

    The tectonic history responsible for formation of the major basins of the Arctic and movement of landmasses surrounding these basins remains unclear despite multidisciplinary efforts. Most studies focus on one of four potential movement pathways of the Arctic Alaska-Chukotka microplate during the Mesozoic and the relationship between this movement and formation of the Amerasian Basin. Due to difficulty in access and harsh climate of the Arctic Ocean, most geological studies focus on landmasses surrounding the Amerasian Basin. For this reason, we have conducted research in the Kular Dome of northern Russia and the Bendeleben Mountain Range of the Seward Peninsula, Alaska in an attempt to better constrain timing of emplacement of plutons in these areas and their associated tectonic conditions. For both areas, U-Pb zircon crystallization geochronology was performed on several samples collected from plutons responsible for gneiss dome formation during the Mesozoic. Dating of these plutons in tandem with field observation and thin section analysis of deformation suggests an extensional emplacement setting for both areas during the Middle to Late Cretaceous. In the Kular Dome, intrusion of the Kular pluton occurred from approximately 111-103 Ma along with extensional development of the nearby Yana fault, which was previously interpreted as a regional suture between deposits of the Kolyma-Omolon superterrane and passive-margin sequences of the Verkhoyansk Fold-Thrust Belt. Evidence for extensional emplacement of the Kular pluton includes top-down shear around mantled porphyroblasts plunging along gentle foliation away from the pluton and abundant low-offset normal faults in the area. The Kular Dome also falls into a north-south oriented belt of Late Cretaceous plutons interpreted to have been emplaced under regional extensional conditions based on geochemical discrimination diagrams. Detrital zircon geochronology was also performed on seven samples collected from Triassic

  11. Timing and implications for the late Mesozoic geodynamic settings of eastern North China Craton: Evidences from K-Ar dating age and sedimentary-structural characteristics records of Lingshan Island, Shandong Province

    NASA Astrophysics Data System (ADS)

    Li, Jie; Jin, Aiwen; Hou, Guiting

    2017-12-01

    The Lingshan Island in Shandong Province in the eastern North China Craton, well known for the Late Mesozoic multi-scale slide-slump structures is related to paleo-earthquake. Terrigenous clastic rocks, volcanic clastic rocks and volcanic lavas are extensively exposed in the Lingshan Island and its adjacent regions of the Shandong Province, which led to fierce debates on their ages, sedimentary characteristics and tectono-sedimentary evolution. In this contribution, we present the characteristics of the Late Mesozoic stratigraphy in the Lingshan Island. Whole-rock K-Ar dating of dyke at Beilaishi and rhyolites at Laohuzui of the Lingshan Island yielded ages of 159 Ma and 106-92 Ma which coincides with the Laiyang Period rifting and the Qingshan Period rifting in the Jiaolai Basin, respectively. On the basis of the analysis to the Late Mesozoic sedimentary environment of `flysch' and `molasse'-like formations as well as tectonic stress fields reconstruction, four episodes of the tectono-sedimentary evolution were established in the Lingshan Island and its adjacent regions in the eastern North China Craton. They consist of two episodes of extensional events for the syn-rift, and two episodes of compression events for the inversion of the post-rift. The entire episodes can be summarized as follows: (1) the first syn-rift NW-SE extension in Laiyang Period can be identified by the `flysch' formation (Unit 1) and by emplacement of the NE-trending dyke in the Laiyang Group. This syn-rift episode can be related to the NW-SE post-orogenic extension resulted from the gravity collapse of the thickened lithosphere along the Sulu Orogen. (2) The first post-rift NW-SE inversion, which was caused by the NW-directed subduction of Izanaqi Plate, can be well documented by the `X' type conjugate joints as well as slide slump folds in Unit 1. (3) The second syn-rift NW-SE extension in Qingshan Period is characterized by rhyolite rocks (Unit 2). This syn-rift episode can be considered

  12. Sedimentary facies analysis of the Mesozoic clastic rocks in Southern Peru (Tacna, 18°S): Towards a paleoenvironmental Redefinition and stratigraphic Reorganization

    NASA Astrophysics Data System (ADS)

    Alván, Aldo; Jacay, Javier; Caracciolo, Luca; Sánchez, Elvis; Trinidad, Inés

    2018-07-01

    The Mesozoic rocks of southern Peru comprise a Middle Jurassic to Early Cretaceous sedimentary sequence deposited during a time interval of approximately 34 Myr. In Tacna, these rocks are detrital and constitute the Yura Group (Callovian to Tithonian) and the Hualhuani Formation (Berriasian). Basing on robust interpretation of facies and petrographic analysis, we reconstruct the depositional settings of such units and provide a refined stratigraphic framework. Accordingly, nine types of sedimentary facies and six architectural elements are defined. They preserve the record of a progradational fluvial system, in which two styless regulated the dispersion of sediments: (i) a high-to moderate-sinuosity meandering setting (Yura Group), and a later (ii) incipient braided setting (Hualhuani Formation). The Yura Group (Callovian-Tithonian) represents the onset of floodplain deposits and lateral accretion of point-bar deposits sited on a semi-flat topography. Nonetheless, the progradational sequence was affected by at least two rapid marine ingressions occurred during Middle Callovian and Tithonian times. Such marine ingressions reveal the proximity of a shallow marine setting and incipient carbonate deposition. In response to increase in topographic gradient, the Hualhuani Formation (Berriasian) deposited as extensive multistory sandy channels. The mineralogy of the Mesozoic sediments suggests sediment supplies and intense recycling from a craton interior (i.e. Amazon Craton and/or plutonic sources) located eastward of the study area.

  13. Vertical slab sinking and westward subduction offshore of Mesozoic North America

    NASA Astrophysics Data System (ADS)

    Sigloch, Karin; Mihalynuk, Mitchell G.

    2013-04-01

    Subducted slabs in the mantle, as imaged by seismic tomography, preserve a record of ancient subduction zones. Ongoing debate concerns how direct this link is. How long ago did each parcel of slab subduct, and where was the trench located relative to the imaged slab position? Resolving these questions will benefit paleogeographic reconstructions, and restrict the range of plausible rheologies for mantle convection simulations. We investigate one of the largest and best-constrained Mesozoic slab complexes, the "Farallon" in the transition zone and lower mantle beneath North America. We quantitatively integrate observations from whole-mantle P-wave tomography, global plate reconstructions, and land geological evidence from the North American Cordillera. These three data sets permit us to test the simplest conceivable hypothesis for linking slabs to paleo-trenches: that each parcel of slab sank only vertically shortly after entering the trench That is, we test whether within the limits of tomographic resolution, all slab material lies directly below the location where it subducted beneath its corresponding arc. Crucially and in contrast to previous studies, we do not accept or impose an Andean-style west coast trench (Farallon-beneath-continent subduction) since Jurassic times, as this scenario is inconsistent with many geological observations. Slab geometry alone suggests that trenches started out as intra-oceanic because tomography images massive, linear slab "walls" in the lower mantle, extending almost vertically from about 800 km to 2000+ km depth. Such steep geometries would be expected from slabs sinking vertically beneath trenches that were quasi-stationary over many tens of millions of years. Intra-oceanic trenches west of Mesozoic North America could have been stationary, whereas a coastal Farallon trench could not, because the continent moved westward continuously as the Atlantic opened. Overlap of North American west-coast positions, as reconstructed in a

  14. Strontium and oxygen isotopic variations in Mesozoic and Tertiary plutons of central Idaho

    USGS Publications Warehouse

    Fleck, R.J.; Criss, R.E.

    1985-01-01

    Regional variations in initial 87Sr/86Sr ratios (ri) of Mesozoic plutons in central Idaho locate the edge of Precambrian continental crust at the boundary between the late Paleozoic-Mesozoic accreted terranes and Precambrian sialic crust in western Idaho. The ri values increase abruptly but continuously from less than 0.704 in the accreted terranes to greater than 0.708 across a narrow, 5 to 15 km zone, characterized by elongate, lens-shaped, highly deformed plutons and schistose metasedimentary and metavolcanic units. The chemical and petrologic character of the plutons changes concomitantly from ocean-arc-type, diorite-tonalite-trondhjemite units to a weakly peraluminous, calcic to calcalkalic tonalite-granodiorite-granite suite (the Idaho batholith). Plutons in both suites yield Late Cretaceous ages, but Permian through Early Cretaceous bodies are confined to the accreted terranes and early Tertiary intrusions are restricted to areas underlain by Precambrian crust. The two major terranes were juxtaposed between 75 and 130 m.y. ago, probably between 80 and 95 m.y. Oxygen and strontium isotopic ratios and Rb and Sr concentrations of the plutonic rocks document a significant upper-crustal contribution to the magmas that intrude Precambrian crust. Magmas intruding the arc terranes were derived from the upper mantle/subducted oceanic lithosphere and may have been modified by anatexis of earlier island-arc volcanic and sedimentary units. Plutons near the edge of Precambrian sialic crust represent simple mixtures of the Precambrian wall-rocks with melts derived from the upper mantle or subducted oceanic lithosphere with ri of 0.7035. Rb/Sr varies linearly with ri, producing "pseudoisochrons" with apparent "ages" close to the age of the wall rocks. Measured ??18O values of the wall rocks are less than those required for the assimilated end-member by Sr-O covariation in the plutons, however, indicating that wall-rock ??18O was reduced significantly by exchange with

  15. Petrogenesis of Mesozoic granites in the Xitian, South China: Evidence from whole-rock geochemistry and zircon isotopes

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Sun, J.; He, M.; Hou, Q.; Niu, R.

    2017-12-01

    Mesozoic granitoids are widespread in southeastern China, which accompanied with lots of world-famous polymetallic deposits. The mineralization is believed to be related to the Mesozoic granitic magmatism. However, the petrogenesis of these granites and their relation to the mineralization are still debated. As a typical granitic pluton, Xitian granites from the eastern Hunan Province are formed during this period and associated with tungsten-tin deposit. Whole-rock geochemical, SIMS zircon geochronology and oxygen isotopes, as well as LA-ICPMS zircon Lu-Hf isotopic analyses, were carried out on a suite of rocks from Xitian granitic pluton to constrain their magmatic sources and petrogenesis. Xitian granitic pluton is mainly composed of biotite adamellite, biotite granite, fine-grained granite. SIMS and LA-ICPMS U-Pb dating of zircons indicate that there are two episodes of these rocks, i.e., Late Triassic granites (227-233Ma) and Late Jurassic granites (150-154Ma). The Xitian granites are silica-rich, potassic and weakly peraluminous. Petrographic and geochemical features show that they are highly fractionated I-type granites. The combined elemental and isotopic results indicated that the Late Triassic granite in Xitian area experienced a process of crystal fractionation of crustal-derived magmas coupled with strong assimilation of the surrounding rocks. The occurrence of Jurassic granitoids in Xitian area is attributed to ascending of mantle-derived magmas, which provide heat for partial melting of crustal materials. The Late Jurassic granite may be derived from juvenile crust or partial melting of ancient crustal rocks, whereas high degrees of crystal fractionation further enriched tungsten-tin in the evolved granitic rocks. This work was financially supported by the Research Cooperation between Institute and University of Chinese Academy of Sciences grant (Y552012Y00), Public Welfare Project of the Ministry of land and Resources of China (201211024

  16. Asthenospheric and lithospheric sources for Mesozoic dolerites from Liberia (Africa): trace element and isotopic evidence

    NASA Astrophysics Data System (ADS)

    Dupuy, C.; Marsh, J.; Dostal, J.; Michard, A.; Testa, S.

    1988-01-01

    Combined elemental, and Sr and Nd isotopic data are presented for Mesozoic dolerite dikes of Liberia (Africa) which are related to the initial stage of opening of the Atlantic Ocean. The large scatter of both trace element and isotopic data allows the identification of five groups of dolerites which cannot be related to each other by simple processes of mineral fractionation from a common source. On the contrary, the observed chemical and isotopic variation within some dolerites (Groups I and II) may result either from variable degrees of melting of an isotopically heterogeneous source or mixing between enriched and depleted oceanic type mantle. For the other dolerites (Groups III-V) mixing with a third mantle source with more radiogenic Sr and with element ratios characteristic of subduction environments is suggested. This third source is probably the subcontinental lithospheric mantle. Finally, no significant modification by interaction with continental crust is apparent in most of the analyzed samples.

  17. New species of Mesozoic benthic foraminifera from the former British Petroleum micropalaeontology collection

    NASA Astrophysics Data System (ADS)

    Fox, Lyndsey R.; Stukins, Stephen; Hill, Tom; Bailey, Haydon W.

    2018-05-01

    This paper describes five new Mesozoic, deep-water benthic foraminifera from the former British Petroleum microfossil reference collections at the Natural History Museum, London. The focus is on selected calcareous and agglutinating taxa that are of stratigraphical and/or palaeoecological significance for academic and industrial related activities. Ophthalmidium dracomaris (urn:lsid:zoobank.org:act:CCE951DF-0446-416B-AC2D-C5322CD335D2), Trochammina fordonensis (urn:lsid:zoobank.org:act:4F00A270-F9B2-46D4-8587-C7ADCC191D13), Eobigenerina calloviensis (urn:lsid:zoobank.org:act:B8443AA5-CFE4-44C0-A5A2-65EA97BF7EFA), Arenoturrispirillina swiecickii (urn:lsid:zoobank.org:act:06A35E03-5AA4-4363-B471-4E1A0091F62E) and Ataxophragmium mariae (urn:lsid:zoobank.org:act:B8443AA5-CFE4-44C0-A5A2-65EA97BF7EFA) are described with new illustrations. Their biostratigraphic and palaeoecological significance are briefly discussed.

  18. Search for clues to Mesozoic graben on Long Island

    USGS Publications Warehouse

    Rogers, W.B.; Aparisi, M.; Sirkin, L.

    1989-01-01

    The position of Long Island between the Hartford Basin of Connecticut and graben structures reported from seismic reflection studies offshore to the south of the island suggests the possibility that other grabens associated with the early Mesozoic rifting might be buried beneath central Long Island. The hypothesis that post-rift tectonic activity would be related to the rift grabens and that such activity would be expressed in the post-rift sedimentary deposits led to a study of the Cretaceous and Pleistocene section to seek clues for buried grabens on Long Island. The Pleistocene glacial deposits in central and eastern Long Island have been mapped and a pollen zonation in the Upper Cretaceous section in the central part established. This work, combined with literature research, suggests the following: 1. (1) In central Long Island, the spacing of wells which reach basement enables a NE- striking zone free of basement samples to be defined where a buried graben could occur. This zone is referred to as the "permissible zone" because within it the data permit the existence of a hidden graben. 2. (2) The abrupt changes in the thickness of some pollen zones in the Upper Cretaceous deposits of central Long Island may be related to Cretaceous faulting. 3. (3) Buried preglacial valleys, the confluence of glacial lobes and major glacial outwash channels seem concentrated in west central and central Long Island. The loci of these drainage features may reflect structural control by a basement depression. 4. (4) The "permissible zone" is aligned with the zone of structures in an offshore zone south of central Long Island and with the Hartford Basin in Connecticut. Geophysical anomalies also fit into this pattern. 5. (5) A definitive answer to the question of a buried graben on Long Island will require a seismic line across the "permissible zone", or further drilling. ?? 1989.

  19. New aragonite 87Sr/86Sr records of Mesozoic ammonoids and approach to the problem of N, O, C and Sr isotope cycles in the evolution of the Earth

    NASA Astrophysics Data System (ADS)

    Zakharov, Yuri D.; Dril, Sergei I.; Shigeta, Yasunari; Popov, Alexander M.; Baraboshkin, Eugenij Y.; Michailova, Irina A.; Safronov, Peter P.

    2018-02-01

    New Sr isotope data from well-preserved aragonite ammonoid shell material from the Mesozoic are compared with that from a living Nautilus shell. The prominent negative Sr isotope excursions known from the Middle Permian, Jurassic and Cretaceous probably have their origins in intensive plate tectonic activity, followed by enhanced hydrothermal activity at the mid-ocean ridges (mantle volcanism) which supplied low radiogenic Sr to seawater. The maximum positive (radiogenic) shift in the lower Mesozoic Sr isotope curve (Lower Triassic peak) was likely caused by a significant expansion of dry land surfaces (Dabie-Sulu Triassic orogeny) and their intensive silicate weathering in conditions of extreme warming and aridity in the very end of the Smithian, followed by warm and humid conditions in the late Spathian, which apparently resulted in a significant oceanic input of radiogenic Sr through riverine flux. The comparatively high 87Sr/86Sr ratio obtained from the living Nautilus shell is probably a function of both the Alpine orogeny, which was accompanied by significant continental weathering and input of radiogenic Sr to the oceans, and the weakening of mantle volcanism.

  20. The role of Mesozoic sedimentary basin tapers on the formation of Cenozoic crustal shortening structures and foredeep in the western Sichuan Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, M.

    2017-12-01

    The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.

  1. Mesozoic units in SE Rhodope (Bulgaria): new structural and petrologic data and geodynamic implications for the Early Jurassic to Mid-Cretaceous evolution of the Vardar ocean basin

    NASA Astrophysics Data System (ADS)

    Bonev, N.; Stampfli, G.

    2003-04-01

    In the southeastern Rhodope, both in southern Bulgaria and northern Greece, Mesozoic low-grade to non-metamorphic units, together with similar units in the eastern Vardar zone, were designated as the Circum-Rhodope Belt (CRB) that fringes the Rhodope high-grade metamorphic complex. In the Bulgarian southeastern Rhodope, Mesozoic units show a complicated tectono-stratigraphy underlaid by amphibolite-facies basement units. The basement sequence includes a lower orthogneiss unit with eclogite and meta-ophiolite lenses overlain by an upper marble-schist unit, presumably along a SSW-directed detachment fault as indicated by shear sense indicators. The Mesozoic sequence starts with greenschist units at the base, overlaying the basement along the tectonic contact. Mineral assemblages such as actinolite-chlorite-white mica ± garnet in schists and phyllites indicate medium greenschist facies metamorphism. Kinematic indicators in the same unit demonstrate a top-to-the NNW and NNE shear deformation coeval with metamorphism, subparallel to NW-SE to NE-SW trending mineral elongation lineation and axis of NW vergent small-scale folds. The greenschist unit is overlain by tectonic or depositional contact of melange-like unit that consists of diabases with Lower Jurassic radiolarian chert interlayers, Upper Permian siliciclastics and Middle-Upper Triassic limestones found as blocks in olistostromic member, embedded in Jurassic-Lower Cretaceous turbiditic matrix. The uppermost sedimentary-volcanogenic unit is represented by andesito-basalt lavas and gabbro-diorites, interbedded with terrigeneous-marl and tufaceous sediments that yield Upper Cretaceous (Campanian) fossils, related to the Late Cretaceous back-arc magmatic activity to the north in Sredna Gora zone. Petrologic and geochemical data indicates sub-alkaline and tholeiitic character of the greenschists and ophiolitic basaltic lavas, and the latter are classified as low-K and very low-Ti basalts with some boninitic affinity

  2. Accessory Mineral Depth-Profiling Applied to the Corsican Lower Crust: A Continuous Thermal History of Mesozoic Continental Rifting

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2015-12-01

    Despite advances in understanding the structural development of hyperextended magma-poor rift margins, the temporal and thermal evolution of lithospheric hyperextension during rifting remains only poorly understood. In contrast to classic pure-shear models, multi-stage rift models that include depth-dependent thinning predict significant lower-crustal reheating during the necking phase due to buoyant rise of the asthenosphere. The Santa Lucia nappe of NE Corsica is an ideal laboratory to test for lower-crustal reheating as it preserves Permian lower crust exhumed from granulitic conditions during Mesozoic Tethyan rifting. This study presents the first use of apatite U-Pb depth-profile thermochronology in conjunction with novel rutile U-Pb and zircon U-Pb thermo- and geochronology to reconstruct a continuous t-T path to constrain the syn-rift thermal evolution of this exposed lower-crustal section. LASS-ICP-MS depth-profile analyses of zircon reveal thin (<10 μm) ~210-180 Ma overgrowths on 300-270 Ma cores in lower-crustal lithologies, indicative of renewed thermal activity during Mesozoic rifting. Cooling due to rapid rift margin exhumation is recorded by the topology of rutile and apatite depth profiles caused by thermally-activated volume diffusion at T >400°C. Lower-crustal rutile reveal a rounded progression from core plateaus at ~170 Ma to 150-145 Ma at the outer 8-10 μm of grains while middle-crustal apatite records 170 Ma cores grading to 140-135 Ma rims. Inverse modeling of rutile profiles suggests the lower crust cooled from 700°C at 200 Ma to 425°C at 140 Ma. Middle-crustal apatite yield a two-stage history, with rapid cooling from 500°C at 200 Ma to 420°C at ~180 Ma followed by slow cooling to 400°C by 160 Ma. Combined with zircon overgrowth ages, these data indicate the Santa Lucia nappe underwent a thermal pulse in the late Triassic-early Jurassic associated with depth-dependent thinning and hyperextension of the Corsican margin.

  3. Assessment of undiscovered oil and gas resources of the East Coast Mesozoic basins of the Piedmont, Blue Ridge Thrust Belt, Atlantic Coastal Plain, and New England Provinces, 2011

    USGS Publications Warehouse

    Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.

    2012-01-01

    During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.

  4. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  5. Evolution of Northeastern Mexico during the early Mesozoic: potential areas for research and exploration José Rafael Barboza-Gudiño

    NASA Astrophysics Data System (ADS)

    Barboza-Gudiño, R.

    2013-05-01

    The lower Mesozoic succession of central and northeastern Mexico was deposited in a late Paleozoic-early Mesozoic remnant basin, formed at the westernmost culmination of the Ouachita-Marathon geosuture, after closure of the Rheic Ocean. Triassic fluvial deposits of El Alamar Formation (El Alamar River) are distributed in Tamaulipas and Nuevo Leon as remnants of a continental succession deposited close to the western margin of equatorial Pangea, such fluvial systems flowed to the ocean, located to the west and contributed to construction of the so-called Potosí submarine fan (Zacatecas Formation). Petrographic, geochemical, and detrital zircon geochronology studies indicate that both, marine and continental Triassic successions, come from a continental block and partially from a recycled orogen, showing grenvillian (900-1300 Ma) and Pan-African (500-700 Ma) zircon age populations, typical for peri-gondwanan blocks, in addition to zircons from the Permo-Triassic East Mexico arc (240-280 Ma). The absence of detrital zircons from the southwestern North American craton, represent a strong argument against left lateral displacement of Mexico to the southwest during the Jurassic up to their actual position, as proposed by the Mojave-Sonora megashear hypothesis. Towards the end of the Triassic or in earliest Jurassic time, began the subduction along the western margin of Pangea, which causes deformation of the Late Triassic Zacatecas Formation and subsequent magmatism in the continental Jurassic arc known as "Nazas Arc ", whose remnants are now exposed in central- to northeastern Mexico. Wide distributed in northern Mexico occurred also deposition of a red bed succession, overlying or partially interstratified with the Early to Middle Jurassic volcanic rocks of the Nazas Formation. To the west and southwest, such redbeds change transitionally to marine and marginal sedimentary facies which record sedimentation at the ancient paleo-pacific margin of Mexico (La Boca and

  6. Record of Cyclical Massive Upwellings from the Pacific Large Low Shear Velocity Province in the Mesozoic

    NASA Astrophysics Data System (ADS)

    Gazel, E.; Madrigal, P.; Flores, K. E.; Bizimis, M.; Jicha, B. R.

    2016-12-01

    Global tomography and numerical models suggest that mantle plume occurrences are closely linked to the margins of the large low shear velocity provinces (LLSVPs). In these locations the ascent of material from the core-mantle boundary connects the deep Earth with surface processes through mantle plume activity, forming large igneous provinces (LIPs) and some of the modern hotspot volcanoes. Petrological and geodynamic evidence suggest a link between the formation of oceanic plateaus and the interactions of mantle plumes and mid-ocean ridges (MOR). Therefore, it is possible to trace the potential interactions between MORs and deep mantle plume upwellings by referencing the tectonic and magmatic evolution of the Pacific Plate in time to the current location of the LLSVP, considering the long-lived ( 500 Ma) existence of these thermochemical anomalies. We identified episodic upwellings of the Pacific LLSVP during the Mesozoic separated by 10 to 20 Ma, by reconstructing the kinematic evolution of the Pacific Plate in the last 170 Ma. The fact that the bulk emplacement of LIPs ( 120-80 Ma) in the Pacific coincides with the timing of the Cretaceous Normal Superchron, that can be related to fluctuations of mantle-core heat fluxes further supports the hypothesis of deep mantle origin for LIPs. The potential cyclicity of LIP emplacement could be tied to core heat fluctuations interacting with the lower mantle, the rheology contrast of material crossing the transition zone (either upwelling hot material or downgoing dense slabs as mantle avalanches), the rate of entrainment of recycled materials, or a combination of the processes mentioned. Recognizing patterns and possible cycles is crucial to the link between deep processes and life as these pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.

  7. Sedimentary facies and depositional environments of early Mesozoic Newark Supergroup basins, eastern North America

    USGS Publications Warehouse

    Smoot, J.P.

    1991-01-01

    The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the

  8. Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and non-rotational reactivation of a Mesozoic intra-continental rift

    NASA Astrophysics Data System (ADS)

    Jiménez Díaz, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A.

    2012-12-01

    The Eastern Cordillera of Colombia (EC) is a double-verging mountain system inverting a Mesozoic rift, and bounded by major reverse faults that locally involve crystalline and metamorphic Precambrian-Lower Paleozoic basement rocks, as well as Upper Paleozoic-Cenozoic sedimentary and volcanic sequences. In map view the EC is a curved mountain belt with a regional structural strike that ranges from NNE in the southern part to NNW in the northern part. The origin of its curvature has not been studied or discussed so far. We report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) investigation of the EC, in order to address to test its non-rotational vs. oroclinal nature. Fifty-eight sites were gathered from Cretaceous to Miocene marine and continental strata, both from the southern and northern parts of the EC; additionally, we examined the southern Maracaibo plate, at the junction between the Santander Massif and the Merida Andes of Colombia (Cucuta zone). Twenty-three sites reveal no rotation of the EC range with respect to stable South America. In contrast, a 35°±9° clockwise rotation is documented in four post-Miocene magnetically overprinted sites from the Cucuta zone. Magnetic lineations from AMS analysis do not trend parallel to the chain, but are oblique to the main strike of the orogenic belt. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central-western Colombia accommodated by the EC, we suggest that the late Miocene-recent deformation occurred by a ENE oblique convergence reactivating a NNE rift zone. Our data show that the EC is a non-rotational chain, and that the locations of the Mesozoic rift and the mountain chain roughly correspond. One possible solution is that the oblique shortening is partitioned in pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well-known along both chain fronts), and by range-parallel right-lateral strike-slip fault(s), which have not been identified

  9. Riftogenic magmatism of western part of the Early Mesozoic Mongolian-Transbaikalian igneous province: Results of geochronological studies

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kozlovsky, A. M.; Salnikova, E. B.; Travin, A. V.; Kudryashova, E. A.

    2017-08-01

    Geochronological studies of rocks from a bimodal high-alkali volcanic-plutonic complex collected in the area of Kharkhorin zone of the Early Mesozoic Mongolian-Transbaikalian igneous province (MTIP) are made. The age of alkali granites from Olziit sum is 211 ± 1 Ma (U-Pb ID-TIMS on zircon) to 209 ± 2 and 217 ± 4 Ma (40Ar/39Ar on alkali amphibole); the age of alkali granite-porphyries from the area of Sant sum is 206 ± 1 Ma (U-Pb ID-TIMS on zircon). These rock series formed syncronously to the analogous magmatism episode in the Northern Gobi and Western Transbaikalian rift zones of the MTIP. The similarity of the age and composition of igneous associations of the MTIP suggests a common mechanism of its formation related to the effect of a mantle plume on the continental lithosphere at the base of the entire igneous zone having a zonal structure.

  10. Mesozoic to Recent, regional tectonic controls on subsidence patterns in the Gulf of Mexico basin

    NASA Astrophysics Data System (ADS)

    Almatrood, M.; Mann, P.; Bugti, M. N.

    2016-12-01

    We have produced subsidence plots for 26 deep wells into the deeper-water areas of the Gulf of Mexico (GOM) in order to identify regional tectonic controls and propose tectonic phases. Our results show three sub-regions of the GOM basin that have distinctive and correlative subsidence patterns: 1) Northern GOM from offshore Texas to central Florida (9 wells) - this area is characterized by a deeply buried, Triassic-early Jurassic rift event that is not represented by our wells that penetrate only the post-rift Cretaceous to recent passive margin phase. The sole complexity in the passive margin phase of this sub-region is the acceleration of prograding clastic margins including the Mississippi fan in Miocene time; 2) Southeastern GOM in the Straits of Florida and Cuba area (5 wells) - this area shows that the Cretaceous passive margin overlying the rift phase is abruptly drowned in late Cretaceous as this part of the passive margin of North America that is flexed and partially subducted beneath the Caribbean arc as it encroaches from the southwest to eventually collide with the North American passive margin in the Paleogene; 3) Western GOM along the length of the eastern continental margin of Mexico (12 wells) - this is the most complex of the three areas in that shares the Mesozic rifting and passive margin phase but is unique with a slightly younger collisional event and foreland basin phase associated with the Laramide orogeny in Mexico extending from the KT boundary to the Oligocene. Following this orogenic event there is a re-emergence of the passive margin phase during the Neogene along locally affected by extensional and convergent deformation associated with passive margin fold belts. In summary, the GOM basin exhibits evidence for widespread rifting and passive margin formation associated with the breakup of Pangea in Mesozoic times that was locally superimposed and deformed during the late Cretaceous-Paleogene period by: 1) Caribbean subduction and

  11. Palaeointensity determinations and rock magnetic properties on basalts from Shatsky Rise: new evidence for a Mesozoic dipole low

    NASA Astrophysics Data System (ADS)

    Carvallo, C.; Camps, P.; Ooga, M.; Fanjat, G.; Sager, W. W.

    2013-03-01

    IODP Expedition 324 cored igneous rocks from Shatsky Rise, an oceanic plateau in the northwest Pacific Ocean that formed mainly during late Jurassic and Early Cretaceous times. We selected 60 samples from 3 different holes for Thellier-Thellier palaeointensity determinations. Induced and remanent magnetization curves measured at low- and high-temperature suggest a diverse and complex magnetic mineralogy, with large variations in Ti content and oxidation state. Hysteresis and FORC measurements show that most samples contain single-domain magnetic grains. After carrying out the palaeointensity determinations, only 9 samples satisfied all reliability criteria. These gave palaeointensity values between 16.5 and 21.5 μT, which correspond to average VDM values of (4.9 ± 0.2) × 1022 Am2 for an estimated age of 140-142 Ma. This value is lower than that for the recent field, which agrees with the hypothesis of a Mesozoic Dipole Low.

  12. Tectonic Evolution of the Central Andes during Mesozoic-Cenozoic times: Insights from the Salar de Atacama Basin

    NASA Astrophysics Data System (ADS)

    Peña Gomez, M. A.; Bascunan, S. A.; Becerra, J.; Rubilar, J. F.; Gómez, I.; Narea, K.; Martínez, F.; Arriagada, C.; Le Roux, J.; Deckart, K.

    2015-12-01

    The classic Salar de Atacama Basin, located in the Central Andes of northern Chile, holds a remarkable yet not fully understood record of tectonic events since mid-Cretaceous times. Based on the growing amount of data collected over the last years, such as high-detail maps and U-Pb geochronology, we present an updated model for the development of this area after the Triassic. A major compressional event is recorded around the mid-Late Cretaceous (ca. 107 Ma) with the deposition of synorogenic continental successions reflecting the uplift of the Coastal Cordillera area farther to the west, and effectively initiating the foreland basin. The deformation front migrated eastwards during the Late Campanian (ca. 79 Ma), where it exhumed and deformed the Late Cretaceous magmatic arc and the crystalline basement of Cordillera de Domeyko. The K-T Event (ca. 65 Ma), recently identified in the basin, involved the same source areas, though the facies indicate a closer proximity to the source. The compressional record of the basin is continued by the Eocene Incaic Event (ca. 45 Ma), with deep exhumation of the Cordillera de Domeyko and the cannibalization of previous deposits. A change to an extensional regime during the Oligocene (ca. 28 Ma) is shown by the deposition of more than 4 km of evaporitic and clastic successions. A partial inversion of the basin occurred during the Miocene (ca.10 Ma-present), as shown by the deformation seen in the Cordillera de la Sal. As such, the basin shows that the uplift of the Cordillera de Domeyko was not one isolated episode, but a prolonged and complex event, punctuated by episodes of major deformation. It also highlights the need to take into account the Mesozoic-Cenozoic deformation events for any model trying to explain the building of the modern-day Andes.

  13. Structural framework and Mesozoic Cenozoic evolution of Ponta Grossa Arch, Paraná Basin, southern Brazil

    NASA Astrophysics Data System (ADS)

    Strugale, Michael; Rostirolla, Sidnei Pires; Mancini, Fernando; Portela Filho, Carlos Vieira; Ferreira, Francisco José Fonseca; de Freitas, Rafael Corrêa

    2007-09-01

    The integration of structural analyses of outcrops, aerial photographs, satellite images, aeromagnetometric data, and digital terrain models can establish the structural framework and paleostress trends related to the evolution of Ponta Grossa Arch, one of the most important structures of the Paraná Basin in southern Brazil. In the study area, the central-northern region of Paraná State, Brazil, the arch crosses outcropping areas of the Pirambóia, Botucatu, and Serra Geral Formations (São Bento Group, Mesozoic). The Pirambóia and Botucatu Formations are composed of quartz sandstones and subordinated siltstones. The Serra Geral Formation comprises tholeiitic basalt lava flows and associated intrusive rocks. Descriptive and kinematic structural analyses reveal the imprint of two brittle deformation phases: D1, controlled by the activation of an extensional system of regional faults that represent a progressive deformation that generated discontinuous brittle structures and dike swarm emplacement along a NW-SE trend, and D2, which was controlled by a strike-slip (transtensional) deformation system, probably of Late Cretaceous-Tertiary age, responsible for important fault reactivation along dykes and deformation bands in sandstones.

  14. Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic.

    PubMed

    Martinez, Mathieu; Dera, Guillaume

    2015-10-13

    Eccentricity, obliquity, and precession are cyclic parameters of the Earth's orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce "grand orbital cycles," but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle.

  15. Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic

    PubMed Central

    Martinez, Mathieu; Dera, Guillaume

    2015-01-01

    Eccentricity, obliquity, and precession are cyclic parameters of the Earth’s orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce ‟grand orbital cycles,” but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle. PMID:26417080

  16. Distribution and character of upper mesozoic subduction complexes along the west coast of North America

    USGS Publications Warehouse

    Jones, D.L.; Blake, M.C.; Bailey, E.H.; McLaughlin, R.J.

    1978-01-01

    Structurally complex sequences of sedimentary, volcanic, and intrusive igneous rocks characterize a nearly continuous narrow band along the Pacific coast of North America from Baja California, Mexico to southern Alaska. They occur in two modes: (1) as complexly folded but coherent sequences of graywacke and argillite that locally exhibit blueschist-grade metamorphism, and (2) as melanges containing large blocks of graywacke, chert, volcanic and plutonic rocks, high-grade schist, and limestone in a highly sheared pelitic, cherty, or sandstone matrix. Fossils from the coherent graywacke sequences range in age from late Jurassic to Eocene; fossils from limestone blocks in the melanges range in age from mid-Paleozoic to middle Cretaceous. Fossils from the matrix surrounding the blocks, however, are of Jurassic, Cretaceous, and rarely, Tertiary age, indicating that fossils from the blocks cannot be used to date the time of formation of the melanges. Both the deformation of the graywacke, with accompanying blueschist metamorphism, as well as the formation of the melanges, are believed to be the result of late Mesozoic and early Tertiary subduction. The origin of the melanges, particularly the emplacement of exotic tectonic blocks, is not understood. ?? 1978.

  17. Palaeozoic and Mesozoic tectonic implications of Central Afghanistan

    NASA Astrophysics Data System (ADS)

    Sliaupa, Saulius; Motuza, Gediminas

    2017-04-01

    The field and laboratory studies were carried out in Ghor Province situated in the central part of Afghanistan. It straddles juxtaposition of the Tajik (alternatively, North Afghanistan) and Farah Rod blocks separated by Band-e-Bayan zone. The recent studies indicate that Band-e-Bayan zone represents highly tectonised margin of the Tajik block (Motuza, Sliaupa, 2016). The Band-e-Bayan zone is the most representative in terms of sedimentary record. The subsidence trends and sediment lithologies suggest the passive margin setting during (Cambrian?) Ordovician to earliest Carboniferous times. A change to the foredeep setting is implied in middle Carboniferous through Early Permian; the large-thickness flysh-type sediments were derived from continental island arc provenance, as suggested by chemical composition of mudtstones. This stage can be correlated to the amalgamation of the Gondwana supercontinent. The new passive-margin stage can be inferred in the Band-e-Bayan zone and Tajik blocks in the Late Permian throughout the early Late Triassic that is likely related to breaking apart of Gondwana continent. A collisional event is suggested in latest Triassic, as seen in high-rate subsidence associating with dramatic change in litholgies, occurrence of volcanic rocks and granidoid intrusions. The continental volcanic island arc derived (based on geochemical indices) terrigens prevail at the base of Jurassic that were gradually replaced by carbonate platform in the Middle Jurassic pointing to cessation of the tectonic activity. A new tectonic episode (no deposition; and folding?) took place in the Tajik and Band-e-Bayan zone in Late Jurassic. The geological section of the Farah Rod block, situated to the south, is represented by Jurassic and Cretaceous sediments overlain by sporadic Cenozoic volcanic-sedimentary succession. The lower part of the Mesozoic succession is composed of terrigenic sediments giving way to upper Lower Cretaceous shallow water carbonates implying

  18. Comment on "Assessing Discrepancies Between Previous Plate Kinematic Models of Mesozoic Iberia and Their Constraints" by Barnett-Moore Et Al.

    NASA Astrophysics Data System (ADS)

    van Hinsbergen, Douwe J. J.; Spakman, Wim; Vissers, Reinoud L. M.; van der Meer, Douwe G.

    2017-12-01

    In their recent paper, Barnett-Moore et al. (2016) reflect on current models of Iberian plate motion in the Jurassic and Cretaceous as well as ongoing debates on the reliability of the various types of kinematic data that form independent constraints on Iberia's motion relative to Eurasia. They question the validity of various marine geophysical, seismic, tomographic, geological, and paleomagnetic data sets from the Bay of Biscay, Central Atlantic Ocean, and Iberia for kinematic reconstruction of Iberia and conclude that neither models invoking Aptian-Albian transtension, nor compression, are consistent with currently available data. An important element in their analysis is that they discard the large paleomagnetic data set from the Jurassic and Cretaceous from Iberia based on perceived limitations of that data set. In addition, they argue that seismic tomographic images exclude a scenario of subduction in the Aptian-Albian in the Pyrenees, and based on this "question the validity of current plate reconstructions, their constraints, and geodynamic scenarios, which are in support of this scenario [e.g., Vissers et al., 2016]." We welcome the discussion raised by Barnett-Moore et al. (2016) on the reliability and usefulness of paleomagnetic data as independent constraint for Iberia's plate motion in the Mesozoic. Taking these paleomagnetic data at face value, Vissers et al. (2016) recently showed that these are consistent with an 40° counterclockwise rotation of Iberia in the Aptian, requiring up to 500 km of Aptian convergence across the Pyrenees, that is, through subduction. In this comment, we aim to critically assess whether and how the concerns on the quality of paleomagnetic data raised by Barnett-Moore et al. (2016) may allow for an alternative explanation, particularly one with a Mesozoic rotation of Iberia that is small enough so as to not requiring subduction. We also reassess whether seismic tomographic images indeed refute subduction scenarios, using 8

  19. Cenozoic Tectonic Activity of the "Passive" North America Margin: Evidence for Cenozoic Activity on Mesozoic or Paleozoic Faults

    NASA Astrophysics Data System (ADS)

    Nedorub, O. I.; Knapp, C. C.

    2012-12-01

    The tectonic history of the Eastern North American Margin (ENAM) incorporates two cycles of continental assembly, multiple pulses of orogeny, rifting, and post-rift geodynamic evolution. This is reflected in the heterogeneous lithosphere of the ENAM which contains fault structures originated in Paleozoic to Mesozoic eras. The South Georgia Rift basin is probably the largest Mesozoic graben within its boundaries that is associated with the breakup of Pangea. It is composed of smaller sub-basins which appear to be bounded by high-angle normal faults, some of which may have been inverted in late Cretaceous and Cenozoic eras. Paleozoic structures may have been reactivated in Cenozoic time as well. The ENAM is characterized by N-NE maximum horizontal compressive stress direction. This maximum compressional stress field is sub-parallel to the strike of the Atlantic Coast province fault systems. Camden, Augusta, Allendale, and Pen Branch faults are four of the many such reactivated faults along the southern part of ENAM. These faults are now buried under the 0-400 m of loosely consolidated Cretaceous and Cenozoic age sediments and thus are either only partially mapped or currently not recognized. Some of the objectives of this study are to map the subsurface expression and geometry of these faults and to investigate the post Cretaceous deformation and possible causes of fault reactivation on a passive margin. This study employs an integrated geophysical approach to investigate the upper 200 m of identified locations of the above mentioned faults. 2-D high-resolution shallow seismic reflection and refraction methods, gravity surveys, GPR, 2-D electrical resistivity and well data are used for analyses and interpretation. Preliminary results suggest that Camden fault shows signs of Cenozoic reactivation through an approximately 30 m offset NW side up mainly along a steeply dipping fault zone in the basal contact of Coastal Plain sediments with the Carolina Piedmont. Drill

  20. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  1. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 2. Magnetic Fabrics and Gravity Survey

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Chen, Yan; Chen, Ke; Wei, Wei; Faure, Michel; Lin, Wei

    2018-01-01

    The Late Mesozoic magmatic province is a prominent feature of the South China Block (SCB). However, the tectonic regimes associated with the magmatism are still elusive. A combined anisotropy of magnetic susceptibility and gravity study has been carried out to determine the fabric patterns and shape at depth of the Dayunshan-Mufushan composite batholith in the north-central SCB. This is a companion paper to Part 1 that presented the structural and geochronological data of this batholith. The magnetic fabrics in the batholith interior predominantly reflect magma flow structures. Two distinct patterns of the magnetic lineations are defined, around NNE-SSW and WNW-ESE trends for the early-stage and late-stage intrusions of the batholith, respectively. The gravity survey reveals that the early-stage intrusion has a main feeder zone located below its northern part, while several linear feeder zones trending NNE-SSW are inferred for the late-stage intrusion. Integrating all results, a two-stage construction of the batholith with distinct tectonic regimes has been established. It is concluded that the early-stage intrusion experienced a southward magma transport during its emplacement, partially assisted by far-field compression from the north at ca. 150 Ma. Conversely, the emplacement and exhumation of the late-stage intrusion was accommodated by a NW-SE crustal stretching involving a lateral magma expansion above the multiple feeder zones (likely corresponding to extensional fractures) and ductile shearing during 132-95 Ma localized mainly along the Dayunshan detachment fault. Finally, we discuss the geodynamic linkage between the paleo-Pacific subduction and the Late Mesozoic tectonomagmatism in the SCB.

  2. Mesozoic Magmatism and Base-Metal Mineralization in the Fortymile Mining District, Eastern Alaska - Initial Results of Petrographic, Geochemical, and Isotopic Studies in the Mount Veta Area

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Slack, John F.; Aleinikoff, John N.; Mortensen, James K.

    2009-01-01

    We present here the initial results of a petrographic, geochemical, and isotopic study of Mesozoic intrusive rocks and spatially associated Zn-Pb-Ag-Cu-Au prospects in the Fortymile mining district in the southern Eagle quadrangle, Alaska. Analyzed samples include mineralized and unmineralized drill core from 2006 and 2007 exploration by Full Metal Minerals, USA, Inc., at the Little Whiteman (LWM) and Fish prospects, and other mineralized and plutonic samples collected within the mining district is part of the USGS study. Three new ion microprobe U-Pb zircon ages are: 210 +- 3 Ma for quartz diorite from LWM, 187 +- 3 Ma for quartz monzonite from Fish, and 70.5 +- 1.1 Ma for altered rhyolite porphyry from Fish. We also present 11 published and unpublished Mesozoic thermal ionization mass spectrometric U-Pb zircon and titanite ages and whole-rock geochemical data for the Mesozoic plutonic rocks. Late Triassic and Early Jurassic plutons generally have intermediate compositions and are slightly foliated, consistent with synkinematic intrusion. Several Early Jurassic plutons contain magmatic epidote, indicating emplacement of the host plutons at mesozonal crustal depths of greater than 15 km. Trace-element geochemical data indicate an arc origin for the granitoids, with an increase in the crustal component with time. Preliminary study of drill core from the LWM Zn-Pb-Cu-Ag prospect supports a carbonate-replacement model of mineralization. LWM massive sulfides consist of sphalerite, galena, and minor pyrite and chalcopyrite, in a gangue of calcite and lesser quartz; silver resides in Sb-As-Ag sulfosalts and pyrargyrite, and probably in submicroscopic inclusions within galena. Whole-rock analyses of LWM drill cores also show elevated In, an important metal in high-technology products. Hypogene mineralized rocks at Fish, below the secondary Zn-rich zone, are associated with a carbonate host and also may be of replacement origin, or alternatively, may be a magnetite

  3. Mesozoic intra-arc tectonics in the NE Mojave Desert, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, K.A.; Schermer, E.R.; Walker, J.D.

    1993-04-01

    Field and U-Pb zircon geochronological data from the Tiefort Mts. (TM) and surrounding areas in the NE Mojave Desert provide new constraints on Precambrian to Paleozoic paleogeography and Mesozoic intra-arc tectonics. Amphibolite facies metasediments appear to correlate with lower Paleozoic miogeoclinal sequences. Coarse-grained K-feldspar augen gneiss occurs in sharp contact with the metasedimentary rocks; U-Pb dating yields a 1393[+-]12 Ma age. This gneiss is interpreted to represent cratonal basement of North America. A texturally and compositionally heterogeneous amphibolite-facies monzonitic complex which intrudes the basement and metasediments yields a mid-Jurassic age. Felsite and biotite granite that intrude the foliated monzonitic complexmore » locally contain the mylonitic fabric and appear to be syn-late kinematic. Undeformed pegmatite, granite, and microdiorite appear as dikes throughout the region. Vertical silicic dikes at southern TM trend N5-25E and are dated at 148[+-]14 Ma, coeval with the Independence dike swarm (IDS). Similar dikes that occur at TM trend N60-80E. Undeformed granite cross-cuts the foliated monzonite; some granitic rocks cut dikes of the IDs and are likely to be Cretaceous in age. The E- to SE-vergence and mid-late Jurassic age of ductile shear zones in the TM region are similar to that in nearby parts of the East Sierra Thrust System (ESTS). If NE and NNE dikes are IDS-equivalent, this implies clockwise, vertical-axis rotation of 30[degree]--90[degree] by younger structures. The authors interpret this to be related to late Cenozoic strike-slip faults. Restoration of folds and the IDS to the regional NW trend results in top to the E to NE sense of shear during Jurassic deformation. Deformation in the TM and areas to the north connects the ESTS from the Garlock fault to the central Mojave region indicating a region in which mid-crustal levels of the arc and cratonal basement experienced contractional tectonism during mid

  4. Testing the inhibitory cascade model in Mesozoic and Cenozoic mammaliaforms

    PubMed Central

    2013-01-01

    Background Much of the current research in the growing field of evolutionary development concerns relating developmental pathways to large-scale patterns of morphological evolution, with developmental constraints on variation, and hence diversity, a field of particular interest. Tooth morphology offers an excellent model system for such ‘evo-devo’ studies, because teeth are well preserved in the fossil record, and are commonly used in phylogenetic analyses and as ecological proxies. Moreover, tooth development is relatively well studied, and has provided several testable hypotheses of developmental influences on macroevolutionary patterns. The recently-described Inhibitory Cascade (IC) Model provides just such a hypothesis for mammalian lower molar evolution. Derived from experimental data, the IC Model suggests that a balance between mesenchymal activators and molar-derived inhibitors determines the size of the immediately posterior molar, predicting firstly that molars either decrease in size along the tooth row, or increase in size, or are all of equal size, and secondly that the second lower molar should occupy one third of lower molar area. Here, we tested the IC Model in a large selection of taxa from diverse extant and fossil mammalian groups, ranging from the Middle Jurassic (~176 to 161 Ma) to the Recent. Results Results show that most taxa (~65%) fell within the predicted areas of the Inhibitory Cascade Model. However, members of several extinct groups fell into the regions where m2 was largest, or rarely, smallest, including the majority of the polyphyletic “condylarths”. Most Mesozoic mammals fell near the centre of the space with equality of size in all three molars. The distribution of taxa was significantly clustered by diet and by phylogenetic group. Conclusions Overall, the IC Model was supported as a plesiomorphic developmental system for Mammalia, suggesting that mammal tooth size has been subjected to this developmental constraint at

  5. Mass extinction of ocean organisms at the Paleozoic-Mesozoic boundary: Effects and causes

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2012-04-01

    At the end of the Permian, at the boundary between the Paleozoic and Mesozoic (251.0 ± 0.4 Ma), the largest mass extinction of organisms on the Earth occurred. Up to 96% of the species of marine invertebrates and ˜70% of the terrestrial vertebrates died off. A lot of factors were suggested and substantiated to explain this mass mortality, such as the disappearance of environmental niches in the course of the amalgamation of the continental plates into Pangea, sea level fluctuations, anoxia, an elevated CO2 content, H2S intoxication, volcanism, methane discharge from gas-hydrates, climate changes, impact events (collisions with large asteroids), or combinations of many of these reasons. Some of these factors are in subordination to others, while others are independent. Almost all of these factors developed relatively slowly and could not cause the sudden mass mortality of organisms globally. It could have happened when large asteroids, whose craters have been discovered lately, fell to the Earth. It is suggested that the impact events "finished off" the already suppressed biota. A simultaneous change in many of the factors responsible for the biodiversity, including those not connected in a cause-and-effect relationship, proves the existence of a common extrater-restrial cause that affected both the changes in the internal and external geospheres and the activation of asteroid attacks (the Sun's transit of spiral arms of our galaxy, the Sun's oscillations perpendicularly to the galactic plane, etc).

  6. Diagenetic contrast of sandstones in hydrocarbon prospective Mesozoic rift basins (Ethiopia, UK, USA)

    NASA Astrophysics Data System (ADS)

    Wolela, A.

    2014-11-01

    Diagenetic studied in hydrocarbon-prospective Mesozoic rift basins were carried out in the Blue Nile Basin (Ethiopia), Ulster Basin (United Kingdom) and Hartford Basin (United States of America). Alluvial fan, single and amalgamated multistorey meandering and braided river, deep and shallow perennial lake, shallow ephemeral lake, aeolian and playa mud-flat are the prominent depositional environments. The studied sandstones exhibit red bed diagenesis. Source area geology, depositional environments, pore-water chemistry and circulation, tectonic setting and burial history controlled the diagenetic evolution. The diagenetic minerals include: facies-related minerals (calcrete and dolocrete), grain-coating clay minerals and/or hematite, quartz and feldspar overgrowths, carbonate cements, hematite, kaolinite, illite-smectite, smectite, illite, chlorite, actinolite, laumontite, pyrite and apatite. Diversity of diagenetic minerals and sequence of diagenetic alteration can be directly related to depositional environment and burial history of the basins. Variation in infiltrated clays, carbonate cements and clay minerals observed in the studied sandstones. The alluvial fan and fluviatile sandstones are dominated by kaolinite, illite calcite and ferroan calcite, whereas the playa and lacustrine sandstones are dominated by illite-smectite, smectite-chlorite, smectite, chlorite, dolomite ferroan dolomite and ankerite. Albite, pyrite and apatite are predominantly precipitated in lacustrine sandstones. Basaltic eruption in the basins modified mechanically infiltrated clays to authigenic clays. In all the studied sandstones, secondary porosity predominates over primary porosity. The oil emplacement inhabited clay authigenesis and generation of secondary porosity, whereas authigenesis of quartz, pyrite and apatite continued after oil emplacement.

  7. High-pressure amphibolite facies dynamic metamorphism and the Mesozoic tectonic evolution of an ancient continental margin, east- central Alaska

    USGS Publications Warehouse

    Dusel-Bacon, C.; Hansen, V.L.; Scala, J.A.

    1995-01-01

    Ductilely deformed amphibolite facies tectonites comprise two adjacent terranes in east-central Alaska: the northern, structurally higher Taylor Mountain terrane and the southern, structurally lower Lake George subterrane of the Yukon-Tanana terrane. The pressure, temperature, kinematic and age data are interpreted to indicate that the metamorphism of the Taylor Mountain terrane and Lake George subterrane took place during different phases of a latest Palaeozoic through early Mesozoic shortening episode resulting from closure of an ocean basin now represented by klippen of the Seventymile-Slide Mountain terrane. High- to intermediate-pressure metamorphism of the Taylor Mountain terrane took place within a SW-dipping (present-day coordinates) subduction system. High- to intermediate-pressure metamorphism of the Lake George subterrane and the structural contact zone occurred during NW-directed overthrusting of the Taylor Mountain, Seventymile-Slide Mountain and Nisutlin terranes, and imbrication of the continental margin in Jurassic time. -from Authors

  8. Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon

    USGS Publications Warehouse

    LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.

    2011-01-01

    This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.

  9. Extensive crustal melting during craton destruction: Evidence from the Mesozoic magmatic suite of Junan, eastern North China Craton

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Santosh, M.; Tang, Li

    2018-05-01

    The cratonic destruction associated with the Pacific plate subduction beneath the eastern North China Craton (NCC) shows a close relationship with the widespread magmatism during the Late Mesozoic. Here we investigate a suite of intrusive and extrusive magmatic rocks from the Junan region of the eastern NCC in order to evaluate the role of extensive crustal melting related to decratonization. We present petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data to evaluate the petrogenesis, timing and tectonic significance of the Early Cretaceous magmatism. Zircon grains in the basalt from the extrusive suite of Junan show multiple populations with Neoproterozoic and Early Paleozoic xenocrystic grains ranging in age from 764 Ma to 495 Ma as well as Jurassic grains with an age range of 189-165 Ma. The dominant population of magmatic zircon grains in the syenite defines three major age peaks of 772 Ma, 132 Ma and 126 Ma. Zircons in the granitoids including alkali syenite, monzonite and granodiorite yield a tightly restricted age range of 124-130 Ma representing their emplacement ages. The Neoproterozoic (841-547 Ma) zircon grains from the basalt and the syenite possess εHf(t) values of -22.9 to -8.4 and from -18.8 to -17.3, respectively. The Early Paleozoic (523-494 Ma) zircons from the basalt and the syenite also show markedly negative εHf(t) values of -22.7 to -18.0. The dominant population of Early Cretaceous (134-121 Ma) zircon grains presented in all the samples also displays negative εHf(t) values range from -31.7 to -21.1, with TDM of 1653-2017 Ma and TDMC in the range of 2193-3187 Ma. Accordingly, the Lu-Hf data suggest that the parent magma was sourced through melting of Mesoarchean to Paleoproterozoic basement rocks. Geochemical data on the Junan magmatic suite display features similar to those associated with the arc magmatic rocks involving subduction-related components, with interaction of fluids and melts in the suprasubduction

  10. Block Volume Estimation from the Discontinuity Spacing Measurements of Mesozoic Limestone Quarries, Karaburun Peninsula, Turkey

    PubMed Central

    Elci, Hakan; Turk, Necdet

    2014-01-01

    Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J v) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V b), the mean volumetric joint count (J vb) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V in) and volumetric joint count (J vi) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements. PMID:24696642

  11. Block volume estimation from the discontinuity spacing measurements of mesozoic limestone quarries, Karaburun Peninsula, Turkey.

    PubMed

    Elci, Hakan; Turk, Necdet

    2014-01-01

    Block volumes are generally estimated by analyzing the discontinuity spacing measurements obtained either from the scan lines placed over the rock exposures or the borehole cores. Discontinuity spacing measurements made at the Mesozoic limestone quarries in Karaburun Peninsula were used to estimate the average block volumes that could be produced from them using the suggested methods in the literature. The Block Quality Designation (BQD) ratio method proposed by the authors has been found to have given in the same order of the rock block volume to the volumetric joint count (J(v)) method. Moreover, dimensions of the 2378 blocks produced between the years of 2009 and 2011 in the working quarries have been recorded. Assuming, that each block surfaces is a discontinuity, the mean block volume (V(b)), the mean volumetric joint count (J(vb)) and the mean block shape factor of the blocks are determined and compared with the estimated mean in situ block volumes (V(in)) and volumetric joint count (J(vi)) values estimated from the in situ discontinuity measurements. The established relations are presented as a chart to be used in practice for estimating the mean volume of blocks that can be obtained from a quarry site by analyzing the rock mass discontinuity spacing measurements.

  12. Physiological Ecology of Mesozoic Polar Forests in a High CO2 Environment

    PubMed Central

    BEERLING, D. J.; OSBORNE, C. P.

    2002-01-01

    Fossils show that coniferous forests extended into polar regions during the Mesozoic, a time when models and independent palaeo‐CO2 indicators suggest that the atmospheric CO2 concentration was at least double that of the present day. Consequently, such polar forests would have experienced high CO2 interacting with an extreme variation in light. Here we describe an experiment investigating this plant–environment interaction for extant tree species that were important components of polar forests, and give results from the first year of treatment. Specifically, we tested the hypotheses that growth in elevated CO2 (1) stimulates photosynthesis; (2) reduces photoinhibition during the polar summer; and (3) reduces respiration of above‐ and below‐ground plant organs. Our results indicate that CO2 fertilization generally does not affect photosynthesis under continuous daylight characteristic of the polar summer but does increase it when the period of illumination is shorter. Growth in elevated CO2 did not alter the potential for photoinhibition. CO2 enrichment significantly reduced leaf and root respiration rates by 50 and 25 %, respectively, in a range of evergreen taxa. Incorporating these observed CO2 effects into numerical simulations using a process‐based model of coniferous forest growth indicates that a high palaeo‐CO2 concentration would have increased the productivity of Cretaceous conifer forests in northern Alaska. This results from decreased respiratory costs that more than compensate for the absence of high CO2–high temperature interactions during the polar summer. The longer‐term effects of CO2 enrichment on seasonal changes in the above‐ and below‐ground carbon balance of trees are discussed. PMID:12096745

  13. Age and tectonic setting of the Mesozoic McCoy Mountains Formation in western Arizona, USA

    USGS Publications Warehouse

    Spencer, J.E.; Richard, S.M.; Gehrels, G.E.; Gleason, J.D.; Dickinson, W.R.

    2011-01-01

    The McCoy Mountains Formation consists of Upper Jurassic to Upper Cretaceous siltstone, sandstone, and conglomerate exposed in an east-west-trending belt in southwestern Arizona and southeastern California. At least three different tectonic settings have been proposed for McCoy deposition, and multiple tectonic settings are likely over the ~80 m.y. age range of deposition. U-Pb isotopic analysis of 396 zircon sand grains from at or near the top of McCoy sections in the southern Little Harquahala, Granite Wash, New Water, and southern Plomosa Mountains, all in western Arizona, identifi ed only Jurassic or older zircons. A basaltic lava fl ow near the top of the section in the New Water Mountains yielded a U-Pb zircon date of 154.4 ?? 2.1 Ma. Geochemically similar lava fl ows and sills in the Granite Wash and southern Plomosa Mountains are inferred to be approximately the same age. We interpret these new analyses to indicate that Mesozoic clastic strata in these areas are Upper Jurassic and are broadly correlative with the lowermost McCoy Mountains Formation in the Dome Rock, McCoy, and Palen Mountains farther west. Six samples of numerous Upper Jurassic basaltic sills and lava fl ows in the McCoy Mountains Formation in the Granite Wash, New Water, and southern Plomosa Mountains yielded initial ??Nd values (at t = 150 Ma) of between +4 and +6. The geochemistry and geochronology of this igneous suite, and detrital-zircon geochronology of the sandstones, support the interpretation that the lower McCoy Mountains Formation was deposited during rifting within the western extension of the Sabinas-Chihuahua-Bisbee rift belt. Abundant 190-240 Ma zircon sand grains were derived from nearby, unidentifi ed Triassic magmatic-arc rocks in areas that were unaffected by younger Jurassic magmatism. A sandstone from the upper McCoy Mountains Formation in the Dome Rock Mountains (Arizona) yielded numerous 80-108 Ma zircon grains and almost no 190-240 Ma grains, revealing a major

  14. Lithostratigraphic and biostratigraphic evidence for brief and synchronous Early Mesozoic basalt eruption over the Maghreb (Northwest Africa)

    NASA Astrophysics Data System (ADS)

    Et-Touhami, M.; Et-Touhami, M.; Olsen, P. E.; Puffer, J.

    2001-05-01

    Previously very sparse biostratigraphic data suggested that the Early Mesozoic tholeiitic effusive and intrusive magmatism in the various basins of the Maghreb occurred over a long time (Ladinian-Hettangian). However, a detailed comparison of the stratigraphy underlying, interbedded with, and overlying the basalts in these basins shows not only remarkable similarities with each other, but also with sequences in the latest Triassic and earliest Jurassic of eastern North America. There, the sequences have been shown to be cyclical, controlled by Milankovitch-type climate cycles; the same seems to be true in at least part of the Maghreb. Thus, the Moroccan basins have cyclical sequences surrounding and interbedded with one or two basaltic units. In the Argana and Khemisset basins the Tr-J boundary is identified by palynology to be below the lowest basalt, and the remarkably close lithological similarity between the pre-basalt sequence in the other Moroccan basins and to the North American basins - especially the Fundy basin - suggests a tight correlation in time. Likewise, the strata above the lowest basalt in Morocco show a similar pattern to what is seen above the lowest basalt formation in eastern North America, as do the overlying sequences. Furthermore, geochemistry on basalts in the Argana, Bou Fekrane, Khemisset, and Iouawen basins indicate they are high-Ti quartz-normative tholeiites as are the Orange Mountain Basalt (Fundy basin) and the North Mountain Basalt (Newark basin). The remarkable lithostratigraphic similarity across the Maghreb of these strata suggest contemporaneous and synchronous eruption over a time span of less than 200 ky, based on Milankovitch calibration, and within a ~20 ky interval after the Triassic-Jurassic boundary. Differences with previous interpretations of the biostratigraphy can be rationalized as a result of: 1, an over-reliance on comparisons with northern European palynology; 2, over-interpretation of poorly preserved fossils

  15. pre-Mesozoic evolution of the basement of the Catalan Coastal Ranges: implications from geochemical and Sm-Nd isotope data of the Palaeozoic succession of the Collserola Range

    NASA Astrophysics Data System (ADS)

    Vilà, Miquel; Pin, Christian

    2016-04-01

    In the whole of the Western Europe and neighbouring areas numerous studies have addressed the provenance of pre-Mesozoic sedimentary rocks and the Palaeozoic geodynamic evolution using the Sm-Nd systematics. However, at present, there are still large areas of the Variscan mountain chain without systematic determinations of their whole - rock Sm-Nd isotope signatures. This is the case of the Palaeozoic blocks of the Catalan Coastal Ranges (NE Iberia). In the context of the Variscan belt many authors interpret the Palaeozoic basement of the Catalan Coastal Ranges as part of the southern foreland basin of the mountain belt. The pre-Mesozoic rocks in the Catalan Coastal Ranges exhibit important stratigraphical affinities with those outcropping in the Eastern Pyrenees, Montagne Noire, Sardinia and Iberian Range. Paleogeographic reconstructions predict that the Catalan Coastal Ranges were located in a transitional area between the northern branch of the Ibero-Armorican arc and the core of the arc. The Collserola Range, located in the metropolitan area of Barcelona, includes a representative Palaeozoic stratigraphic section, from Cambro-Ordovician to Carboniferous, of the central part of the Catalan Coastal Ranges. In this presentation we present an up-to-date review of the stratigraphy and structure of the Palaeozoic of the Collserola Range, and provide geochemical and Sm-Nd isotope data to constrain the Pre-Mesozoic crustal evolution of this sector of the Variscan belt. Geochemical compositions indicate that the Palaeozoic siliciclastic rocks of the Collserola Range were fed by a relative mature heterogeneous source of sediment, comprising from quartz-rich sediments to intermediate igneous rocks. The siliciclastic rocks of the Collserola Range show great geochemical affinity with the turbidites of passive margins. The Sm-Nd signature of the siliciclastic rocks is compatible with those of the Palaeozoic and Late Proterozoic fine grained siliciclastic rocks of the

  16. Stress field sensitivity analysis within Mesozoic successions in the Swiss Alpine foreland using 3-D-geomechanical-numerical models

    NASA Astrophysics Data System (ADS)

    Reiter, Karsten; Hergert, Tobias; Heidbach, Oliver

    2016-04-01

    The in situ stress conditions are of key importance for the evaluation of radioactive waste repositories. In stage two of the Swiss site selection program, the three siting areas of high-level radioactive waste are located in the Alpine foreland in northern Switzerland. The sedimentary succession overlays the basement, consisting of variscan crystalline rocks as well as partly preserved Permo-Carboniferous deposits in graben structures. The Mesozoic sequence represents nearly the complete era and is covered by Cenozoic Molasse deposits as well as Quaternary sediments, mainly in the valleys. The target horizon (designated host rock) is an >100 m thick argillaceous Jurassic deposit (Opalinus Clay). To enlighten the impact of site-specific features on the state of stress within the sedimentary succession, 3-D-geomechanical-numerical models with elasto-plastic rock properties are set up for three potential siting areas. The lateral extent of the models ranges between 12 and 20 km, the vertical extent is up to a depth of 2.5 or 5 km below sea level. The sedimentary sequence plus the basement are separated into 10 to 14 rock mechanical units. The Mesozoic succession is intersected by regional fault zones; two or three of them are present in each model. The numerical problem is solved with the finite element method with a resolution of 100-150 m laterally and 10-30 m vertically. An initial stress state is established for all models taking into account the depth-dependent overconsolidation ratio in Opalinus Clay in northern Switzerland. The influence of topography, rock properties, friction on the faults as well as the impact of tectonic shortening on the state of stress is investigated. The tectonic stress is implemented with lateral displacement boundary conditions, calibrated on stress data that are compiled in Northern Switzerland. The model results indicate that the stress perturbation by the topography is significant to depths greater than the relief contrast. The

  17. Petrologic Aspects of Seamount and Guyot Volcanism on the Ancestral Mesozoic Pacific Plate: a Review

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2007-12-01

    Hundreds of large seamounts and guyots are widely scattered almost in a "shotgun-blast" arrangement in an area about the size of the United States west of the Mississippi River on the Mesozoic Pacific plate between the Mariana Trench and the Gilbert Islands. Most of these formed between ~160-100 Ma while the Pacific plate was surrounded by spreading ridges and growing outward in all directions. There is little to no indication that the seamounts and guyots formed along linear seamount chains; existing radiometric-age data show no age progressions. The volcanoes appear to have formed in response to a uniform stress configuration across the plate, which was either not moving or moving very slowly at the time (1, 2), much like the modern Antarctic plate. When the growing plate started to encounter subduction systems in the western Pacific at ~90 Ma, consistent stress patterns began to develop, and the broad linear Gilbert and Line volcanic ridge systems began to form. Even then, however, considerable overlapping of volcanism occurred, and only the most general age progressions are evident in existing data. Petrologic data from samples obtained from dozens of volcanic summits by dredging and beneath several carbonate platforms by drilling reveal considerable diversity in development of differentiated alkalic magmatic lineages rooted in diverse parental basaltic rocks. These include transitional, alkalic and basanitic compositions, with differentiates of hawaiite, mugearite, trachyte and one phonolite. Many of the basaltic rocks are partly to significantly transformed by alteration under oxidative conditions (dredged rocks) and both oxidative and non-oxidative conditions (drilled rocks). This can make estimations of mantle geochemical provenance difficult. Nevertheless, the province has been linked by backtracking techniques to the modern SOPITA region of the South Pacific (3), and its rocks show enrichments in trace elements and isotopic characteristics similar to

  18. Synthesis of late Paleozoic and Mesozoic eolian deposits of the Western Interior of the United States

    USGS Publications Warehouse

    Blakey, R.C.; Peterson, F.; Kocurek, G.

    1988-01-01

    Late Paleozoic and Mesozoic eolian deposits include rock units that were deposited in ergs (eolian sand seas), erg margins and dune fields. They form an important part of Middle Pennsylvanian through Upper Jurassic sedimentary rocks across the Western Interior of the United States. These sedimentary rock units comprise approximately three dozen major eolian-bearing sequences and several smaller ones. Isopach and facies maps and accompanying cross sections indicate that most eolian units display varied geometry and complex facies relations to adjacent non-eolian rocks. Paleozoic erg deposits are widespread from Montana to Arizona and include Pennsylvanian formations (Weber, Tensleep, Casper and Quadrant Sandstones) chiefly in the Northern and Central Rocky Mountains with some deposits (Hermosa and Supai Groups) on the Colorado Plateau. Lower Permian (Wolfcampian) erg deposits (Weber, Tensleep, Casper, Minnelusa, Ingleside, Cedar Mesa, Elephant Canyon, Queantoweap and Esplanade Formations) are more widespread and thicken into the central Colorado Plateau. Middle Permian (Leonardian I) erg deposits (De Chelly and Schnebly Hill Formations) are distributed across the southern Colorado Plateau on the north edge of the Holbrook basin. Leonardian II erg deposits (Coconino and Glorieta Sandstones) are slightly more widespread on the southern Colorado Plateau. Leonardian III erg deposits formed adjacent to the Toroweap-Kaibab sea in Utah and Arizona (Coconino and White Rim Sandstones) and in north-central Colorado (Lyons Sandstone). Recognized Triassic eolian deposits include major erg deposits in the Jelm Formation of central Colorado-Wyoming and smaller eolian deposits in the Rock Point Member of the Wingate Sandstone and upper Dolores Formation, both of the Four Corners region. None of these have as yet received a modern or thorough study. Jurassic deposits of eolian origin extend from the Black Hills to the southern Cordilleran arc terrain. Lower Jurassic intervals

  19. Massive sulfide metallogenesis at a late Mesozoic sediment-covered spreading axis: Evidence from the Franciscan complex and contemporary analogues

    USGS Publications Warehouse

    Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.

    1993-01-01

    The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.

  20. Massive sulfide metallogenesis at a late Mesozoic sediment-covered spreading axis: Evidence from the Franciscan complex and contemporary analogues

    NASA Astrophysics Data System (ADS)

    Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.

    1993-02-01

    The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.

  1. Comparison of unitary associations and probabilistic ranking and scaling as applied to mesozoic radiolarians

    NASA Astrophysics Data System (ADS)

    Baumgartner, Peter O.

    A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.

  2. Indo-Burma Range: a belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments

    NASA Astrophysics Data System (ADS)

    Acharyya, S. K.

    2015-07-01

    This study provides an insight into the lithotectonic evolution of the N-S trending Indo-Burma Range (IBR), constituting the southern flank of the Himalayan syntaxis. Paleogene flyschoid sediments (Disang-Barail) that represent a shallow marine to deltaic environment mainly comprise the west-central sector of IBR, possibly resting upon a continental base. On the east, these sequences are tectonically flanked by the Eocene olistostromal facies of the Disang, which developed through accretion of trench sediments during the subduction. The shelf and trench facies sequences of the Disang underwent overthrusting from the east, giving rise to two ophiolite suites ( Naga Hills Lower Ophiolite ( NHLO) and Victoria Hills Upper Ophiolite ( VHUO), but with different accretion history. The ophiolite and ophiolite cover rock package were subsequently overthrusted by the Proterozoic metamorphic sequence, originated from the Burmese continent. The NHLO suite of Late Jurassic to Early Eocene age is unconformably overlain by mid-Eocene shallow marine ophiolite-derived clastics. On the south, the VHUO of Mesozoic age is structurally underlain by continental metamorphic rocks. The entire package in Victoria Hills is unconformably overlain by shallow marine Late Albian sediments. Both the ophiolite suites and the sandwiched continental metamorphic rocks are thrust westward over the Paleogene shelf sediments. These dismembered ophiolites and continental metamorphic rocks suggest thin-skinned tectonic detachment processes in IBR, as reflected from the presence of klippe of continental metamorphic rocks over the NHLO and the flyschoid Disang floor sediments and half windows exposing the Disang beneath the NHLO.

  3. Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008

    USGS Publications Warehouse

    Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.

    2013-01-01

    Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated

  4. Selective extinction of marine plankton at the end of the Mesozoic era: The fossil and stable isotope record

    NASA Technical Reports Server (NTRS)

    Herman, Y.; Bhattacharya, S. K.

    1988-01-01

    Floral, faunal and stable isotope evidence in a continuous sequence of latest Cretaceous and earliest Tertiary shallow water marine deposits in the Mangyshlak Peninsula, USSR suggest severe environmental changes at the Cretaceous/Tertiary (K/T) boundary. Time frame is provided by nanno, micro and macrofossils as well as by magnetic stratigraphy and an iridium spike. Oxygen isotopic analyses of the bulk sediments, composed of nanno and microplankton skeletal remains, show a sharp positive spike at the K/T boundary. This shift is primarily attributed to severe cooling possibly accompanied by increased salinities of the surface mixed layer. Floral and faunal extinctions were selective, affecting approximately 90 percent of the warm water calcareous phyto and zooplankton genera in the Tethyan-Paratethyan regions. These highly diverse taxa with many endemic representatives were at the peak of their evolutionary development. Geologic evidence indicates that the terminal Cretaceous temperature decline was coeval with widespread and intense volcanic activity which reached a peak at the close of the Mesozoic Era. Increased acidity temporarily prohibited calcite nucleation of the surface dwelling warm-water plankton. Superimposed upon decreased alkalinity, severe and rapid climatic changes caused the extinction of calcareous phyto and zooplankton.

  5. Testing the Mojave-Sonora megashear hypothesis: Evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico

    USGS Publications Warehouse

    Amato, J.M.; Lawton, T.F.; Mauel, D.J.; Leggett, W.J.; Gonzalez-Leon, C. M.; Farmer, G.L.; Wooden, J.L.

    2009-01-01

    U-Pb ages and Nd isotope values of Proterozoic rocks in Sonora, Mexico, indicate the presence of Caborca-type basement, predicted to lie only south of the Mojave-Sonora mega-shear, 40 km north of the postulated megashear. Granitoids have U-Pb zircon ages of 1763-1737 Ma and 1076 Ma, with ??Nd(t) values from +1.4 to -4.3, typical of the Caborca block. Lower Jurassic strata near the Proterozoic rocks contain large granitic clasts with U-Pb ages and ??Nd(t) values indistinguishable from those of Caborcan basement. Caborca-type basement was thus present at this location north of the megashear by 190 Ma, the depositional age of the Jurassic strata. The Proterozoic rocks are interpreted as parautochthonous, exhumed and juxtaposed against the Mesozoic section by a reverse fault that formed a footwall shortcut across a Jurassic normal fault. Geochronology, isotope geochemistry, and structural geology are therefore inconsistent with Late Jurassic megashear displacement and require either that no major transcurrent structure is present in Sonora or that strike-slip displacement occurred prior to Early Jurassic time. ?? 2009 The Geological Society of America.

  6. A new, exceptionally preserved juvenile specimen of Eusaurosphargis dalsassoi (Diapsida) and implications for Mesozoic marine diapsid phylogeny.

    PubMed

    Scheyer, Torsten M; Neenan, James M; Bodogan, Timea; Furrer, Heinz; Obrist, Christian; Plamondon, Mathieu

    2017-06-30

    Recently it was suggested that the phylogenetic clustering of Mesozoic marine reptile lineages, such as thalattosaurs, the very successful fish-shaped ichthyosaurs and sauropterygians (including plesiosaurs), among others, in a so-called 'superclade' is an artefact linked to convergent evolution of morphological characters associated with a shared marine lifestyle. Accordingly, partial 'un-scoring' of the problematic phylogenetic characters was proposed. Here we report a new, exceptionally preserved and mostly articulated juvenile skeleton of the diapsid reptile, Eusaurosphargis dalsassoi, a species previously recovered within the marine reptile 'superclade', for which we now provide a revised diagnosis. Using micro-computed tomography, we show that besides having a deep skull with a short and broad rostrum, the most outstanding feature of the new specimen is extensive, complex body armour, mostly preserved in situ, along its vertebrae, ribs, and forelimbs, as well as a row of flat, keeled ventrolateral osteoderms associated with the gastralia. As a whole, the anatomical features support an essentially terrestrial lifestyle of the animal. A review of the proposed partial character 'un-scoring' using three published data matrices indicate that this approach is flawed and should be avoided, and that within the marine reptile 'superclade' E. dalsassoi potentially is the sister taxon of Sauropterygia.

  7. The structure of a Mesozoic basin beneath the Lake Tana area, Ethiopia, revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hautot, Sophie; Whaler, Kathryn; Gebru, Workneh; Desissa, Mohammednur

    2006-03-01

    The northwestern Plateau of Ethiopia is almost entirely covered with extensive Tertiary continental flood basalts that mask the underlying formations. Mesozoic and Tertiary sediments are exposed in a few locations surrounding the Lake Tana area suggesting that the Tana depression is an extensional basin buried by the 1-2 km thick Eocene-Oligocene flood basalt sequences in this region. A magnetotelluric survey has been carried out to investigate the deep structure of the Tana area. The objectives were to estimate the thickness of the volcanics and anticipated underlying sedimentary basin. We have collected 27 magnetotelluric soundings south and east of Lake Tana. Two-dimensional inversion of the data along a 160 km long profile gives a model consistent with a NW-SE trending sedimentary basin beneath the lava flows. The thickness of sediments overlying the Precambrian basement averages 1.5-2 km, which is comparable to the Blue Nile stratigraphic section, south of the area. A 1 km thickening of sediments over a 30-40 km wide section suggests that the form of the basin is a half-graben. It is suggested that electrically resistive features in the model are related to volcanic materials intruded within the rift basin sediments through normal faults. The results illustrate the strong control of the Precambrian fracture zones on the feeding of the Tertiary Trap series.

  8. Geochemical and Nd-Sr isotopic constraints on the genesis of Mesozoic alkaline magmatism in Tu Le basin, Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Tran, T. A.; Tran, T. H.; Lan, C. Y.; Chung, S. L.; Lo, C. H.; Wang, P. L.; Lee, T. Y.; Merztman, S. A.

    2003-04-01

    Mesozoic alkaline magmatism that occurred in the Tu Le basin, northern Vietnam, resulted in several igneous complexes composed of different lithologies. They are represented by the Suoi Be basalts, the Ban Hat gabbros, the Phu Sa Phin syenites, the Van Chan rhyolites and the Ngoi Thia rhyolites, which overall show a bimodal chemical composition. Ar-Ar dating and stratigraphic data indicate that the magmatism clustered in two periods, i.e., the middle-late Jurassic (176 - 145 Ma) and the late Cretaceous-earliest Tertiary (80 - 60 Ma), respectively. The Suoi Be basalts, the Ban Hat gabbros, the Van Chan rhyolites and some of the Phu Sa Phin syenites formed in the Jurassic stage, whilst the Ngoi Thia rhyolites and most of the Phu Sa Phin syenites formed in the Cretaceous stage. The mafic Jurassic magmas are silica-undersaturated (SiO_2 = 44-49 wt.%) and sodium-rich, with low MgO (˜7-3 wt.%) but high TiO_2 (3.6-2.0 wt.%). They exhibit various degrees of LREE-enrichment, with (La)N = 79-290, 5.5<(La/Yb)N<20 (chondrite-normalized) and without apparent Eu anomalies. On the other hand, the felsic magmas of Jurassic and Cretaceous ages show similar geochemical features, with SiO_2 = 62-78 wt.%, (Na_2O+K_2O) = 5.3-10.2 wt.%, significant Eu anomalies (Eu/Eu*= 0.1-0.54), and enrichments in the HFSE (Nb, Ta, Zr) and LILE (Rb, Th, U, K) along with pronounced depletions in Ba, Sr, P and Ti in the primitive mantle-normalized multi-element variation diagram. They are geochemically comparable to A-type granitoids. The mafic and felsic magmas have distinguishable Nd isotope ratios. In contrast to the Jurassic and Cretaceous felsic magmas that have uniform eNd(T) values (-1.5 to -2.8), the Jurassic mafic rocks are marked by more radiogenic and heterogenous eNd(T) values (-1.9 to -8.9), implying different magma sources and independent petrogenetic processes involved in generation of the Jurassic bimodal magmatism. Combining with relevant geological data from northern Vietnam and SW

  9. Late Mesozoic and possible early Tertiary accretion in western Washington State: the Helena-Haystack melange and the Darrington- Devils Mountain fault zone

    USGS Publications Warehouse

    Tabor, R.W.

    1994-01-01

    The Helena-Haystack melange (HH melange) and coincident Darrington-Devils Mountain fault zone (DDMFZ) in northwestern Washington separate two terranes, the northwest Cascade System (NWCS) and the western and eastern melange belts (WEMB). The two terranes of Paleozoic and Mesozoic rocks superficially resemble each other but record considerable differences in structural and metamorphic history. The HH melange is a serpentinite-matrix melange containing blocks of adjacent terranes but also exotic blocks. The HH melange must have formed between early Cretaceous and late middle Eocene time, because it contains tectonic clasts of early Cretaceous Shuksan Greenschist and is overlain by late middle Eocene sedimentary and volcanic rocks. The possible continuation of the DDMFZ to the northwest as the San Juan and the West Coast faults on Vancouver Island suggests that the structure has had a major role in the emplacement of all the westernmost terranes in the Pacific Northwest. -from Author

  10. Lithospheric Expressions of the Precambrian Shield, Mesozoic Rifting, and Cenozoic Subduction and Mountain Building in Venezuela

    NASA Astrophysics Data System (ADS)

    Levander, A.; Masy, J.; Niu, F.

    2013-05-01

    reflecting the signatures of the Precambrian craton in the south, Mesozoic rifting in central Venezuela, and Neogene subduction and orogenesis in both the northeast and northwest. Specifically, LAB depth varies from 110-130 km beneath the Guayana Shield, in agreement with finite-frequency body wave tomography (Bezada et al., 2010b). To the north beneath the Serrania del Interior and Maturin Basin the Rayleigh waves image two high velocity features to depths of 200 km. The northernmost, beneath the Serrania, corresponds to the top of the subducting Atlantic plate, in agreement with P-wave tomography that images the Atlantic plate to transition zone depths. Another localized high velocity feature extending to ~200 km depth lies to the south. We speculate that this is a lithospheric drip caused by destabilization of the SA lithospheric caused by Atlantic subduction. Immediately to the west beneath the Cariaco basin the LAB is at ~50 km, marking the top of a pronounced low velocity zone. The thin lithosphere extends southwestward from the Cariaco Basin beneath the Mesozoic Espino Graben to the craton. To the west the LAB deepens to ~80 km beneath the Barinas Apure Basin and then to ~90 km beneath the Neogene Merida Andes and Maracaibo block.

  11. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean

    NASA Astrophysics Data System (ADS)

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina

    2017-10-01

    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the

  12. Selected chemical analyses of water from formations of Mesozoic and Paleozoic age in parts of Oklahoma, northern Texas, and Union County, New Mexico

    USGS Publications Warehouse

    Parkhurst, R.S.; Christenson, S.C.

    1987-01-01

    Hydrochemical data were compiled into a data base as part of the Central Midwest Regional Aquifer System Analysis project. The data consist of chemical analyses of water samples collected from wells that are completed in formations of Mesozoic and Paleozoic age. The data base includes data from the National Water Data Storage and Retrieval System, the Petroleum Data System, the National Uranium Resource Evaluation, and selected publications. Chemical analyses were selected for inclusion within the hydrochemical data base if the total concentration of the cations differed from the total 10 percent or less of the total concentration of all ions. Those analyses which lacked the necessary data for an ionic balance were included if the ratios of dissolved-solids concentration to specific conductance were between 0.55 and 0.75. The tabulated chemical analyses, grouped by county, and a statistical summary of the analyses, listed by geologic unit, are presented.

  13. Hydrocarbons in New Guinea, controlled by basement fabric, Mesozoic extension and Tertiary convergent margin tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.

    1996-01-01

    Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of [approx]139[degrees]E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less

  14. Hydrocarbons in New Guinea, controlled by basement fabric, Mesozoic extension and Tertiary convergent margin tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.C.; Kendrick, R.D.; Crowhurst, P.V.

    1996-12-31

    Most models for the tectonic evolution of New Guinea involve Early and Late Miocene arc-continent collisions, creating an orogenic belt. Structural trends and prospectivity are then analyzed in terms of belts across the country; the Fold Belt (with the discovered oil and gas fields), the Mobile Belt and the accreted arcs. This model inhibits realistic assessment of prospectivity. It now appears the Mobile Belt formed by Oligocene compression then by Early Miocene extension, related to slab-rollback, that unroofed metamorphic core complexes adjacent to starved half-grabens. The grabens filled in the Middle Miocene and were largely transported intact during the Pliocenemore » arc-collision. Early Miocene reefs and hypothesized starved basin source rocks create a viable play throughout northern New Guinea as in the Salawati Basin. The Pliocene clastic section is locally prospective due to overthrusting and deep burial. Within the Fold Belt, the site and types of oil and gas fields are largely controlled by the basement architecture. This controlled the transfer zones and depocentres during Mesozoic extension and the location of major basement uplifts during compression. In PNG, the Bosavi lineament separates an oil province from a gas province. In Irian Jaya the transition from a relatively competent sequence to a rifted sequence west of {approx}139{degrees}E may also be a gas-oil province boundary. Understanding, in detail, the compartmentalization of inverted blocks and areas of thin-skinned thrusting, controlled by the basement architecture, will help constrain hydrocarbon prospectivity.« less

  15. Chaotic evolution of the long-period Milankovitch cycle during the early Mesozoic: independent evidences from the Newark lacustrine sequence (North America) and the pelagic bedded chert sequence (Japan)

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Olsen, P. E.; Tada, R.

    2012-12-01

    The correlation of Earth's orbital parameters with climatic variations has been used to generate astronomically calibrated geologic time scales of high accuracy. However, because of the chaotic behavior of the solar planets, the orbital models have a large uncertainty beyond several tens of million years in the past. This chaotic behavior also causes the long-period astronomical cycles (> 0.5 Myr periodicity) to modulate their frequency and amplitude. In other words, their modulation patterns could be potential constraints for the orbital models. Here we report the first geologic constraints on the timing of frequency transition and amplitude modulation of the ~ 2 Myr long eccentricity cycles during the early Mesozoic. We examined the lake level records of the early Mesozoic Newark lacustrine sequence in North America and the biogenic silica burial rate of the pelagic bedded chert sequence in the Inuyama area, Japan, which are proven to be reflect the astronomical cycle (Olsen, 1986; Olsen and Kent, 1996; Ikeda et al., 2010). The time scales of the two sequences were orbitally calibrated with the end-Triassic mass extinction interval as the age anchor, covering ~ 30 Myr and ~ 65 Myr, respectively (Olsen et al., 2011; Ikeda et al., 2010, in prep). We find that the frequency modulation of ~ 2 Myr cycle between 2.4 Myr to 1.6 Myr cycle have occurred at least the Middle to Late Triassic. In addition, the ~ 2 Myr cycle modulate its amplitude with ~ 10 Myr periodicity with in-phase relation between the two. Similar modulation patterns of ~ 2 Myr cycles from the two independent geologic records indicate convincing evidences for the chaotic behavior of the Solar planets. Because these modulation patterns are different from the results of the orbital models by Laskar et al. (2004, 2011), our records will provide the new and challenging constraints for the orbital models in terms of chaotic behavior of Solar planets.

  16. Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates.

    PubMed

    Motani, Ryosuke; Jiang, Da-Yong; Tintori, Andrea; Ji, Cheng; Huang, Jian-Dong

    2017-05-17

    The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. © 2017 The Author(s).

  17. Pre- versus post-mass extinction divergence of Mesozoic marine reptiles dictated by time-scale dependence of evolutionary rates

    PubMed Central

    Ji, Cheng; Huang, Jian-dong

    2017-01-01

    The fossil record of a major clade often starts after a mass extinction even though evolutionary rates, molecular or morphological, suggest its pre-extinction emergence (e.g. squamates, placentals and teleosts). The discrepancy is larger for older clades, and the presence of a time-scale-dependent methodological bias has been suggested, yet it has been difficult to avoid the bias using Bayesian phylogenetic methods. This paradox raises the question of whether ecological vacancies, such as those after mass extinctions, prompt the radiations. We addressed this problem by using a unique temporal characteristic of the morphological data and a high-resolution stratigraphic record, for the oldest clade of Mesozoic marine reptiles, Ichthyosauromorpha. The evolutionary rate was fastest during the first few million years of ichthyosauromorph evolution and became progressively slower over time, eventually becoming six times slower. Using the later slower rates, estimates of divergence time become excessively older. The fast, initial rate suggests the emergence of ichthyosauromorphs after the end-Permian mass extinction, matching an independent result from high-resolution stratigraphic confidence intervals. These reptiles probably invaded the sea as a new ecosystem was formed after the end-Permian mass extinction. Lack of information on early evolution biased Bayesian clock rates. PMID:28515201

  18. To Plume or Not To Plume: SC Mesozoic Diabase Dike Orientations, Stress Fields During the Break-up of Pangea, and the Feasibility of a Causal Plume.

    NASA Astrophysics Data System (ADS)

    Beutel, E. K.; Alexander, M.; Kotecha, A.; Edwards, D.

    2002-12-01

    New compilations of Mesozoic diabase dikes in South Carolina suggest that previously unrecognized N-S and NE-SW dike orientations exist throughout the western Charlotte belt, into the Carolina belt and possible into the Laurens Thrust Stack. Previous studies indicated that the majority of dikes in South Carolina were solely NW trending. While we found that the majority of dikes did trend NW-SE, the number and size of the NE-SW and N-S trending dikes indicate that these are not mere fingers off the main NW trending dikes and are likely true swarms. Previous studies of Mesozoic diabase dikes further north along the Atlantic coast have found evidence that suggests that NW-SE trending dikes are the oldest set, the N-S trending set followed, and the NE-SW trending dikes were injected last. Based on this relationship, and the stress field that most likely existed in the crust during the injection of each dike set, we have constructed a series of evolutionary models for the break-up of Pangea. Our models are based on the assumption that the multiple overlapping swarms negate the possibility of a plume being solely responsible for the break-up or for the dikes. These models suggest a complicated history of relative motion between Africa, North America, and South America. Finite element models were run to test the feasibility of these models. Preliminary model results suggest that the extensional stresses necessary for the major dike patterns seen in northwestern Africa, northern South America, and the southeastern United States may have occurred when the relative motion of Africa was northeast of North America. Initial model runs suggest that multiple dike orientations are best accounted for by a strongly nonlinear rift trend, a temporary aulacogen in Georgia, and/or rift propagation. The affect of events in the Gulf of Mexico is strongly dependent on the location and trend of the rifts and micro-continents modeled.

  19. Mesozoic to Cenozoic magmatic history of the Pamir

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Scoggin, Shane H.; Kapp, Paul; Carrapa, Barbara; Ducea, Mihai N.; Worthington, James; Oimahmadov, Ilhomjon; Gadoev, Mustafo

    2018-01-01

    New geochronologic, geochemical, and isotopic data for Mesozoic to Cenozoic igneous rocks and detrital minerals from the Pamir Mountains help to distinguish major regional magmatic episodes and constrain the tectonic evolution of the Pamir orogenic system. After final accretion of the Central and South Pamir terranes during the Late Triassic to Early Jurassic, the Pamir was largely amagmatic until the emplacement of the intermediate (SiO2 > 60 wt.%), calc-alkaline, and isotopically evolved (-13 to -5 zircon εHf(t)) South Pamir batholith between 120-100 Ma, which is the most volumetrically significant magmatic complex in the Pamir and includes a high flux magmatic event at ∼105 Ma. The South Pamir batholith is interpreted as the northern (inboard) equivalent of the Cretaceous Karakoram batholith and the along-strike equivalent of an Early Cretaceous magmatic belt in the northern Lhasa terrane in Tibet. The northern Lhasa terrane is characterized by a similar high-flux event at ∼110 Ma. Migration of continental arc magmatism into the South Pamir terrane during the mid-Cretaceous is interpreted to reflect northward directed, low-angle to flat-slab subduction of the Neo-Tethyan oceanic lithosphere. Late Cretaceous magmatism (80-70 Ma) in the Pamir is scarce, but concentrated in the Central and northern South Pamir terranes where it is comparatively more mafic (SiO2 < 60 wt.%), alkaline, and isotopically juvenile (-2 to +2 zircon εHf(t)) than the South Pamir batholith. Late Cretaceous magmatism in the Pamir is interpreted here to be the result of extension associated with roll-back of the Neotethyan oceanic slab, which is consistent with similarly aged extension-related magmatism in the Karakoram terrane and Kohistan. There is an additional pulse of magmatism in the Pamir at 42-36 Ma that is geographically restricted (∼150 km diameter ellipsoidal area) and referred to as the Vanj magmatic complex. The Vanj complex comprises metaluminous, high-K calc-alkaline to

  20. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  1. Crystal chemistry of pyrochlore from the Mesozoic Panda Hill carbonatite deposit, western Tanzania

    NASA Astrophysics Data System (ADS)

    Boniface, Nelson

    2017-02-01

    The Mesozoic Panda Hill carbonatite deposit in western Tanzania hosts pyrochlore, an ore and source of niobium. This study was conducted to establish the contents of radioactive elements (uranium and thorium) in pyrochlore along with the concentration of niobium in the ore. The pyrochlore is mainly hosted in sövite and is structurally controlled by NW-SE (SW dipping) or NE-SW (NW dipping) magmatic flow bands with dip angles of between 60° and 90°. Higher concentrations of pyrochlore are associated with magnetite, apatite and/or phlogopite rich flow bands. Electron microprobe analyses on single crystals of pyrochlore yield very low UO2 concentrations that range between 0 and 0.09 wt% (equivalent to 0 atoms per formula unit: a.p.f.u.) and ThO2 between 0.55 and 1.05 wt% (equivalent to 0.1 a.p.f.u.). The analyses reveal high concentrations of Nb2O5 (ranging between 57.13 and 65.50 wt%, equivalent to a.p.f.u. ranging between 1.33 and 1.43) and therefore the Panda Hill Nb-oxide is classified as pyrochlore sensu stricto. These data point to a non radioactive pyrochlore and a deposit rich in Nb at Panda Hill. The Panda Hill pyrochlore has low concentrations of REEs as displayed by La2O3 that range between 0.10 and 0.49 wt% (equivalent to a.p.f.u. ranging between 0 and 0.01) and Ce2O3 ranging between 0.86 and 1.80 wt% (equivalent to a.p.f.u. ranging between 0.02 and 0.03), Pr2O3 concentrations range between 0 and 0.23 wt% (equivalent to 0 a.p.f.u.), and Y2O3 is 0 wt% (equivalent to 0 a.p.f.u.). The abundance of the REEs in pyroclore at the Panda Hill Carbonatite deposit is of no economic significance.

  2. Extension style in the Orphan Basin during the Mesozoic North Atlantic rifting

    NASA Astrophysics Data System (ADS)

    Gouiza, Mohamed; Hall, Jeremy

    2013-04-01

    The Orphan Basin, lying along the Newfoundland passive continental margin, has formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. Regional deep seismic reflection profiles across the basin indicate that the Neoproterozoic basement has been affected by repeated extensional episodes between the Late Triassic/Jurassic and the Early Cretaceous. Deformation initiated in the eastern part of the Orphan basin in the Jurassic and migrated toward the west in the Early Cretaceous, resulting in numerous rift structures filled with Jurassic-Lower Cretaceous syn-rift successions and sealed by thick Upper Cretaceous-Cenozoic post-rift sediments. The seismic data show an extremely attenuated crust underneath the eastern and western part of the deep basin, forming two sub-basins associated with the development of rifting. The two sub-basins are separated by a wide structural high with a relatively thick crust and are bounded to the west by the continental shelf domain. Restoration of the Orphan Basin along a 2D crustal section (520 km long), yields a total amount of stretching of about 144 km, while the total crustal thinning indicates an extension of around 250 km, assuming mass conservation along the section and an initial crustal thickness of 28 km. Brittle deformation accommodated by normal faults is documented in the seismic profiles and affected essentially the present-day upper portion of the crust, and represents only 60% of the total extension which thinned the Orphan crust. The remaining crustal thinning must involve other deformation processes which are not (easily) recognizable in the seismic data. We propose two models that could explain discrepancies between brittle deformation and total crustal thinning during lithospheric extension. The first model assumes the reactivation of pre-rift inherited structures, which act as crustal-scale detachments during the early stages of rifting. The second

  3. A new kinematic model for the Mesozoic evolution of the Iberia plate

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Manatschal, Gianreto; Tugend, Julie; Kusznir, Nick; Sauter, Daniel

    2017-04-01

    During the Mesozoic Iberia was progressively surrounded by rift systems leading to its transient individualization as a tectonic plate. The kinematic evolution of Iberia prior to oceanic magnetic anomaly C34 ( 83 Ma) is controversial. To date, no kinematic models accounts for the Late Aptian to Albian hyper-extended rift phase observed in the Pyrenees. Consistent isochronal features, such as oceanic magnetic anomalies, representing the backbones of oceanic plate reconstructions are lacking. The only potential candidate, the J-anomaly, located offshore Iberia and Newfoundland has recently been re-interpreted as resulting from polyphased and polygenic magmatic events and does not provide a useful constraint. We use a new reconstruction approach that integrates the spatio-temporal evolution of adjacent hyper-extended rift domains systems to investigate Iberia plate motion during the separation of the super-continent Pangea. The plate modeling is based on careful mapping and restoration of the rift domains with key rift events dated within the study area. The main outcomes of this new model are as follows: 1) A full-fit of the southern North Atlantic 2) Extension on the southern and eastern boundary of Iberia related to the opening of the Central Atlantic 3) Segmentation of the Iberia-Newfoundland rift system by fracture zones prior to a V-shape propagation of mantle exhumation and seafloor spreading 4) No Aptian subduction in the Pyrenean domain and a limited rotation of the Iberia plate 5) The partitioning of deformation between different micro-blocks along the Iberian-Eurasian boundary enabling Late Aptian to Albian extension in the Pyrenees The resulting plate kinematic model for Iberia differs from previous ones on three main points: it does not make use of the J magnetic anomaly because the J anomlay is neither an isochron or a COB marker; the deformation along the Iberian-Eurasian boundary is partitioned between distinct rift systems; and it incorporates

  4. A Reply to the Comment on "Assessing Discrepancies Between Previous Plate Kinematic Models of Mesozoic Iberia and Their Constraints" by Barnett-Moore Et Al.

    NASA Astrophysics Data System (ADS)

    Barnett-Moore, N.; Font, E.; Neres, M.

    2017-12-01

    We welcome the comments of van Hinsbergen et al. (2017) on the recent efforts of Barnett-Moore et al. (2016). Specifically, van Hinsbergen et al. (2017) raise concerns about two of the major conclusions made by Barnett-Moore et al. (2016). First, Barnett-Moore et al. (2016) choose to negate the Cretaceous Iberian paleomagnetic database as a viable plate kinematic constraint on the plate motions of Mesozoic Iberia. This conclusion, criticized by van Hinsbergen et al. (2017), was based on citing the previous efforts of Neres et al. (2012, 2013), which exposed several shortcomings, elaborated on below, within this data set. Second, van Hinsbergen et al. (2017) criticize Barnett-Moore et al. (2016) for dismissing mantle tomographic interpretations in support of a preserved Cretaceous Pyrenean "subducted slab" beneath northern Africa. Below, we have addressed each of these major criticisms from van Hinsbergen et al. (2017) in a two-section layout, similar to their comment above.

  5. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 1. Structural Analysis and Geochronological Constraints

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Faure, Michel; Lin, Wei; Chen, Yan; Chu, Yang; Xue, Zhenhua

    2018-01-01

    The South China Block (SCB) experienced a polyphase reworking by the Phanerozoic tectonothermal events. To better understand its Late Mesozoic tectonics, an integrated multidisciplinary investigation has been conducted on the Dayunshan-Mufushan composite batholith in the north-central SCB. This batholith consists of two major intrusions that recorded distinct emplacement features. According to our structural analysis, two deformation events in relation to batholith emplacement and subsequent exhumation are identified. The early one (D1) was observed mostly at the southern border of the batholith, characterized by a top-to-the-SW ductile shearing in the early-stage intrusion and along its contact zone. This deformation, chiefly associated with the pluton emplacement at ca. 150 Ma, was probably assisted by farfield compression from the northern Yangtze foreland belt. The second but main event (D2) involved two phases: (1) ductile shearing (D2a) prominently expressed along the Dayunshan detachment fault at the western border of the batholith where the syntectonic late-stage intrusion and minor metasedimentary basement in the footwall suffered mylonitization with top-to-the-NW kinematics; and (2) subsequent brittle faulting (D2b) further exhumed the entire batholith that behaved as rift shoulder with half-graben basins developed on its both sides. Geochronological constraints show that the crustal ductile extension occurred during 132-95 Ma. Such a Cretaceous NW-SE extensional tectonic regime, as indicated by the D2 event, has been recognized in a vast area of East Asia. This tectonism was responsible not only for the destruction of the North China craton but also for the formation of the so-called "southeast China basin and range tectonics."

  6. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    NASA Astrophysics Data System (ADS)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  7. Tectonics, basin analysis and organic geochemical attributes of Permian through Mesozoic deposits and their derivative oils of the Turpan-Hami basin, northwestern China

    NASA Astrophysics Data System (ADS)

    Greene, Todd Jeremy

    The Turpan-Hami basin is a major physiographic and geologic feature of northwest China, yet considerable uncertainty exists as to the timing of its inception, its late Paleozoic and Mesozoic tectonic history, and the relationship of its petroleum systems to those of the nearby Junggar basin. Mesozoic sedimentary fades, regional unconformities, sediment dispersal patterns, and sediment compositions within the Turpan-Hami and southern Junggar basins suggest that these basins were initially separated between Early Triassic and Early Jurassic time. Prior to separation, Upper Permian profundal lacustrine and fan-delta fades and Triassic coarse-grained braided-fluvial/alluvial fades were deposited across a contiguous Junggar-Turpan-Hami basin. Permian through Triassic fades were derived mainly from the Tian Shan to the south as indicated by northward-directed paleocurrent directions and geochemical provenance of granitoid cobbles. Lower through Middle Jurassic strata begin to reflect ponded coal-forming, lake-plain environments within the Turpan-Hami basin. A sharp change in sedimentary-lithic-rich Lower Jurassic sandstone followed by a return to lithic volcanic-rich Middle Jurassic sandstone points to the initial uplift and unroofing of the largely andesitic Bogda Shan range, which first shed its sedimentary cover as it emerged to become the partition between the Turpan-Hami and southern Junggar basins. In Turpan-Hami, source rock age is one of three major statistically significant discriminators of effective source rocks in the basin. A newly developed biomarker parameter appears to track conifer evolution and can distinguish Permian rocks and their correlative oils from Jurassic coals and mudrocks, and their derivative oils. Source fades is a second key control on petroleum occurrence and character. By erecting rock-to-oil correlation models, the biomarker parameters separate oil families into end-member groups: Group 1 oils---Lower/Middle Jurassic peatland

  8. Simulation analysis of the ground-water system in Mesozoic rocks in the Four Corners area, Utah, Colorado, Arizona, and New Mexico

    USGS Publications Warehouse

    Thomas, B.E.

    1989-01-01

    The steady-state groundwater system in Mesozoic rocks in the Four Corners area, Utah, Colorado, Arizona, and New Mexico, was simulated with a finite-difference digital-computer model to improve the understanding of the system. The simulated area is 4 ,100 sq mi, and it includes three aquifers. The Entrada-Navajo aquifer includes the Wingate, Navajo, and Entrada Sandstones. The Morrison aquifer includes the sandstone units of the Morrison Formation. The Dakota aquifer includes the Burro Canyon Formation and Dakota Sandstone. The simulation of the groundwater system had a mean error (error is absolute value of residual) of 70 ft for the Entrada-Navajo aquifer, 67 ft for the Morrison aquifer and 79 ft for the Dakota aquifer. The hydraulic conductivity used in the simulation ranged from 0.38 to 0.47 ft/day. Simulated inflow to the groundwater system was 30,000 acre-ft/yr. 48% of the inflow is from infiltration of precipitation within the simulated area, and 42% is from infiltration in 145 sq mi of mountain areas adjacent to the simulated area. Simulations indicated that some vertical inflow of water is needed between the Entrada-Navajo and Morrison aquifers to develop a reasonable representation of the system. (USGS)

  9. Controls of late Palaeozoic and Mesozoic extension in the British Isles: evidence from seismic reflection data in the Central North Sea

    NASA Astrophysics Data System (ADS)

    Smith, K.; Cameron, T. D. J.

    2009-04-01

    Controls of late Palaeozoic and Mesozoic extension in the British Isles: evidence from seismic reflection data in the Central North Sea. Kevin Smith (1) and Don Cameron (2) (1) British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA. (ksm@bgs.ac.uk). (2) British Geological Survey, 376 Gilmerton Road, Edinburgh, EH17 7QS. In the area of the British Isles during the late Devonian and early Carboniferous, the oblique convergence of Laurentia and Gondwana imposed a torque on the adjoining terranes of Baltica and Avalonia. Their resulting clockwise rotation was accommodated by widely distributed N-S extension in the intervening zones previously formed by Caledonian and Acadian convergence. South of Laurentia and Baltica, late Palaeozoic extension was focused (1) at terrane margins, (2) in areas of limited Caledonian-Acadian plutonism, and (3) in places where the western (Iapetus) and eastern (Tornquist) convergence zones intersect at a high angle. One of these latter areas lies in Central England immediately north of the Midland Microcraton (part of Eastern Avalonia), where thermal subsidence associated with early Carboniferous extension gave rise to the late Carboniferous Pennine Basin. Interpretation of an extensive set of 3D and 2D long-offset seismic reflection data suggests that a similar area of enhanced extension at a fold belt intersection lies to north of the Mid North Sea High in the middle of the Central North Sea. Variscan uplift and inversion of the late Palaeozoic basins began to predominate in mid-Carboniferous times as final amalgamation of all the different terranes to form Pangaea curtailed the initial episode of extension and thermal subsidence. This change in the tectonic regime was associated with the onset of tholeiitic volcanism within the convergence zones, and was followed by localised extension during the earliest Permian. Evidence obtained from seismic interpretation of the deep structure of the UK sector of the Central

  10. A practical assessment of aquifer discharge for regional groundwater demand by characterizing leaky confined aquifer overlain on a Mesozoic granitic gneiss basement

    NASA Astrophysics Data System (ADS)

    Shih, David Ching-Fang

    2018-04-01

    Due to increasing population worldwide, there is an urgent need to manage these important but diminishing groundwater resources efficiently to ensure their continued availability. The major innovative design of this study is to provide a practical assessment process for groundwater discharge under a regional demand by characterizing the nature of leaky confined aquifers overlain on a Mesozoic granitic gneiss basement which involves the important groundwater system in the Kinmen region (Taiwan, ROC) and the assessment of adoptable groundwater discharge in aquifer is needed. The storage coefficient presents an order of one in a thousand and hydraulic conductivity is approximately at the order of 1-8 m/d and 0.4-0.9 m/d for aquifer and aquitard respectively. Groundwater discharge and admissible number of pumping well is suggested considering scheduled maximum groundwater volume and head decline change for eastern and western studied area respectively. The safety subjected to the conservative issue is then addressed by the use of scheduled maximum groundwater volume. It reveals that the safety can be ensured using the indicator as scheduled maximum groundwater volume with predefined scenarios. The result can be utilized practically for developing management strategy of groundwater resources due to the applicability and novel of method.

  11. Integrated elemental and Sr-Nd-Pb-Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang

    2018-02-01

    Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) < -6.3, (206Pb/204Pb) i > 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) < -22.4). The Weijiazhuang dykes are sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) < -7.0, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -23.3). The Mengjiazhuang dykes are also sub-alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) < -18.4, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). The Jiayou dykes also display sub-alkaline affinity with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) < -15.3, (206Pb/204Pb) i > 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) < -18.4). The Huangmi dykes are alkaline (with Na2O + K2O ranging to more than 5.9 wt.%)) with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) < -15.1, (206Pb/204Pb) i > 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36

  12. Detrital zircons from the Tananao metamorphic complex of Taiwan: Implications for sediment provenance and Mesozoic tectonics

    NASA Astrophysics Data System (ADS)

    Yui, T. F.; Maki, K.; Lan, C. Y.; Hirata, T.; Chu, H. T.; Kon, Y.; Yokoyama, T. D.; Jahn, B. M.; Ernst, W. G.

    2012-05-01

    Taiwan formed during the Plio-Pleistocene collision of Eurasia with the outboard Luzon arc. Its pre-Tertiary basement, the Tananao metamorphic complex, consists of the western Tailuko belt and the eastern Yuli belt. These circum-Pacific belts have been correlated with the high-temperature/low-pressure (HT/LP) Ryoke belt and the high-pressure/low-temperature (HP/LT) Sanbagawa belt of Japan, respectively. To test this correlation and to reveal the architecture and plate-tectonic history of the Tananao metamorphic basement, detrital zircons were separated from 7 metasedimentary rock samples for U-Pb dating by LA-ICPMS techniques. Results of the present study, coupled with previous data, show that (1) the Tailuko belt consists of a Late Jurassic to earliest Cretaceous accretionary complex sutured against a Permian-Early Jurassic marble ± metabasaltic terrane, invaded in the north by scattered Late Cretaceous granitic plutons; the latter as well as minor Upper Cretaceous cover strata probably formed in a circum-Pacific forearc; (2) the Yuli belt is a mid- to Late Cretaceous accretionary complex containing HP thrust sheets that were emplaced attending the Late Cenozoic Eurasian plate-Luzon arc collision; (3) these two Late Mesozoic belts are not coeval, and in part were overprinted by low-grade metamorphism during the Plio-Pleistocene collision; (4) accreted clastic sediments of the Tailuko belt contain mainly Phanerozoic detrital zircons, indicating that terrigenous sediments were mainly sourced from western Cathaysia, whereas in contrast, clastic rocks of the Yuli accretionary complex contain a significant amount of Paleoproterozoic and distinctive Neoproterozoic zircons, probably derived from the North China craton and the Yangtze block ± eastern Cathaysia, as a result of continent uplift/exhumation after the Permo-Triassic South China-North China collision; and (5) the Late Jurassic-Late Cretaceous formation of the Tananao basement complex precludes the possibility

  13. Field guide to the Mesozoic accretionary complex along Turnagain Arm and Kachemak Bay, south-central Alaska

    USGS Publications Warehouse

    Bradley, Dwight C.; Kusky, Timothy M.; Karl, Susan M.; Haeussler, Peter J.

    1997-01-01

    Turnagain Arm, just east of Anchorage, provides a readily accessible, world-class cross section through a Mesozoic accretionary wedge. Nearly continuous exposures along the Seward Highway, the Alaska Railroad, and the shoreline of Turnagain Arm display the two main constituent units of the Chugach terrane: the McHugh Complex and Valdez Group. In this paper we describe seven bedrock geology stops along Turnagain Arm, and two others in the Chugach Mountains just to the north (Stops 1-7 and 9), which will be visited as part of the May, 1997 field trip of the Alaska Geological Society. Outcrops along Turnagain Arm have already been described in two excellent guidebook articles (Clark, 1981; Winkler and others 1984), both of which remain as useful and valid today as when first published. Since the early 1980's, studies along Turnagain Arm have addressed radiolarian ages of chert and conodont ages of limestone in the McHugh Complex (Nelson and others, 1986, 1987); geochemistry of basalt in the McHugh Complex (Nelson and Blome, 1991); post-accretion brittle faulting (Bradley and Kusky, 1990; Kusky and others, 1997); and the age and tectonic setting of gold mineralization (Haeussler and others, 1995). Highlights of these newer findings will described both in the text below, and in the stop descriptions.Superb exposures along the southeastern shore of Kachemak Bay show several other features of the McHugh Complex that are either absent or less convincing along Turnagain Arm. While none of these outcrops can be reached via the main road network, they are still reasonably accessible - all are within an hour by motorboat from Homer, seas permitting. Here, we describe seven outcrops along the shore of Kachemak Bay that we studied between 1989 and 1993 during geologic mapping of the Seldovia 1:250,000- scale quadrangle. These outcrops (Stops 61-67) will not be part of the 1997 itinerary, but are included here tor the benefit of those who may wish to visit them later.

  14. Clade perseverance from Mesozoic to present: a multidisciplinary approach to interpretation of pattern and process.

    PubMed

    Barnes, David K A

    2002-10-01

    Two clades of marine bryozoans, cyclostomes and cheilostomes, exemplify the benefits of applying a multidisciplinary approach to the interpretation of long-term evolutionary patterns. The cyclostome bryozoans were dominant in the Mesozoic; since that era, they have decreased in absolute terms and the cheilostomes have come to exceed them in both abundance and diversity. Many studies of living assemblages of the encrusting members of these two clades indicate that cheilostomes are superior space competitors, but paleontological studies suggest that competition between the two taxa has not been escalating over geological time. Both clades occur throughout the world's oceans and seas, and recent work in the geographical extremes has shown that the relative success of the clades varies markedly from place to place. In this study, the importance of differential patterns of recruitment and cumulative space occupation in the two clades was evaluated over four years and in two environments, one temperate and one polar. In both of these environments, peaks of recruitment and space occupation by the two clades were out of phase. The different strategies and outcomes of spatial competition are examined, largely using data from the literature. Only recently has it been realized that tied outcomes of competition are stable alternative results and not simply transitory phases. Many competitive encounters involving cyclostomes result in ties, implying that their strategy is based on persistence rather than dominance. When different indices and models are used to analyze competition data from the two clades, the interpretation varies markedly with methodology. The differences in patterns of recruitment, space occupation, and spatial competition have influenced both our understanding of how the two clades have persisted alongside each other and our perception of cheilostome superiority. Analysis of fluid dynamics has shown that small differences in the mechanical structure of

  15. Counter-Rotating Magellan and Trinidad Microplates at the Mesozoic Pacific-Phoenix-Farallon Triple Junction

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.

    2005-12-01

    Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the

  16. The earliest known reptile

    NASA Astrophysics Data System (ADS)

    Smithson, T. R.

    1989-12-01

    AMNIOTES (reptiles, birds and mammals) are distinguished from non-amniote tetrapods (amphibians) by the presence of complex embryonic membranes. One of these, the amnion, gives its name to the group. Very few skeletal characters distinguish amniotes from amphibians1, making it difficult to recognize early amniotes in the fossil record. The earliest amniote fossil identified so far is Hylonomus from the Westphalian (Upper Carboniferous) of Joggins, Nova Scotia2,3, (~300 Myr). I report here the discovery of a much earlier amniote skeleton from the Brigantian (Lower Carboniferous) of Scotland (~338 Myr) 4, which thus represents the earliest occurrence of amniotes in the fossil record. The specimen was collected from the East Kirkton Limestone, near Bathgate, West Lothian4-8, and is part of a unique terrestrial fauna that includes eurypterids, myriapods, scorpions and the earliest-known harvestman spider7,9, together with the earliest known temno-spondyls, a group that may include the ancestors of all living amphibians10. It will make an important contribution to our knowledge of early amniote morphology and the interrelationships of tetrapods.

  17. Offshore Extension of Deccan Traps in Kachchh, Central Western India: Implications for Geological Sequestration Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, D. K., E-mail: pandey@ncaor.org; Pandey, A.; Rajan, S.

    2011-03-15

    The Deccan basalts in central western India are believed to occupy large onshore-offshore area. Using geophysical and geological observations, onshore sub-surface structural information has been widely reported. On the contrary, information about offshore structural variations has been inadequate due to scarcity of marine geophysical data and lack of onshore-offshore lithological correlations. Till date, merely a few geophysical studies are reported that gauge about the offshore extent of Deccan Traps and the Mesozoic sediments (pre-Deccan). To fill this gap in knowledge, in this article, we present new geophysical evidences to demonstrate offshore continuation of the Deccan volcanics and the Mesozoic sediments.more » The offshore multi-channel seismic and onshore-offshore lithological correlations presented here confirm that the Mesozoic sedimentary column in this region is overlain by 0.2-1.2-km-thick basaltic cover. Two separate phases of Mesozoic sedimentation, having very distinctive physical and lithological characteristics, are observed between overlying basaltic rocks and underlying Precambrian basement. Using onshore-offshore seismic and borehole data this study provides new insight into the extent of the Deccan basalts and the sub-basalt structures. This study brings out a much clearer picture than that was hitherto available about the offshore continuation of the Deccan Traps and the Mesozoic sediments of Kachchh. Further, its implications in identifying long-term storage of anthropogenic CO{sub 2} within sub-basalt targets are discussed. The carbon sequestration potential has been explored through the geological assessment in terms of the thickness of the strata as well as lithology.« less

  18. Oil/source rock correlations in the Polish Flysch Carpathians and Mesozoic basement and organic facies of the Oligocene Menilite Shales: Insights from hydrous pyrolysis experiments

    USGS Publications Warehouse

    Curtis, John B.; Kotarba, M.J.; Lewan, M.D.; Wieclaw, D.

    2004-01-01

    The Oligocene Menilite Shales in the study area in the Polish Flysch Carpathians are organic-rich and contain varying mixtures of Type-II, Type-IIS and Type-III kerogen. The kerogens are thermally immature to marginally mature based on atomic H/C ratios and Rock-Eval data. This study defined three organic facies, i.e., sedimentary strata with differing hydrocarbon-generation potentials due to varying types and concentrations of organic matter. These facies correspond to the Silesian Unit and the eastern and western portions of the Skole Unit. Analysis of oils generated by hydrous pyrolysis of outcrop samples of Menilite Shales demonstrates that natural crude oils reservoired in the flysch sediments appear to have been generated from the Menilite Shales. Natural oils reservoired in the Mesozoic basement of the Carpathian Foredeep appear to be predominantly derived and migrated from Menilite Shales, with a minor contribution from at least one other source rock most probably within Middle Jurassic strata. Definition of organic facies may have been influenced by the heterogeneous distribution of suitable Menilite Shales outcrops and producing wells, and subsequent sample selection during the analytical phases of the study. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Adaptation to the sky: Defining the feather with integument fossils from mesozoic China and experimental evidence from molecular laboratories.

    PubMed

    Chuong, Cheng-Ming; Wu, Ping; Zhang, Fu-Cheng; Xu, Xing; Yu, Minke; Widelitz, Randall B; Jiang, Ting-Xin; Hou, Lianhai

    2003-08-15

    In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for proximo-distal growth mode; 2) forming hierarchical branches of rachis, barbs, and barbules, with barbs formed by differential cell death and bilaterally or radially symmetric; 3) having a follicle structure, with mesenchyme core during development; 4) when mature, consisting of epithelia without mesenchyme core and with two sides of the vane facing the previous basal and supra-basal layers, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud --> barbs --> barbules --> rachis is presented, which is opposite to the old view of scale plate --> rachis --> barbs --> barbules (Regal, '75; Q Rev Biol 50:35). Copyright 2003 Wiley-Liss, Inc.

  20. An early extensional event of the South China Block during the Late Mesozoic recorded by the emplacement of the Late Jurassic syntectonic Hengshan Composite Granitic Massif (Hunan, SE China)

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Chen, Yan; Faure, Michel; Martelet, Guillaume; Lin, Wei; Wang, Qingchen; Yan, Quanren; Hou, Quanlin

    2016-03-01

    Continental scaled extension is the major Late Mesozoic (Jurassic and Cretaceous) tectonic event in East Asia, characterized by faulting, magmatic intrusions and half-grabens in an area with a length of > 5000 km and a width of > 1000 km. Numerous studies have been conducted on this topic in the South China Block (SCB), However, the space and time ranges of the compressional or extensional regimes of the SCB during the Jurassic are still unclear, partly due to the lack of structural data. The emplacement fabrics of granitic plutons can help determine the regional tectonic background. In this study, a multidisciplinary approach, including Anisotropy of Magnetic Susceptibility (AMS), macro and microstructural analyses, quartz c-axis preferred orientation, gravity modeling and monazite EPMA dating, was conducted on the Hengshan composite granitic massif in SCB that consists of the Triassic Nanyue biotite granitic pluton and the Late Jurassic Baishifeng two-mica granitic pluton. The magnetic fabrics are characterized by a consistent NW-SE oriented lineation and weakly inclined foliation. A dominant high temperature deformation with a top-to-the-NW shear sense is identified for both plutons. The deformation increasing from the center of the Baishifeng pluton to its western border is associated to the development of the West Hengshan Boundary Fault (WHBF). The gravity modeling shows a ;saw tooth-shaped; NE-SW oriented structure of the Baishifeng pluton, which may be considered as NE-SW oriented tension-gashes formed due to the NW-SE extension. All results show that the Triassic Nanyue pluton was deformed under post-solidus conditions by the WHBF coeval with the emplacement of the Late Jurassic Baishifeng pluton. All these observations comply with the NW-SE extensional tectonics coeval with the emplacement of the Baishifeng pluton, which argues that the NW-SE crustal stretching started since the Late Jurassic, at least in this part of the SCB.

  1. Types and Mechanisms of Alterations on the Mesozoic Ophiolites (Lake Van Region-Turkey): Petrographical and Geochemical Approach

    NASA Astrophysics Data System (ADS)

    Yazıcı, Ömer; Üner, Tijen; Mutlu, Sacit; Depçi, Tolga

    2017-04-01

    Mesozoic ophiolites are widely located in the eastern part of Lake Van Basin. The ophiolitic rocks deformed during the rifting and/or closure period of the Neo-Tethyan Ocean are observed as tectonic slices in the region. These ophiolites are represented by volcano-sedimentary units, isolated dikes, and mafic-ultramafic rocks. The formation, emplacement and post-emplacement processes of these ophiolitic rocks can be understood owing to alterations as rodingitization, serpentinization, and listwaenitization. Three stages of sequent mineralization are detected in the ophiolitic rocks. First stage is pyrometasomatization, represented by metamorphic minerals (garnet, chlorite etc.), observed in intruded dikes. Second stage is hydrothermal alteration of mafic-ultramafic rocks namely serpentinization. Listwaenite alteration is the last stage of mineralization. According to petrographical investigations, garnet+chlorite+diopsite minerals are detected in rodengites. The conversion of the plagioclase minerals to the calcsilicatic minerals in rodengites suggests that these rocks are metasomatic rocks produced by Ca-rich fluids derived from serpentinization of the ultramafic rocks. The serpentine minerals (chrysotile-lizardite) can be distinguished from each other by their morphology as being platy or fibrous. Listwaenite alteration is followed by the formation of carbonate, silica, oxides and hydroxides. Chemical analysis of these rocks show that the listwaenites have an enrichment in Ni and Co contents while the rodingites have low SiO2 and high CaO and MgO values (SiO2 28,50 - 36,67%, CaO 11,99 - 20,88%, and MgO 7,99 - 17,73%). Alteration types observed on the ophiolitic rocks demonstrate that these rocks are metamorphised by low pressure and low to middle temperature conditions (greenshist facies). Serpentinization is pointing out an alteration which occurred during the emplacement of the ophiolites or the latter period. This study has been supported by Project number 2013

  2. West margin of North America - A synthesis of recent seismic transects

    USGS Publications Warehouse

    Fuis, G.S.

    1998-01-01

    A comparison of the deep structure along nine recent transects of the west margin of North America shows many important similarities and differences. Common tectonic elements identified in the deep structure along these transects include actively subducting oceanic crust, accreted oceanic/arc (or oceanic-like) lithosphere of Mesozoic through Cenozoic ages. Cenozoic accretionary prisms, Mesozoic accretionary prisms, backstops to the Mesozoic prisms, and undivided lower crust. Not all of these elements are present along all transects. In this study, nine transects, including four crossing subduction zones and five crossing transform faults, are plotted at the same scale and vertical exaggeration (V.E. 1:1), using the above scheme for identifying tectonic elements. The four subduction-zone transects contain actively subducting oceanic crust. Cenozoic accretionary prisms, and bodies of basaltic rocks accreted in the Cenozoic, including remnants of a large, oceanic plateau in the Oregon and Vancouver Island transects. Rocks of age and composition (Eocene basalt) similar to the oceanic plateau are currently subducting in southern Alaska, where they are doubled up on top of Pacific oceanic crust and have apparently created a giant asperity, or impediment to subduction. Most of the subduction-zone transects also contain Mesozoic accretionary prisms, and two of them, Vancouver Island and Alaska, also contain thick, technically underplated bodies of late Mesozoic/early Cenozoic oceanic lithosphere, interpreted as fragments of the extinct Kula plate. In the upper crust, most of the five transform-fault transects (all in California) reflect: (1) tectonic wedging of a Mesozoic accretionary prism into a backstop, which includes Mesozoic/early Cenozoic forearc rocks and Mesozoic ophiolitic/arc basement rocks: and (2) shuffling of the subduction margin of California by strike-slip faulting. In the lower crust, they may reflect migration of the Mendocino triple junction northward

  3. New insights into Mesozoic cycad evolution: an exploration of anatomically preserved Cycadaceae seeds from the Jurassic Oxford Clay biota

    PubMed Central

    Rees, Andrew R.; Raine, Robert J.; Rothwell, Gar W.; Hollingworth, Neville T.J.

    2017-01-01

    Most knowledge concerning Mesozoic Era floras has come from compression fossils. This has been augmented in the last 20 years by rarer permineralized material showing cellular preservation. Here, we describe a new genus of anatomically preserved gymnosperm seed from the Callovian–Oxfordian (Jurassic) Oxford Clay Formation (UK), using a combination of traditional sectioning and synchrotron radiation X-ray micro-tomography (SRXMT). Oxfordiana motturii gen. et sp. nov. is large and bilaterally symmetrical. It has prominent external ribs, and has a three-layered integument comprising: a narrow outer layer of thick walled cells; a thick middle parenchymatous layer; and innermost a thin fleshy layer. The integument has a longitudinal interior groove and micropyle, enveloping a nucellus with a small pollen chamber. The large size, bilateral symmetry and integumentary groove demonstrate an affinity for the new species within the cycads. Moreover, the internal groove in extant taxa is an autapomorphy of the genus Cycas, where it facilitates seed germination. Based upon the unique seed germination mechanism shared with living species of the Cycadaceae, we conclude that O. motturii is a member of the stem-group lineage leading to Cycas after the Jurassic divergence of the Cycadaceae from other extant cycads. SRXMT—for the first time successfully applied to fossils already prepared as slides—reveals the distribution of different mineral phases within the fossil, and allows us to evaluate the taphonomy of Oxfordiana. An early pyrite phase replicates the external surfaces of individual cells, a later carbonate component infilling void spaces. The resulting taphonomic model suggests that the relatively small size of the fossils was key to their exceptional preservation, concentrating sulfate-reducing bacteria in a locally closed microenvironment and thus facilitating soft-tissue permineralization. PMID:28875075

  4. Magma mixing in granite petrogenesis: Insights from biotite inclusions in quartz and feldspar of Mesozoic granites from South China

    NASA Astrophysics Data System (ADS)

    Gao, Peng; Zhao, Zi-Fu; Zheng, Yong-Fei

    2016-06-01

    Magma mixing is a common process in granite petrogenesis. The major element composition of biotites in granites is primarily controlled by the composition of magmas from which they crystallized. Biotite grains enclosed in quartz and feldspars of granites are naturally protected by their host minerals, so that their compositions are likely original and can potentially be used to track the magma mixing. This is illustrated by a combined study of matrix and inclusion biotites from Mesozoic granites in the Nanling Range, South China. Three granite samples have been used in this study: one two-mica granite and two biotite granites. The biotites of different occurrences in the two-mica granite have no compositional distinctions. Biotites in the two-mica granite have higher Al2O3 and lower MgO than those in the biotite granites. The former is consistent with biotites from typical S-type granites of metasedimentary origin. In contrast, biotites from the biotite granites can be categorized into different groups based on their paragenetic minerals and geochemical compositions. They have relatively low aluminous saturation indices but higher Mg numbers, falling in the transitional field between typical S- and I-type granites. In addition, there are two contrasting zircon populations with nearly identical U-Pb ages in the biotite granites. One shows clearly oscillatory zonings in CL images, whereas the other is totally dark and often overgrew on the former one. The zircons with oscillatory zonings have higher δ18O values than the dark ones, indicating their growth from two compositionally different magmas, respectively, with different sources. An integrated interpretation of all these data indicates that mixing of two different magmas was responsible for the petrogenesis of biotite granites. Therefore, the study of biotite inclusions provides insights into the magma mixing in granite petrogenesis.

  5. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China)

    NASA Astrophysics Data System (ADS)

    Yan, Dan-Ping; Zhou, Mei-Fu; Song, Hong-Lin; Wang, Xin-Wen; Malpas, John

    2003-01-01

    In the Yangtze Block (South China), a well-developed Mesozoic thrust system extends through the Xuefeng and Wuling mountains in the southeast to the Sichuan basin in the northwest. The system comprises both thin- and thick-skinned thrust units separated by a boundary detachment fault, the Dayin fault. To the northwest, the thin-skinned belt is characterized by either chevron anticlines and box synclines to the northwest or chevron synclines to the southeast. The former structural style displays narrow exposures for the cores of anticlines and wider exposures for the cores of synclines. Thrust detachments occur along Silurian (Fs) and Lower Cambrian (Fc) strata and are dominantly associated with the anticlines. To the southeast, this style of deformation passes gradually into one characterized by chevron synclines with associated principal detachment faults along Silurian (Fs), Cambrian (Fc) and Lower Sinian (Fz) strata. There are, however, numerous secondary back thrusts. Therefore, the thin-skinned belt is like the Valley and Ridge Province of the North American Applachian Mountains. The thick-skinned belt structurally overlies the thin-skinned belt and is characterized by a number of klippen including the Xuefeng and Wuling nappes. It is thus comparable to the Blue Ridge Province of Appalachia. The structural pattern of this thrust system in South China can be explained by a model involving detachment faulting along various stratigraphic layers at different stages of its evolution. The system was developed through a northwest stepwise progression of deformation with the earliest delamination along Lower Sinian strata (Fz). Analyses of balanced geological cross-sections yield about 18.1-21% (total 88 km) shortening for the thin-skinned unit and at least this amount of shortening for the thick-skinned unit. The compressional deformation from southeast to northwest during Late Jurassic to Cretaceous time occurred after the westward progressive collision of the

  6. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny

    NASA Astrophysics Data System (ADS)

    Dong, Xin; Zhang, Ze-ming; Klemd, Reiner; He, Zhen-yu; Tian, Zuo-lin

    2018-04-01

    The Lhasa terrane of the southern Tibetan Plateau participated in a Mesozoic Andean-type orogeny caused by the northward subduction of the Neo-Tethyan oceanic lithosphere. However, metamorphic rocks, which can unravel details of the geodynamic evolution, are rare and only exposed in the south-eastern part of the Lhasa terrane. Therefore, we conducted a detailed petrological, geochemical and U-Pb zircon geochronological study of the late Cretaceous metamorphic rocks and associated gabbros from the Nyemo inlier of the southern Lhasa terrane. The Nyemo metamorphic rocks including gneisses, schists, marbles and calc-silicate rocks, experienced peak amphibolite-facies contact metamorphism under P-T conditions of 3.5-4.0 kbar and 642-657 °C with a very high geothermal gradient of 45-50 °C/km, revealing a distinct deflection from the steady-state geotherm during low-pressure metamorphism. Inherited magmatic zircon cores from the metamorphic rocks yielded protolith ages of 197-194 Ma, while overgrowth zircon rims yielded metamorphic ages of ca. 86 Ma. Whole-rock chemistry and zircon Hf isotopes suggest that the protoliths of the gneisses and schists are andesites and tuffs of the early Jurassic Sangri Group, which were derived from a depleted mantle source of a continental arc affinity. The coeval intimately-associated gabbro (ca. 86 Ma) crystallized under P-T conditions of 3.5-5.3 kbar and 914-970 °C, supplying the heat flux high enough to cause the contact metamorphism of the Sangri Group rock types. We propose that the intrusion of the gabbro and a simultaneous pressure increase of up to 4.0 kbar, which is related to crustal thickening due to crustal overthrusting and the intrusion of mafic material, resulted in the late Cretaceous metamorphism of the early Jurassic Sangri Group during an Andean-type orogeny. Furthermore the Nyemo metamorphic rocks, which have previously been considered to represent slivers of the Precambrian metamorphic basement of the Lhasa terrane

  7. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    NASA Astrophysics Data System (ADS)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  8. Detection and cultivation of indigenous microorganisms in Mesozoic claystone core samples from the Opalinus Clay Formation (Mont Terri Rock Laboratory)

    NASA Astrophysics Data System (ADS)

    Mauclaire, L.; McKenzie, J. A.; Schwyn, B.; Bossart, P.

    Although microorganisms have been isolated from various deep-subsurface environments, the persistence of microbial activity in claystones buried to great depths and on geological time scales has been poorly studied. The presence of in-situ microbial life in the Opalinus Clay Formation (Mesozoic claystone, 170 million years old) at the Mont Terri Rock Laboratory, Canton Jura, Switzerland was investigated. Opalinus Clay is a host rock candidate for a radioactive waste repository. Particle tracer tests demonstrated the uncontaminated nature of the cored samples, showing their suitability for microbiological investigations. To determine whether microorganisms are a consistent and characteristic component of the Opalinus Clay Formation, two approaches were used: (i) the cultivation of indigenous micoorganisms focusing mainly on the cultivation of sulfate-reducing bacteria, and (ii) the direct detection of molecular biomarkers of bacteria. The goal of the first set of experiments was to assess the presence of cultivable microorganisms within the Opalinus Clay Formation. After few months of incubation, the number of cell ranged from 0.1 to 2 × 10 3 cells ml -1 media. The microorganisms were actively growing as confirmed by the observation of dividing cells, and detection of traces of sulfide. To avoid cultivation bias, quantification of molecular biomarkers (phospholipid fatty acids) was used to assess the presence of autochthonous microorganisms. These molecules are good indicators of the presence of living cells. The Opalinus Clay contained on average 64 ng of PLFA g -1 dry claystone. The detected microbial community comprises mainly Gram-negative anaerobic bacteria as indicated by the ratio of iso/anteiso phospholipids (about 2) and the detection of large amount of β-hydroxy substituted fatty acids. The PLFA composition reveals the presence of specific functional groups of microorganisms in particular sulfate-reducing bacteria ( Desulfovibrio, Desulfobulbus, and

  9. Late Pan-African and early Mesozoic brittle compressions in East and Central Africa: lithospheric deformation within the Congo-Tanzania Cratonic area

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kipata, M. L.; Macheyeki, A. S.

    2012-04-01

    Tectonic reconstructions leading to the formation of the Central-African part of Gondwana have so far not much taken into account constraints provided by the evolution of brittle structures and related stress field. This is largely because little is known on continental brittle deformation in Equatorial Africa before the onset of the Mesozoic Central-African and Late Cenozoic East-African rifts. We present a synthesis of fault-kinematic data and paleostress inversion results from field surveys covering parts of Tanzania, Zambia and the Democratic Republic of Congo. It is based on investigations along the eastern margin of the Tanzanian craton, in the Ubendian belt between the Tanzanian craton and Bangweulu block, in the Lufilian Arc between the Kalahari and Congo cratons and along the Congo intracratonic basin. Paleostress tensors were computed for a substantial database by interactive stress tensor inversion and data subset separation, and the relative succession of major brittle events established. Two of them appear to be of regional importance and could be traced from one region to the other. The oldest one is the first brittle event recorded after the paroxysm of the Terminal Pan-African event that led to the amalgamation Gondwana at the Precambrian-Cambrian transition. It is related to compressional deformation with horizontal stress trajectories fluctuating from an E-W compression in Central Tanzania to NE-SW in the Ubende belt and Lufilian Arc. The second event is a transpressional inversion with a consistent NW-SE compression that we relate to the far-field effects of the active margin south of Gondwana during the late Triassic - early Jurassic.

  10. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles.

    PubMed

    Rabi, Márton; Zhou, Chang-Fu; Wings, Oliver; Ge, Sun; Joyce, Walter G

    2013-09-22

    Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls.

  11. A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles

    PubMed Central

    2013-01-01

    Background Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. Conclusions The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls. PMID:24053145

  12. Influence of Large Igneous Provinces on Svalbard tectonics and sedimentation from the Late Mesozoic through Cenozoic: Insight from (U-Th)/He zircon and apatite thermochronology

    NASA Astrophysics Data System (ADS)

    Barnes, Christopher; Schneider, David; Majka, Jaroslaw

    2016-04-01

    Svalbard, the northwestern sub-aerial exposure of the Barents Shelf, offers significant insight into the geodynamics of the High Arctic. The tectonics and sedimentation on Svalbard from the Late Mesozoic through Cenozoic can be attributed to two Large Igneous Provinces: the High Arctic Large Igneous Province (HALIP; 130-90 Ma) and the North Atlantic Large Igneous Province (NAIP; 62-55 Ma). The relationship between the HALIP and the tectonics of the High Arctic remains somewhat unclear, whereas the NAIP is directly linked to opening of the North Atlantic Ocean. This study attempts to establish links between the HALIP and geodynamics of the High Arctic, and reveals the far-field tectonic consequences of the NAIP on Svalbard and the High Arctic. We focus on the Southwestern Caledonian Basement Terrane of Svalbard, characterized by the West Spitsbergen Fold and Thrust Belt, formed during the Eurekan Orogeny (c. 55-33 Ma). Crystalline basement was sampled from four regions (Prins Karls Forland, Oscar II Land, Wedel Jarlsberg Land, and Sørkapp Land) for the purpose of zircon and apatite (U-Th)/He thermochronometry which allows for resolution of thermal events below 200°C. We forward model our datasets using HeFTy software to produce temperature-time histories for each of these regions, and compare these thermal models with Svalbard stratigraphy to resolve the geodynamics of Svalbard from the Late Mesozoic through Cenozoic. The Cretaceous stratigraphy of Svalbard is characterized by a short-lived Mid-Cretaceous sub-aerial unconformity (c. 129 Ma) and a significant Late Cretaceous unconformity (c. 105-65 Ma). Our thermal models reveal a Mid-Cretaceous heating event, suggesting an increasing geothermal gradient coeval with development of the first unconformity. This may indicate that short-lived domal-uplift, related to the arrival of the HALIP plume, was a primary control on Svalbard tectonics and sedimentary deposition throughout the Mid-Cretaceous. Late Cretaceous

  13. Fractional crystallization, impregnation and sulphide saturation recorded in Mesozoic arc-related cumulates at King Mountain, Cache Creek Ophiolite, Northern British Columbia.

    NASA Astrophysics Data System (ADS)

    Bedard, J. H. J.; Zagorevski, A.; Corriveau, A. S.

    2016-12-01

    The Cache creek terrane extends from southern B.C. to the Yukon. It accreted to North America at 175Ma and is composed of Paleozoic seamounts, Mesozoic oceanic arcs and mantle rocks. Mantle harzburgite massifs represent intra-oceanic core-complexes. Mantle rocks are cut by gabbroic dykes and overlain by chert, lava, dismembered hypabyssal complexes and rare cumulates. At King Mountain, gabbronorites are in tectonic contact with subjacent peridotite. Other crustal relics exposed nearby include sheeted hypabyssal intrusions and volcanics that range from depleted arc tholeiites to boninites. The King Mountain cumulates are rhythmically layered, foliated gabbronorites with 5% oxides and minor interstitial hornblende that yields temperatures of 652-759oC. Cumulates may show evidence of compaction-related flattening and intra-cumulate shear (boudins, fold noses). A 300m thick continuous section records two fractional crystallization cycles, whole rock mg# varying from 60 to 35 in the 1st cycle and from 52 to 30 in the 2nd. Cumulates formed during passage of evolved multiply-saturated magmas derived from a deeper chamber towards the surface. Inverse trace element models show that the gabbronorite cumulates are compositionally akin to boninites. The lowest-mg# rocks in the differentiation cycles are rusty 10cm-1m interbeds with abundant magnetite+ ilmenite ( 10-15%), high sulphide contents ( 5-10%, pyrrhotite and chalcopyrite) and high V contents (<1200ppm). These are interpreted to record episodic co-accumulation of Fe-Ti-oxides, with the decrease in melt FeO-content triggering sulphide immiscibility. Hornblendite and hornblende tonalite veins are locally transposed into the layered cumulates, forming flaser gabbros with 5-50% cm-scale lensoid hornblendite that impregnates and replaces the foliated gabbro-norite; greatly increasing REE contents. Amphibole oikocrysts show evidence of internal deformation and record temperatures of 753-804 oC.

  14. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation

    PubMed Central

    2011-01-01

    Background Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Results Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. Conclusions The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100

  15. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation.

    PubMed

    Nakatani, Masanori; Miya, Masaki; Mabuchi, Kohji; Saitoh, Kenji; Nishida, Mutsumi

    2011-06-22

    Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100

  16. The pre-Mesozoic tectonic unit division of the Xing-Meng orogenic belt (XMOB)

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan

    2014-05-01

    According to the viewpoint that the paleo-Asian ocean closed by the end of early Paleozoic and extended during the late Paleozoic, a pre-Mesozoic tectonic unit division has been suggested. Five blocks and four sutures have been recognized in the pre-Devonia stage, the five blocks are called Erguna (EB), Xing'an (XB), Airgin Sum-Xilinhot (AXB), Songliao-Hunshandak (SHB) and Jiamusi (JB) blocks and four sutures, Xinlin-Xiguitu (XXS), Airgin Sum-Xilinhot-Heihe (AXHS), Ondor Sum-Jizhong-Yanji (OJYS) and Mudanjiang (MS) sutures. The EB contains the Precambrian base with the ages of 720-850Ma and ɛHf(T)=+2.5to +8.1. The XB is characterized by the Paleoproterozoic granitic gneiss with ɛHf(T)=-3.9 to -8.9. Several ages from 1150 to 1500 Ma bave been acquired in the AXB, proving presence of old block that links with Hutag Uul block in Mongolia to the west. The Paleoproterozoic (1.8-1.9Ga) and Neoproterozoic (750-850Ma) ages have been reported from southern and eastern parts of the SHB, respectively. As a small block in east margin of the XMOB, the JB outcrops magmatite and granitic gneiss bases with ages of 800-1000Ma. The XXS is marked by blueschists with zircon ages of 490-500Ma in Toudaoqiao village, ophiolites in Xiguitu County and granite with ages of about 500Ma along the northern segment of XXS. The AXHS is characterized by the early Paleozoic arc magmatic rocks with ages from 430Ma to 490Ma, mélange and the late Devonia molass basins, which indicates a northward subduction of the SHB beneath the AXB during the early-middle Paleozoic. The OJYS is composed of the early Paleozoic volcanic rocks, diorites and granites with ages of 425-475Ma, blueschists, ophiolitic mélange, the late Silurian flysch and Early-Middle Devonian molasses in western segment, granites (420-450Ma) in middle segment, and plagiogranites (443Ma) and the late Silurian molasses in eastern segment. This suture was caused by a southward subduction of the SHB beneath the North China block. The MS

  17. Digital surfaces and hydrogeologic data for the Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain in parts of Mississippi, Alabama, Georgia, South Carolina, and Florida

    USGS Publications Warehouse

    Cannon, Debra M.; Bellino, Jason C.; Williams, Lester J.

    2012-01-01

    A digital dataset of hydrogeologic data for Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain was developed using data from five U.S. Geological Survey (USGS) reports published between 1951 and 1996. These reports contain maps and data depicting the extent and elevation of the Southeast Coastal Plain stratigraphic and hydrogeologic units in Florida and parts of Mississippi, Alabama, Georgia, and South Carolina. The reports are: Professional Paper 1410-B (Renken, 1996), Professional Paper 1088 (Brown and others, 1979), Professional Paper 524-G (Applin and Applin, 1967), Professional Paper 447 (Applin and Applin, 1965), and Circular 91 (Applin, 1951). The digital dataset provides hydrogeologic data for the USGS Energy Resources Program assessment of potential reservoirs for carbon sequestration and for the USGS Groundwater Resource Program assessment of saline aquifers in the southeastern United States. A Geographic Information System (ArcGIS 9.3.1) was used to construct 33 digital (raster) surfaces representing the top or base of key stratigraphic and hydrogeologic units. In addition, the Geographic Information System was used to generate 102 geo-referenced scanned maps from the five reports and a geo-database containing structural and thickness contours, faults, extent polygons, and common features. The dataset also includes point data of well construction and stratigraphic elevations and scanned images of two geologic cross sections and a nomenclature chart.

  18. Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian Tholeiites, U.S.A.

    NASA Astrophysics Data System (ADS)

    Pegram, William J.

    1990-03-01

    Geochemical analyses of dikes, sills, and volcanic rocks of the Mesozoic Appalachian Tholeiite (MAT) Province of the easternmost United States provide evidence that continental tholeiites are derived from continental lithospheric mantle sources that are genetically and geochronologically related to the overlying continental crust. Nineteen olivine tholeiites and sixteen quartz tholeiites from the length of this province, associated in space and time with the last opening of the Atlantic, display significant isotopic heterogeneity: initial ɛ Nd = +3.8 to -5.7; initial 87Sr/ 86Sr= 0.7044-0.7072; 206Pb/ 204Pb= 17.49-19.14; 207Pb/ 204Pb= 15.55-15.65; 208Pb/ 204Pb= 37.24-39.11. In Pb sbnd Pb space, the MAT define a linear array displaced above the field for MORB and thus resemble oceanic basalts with DUPAL Pb isotopic traits. A regression of this array yields a secondary Pb sbnd Pb isochron age of ≈ 1000 Ma (μ 1 = 8.26), similar to Sm/Nd isochrons from the southern half of the province and to the radiometric age of the Grenville crust underlying easternmost North America. The MAT exhibit significant trace element ratio heterogeneity (e.g., Sm/Nd= 0.226-0.327) and have trace element traits similar to convergent margin magmas [e.g., depletions of Nb and Ti relative to the rare earth elements on normalized trace element incompatibility diagrams, Ba/Nb ratios (19-75) that are significantly greater than those of MORB, and low TiO 2 (0.39-0.69%)]. Geochemical and geological considerations very strongly suggest that the MAT were not significantly contaminated during ascent through the continental crust. Further, isotope and trace element variations are not consistent with the involvement of contemporaneous MORB or OIB components. Rather, the materials that control the MAT incompatible element chemistry were derived from subcontinental lithospheric mantle. Thus: (1) the MAT/arc magma trace element similarities; (2) the Pb sbnd Pb and Sm/Nd isochron ages; and (3) the need

  19. Gold deposits of the northern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizing events

    USGS Publications Warehouse

    Hart, C.J.R.; Goldfarb, R.J.; Qiu, Yumin; Snee, L.; Miller, L.D.; Miller, M.L.

    2002-01-01

    The northern margin of the North China craton is well-endowed with lode gold deposits hosting a resource of approximately 900 tonnes (t) of gold. The ???1,500-km-long region is characterized by east-trending blocks of metamorphosed Archean and Proterozoic strata that were episodically uplifted during Variscan, Indosinian, and Yanshanian deformational and magmatic events. At least 12 gold deposits from the Daqinshan, Yan-Liao (includes the Zhangjiakou, Yanshan, and Chifeng gold districts), and Changbaishan gold provinces contain resources of 20-100 t Au each. Most deposits are hosted in uplifted blocks of Precambrian metamorphic rocks, although felsic Paleozoic and Mesozoic plutons are typically proximal and host ???30% of the deposits. The lodes are characterized by sulfide-poor quartz veins in brittle structures with low base metal values and high Au:Ag ratios. Although phyllic alteration is most common, intensive alkali feldspar metasomatism characterizes the Wulashan, Dongping, and Zhongshangou deposits, but is apparently coeval with Variscan alkalic magmatism only at Wulashan. Stepwise 40Ar-39Ar geochronology on 16 samples from gangue and alteration phases, combined with unpublished SHRIMP U-Pb dates on associated granitoids, suggest that gold mineralizing events occured during Variscan, Indosinian, and Yanshanian orogenies at circa 350, 250, 200, 180, 150, and 129 Ma. However, widespread Permo-Triassic (???250 Ma) and Early Jurassic (???180 Ma) thermal events caused variable resetting of most of the white mica and K-feldspar argon spectra, as well as previously reported K-Ar determinations. Compiled and new stable isotope and fluid inclusion data show that most ??18O values for ore-stage veins range from 8 to 14???, indicating a fluid in equilibrium with the Precambrian metamorphic basement rocks; ??D values from fluid inclysions range widely from -64 to -154???, which is indicative of a local meteoric component in some veins; and highly variable ??34S data

  20. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision

    NASA Astrophysics Data System (ADS)

    Li, Shun; Guilmette, Carl; Ding, Lin; Xu, Qiang; Fu, Jia-Jun; Yue, Ya-Hui

    2017-10-01

    The Bangong-Nujiang suture zone, separating the Lhasa and Qiangtang blocks of the Tibetan Plateau, is marked by remnants of the Bangong-Nujiang oceanic basin. In the Gaize area of central Tibet, Mesozoic sedimentary strata recording the evolution of the basin and subsequent collision between these two blocks include the Upper Triassic-Lower Jurassic turbidites of the Mugagangri Group, the Upper Jurassic-Lower Cretaceous sandstone-dominated Wuga and Shamuluo formations, and the Upper Cretaceous molasse deposits of the Jingzhushan Formation. The Shamuluo and Jingzhushan formations rest unconformably on the underlying Mugagangri Group and Wuga Formation, respectively. In this contribution, we analyze petrographic components of sandstones and U-Pb-Hf isotopic compositions of detrital zircons from the Wuga and Jingzhushan formations for the first time. Based on the youngest detrital zircon ages, the maximum depositional ages of the Wuga and Jingzhushan formations are suggested to be ∼147-150 Ma and ∼79-91 Ma, respectively. Petrographic and isotopic results indicate that sediments in the Wuga Formation were mainly sourced from the accretionary complex (preserved as the Mugagangri Group) in the north, while sediments in the Jingzhushan Formation have mixed sources from the Lhasa block, the Qiangtang block and the intervening suture zone. Provenance analysis, together with regional data, suggests that the Upper Jurassic-Lower Cretaceous Wuga and Shamuluo formations were deposited in a peripheral foreland basin and a residual-sea basin, respectively, in response to the Lhasa-Qiangtang collision, whereas the Upper Cretaceous Jingzhushan Formation reflects continental molasse deposition during the post-collisional stage. The development of the peripheral foreland basin evidenced by deposition of the Wuga Formation reveals that the age of the initial Lhasa-Qiangtang collision might be the latest Jurassic (∼150 Ma).

  1. SPARQL-enabled identifier conversion with Identifiers.org

    PubMed Central

    Wimalaratne, Sarala M.; Bolleman, Jerven; Juty, Nick; Katayama, Toshiaki; Dumontier, Michel; Redaschi, Nicole; Le Novère, Nicolas; Hermjakob, Henning; Laibe, Camille

    2015-01-01

    Motivation: On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data. Results: We introduce a novel SPARQL-based service to enable on-the-fly integration of life science data. This service uses the identifier patterns defined in the Identifiers.org Registry to generate a plurality of identifier variants, which can then be used to match source identifiers with target identifiers. We demonstrate the utility of this identifier integration approach by answering queries across major producers of life science Linked Data. Availability and implementation: The SPARQL-based identifier conversion service is available without restriction at http://identifiers.org/services/sparql. Contact: sarala@ebi.ac.uk PMID:25638809

  2. SPARQL-enabled identifier conversion with Identifiers.org.

    PubMed

    Wimalaratne, Sarala M; Bolleman, Jerven; Juty, Nick; Katayama, Toshiaki; Dumontier, Michel; Redaschi, Nicole; Le Novère, Nicolas; Hermjakob, Henning; Laibe, Camille

    2015-06-01

    On the semantic web, in life sciences in particular, data is often distributed via multiple resources. Each of these sources is likely to use their own International Resource Identifier for conceptually the same resource or database record. The lack of correspondence between identifiers introduces a barrier when executing federated SPARQL queries across life science data. We introduce a novel SPARQL-based service to enable on-the-fly integration of life science data. This service uses the identifier patterns defined in the Identifiers.org Registry to generate a plurality of identifier variants, which can then be used to match source identifiers with target identifiers. We demonstrate the utility of this identifier integration approach by answering queries across major producers of life science Linked Data. The SPARQL-based identifier conversion service is available without restriction at http://identifiers.org/services/sparql. © The Author 2015. Published by Oxford University Press.

  3. Compression-extension transition of continental crust in a subduction zone: A parametric numerical modeling study with implications on Mesozoic-Cenozoic tectonic evolution of the Cathaysia Block

    PubMed Central

    Chan, Lung Sang; Gao, Jian-Feng

    2017-01-01

    The Cathaysia Block is located in southeastern part of South China, which situates in the west Pacific subduction zone. It is thought to have undergone a compression-extension transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins and reactivation of fault systems. Although some mechanisms such as the trench roll-back have been generally proposed for the compression-extension transition, the timing and progress of the transition under a convergence setting remain ambiguous due to lack of suitable geological records and overprinting by later tectonic events. In this study, a numerical thermo-dynamical program was employed to evaluate how variable slab angles, thermal gradients of the lithospheres and convergence velocities would give rise to the change of crustal stress in a convergent subduction zone. Model results show that higher slab dip angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the subduction process. The modeling results reveal the continental crust stress is dominated by horizontal compression during the early stage of the subduction, which could revert to a horizontal extension in the back-arc region, combing with the roll-back of the subducting slab and development of mantle upwelling. The parameters facilitating the subduction process also favor the compression-extension transition in the upper plate of the subduction zone. Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly subducting slab. PMID:28182640

  4. Multi-proxy study of Ocean Anoxic Event 2 (Cenomanian-Turonian) yields new perspective on the drivers for Mesozoic anoxic events

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Hurtgen, M.; Jacobson, A. D.; Selby, D. S.

    2015-12-01

    Mesozoic ocean anoxic events have long been a focus of intense study because they appear to reflect a large-scale oscillation of the marine redox state from oxic to anoxic, and at least locally sulfidic. The consensus view on the cause of these events has changed over the past 39 years, since they were first defined. A global net increase in primary production is now widely accepted as the key driver, and the evidence for a volcanic trigger of this process is strong. However, the exact pathway from volcanism to OAE is less certain. Some authors favor the direct role of a massive load of reduced compounds in LIP hydrothermal fluxes for consuming available marine oxygen. Others prefer the indirect pathway of oxygen consumption by enhanced organic matter flux, which requires a major increase in nutrient budgets. Metallic micronutrients in the hydrothermal fluxes have been hypothesized, as have increases in riverine phosphorus fluxes due to enhanced weathering that would result from volcanic CO2 driven warming. Our recent work on the OAE2 interval has led to some new ideas about these hypothesized drivers. In particular, refinement of the Late Cenomanian time scale, and comparison of the geochemical records of d13C, d34S, Osi, P phases, and d44Ca between selected sections in North America and Europe has suggested the following sequence of events: 1) Osi data indicate that the onset of a major volcanic event precedes the positive shift in C-isotopes by at least 40 to possibly 180 kyr; 2) a positive shift in d44Ca data interpreted to indicate ocean acidification is coincident with the volcanic event; 3) the positive shift in C-isotopes is interpreted to reflect the accumulated burial of marine organic matter sufficient to shift the C-reservoir to heavier values; thus, our data suggest that up to 180 kyr was required for the shift in nutrient supply, productivity increase, and organic matter burial. Two mechanisms that conceivably match the lagged character of the event

  5. Tectonic framework of Turkish sedimentary basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yilmaz, P.O.

    1988-08-01

    Turkey's exploration potential primarily exists in seven onshore (Southeast Turkey platform, Tauride platform, Pontide platform, East Anatolian platform, Interior, Trace, and Adana) basins and four offshore (Black Sea, Marmara Sea, Aegean Sea, and Mediterranean Sea) regional basins formed during the Mesozoic and Tertiary. The Mesozoic basins are the onshore basins: Southeast Turkey, Tauride, Pontide, East Anatolian, and Interior basins. Due to their common tectonic heritage, the southeast Turkey and Tauride basins have similar source rocks, structural growth, trap size, and structural styles. In the north, another Mesozoic basin, the Pontide platform, has a much more complex history and very littlemore » in common with the southerly basins. The Pontide has two distinct parts; the west has Paleozoic continental basement and the east is underlain by island-arc basement of Jurassic age. The plays are in the upper Mesozoic rocks in the west Pontide. The remaining Mesozoic basins of the onshore Interior and East Anatolian basins are poorly known and very complex. Their source, reservoir, and seal are not clearly defined. The basins formed during several orogenic phases in mesozoic and Tertiary. The Cenozoic basins are the onshore Thrace and Adana basins, and all offshore regional basins formed during Miocene extension. Further complicating the onshore basins evolution is the superposition of Cenozoic basins and Mesozoic basins. The Thrace basin in the northwest and Adana basin in the south both originate from Tertiary extension over Tethyan basement and result in a similar source, reservoir, and seal. Local strike-slip movement along the North Anatolian fault modifies the Thrace basin structures, influencing its hydrocarbon potential.« less

  6. The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize, central Tibet

    NASA Astrophysics Data System (ADS)

    Li, Shun; Ding, Lin; Guilmette, Carl; Fu, Jiajun; Xu, Qiang; Yue, Yahui; Henrique-Pinto, Renato

    2017-04-01

    The Mesozoic strata, within the Bangong-Nujiang suture zone in central Tibet, recorded critical information about the subduction-accretion processes of the Bangong-Nujiang Ocean prior to the Lhasa-Qiangtang collision. This paper reports detailed field observations, petrographic descriptions, sandstone detrital zircon U-Pb ages and Hf isotopic analyses from an accretionary complex (preserved as Mugagangri Group) and the unconformably overlying Shamuluo Formation near Gaize. The youngest detrital zircon ages, together with other age constraints from literature, suggest that the Mugagangri Group was deposited during late Triassic-early Jurassic, while the Shamuluo Formation was deposited during late Jurassic-early Cretaceous. Based on the differences in lithology, age and provenance, the Mugagangri Group is subdivided into the upper, middle and lower subunits. These units are younging structurally downward/southward, consistent with models of progressive off-scrapping and accretion in a southward-facing subduction complex. The upper subunit, comprising mainly quartz-sandstone and siliceous mud/shale, was deposited in abyssal plain environment close to the Qiangtang passive margin during late Triassic, with sediments derived from the southern Qiangtang block. The middle and lower subunits comprise mainly lithic-quartz-sandstone and mud/shale, containing abundant ultramafic/ophiolitic fragments. The middle subunit, of late Triassic-early Jurassic age, records a transition in tectono-depositional setting from abyssal plain to trench-wedge basin, with sudden influx of sediments sourced from the central Qiangtang metamorphic belt and northern Qiangtang magmatic belt. The appearance of ultramafic/ophiolitic fragments in the middle subunit reflects the subduction initiation. The lower subunit was deposited in a trench-wedge basin during early Jurassic, with influx of Jurassic-aged zircons originating from the newly active southern Qiangtang magmatic arc. The lower subunit

  7. Deep mantle structure as a reference frame for movements in and on the Earth

    PubMed Central

    Torsvik, Trond H.; van der Voo, Rob; Doubrovine, Pavel V.; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D.; Trønnes, Reidar G.; Webb, Susan J.; Bull, Abigail L.

    2014-01-01

    Earth’s residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core–mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth’s surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core–mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth’s axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth’s mantle may have operated throughout the entire Phanerozoic. PMID:24889632

  8. Deep mantle structure as a reference frame for movements in and on the Earth.

    PubMed

    Torsvik, Trond H; van der Voo, Rob; Doubrovine, Pavel V; Burke, Kevin; Steinberger, Bernhard; Ashwal, Lewis D; Trønnes, Reidar G; Webb, Susan J; Bull, Abigail L

    2014-06-17

    Earth's residual geoid is dominated by a degree-2 mode, with elevated regions above large low shear-wave velocity provinces on the core-mantle boundary beneath Africa and the Pacific. The edges of these deep mantle bodies, when projected radially to the Earth's surface, correlate with the reconstructed positions of large igneous provinces and kimberlites since Pangea formed about 320 million years ago. Using this surface-to-core-mantle boundary correlation to locate continents in longitude and a novel iterative approach for defining a paleomagnetic reference frame corrected for true polar wander, we have developed a model for absolute plate motion back to earliest Paleozoic time (540 Ma). For the Paleozoic, we have identified six phases of slow, oscillatory true polar wander during which the Earth's axis of minimum moment of inertia was similar to that of Mesozoic times. The rates of Paleozoic true polar wander (<1°/My) are compatible with those in the Mesozoic, but absolute plate velocities are, on average, twice as high. Our reconstructions generate geologically plausible scenarios, with large igneous provinces and kimberlites sourced from the margins of the large low shear-wave velocity provinces, as in Mesozoic and Cenozoic times. This absolute kinematic model suggests that a degree-2 convection mode within the Earth's mantle may have operated throughout the entire Phanerozoic.

  9. Analysis of the Toxic Element Concentrations in the Mesozoic Siliceous Rocks in Terms of the Raw Material Importance

    NASA Astrophysics Data System (ADS)

    Pękala, Agnieszka

    2017-10-01

    As part of an integrated system of environmental protection at every stage of the product life cycle such as: raw material extraction, its transportation and processing as well the subsequent use and development is required to carry out actions towards reducing or completely eliminating products that contain harmful substances to the environment. The purpose of the presented paper is an analysis of the toxic element concentrations in the extracted siliceous minerals at the initial stage of the raw material recognition. The research material is constituted by rocks collected from the Mesozoic bedrock from the Bełchatów lignite deposit. A group of the studied rocks is represented by diatomites, gaizes, opoka-rocks and light opoka-rocks, enriched with minerals from the group of SiO2. Most of the recognized petrographic sediments have a real possibility of potential applications in the building material industry, but it needs to carry out a detailed and thorough research. The studies of the chemical composition were determined by atomic absorption spectroscopy (AAS) using Philips PU 9100Xi Camera SX-100 spectrometer and an atomic emission spectroscopy with inductively coupled plasma (ICP AES) using PLASMA 40 spectrometer. There were carried out a chemical analyses and determined the content of some toxic elements: Pb, Cr, Cd, Ni, Zn, Cu, Co, As, Sr, Ba, Zr. in the studied sedimentary rocks. The analysis of the results draws attention to the high content of cadmium in the case of the studied sediments. The concentration of this element in the described rocks is an average of 0.22 mg/kg -the diatomites, 0.05 mg/kg -the gaizes, 0.4 mg/kg -the opoka-rocks, 2.23 mg/kg -the light opoka-rocks. It was moreover registered varied concentration of arsenic in diatomites, that is formed in the range of 0.05 - 9.6 mg/kg, an average of 6.3 mg/kg. The content of the other designated elements with toxic properties in the analysed groups of rocks does not exceed the limit values. An

  10. Geochronology and geochemistry of deep-seated crustal xenoliths in the northern North China Craton: Implications for the evolution and structure of the lower crust

    NASA Astrophysics Data System (ADS)

    Su, Yuping; Zheng, Jianping; Griffin, William L.; Huang, Yan; Wei, Ying; Ping, Xianquan

    2017-11-01

    The age and composition of the lower crust are critical in understanding the processes of continental formation and evolution, and deep-seated granulite xenoliths can offer direct information on the lower crust. Here, we report mineral chemistry, whole-rock major and trace elements, Sr-Nd isotopes and zircon U-Pb-Hf results for a suite of deep-seated crustal xenoliths, recently discovered in the Cenozoic basalts of the Nangaoya area in the northern part of the North China Craton (NCC). Based on the P-T estimates, these xenoliths including mafic, intermediate and felsic granulites and hornblendites were sampled from different levels of the lower crust. While a hornblendite has a flat REE pattern, all other xenoliths display LREE enrichment and depletion of Nb, Ta, Th and Ti. The mafic granulite xenolith has relatively high whole-rock εNd(t) value of - 13.37, and yields Mesozoic (188-59 Ma) zircons ages with high εHf(t) values from - 15.3 to - 9.2. The garnet-bearing intermediate granulite-facies rocks show low εNd(t) values from - 16.92 to - 17.48, and reveal both Paleoproterozoic (1948 Ma) and Mesozoic (222-63 Ma) zircon U-Pb ages. Their Mesozoic zircons have lower εHf(t) values (from - 18.4 to - 13.8) than those from the mafic xenolith. The remaining intermediate to felsic xenoliths show Paleoproterozoic zircon ages, and the lowest εNd(t) values (from - 20.78 to - 24.03). The mafic-intermediate granulites with Mesozoic zircons originated from the interaction of lower crust-derived magmas with mantle melts, with higher proportions of mantle magmas involved in the generation of mafic granulite, whereas intermediate to felsic xenoliths without Mesozoic zircons represent ancient Paleoproterozoic to Neoarchean deep crust. These deep-seated xenoliths reveal complicated crustal evolution processes, including crustal growth during Neoarchean (2.5-2.7 Ga), middle Paleoproterozoic (2.2-2.1 Ga) and Mesozoic, and reworking during early Paleoproterozoic, late

  11. New 40Ar-39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism

    NASA Astrophysics Data System (ADS)

    Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.

    2018-04-01

    This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.

  12. Transformation and diversification in early mammal evolution.

    PubMed

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  13. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights From Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling

    NASA Astrophysics Data System (ADS)

    Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen

    2017-12-01

    This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.

  14. New evidence for late mesozoic-early Cenozoic evolution of the Chilean Andes in the upper Tinguiririca valley (35 °S), central Chile

    NASA Astrophysics Data System (ADS)

    Charrier, Reynaldo; Wyss, AndréR.; Flynn, John J.; Swisher, Carl C.; Norell, Mark A.; Zapatta, Franyo; McKenna, Malcolm C.; Novacek, Michael J.

    1996-11-01

    New geologic, paleontologic and isotopic geochronometric results from the Termas del Flaco region in the upper Tinguiririca River valley in central Chile demand considerable revision of the accepted geotectonic history of the Andean Main Range in this region. A diverse, transitional Eocene-Oligocene aged, land-mammal fauna was recovered from several sites in volcaniclastic sediments of the Coya-Machalí (=Abanico) Formation. Major results of our study include: 1) The 1000 + m thick studied deposits, previously attributed to the Cretaceous Colimapu Formation, belong to the Coya-Machalí (=Abanico) Formation. Radioisotopic data from levels immediately above (31.5 Ma) and below (37.S Ma) the fossiliferous horizon indicate a latest Eocene to early Oligocene age for the basal part of the formation and the fauna contained in it. 2) The fossiliferous unit rests with slight angular offset on different Mesozoic units: "Brownish-red Clastic Unit" (BRCU) and Baños del Flaco Formation; in a limited area it also overlies a white tuff dated at 104 Ma. 3) The contacts just discussed (none of which is attributable to faulting), demonstrate the existence of two, or possibly three, unconformities in the region. 4) Sedimentological criteria argue against reference of the BRCU to the Colimapu Formation, and imply correlation of the former unit to basal levels with in the late Cretaceous Neuquén Group of western Argentina. 5) The Coya-Machalí Formation, previously viewed as representing the western volcanic equivalent of Riográndico Supercycle deposits of western Argentino, is likely coeval to much younger units in that region such as the Agua de la Piedra Formation. 6) Paleomagnetic results from the fossil producing horizon indicate about 20 ° of post-early Oligocene, counterclockwise rotation. 7) Fossil mammals from the Coya-Machalí Formation near Termas del Flaco represent a distinct biochronologic interval not heretofore clearly recognized from elsewhere on the continent

  15. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  16. Blueschist metamorphism and its tectonic implication of Late Paleozoic-Early Mesozoic metabasites in the mélange zones, central Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinrui; Wei, Chunjing; Chu, Hang

    2015-01-01

    Blueschists in central Inner Mongolia are distributed as layers and blocks in mélanges including the southern zone in Ondor Sum area and the northern zone in Manghete and Naomuhunni areas. They have been attributed to the subduction of Early Paleozoic oceanic crust. Blueschists from Ondor Sum and Naomuhunni are characterized by occurrence of sodic amphibole coexisting with epidote, albite, chlorite, calcic amphibole (in Ondor Sum) and muscovite (in Naomuhunni). Blueschists in Manghete contain porphyroblastic albite with inclusions of garnet and epidote in a matrix dominated by calcic-sodic amphibole, epidote, chlorite, albite and muscovite. Phase equilibria modeling for three blueschist samples using pseudosection suggest that the AlM2 contents in sodic amphibole can be used as a good barometer in the limited assemblage involving sodic amphibole + actinolite + epidote + chlorite + albite + quartz under pressures <4-6 kbar, while this barometer is largely influenced by temperature and bulk Fe2O3 contents in the actinolite-absent assemblage sodic amphibole + epidote + chlorite + albite + quartz of higher pressure and the AlM2 contents are not pressure-controlled in the albite-absent assemblage sodic amphibole + epidote + chlorite + quartz under pressures > 7-10 kbar. In the sodic amphibole-bearing assemblages, the NaM4 contents in sodic amphibole mainly decrease as temperature rises, being a potential thermometry. The calculated pseudosections constrain the P-T conditions of blueschists to be 3.2-4.2 kbar/355-415 °C in Ondor Sum, 8.2-9.0 kbar/455 °C-495 °C in Manghete and 6.6-8.1 kbar/420-470 °C in Naomuhunni. These P-T estimates indicate a rather high geothermal gradient of 18-25 °C/km for the blueschist metamorphism, being of intermediate P/T facies series. Available zircon U-Pb age data suggests that the protoliths of blueschists were formed later than Late Paleozoic-Early Mesozoic and metamorphosed soon afterwards. An alternative interpretation for the

  17. New species and records of ortholasmatine harvestmen from México, Honduras, and the western United States (Opiliones, Nemastomatidae, Ortholasmatinae)

    PubMed Central

    Shear, William A.

    2010-01-01

    Abstract The genus Trilasma Goodnight & Goodnight, 1942 is reinstated for Mexican ortholasmatines, and Cladolasma Suzuki, 1963 is reinstated for two species from Japan and Thailand, Cladolasma parvula Suzuki, comb. n. and Cladolasma angka (Schwendinger & Gruber), comb. n. Eight new species in the subfamily Ortholasmatinae Shear & Gruber, 1983 are described, as follows: Ortholasma colossus sp. n. is from California, Trilasma tempestado sp. n., Trilasma hidalgo sp. n., Trilasma trispinosum sp. n., Trilasma ranchonuevo sp. n., Trilasma petersprousei sp. n. and Trilasma chipinquensis, sp. n. are from México, and Trilasma tropicum sp. n. from Honduras, the farthest south for a dyspnoan harvestman in the New World. A new distribution record for Martensolasma jocheni Shear 2006 is given. The recently described Upper Cretaceous amber fossil Halitherses grimaldii Giribet & Dunlop 2005 is not a member of the Ortholasmatinae, but is likely a troguloidean of an undiagnosed family. PMID:21594124

  18. Dolomitization and over-dolomitization in the Vajont limestone (Dolomiti Bellunesi, Italy) controlled by Mesozoic normal faults: a microstructural and diagenesis study

    NASA Astrophysics Data System (ADS)

    Cortinovis, Silvia; Swennen, Rudy; Bistacchi, Andrea

    2015-04-01

    The Vajont Gorge (Dolomiti Bellunesi, Italy) provides spectacular outcrops of Jurassic limestones (Vajont Limestone Formation) in which Mesozoic faults and fracture corridors are continuously exposed. Some of these faults acted as conduits for Mg-enriched hydrothermal fluids resulting in structurally-controlled dolomitization of the limestone. The dolomitization resulted in several dolomite bodies (100-200 m thick and several hundreds of meters along fault strike) that are particularly interesting as reservoir analogues for hydrocarbon, CO2, or water-bearing systems. The dolomitization process occurred after deposition and compaction of the oolitic limestone (dolomitization post-dates a dissolution event that affected the internal parts of the oolites), but before the Alpine contractional deformation. In fact, the meso-structural data collected in the Vajont Gorge allowed the reconstruction of a 3D model showing that the circulation of the dolomitizing fluids into the limestone host rock, but also the late stage of porosity reduction (strong pore filling due to over-dolomitization) were controlled by normal faults and fracture corridors interpreted as Pre-Alpine (Jurassic or Cretaceous). Later on, the influence of Alpine (Tertiary) deformation have been very limited in the studied volume. For instance dolomite veins are sometimes overprinted by bed-inclined stylolites consistent with Alpine shortening axes, but no large Alpine fault is present in the studied outcrops. Cathodoluminescence microscopy allowed recognizing different growth stages saddle dolomite crystals, which point to varying precipitation conditions during three main stages of dolomitization. Dolomite and calcite crystal twinning suggests deformation under increasing temperature conditions, consistent with intracrystalline plasticity deformation mechanisms. The presence of cataclasites composed of hydrothermal dolostone clasts, in turn cemented by dolomite, or of dolomite veins and compaction

  19. Geochemistry, 40Ar/39Ar geochronology, and geodynamic implications of Early Cretaceous basalts from the western Qinling orogenic belt, China

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Wang, Yuejun; Cawood, Peter A.; Dong, Yunpeng

    2018-01-01

    The Qinling-Dabie orogenic belt was formed by the collision of the North and South China Cratons during the Early Mesozoic and subsequently developed into an intracontinental tectonic process during late Mesozoic. Field investigations identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang areas in the western Qinling orogenic belt. The petrogenesis of these basalts provides an important constraint on the late Mesozoic geodynamics of the orogen. The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. These samples belong to the alkaline series and have SiO2 ranging from 44.98 wt.% to 48.19 wt.%, Na2O + K2O from 3.44 wt% to 5.44 wt%, and MgO from 7.25 wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns enriched in light rare earth element, large ion lithophile element and high field strength element, similar to those of OIB rocks. These samples additionally show an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the product of the high-pressure garnet fractionation from the OIB-derived magma. Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than Group 1, originating from asthenospheric mantle with input of delaminated lithospheric component. In combination with available data, it is proposed for the petrogenetic model of the Early Cretaceous thickened lithospheric delamination in response to the asthenospheric upwelling along the western Qinling orogenic belt.

  20. Petroleum geology of the mid-Atlantic continental margin, offshore Virginia

    USGS Publications Warehouse

    Bayer, K.C.; Milici, R.C.

    1989-01-01

    The Baltimore Canyon Trough, a major sedimentary basin on the Atlantic continental shelf, contains up to 18 km of Mesozoic and Cenozoic strata. The basin has been studied extensively by multichannel common depth point (CDP) seismic reflection profiles and has been tested by drilling for hydrocarbon resources in several places. The Mesozoic and Cenozoic strata contained in the basin were deposited in littoral to bathyal depositional settings and contain immature to marginally mature oil-prone and gas-prone kerogen. The more deeply buried strata of Early Mesozoic age are more likely to be thermally mature than are the younger strata with respect to hydrocarbon generation, but contain terrestrially derived coaly organic matter that would be prone to yield gas, rather than oil. An analysis of available CDP seismic reflection data has indicated that there are several potential hydrocarbon plays in the area offshore of Virginia. These include: (1) Lower Mesozoic synrift basins that appear similar to those exposed in the Appalachian Piedmont, (2) a stratigraphic updip pinchout of strata of Early Mesozoic age in the offshore region near the coast, (3) a deeply buried paleoshelf edge, where seismic reflectors dip sharply seaward; and (4) a Cretaceous/Jurassic shelf edge beneath the present continental rise. Of these, the synrift basins and Cretaceous/Jurassic shelf edge are considered to be the best targets for exploration. ?? 1989.

  1. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  2. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time.

    PubMed

    Schweitzer, Mary H; Zheng, Wenxia; Cleland, Timothy P; Goodwin, Mark B; Boatman, Elizabeth; Theil, Elizabeth; Marcus, Matthew A; Fakra, Sirine C

    2014-01-22

    The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-αFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem 'tissue fixation' by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB - O2 > -O2 > +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues.

  3. A role for iron and oxygen chemistry in preserving soft tissues, cells and molecules from deep time

    PubMed Central

    Schweitzer, Mary H.; Zheng, Wenxia; Cleland, Timothy P.; Goodwin, Mark B.; Boatman, Elizabeth; Theil, Elizabeth; Marcus, Matthew A.; Fakra, Sirine C.

    2014-01-01

    The persistence of original soft tissues in Mesozoic fossil bone is not explained by current chemical degradation models. We identified iron particles (goethite-αFeO(OH)) associated with soft tissues recovered from two Mesozoic dinosaurs, using transmission electron microscopy, electron energy loss spectroscopy, micro-X-ray diffraction and Fe micro-X-ray absorption near-edge structure. Iron chelators increased fossil tissue immunoreactivity to multiple antibodies dramatically, suggesting a role for iron in both preserving and masking proteins in fossil tissues. Haemoglobin (HB) increased tissue stability more than 200-fold, from approximately 3 days to more than two years at room temperature (25°C) in an ostrich blood vessel model developed to test post-mortem ‘tissue fixation’ by cross-linking or peroxidation. HB-induced solution hypoxia coupled with iron chelation enhances preservation as follows: HB + O2 > HB − O2 > −O2 ≫ +O2. The well-known O2/haeme interactions in the chemistry of life, such as respiration and bioenergetics, are complemented by O2/haeme interactions in the preservation of fossil soft tissues. PMID:24285202

  4. Cierco Pb-Zn-Ag vein deposits: Isotopic and fluid inclusion evidence for formation during the mesozoic extension in the pyrenees of Spain

    USGS Publications Warehouse

    Johnson, C.A.; Cardellach, E.; Tritlla, J.; Hanan, B.B.

    1996-01-01

    , possibly during a regression in the overlying basin. There are other deposits resembling Cierco elsewhere in the Iberian peninsula. Taken as a group, they are evidence that hydrothermal circulation systems were widespread during Mesozoic extension. Differences among the deposits can be related to the fact that H2S and other solutes had local and variable sources.

  5. Geochronology and geochemistry of Mesozoic intrusive rocks in the Xing'an Massif of NE China: Implications for the evolution and spatial extent of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Tang, Jie; Pei, Fu-Ping; Wang, Feng; Sun, Chen-Yang

    2018-04-01

    This study presents new zircon U-Pb-Hf and whole-rock geochemical data for intrusive rocks in the Xing'an Massif of NE China, with the aim of furthering our understanding of the evolution and spatial influence of the Mongol-Okhotsk tectonic regime. Zircon U-Pb dating indicates that five stages of Mesozoic magmatism are recorded in the Xing'an Massif, namely during the Middle Triassic ( 237 Ma), the Late Triassic ( 225 Ma), the Early Jurassic ( 178 Ma), the Middle Jurassic ( 168 Ma), and the late Early Cretaceous ( 130 Ma). The Middle Triassic-Early Jurassic intrusive rocks in the Xing'an Massif are dominantly granodiorites, monzogranites, and syenogranites that formed from magma generated by partial melting of newly accreted continental crust. Geochemistry of the Middle Triassic-Early Jurassic granitoid suites of the Xing'an Massif indicates their formation at an active continental margin setting, related to the southwards subduction of the Mongol-Okhotsk oceanic plate. The Middle Jurassic monzogranites in the Xing'an Massif are geochemically similar to adakites and have εHf(t) values (+3.8 to +5.8) and Hf two-stage model ages (TDM2; 979-850 Ma) that are indicative of derivation from magma generated by partial melting of thickened juvenile lower crust. The Middle Jurassic monzogranites formed in a compressional setting related to the closure of the Mongol-Okhotsk Ocean. The late Early Cretaceous intrusive rocks in the Xing'an Massif are dominated by A-type granitoids that are associated with bimodal volcanic rocks, suggesting their formation in an extensional environment related to either (i) delamination of a previously thickened region of the crust, associated with the Mongol-Okhotsk tectonic regime; (ii) the subduction of the Paleo-Pacific Plate; or (iii) the combined influence of these two tectonic regimes.

  6. Thrips pollination of Mesozoic gymnosperms.

    PubMed

    Peñalver, Enrique; Labandeira, Conrad C; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen

    2012-05-29

    Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110-105 million years ago, possibly considerably earlier.

  7. Thrips pollination of Mesozoic gymnosperms

    PubMed Central

    Peñalver, Enrique; Labandeira, Conrad C.; Barrón, Eduardo; Delclòs, Xavier; Nel, Patricia; Nel, André; Tafforeau, Paul; Soriano, Carmen

    2012-01-01

    Within modern gymnosperms, conifers and Ginkgo are exclusively wind pollinated whereas many gnetaleans and cycads are insect pollinated. For cycads, thrips are specialized pollinators. We report such a specialized pollination mode from Early Cretaceous amber of Spain, wherein four female thrips representing a genus and two species in the family Melanthripidae were covered by abundant Cycadopites pollen grains. These females bear unique ring setae interpreted as specialized structures for pollen grain collection, functionally equivalent to the hook-tipped sensilla and plumose setae on the bodies of bees. The most parsimonious explanation for this structure is parental food provisioning for larvae, indicating subsociality. This association provides direct evidence of specialized collection and transportation of pollen grains and likely gymnosperm pollination by 110–105 million years ago, possibly considerably earlier. PMID:22615414

  8. Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Jia; Juafu Lu; Dongsheng Cai

    1998-01-01

    The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, E.G.

    Throughout the Mesozoic, shallow-water carbonate ramps and platforms of the circumequatorial Tethyan Ocean were characterized by extensive development of reef ecosystems, especially during times of eustatic highstand, expansion of the Tropics, and warm equable global climates. The greatest reef development was north of the paleoequator in the Caribbean and Indo-Mediterranean provinces. These reefs and associated debris facies comprise major petroleum reservoirs, in some cases with remarkable porosity and permeability normally attributed to a combination of sedimentologic, tectonic, and diagenetic factors. The biological evolution of Mesozoic reefs also has had an important, and in some cases dominant, role in determining reservoirmore » quality. Three major biological factors are critical to mesozoic reef-associated reservoir development: (1) the replacement/competitive displacement of coral-algal dominated, highly integrated reef ecosystems by loosely packed rudistid bivalve-dominated reef ecosystems in the Barremian-Albian; (2) the evolution of dominantly aragonitic, highly porous shells among framework-building rudistids in the middle and Late Cretaceous; and (3) competitive strategies among rudistids that effectively prevented widespread biological binding of Cretaceous reefs, leading to the production of large marginal fans that comprise major carbonate reservoirs. Detailed studies of these evolutionary trends in reef/framework development and of the distribution of different groups of bioconstructors on reefs lead to predictive modeling for primary and secondary porosity development in mesozoic carbonate reservoirs. The competitive displacement of coral-algal communities by rudistids on Cretaceous reefs was so effective that, even after Maastrichtian mass extinction of rudistids and other important groups comprising Mesozoic reef/carbonate platform ecosystems, coral-algal reef-building communities did not evolve again until the late Eocene.« less

  10. Geologic framework of lower Cook Inlet, Alaska

    USGS Publications Warehouse

    Fisher, M.A.; Magoon, L.B.

    1978-01-01

    Three seismic reflectors are present throughout the lower Cook Inlet basin and can be correlated with onshore geologic features. The reflections come from unconformities at the base of the Tertiary sequence, at the base of Upper Cretaceous rocks, and near the base of Upper Jurassic strata. A contour map of the deepest horizon shows that Mesozoic rocks are formed into a northeast-trending syncline. Along the southeast flank of the basin, the northwest-dipping Mesozoic rocks are truncated at the base of Tertiary rocks. The Augustine-Seldovia arch trends across the basin axis between Augustine Island and Seldovia. Tertiary rocks thin onto the arch from the north and south. Numerous anticlines, smaller in structural relief and breadth than the Augustine-Seldovia arch, trend northeast parallel with the basin, and intersect the arch at oblique angles. The stratigraphic record shows four cycles of sedimentation and tectonism that are bounded by three regional unconformities in lower Cook Inlet and by four thrust faults and the modern Benioff zone in flysch rocks of the Kenai Peninsula and the Gulf of Alaska. The four cycles of sedimentation are, from oldest to youngest, the early Mesozoic, late Mesozoic, early Cenozoic, and late Cenozoic. Data on organic geochemistry of the rocks from one well suggest that Middle Jurassic strata may be a source of hydrocarbons. Seismic data show that structural traps are formed by northeast-trending anticlines and by structures formed at the intersections of these anticlines with the transbasin arch. Stratigraphic traps may be formed beneath the unconformity at the base of Tertiary strata and beneath unconformities within Mesozoic strata.

  11. A review on the structural styles of deformation during Late Cretaceous and Paleocene tectonic phases in the southern North Sea area

    NASA Astrophysics Data System (ADS)

    Deckers, Jef; van der Voet, Eva

    2018-04-01

    The Mesozoic rifts in the southern North Sea area were affected by Late Cretaceous to Paleocene inversion. Two main inversion phases were traditionally identified in this interval: the Sub-Hercynian and the Laramide phases. The Sub-Hercynian phase started in the early Late Cretaceous, peaked during the Campanian and ended in the late Maastrichtian, while the Laramide phase started in the late Danian and ended in the Thanetian. The Late Cretaceous Sub-Hercynian phase was strong and occurred in several pulses. These pulses led to basin-scale uplift by large reverse movements along basin-bounding faults and resulted in large amounts of erosion (up to 2 km) of Mesozoic and older sediments. The middle Paleocene Laramide phase on the other hand resulted in mild, domal uplift of some Late Cretaceous inverted basins and subsidence (into depocenters) of others. The subsequent Cenozoic inversion phases displayed similar or lower amplitudes and wavelengths of vertical surface movements as the Laramide phase. The transition from the Sub-Hercynian to the Laramide phase in the southern North Sea area therefore coincides with the overall transition from fault-controlled inversion to broad domal vertical surface movements.

  12. Generation of Late Mesozoic Qianlishan A2-type granite in Nanling Range, South China: Implications for Shizhuyuan W-Sn mineralization and tectonic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiao; Li, He; Sun, Weidong; Ireland, Trevor; Tian, Xufeng; Hu, Yongbin; Yang, Wubin; Chen, Chen; Xu, Deru

    2016-12-01

    The Late Mesozoic Qianlishan granitic complex in the western Nanling Range, South China is associated with the Shizhuyuan giant W-Sn-Mo-Bi polymetallic deposit. It mainly consists of three phases of intrusions, P-1 porphyritic biotite granite, P-2 equigranular biotite granite and P-3 granite porphyry. All three phases of granite contain quartz, plagioclase, K-feldspar and Fe-rich biotite. They have geochemical affinities of A-type granites, e.g., high FeOT/(FeOT + MgO) ratios (0.84-0.99), total alkali (Na2O + K2O, 7.50-9.04 wt.%), high Ga/Al ratios (10,000*Ga/Al > 2.6) and high Zr + Nb + Y + Ce concentrations (> 350 ppm). High Y/Nb ratios (> 1.2) suggest that the Qianlishan complex belongs to A2-type granite. Zircon U-Pb ages indicate a short age interval decreasing from 158-157 Ma, to 158-155 Ma and to 154 Ma for the P-1, P-2 and P-3 granites, respectively. These ages are similar to the mineralization age of the Shizhuyuan tungsten polymetallic deposit, within error. The Qianlishan granites were generated at low oxygen fugacity conditions based on the low values of zircon Ce4 +/Ce3 + ratios (1.53-198) and significantly negative Eu anomalies (EuN/EuN*, 0.03-0.13) in apatite. New zircon εHf(t) values for the P-3 granite range from - 13.0 to - 4.4, similar to those previously obtained for the P-1 and P-2 granites. Both the granite and apatite grains therein are characterized by high F but low Cl concentrations, suggesting the influx of a high F/Cl component. The P-2 granites especially contain higher F contents (1840-8690 ppm) and W (7-158 ppm) and Sn (6-51 ppm) concentrations and with stronger evolution features. Positive trends between F and W and Sn of Qianlishan complex indicate that high F source is crucial for mineralization of W and Sn. We consider that the lithospheric mantle source may have been metasomatized by subduction fluids in the far end of subduction zones to produce the A2 feature of the Qianlishan granite and the fluorine was introduced through

  13. Can Australians identify snakes?

    PubMed

    Morrison, J J; Pearn, J H; Covacevich, J; Nixon, J

    1983-07-23

    A study of the ability of Australians to identify snakes was undertaken, in which 558 volunteers (primary and secondary schoolchildren, doctors and university science and medical students) took part. Over all, subjects correctly identified an average of 19% of snakes; 28% of subjects could identify a taipan, 59% could identify a death adder, 18% a tiger snake, 23% an eastern (or common) brown snake, and 0.5% a rough-scaled snake. Eighty-six per cent of subjects who grew up in rural areas could identify a death adder; only 4% of those who grew up in an Australian capital city could identify a nonvenomous python. Male subjects identified snakes more accurately than did female subjects. Doctors and medical students correctly identified an average of 25% of snakes. The ability to identify medically significant Australian snakes was classified according to the observer's background, education, sex, and according to the individual snake species. Australians need to be better educated about snakes indigenous to this country.

  14. Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Yun; Ding, Lin; Pullen, Alex; Xu, Qiang; Liu, De-Liang; Cai, Fu-Long; Yue, Ya-Hui; Lai, Qing-Zhou; Shi, Ren-Deng; Ducea, Mihai N.; Kapp, Paul; Chapman, Alan

    2014-03-01

    A geologic investigation was undertaken in the Hoh-Xil-Songpan-Ganzi (HXSG) complex, northern Tibet in order to better understand magma genesis and evolution during the late stages of Paleo-Tethys ocean closure. The HXSG complex is composed of vast accumulations of Middle-Upper Triassic marine gravity flow deposits that were extensively intruded by igneous rocks. These early Mesozoic rocks exposed in this area record a rich history of accretionary tectonics during the amalgamation of the Tibetan Plateau terranes. Eight plutons sampled from the western HXSG complex yield zircon U-Pb ages that range from 225 to 193 Ma. Muscovite 40Ar/39Ar ages for the Hudongliang and Zhuonai Lake plutons yield ages of 210.7 ± 2.5 Ma and 212.7 ± 2.5 Ma, respectively. These plutonic rocks can be subdivided into two geochemically distinct groups. Group 1 (221-212 Ma: Dapeng Lake, Changhong Lake and Heishibei Lake plutons) is composed of high-K calc-alkaline rocks that have strongly fractionated REE patterns with high (La/Yb)N ratios (91-18) and generally lack Eu anomalies (Eu*/Eu = 1.02-0.68). Rocks in Group 1 display pronounced negative Nb-Ta and Ti anomalies on primitive mantle-normalized spidergrams. Group 1 rocks exhibit high Sr (782-240 ppm) and low Y (6.3-16.0 ppm) contents with high Sr/Y ratios (84-20). Based on Sr-Nd-Hf isotopic data (87Sr/86Sri = 0.7079-0.7090, ɛNd(t) = - 7.7-- 4.7, ɛHf(t) = - 5.7-- 0.8) and low MgO contents (MgO = 1.10-2.18%), Group 1 rocks are geochemically similar to adakitic rocks and were probably derived from partial melting of the downgoing Paleo-Tethys oceanic slab and overlying marine sediments. Group 2 plutons (225-193 Ma: Daheishan, Yunwuling, Zhuonai Lake, Malanshan and Hudongliang plutons) display lower P2O5 with increasing SiO2 and are medium-K to high-K I-type calc-alkaline bodies with low Sr (14-549 ppm) and high Y (22.3-10.5 ppm) contents. Group 2 rocks have variable fractionated REE patterns ((La/Yb)N = 3-38) and negative Eu anomalies (Eu

  15. An evolving magmatic-hydrothermal system in the formation of the Mesozoic Meishan magnetite-apatite deposit in the Ningwu volcanic basin, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Hao; Jiang, Man-Rong; Zhang, Xiao-Jun; Xia, Yan; Algeo, Thomas J.; Li, Huan

    2018-06-01

    The Meishan iron deposit contains 338 Mt of iron-ore reserves at 39% Fe and represents the largest magnetite-apatite deposit in the Ningwu Basin of eastern China. Controversy has long existed about whether this deposit had a hydrothermal or iron-oxide melt origin. Iron mineralization is genetically related to plutons that are composed of gabbro-diorite, which were emplaced at 130 ± 1 Ma. These rocks have SiO2 contents of 51.72-54.60 wt%, Na2O contents of 3.47-4.04 wt%, K2O contents of 2.02-2.69 wt%, and K2O/Na2O ratios of 0.51-0.73. These rocks are enriched in LILEs and LREEs and depleted in Nb, Ta, and Ti, which indicates that the magma originated through partial melting of an enriched lithospheric mantle source in a subduction environment. A pattern of decreasing initial Sr isotopic ratios and increasing εNd(t) values with time in Early Cretaceous magmatic rocks of the Ningwu Basin may indicate incorporation of increasing proportions of asthenospheric mantle material into the source magma, which is consistent with the processes of lithospheric thinning and asthenospheric upwelling in eastern China related to Mesozoic subduction of the Paleo-Pacific Plate. Two stages of magnetite are found in the gabbro-diorite: (1) early-crystallized magnetite as euhedral-subhedral crystals in larger clinopyroxene crystals, and (2) later-crystallized magnetite and accompanying ilmenite grains in the voids between plagioclase and clinopyroxene crystals. The formation of magnetite before clinopyroxene, combined with the results of Fe-Ti oxide geothermometry and analysis of magnetite V content, indicates that the oxygen fugacity of the source magma was greater than ΔFMQ +2.2 at an early stage (>640 °C) but decreased to ΔFMQ -2.66 as abundant magnetite crystallized at a later stage (∼489 °C). The early crystallization of magnetite at a high oxygen fugacity does not support a Fenner evolution trend for the primitive magma and diminishes the likelihood of liquid immiscibility

  16. The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber.

    PubMed

    Xing, Lida; Stanley, Edward L; Bai, Ming; Blackburn, David C

    2018-06-14

    Frogs are a familiar and diverse component of tropical forests around the world. Yet there is little direct evidence from the fossil record for the antiquity of this association. We describe four fossil frog specimens from mid-Cretaceous (~99 mya) amber deposits from Kachin State, Myanmar for which the associated fauna provides rich paleoenvironmental context. Microcomputed tomographic analysis provides detailed three-dimensional anatomy for these small frogs, which is generally unavailable for articulated anurans in the Mesozoic. These crown-group anuran specimens provide the earliest direct evidence for anurans in a wet tropical forest. Based on a distinct combination of skeletal characters, at least one specimen has clear similarities to living alytoid frogs as well as several Mesozoic taxa known from the Jehol Biota in China. Whereas many Mesozoic frogs are from seasonal and mesic paleoenvironments, these fossils provide the earliest direct evidence of anurans in wet tropical forests.

  17. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds.

    PubMed

    Knoll, Fabien; Chiappe, Luis M; Sanchez, Sophie; Garwood, Russell J; Edwards, Nicholas P; Wogelius, Roy A; Sellers, William I; Manning, Phillip L; Ortega, Francisco; Serrano, Francisco J; Marugán-Lobón, Jesús; Cuesta, Elena; Escaso, Fernando; Sanz, Jose Luis

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages of development. Comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.

  18. Total petroleum systems of the Bonaparte Gulf Basin area, Australia; Jurassic, Early Cretaceous-Mesozoic; Keyling, Hyland Bay-Permian; Milligans-Carboniferous, Permian

    USGS Publications Warehouse

    Bishop, M.G.

    1999-01-01

    The Bonaparte Gulf Basin Province (USGS #3910) of northern Australia contains three important hydrocarbon source-rock intervals. The oldest source-rock interval and associated reservoir rocks is the Milligans-Carboniferous, Permian petroleum system. This petroleum system is located at the southern end of Joseph Bonaparte Gulf and includes both onshore and offshore areas within a northwest to southeast trending Paleozoic rift that was initiated in the Devonian. The Milligans Formation is a Carboniferous marine shale that sources accumulations of both oil and gas in Carboniferous and Permian deltaic, marine shelf carbonate, and shallow to deep marine sandstones. The second petroleum system in the Paleozoic rift is the Keyling, Hyland Bay-Permian. Source rocks include Lower Permian Keyling Formation delta-plain coals and marginal marine shales combined with Upper Permian Hyland Bay Formation prodelta shales. These source-rock intervals provide gas and condensate for fluvial, deltaic, and shallow marine sandstone reservoirs primarily within several members of the Hyland Bay Formation. The Keyling, Hyland Bay-Permian petroleum system is located in the Joseph Bonaparte Gulf, north of the Milligans-Carboniferous, Permian petroleum system, and may extend northwest under the Vulcan graben sub-basin. The third and youngest petroleum system is the Jurassic, Early Cretaceous-Mesozoic system that is located seaward of Joseph Bonaparte Gulf on the Australian continental shelf, and trends southwest-northeast. Source-rock intervals in the Vulcan graben sub-basin include deltaic mudstones of the Middle Jurassic Plover Formation and organic-rich marine shales of the Upper Jurassic Vulcan Formation and Lower Cretaceous Echuca Shoals Formation. These intervals produce gas, oil, and condensate that accumulates in, shallow- to deep-marine sandstone reservoirs of the Challis and Vulcan Formations of Jurassic to Cretaceous age. Organic-rich, marginal marine claystones and coals of the

  19. Testing palaeotectonic models for the Internal Hellenides with sediment provenance

    NASA Astrophysics Data System (ADS)

    Meinhold, G.

    2009-04-01

    The Internal Hellenides of Greece are a result of the Alpine-Himalayan orogen. The relationships between different pre-Alpine crustal fragments of the Internal Hellenides are now masked by younger (Mesozoic to Cenozoic) complex structural and metamorphic events. This, together with the scarcity of biostratigraphic, geochronological and palaeomagnetic data, has given rise to equivocal palaeotectonic models and interpretations. However, the age and origin of pre-Alpine basement units in the Internal Hellenides has important implications for our in-depth understanding of the evolution of North Gondwana-derived terranes and consequently for alternative palaeotectonic reconstructions for the Palaeozoic and Mesozoic. A multidisciplinary sediment provenance study was undertaken since sedimentary rocks can provide information about rock lithologies in the source area, which have often been destroyed and recycled during ancient plate tectonic processes. Palaeozoic and Mesozoic sedimentary rocks from key areas of the Internal Hellenides were analysed using whole-rock major- and trace-element geochemistry (XRF, ICPMS), detrital chrome spinel, garnet, white mica and rutile chemistry (EMP), detrital zircon geochronology (SHRIMP, LA-ICPMS) and biostratigraphic analysis. These new data are used to constrain terrane accretion processes and the provenance of crustal sources for sediments during Palaeozoic and Mesozoic times and thus will test palaeotectonic models for the Internal Hellenides. This is expected to shed light on the Palaeo- and Neotethyan evolution in the Eastern Mediterranean.

  20. Population genomics and geographical parthenogenesis in Japanese harvestmen (Opiliones, Sclerosomatidae, Leiobunum).

    PubMed

    Burns, Mercedes; Hedin, Marshal; Tsurusaki, Nobuo

    2018-01-01

    Naturally occurring population variation in reproductive mode presents an opportunity for researchers to test hypotheses regarding the evolution of sex. Asexual reproduction frequently assumes a geographical pattern, in which parthenogenesis-dominated populations are more broadly dispersed than their sexual conspecifics. We evaluate the geographical distribution of genomic signatures associated with parthenogenesis using nuclear and mitochondrial DNA sequence data from two Japanese harvestman sister taxa, Leiobunum manubriatum and Leiobunum globosum . Asexual reproduction is putatively facultative in these species, and female-biased localities are common in habitat margins. Past karyotypic and current cytometric work indicates L. globosum is entirely tetraploid, while L. manubriatum may be either diploid or tetraploid. We estimated species phylogeny, genetic differentiation, diversity, and mitonuclear discordance in females collected across the species range in order to identify range expansion toward marginal habitat, potential for hybrid origin, and persistence of asexual lineages. Our results point to northward expansion of a tetraploid ancestor of L. manubriatum and L. globosum , coupled with support for greater male gene flow in southern L. manubriatum localities. Specimens from localities in the Tohoku and Hokkaido regions were indistinct, particularly those of L. globosum , potentially due to little mitochondrial differentiation or haplotypic variation. Although L. manubriatum overlaps with L. globosum across its entire range, L. globosum was reconstructed as monophyletic with strong support using mtDNA, and marginal support with nuclear loci. Ultimately, we find evidence for continued sexual reproduction in both species and describe opportunities to clarify the rate and mechanism of parthenogenesis.

  1. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE PAGES

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie; ...

    2018-03-05

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  2. A diminutive perinate European Enantiornithes reveals an asynchronous ossification pattern in early birds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, Fabien; Chiappe, Luis M.; Sanchez, Sophie

    Fossils of juvenile Mesozoic birds provide insight into the early evolution of avian development, however such fossils are rare. The analysis of the ossification sequence in these early-branching birds has the potential to address important questions about their comparative developmental biology and to help understand their morphological evolution and ecological differentiation. Here we report on an early juvenile enantiornithine specimen from the Early Cretaceous of Europe, which sheds new light on the osteogenesis in this most species-rich clade of Mesozoic birds. Consisting of a nearly complete skeleton, it is amongst the smallest known Mesozoic avian fossils representing post-hatching stages ofmore » development. Finally, comparisons between this new specimen and other known early juvenile enantiornithines support a clade-wide asynchronous pattern of osteogenesis in the sternum and the vertebral column, and strongly indicate that the hatchlings of these phylogenetically basal birds varied greatly in size and tempo of skeletal maturation.« less

  3. Understanding the Tectonic Deformation of Turkish Blocks since Mesozoic; A Paleomagnetic study on the Nigde-Kirsehir Massif and the Taurides

    NASA Astrophysics Data System (ADS)

    Mualla, Cinku; Mumtaz, Hisarli; Ulker, Beyza; Kaya, Nurcan; Oksum, Erdinc; Yilmaz, Yucel; Orbay, Naci

    2015-04-01

    It is reported that the Nigde-Kirsehir massif which constitutes the main fragment of Anatolia is rifted from the Taurides-Anatolides in Mesozoic and that the Intra-Tauride ocean exist between these blocks. Another group of researchers believed that the Intra Tauride ocean did not exist. They assumed that the Nigde-Kirsehir massif existed as a promotory of the Taurides. In this sense, both the Nigde-Kirsehir massif and the Taurides experienced several deformation phases due to the consumption of the oceanic strand (s) and the amalgamation of the Anatolian blocks after collision in the end of the paleotectonic time, whereas in the neotectonic time the traces of the westwards excursion of Anatolia was effective. Previous paleomagnetic studies showed that the Nigde-Kirsehir massif rotated 90° anticlockwise during Jurassic to Eocene time and other studies showed that the collision between the Nigde-Kirsehir massif and the Pontides resulted by deformation which was accomodated by regional faults. In the south of the Nigde-Kirsehir massif, it was proposed that all the rocks in Carboniferous to Eosen were remagnetized due to nap emplacement in Eocene. Because of several alternative interpretations about the tectonic deformation of the Nigde-Kirsehir massif in relation between the Taurides and the Pontides, we report new paleomagnetic results from Late Jurassic to Miocene rocks in the Nigde-Kirsehir massif and its surrounding. A total of 138 different sites were sampled from Jurassic to Miocene rocks in the south of the Nigde-Kirsehir massif around Ki ri kkale, Tuzgölü, Uluki şla and Kayseri, whereas in the Central Taurides Late Jurassic- Lower Cretaceous platform type carbonates and ophiolitic rocks from Mersin and Pozanti were collected. Paleomagnetic results evaluated together with previous paleomagnetic data indicate that all the studied rocks carry a magnetization before folding according to positive incremental fold tests. It has been shown that in the SE/E (SE

  4. Testing times: identifying puberty in an identified skeletal sample.

    PubMed

    Henderson, Charlotte Y; Padez, Cristina

    2017-06-01

    Identifying the onset of puberty in skeletal remains can provide evidence of social changes associated with the onset of adulthood. This paper presents the first test of a skeletal method for identifying stages of development associated with the onset of puberty in a skeletal sample of known age and cause of death. Skeletal methods for assessing skeletal development associated with changes associated with puberty were recorded in the identified skeletal collection in Coimbra, Portugal. Historical data on the onset of menarche in this country are used to test the method. As expected, females mature faster than their male counterparts. There is some side asymmetry in development. Menarche was found to have been achieved by an average age of 15. Asymmetry must be taken into account when dealing with partially preserved skeletons. Age of menarche is consistent, although marginally higher, than the age expected based on historical data for this time and location. Skeletal development in males could not be tested against historical data, due to the lack of counterpart historical data. The ill health known to be present in this prematurely deceased population may have delayed skeletal development and the onset of puberty.

  5. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.

  6. Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms.

    PubMed

    Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A

    2015-07-20

    The great evolutionary success of angiosperms has traditionally been explained, in part, by the partnership of these plants with insect pollinators. The main approach to understanding the origins of this pervasive relationship has been study of the pollinators of living cycads, gnetaleans, and basal angiosperms. Among the most morphologically specialized living pollinators are diverse, long-proboscid flies. Early such flies include the brachyceran family Zhangsolvidae, previously known only as compression fossils from the Early Cretaceous of China and Brazil. It belongs to the infraorder Stratiomyomorpha, a group that includes the flower-visiting families Xylomyidae and Stratiomyidae. New zhangsolvid specimens in amber from Spain (ca. 105 mega-annum [Ma]) and Myanmar (100 Ma) reveal a detailed proboscis structure adapted to nectivory. Pollen clumped on a specimen from Spain is Exesipollenites, attributed to a Mesozoic gymnosperm, most likely the Bennettitales. Late Mesozoic scorpionflies with a long proboscis have been proposed as specialized pollinators of various extinct gymnosperms, but pollen has never been observed on or in their bodies. The new discovery is a very rare co-occurrence of pollen with its insect vector and provides substantiating evidence that other long-proboscid Mesozoic insects were gymnosperm pollinators. Evidence is thus now gathering that visitors and probable pollinators of early anthophytes, or seed plants, involved some insects with highly specialized morphological adaptations, which has consequences for interpreting the reproductive modes of Mesozoic gymnosperms and the significance of insect pollination in angiosperm success. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The role of tectonic inheritance in the morphostructural evolution of the Galicia continental margin and adjacent abyssal plains from digital bathymetric model (DBM) analysis (NW Spain)

    NASA Astrophysics Data System (ADS)

    Maestro, A.; Jané, G.; Llave, E.; López-Martínez, J.; Bohoyo, F.; Druet, M.

    2018-06-01

    The identification of recent major tectonic structures in the Galicia continental margin and adjacent abyssal plains was carried out by means of a quantitative analysis of the linear structures having bathymetric expression on the seabed. It was possible to identify about 5800 lineaments throughout the entire study area, of approximately 271,500 km2. Most lineaments are located in the Charcot and Coruña highs, in the western sector of the Galicia Bank, in the area of the Marginal Platforms and in the northern sector of the margin. Analysis of the lineament orientations shows a predominant NE-SW direction and three relative maximum directions: NW-SE, E-W and N-S. The total length of the lineaments identified is over 44,000 km, with a mode around 5000 m and an average length of about 7800 m. In light of different tectonic studies undertaken in the northwestern margin of the Iberian Peninsula, we establish that the lineaments obtained from analysis of the digital bathymetric model of the Galicia continental margin and adjacent abyssal plains would correspond to fracture systems. In general, the orientation of lineaments corresponds to main faults, tectonic structures following the directions of ancient faults that resulted from late stages of the Variscan orogeny and Mesozoic extension phases related to Triassic rifting and Upper Jurassic to Early Cretaceous opening of the North Atlantic Ocean. The N-S convergence between Eurasian and African plates since Palaeogene times until the Miocene, and NW-SE convergence from Neogene to present, reactivated the Variscan and Mesozoic fault systems and related physiography.

  8. An outline of tectonic, igneous, and metamorphic events in the Goshute-Toano Range between Silver Zone Pass and White Horse Pass, Elko County, Nevada; a history of superposed contractional and extensional deformation

    USGS Publications Warehouse

    Ketner, Keith Brindley; Day, Warren C.; Elrick, Maya; Vaag, Myra K.; Zimmerman, Robert A.; Snee, Lawrence W.; Saltus, Richard W.; Repetski, John E.; Wardlaw, Bruce R.; Taylor, Michael E.; Harris, Anita G.

    1998-01-01

    Seven kinds of fault-bounded tracts are described. One of the tracts provides a good example of Mesozoic contractional folding and faulting; six exemplify various aspects of Miocene extensional faulting. Massive landslide deposits resulting from Tertiary faulting are described. Mesozoic intrusive rocks and extensive exposures of Miocene volcanic rocks are described and dated. The age ranges of stratigraphic units were based on numerous conodont collections, and ages of igneous rocks were determined by argon/argon and fission-track methods. The geologic complexity of the Goshute-Toano Range provides opportunities for many additional productive structural studies.

  9. CHRONOLOGICAL CONSTRAINTS ON FLUID CIRCULATION IN MESOZOIC FORMATIONS OF THE EASTERN PART OF THE PARIS BASIN INFERRED FROM U-Pb DATING OF SECONDARY INFILLING CARBONATES

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Deschamps, P.; Hamelin, B.; Buschaert, S.

    2009-12-01

    The French agency for nuclear waste management (ANDRA) developed an Underground Research Laboratory in the Mesozoic formations of Eastern part of the Paris Basin (France) to assess the feasibility of a high-level radioactive wastes repository in sedimentary formations. The target host formation is a low-porosity detrital argillite (Callovo-Oxfordian) embedded between two shelf limestones formations (of Bajocian-Bathonian and Oxfordian-Kimmeridgian ages). These formations are affected by fracture networks, likely inherited mainly from the Eocene-Oligocene extension tectonics, also responsible of the Rhine graben formation in the same region. The limestones have very low permeability, the primary and secondary porosity being infilled by secondary carbonated minerals. The inter-particle porosity is filled with euhedral calcite spar cements. Similarly, macro-cavities and connected micro-fractures are almost sealed by euhedral calcite. Geochemical evidences (δ18O) suggest that the secondary carbonates likely derived from a common parent fluid (Buschaert et al., 2004, Appl. Geochem. (19) 1201-1215p). This late carbonated precipitation phase is responsible for the intense cementation of the limestone formations and bears witness of a major phase of fluids circulation that marked the late diagenetic evolution of the system. Knowledge of the chronology of the different precipitation phases of secondary minerals is thus of critical importance in order to determine the past hydrological conditions of the geological site. The aim of this study is to provide chronological constraints on the secondary carbonate mineral precipitation using U/Th and U/Pb methods. Analyses are performed on millimeter to centimeter scale secondary calcites collected within fractures outcropping in the regional fault zone of Gondrecourt and in cores from the ANDRA exploration-drilling program. Preliminary U-Th analyses obtained on secondary carbonates from surface fractures infillings yield secular

  10. A low-angle normal fault and basement structures within the Enping Sag, Pearl River Mouth Basin: Insights into late Mesozoic to early Cenozoic tectonic evolution of the South China Sea area

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Mei, Lianfu; Shi, Hesheng; Shu, Yu; Camanni, Giovanni; Wu, Jing

    2018-04-01

    The basement structure of the Cenozoic Enping Sag, within the Pearl River Mouth Basin on the northern margin of South China Sea, is revealed by borehole-constrained high-quality 3D seismic reflection data. Such data suggest that the Enping Sag is bounded in the north by a low-angle normal fault. We interpret this low-angle normal fault to have developed as the result of the reactivation of a pre-existing thrust fault part of a pre-Cenozoic thrust system. This is demonstrated by the selective reactivation of the pre-existing thrust and by diffuse contractional deformation recognized from the accurate analysis of basement reflections. Another significant result of this study is the finding of some residual rift basins within the basement of the Enping Sag. Both the thrust system and the residual basins are interpreted to have developed after the emplacement of continental margin arc-related granitoids (J3-K1) that define the basement within the study area. Furthermore, seismic sections show that the pre-existing residual rift basins are offset by the main thrust fault and they are both truncated by the Tg unconformity. These structural relationships, interpreted in the frame of previous studies, help us to reconstruct a six-event structural evolution model for the Enping Sag from the late Mesozoic to the early Cenozoic. In particular, we interpret the residual rift basins to have formed as the result of back-arc extension due to the slab roll-back of the Paleo-Pacific Plate subduction in the early K2. The thrust system has recorded a compressional event in the late K2 that followed the back-arc extension in the SCS area. The mechanism of this compressional event is still to be clarified, and might be related to continuous subduction of the Paleo-Pacific Plate or to the continent-continent collision between a micro-continental block and the South China margin.

  11. Identifying Breast Cancer Oncogenes

    DTIC Science & Technology

    2009-10-01

    study by Boehm et al. (2007) identified IKBKE as a breast cancer oncogene that cooperates with HMLE -MEKDD to replace the function of myr-AKT in...1-0767 TITLE: Identifying Breast Cancer Oncogenes ~ PRINCIPAL INVESTIGATOR: Yashaswi Shrestha...Identifying Breast Cancer Oncogenes 5a. CONTRACT NUMBER W81XWH-08-1-0767 5b. GRANT NUMBER BC083061 - PreDoc 5c. PROGRAM ELEMENT NUMBER 6

  12. Identifying Hazards

    EPA Pesticide Factsheets

    The federal government has established a system of labeling hazardous materials to help identify the type of material and threat posed. Summaries of information on over 300 chemicals are maintained in the Envirofacts Master Chemical Integrator.

  13. Location identifiers

    DOT National Transportation Integrated Search

    1997-01-30

    This order lists the location identifiers authorized by the Federal Aviation Administration, Department of the Navy, and Transport Canada. It lists United States airspace fixes and procedure codes. The order also includes guidelines for requesting id...

  14. Stable isotope systematics in mesozoic granites of Central and Northern California and Southwestern Oregon

    USGS Publications Warehouse

    Masi, U.; O'Neil, J.R.; Kistler, R.W.

    1981-01-01

    18O, D, and H2O+ contents were measured for whole-rock specimens of granitoid rocks from 131 localitics in California and southwestern Oregon. With 41 new determinations in the Klamath Mountains and Sierra Nevada, initial strontium isotope ratios are known for 104 of these samples. Large variations in ??18O (5.5 to 12.4), ??D (-130 to -31), water contents (0.14 to 2.23 weight percent) and initial strontium isotope ratios (0.7028 to 0.7095) suggest a variety of source materials and identify rocks modified by secondary processes. Regular patterns of variation in each isotopic ratio exist over large geographical regions, but correlations between the ratios are generally absent except in restricted areas. For example, the regular decrease in ??D values from west to east in the Sierra Nevada batholith is not correlative with a quite complex pattern of ??18O values, implying that different processes were responsible for the isotopic variations in these two elements. In marked contrast to a good correlation between (87Sr/86Sr)o and ??18O observed in the Peninsular Ranges batholith to the south, such correlations are lacking except in a few areas. ??D values, on the other hand, correlate well with rock types, chemistry, and (87Sr/86Sr)o except in the Coast Ranges where few of the isotopic signatures are primary. The uniformly low ??D values of samples from the Mojave Desert indicate that meteoric water contributed much of the hydrogen to the rocks in that area. Even so, the ??18O values and 18O fractionations between quartz and feldspar are normal in these same rocks. This reconnaissance study has identified regularities in geochemical parameters over enormous geographical regions. These patterns are not well understood but merit more detailed examination because they contain information critical to our understanding of the development of granitoid batholiths. ?? 1981 Springer-Verlag.

  15. A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    PubMed

    Rauhut, Oliver W M; Heyng, Alexander M; López-Arbarello, Adriana; Hecker, Andreas

    2012-01-01

    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role.

  16. Stochastic control system parameter identifiability

    NASA Technical Reports Server (NTRS)

    Lee, C. H.; Herget, C. J.

    1975-01-01

    The parameter identification problem of general discrete time, nonlinear, multiple input/multiple output dynamic systems with Gaussian white distributed measurement errors is considered. The knowledge of the system parameterization was assumed to be known. Concepts of local parameter identifiability and local constrained maximum likelihood parameter identifiability were established. A set of sufficient conditions for the existence of a region of parameter identifiability was derived. A computation procedure employing interval arithmetic was provided for finding the regions of parameter identifiability. If the vector of the true parameters is locally constrained maximum likelihood (CML) identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the constrained maximum likelihood estimation sequence will converge to the vector of true parameters.

  17. Absence of Suction Feeding Ichthyosaurs and Its Implications for Triassic Mesopelagic Paleoecology

    PubMed Central

    Motani, Ryosuke; Ji, Cheng; Tomita, Taketeru; Kelley, Neil; Maxwell, Erin; Jiang, Da-yong; Sander, Paul Martin

    2013-01-01

    Mesozoic marine reptiles and modern marine mammals are often considered ecological analogs, but the extent of their similarity is largely unknown. Particularly important is the presence/absence of deep-diving suction feeders among Mesozoic marine reptiles because this would indicate the establishment of mesopelagic cephalopod and fish communities in the Mesozoic. A recent study suggested that diverse suction feeders, resembling the extant beaked whales, evolved among ichthyosaurs in the Triassic. However, this hypothesis has not been tested quantitatively. We examined four osteological features of jawed vertebrates that are closely linked to the mechanism of suction feeding, namely hyoid corpus ossification/calcification, hyobranchial apparatus robustness, mandibular bluntness, and mandibular pressure concentration index. Measurements were taken from 18 species of Triassic and Early Jurassic ichthyosaurs, including the presumed suction feeders. Statistical comparisons with extant sharks and marine mammals of known diets suggest that ichthyosaurian hyobranchial bones are significantly more slender than in suction-feeding sharks or cetaceans but similar to those of ram-feeding sharks. Most importantly, an ossified hyoid corpus to which hyoid retractor muscles attach is unknown in all but one ichthyosaur, whereas a strong integration of the ossified corpus and cornua of the hyobranchial apparatus has been identified in the literature as an important feature of suction feeders. Also, ichthyosaurian mandibles do not narrow rapidly to allow high suction pressure concentration within the oral cavity, unlike in beaked whales or sperm whales. In conclusion, it is most likely that Triassic and Early Jurassic ichthyosaurs were ‘ram-feeders’, without any beaked-whale-like suction feeder among them. When combined with the inferred inability for dim-light vision in relevant Triassic ichthyosaurs, the fossil record of ichthyosaurs does not suggest the establishment of modern

  18. Sedimentation rhythmicity as a reflection of astronomical cyclicity

    NASA Astrophysics Data System (ADS)

    Avsyuk, Yu. N.; Saltykovskii, A. Ya.; Sokolova, Yu. F.

    2011-05-01

    The Mesozoic-Cenozoic rhythmic continental sedimentary rocks are analyzed for every particular period and epoch from the Triassic to the Pliocene. The maximal distribution areas of rhythmic deposits are within the latitudinal zone of 20°-40°. Investigation of rhythmic Mesozoic-Cenozoic carbonate-containing deposits of Europe and North America enables us to attribute rhythmicity to climate change owing to insolation and eustatic variations of oceanosphere's level, on the one hand, and to compare duration values of the rhythmic unit and rhythmic sequence with cycles of orbital precession, ecliptic plane inclination, and the eccentricity of the Earth's orbit, on the other hand.

  19. Biostratigraphy and structural setting of the Permian Coyote Butte Formation of central Oregon.

    USGS Publications Warehouse

    Wardlaw, B.R.; Nestell, M.K.; Dutro, J.T.

    1982-01-01

    Larger isolated outcrops of the limestones of the Coyote Butte Formation consistently contain younger over older faunas that range through most of the Leonardian Series of the Early Permian. The outcrops of the Coyote Butte Formation are interpreted as right- side up blocks probably introduced into the area as one massive exotic unit. The Coyote Butte Formation is very similar to the Lower Permain limestone near Quinn River Crossing, Nevada, and both are suggested to have a similar origin. The Coyote Butte Formation was probably introduced during a late-stage event to deforming Mesozoic oceanic sediments in Mesozoic time. -Authors

  20. Appraisal of data for ground-water quality in Nebraska

    USGS Publications Warehouse

    Engberg, R.A.

    1984-01-01

    This report summarizes existing data for groundwater quality in Nebraska and indicates their adequacy as a data base. Analyses have been made of water from nearly 10,000 wells by 8 agencies. Those analyses that meet reliability criteria have been aggregated by geologic source of water into four principal aquifer groupings--Holocene-Pleistocene aquifers, Tertiary aquifers, Mesozoic aquifers, and Paleozoic aquifers. For each aquifer grouping, data for specific conductance and 24 constituents in the water are summarized statistically. Also, diagrams are presented showing differences in statistical parameters, or in chemical composition, of water from the different aquifer groupings. Additionally, for each grouping except Paleozoic aquifers, maps show ranges in concentration of dissolved solids, calcium, alkalinity, and sulfate. In areas where data are insufficient to delimit, ranges in concentration also are shown on the maps. Point-source contamination has been identified at 41 locations and nonpoint-source contamination in 3 areas, namely, the central Platte Valley, Holt County, and Boyd County. Potential for nonpoint-source contamination exists in 10 major areas, which together comprise more than one-third of the State. Existing data are mostly from specific projects having limited areas and objectives. Consequently, a lack of data exists for other areas and for certain geologic units, particularly the Mesozoic and Paleozoic aquifers. Specific data needs for each of the four principal aquifer groupings are indicated in a matrix table.

  1. Costly learning: preference for familiar food persists despite negative impact on survival.

    PubMed

    Costa, Thaiany M; Hebets, Eileen A; Melo, Diogo; Willemart, Rodrigo H

    2016-07-01

    Animals often rely on events in their environment that provide information (i.e. experience) to alter their future decision-making in ways that are presumed to be beneficial. Such experience-based learning, however, does not always lead to adaptive decision-making. In this study, we use the omnivorous harvestman Heteromitobates discolor to explore the role of past diet on subsequent food choice and survival. We first tested whether a short-term homogeneous diet (rotten crickets, fresh crickets or dog food) influenced subsequent food choice (rotten cricket versus fresh cricket). We next examine the impact of diet on survival. We found that following experience with a homogeneous cricket diet, adult harvestmen displayed a learned preference for familiar food, regardless of whether it was rotten or fresh crickets; individuals experiencing dog food were equally likely to choose rotten versus fresh crickets. We additionally found that individuals that ate rotten crickets suffered shorter survival than those that ate fresh crickets. Together, our results suggest that the diet an individual experiences can lead to maladaptive food preferences-preferences that ultimately result in reduced longevity. © 2016 The Author(s).

  2. A new species of Leiobunum from Arizona, U. S. A. highlights the limits of typological classification in harvestmen (Opiliones: Sclerosomatidae: Leiobuninae).

    PubMed

    Shultz, Jeffrey W

    2018-01-09

    A new species of leiobunine harvestman from the Chiricahua Mountains of Arizona is described. The species lacks pro- and retrolateral submarginal rows of coxal denticles, a feature often considered diagnostic for the polyphyletic Nelima, and has greatly reduced ventral dentition on the palpal claw, as in the monotypic Leuronychus. In most other respects, the species is uniquely similar to members of a clade from central and western Mexico currently in the poly- and/or paraphyletic Leiobunum. These traits include a supracheliceral lamina with a wide transverse plate and a canaliculate ocularium, with an anterior surface that slopes dorsoposteriorly and a posterior surface that bulges rearward and is constricted at its base.  There is thus a conflict between classification using traditional diagnostic characters and classification using unique similarity of non-traditional characters. The problem is exacerbated by the problematic status of each candidate genus. Here the species is placed in Leiobunum as L. silum sp. nov., a decision that gives weight to probable phylogenetic affinity with species currently placed in that genus. Leiobunum silum provides an excellent example of the limits of traditional typological classification and the need for a broad-scale morphological and molecular revision of sclerosomatid harvestmen.

  3. Mesozoic evolution of the Amu Darya basin

    NASA Astrophysics Data System (ADS)

    Brunet, Marie-Françoise; Ershov, Andrey; Korotaev, Maxim; Mordvintsev, Dmitriy; Barrier, Eric; Sidorova, Irina

    2014-05-01

    This study, granted by the Darius Programme, aims at proposing a model of tectono-stratigraphic evolution of the Amu Darya basin since the Late Palaeozoic and to understand the relationship with the nearby basins. The Amu Darya basin, as its close eastern neighbour, the Afghan-Tajik basin, lies on the Turan platform, after the closure of the Turkestan Ocean during the Late Paleozoic. These two basins, spread on mainly lowlands of Turkmenistan, southwest Uzbekistan, Tajikistan, and northern Afghanistan, are separated from one another by the South-Western Gissar meganticline, where series of the northern Amu Darya margin are outcropping. The evolution is closely controlled by several periods of crustal thinning (post-collision rifting and back-arc extension), with some marine incursions, coming in between accretions of continental blocks and collisions that succeeded from the Late Triassic-Early Jurassic (Eo-Cimmerian orogeny) to the Cenozoic times. These orogenies controlled the deposition of thick clastics sequences, and the collision of the Indian Plate with Eurasia strongly deformed the sedimentary cover of the Afghan-Tajik basin. The more than 7 km thick Meso-Cenozoic sedimentary succession of the Amu Darya basin, lies on a complex system of rifts and blocks. Their orientation and age (late Permian, Triassic?) are not well known because of deep burial. The north-eastern margin, with the Bukhara (upper margin) and Chardzhou steps, is NW oriented, parallel to the Paleozoic Turkestan suture. The orientation bends to W-E, in the part of the Gissar situated to the North of the Afghan-Tajik basin. This EW trending orientation prevails also in the south(-eastern) margin of the basin (series of North Afghanistan highs) and in the Murgab depression, the south-eastern deepest portion of the Amu Darya basin. It is in this area and in the eastern part of the Amu Darya basin that the Jurassic as well as the lower Cretaceous sediments are the thickest. The south-western part of the basin is occupied by the Pre-Kopet Dagh Cenozoic foreland basin NW oriented, possibly underlain by an earlier extensional trough. The main elements of the sedimentary pile, which can be partly observed in the South-Western Gissar are: Lower to Middle Jurassic continental to paralic clastic rocks; upper Middle to Upper Jurassic marine carbonate then thick Tithonian evaporite rocks, sealing the reservoirs in the Jurassic carbonates; continental Neocomian clastic rocks and red beds, Aptian to Paleogene marine carbonate and clastic rocks. To reconstruct the geodynamic evolution of the Amu Darya Basin, we analysed the subsidence by backstripping of some wells/pseudo-wells and of three cross-sections with some examples of thermal modelling on the periods of maturation of the potential source rocks. The crustal thinning events take place in the Permo-Triassic? (depending on the age of the rifts underlying the basin), in Early-Middle Jurassic and during the Early Cretaceous, resulting in increases of the tectonic subsidence rates.

  4. Mesozoic clay diagenesis in the Appalachian Plateau

    NASA Astrophysics Data System (ADS)

    Boles, A.; Mulch, A.; van der Pluijm, B.

    2017-12-01

    Integrated investigation of authigenic clays in the Appalachian Plateau of the northeastern US Midcontinent using X-ray goniometry, Rietveld-method based illite polytype analysis, and 40Ar/39Ar geochronology yields novel insights about the structural diagenetic history of the North American sedimentary cover sequence. Texture analysis by High Resolution X-ray Texture Goniometry records the presence of a bedding-parallel diagenetic fabric, corresponding to a burial depth of 2-5 km. New development of polytype modeling using BGMN®, a quantitative X-ray powder diffraction forward modeling and whole-pattern matching program matches mineralic characteristic of illite at those depths and reduces uncertainty estimates in age analysis. Based on dating size fractions, the diagenetic age is constrained to 225-250 Ma (Triassic) by four authigenic illite samples, reflecting protracted, regional diagenesis in the area. Preliminary H isotopic analysis points to a surface-derived diagenetic fluid with δD values ranging from -48 to -72‰ (in the range of predicted Pangea meteoric fluid), with a dependence on proximity to the Appalachian Mountains that may reflect a rain shadow effect.

  5. A Glimpse at Late Mesozoic to Early Tertiary Offshore Stratigraphy from Wilkes Land, East Antarctica: Results of Strategic Dredging of the Mertz-Ninnis Trough

    NASA Astrophysics Data System (ADS)

    Schrum, H.; Domack, E.; Desantis, L.; Leventer, A.; McMullen, K.; Escutia, C.

    2004-12-01

    infilling a rifted basin of late Cretaceous age. Seaward dipping reflectors above the syn-rift strata represent post-rift deposits ranging from Paleogene to Quaternary. Included within this stratigraphy are lithified diamictites containing Mesozoic palynomorphs in addition to palynomorphs of Early Tertiary age (including dinoflagellates). Seaward dipping reflectors in the deep axis of the Mertz-Ninnis Trough were not sampled directly by our dredges, but are believed to be Lower Cretaceous siltstones by extrapolation to core DF-79-38, 100 km along strike to the southeast (Domack et al., 1980). Furthermore, the thermal maturity of the lignite samples recovered in our collections suggests that the coal is of Early Tertiary age, as are numerous organic-rich mudstones, which contain Paleogene palynomorphs. These results indicate that sedimentary strata in this portion of the Wilkes Land Margin contain significantly thick (greater than 2.7 km) post-rift (drift phase) marine sequences of both pre- and synglacial character. Strategic dredging is a promising methodology by which to sample stratigraphic succession in a cost effective manner along the East Antarctic margin in the absence of, or preparation for, International Ocean Drilling Projects on the shelf. Domack, E. W., Fairchild, W. W., and Anderson, J. B. (1980) Lower Cretaceous sediment from the East Antarctic continental shelf, Nature, 287, 625-626.

  6. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  7. Petroleum geology and resources of southeastern Mexico, northern Guatemala, and Belize

    USGS Publications Warehouse

    Peterson, James A.

    1983-01-01

    sequence that overlies the Mesozoic carbonate complex on the Yucatan platform. During the past 10 years, about 50 large oil fields were discovered in the Reforma and offshore Campeche areas. Oil is produced from intensely microfractured Cretaceous, Paleocene, and Upper Jurassic dolomite reservoirs on blockfaulted salt swells or domes. Most fields are located in the Mesozoic carbonate-bank margin and forebank talus (Tamabra) facies, which passes through the offshore Campeche and onshore Reforma areas. Oil source rocks are believed to be organic-rich shales and shaly carbonate rocks of latest Jurassic and possibly Early Cretaceous age. At least six of the Mesozoic discoveries are giant or supergiant fields. The largest is the Cantarell complex (about 8 billion to 10 billion barrels (BB)) in the offshore Campeche area and the Bermudez complex (about 8 BB) in the Reforma onshore area. Oil columns are unusually large (from 50 m to as much as 1,000 m, or 160 ft to 3,300 ft). Production rates are extremely high, averaging at least 3,000 to 5,000 barrels of oil per day (bo/d); some wells produce more than 20,000 bo/d, particularly in the offshore Campeche area, where 30,000- to 60,000-bo/d wells are reported. Tertiary basin fields produce primarily from Miocene sandstone reservoirs. About 50 of these are oil fields ranging from 1 million barrels (MMB) to 200 MMB in size, located on faulted salt structures in the Isthmus Saline basin. Another 30 are gas or gas-condensate fields of a few billion cubic feet to 3 trillion to 4 trillion cubic feet (Tcf) located on salt structures or probable salt structures in the Macuspana, Comalcalco, Isthmus Saline, and Veracruz basins. Source rocks for the gas are believed to be carbonaceous shales interbedded with the sandstone reservoir bodies. Identified reserves in the southeastern Mexico-Guatemala area, almost all in the Mesozoic fields, are about 53 BB of oil, 3 BB of natural gas liquids, and 65 Tcf of gas. The estimat

  8. Recognition of the geologic framework of porphyry deposits on ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wilson, J. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photointerpretation methods have been most successfully applied in the less vegetated test sites where several previously unknown geologic features have been recognized and known ones extended. Northwest mid-Tertiary faults in the ELY, Nevada area are observed to offset north-trending ranges and abruptly terminate older Mesozoic structures. In the Ray, Arizona area the observed patterns of fault and fracture systems appear to be related to the locations of known porphyry copper deposits. In the Tanacross, Alaska area a number of regional circular features observed may represent near surface intrusions and, therefore, permissive environments for copper porphyries.

  9. ANDREWS MOUNTAIN, MAZOURKA, AND PAIUTE ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    McKee, Edwin H.; Schmauch, Steven W.

    1984-01-01

    On the basis of a mineral survey, local areas near and within the Andrews Mountain, Mazourka, and Paiute Roadless Areas, California have probable and substantiated mineral-resource potential. The principal metallic mineral resources in these roadless areas are gold, copper, and silver with lead, zinc, and tungsten, as lesser resources. A zone of probable resource potential for talc, graphite, and marble is identified in the Mazourka Roadless Area. Metallic mineralization occurs mostly in vein deposits in silicic and carbonate metasedimentary rocks peripheral to Mesozoic plutons and locally in granitic rocks as well. There is little promise for the occurrence of fossil fuel resources in the roadless areas.

  10. Identifying Candidate Chemical-Disease Linkages ...

    EPA Pesticide Factsheets

    Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment. Presentation at meeting on Environmental and Epigenetic Determinants of IBD in New York, NY on identifying candidate chemical-disease linkages by using AOPs to identify molecular initiating events and using relevant high throughput assays to screen for candidate chemicals. This hazard information is combined with exposure models to inform risk assessment.

  11. Nd Isotopic Provenance of Sedimentary Rocks Along Margins of North America: ten Years of Study

    NASA Astrophysics Data System (ADS)

    Patchett, J.; Ross, G. M.

    2001-12-01

    Ten years of effort, principally employing Nd isotopes, have resulted in substantial advances in understanding of the movements of sedimentary material around North America from Cambrian to Cretaceous time. This synthesis has depended upon work of current and former students S. Samson, J. Gleason, N. Boghossian, C. Garzione, M. Roth, B. Canale and E. Rosenberg, as well as collaborators W. Dickinson and A. Embry, among others. Nd isotopes are particularly good at documenting movements of sedimentary material on the largest (continental) scale and over extended times. What has emerged is a picture of a largely exposed North America-Greenland craton from Neoproterozoic to Ordovician time, a partial to complete burial by detritus from Caledonian-Appalachian mountains starting in the Ordovician, a gradual exhumation during Late Paleozoic and Mesozoic time, followed by a partial burial with Cordilleran detritus during Late Jurassic to Tertiary time. One current question is the nature of the Mesozoic and Tertiary sedimentary material eroded from the North American Cordillera, and its relevance for Cordilleran orogenesis. Another current question is the extent to which Caledonian-Appalachian detritus covered the craton in Devonian-Carboniferous time, and the timing and manner of its removal during Mesozoic time. At first glance, available Nd isotopic data appear to suggest that the Canada-Greenland Shield was largely covered during most of Mesozoic time, a conclusion that would have profound effects on models of dynamic topography. However, this conclusion is also very dependent on the relationship between topography and erosion, because in certain situations a geographically-restricted cover sequence could dominate over low-relief cratonic terrain as a sediment source.

  12. Reconstruction of an early Paleozoic continental margin based on the nature of protoliths in the Nome Complex, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Till, Alison B.; Dumoulin, Julie A.; Ayuso, Robert A.; Aleinikoff, John N.; Amato, Jeffrey M.; Slack, John F.; Shanks, W.C. Pat

    2014-01-01

    The Nome Complex is a large metamorphic unit that sits along the southern boundary of the Arctic Alaska–Chukotka terrane, the largest of several micro continental fragments of uncertain origin located between the Siberian and Laurentian cratons. The Arctic Alaska–Chukotka terrane moved into its present position during the Mesozoic; its Mesozoic and older movements are central to reconstruction of Arctic tectonic history. Accurate representation of the Arctic Alaska–Chukotka terrane in reconstructions of Late Proterozoic and early Paleozoic paleogeography is hampered by the paucity of information available. Most of the Late Proterozoic to Paleozoic rocks in the Alaska–Chukotka terrane were penetratively deformed and recrystallized during the Mesozoic deformational events; primary features and relationships have been obliterated, and age control is sparse. We use a variety of geochemical, geochronologic, paleontologic, and geologic tools to read through penetrative deformation and reconstruct the protolith sequence of part of the Arctic Alaska–Chukotka terrane, the Nome Complex. We confirm that the protoliths of the Nome Complex were part of the same Late Proterozoic to Devonian continental margin as weakly deformed rocks in the southern and central part of the terrane, the Brooks Range. We show that the protoliths of the Nome Complex represent a carbonate platform (and related rocks) that underwent incipient rifting, probably during the Ordovician, and that the carbonate platform was overrun by an influx of siliciclastic detritus during the Devonian. During early phases of the transition to siliciclastic deposition, restricted basins formed that were the site of sedimentary exhalative base-metal sulfide deposition. Finally, we propose that most of the basement on which the largely Paleozoic sedimentary protolith was deposited was subducted during the Mesozoic.

  13. Tectono-Magmatic Cycles and Geodynamic Settings of Ore-Bearing System Formation in the Southern Cis-Argun Region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.; Kovalenko, D. V.

    2017-11-01

    The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu-Mo, Pb-Zn-Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo-U, Pb-Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn-W-Li-Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt-trachydacite series and rhyolite of the Turga Series, which fill the Strel'tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.

  14. Troglomorphism in the middle Triassic crinoids from Poland.

    PubMed

    Brom, Krzysztof R; Brachaniec, Tomasz; Salamon, Mariusz A

    2015-10-01

    In this paper, we document the Middle Triassic marine fauna recovered from the fissure/cave system of Stare Gliny (southern Poland) developed in the Devonian host dolomite. The fossils are mostly represented by in situ preserved and small-sized holdfasts of crinoids (Crinoidea) that are attached to the cave walls. Other fossils found in the cave infills include articulated brittle stars and brachiopods. Our findings constitute the oldest Mesozoic evidence for troglophile crinoids. We suggest that troglomorphism in these echinoderms was likely related to protection against predation, which underscores the magnitude of anti-predatory adaptations to increased predation pressure that occurred during the Early Mesozoic Marine Revolution.

  15. Geologic map of the Wenatchee 1:100,000 Quadrangle, central Washington

    USGS Publications Warehouse

    Tabor, R.W.; Waitt, R.B.; Frizzell, V.A.; Swanson, D.A.; Byerly, G.R.; Bentley, R.D.

    1982-01-01

    The rocks and deposits within the Wenatchee quadrangle can be grouped into six generalized units: (1) Precambrian(?) Swakane Biotite Gneiss in the northeastern part of the quadrangle and the probable Jurassic low-grade metamorphic suite, mostly composed of the Easton Schist, in the southwestern part; (2) the Mesozoic Ingalls Tectonic Complex; (3) the Mesozoic Mount Stuart batholith; (4) lower and middle Tertiary nonmarine sedimentary and volcanic rocks; (5) Miocene basalt flows and interbedded epiclastic rocks constituting part of the Columbia River Basalt Group and interbedded silicic volcaniclastic rocks of the Ellensburg Formation; and (6) Pliocene to Holocene alluvium, glacial, flood, and mass-wastage deposits.

  16. Porphyry deposits of the Canadian Cordillera

    USGS Publications Warehouse

    McMillan, W.J.; Thompson, J.F.H.; Hart, C.J.R.; Johnston, S.T.

    1996-01-01

    Porphyry deposits are intrusion-related, large tonnage low grade mineral deposits with metal assemblages that may include all or some of copper, molybdenum, gold and silver. The genesis of these deposits is related to the emplacement of intermediate to felsic, hypabyssal, generally porphyritic intrusions that are commonly formed at convergent plate margins. Porphyry deposits of the Canadian Cordillera occur in association with two distinctive intrusive suites: calc-alkalic and alkalic. In the Canadian Cordillera, these deposits formed during two separate time periods: Late Triassic to Middle Jurassic (early Mesozoic), and Late Cretaceous to Eocene (Mesozoic-Cenozoic). Deposits of the early Mesozoic period occur in at least three different arc terranes (Wrangellia, Stikinia and Quesnellia) with a single deposit occurring in the oceanic assemblage of the Cache Creek terrane. These terranes were located outboard from continental North America during formation of most of their contained early Mesozoic porphyry deposits. Some of the deposits of this early period may have been emplaced during terrane collisions. Metal assemblages in deposits of the calc-alkalic suite include Mo-Cu (Brenda), Cu-Mo (Highland Valley, Gibraltar), Cu-Mo-Au-Ag (Island Copper, Schaft Creek) and Cu-Au (Kemess, Kerr).The alkalic suite deposits are characterized by a Cu-Au assemblage (Copper Mountain, Afton-Ajax, Mt. Milligan, Mount Polley, Galore Creek). Although silver is recovered from calc-alkalic and alkalic porphyry copper mining operations, silver data are seldom included in the published reserve figures. Those available are in the range of 1-2 grams per tonne (g??t-1). Alkalic suite deposits are restricted to the early Mesozoic and display distinctive petrology, alteration and mineralization that suggest a similar tectonic setting for both Quesnellia and Stikinia in Early Jurassic time. The younger deposits, late Mesozoic to Cenozoic in age, formed in an intracontinental setting, after the

  17. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases.

    PubMed

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-10-18

    Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and code examples are available at

  18. The Protein Identifier Cross-Referencing (PICR) service: reconciling protein identifiers across multiple source databases

    PubMed Central

    Côté, Richard G; Jones, Philip; Martens, Lennart; Kerrien, Samuel; Reisinger, Florian; Lin, Quan; Leinonen, Rasko; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Each major protein database uses its own conventions when assigning protein identifiers. Resolving the various, potentially unstable, identifiers that refer to identical proteins is a major challenge. This is a common problem when attempting to unify datasets that have been annotated with proteins from multiple data sources or querying data providers with one flavour of protein identifiers when the source database uses another. Partial solutions for protein identifier mapping exist but they are limited to specific species or techniques and to a very small number of databases. As a result, we have not found a solution that is generic enough and broad enough in mapping scope to suit our needs. Results We have created the Protein Identifier Cross-Reference (PICR) service, a web application that provides interactive and programmatic (SOAP and REST) access to a mapping algorithm that uses the UniProt Archive (UniParc) as a data warehouse to offer protein cross-references based on 100% sequence identity to proteins from over 70 distinct source databases loaded into UniParc. Mappings can be limited by source database, taxonomic ID and activity status in the source database. Users can copy/paste or upload files containing protein identifiers or sequences in FASTA format to obtain mappings using the interactive interface. Search results can be viewed in simple or detailed HTML tables or downloaded as comma-separated values (CSV) or Microsoft Excel (XLS) files suitable for use in a local database or a spreadsheet. Alternatively, a SOAP interface is available to integrate PICR functionality in other applications, as is a lightweight REST interface. Conclusion We offer a publicly available service that can interactively map protein identifiers and protein sequences to the majority of commonly used protein databases. Programmatic access is available through a standards-compliant SOAP interface or a lightweight REST interface. The PICR interface, documentation and

  19. Near Identifiability of Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, F. Y.; Bekey, G. A.

    1987-01-01

    Concepts regarding approximate mathematical models treated rigorously. Paper presents new results in analysis of structural identifiability, equivalence, and near equivalence between mathematical models and physical processes they represent. Helps establish rigorous mathematical basis for concepts related to structural identifiability and equivalence revealing fundamental requirements, tacit assumptions, and sources of error. "Structural identifiability," as used by workers in this field, loosely translates as meaning ability to specify unique mathematical model and set of model parameters that accurately predict behavior of corresponding physical system.

  20. Method of identifying plant pathogen tolerance

    DOEpatents

    Ecker, Joseph R.; Staskawicz, Brian J.; Bent, Andrew F.; Innes, Roger W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

  1. Reconnaissance stratigraphic studies in the Susitna basin, Alaska, during the 2014 field season

    USGS Publications Warehouse

    LePain, David L.; Stanley, Richard G.; Harun, Nina T.; Helmold, Kenneth P.; Tsigonis, Rebekah

    2015-01-01

    The Susitna basin is a poorly-understood Cenozoic successor basin immediately north of Cook Inlet in south-central Alaska (Kirschner, 1994). The basin is bounded by the Castle Mountain fault and Cook Inlet basin on the south, the Talkeetna Mountains on the east, the Alaska Range on the north, and the Alaska–Aleutian Range on the west (fig. 2-1). The Cenozoic fill of the basin includes coal-bearing nonmarine rocks that are partly correlative with Paleogene strata in the Matanuska Valley and Paleogene and Neogene formations in Cook Inlet (Stanley and others, 2013, 2014). Mesozoic sedimentary rocks are present in widely-scattered uplifts in and around the margins of the basin; these rocks differ significantly from Mesozoic rocks in the forearc basin to the south. Mesozoic strata in the Susitna region were likely part of a remnant ocean basin that preceded the nonmarine Cenozoic basin (Trop and Ridgway, 2007). The presence of coal-bearing strata similar to units that are proven source rocks for microbial gas in Cook Inlet (Claypool and others, 1980) suggests the possibility of a similar system in the Susitna basin (Decker and others, 2012). In 2011 the Alaska Division of Geological & Geophysical Surveys (DGGS) and Alaska Division of Oil and Gas, in collaboration with the U.S. Geological Survey, initiated a study of the gas potential of the Susitna basin (Gillis and others, 2013). This report presents a preliminary summary of the results from 14 days of helicopter-supported field work completed in the basin in August 2014. The goals of this work were to continue the reconnaissance stratigraphic work begun in 2011 aimed at understanding reservoir and seal potential of Tertiary strata, characterize the gas source potential of coals, and examine Mesozoic strata for source and reservoir potential

  2. Method of identifying plant pathogen tolerance

    DOEpatents

    Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

  3. Determining the Cause of the Late Triassic Adamanian-Revueltian Vertebrate Faunal Turnover in Western North America: Climate Change, Bolide Impact, or no Extinction at All?

    NASA Astrophysics Data System (ADS)

    Martz, J. W.

    2016-12-01

    The Triassic was one of the most critical intervals in terrestrial vertebrate history, during which both adaptive radiation and extinction played roles in shaping the future of Mesozoic ecosystems. In recent years, it has become increasingly clear that the transition from the globally diverse ecosystems of the Triassic to the more uniformly dinosaur-dominated ecosystems of the later Mesozoic was complex, involving a variety of environmental changes on both local and global levels. The Adamanian-Revueltian faunal turnover is a putative faunal turnover event identified in the Upper Triassic Chinle Formation of the western United States which involved a decline in diversity among crocodylian-line archosaurs and the extinction of several taxa coincident with the appearance or increase in abundance of other taxa. Careful lithostratigraphic and biostratigraphic work in Petrified Forest National Park in northern Arizona has identified the stratigraphic horizon at which this turnover is likely to have occurred, and sedimentology and improved radioisotopic calibration indicates that the turnover was early Alaunian (middle Norian) and at least roughly coincident with both the Manicouagan bolide impact and an abrupt shift towards a more arid climate in the western United States. However, testing the reality of the turnover and its coincidence with particular environmental changes requires the application of statistical methods highly dependent on the sample sizes and stratigraphic distribution of vertebrate fossils. The problem is exacerbated by the fact that for some vertebrates, the turnover is characterized by changes in abundance rather than range termination, which is more difficult to evaluate statistically, and that some fossils can only be assigned to higher taxa. Moreover, radioisotopic calibration of the putative turnover horizon is coarse, suggesting that correlating faunal turnovers to distant events is more difficult than correlating them to local environmental

  4. Petrogenesis of mesozoic, peraluminous granites in the Lamoille canyon area, Ruby mountains, Nevada, USA

    USGS Publications Warehouse

    Lee, S.-Y.; Barnes, C.G.; Snoke, A.W.; Howard, K.A.; Frost, C.D.

    2003-01-01

    Two groups of closely associated, peraluminous, two-mica granitic gneiss were identified in the area. The older, sparsely distributed unit is equigranular (EG) with initial ??Nd ??? -8??8 and initial 87Sr/86Sr ???0??7098. Its age is uncertain. The younger unit is Late Cretaceous (???80 Ma), pegmatitic, and sillimanite-bearing (KPG), with ??Nd from -15??8 to -17??3 and initial 87Sr/86Sr from 0??7157 to 0??7198. The concentrations of Fe, Mg, Na, Ca, Sr, V, Zr, Zn and Hf are higher, and K, Rb and Th are lower in the EG. Major- and trace-element models indicate that the KPG was derived by muscovite dehydration melting (<35 km depth) of Neoproterozoic metapelitic rocks that are widespread in the eastern Great Basin. The models are broadly consistent with anatexis of crust tectonically thickened during the Sevier orogeny; no mantle mass or heat contribution was necessary. As such, this unit represents one crustal end-member of regional Late Cretaceous peraluminous granites. The EG was produced by biotite dehydration melting at greater depths, with garnet stable in the residue. The source of the EG was probably Paleoproterozoic metagraywacke. Because EG magmatism probably pre-dated Late Cretaceous crustal thickening, it required heat input from the mantle or from mantle-derived magma.

  5. 29 CFR 4010.7 - Identifying information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Identifying information. 4010.7 Section 4010.7 Labor... DISCLOSURE REQUIREMENTS ANNUAL FINANCIAL AND ACTUARIAL INFORMATION REPORTING § 4010.7 Identifying information..., http://www.pbgc.gov, the following identifying information with respect to each member of the filer's...

  6. 29 CFR 4010.7 - Identifying information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Identifying information. 4010.7 Section 4010.7 Labor... DISCLOSURE REQUIREMENTS ANNUAL FINANCIAL AND ACTUARIAL INFORMATION REPORTING § 4010.7 Identifying information..., http://www.pbgc.gov, the following identifying information with respect to each member of the filer's...

  7. 29 CFR 4010.7 - Identifying information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Identifying information. 4010.7 Section 4010.7 Labor... DISCLOSURE REQUIREMENTS ANNUAL FINANCIAL AND ACTUARIAL INFORMATION REPORTING § 4010.7 Identifying information..., http://www.pbgc.gov, the following identifying information with respect to each member of the filer's...

  8. Identifying Marine Phytoplankton

    NASA Astrophysics Data System (ADS)

    Hargraves, Paul E.

    Until recently, anyone who needed to accurately identify marine phytoplankton had one of four choices: use the outdated Englishlanguage volumes by E. E. Cupp and N. I. Hendey plus the more recent book by J. Dodge, acquire a working knowledge of German and use the old volumes by Schiller and Hustedt, spend huge amounts of time in an exceedingly well-equipped marine science library trying in vain to keep up with the rapidly evolving field of phytoplankton systematics and taxonomy, or track down one of the rarest of endangered species—a phytoplankton taxonomist—and beg for help.To these unfortunate choices is added one considerably more hopeful: Identifying Marine Phytoplankton. This volume, which has seven contributing authors, contains most of the taxonomic groups that make up the planktonic autotrophs and some heterotrophs of the seas, coasts, and estuaries of the world (missing are cyanobacteria and some of the picoplankton groups).

  9. LIDAR Helps Identify Source of 1872 Earthquake Near Chelan, Washington

    NASA Astrophysics Data System (ADS)

    Sherrod, B. L.; Blakely, R. J.; Weaver, C. S.

    2015-12-01

    -striking, curvilinear zone ~2.5 km wide and ~55 km long. This zone coincides with monoclines mapped in Mesozoic bedrock and Miocene flood basalts. This study ends uncertainty regarding the source of the 1872 earthquake and provides important information for seismic hazard analyses of major infrastructure projects in Washington and British Columbia.

  10. The Skill of Identifying Argumentation.

    ERIC Educational Resources Information Center

    van Eemeren, Frans H.; And Others

    1989-01-01

    Investigates 14-year-old students' ability to recognize argumentation without having systematic instruction; and whether the identification of argumentation is an independent skill. Finds that after a 20-minute explanation, a large proportion of 14-year-olds could not identify simple argumentation. Concludes that identifying argumentation is a…

  11. Self-Identifying Emergency Radio Beacons

    NASA Technical Reports Server (NTRS)

    Friedman, Morton L.

    1987-01-01

    Rescue teams aided by knowledge of vehicle in distress. Similar to conventional emergency transmitters except contains additional timing and modulating circuits. Additions to standard emergency transmitter enable transmitter to send rescuers identifying signal in addition to conventional distress signal created by sweep generator. Data generator contains identifying code.

  12. Soil moisture in relation to geologic structure and lithology, northern California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Structural features in the Norther California Coast Ranges are clearly discernable on Nite-IR images and some of the structural linears may results in an extension of known faults within the region. The Late Mesozoic marine sedimentary rocks along the western margin of the Sacramento Valley are clearly defined on the Nite-IR images and in a gross way individual layers of sandstone can be differentiated from shale. Late Pleistocene alluvial fans are clearly differentiated from second generation Holocene fans on the basis of tonal characteristics. Although the tonal characteristics change with the seasons, the differentiation of the two sets of fans is still possible.

  13. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  14. Anti-predator adaptations in a great scallop (Pecten maximus) - a palaeontological perspective

    NASA Astrophysics Data System (ADS)

    Brom, Krzysztof Roman; Szopa, Krzysztof; Krzykawski, Tomasz; Brachaniec, Tomasz; Salamon, Mariusz Andrzej

    2015-12-01

    Shelly fauna was exposed to increased pressure exerted by shell-crushing durophagous predators during the so-called Mesozoic Marine Revolution that was initiated in the Triassic. As a result of evolutionary `arms race', prey animals such as bivalves, developed many adaptations to reduce predation pressure (e.g. they changed lifestyle and shell morphology in order to increase their mechanical strength). For instance, it was suggested that Pectinidae had acquired the ability to actively swim to avoid predator attack during the early Mesozoic. However, pectinids are also know to have a specific shell microstructure that may effectively protect them against predators. For instance, we highlight that the shells of some recent pectinid species (e.g. Pecten maximus) that display cross-lamellar structures in the middle part playing a significant role in the energy dissipation, improve the mechanical strength. In contrast, the outer layers of these bivalves are highly porous, which allow them to swim more efficiently by reducing the shell weight. Pectinids are thus perfect examples of animals optimising their skeletons for several functions. We suggest that such an optimisation of their skeletons for multiple functions likely occurred as a results of increased predation pressure during the so-called Mesozoic Marine Revolution.

  15. Identifying Distant AGNs

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Barger, Amy; Tremonti, Christy

    2014-07-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([OIII]/Hβ versus [NII]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by AGN activity (BPT-AGN). Yet the BPT diagram is limited to z<0.5, the redshift at which [NII]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g-z color, [NeIII]λ3869, and [OII]λλ3726+3729 and can be used for galaxies out to z<1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray selected AGNs as BPT-SF.

  16. Highly differentiated magmas linked with polymetallic mineralization: A case study from the Cuihongshan granitic intrusions, Lesser Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Fei, Xianghui; Zhang, Zhaochong; Cheng, Zhiguo; Santosh, M.; Jin, Ziliang; Wen, Bingbing; Li, Zixi; Xu, Lijuan

    2018-03-01

    The genetic link between granitoids and polymetallic skarn mineralization has remained equivocal. The Cuihongshan skarn-porphyry W-Mo-Pb-Zn-(Fe-Cu) deposit in the eastern part of the Central Asian Orogenic Belt provides a unique example to address this issue. The major rock types in the mine area are Early Paleozoic intrusions composed of biotite syenogranite and biotite porphyritic granite and Early Mesozoic intrusions represented by porphyritic quartz monzonite, biotite monzogranite, and porphyritic granite. The diagnostic mineralogical and geochemical features indicate that the rocks belong to A2-type granites. The Early Paleozoic suite shows zircon U-Pb ages of 501 Ma, and εHf(t) values of - 4.4 to + 2.7 and + 2.4 to + 7.6, respectively. In combination with their coherent geochemical trends, these rocks are inferred to be products of in-situ differentiation. Although the Mesozoic suite shows crystallization ages of 194-196 Ma, εHf(t) values are in the range of - 2.5 to + 7.5 for the porphyritic quartz monzonite, the - 1.8 to + 4.5 values for the monzogranite and the + 2.3 to + 8.0 range for the porphyritic granite. The porphyritic quartz monzonite displays distinct mineral assemblage and shows significant compositional gap with the other two lithofacies. In contrast, the monzogranite and porphyritic granite have similar geochemical features, and are thus inferred to be co-magmatic. Considering the high SiO2 contents, variable εHf(t) (- 4.4 to + 8.0) and εNd(t) values (- 8.4 to + 0.28) for the two suites, we infer that both episodes of granitoid magmatism resulted from partial melting of crustal materials with a mixed source containing varying proportions of juvenile and Precambrian crustal components. The Early Mesozoic porphyritic granite shows a highly evolved F-rich geochemical affinity, and experienced magma-fluid interaction. Cassiterite from the calcic skarn and the magnesian skarn that coexists with magnetite orebodies shows a mean U-Pb age of 195

  17. Crustal structure in the Elko-Carlin Region, Nevada, during Eocene gold mineralization: Ruby-East Humboldt metamorphic core complex as a guide to the deep crust

    USGS Publications Warehouse

    Howard, K.A.

    2003-01-01

    The deep crustal rocks exposed in the Ruby-East Humboldt metamorphic core complex, northeastern Nevada, provide a guide for reconstructing Eocene crustal structure ~50 km to the west near the Carlin trend of gold deposits. The deep crustal rocks, in the footwall of a west-dipping normal-sense shear system, may have underlain the Pinon and Adobe Ranges about 50 km to the west before Tertiary extension, close to or under part of the Carlin trend. Eocene lakes formed on the hanging wall of the fault system during an early phase of extension and may have been linked to a fluid reservoir for hydrothermal circulation. The magnitude and timing of Paleogene extension remain indistinct, but dikes and tilt axes in the upper crust indicate that spreading was east-west to northwest-southeast, perpendicular to a Paleozoic and Mesozoic orogen that the spreading overprinted. High geothermal gradients associated with Eocene or older crustal thinning may have contributed to hydrothermal circulation in the upper crust. Late Eocene eruptions, upper crustal dike intrusion, and gold mineralization approximately coincided temporally with deep intrusion of Eocene sills of granite and quartz diorite and shallower intrusion of the Harrison Pass pluton into the core-complex rocks. Stacked Mesozoic nappes of metamorphosed Paleozoic and Precambrian rocks in the core complex lay at least 13 to 20 km deep in Eocene time, on the basis of geobarometry studies. In the northern part of the complex, the presently exposed rocks had been even deeper in the late Mesozoic, to >30 km depths, before losing part of their cover by Eocene time. Nappes in the core plunge northward beneath the originally thicker Mesozoic tectonic cover in the north part of the core complex. Mesozoic nappes and tectonic wedging likely occupied the thickened midlevel crustal section between the deep crustal core-complex intrusions and nappes and the overlying upper crust. These structures, as well as the subsequent large

  18. Zircon U-Pb geochronology and Sr-Nd-Pb-Hf isotopic constraints on the timing and origin of Mesozoic granitoids hosting the Mo deposits in northern Xilamulun district, NE China

    NASA Astrophysics Data System (ADS)

    Shu, Qihai; Lai, Yong; Zhou, Yitao; Xu, Jiajia; Wu, Huaying

    2015-12-01

    Located in the east section of the Central Asian orogen in northeastern China, the Xilamulun district comprises several newly discovered molybdenum deposits, primarily of porphyry type and Mesozoic ages. This district is divided by the Xilamulun fault into the southern and the northern parts. In this paper, we present new zircon U-Pb dating, trace elements and Hf isotope, and/or whole rock Sr-Nd-Pb isotopic results for the host granitoids from three Mo deposits (Yangchang, Haisugou and Shabutai) in northern Xilamulun. Our aim is to constrain the age and petrogenesis of these intrusions and their implications for Mo mineralization. Zircon U-Pb LA-ICP-MS dating shows that the monzogranites from the Shabutai and Yangchang deposits formed at 138.4 ± 1.5 and 137.4 ± 2.1 Ma, respectively, which is identical to the molybdenite Re-Os ages and coeval well with the other Mo deposits in this region, thereby indicating an Early Cretaceous magmatism and Mo mineralization event. Zircon Ce/Nd ratios from the mineralized intrusions are significantly higher than the barren granites, implying that the mineralization-related magmas are characterized by higher oxygen fugacity. These mineralized intrusions share similar zircon in-situ Hf and whole rock Sr-Nd isotopic compositions, with slightly negative to positive εHf(t) ranging from - 0.8 to + 10.0, restricted εNd(t) values from - 3.7 to + 1.6 but a little variable (87Sr/86Sr)i ratios between 0.7021 and 0.7074, indicative of formation from primary magmas generated from a dominantly juvenile lower crust source derived from depleted mantle, despite diverse consequent processes (e.g., magma mixing, fractional crystallization and crustal contamination) during their evolution. The Pb isotopes (whole rock) also show a narrow range of initial compositions, with (206Pb/204Pb)i = 18.03-18.88, (207Pb/204Pb)i = 15.48-15.58 and (208Pb/204Pb)i = 37.72-38.28, in agreement with Sr-Nd-Hf isotopes reflecting the dominance of a mantle component

  19. The Continental Margin of East Asia: a collage of multiple plates formed by convergence and extension from multiple directions

    NASA Astrophysics Data System (ADS)

    Mao, J.; Wang, T.; Ludington, S.; Qiu, Z.; Li, Z.

    2017-12-01

    East Asia is one of the most complex regions in the world. Its margin was divided into 4 parts: Northeast Asia, North China, South China and Southeast Asia. During the Phanerozoic, continental plates of East Asia have interacted successively with a) the Paleo Tethyan Ocean, b) the Tethyan and Paleo Pacific Oceans and c) the Pacific and Indian. In the Early Mesozoic, the Indosinian orogeny is characterized by the convergence and extension within multiple continental plates, whereas the Late Mesozoic Yanshanian orogeny is characterized by both convergence and compression due to oceanic subduction and by widespread extension. We propose this combination as "East Asia Continental Margin type." Except in Northeast Asia, where Jurassic and Cretaeous accretionary complexes are common, most magmatic rocks are the result of reworking of ancient margins of small continental plates; and oceanic island arc basalts and continental margin arc andesites are largely absent. Because South China is adjacent to the western margin of the Pacific Plate, some effects of its westward subduction must be unavoidable, but juvenile arc-related crust has not been identified. The East Asian Continental Margin is characterized by magmatic rocks that are the result of post-convergent tectonics, which differs markedly from the active continental margins of both South and North America. In summary, the chief characteristics of the East Asian Continental Margin are: 1) In Mesozoic, the periphery of multiple blocks experienced magmatism caused by lithospheric delamination and thinning in response to extension punctuated by shorter periods of convergence. 2) The main mechanism of magma generation was the partial melting of crustal rocks, due to underplating by upwelling mafic magma associated with the collapse of orogenic belts and both extension and compression between small continental blocks. 3) During orogeny, mostly high Sr/Y arc-related granitoids formed, whereas during post-orogenic times, A

  20. Experimental methods for identifying failure mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1983-01-01

    Experimental methods for identifying failure mechanisms in fibrous composites are studied. Methods to identify failure in composite materials includes interferometry, holography, fractography and ultrasonics.

  1. The Mesozoic Caosiyao giant porphyry Mo deposit in Inner Mongolia, North China and Paleo-Pacific subduction-related magmatism in the northern North China Craton

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Zhang, Lianchang; Pirajno, Franco; Shu, Qihai; Zhang, Min; Zhu, Mingtian; Xiang, Peng

    2016-09-01

    The Caosiyao giant porphyry Mo deposit is located in the Wulanchabu area of Inner Mongolia, within the northern North China Craton (NCC). It contains more than 2385 Mt of ore with an average grade of 0.075% Mo. In the Caosiyao mining district, Mo mineralization occurs mainly in a Mesozoic granite porphyry as disseminations and stockworks, with some Mo distributed in Archean metamorphic rocks and diabase as stockworks and veins. The host granite porphyry is composed of two different phases that can be distinguished based on mineral assemblages and textures: one phase contains large and abundant phenocrysts (coarse-grained), while the other phase is characterized by fewer and smaller phenocrysts (medium-grained). Zircon U-Pb-Hf analyses of the former phase yielded a concordant 206Pb/238U age of 149.8 ± 2.4 Ma with a 206Pb/238U weighted mean age of 149.9 ± 2.4 Ma and εHf(t) values ranging from -12.2 to 18.3, while the latter phase gave a concordant 206Pb/238U age of 149.0 ± 2.2 Ma with a 206Pb/238U weighted mean age of 149.0 ± 2.1 Ma and εHf(t) values ranging from -13.1 to 17.7. Five samples of disseminated molybdenite have a 187Re-187Os isochron age of 149.5 ± 5.3 Ma with a weighted average age of 149.0 ± 1.8 Ma, whereas six veinlet-type molybdenite samples have a well-constrained 187Re-187Os isochron age of 146.9 ± 3.1 Ma and a weighted average age of 146.5 ± 0.8 Ma. Thus, it is suggested that the Mo mineralization of the Caosiyao deposit occurred during the Late Jurassic (ca. 147-149 Ma), almost coeval with the emplacement of the host granite porphyry (ca. 149-150 Ma). The host granite porphyry is characterized by high silica (SiO2 = 71.52-74.10 wt%), relatively high levels of oxidation (Fe2O3/FeO = 0.32-0.94 wt%) and high alkali element concentrations (Na2O + K2O = 8.21-8.76 wt%). The host granite porphyry also shows enrichments in U and K, and depletion in Ba, Sr, P, Eu, and Ti, suggesting strong fractional crystallization of plagioclase, biotite, and

  2. Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones).

    PubMed

    Buzatto, Bruno A; Machado, Glauco

    2014-11-01

    Strong sexual selection may lead small males or males in poor condition to adopt alternative reproductive tactics (ARTs) as a way to avoid the risk of being completely excluded from the mating pool. ARTs, sometimes accompanying morphological dimorphism among males, are taxonomically widespread, especially common in arthropods. Here we review the current knowledge on ARTs and male dimorphism in a diverse but relatively overlooked group of arachnids, the order Opiliones, popularly known as harvestmen or daddy long-legs. We begin with a summary of harvestman mating systems, followed by a review of the two lines of evidence for the presence of ARTs in the group: (1) morphological data from natural populations and museum collections; and (2) behavioral information from field studies. Despite receiving less attention than spiders, scorpions and insects, our review shows that harvestmen are an exciting group of organisms that are potentially great models for sexual selection studies focused on ARTs. We also suggest that investigating the proximate mechanisms underlying male dimorphism in the order would be especially important. New research on ARTs and male dimorphism will have implications for our understanding of the evolution of mating systems, sperm competition, and polyandry. This article is part of a Special Issue entitled: Neotropical Behaviour. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identifying Technical Vocabulary

    ERIC Educational Resources Information Center

    Chung, Teresa Mihwa; Nation, Paul

    2004-01-01

    This study compared four different approaches to identifying technical words in an anatomy text. The first approach used a four step rating scale, and was used as the comparison for evaluating the other three approaches. It had a high degree of reliability. The least successful approach was that using clues provided by the writer such as labels in…

  4. A tribosphenic mammal from the Mesozoic of Australia.

    PubMed

    Rich, T H; Vickers-Rich, P; Constantine, A; Flannery, T F; Kool, L; van Klaveren, N

    1997-11-21

    A small, well-preserved dentary of a tribosphenic mammal with the most posterior premolar and all three molars in place has been found in Aptian (Early Cretaceous) rocks of southeastern Australia. In most respects, dental and mandibular anatomy of the specimen is similar to that of primitive placental mammals. With the possible exception of a single tooth reported as Eocene in age, terrestrial placentals are otherwise unknown in Australia until the Pliocene. This possible Australian placental is similar in age to Prokennalestes from the late Aptian/early Albian Khoboor Beds of Mongolia, the oldest currently accepted member of the infraclass Placentalia.

  5. Mesozoic Calcareous Nannofossil Evolution: Relation to Paleoceanographic Events

    NASA Astrophysics Data System (ADS)

    Roth, Peter H.

    1987-12-01

    The taxonomic evolution of Jurassic and Cretaceous calcareous nannofossil species is described using the following indices: species diversity, rate of speciation, rate of extinction, rate of diversification, rate of turnover, survivorship, and species accretion. The Jurassic prior to the late Oxfordian is characterized by positive diversification rates, that is, rates of speciation exceeded rates of extinction. Highest rates of diversification occurred in the late Lias and early Oxfordian. During the generally regressive latest Jurassic, diversification rates remained low and rates of extinctions exceed rates of speciation. In the early Cretaceous, rates of diversification are positive and peak in the early Valanginian, early Aptian, and middle Albian, after which time rates of extinction generally exceed rates of speciation. Such peaks in rate of evolution coincide with times of increased accumulation of organic carbon in the ocean ("anoxic events"). Peaks in rates of extinction result in very high rates of turnover during times of major regressions, in particular, in the Tithonian and Maastrichtian. Survivorship analyses for three datum planes (74.5, 144, and 160 Ma) show relatively constant extinction rates with some stepping in the older part; they are best explained by a temporally fluctuating abiotic environment causing changes in the probability of extinction. Species accretion curves are also relatively linear with some indication of changing rates of speciation. The coincidences of major changes in evolutionary rates with major paleoceanographic events are indicative of a predominantly abiotic control of nannoplankton evolution. Relationships of evolutionary rates of calcareous nannoplankton with deep ocean ventilation, sea level, and ocean fertility indicates that global tectonic processes are the ultimate causes of evolutionary change.

  6. Sudden death at the end of the Mesozoic

    USGS Publications Warehouse

    Emiliani, C.; Kraus, E.B.; Shoemaker, E.M.

    1981-01-01

    A paleoecological analysis of the fossil record before and after the Cretaceous/Tertiary boundary indicates that the widespread extinctions and biological stresses around the boundary are best explained in terms of a sudden, significant, but short temperature rise. L. Alvarez and co-authors, having found an enrichment in iridium at the same boundary, postulated that it was associated with the impact of an extraterrestrial body. If this body struck the ocean, the water injected into the atmosphere may have led to a transient increase in the global surface temperature. This temperature pulse may have been primarily responsible for the effects observed in the biosphere. The pattern of extinction of higher plant species suggests that splash down occurred in the northern Pacific-Bering Sea area. ?? 1981.

  7. First early Mesozoic amber in the Western Hemisphere

    USGS Publications Warehouse

    Litwin, R.J.; Ash, S.R.

    1991-01-01

    Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors

  8. Hamiltonian identifiability assisted by single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola; Quantum Engineering Group Team

    2017-04-01

    We study the Hamiltonian identifiability of a many-body spin- 1 / 2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm (ERA) approach employed in. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the non-identifiable Hamiltonian to be an identifiable Hamiltonian.

  9. Identifying Strategic Scientific Opportunities

    Cancer.gov

    As NCI's central scientific strategy office, CRS collaborates with the institute's divisions, offices, and centers to identify research opportunities to advance NCI's vision for the future of cancer research.

  10. SOCIODEMOGRAPHIC DATA USED FOR IDENTIFYING ...

    EPA Pesticide Factsheets

    Due to unique social and demographic characteristics, various segments of the population may experience exposures different from those of the general population, which, in many cases, may be greater. When risk assessments do not characterize subsets of the general population, the populations that may experience the greatest risk remain unidentified. When such populations are not identified, the social and demographic data relevant to these populations is not considered when preparing exposure estimates, which can underestimate exposure and risk estimates for at-risk populations. Thus, it is necessary for risk or exposure assessors characterizing a diverse population, to first identify and then enumerate certain groups within the general population who are at risk for greater contaminant exposures. The document entitled Sociodemographic Data Used for Identifying Potentially Highly Exposed Populations (also referred to as the Highly Exposed Populations document), assists assessors in identifying and enumerating potentially highly exposed populations. This document presents data relating to factors which potentially impact an individual or group's exposure to environmental contaminants based on activity patterns (how time is spent), microenvironments (locations where time is spent), and other socio-demographic data such as age, gender, race and economic status. Populations potentially more exposed to various chemicals of concern, relative to the general population

  11. NIH Researchers Identify OCD Risk Gene

    MedlinePlus

    ... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

  12. International Team Identifies Biomarker for Scleroderma

    MedlinePlus

    ... Identifies Biomarker for Scleroderma Spotlight on Research International Team Identifies Biomarker for Scleroderma By Kirstie Saltsman, Ph. ... suggests it stems from immune system malfunction. The team chose to focus on immune cells called plasmacytoid ...

  13. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  14. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  15. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  16. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  17. 40 CFR 174.529 - Bacillus thuringiensis modified Cry1Ab protein as identified under OECD Unique Identifier SYN...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protein as identified under OECD Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement... Unique Identifier SYN-IR67B-1 in cotton; exemption from the requirement of a tolerance. Residues of... exempt from the requirement of a tolerance when used as a plant-incorporated protectant in cotton; cotton...

  18. Ecosystems past: prehistory of California vegetation

    Treesearch

    C.I. Millar; W.B. Woolfenden

    2016-01-01

    The history of California's vegetation, from origins in the Mesozoic through Quaternary is outlined. Climatic and geologic history and the processes driving changes in vegetation over time are also described. 

  19. Persistent Identifiers Implementation in EOSDIS

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K. " Rama"

    2016-01-01

    This presentation provides the motivation for and status of implementation of persistent identifiers in NASA's Earth Observation System Data and Information System (EOSDIS). The motivation is provided from the point of view of long-term preservation of datasets such that a number of questions raised by current and future users can be answered easily and precisely. A number of artifacts need to be preserved along with datasets to make this possible, especially when the authors of datasets are no longer available to address users questions. The artifacts and datasets need to be uniquely and persistently identified and linked with each other for full traceability, understandability and scientific reproducibility. Current work in the Earth Science Data and Information System (ESDIS) Project and the Distributed Active Archive Centers (DAACs) in assigning Digital Object Identifiers (DOI) is discussed as well as challenges that remain to be addressed in the future.

  20. Identifying influencers from sampled social networks

    NASA Astrophysics Data System (ADS)

    Tsugawa, Sho; Kimura, Kazuma

    2018-10-01

    Identifying influencers who can spread information to many other individuals from a social network is a fundamental research task in the network science research field. Several measures for identifying influencers have been proposed, and the effectiveness of these influence measures has been evaluated for the case where the complete social network structure is known. However, it is difficult in practice to obtain the complete structure of a social network because of missing data, false data, or node/link sampling from the social network. In this paper, we investigate the effects of node sampling from a social network on the effectiveness of influence measures at identifying influencers. Our experimental results show that the negative effect of biased sampling, such as sample edge count, on the identification of influencers is generally small. For social media networks, we can identify influencers whose influence is comparable with that of those identified from the complete social networks by sampling only 10%-30% of the networks. Moreover, our results also suggest the possible benefit of network sampling in the identification of influencers. Our results show that, for some networks, nodes with higher influence can be discovered from sampled social networks than from complete social networks.

  1. Tectonic evolution of west Antarctica and its relation to east Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D.

    1987-05-01

    West Antarctica consists of five major blocks of continental crust separated by deep sub-ice basins. Marie Byrd Land appears to have been rifted off the adjacent margin of the East Antarctic craton along the line of the Transantarctic Mountains during the Mesozoic. Ellsworth-Whitmore mountains and Haag Nunataks blocks were also rifted from the margin of the craton. They appear to have moved together with the Antarctic Peninsula and Thurston Island blocks, segments of a Pacific margin Mesozoic-Cenozoic magmatic arc, during the Mesozoic opening of the Weddell Sea basin. Paleomagnetic data suggest that all four of these blocks remained attached tomore » western Gondwanaland (South America-Africa) until approximately 125 m.y. ago, and that the present geographic configuration of the Antarctic continent was essentially complete by the mid-Cretaceous, although important Cenozoic rifting has also occurred. Fragmentation of the Gondwanaland supercontinent was preceded in the Middle to Late Jurassic by an important and widespread thermal event of uncertain origin that resulted in the emplacement of an extensive bimodal igneous suite in South America, Africa, Antarctica, and Australia. This was associated with the development of the composite back-arc basin along the western margin of South America. Inversion of this basin in the mid-Cretaceous initiated Andean orogenesis. The presentation will include new data from the joint US-UK West Antarctic Tectonics Project.« less

  2. Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada

    USGS Publications Warehouse

    Jayko, A.S.

    2007-01-01

    Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.

  3. Identifying Critical Cross-Cultural School Psychology Competencies.

    ERIC Educational Resources Information Center

    Rogers, Margaret R.; Lopez, Emilia C.

    2002-01-01

    Study sought to identify critical cross-cultural competencies for school psychologists. To identify the competencies, an extensive literature search about cross-cultural school psychology competencies was conducted, as well as a questionnaire to ask expert panelists. The 102 competencies identified cover 14 major domains of professional activities…

  4. 26 CFR 301.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 18 2011-04-01 2011-04-01 false Identifying numbers. 301.6109-1 Section 301... numbers. (a) In general—(1) Taxpayer identifying numbers—(i) Principal types. There are several types of taxpayer identifying numbers that include the following: social security numbers, Internal Revenue Service...

  5. 26 CFR 301.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Identifying numbers. 301.6109-1 Section 301... numbers. (a) In general—(1) Taxpayer identifying numbers—(i) Principal types. There are several types of taxpayer identifying numbers that include the following: social security numbers, Internal Revenue Service...

  6. 26 CFR 301.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 18 2012-04-01 2012-04-01 false Identifying numbers. 301.6109-1 Section 301... numbers. (a) In general—(1) Taxpayer identifying numbers—(i) Principal types. There are several types of taxpayer identifying numbers that include the following: social security numbers, Internal Revenue Service...

  7. 26 CFR 301.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 18 2014-04-01 2014-04-01 false Identifying numbers. 301.6109-1 Section 301... numbers. (a) In general—(1) Taxpayer identifying numbers—(i) Principal types. There are several types of taxpayer identifying numbers that include the following: social security numbers, Internal Revenue Service...

  8. Mineral resources of the Raymond Mountain Wilderness Study Area, Lincoln county, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, K.; Evans, J.P.; Hill, R.H.

    1990-01-01

    The paper reports on the Raymond Mountain Wilderness Study Area which encompasses most of the Sublette Range of western Lincoln County, Wyo. The study area consists of upper Paleozoic and Mesozoic sedimentary rocks that form part of the Idaho-Wyoming-Utah overthrust belt. There are no identified mineral or energy resources in the wilderness study area. The study area has moderate energy resource potential for oil and gas. Mineral resource potential for vanadium and phosphate is low because the Phosphoria Formation is deeply buried beneath the wilderness study area and contains unweathered units having low P{sub 2}O{sub 5} values. The mineral resourcemore » potential for coal, other metals, including uranium, high-purity limestone or dolostone, and geothermal energy is low.« less

  9. Tibetan Magmatism Database

    NASA Astrophysics Data System (ADS)

    Chapman, James B.; Kapp, Paul

    2017-11-01

    A database containing previously published geochronologic, geochemical, and isotopic data on Mesozoic to Quaternary igneous rocks in the Himalayan-Tibetan orogenic system are presented. The database is intended to serve as a repository for new and existing igneous rock data and is publicly accessible through a web-based platform that includes an interactive map and data table interface with search, filtering, and download options. To illustrate the utility of the database, the age, location, and ɛHft composition of magmatism from the central Gangdese batholith in the southern Lhasa terrane are compared. The data identify three high-flux events, which peak at 93, 50, and 15 Ma. They are characterized by inboard arc migration and a temporal and spatial shift to more evolved isotopic compositions.

  10. 26 CFR 1.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Identifying numbers. 1.6109-1 Section 1.6109-1...) INCOME TAXES Miscellaneous Provisions § 1.6109-1 Identifying numbers. (a) Information to be furnished after April 15, 1974. For provisions concerning the requesting and furnishing of identifying numbers...

  11. Parameter identifiability of linear dynamical systems

    NASA Technical Reports Server (NTRS)

    Glover, K.; Willems, J. C.

    1974-01-01

    It is assumed that the system matrices of a stationary linear dynamical system were parametrized by a set of unknown parameters. The question considered here is, when can such a set of unknown parameters be identified from the observed data? Conditions for the local identifiability of a parametrization are derived in three situations: (1) when input/output observations are made, (2) when there exists an unknown feedback matrix in the system and (3) when the system is assumed to be driven by white noise and only output observations are made. Also a sufficient condition for global identifiability is derived.

  12. Reconnaissance Borehole Geophysical, Geological, and Hydrological Data from the Proposed Hydrodynamic Compartments of the Culpeper Basin in Loudoun, Prince William, Culpeper, Orange, and Fairfax Counties, Virginia (Version 1.0)

    USGS Publications Warehouse

    Ryan, Michael P.; Pierce, Herbert A.; Johnson, Carole D.; Sutphin, David M.; Daniels, David L.; Smoot, Joseph P.; Costain, John K.; Coruh, Cahit; Harlow, George E.

    2006-01-01

    The Culpeper basin is part of a much larger system of ancient depressions or troughs, that lie inboard of the Atlantic Coastal Plain, and largely within the Applachian Piedmont Geologic Province of eastern North America, and the transition region with the neighboring Blue Ridge Geologic Province. This basin system formed during an abortive attempt to make a great ocean basin during the Late Triassic and Early Jurassic, and the eroded remnants of the basins record major episodes of sedimentation, igneous intrusion and eruption, and pervasive contact metamorphism. Altogether, some twenty nine basins formed between what is now Nova Scotia and Georgia. Many of these basins are discontinuous along their strike, and have therefore recorded isolated environments for fluvial and lacustrine sedimentation. Several basins (including the Culpeper, Gettysburg, and Newark basins) are fault-bounded on the west, and Mesozoic crustal stretching has produced assymetrical patterns of basin subsidence resulting in a progressive basin deepening to the west, and a virtual onlap relationship with the pre-basin Proterozoic rocks to the east. A result of such a pattern of basin deepening is the development of sequences of sandstones and siltstones that systemmatically increase in dip towards the accomodating western border faults. A second major structural theme in several of the major Mesozoic basins (including the Culpeper) concerns the geometry of igneous intrusion, as discussed below. Froelich (1982, 1985) and Lee and Froelich (1989) discuss the general geology of the Culpeper basin, and Smoot (1989) discusses the sedimentation environments and sedimentary facies of the Mesozoic with respect to fluvial and shallow lacustrine deposition in the Culpeper basin. Ryan and others, 2007a, b, discuss the role of diabase-induced compartmentalization in the Culpeper basin (and other Mesozoic basins), and illustrate (using alteration mineral suites within the diabase and adjacent hornfels, among

  13. Onshore/ Offshore Geologic Assessment for Carbon Storage in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Knapp, C. C.; Knapp, J. H.; Brantley, D.; Lakshmi, V.; Almutairi, K.; Almayahi, D.; Akintunde, O. M.; Ollmann, J.

    2017-12-01

    Eighty percent of the world's energy relies on fossil fuels and under increasingly stricter national and international regulations on greenhouse gas emissions storage of CO2 in geologic repositories seems to be not only a feasible, but also and vital solution for near/ mid-term reduction of carbon emissions. We have evaluated the feasibility of CO2 storage in saline formations of the Eastern North American Margin (ENAM) including (1) the Jurassic/Triassic (J/TR) sandstones of the buried South Georgia Rift (SGR) basin, and (2) the Mesozoic and Cenozoic geologic formations along the Mid- and South Atlantic seaboard. These analyses have included integration of subsurface geophysical data (2- and 3-D seismic surveys) with core samples, well logs as well as uses of geological databases and geospatial analysis leading to CO2 injection simulation models. ENAM is a complex and regionally extensive mature Mesozoic passive margin rift system encompassing: (1) a large volume and regional extent of related magmatism known as the Central Atlantic Magmatic Province (CAMP), (2) a complete stratigraphic column that records the post-rift evolution in several basins, (3) preserved lithospheric-scale pre-rift structures including Paleozoic sutures, and (4) a wide range of geological, geochemical, and geophysical studies both onshore and offshore. While the target reservoirs onshore show heterogeneity and a highly complex geologic evolution they also show promising conditions for significant safe CO2 storage away from the underground acquifers. Our offshore study (the Southeast Offshore Storage Resource Assessment - SOSRA) is focused on the outer continental shelf from North Carolina to the southern tip of Florida. Three old exploration wells are available to provide additional constraints on the seismic reflection profiles. Two of these wells (TRANSCO 1005-1 and COST GE-1) penetrate the pre-rift Paleozoic sedimentary formations while the EXXON 564-1 well penetrates the post

  14. Identifying Balance Measures Most Likely to Identify Recent Falls.

    PubMed

    Criter, Robin E; Honaker, Julie A

    2016-01-01

    Falls sustained by older adults are an increasing health care issue. Early identification of those at risk for falling can lead to successful prevention of falls. Balance complaints are common among individuals who fall or are at risk for falling. The purpose of this study was to evaluate the clinical utility of a multifaceted balance protocol used for fall risk screening, with the hypothesis that this protocol would successfully identify individuals who had a recent fall (within the previous 12 months). This is a retrospective review of 30 individuals who self-referred for a free fall risk screening. Measures included case history, Activities-Specific Balance Confidence Scale, modified Clinical Test of Sensory Interaction on Balance, Timed Up and Go test, and Dynamic Visual Acuity. Statistical analyses were focused on the ability of the test protocol to identify a fall within the past 12 months and included descriptive statistics, clinical utility indices, logistic regression, receiver operating characteristic curve, area under the curve analysis, effect size (Cohen d), and Spearman correlation coefficients. All individuals who self-referred for this free screening had current imbalance complaints, and were typically women (70%), had a mean age of 77.2 years, and had a fear of falling (70%). Almost half (46.7%) reported at least 1 lifetime fall and 40.0% within the past 12 months. Regression analysis suggested that the Timed Up and Go test was the most important indicator of a recent fall. A cutoff score of 12 or more seconds was optimal (sensitivity: 83.3%; specificity: 61.1%). Older adults with current complaints of imbalance have a higher rate of falls, fall-related injury, and fear of falling than the general community-dwelling public. The Timed Up and Go test is useful for determining recent fall history in individuals with imbalance.

  15. Why Identify Gifted Children?

    ERIC Educational Resources Information Center

    Congdon, Peter

    1985-01-01

    Emphasizes need to systematically identify gifted children. Defines the term "gifted" and considers three groups in detail: children of high intelligence, children of high academic aptitude, and talented children. Offers strategy for educational diagnosis of gifted children. (DST)

  16. 17 CFR 45.5 - Unique swap identifiers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...

  17. 17 CFR 45.5 - Unique swap identifiers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...

  18. 17 CFR 45.5 - Unique swap identifiers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...

  19. 40 CFR 74.41 - Identifying allowances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Identifying allowances. 74.41 Section 74.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Tracking and Transfer and End of Year Compliance § 74.41 Identifying...

  20. Identifying Information Focuses in Listening Comprehension

    ERIC Educational Resources Information Center

    Zhang, Hong-yan

    2011-01-01

    The study explains the process of learners' listening comprehension within Halliday's information theory in functional grammar, including the skills of identifying focuses while listening in college English teaching. Identifying information focuses in listening is proved to improve the students' communicative listening ability by the means of a…

  1. Using lice to identify cowbird hosts

    USGS Publications Warehouse

    Hahn, D.C.; Osenton, P.C.; Price, R.W.

    1995-01-01

    Avian lice may link fledgling Brown-headed Cowbirds to the host species that raised them. Lice, if host-specific and transferred to nestling cowbirds, could serve to identify the principal host species raising cowbirds in a local area. This approach of trapping cowbird fledglings in a feeding flock, then collecting and identifying the lice they carry is economical. The alternative requires a team of people to locate large numbers of parasitized host nests. We trapped 250 cowbird fledglings during June-August 1994 on Patuxent Research Center, and from them we collected 426 lice identified as representing 6 genera and 12 species. We. also collected and identified 347 lice from 30 known host species that were mist-netted on our Center. The lice found on cowbird fledglings in this population can be linked to Wood Thrush, Red-eyed Vireo, Common Yellowthroat, Rufous-sided Towhee, Red-winged Blackbird, Common Grackle, Song Sparrow, Field Sparrow, and Tree sparrow, based on this study and also on published reports.

  2. Publications - PIR 2015-5-3 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS PIR 2015-5-3 Publication Details Title: Preliminary investigation of fracture populations in , Preliminary investigation of fracture populations in Mesozoic strata of the Cook Inlet forearc basin: Iniskin

  3. 17 CFR 45.6 - Legal entity identifiers

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Legal entity identifiers 45.6... RECORDKEEPING AND REPORTING REQUIREMENTS § 45.6 Legal entity identifiers Each counterparty to any swap subject... reporting pursuant to this part by means of a single legal entity identifier as specified in this section...

  4. EZID: Long term identifiers made easy (Invited)

    NASA Astrophysics Data System (ADS)

    Starr, J.

    2013-12-01

    Scholarly research is producing ever increasing amounts of digital research data, and this data should be managed throughout the research life cycle both as part of good scientific practice, but also to comply with funder mandates, such as the 2013 OSTP Public Access Memo (http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf). By assigning unique and persistent identifiers to data objects, data managers can gain control and flexibility over what can be a daunting task. This is due to the fact that the objects can be moved to new locations without disruption to links, as long as the identifier target is maintained. EZID is a tool that makes assigning and maintaining unique, persistent identifiers easy. It was designed and built by California Digital Library (CDL) and has both a user interface and a RESTful API. EZID currently offers services for two globally unique, persistent identifier schemes: Digital Object Identifiers (DOIs) and Archival Resource Keys (ARKs). DOIs are identifiers originating from the publishing world and are in widespread use for journal articles. CDL is able to offer DOIs because of being a founding member of DataCite (http://www.datacite.org/), an international consortium established to provide easier access to scientific research data on the Internet. ARKs are identifiers originating from the library, archive and museum community. Like DOIs, they become persistent when the objects and identifier forwarding information is maintained. DOIs and ARKs have a key role in data management and, therefore, in data management plans. DOIs are the recommended identifier for use in data citation, and ARKs provide the maximum flexibility needed for data documentation and management throughout the early phases of a project. The two identifier schemes are able to be used together, and EZID is made to work with both. EZID clients, coming from education, research, government, and the private sector, are utilizing the

  5. Geologic map of the Glen Canyon Dam 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Priest, Susan S.

    2013-01-01

    The Glen Canyon Dam 30’ x 60’ quadrangle is characterized by nearly flat lying to gently dipping Paleozoic and Mesozoic sedimentary strata that overlie tilted Proterozoic strata or metasedimentary and igneous rocks similar to those exposed at the bottom of Grand Canyon southwest of the quadrangle. Mississippian to Permian rocks are exposed in the walls of Marble Canyon; Permian strata and minor outcrops of Triassic strata form the surface bedrock of House Rock Valley and Marble Plateau, southwestern quarter of the quadrangle. The Paleozoic strata exposed in Marble Canyon and Grand Canyon south of the map are likely present in the subsurface of the entire quadrangle but with unknown facies and thickness changes. The Mesozoic sedimentary rocks exposed along the Vermilion and Echo Cliffs once covered the entire quadrangle, but Cenozoic erosion has removed most of these rocks from House Rock Valley and Marble Plateau areas. Mesozoic strata remain over much of the northern and eastern portions of the quadrangle where resistant Jurassic sandstone units form prominent cliffs, escarpments, mesas, buttes, and much of the surface bedrock of the Paria, Kaibito, and Rainbow Plateaus. Jurassic rocks in the northeastern part of quadrangle are cut by a sub-Cretaceous regional unconformity that bevels the Entrada Sandstone and Morrison Formation from Cummings Mesa southward to White Mesa near Kaibito. Quaternary deposits, mainly eolian, mantle much of the Paria, Kaibito, and Rainbow Plateaus in the northern and northeastern portion of the quadrangle. Alluvial deposits are widely distributed over parts of House Rock Valley and Marble Plateau in the southwest quarter of the quadrangle. The east-dipping strata of the Echo Cliffs Monocline forms a general north-south structural boundary through the central part of the quadrangle, separating Marble and Paria Plateaus west of the monocline from the Kaibito Plateau east of the monocline. The Echo Cliffs Monocline continues north of

  6. Geologic map of the Tuba City 30' x 60' quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Stoffer, Philip W.; Priest, Susan S.

    2012-01-01

    The Tuba City 30’ x 60’ quadrangle encompasses approximately 5,018 km² (1,920 mi²) within Coconino County, northern Arizona. It is characterized by nearly flat lying to gently dipping sequences of Paleozoic and Mesozoic strata that overly tilted Precambrian strata or metasedimentary and igneous rocks that are exposed at the bottom of Grand Canyon. The Paleozoic rock sequences from Cambrian to Permian age are exposed in the walls of Grand Canyon, Marble Canyon, and Little Colorado River Gorge. Mesozoic sedimentary rocks are exposed in the eastern half of the quadrangle where resistant sandstone units form cliffs, escarpments, mesas, and local plateaus. A few Miocene volcanic dikes intrude Mesozoic rocks southwest, northwest, and northeast of Tuba City, and Pleistocene volcanic rocks representing the northernmost extent of the San Francisco Volcanic Field are present at the south-central edge of the quadrangle. Quaternary deposits mantle much of the Mesozoic rocks in the eastern half of the quadrangle and are sparsely scattered in the western half. Principal folds are the north-south-trending, east-dipping Echo Cliffs Monocline and the East Kaibab Monocline. The East Kaibab Monocline elevates the Kaibab, Walhalla, and Coconino Plateaus and parts of Grand Canyon. Grand Canyon erosion has exposed the Butte Fault beneath the east Kaibab Monocline, providing a window into the structural complexity of monoclines in this part of the Colorado Plateau. Rocks of Permian and Triassic age form the surface bedrock of Marble Plateau and House Rock Valley between the East Kaibab and Echo Cliffs Monoclines. The Echo Cliffs Monocline forms a structural boundary between the Marble Plateau to the west and the Kaibito and Moenkopi Plateaus to the east. Jurassic rocks of the Kaibito and Moenkopi Plateaus are largely mantled by extensive eolian sand deposits. A small part of the northeast-dipping Red Lake Monocline is present in the northeast corner of the quadrangle. A broad and

  7. Constraining lithospheric removal and asthenospheric input to melts in Central Asia: A geochemical study of Triassic to Cretaceous magmatic rocks in the Gobi Altai (Mongolia)

    NASA Astrophysics Data System (ADS)

    Sheldrick, Thomas C.; Barry, Tiffany L.; Van Hinsbergen, Douwe J. J.; Kempton, Pamela D.

    2018-01-01

    Throughout northeast China, eastern and southern Mongolia, and eastern Russia there is widespread Mesozoic intracontinental magmatism. Extensive studies on the Chinese magmatic rocks have suggested lithospheric mantle removal was a driver of the magmatism. The timing, distribution and potential diachroneity of such lithospheric mantle removal remains poorly constrained. Here, we examine successions of Mesozoic lavas and shallow intrusive volcanic plugs from the Gobi Altai in southern Mongolia that appear to be unrelated to regional, relatively small-scale deformation; at the time of magmatism, the area was 200 km from any active margin, or, after its Late Jurassic-Early Cretaceous closure, from the suture of the Mongol-Okhotsk Ocean. 40Ar/39Ar radiometric age data place magmatic events in the Gobi Altai between 220 to 99.2 Ma. This succession overlaps Chinese successions and therefore provides an opportunity to constrain whether Mesozoic lithosphere removal may provide an explanation for the magmatism here too, and if so, when. We show that Triassic to Lower Cretaceous lavas in the Gobi Altai (from Dulaan Bogd, Noyon Uul, Bulgantiin Uul, Jaran Bogd and Tsagaan Tsav) are all light rare-earth element (LREE) and large-ion lithophile element (LILE)-enriched, with negative Nb and Ta anomalies (Nb/La and Ta/La ≤ 1). Geochemical data suggest that these lavas formed by low degrees of partial melting of a metasomatised lithospheric mantle that may have been modified by melts derived from recycled rutile-bearing eclogite. A gradual reduction in the involvement of garnet in the source of these lavas points towards a shallowing of the depth of melting after 125 Ma. By contrast, geochemical and isotope data from the youngest magmatic rocks in the area - 107-99 Ma old volcanic plugs from Tsost Magmatic Field - have OIB-like trace element patterns and are interpreted to have formed by low degrees of partial melting of a garnet-bearing lherzolite mantle source. These rocks did

  8. Significance of zircon U-Pb ages from the Pescadero felsite, west-central California coast ranges

    USGS Publications Warehouse

    McLaughlin, Robert J.; Moore, Diane E.; ,; Martens, UWE C.; Clark, J.C.

    2011-01-01

    Weathered felsite is associated with the late Campanian–Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio–Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ∼185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ± prehnite ± laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefly Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86–90 Ma. Reflecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio–Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ∼100 km to the east in the Diablo Range–San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper

  9. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous

  10. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen

    NASA Astrophysics Data System (ADS)

    Cao, Kai; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Zhang, Ke-Xin

    2015-12-01

    How and when the northwestern Tibetan Plateau originated and developed upon pre-existing crustal and topographic features is not well understood. To address this question, we present an integrated analysis of detrital zircon U-Pb and fission-track double dating of Cenozoic synorogenic sediments from the Kekeya and Sanju sections in the southwestern Tarim Basin. These data help establishing a new chronostratigraphic framework for the Sanju section and confirm a recent revision of the chronostratigraphy at Kekeya. Detrital zircon fission-track ages present prominent Triassic-Early Jurassic (∼250-170 Ma) and Early Cretaceous (∼130-100 Ma) static age peaks, and Paleocene-Early Miocene (∼60-21 Ma) to Eocene-Late Miocene (∼39-7 Ma) moving age peaks, representing source exhumation. Triassic-Early Jurassic static peak ages document unroofing of the Kunlun terrane, probably related to the subduction of Paleotethys oceanic lithosphere. In combination with the occurrence of synorogenic sediments on both flanks of the Kunlun terrane, these data suggest that an ancient West Kunlun range had emerged above sea level by Triassic-Early Jurassic times. Early Cretaceous fission-track peak ages are interpreted to document exhumation related to thrusting along the Tam Karaul fault, kinematically correlated to the Main Pamir thrust further west. Widespread Middle-Late Mesozoic crustal shortening and thickening likely enhanced the Early Mesozoic topography. Paleocene-Early Eocene fission-track peak ages are presumably partially reset. Limited regional exhumation indicates that the Early Cenozoic topographic and crustal pattern of the West Kunlun may be largely preserved from the Middle-Late Mesozoic. The Main Pamir-Tam Karaul thrust belt could be a first-order tectonic feature bounding the northwestern margin of the Middle-Late Mesozoic to Early Cenozoic Tibetan Plateau. Toward the Tarim basin, Late Oligocene-Early Miocene steady exhumation at a rate of ∼0.9 km/Myr is likely

  11. Ability of Slovakian Pupils to Identify Birds

    ERIC Educational Resources Information Center

    Prokop, Pavol; Rodak, Rastislav

    2009-01-01

    A pupil's ability to identify common organisms is necessary for acquiring further knowledge of biology. We investigated how pupils were able to identify 25 bird species following their song, growth habits, or both features presented simultaneously. Just about 19% of birds were successfully identified by song, about 39% by growth habit, and 45% of…

  12. Fallon, Nevada FORGE 3D Geologic Model

    DOE Data Explorer

    Blankenship, Doug; Siler, Drew

    2018-03-01

    The 3D geologic model for the Fallon for site was constructed in EarthVision software using methods similar to (Moeck et al., 2009, 2010; Faulds et al., 2010b; Jolie et al., 2012, 2015; Hinz et al., 2013a; Siler and Faulds, 2013; Siler et al., 2016a, b) - References are included in archive. The model contains 48 faults (numbered 1-48), and 4 stratigraphic surfaces from oldest to youngest (1) undivided Mesozoic basement, consisting of Mesozoic metasedimentary, metavolcanic, and plutonic units (Mzu); (2) Miocene volcanic and interbedded sedimentary rocks, consisting primarily of basaltic and basaltic andesite lava flows (Tvs); and (3) late Miocene to Pliocene (i.e., Neogene) undivided sedimentary rocks (Ns); and (4) Quaternary sediments (Qs). The two files contain points that describe nodes along the fault surfaces and stratigraphic horizons.

  13. Aerial radiometric and magnetic reconnaissance survey of the Eagle--Dillingham area, Alaska, Mt. Hayes Quadrangle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-06-01

    The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Mt. Hayes Quadrangle, Alaska, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed two uranium anomalies worthy of field checking as possible prospects. One is located near Mesozoic granite, which is believed to have the best potential for future economic uranium deposits. Another uranium anomaly is associated with Paleozoic-Precambrian rocks and may be caused by augen gneiss or possibly granitic intrusives. Two weakly uraniferous provinces merit study: one in the northwest, which maymore » be related to the Tertiary-Cretaceous coal-bearing unit, and a second in the northeast, which may be related to Mesozoic granites.« less

  14. A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.

    2017-02-01

    This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.

  15. Metadata, Identifiers, and Physical Samples

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Lenhardt, W. C.; Hills, D. J.; Jenkyns, R.; Stroker, K. J.; Todd, N. S.; Dassie, E. P.; Bowring, J. F.

    2016-12-01

    Physical samples are integral to much of the research conducted by geoscientists. The samples used in this research are often obtained at significant cost and represent an important investment for future research. However, making information about samples - whether considered data or metadata - available for researchers to enable discovery is difficult: a number of key elements related to samples are difficult to characterize in common ways, such as classification, location, sample type, sampling method, repository information, subsample distribution, and instrumentation, because these differ from one domain to the next. Unifying these elements or developing metadata crosswalks is needed. The iSamples (Internet of Samples) NSF-funded Research Coordination Network (RCN) is investigating ways to develop these types of interoperability and crosswalks. Within the iSamples RCN, one of its working groups, WG1, has focused on the metadata related to physical samples. This includes identifying existing metadata standards and systems, and how they might interoperate with the International Geo Sample Number (IGSN) schema (schema.igsn.org) in order to help inform leading practices for metadata. For example, we are examining lifecycle metadata beyond the IGSN `birth certificate.' As a first step, this working group is developing a list of relevant standards and comparing their various attributes. In addition, the working group is looking toward technical solutions to facilitate developing a linked set of registries to build the web of samples. Finally, the group is also developing a comparison of sample identifiers and locators. This paper will provide an overview and comparison of the standards identified thus far, as well as an update on the technical solutions examined for integration. We will discuss how various sample identifiers might work in complementary fashion with the IGSN to more completely describe samples, facilitate retrieval of contextual information, and

  16. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    NASA Astrophysics Data System (ADS)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  17. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Geologic maps of four test sites were compiled at 1/250,000. Band 7 prints enlarged to 1/500,000 scale are the best for the purpose, and negative prints provide a valuable supplement. More than 100 mapped lineaments represent most of the major faults of the area and a large number of suspected faults, including many of northeast trend. Under ideal conditions dip slopes may be recognized, laccoliths outlined, and axial traces drawn for narrow, plunging folds. Use of ERTS-1 imagery will greatly facilitate construction of a needed tectonic map of Montana. From ERTS-1 imagery alone, it was possible to identify up-turned undivided Paleozoic and Mesozoic strata and to map the boundaries of mountain glaciation, intermontane basins, a volcanic field, and an area of granitic rocks. It was also possible to outline clay pans associated with bentonite. However, widespread recognition of gross rock types will be difficult.

  18. 26 CFR 41.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Identifying numbers. 41.6109-1 Section 41.6109... Application to Tax On Use of Certain Highway Motor Vehicles § 41.6109-1 Identifying numbers. Every person required under § 41.6011(a)-1 to make a return must provide the identifying number required by the...

  19. 26 CFR 41.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Identifying numbers. 41.6109-1 Section 41.6109-1... Application to Tax On Use of Certain Highway Motor Vehicles § 41.6109-1 Identifying numbers. Every person required under § 41.6011(a)-1 to make a return must provide the identifying number required by the...

  20. 26 CFR 41.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Identifying numbers. 41.6109-1 Section 41.6109... Application to Tax On Use of Certain Highway Motor Vehicles § 41.6109-1 Identifying numbers. Every person required under § 41.6011(a)-1 to make a return must provide the identifying number required by the...

  1. 26 CFR 41.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Identifying numbers. 41.6109-1 Section 41.6109... Application to Tax On Use of Certain Highway Motor Vehicles § 41.6109-1 Identifying numbers. Every person required under § 41.6011(a)-1 to make a return must provide the identifying number required by the...

  2. Identifiability of PBPK Models with Applications to ...

    EPA Pesticide Factsheets

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why they occur. We particularly focus on how the mathematical structure of a PBPK model and lack of appropriate data can lead to statistical models in which it is impossible to estimate at least some parameters precisely. Methods are reviewed which can determine whether a purely linear PBPK model is globally identifiable. We propose a theorem which determines when identifiability at a set of finite and specific values of the mathematical PBPK model (global discrete identifiability) implies identifiability of the statistical model. However, we are unable to establish conditions that imply global discrete identifiability, and conclude that the only safe approach to analysis of PBPK models involves Bayesian analysis with truncated priors. Finally, computational issues regarding posterior simulations of PBPK models are discussed. The methodology is very general and can be applied to numerous PBPK models which can be expressed as linear time-invariant systems. A real data set of a PBPK model for exposure to dimethyl arsinic acid (DMA(V)) is presented to illustrate the proposed methodology. We consider statistical analy

  3. Solid tags for identifying failed reactor components

    DOEpatents

    Bunch, Wilbur L.; Schenter, Robert E.

    1987-01-01

    A solid tag material which generates stable detectable, identifiable, and measurable isotopic gases on exposure to a neutron flux to be placed in a nuclear reactor component, particularly a fuel element, in order to identify the reactor component in event of its failure. Several tag materials consisting of salts which generate a multiplicity of gaseous isotopes in predetermined ratios are used to identify different reactor components.

  4. Structural Identifiability of Dynamic Systems Biology Models

    PubMed Central

    Villaverde, Alejandro F.

    2016-01-01

    A powerful way of gaining insight into biological systems is by creating a nonlinear differential equation model, which usually contains many unknown parameters. Such a model is called structurally identifiable if it is possible to determine the values of its parameters from measurements of the model outputs. Structural identifiability is a prerequisite for parameter estimation, and should be assessed before exploiting a model. However, this analysis is seldom performed due to the high computational cost involved in the necessary symbolic calculations, which quickly becomes prohibitive as the problem size increases. In this paper we show how to analyse the structural identifiability of a very general class of nonlinear models by extending methods originally developed for studying observability. We present results about models whose identifiability had not been previously determined, report unidentifiabilities that had not been found before, and show how to modify those unidentifiable models to make them identifiable. This method helps prevent problems caused by lack of identifiability analysis, which can compromise the success of tasks such as experiment design, parameter estimation, and model-based optimization. The procedure is called STRIKE-GOLDD (STRuctural Identifiability taKen as Extended-Generalized Observability with Lie Derivatives and Decomposition), and it is implemented in a MATLAB toolbox which is available as open source software. The broad applicability of this approach facilitates the analysis of the increasingly complex models used in systems biology and other areas. PMID:27792726

  5. Distributed design approach in persistent identifiers systems

    NASA Astrophysics Data System (ADS)

    Golodoniuc, Pavel; Car, Nicholas; Klump, Jens

    2017-04-01

    The need to identify both digital and physical objects is ubiquitous in our society. Past and present persistent identifier (PID) systems, of which there is a great variety in terms of technical and social implementations, have evolved with the advent of the Internet, which has allowed for globally unique and globally resolvable identifiers. PID systems have catered for identifier uniqueness, integrity, persistence, and trustworthiness, regardless of the identifier's application domain, the scope of which has expanded significantly in the past two decades. Since many PID systems have been largely conceived and developed by small communities, or even a single organisation, they have faced challenges in gaining widespread adoption and, most importantly, the ability to survive change of technology. This has left a legacy of identifiers that still exist and are being used but which have lost their resolution service. We believe that one of the causes of once successful PID systems fading is their reliance on a centralised technical infrastructure or a governing authority. Golodoniuc et al. (2016) proposed an approach to the development of PID systems that combines the use of (a) the Handle system, as a distributed system for the registration and first-degree resolution of persistent identifiers, and (b) the PID Service (Golodoniuc et al., 2015), to enable fine-grained resolution to different information object representations. The proposed approach solved the problem of guaranteed first-degree resolution of identifiers, but left fine-grained resolution and information delivery under the control of a single authoritative source, posing risk to the long-term availability of information resources. Herein, we develop these approaches further and explore the potential of large-scale decentralisation at all levels: (i) persistent identifiers and information resources registration; (ii) identifier resolution; and (iii) data delivery. To achieve large-scale decentralisation

  6. Embedded sensor having an identifiable orientation

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2002-01-01

    An apparatus and method is described wherein a sensor, such as a mechanical strain sensor, embedded in a fiber core, is "flagged" to identify a preferred orientation of the sensor. The identifying "flag" is a composite material, comprising a plurality of non-woven filaments distributed in a resin matrix, forming a small planar tab. The fiber is first subjected to a stimulus to identify the orientation providing the desired signal response, and then sandwiched between first and second layers of the composite material. The fiber, and therefore, the sensor orientation is thereby captured and fixed in place. The process for achieving the oriented fiber includes, after identifying the fiber orientation, carefully laying the oriented fiber onto the first layer of composite, moderately heating the assembled layer for a short period in order to bring the composite resin to a "tacky" state, heating the second composite layer as the first, and assembling the two layers together such that they merge to form a single consolidated block. The consolidated block achieving a roughly uniform distribution of composite filaments near the embedded fiber such that excess resin is prevented from "pooling" around the periphery of the fiber.

  7. Scalable persistent identifier systems for dynamic datasets

    NASA Astrophysics Data System (ADS)

    Golodoniuc, P.; Cox, S. J. D.; Klump, J. F.

    2016-12-01

    Reliable and persistent identification of objects, whether tangible or not, is essential in information management. Many Internet-based systems have been developed to identify digital data objects, e.g., PURL, LSID, Handle, ARK. These were largely designed for identification of static digital objects. The amount of data made available online has grown exponentially over the last two decades and fine-grained identification of dynamically generated data objects within large datasets using conventional systems (e.g., PURL) has become impractical. We have compared capabilities of various technological solutions to enable resolvability of data objects in dynamic datasets, and developed a dataset-centric approach to resolution of identifiers. This is particularly important in Semantic Linked Data environments where dynamic frequently changing data is delivered live via web services, so registration of individual data objects to obtain identifiers is impractical. We use identifier patterns and pattern hierarchies for identification of data objects, which allows relationships between identifiers to be expressed, and also provides means for resolving a single identifier into multiple forms (i.e. views or representations of an object). The latter can be implemented through (a) HTTP content negotiation, or (b) use of URI querystring parameters. The pattern and hierarchy approach has been implemented in the Linked Data API supporting the United Nations Spatial Data Infrastructure (UNSDI) initiative and later in the implementation of geoscientific data delivery for the Capricorn Distal Footprints project using International Geo Sample Numbers (IGSN). This enables flexible resolution of multi-view persistent identifiers and provides a scalable solution for large heterogeneous datasets.

  8. Identifying and Managing Risk.

    ERIC Educational Resources Information Center

    Abraham, Janice M.

    1999-01-01

    The role of the college or university chief financial officer in institutional risk management is (1) to identify risk (physical, casualty, fiscal, business, reputational, workplace safety, legal liability, employment practices, general liability), (2) to develop a campus plan to reduce and control risk, (3) to transfer risk, and (4) to track and…

  9. Psychosocial counselling of identifiable sperm donors.

    PubMed

    Visser, M; Mochtar, M H; de Melker, A A; van der Veen, F; Repping, S; Gerrits, T

    2016-05-01

    What do identifiable sperm donors feel about psychosocial counselling? Identifiable sperm donors found it important that psychosocial counselling focused on emotional consequences and on rules and regulations and they expected to have access to psychosocial counselling at the time that donor-offspring actually sought contact. Most studies on sperm donors are on anonymous donors and focus on recruitment, financial compensation, anonymity and motivations. There is limited knowledge on the value that identifiable sperm donors place on psychosocial counselling and what their needs are in this respect. We performed a qualitative study from March until June 2014 with 25 identifiable sperm donors, who were or had been a donor at the Centre for Reproductive Medicine of the Academic Medical Centre in Amsterdam any time between 1989 and 2014. We held semi-structured in-depth interviews with identifiable sperm donors with an average age of 44 years. The interviews were fully transcribed and analysed using the constant comparative method of grounded theory. Twelve out of 15 donors (former donors ITALIC! n = 8, active donors ITALIC! n = 7) who had received a counselling session during their intake procedure found it important that they had been able to talk about issues such as the emotional consequences of donation, disclosure to their own children, family and friends, future contact with donor-offspring and rules and regulations. Of the 10 former donors who had received no counselling session, 8 had regretted the lack of intensive counselling. In the years following their donation, most donors simply wanted to know how many offspring had been born using their sperm and had no need for further counselling. Nevertheless, they frequently mentioned that they were concerned about the well-being of 'their' offspring. In addition, they would value the availability of psychosocial counselling in the event that donor-offspring actually sought contact. A limitation of our study is its

  10. Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau: Constraints from detrital zircon U-Pb ages and fission-track ages of the Triassic sedimentary sequence

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Zhang, Yunpeng; Tong, Lili

    2018-01-01

    The Zoige depression is an important depocenter within the northeast Songpan-Ganzi flysch basin, which is bounded by the South China, North China and Qiangtang Blocks and forms the northeastern margin of the Tibetan Plateau. This paper discusses the sediment provenance and Mesozoic-Cenozoic evolution of the Zoige depression in the Songpan-Ganzi flysch basin, eastern Tibetan Plateau, using the detrital zircon U-Pb ages and apatite fission-track data from the Middle to Late Triassic sedimentary rocks in the area. The U-Pb ages of the Middle to Late Triassic zircons range from 260-280 Ma, 429-480 Ma, 792-974 Ma and 1800-2500 Ma and represent distinct source region. Our new results demonstrate that the detritus deposited during the Middle Triassic (Ladinian, T2zg) primarily originated from the Eastern Kunlun and North Qinling Orogens, with lesser contributions from the North China Block. By the Late Triassic (early Carnian, T3z), the materials at the southern margin of the North China Block were generally transported westward to the basin along a river network that flowed through the Qinling region between the North China and South China Blocks: this interpretation is supported by the predominance of the bimodal distribution of 1.8 Ga and 2.5 Ga age peaks and a lack of significant Neoproterozoic zircon. Since the Late Triassic (middle Carnian, T3zh), considerable changes have occurred in the source terranes, such as the cessation of the Eastern Kunlun Orogen and North China Block sources and the rise of the northwestern margin of the Yangtze Block and South Qinling Orogen. These drastic changes are compatible with a model of a sustained westward collision between the South China and North China Blocks during the late Triassic and the clockwise rotation of the South China Block progressively closed the basin. Subsequently, orogeny-associated folds have formed in the basin since the Late Triassic (late Carnian), and the study area was generally subjected to uplifting and

  11. An alternative plate tectonic model for the Palaeozoic Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand Burma)

    NASA Astrophysics Data System (ADS)

    Ferrari, O. M.; Hochard, C.; Stampfli, G. M.

    2008-04-01

    An alternative model for the geodynamic evolution of Southeast Asia is proposed and inserted in a modern plate tectonic model. The reconstruction methodology is based on dynamic plate boundaries, constrained by data such as spreading rates and subduction velocities; in this way it differs from classical continental drift models proposed so far. The different interpretations about the location of the Palaeotethys suture in Thailand are revised, the Tertiary Mae Yuam fault is seen as the emplacement of the suture. East of the suture we identify an Indochina derived terrane for which we keep the name Shan-Thai, formerly used to identify the Cimmerian block present in Southeast Asia, now called Sibumasu. This nomenclatural choice was made on the basis of the geographic location of the terrane (Eastern Shan States in Burma and Central Thailand) and in order not to introduce new confusing terminology. The closure of the Eastern Palaeotethys is related to a southward subduction of the ocean, that triggered the Eastern Neotethys to open as a back-arc, due to the presence of Late Carboniferous-Early Permian arc magmatism in Mergui (Burma) and in the Lhasa block (South Tibet), and to the absence of arc magmatism of the same age East of the suture. In order to explain the presence of Carboniferous-Early Permian and Permo-Triassic volcanic arcs in Cambodia, Upper Triassic magmatism in Eastern Vietnam and Lower Permian-Middle Permian arc volcanites in Western Sumatra, we introduce the Orang Laut terranes concept. These terranes were detached from Indochina and South China during back-arc opening of the Poko-Song Ma system, due to the westward subduction of the Palaeopacific. This also explains the location of the Cathaysian West Sumatra block to the West of the Cimmerian Sibumasu block.

  12. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model

    PubMed Central

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-01-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  13. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    PubMed

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  14. Preliminary assessment of a Cretaceous-Paleogene Atlantic passive margin, Serrania del Interior and Central Ranges, Venezuela/Trinidad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pindell, J.L.; Drake, C.L.; Pitman, W.C.

    1991-03-01

    For several decades, Cretaceous arc collision was assumed along northern Venezuela based on isotopic ages of metamorphic minerals. From subsidence histories in Venezuelan/Trinidadian basins, however, it is now clear that the Cretaceous metamorphic rocks were emplaced southeastward as allochthons above an autochthonous suite of rocks in the Cenozoic, and that the pre-Cenozoic autochthonous rocks represent a Mesozoic passive margin. The passive margin rocks have been metamorphosed separately during overthrusting by the allochthons in central Venezuela, but they are uplifted but not significantly metamorphosed in Eastern Venezuela and Trinidad. There, in the Serrania del Interior and Central Ranges of Venezuela/Trinidad, Mesozoic-Paleogenemore » passive margin sequences were uplifted in Neogene time, when the Caribbean Plate arrived from the west and transpressionally inverted the passive margin. Thus, this portion of South America's Atlantic margin subsided thermally without tectonism from Jurassic to Eocene time, and these sections comprise the only Mesozoic-Cenozoic truly passive Atlantic margin in the Western Hemisphere that is now exposed for direct study. Direct assessments of sedimentological, depositional and faunal features indicative of, and changes in, water depth for Cretaceous and Paleogene time may be made here relative to a thermally subsiding passive margin without the complications of tectonism. Work is underway, and preliminary assessments presented here suggest that sea level changes of Cretaceous-Paleogene time are not as pronounced as the frequent large and rapid sea level falls and rises that are promoted by some.« less

  15. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms

    PubMed Central

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies. PMID:28484485

  16. Evolution of Lower Brachyceran Flies (Diptera) and Their Adaptive Radiation with Angiosperms.

    PubMed

    Zhang, Qingqing; Wang, Bo

    2017-01-01

    The Diptera (true flies) is one of the most species-abundant orders of Insecta, and it is also among the most important flower-visiting insects. Dipteran fossils are abundant in the Mesozoic, especially in the Late Jurassic and Early Cretaceous. Here, we review the fossil record and early evolution of some Mesozoic lower brachyceran flies together with new records in Burmese amber, including Tabanidae, Nemestrinidae, Bombyliidae, Eremochaetidae, and Zhangsolvidae. The fossil records reveal that some flower-visiting groups had diversified during the mid-Cretaceous, consistent with the rise of angiosperms to widespread floristic dominance. These brachyceran groups played an important role in the origin of co-evolutionary relationships with basal angiosperms. Moreover, the rise of angiosperms not only improved the diversity of flower-visiting flies, but also advanced the turnover and evolution of other specialized flies.

  17. Identifying Breast Cancer Oncogenes

    DTIC Science & Technology

    2010-10-01

    08-1-0767 TITLE: Identifying Breast Cancer Oncogenes PRINCIPAL INVESTIGATOR: Yashaswi Shrestha... Breast Cancer Oncogenes 5a. CONTRACT NUMBER W81XWH-08-1-0767 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yashaswi...SUPPLEMENTARY NOTES 14. ABSTRACT Breast cancer is attributed to genetic alterations, the majority of which are yet to be characterized. Oncogenic

  18. A technique for extracting Radiolaria from radiolarian cherts.

    NASA Technical Reports Server (NTRS)

    Pessagno, E. A., Jr.; Newport, R. L.

    1972-01-01

    Differential solution of Mesozoic radiolarian cherts with hydrofluoric acid has yielded well-preserved, matrix-free Radiolaria. This technique allows the full utilization of Radiolaria in interpreting the stratigraphy of ophiolite sequences and of other successions where cherts are prevalent.

  19. Major Oil Plays In Utah And Vicinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Chidsey

    2007-12-31

    the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek

  20. 28 CFR 22.21 - Use of identifiable data.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATISTICAL INFORMATION § 22.21 Use of identifiable data. Research or statistical information identifiable to a private person may be used only for research or statistical purposes. ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Use of identifiable data. 22.21 Section...

  1. Uniform resolution of compact identifiers for biomedical data

    PubMed Central

    Wimalaratne, Sarala M.; Juty, Nick; Kunze, John; Janée, Greg; McMurry, Julie A.; Beard, Niall; Jimenez, Rafael; Grethe, Jeffrey S.; Hermjakob, Henning; Martone, Maryann E.; Clark, Tim

    2018-01-01

    Most biomedical data repositories issue locally-unique accessions numbers, but do not provide globally unique, machine-resolvable, persistent identifiers for their datasets, as required by publishers wishing to implement data citation in accordance with widely accepted principles. Local accessions may however be prefixed with a namespace identifier, providing global uniqueness. Such “compact identifiers” have been widely used in biomedical informatics to support global resource identification with local identifier assignment. We report here on our project to provide robust support for machine-resolvable, persistent compact identifiers in biomedical data citation, by harmonizing the Identifiers.org and N2T.net (Name-To-Thing) meta-resolvers and extending their capabilities. Identifiers.org services hosted at the European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), and N2T.net services hosted at the California Digital Library (CDL), can now resolve any given identifier from over 600 source databases to its original source on the Web, using a common registry of prefix-based redirection rules. We believe these services will be of significant help to publishers and others implementing persistent, machine-resolvable citation of research data. PMID:29737976

  2. Scientometric methods for identifying emerging technologies

    DOEpatents

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T

    2015-11-03

    Provided is a method of generating a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial application. During the period of innovation and technology transfer, the impact of scholarly works, patents and on-line web news sources are identified. As trends develop, currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct and separate searchable on-line networked sources (i.e., scholarly publications and citation, worldwide patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the example subject domain.

  3. 28 CFR 22.22 - Revelation of identifiable data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Revelation of identifiable data. 22.22 Section 22.22 Judicial Administration DEPARTMENT OF JUSTICE CONFIDENTIALITY OF IDENTIFIABLE RESEARCH AND STATISTICAL INFORMATION § 22.22 Revelation of identifiable data. (a) Except as noted in paragraph (b) of this...

  4. Terrestrial invertebrates in the Rhynie chert ecosystem.

    PubMed

    Dunlop, Jason A; Garwood, Russell J

    2018-02-05

    The Early Devonian Rhynie and Windyfield cherts remain a key locality for understanding early life and ecology on land. They host the oldest unequivocal nematode worm (Nematoda), which may also offer the earliest evidence for herbivory via plant parasitism. The trigonotarbids (Arachnida: Trigonotarbida) preserve the oldest book lungs and were probably predators that practiced liquid feeding. The oldest mites (Arachnida: Acariformes) are represented by taxa which include mycophages and predators on nematodes today. The earliest harvestman (Arachnida: Opiliones) includes the first preserved tracheae, and male and female genitalia. Myriapods are represented by a scutigeromorph centipede (Chilopoda: Scutigeromorpha), probably a cursorial predator on the substrate, and a putative millipede (Diplopoda). The oldest springtails (Hexapoda: Collembola) were probably mycophages, and another hexapod of uncertain affinities preserves a gut infill of phytodebris. The first true insects (Hexapoda: Insecta) are represented by a species known from chewing (non-carnivorous?) mandibles. Coprolites also provide insights into diet, and we challenge previous assumptions that several taxa were spore-feeders. Rhynie appears to preserve a largely intact community of terrestrial animals, although some expected groups are absent. The known fossils are (ecologically) consistent with at least part of the fauna found around modern Icelandic hot springs.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Author(s).

  5. To identify or not to identify parathyroid glands during total thyroidectomy.

    PubMed

    Chang, Yuk Kwan; Lang, Brian H H

    2017-12-01

    Hypoparathyroidism is one of the most common complications after total thyroidectomy and may impose a significant burden to both the patient and clinician. The extent of thyroid resection, surgical techniques, concomitant central neck dissection, parathyroid gland (PG) autotransplantation and inadvertent parathyroidectomy have long been some of the risk factors for postoperative hypoparathyroidism. Although routine identification of PGs has traditionally been advocated by surgeons, recent evidence has suggested that perhaps identifying fewer number of in situ PGs during surgery (i.e., selective identification) may further lower the risk of hypoparathyroidism. One explanation is that visual identification may often lead to subtle damages to the nearby blood supply of the in situ PGs and that may increase the risk of hypoparathyroidism. However, it is worth highlighting the current literature supporting either approach (i.e., routine vs. selective) remains scarce and because of the significant differences in study design, inclusions, definitions and management protocol between studies, a pooled analysis on this important but controversial topic remains an impossible task. Furthermore, it is worth nothing that identification of PGs does not equal safe preservation, as some studies demonstrated that it is not the number of PGs identified, but the number of PG preserved in situ that matters. Therefore a non-invasive, objective and reliable way to localize PGs and assess their viability intra-operatively is warranted. In this aspect, modern technology such as the indocyanine green (ICG) as near-infrared fluorescent dye for real-time in situ PG perfusion monitoring may have a potential role in the future.

  6. 12 CFR 210.27 - Reliance on identifying number.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 2 2012-01-01 2012-01-01 false Reliance on identifying number. 210.27 Section... J) Funds Transfers Through Fedwire § 210.27 Reliance on identifying number. (a) Reliance by a Federal Reserve Bank on number to identify an intermediary bank or beneficiary's bank. A Federal Reserve...

  7. Paleomagnetism of the Mesozoic in Alaska. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Packer, D. R.

    1972-01-01

    Over 400 oriented cores of Permian, Triassic, Jurassic, and Cretaceous sedimentary and igneous rocks were collected from 34 sites at 10 areas throughout southern Alaska. After magnetic cleaning in successively higher alternating fields 179 samples were considered to be stable and to give statistically consistent results within each site and age group. Due to the lack of a sufficient number of stable samples, the results from Permian, Triassic, and Cretaceous rocks were inconclusive. The nine remaining Jurassic sites represent 100 samples from three general areas in southern Alaska. The southern Alaskan Jurassic paleomagnetic pole is significantly different from the North American Jurassic pole. This suggests that since the Jurassic, southern Alaska must have moved approximately 18 degrees north and rotated 52 degrees clockwise to reach its present position. Tectonic interpretation of these results give a possible explanation for many of the geologic features observed in southern Alaska.

  8. Modeling the mesozoic-cenozoic structural evolution of east texas

    USGS Publications Warehouse

    Pearson, Ofori N.; Rowan, Elisabeth L.; Miller, John J.

    2012-01-01

    The U.S. Geological Survey (USGS) recently assessed the undiscovered technically recoverable oil and gas resources within Jurassic and Cretaceous strata of the onshore coastal plain and State waters of the U.S. Gulf Coast. Regional 2D seismic lines for key parts of the Gulf Coast basin were interpreted in order to examine the evolution of structural traps and the burial history of petroleum source rocks. Interpretation and structural modeling of seismic lines from eastern Texas provide insights into the structural evolution of this part of the Gulf of Mexico basin. Since completing the assessment, the USGS has acquired additional regional seismic lines in east Texas; interpretation of these new lines, which extend from the Texas-Oklahoma state line to the Gulf Coast shoreline, show how some of the region's prominent structural elements (e.g., the Talco and Mount Enterprise fault zones, the East Texas salt basin, and the Houston diapir province) vary along strike. The interpretations also indicate that unexplored structures may lie beneath the current drilling floor. Structural restorations based upon interpretation of these lines illustrate the evolution of key structures and show the genetic relation between structural growth and movement of the Jurassic Louann Salt. 1D thermal models that integrate kinetics and burial histories were also created for the region's two primary petroleum source rocks, the Oxfordian Smackover Formation and the Cenomanian-Turonian Eagle Ford Shale. Integrating results from the thermal models with the structural restorations provides insights into the distribution and timing of petroleum expulsion from the Smackover Formation and Eagle Ford Shale in eastern Texas.

  9. Evolution of viviparous reproduction in Paleozoic and Mesozoic reptiles.

    PubMed

    Blackburn, Daniel G; Sidor, Christian A

    2014-01-01

    Although viviparity (live-bearing reproduction) is widely distributed among lizards and snakes, it is entirely absent from other extant Reptilia and many extinct forms. However, paleontological evidence reveals that viviparity was present in at least nine nominal groups of pre-Cenozoic reptiles, representing a minimum of six separate evolutionary origins of this reproductive mode. Two viviparous clades (sauropterygians and ichthyopterygians) lasted more than 155 million years, a figure that rivals the duration of mammalian viviparity. Circumstantial evidence indicates that extinct viviparous reptiles had internal fertilization, amniotic fetal membranes, and placentas that sustained developing embryos via provision of respiratory gases, water, calcium, and possibly organic nutrients. Production of offspring via viviparity facilitated the invasion of marine habitats in at least five reptilian lineages. Thus, this pattern of embryonic development and reproduction was central to the ecology and evolution of these ancient animals, much as it is to numerous extant species of vertebrates.

  10. Mesozoic mammals from Arizona: new evidence on Mammalian evolution.

    PubMed

    Jenkins, F A; Crompton, A W; Downs, W R

    1983-12-16

    Knowledge of early mammalian evolution has been based on Old World Late Triassic-Early Jurassic faunas. The discovery of mammalian fossils of approximately equivalent age in the Kayenta Formation of northeastern Arizona gives evidence of greater diversity than known previously. A new taxon documents the development of an angular region of the jaw as a neomorphic process, and represents an intermediate stage in the origin of mammalian jaw musculature.

  11. The Misis-Andırın Complex: a Mid-Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey

    NASA Astrophysics Data System (ADS)

    Robertson, Alastair; Unlügenç, Ülvi Can; İnan, Nurdan; Ta ṡli, Kemal

    2004-01-01

    The Mid-Tertiary (Mid-Eocene to earliest Miocene) Misis-Andırın Complex documents tectonic-sedimentary processes affecting the northerly, active margin of the South Tethys (Neotethys) in the easternmost Mediterranean region. Each of three orogenic segments, Misis (in the SW), Andırın (central) and Engizek (in the NE) represent parts of an originally continuous active continental margin. A structurally lower Volcanic-Sedimentary Unit includes Late Cretaceous arc-related extrusives and their Lower Tertiary pelagic cover. This unit is interpreted as an Early Tertiary remnant of the Mesozoic South Tethys. The overlying melange unit is dominated by tectonically brecciated blocks (>100 m across) of Mesozoic neritic limestone that were derived from the Tauride carbonate platform to the north, together with accreted ophiolitic material. The melange matrix comprises polymict debris flows, high- to low-density turbidites and minor hemipelagic sediments. The Misis-Andırın Complex is interpreted as an accretionary prism related to the latest stages of northward subduction of the South Tethys and diachronous continental collision of the Tauride (Eurasian) and Arabian (African) plates during Mid-Eocene to earliest Miocene time. Slivers of Upper Cretaceous oceanic crust and its Early Tertiary pelagic cover were accreted, while blocks of Mesozoic platform carbonates slid from the overriding plate. Tectonic mixing and sedimentary recycling took place within a trench. Subduction culminated in large-scale collapse of the overriding (northern) margin and foundering of vast blocks of neritic carbonate into the trench. A possible cause was rapid roll back of dense downgoing Mesozoic oceanic crust, such that the accretionary wedge taper was extended leading to gravity collapse. Melange formation was terminated by underthrusting of the Arabian plate from the south during earliest Miocene time. Collision was diachronous. In the east (Engizek Range and SE Anatolia) collision generated

  12. Pyrenean hyper-extension : breaking, thinning, or stretching of the crust ? A view from the central north-Pyrenean zone

    NASA Astrophysics Data System (ADS)

    de Saint Blanquat, Michel; Bajolet, Flora; Boulvais, Philippe; Boutin, Alexandre; Clerc, Camille; Delacour, Adélie; Deschamp, Fabien; Ford, Mary; Fourcade, Serge; Gouache, Corentin; Grool, Arjan; Labaume, Pierre; Lagabrielle, Yves; Lahfid, Abdeltif; Lemirre, Baptiste; Monié, Patrick; de Parseval, Philippe; Poujol, Marc

    2017-04-01

    The geology of the North Pyrenean Zone in the central Pyrenees allows for the observation in the field of the entire section of the Pyrenean rift, from the mantle to the crust and the Mesozoic cover (pre, syn and post rift). The good knowledge we have of the pre-Alpine history of the Pyrenees allows us to properly constrain the Alpine geological evolution of the pre-Triassic rocks which record both Variscan and Alpine orogenic cycles. The mantle outcrop as kilometric to centimetric fragments of peridotite dispersed within a carbonate metamorphic breccia. The study of peridotite serpentinisation shows several events of low-temperature serpentinisation, in contact with seawater. In some locallities, we can observe a mixture of fragments of variously serpentinized peridotites. This suggests a tectonic context where fragments of peridotites from different structural levels were sampled more or less synchronously. The granulitic basement is characterized by a Variscan syndeformational HT event (300-280 Ma). So far we have not found any trace of a Cretaceous HT event (> 500°C). On the other hand, the basement is affected by a regional metasomatism that began during the Jurassic and became more spatially focused with time until it was restricted to the Pyrenean rift during the Aptien, Albian and Cenomanian. The talc-chlorite metasomatism (120-95 Ma) shows an evolution from a static toward a syn-deformation hydrothermal event, under a more or less normal geothermal gradient. Extensional deformation is recorded by the reworking of several inherited low-angle Variscan tectonic contacts, but also by dispersed high-angle extensional shear zones formed under greenshist conditions. The metamorphic Mesozoic cover of the basement massifs, which constitute the so-called Internal Metamorphic Zone, is an allochtonous unit made of lenses of Mesozoic rocks enclosed into the breccia, which locally contains peridotite and basement clasts. The Mesozoic metamorphic carbonates show a first

  13. Identifying Context Variables in Research.

    ERIC Educational Resources Information Center

    Piazza, Carolyn L.

    1987-01-01

    Identifies context variables in written composition from theoretical perspectives in cognitive psychology, sociology, and anthropology. Considers how multiple views of context from across the disciplines can build toward a broader definition of writing. (JD)

  14. Identifying Turbulent Structures through Topological Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bremer, Peer-Timo; Gruber, Andrea; Bennett, Janine C.

    2016-01-01

    A new method of extracting vortical structures from a turbulent flow is proposed whereby topological segmentation of an indicator function scalar field is used to identify the regions of influence of the individual vortices. This addresses a long-standing challenge in vector field topological analysis: indicator functions commonly used produce a scalar field based on the local velocity vector field; reconstructing regions of influence for a particular structure requires selecting a threshold to define vortex extent. In practice, the same threshold is rarely meaningful throughout a given flow. By also considering the topology of the indicator field function, the characteristics ofmore » vortex strength and extent can be separated and the ambiguity in the choice of the threshold reduced. The proposed approach is able to identify several types of vortices observed in a jet in cross-flow configuration simultaneously where no single threshold value for a selection of common indicator functions appears able to identify all of these vortex types.« less

  15. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  16. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  17. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  18. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  19. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The operator must evaluate each chemical brought on mine property and each chemical produced on mine property...

  20. An Exceptionally Preserved Three-Dimensional Armored Dinosaur Reveals Insights into Coloration and Cretaceous Predator-Prey Dynamics.

    PubMed

    Brown, Caleb M; Henderson, Donald M; Vinther, Jakob; Fletcher, Ian; Sistiaga, Ainara; Herrera, Jorsua; Summons, Roger E

    2017-08-21

    Predator-prey dynamics are an important evolutionary driver of escalating predation mode and efficiency, and commensurate responses of prey [1-3]. Among these strategies, camouflage is important for visual concealment, with countershading the most universally observed [4-6]. Extant terrestrial herbivores free of significant predation pressure, due to large size or isolation, do not exhibit countershading. Modern predator-prey dynamics may not be directly applicable to those of the Mesozoic due to the dominance of very large, visually oriented theropod dinosaurs [7]. Despite thyreophoran dinosaurs' possessing extensive dermal armor, some of the most extreme examples of anti-predator structures [8, 9], little direct evidence of predation on these and other dinosaur megaherbivores has been documented. Here we describe a new, exquisitely three-dimensionally preserved nodosaurid ankylosaur, Borealopelta markmitchelli gen. et sp. nov., from the Early Cretaceous of Alberta, which preserves integumentary structures as organic layers, including continuous fields of epidermal scales and intact horn sheaths capping the body armor. We identify melanin in the organic residues through mass spectroscopic analyses and observe lighter pigmentation of the large parascapular spines, consistent with display, and a pattern of countershading across the body. With an estimated body mass exceeding 1,300 kg, B. markmitchelli was much larger than modern terrestrial mammals that either are countershaded or experience significant predation pressure as adults. Presence of countershading suggests predation pressure strong enough to select for concealment in this megaherbivore despite possession of massive dorsal and lateral armor, illustrating a significant dichotomy between Mesozoic predator-prey dynamics and those of modern terrestrial systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Regional stratigraphy and petroleum potential, Ghadames basin, Algeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emme, J.J.; Sunderland, B.L.

    1991-03-01

    The Ghadames basin in east-central Algeria extends over 65,000 km{sup 2} (25,000 mi{sup 2}), of which 90% is covered by dunes of the eastern Erg. This intracratonic basin consists of up to 6000 m (20,000 ft) of dominantly clastic Paleozoic through Mesozoic strata. The Ghadames basin is part of a larger, composite basin complex (Ilizzi-Ghadames-Triassic basins) where Paleozoic strata have been truncated during a Hercynian erosional event and subsequently overlain by a northward-thickening wedge of Mesozoic sediments. Major reservoir rocks include Triassic sandstones that produce oil, gas, and condensate in the western Ghadames basin, Siluro-Devonian sandstones that produce mostly oilmore » in the shallower Ilizzi basin to the south, and Cambro-Ordovician orthoquartzites that produce oil at Hassi Messaoud to the northwest. Organic shales of the Silurian and Middle-Upper Devonian are considered primary source rocks. Paleozoic shales and Triassic evaporite/red bed sequences act as seals for hydrocarbon accumulations. The central Ghadames basin is underexplored, with less than one wildcat well/1700 km{sup 2} (one well/420,000 ac). Recent Devonian and Triassic oil discoveries below 3500 m (11,500 ft) indicate that deep oil potential exists. Exploration to date has concentrated on structural traps. Subcrop and facies trends indicate that potential for giant stratigraphic or combination traps exists for both Siluro-Devonian and Triassic intervals. Modern seismic acquisition and processing techniques in high dune areas can be used to successfully identify critical unconformity-bound sequences with significant stratigraphic trap potential. Advances in seismic and drilling technology combined with creative exploration should result in major petroleum discoveries in the Ghadames basin.« less

  2. A compilation of K-Ar-ages for southern California

    USGS Publications Warehouse

    Miller, Fred K.; Morton, Douglas M.; Morton, Janet L.; Miller, David M.

    2014-01-01

    The purpose of this report is to make available a large body of conventional K-Ar ages for granitic, volcanic, and metamorphic rocks collected in southern California. Although one interpretive map is included, the report consists primarily of a systematic listing, without discussion or interpretation, of published and unpublished ages that may be of value in future regional and other geologic studies. From 1973 to 1979, 468 rock samples from southern California were collected for conventional K-Ar dating under a regional geologic mapping project of Southern California (predecessor of the Southern California Areal Mapping Project). Most samples were collected and dated between 1974 and 1977. For 61 samples (13 percent of those collected), either they were discarded for varying reasons, or the original collection data were lost. For the remaining samples, 518 conventional K-Ar ages are reported here; coexisting mineral pairs were dated from many samples. Of these K-Ar ages, 225 are previously unpublished, and identified as such in table 1. All K-Ar ages are by conventional K-Ar analysis; no 40Ar/39Ar dating was done. Subsequent to the rock samples collected in the 1970s and reported here, 33 samples were collected and 38 conventional K-Ar ages determined under projects directed at (1) characterization of the Mesozoic and Cenozoic igneous rocks in and on both sides of the Transverse Ranges and (2) clarifying the Mesozoic and Cenozoic tectonics of the eastern Mojave Desert. Although previously published (Beckerman et al., 1982), another eight samples and 11 conventional K-Ar ages are included here, because they augment those completed under the previous two projects.

  3. Hamiltonian identifiability assisted by a single-probe measurement

    NASA Astrophysics Data System (ADS)

    Sone, Akira; Cappellaro, Paola

    2017-02-01

    We study the Hamiltonian identifiability of a many-body spin-1 /2 system assisted by the measurement on a single quantum probe based on the eigensystem realization algorithm approach employed in Zhang and Sarovar, Phys. Rev. Lett. 113, 080401 (2014), 10.1103/PhysRevLett.113.080401. We demonstrate a potential application of Gröbner basis to the identifiability test of the Hamiltonian, and provide the necessary experimental resources, such as the lower bound in the number of the required sampling points, the upper bound in total required evolution time, and thus the total measurement time. Focusing on the examples of the identifiability in the spin-chain model with nearest-neighbor interaction, we classify the spin-chain Hamiltonian based on its identifiability, and provide the control protocols to engineer the nonidentifiable Hamiltonian to be an identifiable Hamiltonian.

  4. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  5. Identifying genetic relatives without compromising privacy.

    PubMed

    He, Dan; Furlotte, Nicholas A; Hormozdiari, Farhad; Joo, Jong Wha J; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-04-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual's genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy.

  6. From crustal thinning to mantle exhumation: what the Pyrenean breccia formations tell us.

    NASA Astrophysics Data System (ADS)

    Clerc, C.; Chauvet, A.; Lagabrielle, Y.; Reynaud, J.-Y.; Boulvais, P.; Bousquet, R.; Lahfid, A.; Vauchez, A.; Mahé, S.

    2012-04-01

    Several formations with various breccia types occur in Mesozoic basins disseminated along the North Pyrenean fault, on the northern flank of the French Pyrenees. Due to their location along the Iberia-Europa plate boundary, the North Pyrenean breccia formations represent complex archives documenting the tectonic and sedimentary evolution of the Pyrenean realm during the Aptian-Albian period. In particular, the North Pyrenean breccia formations have recorded the main stages of crustal thinning, continental break-up and mantle exhumation, which occurred along the North Pyrenean Zone (NPZ). We will review the main sedimentary, structural, metamorphic and geochemical characters of these breccias, based on new field investigations conducted in both the Western and Eastern Pyrenées (Agly, Aulus, Moncaup-St Béas and Urdach localities). Based on our new founding, we re-intrepret the significance of the breccia formations in the light of the most recent models developed for the pre-orogenic evolution of the Pyrenees. In several places and mostly close to the contact between Paleozoic basement and Mesozoic cover, we systematically recognized the following three types of breccias: i) Semi-ductile syn-metamorphic breccias resulting from the boudinage of silicic or dolomitic beddings in ductily deformed marbles. ii) Cataclastic breccias disturbing the neighbouring host rocks and displaying a relatively monogenetic character. These tectonic breccias result from the disruption of the Mesozoic metamorphic platform under cooling conditions. They are dominated by cataclastic levels mainly located in the Triassic and Liassic weaker levels, iii) Polymictic sedimentary breccias, which composition is dominated by clasts of Mesozoic metasediments. Locally, close to subcontinental mantle bodies, the sedimentary breccias include numerous clasts of ultramafic and/or crustal basement rocks. Such breccias are the witness of the disruption of the sedimentary cover of the North Pyrenean Zone

  7. Identifying Opinion Leaders to Promote Behavior Change

    ERIC Educational Resources Information Center

    Valente, Thomas W.; Pumpuang, Patchareeya

    2007-01-01

    This article reviews 10 techniques used to identify opinion leaders to promote behavior change. Opinion leaders can act as gatekeepers for interventions, help change social norms, and accelerate behavior change. Few studies document the manner in which opinion leaders are identified, recruited, and trained to promote health. The authors categorize…

  8. Identifying Breast Cancer Oncogenes

    DTIC Science & Technology

    2011-10-01

    antibodies . Analytes considered positive (>10) and showing significant (1.5) fold increase in signal are shown as black diamonds. All labeled analytes...Curto et al., 2007). Using a general phospho-tyrosine antibody (4G10) we determined that overexpression of PAK1 indeed upregulates phospho-tyrosine...PAK1. Remarkably, three distinct antibodies identified MET as highly phosphorylated specifically in HMLE-PAK1 cells strongly suggesting that MET could

  9. Leading change: 1--identifying the issue.

    PubMed

    Kerridge, Joanna

    To enable sustainable change, nurses need to take the lead in managing it. Recent national initiatives have emphasised the importance of frontline staff in service improvement. The ability to influence and manage change has been identified as an essential skill for delivering new models of care. This article is the first in a three-part series designed to help nurses at all levels develop the knowledge and skills they will need to initiate and manage change. This article focuses on identifying what needs to be changed and why.

  10. Identifying novel genetic determinants of hemostatic balance.

    PubMed

    Ginsburg, D

    2005-08-01

    Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.

  11. Publications - SR 53 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Group; Lead; Limestone; Lode; Marble; Mercury; Mesozoic; Metallurgy; Metamorphic Rocks; Mineral Pluton; Nickel; Nikolai Greenstone; Noatak Sandstone; Nome Group; Nuggets; Orca Group; Ordovician; Ores ; Paleozoic; Palladium; Pennsylvanian; Placer; Platinum; Platinum Group Elements; Plutonic; Plutonic Hosted

  12. Sex-role ideology among self-identified psychotherapists.

    PubMed

    Harper, D W; Leichner, P P; McCrimmon, E

    1985-10-01

    Analysis of the sex-role ideology of 1,258 self-identified psychotherapists from nine occupations indicated that: the sample was representative; as a group, self-identified psychotherapists were moderately feminist; there were significant differences among occupations; and results were not due solely to the effects of age or sex distributions among occupations.

  13. 26 CFR 1.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Identifying numbers. 1.6109-1 Section 1.6109-1...) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.6109-1 Identifying numbers. (a) Information to be... numbers with respect to returns, statements, and other documents which must be filed after April 15, 1974...

  14. 26 CFR 1.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Identifying numbers. 1.6109-1 Section 1.6109-1...) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.6109-1 Identifying numbers. (a) Information to be... numbers with respect to returns, statements, and other documents which must be filed after April 15, 1974...

  15. 26 CFR 1.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Identifying numbers. 1.6109-1 Section 1.6109-1...) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.6109-1 Identifying numbers. (a) Information to be... numbers with respect to returns, statements, and other documents which must be filed after April 15, 1974...

  16. 26 CFR 1.6109-1 - Identifying numbers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Identifying numbers. 1.6109-1 Section 1.6109-1...) INCOME TAXES (CONTINUED) Miscellaneous Provisions § 1.6109-1 Identifying numbers. (a) Information to be... numbers with respect to returns, statements, and other documents which must be filed after April 15, 1974...

  17. Understanding identifiability as a crucial step in uncertainty assessment

    NASA Astrophysics Data System (ADS)

    Jakeman, A. J.; Guillaume, J. H. A.; Hill, M. C.; Seo, L.

    2016-12-01

    The topic of identifiability analysis offers concepts and approaches to identify why unique model parameter values cannot be identified, and can suggest possible responses that either increase uniqueness or help to understand the effect of non-uniqueness on predictions. Identifiability analysis typically involves evaluation of the model equations and the parameter estimation process. Non-identifiability can have a number of undesirable effects. In terms of model parameters these effects include: parameters not being estimated uniquely even with ideal data; wildly different values being returned for different initialisations of a parameter optimisation algorithm; and parameters not being physically meaningful in a model attempting to represent a process. This presentation illustrates some of the drastic consequences of ignoring model identifiability analysis. It argues for a more cogent framework and use of identifiability analysis as a way of understanding model limitations and systematically learning about sources of uncertainty and their importance. The presentation specifically distinguishes between five sources of parameter non-uniqueness (and hence uncertainty) within the modelling process, pragmatically capturing key distinctions within existing identifiability literature. It enumerates many of the various approaches discussed in the literature. Admittedly, improving identifiability is often non-trivial. It requires thorough understanding of the cause of non-identifiability, and the time, knowledge and resources to collect or select new data, modify model structures or objective functions, or improve conditioning. But ignoring these problems is not a viable solution. Even simple approaches such as fixing parameter values or naively using a different model structure may have significant impacts on results which are too often overlooked because identifiability analysis is neglected.

  18. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  19. Direct evidence of hybodont shark predation on Late Jurassic ammonites

    NASA Astrophysics Data System (ADS)

    Vullo, Romain

    2011-06-01

    Sharks are known to have been ammonoid predators, as indicated by analysis of bite marks or coprolite contents. However, body fossil associations attesting to this predator-prey relationship have never been described so far. Here, I report a unique finding from the Late Jurassic of western France: a complete specimen of the Kimmeridgian ammonite Orthaspidoceras bearing one tooth of the hybodont shark Planohybodus. Some possible tooth puncture marks are also observed. This is the first direct evidence of such a trophic link between these two major Mesozoic groups, allowing an accurate identification of both organisms. Although Planohybodus displays a tearing-type dentition generally assumed to have been especially adapted for large unshelled prey, our discovery clearly shows that this shark was also able to attack robust ammonites such as aspidoceratids. The direct evidence presented here provides new insights into the Mesozoic marine ecosystem food webs.

  20. A unique ore-placer area of the Amur region with high-Hg gold

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Stepanov, V. A.; Moiseenko, V. G.

    2017-10-01

    This work presents the geological structure and a description of the gold-ore occurrences and gold placers of the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black shales. Intrusive formations occur rarely. The sublatitudinal Un'ya Thrust is the principal ore-controlling structure. Paleozoic sandstones are thrust over Mesozoic flysch deposits along the Un'ya Thrust. The gold-ore occurrences are represented by quartz-vein zones. The ores are gold-quartz, low-sulfide. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. High-Hg native gold was revealed in the ore occurrences and placers. The high Hg content in native gold is explained by the presence of the frontal part of the gold-bearing column located within the cluster; the rich placers were formed due to crushing of this column.

  1. Geophysical and topographic expression of early Mesozoic grand cycles of the Milankovitch band

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Reynolds, D. J.; Goldberg, D.; Kent, D. V.; Whiteside, J. H.

    2012-12-01

    Grand cycles are orbitally controlled insolation cycles that have frequencies significantly lower than the precession-related ~1/100ky "eccentricity" cycles (1). We have previously shown that variations in sedimentary facies and δ13C interpreted in terms of lake level changes in Triassic-Jurassic cores of the Newark Basin Coring Project (NBCP) of eastern North America track predicted orbital cycles related to precession (2,3). In addition to the usual ~1/20ky and "spilt" ~1/100ky cycles, Grand Cycles with frequencies of 1/405ky (g2-g5) are very prominent and cycles with much lower frequency of ~1/1.8m.y. representing the g4-g3 frequency are present. The latter differs from the present frequency of ~1/2.4m.y. because of the chaotic diffusion of planetary orbits (4). Wavelet analysis of borehole geophysical logs from the NBCP show the same basic frequencies as do sedimentary facies. The high-frequency precession-related cycles as seen in natural gamma and sonic velocity logs are strikingly complimentary to visually identified sedimentary facies patterns because the former tend to show the most striking cyclicity where the sedimentary facies pattern are the most muted. The 1/405ky cycles are also very prominent; but other grand cycles, while detectable, are distorted by the necessary detrending of each of the seven borehole records that comprise the NBCP composite (cf. 5,6). Simple detrending procedures leave a low-frequency residue and more complex models prejudge the low frequencies we are trying to detect. This emphasizes the importance of the facies interpretations that requires no detrending, and clear understanding of the meaning of the geophysical environmental proxies. As might be expected from the seismic velocity logs, synthetic seismic traces generated from the borehole data of the NBCP show the grand cycles. When tied to very long industry exploratory borehole records from the Newark basin, themselves tied to seismic lies, both the 1/405ky (g2-g5) and ~1

  2. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  3. Techniques for identifying predators of goose nests

    USGS Publications Warehouse

    Anthony, R. Michael; Grand, J.B.; Fondell, T.F.; Miller, David A.

    2006-01-01

    We used cameras and artificial eggs to identify nest predators of dusky Canada goose Branta canadensis occidentalis nests during 1997-2000. Cameras were set up at 195 occupied goose nests and 60 artificial nests. We placed wooden eggs and domestic goose eggs that were emptied and then filled with wax or foam in an additional 263 natural goose nests to identify predators from marks in the artificial eggs. All techniques had limitations, but each correctly identified predators and estimated their relative importance. Nests with cameras had higher rates of abandonment than natural nests, especially during laying. Abandonment rates were reduced by deploying artificial eggs late in laying and reducing time at nests. Predation rates for nests with cameras were slightly lower than for nests without cameras. Wax-filled artificial eggs caused mortality of embryos in natural nests, but were better for identifying predator marks at artificial nests. Use of foam-filled artificial eggs in natural nests was the most cost effective means of monitoring nest predation. ?? Wildlife Biology (2006).

  4. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, W.B.; McNeilly, D.R.

    1988-04-12

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads is disclosed. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples. 6 figs.

  5. Interrogator system for identifying electrical circuits

    DOEpatents

    Jatko, William B.; McNeilly, David R.

    1988-01-01

    A system for interrogating electrical leads to correctly ascertain the identity of equipment attached to remote ends of the leads. The system includes a source of a carrier signal generated in a controller/receiver to be sent over the leads and an identifier unit at the equipment. The identifier is activated by command of the carrier and uses a portion of the carrier to produce a supply voltage. Each identifier is uniquely programmed for a specific piece of equipment, and causes the impedance of the circuit to be modified whereby the carrier signal is modulated according to that program. The modulation can be amplitude, frequency or phase modulation. A demodulator in the controller/receiver analyzes the modulated carrier signal, and if a verified signal is recognized displays and/or records the information. This information can be utilized in a computer system to prepare a wiring diagram of the electrical equipment attached to specific leads. Specific circuit values are given for amplitude modulation, and the system is particularly described for use with thermocouples.

  6. 7 CFR 56.41 - Check grading officially identified product.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) VOLUNTARY GRADING OF SHELL EGGS Grading of Shell Eggs Prerequisites to Packaging Shell Eggs Identified with Grademarks § 56.41 Check grading officially identified product. Officially identified shell...

  7. 7 CFR 56.41 - Check grading officially identified product.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) VOLUNTARY GRADING OF SHELL EGGS Grading of Shell Eggs Prerequisites to Packaging Shell Eggs Identified with Grademarks § 56.41 Check grading officially identified product. Officially identified shell...

  8. Identifying Protein-Calorie Malnutrition Workshop.

    ERIC Educational Resources Information Center

    Walker, Susan S.; Barker, Ellen M.

    Instructional materials are provided for a workshop to enable participants to assist in identifying patients at risk with protein-calorie malnutrition and in corrrecting this nutritional deficiency. Representative topics are nutrients; protein, mineral, and vitamin sources, functions, and deficiency symptoms; malnutrition; nutritional deficiency…

  9. Geology and geophysics of the West Nubian Paleolake and the Northern Darfur Megalake (WNPL-NDML): Implication for groundwater resources in Darfur, northwestern Sudan

    NASA Astrophysics Data System (ADS)

    Elsheikh, Ahmed; Abdelsalam, Mohamed G.; Mickus, Kevin

    2011-08-01

    The recent delineation of a vastly expanded Holocene paleo-lake (the Northern Darfur Megalake which was originally mapped as the West Nubian Paleolake and here will be referred to as WNPL-NDML) in Darfur in northwestern Sudan has renewed hopes for the presence of an appreciable groundwater resource in this hyper-arid region of Eastern Sahara. This paleolake which existed within a closed basin paleo-drainage system might have allowed for the collection of surface water which was subsequently infiltrated to recharge the Paleozoic-Mesozoic Nubian Aquifer. However, the presence of surface exposures of Precambrian crystalline rocks in the vicinity of the paleolake has been taken as indicating the absence of a thick Paleozoic-Mesozoic sedimentary section capable of holding any meaningful quantity of groundwater. This work integrates surface geology and gravity data to show that WNPL-NDML is underlain by NE-trending grabens forming potential local Paleozoic-Mesozoic aquifers that can hold as much as 1120 km 3 of groundwater if the sedimentary rocks are completely saturated. Nevertheless, it is advised here that recharge of the Nubian aquifer under WNPL-NDML is insignificant and that much of the groundwater is fossil water which was accumulated during different geological times much wetter than today's hyper-arid climate in Eastern Sahara. Excessive extraction will lead to quick depletion of this groundwater resource. This will result in lowering of the water table which in turn might lead to the drying out of the oases in the region which provide important habitats for humans, animals and plants in northern Darfur.

  10. The memory of the accreting plate boundary and the continuity of fracture zones

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.

    1982-01-01

    A detailed aeromagnetic anomaly map of the Mesozoic seafloor-spreading lineations southwest of Bermuda reveals the dominant magnetic grain of the oceanic crust and the character of the accreting boundary at the time of crustal formation. The magnetic anomaly pattern is that of a series of elongate lobes perpendicular to the fracture zone (flowline) trends. The linear sets of magnetic anomaly peaks and troughs have narrow regions of reduced amplitude anomalies associated with the fracture zones. During the period of Mesozoic geomagnetic polarity reversals (when 1200 km of central North Atlantic seafloor formed), the Atlantic accreting boundary consisted of stationary, elongate, spreading center cells that maintained their independence even though sometimes only minor spatial offsets existed between cells. Normal oceanic crustal structure was formed in the spreading center cells, but structural anomalies and discontinuities characteristic of fracture zones were formed at their boundaries, which parallel flowlines of Mesozoic relative plate motion in the central North Atlantic. We suggest that the memory for a stationary pattern of independent spreading center cells resides in the young brittle lithosphere at the accreting boundary where the lithosphere is weakest; here, each spreading center cell independently goes through its cylce of stress buildup, stress release, and crustal accretion, after which its memory is refreshed. The temporal offset between the peaks of the accretionary activity that takes place within each cell may provide the mechanism for maintaining the independence of adjacent spreading center cells through times when no spatial offset between the cells exists.

  11. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source

    NASA Astrophysics Data System (ADS)

    Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu

    2004-08-01

    Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.

  12. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Gilligan, A.; Watson, E.; Darbyshire, F. A.; Levin, V. L.; Menke, W. H.; Lane, V.; Boyce, A.; Liddell, M. V.; Petrescu, L.; Hawthorn, D.

    2016-12-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ ) and the delay time between the fast and slow split shear waves (δt ) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ , δt ) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥ 100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of > 1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  13. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura

    2016-08-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (ϕ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (ϕ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  14. Tectonics and hydrocarbon potential of the Barents Megatrough

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, D.; Vinogradov, A.; Yunov, A.

    1991-08-01

    Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less

  15. Identifying Plant Poisoning in Livestock

    USDA-ARS?s Scientific Manuscript database

    Poisonous plant intoxication is a common and often deadly problem that annually costs the livestock industry more than $340 million in the western United States alone. Despite the cost or frequency, definitively identifying or diagnosing poisoning by plants in livestock is challenging. The purpos...

  16. Ecology and evolution of pine life histories

    USGS Publications Warehouse

    Keeley, Jon E.

    2012-01-01

    Conclusion - Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.

  17. Identifying Topics in Microblogs Using Wikipedia.

    PubMed

    Yıldırım, Ahmet; Üsküdarlı, Suzan; Özgür, Arzucan

    2016-01-01

    Twitter is an extremely high volume platform for user generated contributions regarding any topic. The wealth of content created at real-time in massive quantities calls for automated approaches to identify the topics of the contributions. Such topics can be utilized in numerous ways, such as public opinion mining, marketing, entertainment, and disaster management. Towards this end, approaches to relate single or partial posts to knowledge base items have been proposed. However, in microblogging systems like Twitter, topics emerge from the culmination of a large number of contributions. Therefore, identifying topics based on collections of posts, where individual posts contribute to some aspect of the greater topic is necessary. Models, such as Latent Dirichlet Allocation (LDA), propose algorithms for relating collections of posts to sets of keywords that represent underlying topics. In these approaches, figuring out what the specific topic(s) the keyword sets represent remains as a separate task. Another issue in topic detection is the scope, which is often limited to specific domain, such as health. This work proposes an approach for identifying domain-independent specific topics related to sets of posts. In this approach, individual posts are processed and then aggregated to identify key tokens, which are then mapped to specific topics. Wikipedia article titles are selected to represent topics, since they are up to date, user-generated, sophisticated articles that span topics of human interest. This paper describes the proposed approach, a prototype implementation, and a case study based on data gathered during the heavily contributed periods corresponding to the four US election debates in 2012. The manually evaluated results (0.96 precision) and other observations from the study are discussed in detail.

  18. Data Identifiers, Versioning, and Micro-citation

    NASA Astrophysics Data System (ADS)

    Parsons, M. A.; Duerr, R. E.

    2012-12-01

    Data citation, especially using Digital Object Identifiers (DOIs), is an increasingly accepted scientific practice. For example, the AGU Council asserts that data "publications" should "be credited and cited like the products of any other scientific activity," and Thomson Reuters has recently announced a data citation index built from DOIs assigned to data sets. Correspondingly, formal guidelines for how to cite a data set (using DOIs or similar identifiers/locators) have recently emerged, notably those from the international DataCite consortium, the UK Digital Curation Centre, and the US Federation of Earth Science Information Partners. These different data citation guidelines are largely congruent. They agree on the basic practice and elements of data citation, especially for relatively static, whole data collections. There is less agreement on some of the more subtle nuances of data citation. They define different methods for handling different data set versions, especially for the very dynamic, growing data sets that are common in Earth Sciences. They also differ in how people should cite specific, arbitrarily large elements, "passages," or subsets of a larger data collection, i.e., the precise data records actually used in a study. This detailed "micro-citation", and careful reference to exact versions of data are essential to ensure scientific reproducibility. Identifiers such as DOIs are necessary but not sufficient for the precise, detailed, references necessary. Careful practice must be coupled with the use of curated identifiers. In this paper we review the pros and cons of different approaches to versioning and micro-citation. We suggest a workable solution for most existing Earth science data and suggest a more rigorous path forward for the future.

  19. Identifying Topics in Microblogs Using Wikipedia

    PubMed Central

    Yıldırım, Ahmet; Üsküdarlı, Suzan; Özgür, Arzucan

    2016-01-01

    Twitter is an extremely high volume platform for user generated contributions regarding any topic. The wealth of content created at real-time in massive quantities calls for automated approaches to identify the topics of the contributions. Such topics can be utilized in numerous ways, such as public opinion mining, marketing, entertainment, and disaster management. Towards this end, approaches to relate single or partial posts to knowledge base items have been proposed. However, in microblogging systems like Twitter, topics emerge from the culmination of a large number of contributions. Therefore, identifying topics based on collections of posts, where individual posts contribute to some aspect of the greater topic is necessary. Models, such as Latent Dirichlet Allocation (LDA), propose algorithms for relating collections of posts to sets of keywords that represent underlying topics. In these approaches, figuring out what the specific topic(s) the keyword sets represent remains as a separate task. Another issue in topic detection is the scope, which is often limited to specific domain, such as health. This work proposes an approach for identifying domain-independent specific topics related to sets of posts. In this approach, individual posts are processed and then aggregated to identify key tokens, which are then mapped to specific topics. Wikipedia article titles are selected to represent topics, since they are up to date, user-generated, sophisticated articles that span topics of human interest. This paper describes the proposed approach, a prototype implementation, and a case study based on data gathered during the heavily contributed periods corresponding to the four US election debates in 2012. The manually evaluated results (0.96 precision) and other observations from the study are discussed in detail. PMID:26991442

  20. Identifying environmental factors harmful to reproduction.

    PubMed Central

    Palmer, A K

    1993-01-01

    Reproduction is essential for the continuation of the species and for life itself. In biological terms, living and reproducing are essentially one and the same. There is, therefore, no sharp division between identifying factors harmful to reproduction and identifying factors harmful to life or vice versa. Detection of harmful factors requires balanced use of a variety of methodologies from databases on structure-activity relationships through in vitro and in vivo test systems of varying complexity to surveys of wildlife and human populations. Human surveys provide the only assured means of discriminating between real and imagined harmful factors, but they are time consuming and provide information after the harm has been done. Test systems with whole animals provide the best prospects for identifying harmful factors quickly, but currently available methods used for testing agrochemicals and drugs need a thorough overhaul before they can provide a role model. Whether there is a need for new methodology is doubtful. More certain is the need to use existing methodology more wisely. We need a better understanding of the environment--whatever it is--and a more thoughtful approach to investigation of multifactorial situations. PMID:8243390