Experimental validation of a new heterogeneous mechanical test design
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.
Optical Automatic Car Identification (OACI) Field Test Program
DOT National Transportation Integrated Search
1976-05-01
The results of the Optical Automatic Car Identification (OACI) tests at Chicago conducted from August 16 to September 4, 1975 are presented. The main purpose of this test was to determine the suitability of optics as a principle of operation for an a...
Enzyme Mini-Test for Field Identification of Leishmania Isolates from U.S. Military Personnel.
1985-08-15
8217.*". .. , 00 ENZYME MINI-TEST FOR FIELD IDENTIFICATION OF ’ r LEISHMANIA ISOLATES FROM U.S. MILITARY la ...No 0704-0188% __REPORTDOCUMENTATION__PAGEExp Date Jun30, 1986 la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS Unclassified 2a SECURITY...Soc. Trop. Med. ’* Mcreevy, P. B., P. D. Kreutzer, E. D. Frank-, H. A. Stim- son , C. N. Oster and L. D. H-ndricks. 1983. Taxonomy, clinical pathology
Bird on Your Smartphone: How to make identification faster?
NASA Astrophysics Data System (ADS)
Hidayat, T.; Kurniawan, I. S.; Tapilow, F. S.
2018-01-01
Identification skills of students are needed in the field activities of animal ecology course. Good identification skills will help students to understand the traits, determine differences and similarities in order to naming of birds’ species. This study aims to describe the identification skill of students by using smart phone applications designed in such a way as a support in the field activities. Research method used was quasi experiment involving 60 students which were divided into two groups, one group that use smartphone applications (SA) and other group using a guidebook (GB). This study was carried out in the classroom and outside (the field). Instruments used in this research included tests and questionnaire. The identification skills were measured by tests, indicated by an average score (AS). The results showed that the identification skills of SA students were higher (AS = 3.12) than those of GB one (AS = 2.91). These results are in accordance with response of students. The most of students (90.08%) mentioned that the use of smart phone applications in identifying birds is helpful, more effective and convenience to make identification faster. For further implementation, however, performance of the smartphone used here need to be enhanced to improve the identification skills of students and for wider use.
NASA Astrophysics Data System (ADS)
Zhang, Feng-Liang; Ni, Yan-Chun; Au, Siu-Kui; Lam, Heung-Fai
2016-03-01
The identification of modal properties from field testing of civil engineering structures is becoming economically viable, thanks to the advent of modern sensor and data acquisition technology. Its demand is driven by innovative structural designs and increased performance requirements of dynamic-prone structures that call for a close cross-checking or monitoring of their dynamic properties and responses. Existing instrumentation capabilities and modal identification techniques allow structures to be tested under free vibration, forced vibration (known input) or ambient vibration (unknown broadband loading). These tests can be considered complementary rather than competing as they are based on different modeling assumptions in the identification model and have different implications on costs and benefits. Uncertainty arises naturally in the dynamic testing of structures due to measurement noise, sensor alignment error, modeling error, etc. This is especially relevant in field vibration tests because the test condition in the field environment can hardly be controlled. In this work, a Bayesian statistical approach is developed for modal identification using the free vibration response of structures. A frequency domain formulation is proposed that makes statistical inference based on the Fast Fourier Transform (FFT) of the data in a selected frequency band. This significantly simplifies the identification model because only the modes dominating the frequency band need to be included. It also legitimately ignores the information in the excluded frequency bands that are either irrelevant or difficult to model, thereby significantly reducing modeling error risk. The posterior probability density function (PDF) of the modal parameters is derived rigorously from modeling assumptions and Bayesian probability logic. Computational difficulties associated with calculating the posterior statistics, including the most probable value (MPV) and the posterior covariance matrix, are addressed. Fast computational algorithms for determining the MPV are proposed so that the method can be practically implemented. In the companion paper (Part II), analytical formulae are derived for the posterior covariance matrix so that it can be evaluated without resorting to finite difference method. The proposed method is verified using synthetic data. It is also applied to modal identification of full-scale field structures.
Keogh, Justin W L; Weber, Clare L; Dalton, Carl T
2003-06-01
The purpose of the present study was to develop an effective testing battery for female field hockey by using anthropometric, physiological, and skill-related tests to distinguish between regional representative (Rep, n = 35) and local club level (Club, n = 39) female field hockey players. Rep players were significantly leaner and recorded faster times for the 10-m and 40-m sprints as well as the Illinois Agility Run (with and without dribbling a hockey ball). Rep players also had greater aerobic and lower body muscular power and were more accurate in the shooting accuracy test, p < 0.05. No significant differences between groups were evident for height, body mass, speed decrement in 6 x 40-m repeated sprints, handgrip strength, or pushing speed. These results indicate that %BF, sprinting speed, agility, dribbling control, aerobic and muscular power, and shooting accuracy can distinguish between female field hockey players of varying standards. Therefore talent identification programs for female field hockey should include assessments of these physical parameters.
Braem, G; De Vliegher, S; Supré, K; Haesebrouck, F; Leroy, F; De Vuyst, L
2011-01-10
Due to significant financial losses in the dairy cattle farming industry caused by mastitis and the possible influence of coagulase-negative staphylococci (CNS) in the development of this disease, accurate identification methods are needed that untangle the different species of the diverse CNS group. In this study, 39 Staphylococcus type strains and 253 field isolates were subjected to (GTG)(5)-PCR fingerprinting to construct a reference framework for the classification and identification of different CNS from (sub)clinical milk samples and teat apices swabs. Validation of the reference framework was performed by dividing the field isolates in two separate groups and testing whether one group of field isolates, in combination with type strains, could be used for a correct classification and identification of a second group of field isolates. (GTG)(5)-PCR fingerprinting achieved a typeability of 94.7% and an accuracy of 94.3% compared to identifications based on gene sequencing. The study shows the usefulness of the method to determine the identity of bovine Staphylococcus species, provided an identification framework updated with field isolates is available. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Yanchun; Lu, Xilin; Lu, Wensheng
2017-03-01
The field non-destructive vibration test plays an important role in the area of structural health monitoring. It assists in monitoring the health status and reducing the risk caused by the poor performance of structures. As the most economic field test among the various vibration tests, the ambient vibration test is the most popular and is widely used to assess the physical condition of a structure under operational service. Based on the ambient vibration data, modal identification can help provide significant previous study for model updating and damage detection during the service life of a structure. It has been proved that modal identification works well in the investigation of the dynamic performance of different kinds of structures. In this paper, the objective structure is a high-rise multi-function office building. The whole building is composed of seven three-story structural units. Each unit comprises one complete floor and two L shaped floors to form large spaces along the vertical direction. There are 56 viscous dampers installed in the building to improve the energy dissipation capacity. Due to the special feature of the structure, field vibration tests and further modal identification were performed to investigate its dynamic performance. Twenty-nine setups were designed to cover all the degrees of freedom of interest. About two years later, another field test was carried out to measure the building for 48 h to investigate the performance variance and the distribution of the modal parameters. A Fast Bayesian FFT method was employed to perform the modal identification. This Bayesian method not only provides the most probable values of the modal parameters but also assesses the associated posterior uncertainty analytically, which is especially relevant in field vibration tests arising due to measurement noise, sensor alignment error, modelling error, etc. A shaking table test was also implemented including cases with and without dampers, which assists in investigating the effect of dampers. The modal parameters obtained from different tests were investigated separately and then compared with each other.
NASA Astrophysics Data System (ADS)
Tejedor, J.; Macias-Guarasa, J.; Martins, H. F.; Piote, D.; Pastor-Graells, J.; Martin-Lopez, S.; Corredera, P.; De Pauw, G.; De Smet, F.; Postvoll, W.; Ahlen, C. H.; Gonzalez-Herraez, M.
2017-04-01
This paper presents the first report on on-line and final blind field test results of a pipeline integrity threat surveillance system. The system integrates a machine+activity identification mode, and a threat detection mode. Two different pipeline sections were selected for the blind tests: One close to the sensor position, and the other 35 km away from it. Results of the machine+activity identification mode showed that about 46% of the times the machine, the activity or both were correctly identified. For the threat detection mode, 8 out of 10 threats were correctly detected, with 1 false alarm.
Sheet metals characterization using the virtual fields method
NASA Astrophysics Data System (ADS)
Marek, Aleksander; Davis, Frances M.; Pierron, Fabrice
2018-05-01
In this work, a characterisation method involving a deep-notched specimen subjected to a tensile loading is introduced. This specimen leads to heterogeneous states of stress and strain, the latter being measured using a stereo DIC system (MatchID). This heterogeneity enables the identification of multiple material parameters in a single test. In order to identify material parameters from the DIC data, an inverse method called the Virtual Fields Method is employed. The method combined with recently developed sensitivity-based virtual fields allows to optimally locate areas in the test where information about each material parameter is encoded, improving accuracy of the identification over the traditional user-defined virtual fields. It is shown that a single test performed at 45° to the rolling direction is sufficient to obtain all anisotropic plastic parameters, thus reducing experimental effort involved in characterisation. The paper presents the methodology and some numerical validation.
NASA Astrophysics Data System (ADS)
Zhang, Zhongya; Pan, Bing; Grédiac, Michel; Song, Weidong
2018-04-01
The virtual fields method (VFM) is generally used with two-dimensional digital image correlation (2D-DIC) or grid method (GM) for identifying constitutive parameters. However, when small out-of-plane translation/rotation occurs to the test specimen, 2D-DIC and GM are prone to yield inaccurate measurements, which further lessen the accuracy of the parameter identification using VFM. In this work, an easy-to-implement but effective "special" stereo-DIC (SS-DIC) method is proposed for accuracy-enhanced VFM identification. The SS-DIC can not only deliver accurate deformation measurement without being affected by unavoidable out-of-plane movement/rotation of a test specimen, but can also ensure evenly distributed calculation data in space, which leads to simple data processing. Based on the accurate kinematics fields with evenly distributed measured points determined by SS-DIC method, constitutive parameters can be identified by VFM with enhanced accuracy. Uniaxial tensile tests of a perforated aluminum plate and pure shear tests of a prismatic aluminum specimen verified the effectiveness and accuracy of the proposed method. Experimental results show that the constitutive parameters identified by VFM using SS-DIC are more accurate and stable than those identified by VFM using 2D-DIC. It is suggested that the proposed SS-DIC can be used as a standard measuring tool for mechanical identification using VFM.
2012-01-01
Background The traditional Korean medical diagnoses employ pattern identification (PI), a diagnostic system that entails the comprehensive analysis of symptoms and signs. The PI needs to be standardized due to its ambiguity. Therefore, this study was performed to establish standard indicators of the PI for stroke through the traditional Korean medical literature, expert consensus and a clinical field test. Methods We sorted out stroke patterns with an expert committee organized by the Korean Institute of Oriental Medicine. The expert committee composed a document for a standardized pattern of identification for stroke based on the traditional Korean medical literature, and we evaluated the clinical significance of the document through a field test. Results We established five stroke patterns from the traditional Korean medical literature and extracted 117 indicators required for diagnosis. The indicators were evaluated by a field test and verified by the expert committee. Conclusions This study sought to develop indicators of PI based on the traditional Korean medical literature. This process contributed to the standardization of traditional Korean medical diagnoses. PMID:22410195
Platoon identification and accommodation system implementation in Brownwood and Caldwell, Texas.
DOT National Transportation Integrated Search
2009-08-01
In Texas Department of Transportation (TxDOT) Project 0-5507, Texas Transportation Institute (TTI) : researchers developed and field-tested an enhanced version of a platoon identification and accommodation : (PIA) system developed in an earlier resea...
NASA Astrophysics Data System (ADS)
Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2017-10-01
In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.
Rapid screening of guar gum using portable Raman spectral identification methods.
Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D
2016-01-25
Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Seaberg, James R.; And Others
The National Center on Child Abuse and Neglect funded a project to develop and field-test an evaluation procedure that could be used by interested states or communities to determine the extent of congruity between (1) their provisions for responding to the problems of child abuse and neglect, and (2) provisions prescribed in the Federal Standards…
Identification of corn fields using multidate radar data
NASA Technical Reports Server (NTRS)
Shanmugan, K. S.; Ulaby, F. T.; Narayanan, V.; Dobson, C.
1983-01-01
Airborne C- and L-band radar data acquired over a test site in western kansas were analyzed to determine corn-field identification accuracies obtainable using single-channel, multichannel, and multidate radar data. An automated pattern-recognition procedure was used to classify 144 fields into three categories: corn, pasture land, and bare soil (including wheat stubble and fallow). Corn fields were identified with accuracies ranging from 85 percent for single channel, single-date data to 100 percent for single-channel, multidate data. The effects of radar parameters such as frequency, polarization, and look angle as well as the effects of soil moisture on the classification accuracy are also presented.
Kirchoff, Bruce K.; Delaney, Peter F.; Horton, Meg; Dellinger-Johnston, Rebecca
2014-01-01
Learning to identify organisms is extraordinarily difficult, yet trained field biologists can quickly and easily identify organisms at a glance. They do this without recourse to the use of traditional characters or identification devices. Achieving this type of recognition accuracy is a goal of many courses in plant systematics. Teaching plant identification is difficult because of variability in the plants’ appearance, the difficulty of bringing them into the classroom, and the difficulty of taking students into the field. To solve these problems, we developed and tested a cognitive psychology–based computer program to teach plant identification. The program incorporates presentation of plant images in a homework-based, active-learning format that was developed to stimulate expert-level visual recognition. A controlled experimental test using a within-subject design was performed against traditional study methods in the context of a college course in plant systematics. Use of the program resulted in an 8–25% statistically significant improvement in final exam scores, depending on the type of identification question used (living plants, photographs, written descriptions). The software demonstrates how the use of routines to train perceptual expertise, interleaved examples, spaced repetition, and retrieval practice can be used to train identification of complex and highly variable objects. PMID:25185226
NASA Astrophysics Data System (ADS)
Martins, J. M. P.; Thuillier, S.; Andrade-Campos, A.
2018-05-01
The identification of material parameters, for a given constitutive model, can be seen as the first step before any practical application. In the last years, the field of material parameters identification received an important boost with the development of full-field measurement techniques, such as Digital Image Correlation. These techniques enable the use of heterogeneous displacement/strain fields, which contain more information than the classical homogeneous tests. Consequently, different techniques have been developed to extract material parameters from full-field measurements. In this study, two of these techniques are addressed, the Finite Element Model Updating (FEMU) and the Virtual Fields Method (VFM). The main idea behind FEMU is to update the parameters of a constitutive model implemented in a finite element model until both numerical and experimental results match, whereas VFM makes use of the Principle of Virtual Work and does not require any finite element simulation. Though both techniques proved their feasibility in linear and non-linear constitutive models, it is rather difficult to rank their robustness in plasticity. The purpose of this work is to perform a comparative study in the case of elasto-plastic models. Details concerning the implementation of each strategy are presented. Moreover, a dedicated code for VFM within a large strain framework is developed. The reconstruction of the stress field is performed through a user subroutine. A heterogeneous tensile test is considered to compare FEMU and VFM strategies.
1988-09-01
the report. Field Testing Specific aspects of field procedures have been tested at Fort Devens , MA, and at the Consolidated Rail Corporation (Conrail...days of formalized training on the system, both field proce- dures and computer operations, were conducted by USA-CERL at Fort Devens , MA. Attendees...included representatives from TSC, Fort Devens , FORSCOM, and the T.K. Dyer Corp. Initial Track Segmenting and Component Identification The office work
Zlotnik, V.A.; McGuire, V.L.
1998-01-01
Using the developed theory and modified Springer-Gelhar (SG) model, an identification method is proposed for estimating hydraulic conductivity from multi-level slug tests. The computerized algorithm calculates hydraulic conductivity from both monotonic and oscillatory well responses obtained using a double-packer system. Field verification of the method was performed at a specially designed fully penetrating well of 0.1-m diameter with a 10-m screen in a sand and gravel alluvial aquifer (MSEA site, Shelton, Nebraska). During well installation, disturbed core samples were collected every 0.6 m using a split-spoon sampler. Vertical profiles of hydraulic conductivity were produced on the basis of grain-size analysis of the disturbed core samples. These results closely correlate with the vertical profile of horizontal hydraulic conductivity obtained by interpreting multi-level slug test responses using the modified SG model. The identification method was applied to interpret the response from 474 slug tests in 156 locations at the MSEA site. More than 60% of responses were oscillatory. The method produced a good match to experimental data for both oscillatory and monotonic responses using an automated curve matching procedure. The proposed method allowed us to drastically increase the efficiency of each well used for aquifer characterization and to process massive arrays of field data. Recommendations generalizing this experience to massive application of the proposed method are developed.Using the developed theory and modified Springer-Gelhar (SG) model, an identification method is proposed for estimating hydraulic conductivity from multi-level slug tests. The computerized algorithm calculates hydraulic conductivity from both monotonic and oscillatory well responses obtained using a double-packer system. Field verification of the method was performed at a specially designed fully penetrating well of 0.1-m diameter with a 10-m screen in a sand and gravel alluvial aquifer (MSEA site, Shelton, Nebraska). During well installation, disturbed core samples were collected every 0.6 m using a split-spoon sampler. Vertical profiles of hydraulic conductivity were produced on the basis of grain-size analysis of the disturbed core samples. These results closely correlate with the vertical profile of horizontal hydraulic conductivity obtained by interpreting multi-level slug test responses using the modified SG model. The identification method was applied to interpret the response from 474 slug tests in 156 locations at the MSEA site. More than 60% of responses were oscillatory. The method produced a good match to experimental data for both oscillatory and monotonic responses using an automated curve matching procedure. The proposed method allowed us to drastically increase the efficiency of each well used for aquifer characterization and to process massive arrays of field data. Recommendations generalizing this experience to massive application of the proposed method are developed.
Identification and Validation of ESP Teacher Competencies: A Research Design
ERIC Educational Resources Information Center
Venkatraman, G.; Prema, P.
2013-01-01
The paper presents the research design used for identifying and validating a set of competencies required of ESP (English for Specific Purposes) teachers. The identification of the competencies and the three-stage validation process are also discussed. The observation of classes of ESP teachers for field-testing the validated competencies and…
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Li, Hanyu; Xie, Xin
2015-12-01
A real-time intelligent fiber-optic perimeter intrusion detection system (PIDS) based on the fiber Bragg grating (FBG) sensor network is presented in this paper. To distinguish the effects of different intrusion events, a novel real-time behavior impact classification method is proposed based on the essential statistical characteristics of signal's profile in the time domain. The features are extracted by the principal component analysis (PCA), which are then used to identify the event with a K-nearest neighbor classifier. Simulation and field tests are both carried out to validate its effectiveness. The average identification rate (IR) for five sample signals in the simulation test is as high as 96.67%, and the recognition rate for eight typical signals in the field test can also be achieved up to 96.52%, which includes both the fence-mounted and the ground-buried sensing signals. Besides, critically high detection rate (DR) and low false alarm rate (FAR) can be simultaneously obtained based on the autocorrelation characteristics analysis and a hierarchical detection and identification flow.
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Background Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Methodology/Principal Findings Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M’sila where P. (Phlebotomus) papatasi was the only sand fly species detected. Conclusion The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases. PMID:26771833
Identification of Algerian Field-Caught Phlebotomine Sand Fly Vectors by MALDI-TOF MS.
Lafri, Ismail; Almeras, Lionel; Bitam, Idir; Caputo, Aurelia; Yssouf, Amina; Forestier, Claire-Lise; Izri, Arezki; Raoult, Didier; Parola, Philippe
2016-01-01
Phlebotomine sand flies are known to transmit Leishmania parasites, bacteria and viruses that affect humans and animals in many countries worldwide. Precise sand fly identification is essential to prevent phlebotomine-borne diseases. Over the past two decades, progress in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as an accurate tool for arthropod identification. The objective of the present study was to investigate the usefulness of MALDI-TOF MS as a tool for identifying field-caught phlebotomine. Sand flies were captured in four sites in north Algeria. A subset was morphologically and genetically identified. Six species were found in these areas and a total of 28 stored frozen specimens were used for the creation of the reference spectrum database. The relevance of this original method for sand fly identification was validated by two successive blind tests including the morphological identification of 80 new specimens which were stored at -80°C, and 292 unknown specimens, including engorged specimens, which were preserved under different conditions. Intra-species reproducibility and inter-species specificity of the protein profiles were obtained, allowing us to distinguish specimens at the gender level. Querying of the sand fly database using the MS spectra from the blind test groups revealed concordant results between morphological and MALDI-TOF MS identification. However, MS identification results were less efficient for specimens which were engorged or stored in alcohol. Identification of 362 phlebotomine sand flies, captured at four Algerian sites, by MALDI-TOF MS, revealed that the subgenus Larroussius was predominant at all the study sites, except for in M'sila where P. (Phlebotomus) papatasi was the only sand fly species detected. The present study highlights the application of MALDI-TOF MS for monitoring sand fly fauna captured in the field. The low cost, reliability and rapidity of MALDI-TOF MS analyses opens up new ways in the management of phlebotomine sand fly-borne diseases.
Non-contact data access with direction identification for industrial differential serial bus
NASA Astrophysics Data System (ADS)
Xie, Kai; Li, Xiaoping; Zhang, Hanlu; Yang, Ming; Ye, Yinghao
2013-06-01
We propose a non-contact method for accessing data in industrial differential serial bus applications, which could serve as an effective and safe online testing and diagnosing tool. The data stream and the transmission direction are reconstructed simultaneously from the near-field emanations of a twisted pair, eliminating direct contact with the actual conductors, and avoiding damage to the insulation (only the outer sheathing is removed). A non-contact probe with the ability to sense electric and magnetic fields is presented, as are theories for data reconstruction, direction identification, and a circuit implementation. The prototype was built using inexpensive components and then tested on a standard RS-485 industrial serial bus. Experimental results verified the validity of the proposed scheme.
Ricchi, M; Mazzarelli, A; Piscini, A; Di Caro, A; Cannas, A; Leo, S; Russo, S; Arrigoni, N
2017-03-01
The aim of the study was to explore the suitability of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for a rapid and correct identification of Mycobacterium avium ssp. paratuberculosis (MAP) field isolates. MALDI-TOF MS approach is becoming one of the most popular tests for the identification of intact bacterial cells which has been shown to be fast and reliable. For this purpose, 36 MAP field isolates were analysed through MALDI-TOF MS and the spectra compared with two different databases: one provided by the vendor of the system employed (Biotyper ver. 3·0; Bruker Daltonics) and a homemade database containing spectra from both tuberculous and nontuberculous Mycobacteria. Moreover, principal component analysis procedure was employed to confirm the ability of MALDI-TOF MS to discriminate between very closely related subspecies. Our results suggest MAP can be differentiated from other Mycobacterium species, both when the species are very close (M. intracellulare) and when belonging to different subspecies (M. avium ssp. avium and M. avium ssp. silvaticum). The procedure applied is fast, easy to perform, and achieves an earlier accurate species identification of MAP and nontuberculous Mycobacteria in comparison to other procedures. The gold standard test for the diagnosis of paratuberculosis is still isolation of MAP by cultural methods, but additional assays, such as qPCR and subculturing for determination of mycobactin dependency are required to confirm its identification. We have provided here evidence pertaining to the usefulness of MALDI-TOF MS approach for a rapid identification of this mycobacterium among other members of M. avium complex. © 2016 The Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Steinberg, S. J.; Howard, M. D.
2016-02-01
Collecting algae samples from the field presents issues of specimen damage or degradation caused by preservation methods, handling and transport to laboratory facilities for identification. Traditionally, in-field collection of high quality microscopic images has not been possible due to the size, weight and fragility of high quality instruments and training of field staff in species identification. Scientists at the Southern California Coastal Water Research Project (SCCWRP) in collaboration with the Fletcher Lab, University of California Berkeley, Department of Bioengineering, tested and translated Fletcher's original medical CellScope for use in environmental monitoring applications. Field tests conducted by SCCWRP in 2014 led to modifications of the clinical CellScope to one better suited to in-field microscopic imaging for aquatic organisms. SCCWRP subsequently developed a custom cell-phone application to acquire microscopic imagery using the "CellScope Aquatic "in combination with other cell-phone derived field data (e.g. GPS location, date, time and other field observations). Data and imagery collected in-field may be transmitted in real-time to a web-based data system for tele-taxonomy evaluation and assessment by experts in the office. These hardware and software tools was tested in field in a variety of conditions and settings by multiple algae experts during the spring and summer of 2015 to further test and refine the CellScope Aquatic platform. The CellScope Aquatic provides an easy-to-use, affordable, lightweight, professional quality, data collection platform for environmental monitoring. Our ongoing efforts will focus on development of real-time expert systems for data analysis and image processing, to provide onsite feedback to field scientists.
Decaro, Nicola; Martella, Vito; Elia, Gabriella; Desario, Costantina; Campolo, Marco; Buonavoglia, Domenico; Bellacicco, Anna Lucia; Tempesta, Maria; Buonavoglia, Canio
2006-12-01
TaqMan-based diagnostic tests have been developed for the identification of canine parvovirus type 2 (CPV-2) strains in the faeces of dogs with diarrhoea, including a minor groove binder (MGB) probe assay for identification of type 2-based vaccines and field strains (types 2a, 2b and 2c). Since type 2b vaccines have been licensed recently in Europe, two novel MGB assays were developed for discrimination between type 2b vaccines and field strains of CPV. Such assays have been found to be highly sensitive, specific and reproducible, allowing for simultaneous detection of type 2b vaccinal and field strains present in the same specimens. These new assays will help resolution of the diagnostic problems related to the detection of a type 2b strain in the faeces of dogs shortly after the administration of a type 2b vaccine.
Fernandes, Andrea C; Cloete, Danielle; Broadbent, Matthew T M; Hayes, Richard D; Chang, Chin-Kuo; Jackson, Richard G; Roberts, Angus; Tsang, Jason; Soncul, Murat; Liebscher, Jennifer; Stewart, Robert; Callard, Felicity
2013-07-11
Electronic health records (EHRs) provide enormous potential for health research but also present data governance challenges. Ensuring de-identification is a pre-requisite for use of EHR data without prior consent. The South London and Maudsley NHS Trust (SLaM), one of the largest secondary mental healthcare providers in Europe, has developed, from its EHRs, a de-identified psychiatric case register, the Clinical Record Interactive Search (CRIS), for secondary research. We describe development, implementation and evaluation of a bespoke de-identification algorithm used to create the register. It is designed to create dictionaries using patient identifiers (PIs) entered into dedicated source fields and then identify, match and mask them (with ZZZZZ) when they appear in medical texts. We deemed this approach would be effective, given high coverage of PI in the dedicated fields and the effectiveness of the masking combined with elements of a security model. We conducted two separate performance tests i) to test performance of the algorithm in masking individual true PIs entered in dedicated fields and then found in text (using 500 patient notes) and ii) to compare the performance of the CRIS pattern matching algorithm with a machine learning algorithm, called the MITRE Identification Scrubber Toolkit - MIST (using 70 patient notes - 50 notes to train, 20 notes to test on). We also report any incidences of potential breaches, defined by occurrences of 3 or more true or apparent PIs in the same patient's notes (and in an additional set of longitudinal notes for 50 patients); and we consider the possibility of inferring information despite de-identification. True PIs were masked with 98.8% precision and 97.6% recall. As anticipated, potential PIs did appear, owing to misspellings entered within the EHRs. We found one potential breach. In a separate performance test, with a different set of notes, CRIS yielded 100% precision and 88.5% recall, while MIST yielded a 95.1% and 78.1%, respectively. We discuss how we overcome the realistic possibility - albeit of low probability - of potential breaches through implementation of the security model. CRIS is a de-identified psychiatric database sourced from EHRs, which protects patient anonymity and maximises data available for research. CRIS demonstrates the advantage of combining an effective de-identification algorithm with a carefully designed security model. The paper advances much needed discussion of EHR de-identification - particularly in relation to criteria to assess de-identification, and considering the contexts of de-identified research databases when assessing the risk of breaches of confidential patient information.
NASA Astrophysics Data System (ADS)
Miranda, Jorge; Cabral, Jorge; Ravelo, Blaise; Wagner, Stefan; Pedersen, Christian F.; Memon, Mukhtiar; Mathiesen, Morten
2015-01-01
An innovative e-healthcare platform named common recognition and identification platform (CRIP) was developed and tested as part of the CareStore project. CareStore and CRIP aims at delivering accurate and safe disease management by minimising human operator errors in hospitals and care facilities. To support this, the CRIP platform features fingerprint biometrics and near field communication (NFC) for user identification; and Bluetooth communication support for a range of telemedicine medical devices adhering to the IEEE 11073 standard. The aim of this study was to evaluate the electromagnetic compatibility (EMC) immunity of the CRIP platform in order to validate it for medical application use. The first prototype of CRIP was demonstrated to operate as expected by showing the user identification function feasibility, both via NFC and biometric, and by detection of Bluetooth devices via radio frequency (RF) scanning. The NFC module works in the 13.56 MHz band and the Bluetooth module work in the 2.4 GHz band, according to the IEEE 802.15.1 standard. The standard test qualification of the CRIP was performed based on the radiated EMC immunity with respect to the EN 61000-4-3 standard. The immunity tests were conducted under industrial EMC compliance with electric field aggression, with levels up to 10 V/m in both horizontal and vertical polarisations when the test antenna and the CRIP were placed at a distance of 3 m. It was found that the CRIP device complies with the European electromagnetic (EM) radiation immunity requirements.
Commissioning Cornell OSTs for SRF cavity testing at Jlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremeev, Grigory
2011-07-01
Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.
Identification of expansive soils using remote sensing and in-situ field measurements : phase I.
DOT National Transportation Integrated Search
2012-10-01
Researchers at the University of Arkansas have conducted research on the suitability of using remote sensing techniques (radar and LIDAR) to monitor the shrink-swell behavior of an expansive clay material in a field test site as part of the Mack Blac...
The Relationship Between Eyewitness Confidence and Identification Accuracy: A New Synthesis.
Wixted, John T; Wells, Gary L
2017-05-01
The U.S. legal system increasingly accepts the idea that the confidence expressed by an eyewitness who identified a suspect from a lineup provides little information as to the accuracy of that identification. There was a time when this pessimistic assessment was entirely reasonable because of the questionable eyewitness-identification procedures that police commonly employed. However, after more than 30 years of eyewitness-identification research, our understanding of how to properly conduct a lineup has evolved considerably, and the time seems ripe to ask how eyewitness confidence informs accuracy under more pristine testing conditions (e.g., initial, uncontaminated memory tests using fair lineups, with no lineup administrator influence, and with an immediate confidence statement). Under those conditions, mock-crime studies and police department field studies have consistently shown that, for adults, (a) confidence and accuracy are strongly related and (b) high-confidence suspect identifications are remarkably accurate. However, when certain non-pristine testing conditions prevail (e.g., when unfair lineups are used), the accuracy of even a high-confidence suspect ID is seriously compromised. Unfortunately, some jurisdictions have not yet made reforms that would create pristine testing conditions and, hence, our conclusions about the reliability of high-confidence identifications cannot yet be applied to those jurisdictions. However, understanding the information value of eyewitness confidence under pristine testing conditions can help the criminal justice system to simultaneously achieve both of its main objectives: to exonerate the innocent (by better appreciating that initial, low-confidence suspect identifications are error prone) and to convict the guilty (by better appreciating that initial, high-confidence suspect identifications are surprisingly accurate under proper testing conditions).
Automated Coronal Loop Identification Using Digital Image Processing Techniques
NASA Technical Reports Server (NTRS)
Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.
2003-01-01
The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.
A biochemical protocol for the isolation and identification of current species of Vibrio in seafood.
Ottaviani, D; Masini, L; Bacchiocchi, S
2003-01-01
We report a biochemical method for the isolation and identification of the current species of vibrios using just one operative protocol. The method involves an enrichment phase with incubation at 30 degrees C for 8-24 h in alkaline peptone water and an isolation phase on thiosulphate-citrate-salt sucrose agar plates incubating at 30 degrees C for 24 h. Four biochemical tests and Alsina's scheme were performed for genus and species identification, respectively. All biochemical tests were optimized as regards conditions of temperature, time of incubation and media composition. The whole standardized protocol was always able to give a correct identification when applied to 25 reference strains of Vibrio and 134 field isolates. The data demonstrated that the assay method allows an efficient recovery, isolation and identification of current species of Vibrio in seafood obtaining results within 2-7 days. This method based on biochemical tests could be applicable even in basic microbiology laboratories, and can be used simultaneously to isolate and discriminate all clinically relevant species of Vibrio.
Bayesian operational modal analysis with asynchronous data, part I: Most probable value
NASA Astrophysics Data System (ADS)
Zhu, Yi-Chen; Au, Siu-Kui
2018-01-01
In vibration tests, multiple sensors are used to obtain detailed mode shape information about the tested structure. Time synchronisation among data channels is required in conventional modal identification approaches. Modal identification can be more flexibly conducted if this is not required. Motivated by the potential gain in feasibility and economy, this work proposes a Bayesian frequency domain method for modal identification using asynchronous 'output-only' ambient data, i.e. 'operational modal analysis'. It provides a rigorous means for identifying the global mode shape taking into account the quality of the measured data and their asynchronous nature. This paper (Part I) proposes an efficient algorithm for determining the most probable values of modal properties. The method is validated using synthetic and laboratory data. The companion paper (Part II) investigates identification uncertainty and challenges in applications to field vibration data.
Identification of suicidal ideations with the help of projective tests: a review.
Kumar, Devvarta; Nizamie, S Haque; Abhishek, Priyadarshee; Prasanna, Lavanya Tumkur
2014-12-01
Identification of the presence of suicidal ideations in an individual is crucial for the timely intervention. However, these ideations may remain unidentified as an individual with serious intentions of self-harm may not express them explicitly. Various projective tests can provide crucial clues to clinicians about the presence of suicidal ideations in an individual's mind. The present review is intended to update clinicians working in the field of suicide prevention about salient findings on these tests which can serve as a ready reckoner for them. We also highlight the status of research in this domain. Copyright © 2014 Elsevier B.V. All rights reserved.
Policy Forum: Studying Eyewitness Investigations in the Field
Dawes, Robyn; Jacoby, Larry L.; Kahneman, Daniel; Lempert, Richard; Roediger, Henry L.; Rosenthal, Robert
2007-01-01
This article considers methodological issues arising from recent efforts to provide field tests of eyewitness identification procedures. We focus in particular on a field study (Mecklenburg 2006) that examined the “double blind, sequential” technique, and consider the implications of an acknowledged methodological confound in the study. We explain why the confound has severe consequences for assessing the real-world implications of this study. PMID:17610149
Acoustic Identification of Filler Materials in Unexploded Ordnance
2006-04-01
PBXN- 103 CH-6 PBXW- 108 Parrafin ( wax ) Baratol (76/24) Plaster TNT Octol (50/50) Comp B PETN Concrete Lo ng itu di na l V el oc ity (m /s ec...26 3.7.3 Identification of Wax fillers...plaster and wax from “other” items including explosives. A series of field tests are described that focus on acoustic measurements on both inert and live
Electromagnetic Test-Facility characterization: an identification approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zicker, J.E.; Candy, J.V.
The response of an object subjected to high energy, transient electromagnetic (EM) fields sometimes called electromagnetic pulses (EMP), is an important issue in the survivability of electronic systems (e.g., aircraft), especially when the field has been generated by a high altitude nuclear burst. The characterization of transient response information is a matter of national concern. In this report we discuss techniques to: (1) improve signal processing at a test facility; and (2) parameterize a particular object response. First, we discuss the application of identification-based signal processing techniques to improve signal levels at the Lawrence Livermore National Laboratory (LLNL) EM Transientmore » Test Facility. We identify models of test equipment and then use these models to deconvolve the input/output sequences for the object under test. A parametric model of the object is identified from this data. The model can be used to extrapolate the response to these threat level EMP. Also discussed is the development of a facility simulator (EMSIM) useful for experimental design and calibration and a deconvolution algorithm (DECONV) useful for removing probe effects from the measured data.« less
ERIC Educational Resources Information Center
van Steensel, Roel; Oostdam, Ron; van Gelderen, Amos
2013-01-01
On the basis of a validation study of a new test for assessing low-achieving adolescents' reading comprehension skills--the SALT-reading--we analyzed two issues relevant to the field of reading test development. Using the test results of 200 seventh graders, we examined the possibility of identifying reading comprehension subskills and the effects…
IMBLMS phase B4, additional tasks 5.0. Microbial identification system
NASA Technical Reports Server (NTRS)
1971-01-01
A laboratory study was undertaken to provide simplified procedures leading to the presumptive identification (I/D) of defined microorganisms on-board an orbiting spacecraft. Identifications were to be initiated by nonprofessional bacteriologists, (crew members) on a contingency basis only. Key objectives/constraints for this investigation were as follows:(1) I/D procedures based on limited, defined diagnostic tests, (2) testing oriented about ten selected microorganisms, (3) provide for definitive I/D key and procedures per selected organism, (4) define possible occurrences of false positives for the resulting I/D key by search of the appropriate literature, and (5) evaluation of the I/D key and procedure through a limited field trial on randomly selected subjects using the I/D key.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirup, D; Waters, A; Hall, H
2004-02-11
Lawrence Livermore National Laboratory (LLNL) recently conducted a field-test of radiation detection and identification equipment at the air cargo facility of Federal Express (FedEx) located at Denver International Airport (DIA) over a period of two weeks. Comprehensive background measurements were performed and were analyzed, and a trial strategy for detection and identification of parcels displaying radioactivity was implemented to aid in future development of a comprehensive protection plan. The purpose of this project was threefold: {sm_bullet} Quantify background radiation environments at an air cargo facility. {sm_bullet} Quantify and identify ''nuisance'' alarms. {sm_bullet} Evaluate the performance of various isotope identifiers deployedmore » in an operational environment (in this case, the operational environment included the biggest blizzard in over 90 years!).« less
TACCDAS Testbed Human Factors Evaluation Methodology,
1980-03-01
3 TEST METHOD Development of performance criteria................... 8 Test participant identification ...................... 8 Control of...major milestones involved in the evaluation process leading up to the evaluation of the complete testbed in the field are identified. Test methods and...inevitably will be different in several ways from the intended system as foreseen by the system designers. The system users provide insights into these
Dynamic behaviors of historical wrought iron truss bridges: a field testing case study
NASA Astrophysics Data System (ADS)
Dai, Kaoshan; Wang, Ying; Hedric, Andrew; Huang, Zhenhua
2016-04-01
The U.S. transportation infrastructure has many wrought iron truss bridges that are more than a century old and still remain in use. Understanding the structural properties and identifying the health conditions of these historical bridges are essential to deciding the maintenance or rebuild plan of the bridges. This research involved an on-site full-scale system identification test case study on the historical Old Alton Bridge (a wrought iron truss bridge built in 1884 in Denton, Texas) using a wireless sensor network. The study results demonstrate a practical and convenient experimental system identification method for historical bridge structures. The method includes the basic steps of the in-situ experiment and in-house data analysis. Various excitation methods are studied for field testing, including ambient vibration by wind load, forced vibration by human jumping load, and forced vibration by human pulling load. Structural responses of the bridge under these different excitation approaches were analyzed and compared with numerical analysis results.
Funk, W. Chris; Mullins, Thomas D.; Forsman, Eric D.; Haig, Susan M.
2007-01-01
We identified four diagnostic microsatellite loci that distinguish spotted owls (Strix occidentalis), barred owls (Strix varia), F1 hybrids and backcrosses. Thirty-four out of 52 loci tested (65.4%) successfully amplified, and four of these loci (11.8%) had allele sizes that did not overlap between spotted and barred owls. The probability of correctly identifying a backcross with these four loci is 0.875. Genotyping potential hybrid owls with these markers revealed that field identifications were often wrong. Given the difficulty of identifying hybrids in the field, these markers will be useful for hybrid identification, law enforcement and spotted owl conservation.
An online ID identification system for liquefied-gas cylinder plant
NASA Astrophysics Data System (ADS)
He, Jin; Ding, Zhenwen; Han, Lei; Zhang, Hao
2017-11-01
An automatic ID identification system for gas cylinders' online production was developed based on the production conditions and requirements of the Technical Committee for Standardization of Gas Cylinders. A cylinder ID image acquisition system was designed to improve the image contrast of ID regions on gas cylinders against the background. Then the ID digits region was located by the CNN template matching algorithm. Following that, an adaptive threshold method based on the analysis of local average grey value and standard deviation was proposed to overcome defects of non-uniform background in the segmentation results. To improve the single digit identification accuracy, two BP neural networks were trained respectively for the identification of all digits and the easily confusable digits. If the single digit was classified as one of confusable digits by the former BP neural network, it was further tested by the later one, and the later result was taken as the final identification result of this single digit. At last, the majority voting was adopted to decide the final identification result for the 6-digit cylinder ID. The developed system was installed on a production line of a liquefied-petroleum-gas cylinder plant and worked in parallel with the existing weighing step on the line. Through the field test, the correct identification rate for single ID digit was 94.73%, and none of the tested 2000 cylinder ID was misclassified through the majority voting.
Portable thin layer chromatography for field detection of explosives and propellants
NASA Astrophysics Data System (ADS)
Satcher, Joe H.; Maienschein, Jon L.; Pagoria, Philip F.; Racoveanu, Ana; Carman, M. Leslie; Whipple, Richard E.; Reynolds, John G.
2012-06-01
A field deployable detection kit for explosives and propellants using thin layer chromatography (TLC) has been developed at Lawrence Livermore National Laboratory (LLNL). The chemistry of the kit has been modified to allow for field detection of propellants (through propellant stabilizers), military explosives, peroxide explosives, nitrates and inorganic oxidizer precursors. For many of these target analytes, the detection limit is in the μg to pg range. A new miniaturized, bench prototype, field portable TLC (Micro TLC) kit has also been developed for the detection and identification of common military explosives. It has been demonstrated in a laboratory environment and is ready for field-testing. The kit is comprised of a low cost set of commercially available components specifically assembled for rapid identification needed in the field and identifies the common military explosives: HMX, RDX, Tetryl, Explosive D or picric acid, and TNT all on one plate. Additional modifications of the Micro TLC system have been made with fluorescent organosilicon co-polymer coatings to detect a large suite of explosives.
Using the domain identification model to study major and career decision-making processes
NASA Astrophysics Data System (ADS)
Tendhar, Chosang; Singh, Kusum; Jones, Brett D.
2018-03-01
The purpose of this study was to examine the extent to which (1) a domain identification model could be used to predict students' engineering major and career intentions and (2) the MUSIC Model of Motivation components could be used to predict domain identification. The data for this study were collected from first-year engineering students. We used a structural equation model to test the hypothesised relationship between variables in the partial domain identification model. The findings suggested that engineering identification significantly predicted engineering major intentions and career intentions and had the highest effect on those two variables compared to other motivational constructs. Furthermore, results suggested that success, interest, and caring are plausible contributors to students' engineering identification. Overall, there is strong evidence that the domain identification model can be used as a lens to study career decision-making processes in engineering, and potentially, in other fields as well.
Investigation of outside visual cues required for low speed and hover
NASA Technical Reports Server (NTRS)
Hoh, R. H.
1985-01-01
Knowledge of the visual cues required in the performance of stabilized hover in VTOL aircraft is a prerequisite for the development of both cockpit displays and ground-based simulation systems. Attention is presently given to the viability of experimental test flight techniques as the bases for the identification of essential external cues in aggressive and precise low speed and hovering tasks. The analysis and flight test program conducted employed a helicopter and a pilot wearing lenses that could be electronically fogged, where the primary variables were field-of-view, large object 'macrotexture', and fine detail 'microtexture', in six different fields-of-view. Fundamental metrics are proposed for the quantification of the visual field, to allow comparisons between tests, simulations, and aircraft displays.
Detection, Identification, Location, and Remote Sensing using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2009-01-01
In this presentation, we will consider the problem of simultaneous detection, identification, location estimation, and remote sensing for multiple objects. In particular, we will describe the design and testing of a wireless system capable of simultaneously detecting the presence of multiple objects, identifying each object, and acquiring both a low-resolution estimate of location and a high-resolution estimate of temperature for each object based on wireless interrogation of passive surface acoustic wave (SAW) radiofrequency identification (RFID) sensor tags affixed to each object. The system is being studied for application on the lunar surface as well as for terrestrial remote sensing applications such as pre-launch monitoring and testing of spacecraft on the launch pad and monitoring of test facilities. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In the presentation, we will summarize the system design and illustrate several aspects of the operational characteristics and signal structure. We will examine the theoretical performance characteristics of the system and compare the theoretical results with results obtained from experiments in both controlled laboratory environments and in the field.
Virtual DRI dataset development
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Teaney, Brian P.; May, Christopher; Maurer, Tana; Nelson, Michael B.; Pham, Justin R.
2017-05-01
The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military analysis community for sensor design, trade studies, and field performance prediction. This paper analyzes the results of perception tests performed to compare the results of a field DRI (Detection, Recognition, and Identification Test) performed in 2009 to current Soldier performance viewing the same imagery in a laboratory environment and simulated imagery of the same data set. The purpose of the experiment is to build a robust data set for use in the virtual prototyping of infrared sensors. This data set will provide a strong foundation relating, model predictions, field DRI results and simulated imagery.
The Test Authors Speak: Reporting on an Author Survey of the Leading Tests Used in Gifted Assessment
ERIC Educational Resources Information Center
Valler, Emilee C.; Burko, Jordan A.; Pfeiffer, Steven I.; Branagan, Alexandra M.
2017-01-01
The conceptualization of giftedness continues to be a widely debated topic within the field. Recently, there has been a shift from a psychometric view of giftedness to inclusion of conative and contextual factors. How one defines and conceptualizes "gifted" drives assessment and identification practices. Conceptualization also guides the…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
This instructional package on material testing and quality control of soils has been adapted from military curriculum materials for use in technical and vocational education programs. This short course presents basic information on soils as well as exploration, field identification, and laboratory procedures that will enable students completing…
Optimal Multi-Type Sensor Placement for Structural Identification by Static-Load Testing
Papadopoulou, Maria; Vernay, Didier; Smith, Ian F. C.
2017-01-01
Assessing ageing infrastructure is a critical challenge for civil engineers due to the difficulty in the estimation and integration of uncertainties in structural models. Field measurements are increasingly used to improve knowledge of the real behavior of a structure; this activity is called structural identification. Error-domain model falsification (EDMF) is an easy-to-use model-based structural-identification methodology which robustly accommodates systematic uncertainties originating from sources such as boundary conditions, numerical modelling and model fidelity, as well as aleatory uncertainties from sources such as measurement error and material parameter-value estimations. In most practical applications of structural identification, sensors are placed using engineering judgment and experience. However, since sensor placement is fundamental to the success of structural identification, a more rational and systematic method is justified. This study presents a measurement system design methodology to identify the best sensor locations and sensor types using information from static-load tests. More specifically, three static-load tests were studied for the sensor system design using three types of sensors for a performance evaluation of a full-scale bridge in Singapore. Several sensor placement strategies are compared using joint entropy as an information-gain metric. A modified version of the hierarchical algorithm for sensor placement is proposed to take into account mutual information between load tests. It is shown that a carefully-configured measurement strategy that includes multiple sensor types and several load tests maximizes information gain. PMID:29240684
Genetic testing in domestic cats
Lyons, Leslie A.
2012-01-01
Varieties of genetic tests are currently available for the domestic cat that support veterinary health care, breed management, species identification, and forensic investigations. Approximately thirty-five genes contain over fifty mutations that cause feline health problems or alterations in the cat’s appearance. Specific genes, such as sweet and drug receptors, have been knocked-out of Felidae during evolution and can be used along with mtDNA markers for species identification. Both STR and SNP panels differentiate cat race, breed, and individual identity, as well as gender-specific markers to determine sex of an individual. Cat genetic tests are common offerings for commercial laboratories, allowing both the veterinary clinician and the private owner to obtain DNA test results. This article will review the genetic tests for the domestic cat, and their various applications in different fields of science. Highlighted are genetic tests specific to the individual cat, which are a part of the cat’s genome. PMID:22546621
2014-01-01
Background The use of radio frequency identification (RFID) systems in healthcare is increasing, and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have demonstrated that RFID systems can interfere with medical devices; however, the majority of past studies relied on time-consuming and burdensome test schemes based on ad hoc test methods applied to individual RFID systems. Methods This paper presents the results of using an RFID simulator that allows for faster evaluation of RFID-medical device EMC against a library of RFID test signals at various field strengths. Results The results of these tests demonstrate the feasibility and adequacy of simulator testing and can be used to support its incorporation into applicable consensus standards. Conclusions This work can aid the medical device community in better assessing the risks associated with medical device exposure to RFID. PMID:25086451
Seidman, Seth J; Bekdash, Omar; Guag, Joshua; Mehryar, Maryam; Booth, Paul; Frisch, Paul
2014-08-03
The use of radio frequency identification (RFID) systems in healthcare is increasing, and concerns for electromagnetic compatibility (EMC) pose one of the biggest obstacles for widespread adoption. Numerous studies have demonstrated that RFID systems can interfere with medical devices; however, the majority of past studies relied on time-consuming and burdensome test schemes based on ad hoc test methods applied to individual RFID systems. This paper presents the results of using an RFID simulator that allows for faster evaluation of RFID-medical device EMC against a library of RFID test signals at various field strengths. The results of these tests demonstrate the feasibility and adequacy of simulator testing and can be used to support its incorporation into applicable consensus standards. This work can aid the medical device community in better assessing the risks associated with medical device exposure to RFID.
Electron spin resonance identification of irradiated fruits
NASA Astrophysics Data System (ADS)
Raffi, Jacques J.; Agnel, Jean-Pierre L.
The electron spin resonance spectrum of achenes, pips, stalks and stones from irradiated fruits (strawberry, raspberry, red currant, bilberry, apple, pear, fig, french prune, kiwi, water-melon and cherry) always displays, just after γ-treatment, a weak triplet ( aH≈30 G) due to a cellulose radical; its left line (lower field) can be used as an identification test of irradiation, at least for strawberries, rapsberries, red currants or bilberries irradiated in order to improve their storage time.
Kirchoff, Bruce K; Delaney, Peter F; Horton, Meg; Dellinger-Johnston, Rebecca
2014-01-01
Learning to identify organisms is extraordinarily difficult, yet trained field biologists can quickly and easily identify organisms at a glance. They do this without recourse to the use of traditional characters or identification devices. Achieving this type of recognition accuracy is a goal of many courses in plant systematics. Teaching plant identification is difficult because of variability in the plants' appearance, the difficulty of bringing them into the classroom, and the difficulty of taking students into the field. To solve these problems, we developed and tested a cognitive psychology-based computer program to teach plant identification. The program incorporates presentation of plant images in a homework-based, active-learning format that was developed to stimulate expert-level visual recognition. A controlled experimental test using a within-subject design was performed against traditional study methods in the context of a college course in plant systematics. Use of the program resulted in an 8-25% statistically significant improvement in final exam scores, depending on the type of identification question used (living plants, photographs, written descriptions). The software demonstrates how the use of routines to train perceptual expertise, interleaved examples, spaced repetition, and retrieval practice can be used to train identification of complex and highly variable objects. © 2014 B. K. Kirchoff et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Johnson, G J; Buckworth, R C; Lee, H; Morgan, J A T; Ovenden, J R; McMahon, C R
2017-01-01
Multivariate and machine-learning methods were used to develop field identification techniques for two species of cryptic blacktip shark. From 112 specimens, precaudal vertebrae (PCV) counts and molecular analysis identified 95 Australian blacktip sharks Carcharhinus tilstoni and 17 common blacktip sharks Carcharhinus limbatus. Molecular analysis also revealed 27 of the 112 were C. tilstoni × C. limbatus hybrids, of which 23 had C. tilstoni PCV counts and four had C. limbatus PCV counts. In the absence of further information about hybrid phenotypes, hybrids were assigned as either C. limbatus or C. tilstoni based on PCV counts. Discriminant analysis achieved 80% successful identification, but machine-learning models were better, achieving 100% successful identification, using six key measurements (fork length, caudal-fin peduncle height, interdorsal space, second dorsal-fin height, pelvic-fin length and pelvic-fin midpoint to first dorsal-fin insertion). Furthermore, pelvic-fin markings could be used for identification: C. limbatus has a distinct black mark >3% of the total pelvic-fin area, while C. tilstoni has markings with diffuse edges, or has smaller or no markings. Machine learning and pelvic-fin marking identification methods were field tested achieving 87 and 90% successful identification, respectively. With further refinement, the techniques developed here will form an important part of a multi-faceted approach to identification of C. tilstoni and C. limbatus and have a clear management and conservation application to these commercially important sharks. The methods developed here are broadly applicable and can be used to resolve species identities in many fisheries where cryptic species exist. © 2016 The Fisheries Society of the British Isles.
David Kretschmann; John Considine; F. Pierron
2016-01-01
This article presents the design optimization of an un-notched Iosipescu test specimen whose goal is the characterization of the material elastic stiffnesses of a Loblolly (Pinus taeda) or Lodgepole pine (Pinus contorta) sample in one single test. A series of finite element (FE) and grid simulations were conducted to determine displacement and strain fields for various...
Comparing hair-morphology and molecular methods to identify fecal samples from Neotropical felids
Alberts, Carlos C.; Saranholi, Bruno H.; Frei, Fernando; Galetti, Pedro M.
2017-01-01
To avoid certain problems encountered with more-traditional and invasive methods in behavioral-ecology studies of mammalian predators, such as felids, molecular approaches have been employed to identify feces found in the field. However, this method requires a complete molecular biology laboratory, and usually also requires very fresh fecal samples to avoid DNA degradation. Both conditions are normally absent in the field. To address these difficulties, identification based on morphological characters (length, color, banding, scales and medullar patterns) of hairs found in feces could be employed as an alternative. In this study we constructed a morphological identification key for guard hairs of eight Neotropical felids (jaguar, oncilla, Geoffroy’s cat, margay, ocelot, Pampas cat, puma and jaguarundi) and compared its efficiency to that of a molecular identification method, using the ATP6 region as a marker. For this molecular approach, we simulated some field conditions by postponing sample-conservation procedures. A blind test of the identification key obtained a nearly 70% overall success rate, which we considered equivalent to or better than the results of some molecular methods (probably due to DNA degradation) found in other studies. The jaguar, puma and jaguarundi could be unequivocally discriminated from any other Neotropical felid. On a scale ranging from inadequate to excellent, the key proved poor only for the margay, with only 30% of its hairs successfully identified using this key; and have intermediate success rates for the remaining species, the oncilla, Geoffroy’s cat, ocelot and Pampas cat, were intermediate. Complementary information about the known distributions of felid populations may be necessary to substantially improve the results obtained with the key. Our own molecular results were even better, since all blind-tested samples were correctly identified. Part of these identifications were made from samples kept in suboptimal conditions, with some samples remaining outdoors for up to seven days, simulating conditions in the field. It appears that both methods can be used, depending on the available laboratory facilities and on the expected results. PMID:28880947
Recombinant blood group proteins for use in antibody screening and identification tests.
Seltsam, Axel; Blasczyk, Rainer
2009-11-01
The present review elucidates the potentials of recombinant blood group proteins (BGPs) for red blood cell (RBC) antibody detection and identification in pretransfusion testing and the achievements in this field so far. Many BGPs have been eukaryotically and prokaryotically expressed in sufficient quantity and quality for RBC antibody testing. Recombinant BGPs can be incorporated in soluble protein reagents or solid-phase assays such as ELISA, color-coded microsphere and protein microarray chip-based techniques. Because novel recombinant protein-based assays use single antigens, a positive reaction of a serum with the recombinant protein directly indicates the presence and specificity of the target antibody. Inversely, conventional RBC-based assays use panels of human RBCs carrying a huge number of blood group antigens at the same time and require negative reactions of samples with antigen-negative cells for indirect determination of antibody specificity. Because of their capacity for single-step, direct RBC antibody determination, recombinant protein-based assays may greatly facilitate and accelerate the identification of common and rare RBC antibodies.
Analyzing the dynamic response of rotating blades in small-scale wind turbines
NASA Astrophysics Data System (ADS)
Hsiung, Wan-Ying; Huang, Yu-Ting; Loh, Chin-Hsiung; Loh, Kenneth J.; Kamisky, Robert J.; Nip, Danny; van Dam, Cornelis
2014-03-01
The objective of this study was to validate modal analysis, system identification and damage detection of small-scale rotating wind turbine blades in the laboratory and in the field. Here, wind turbine blades were instrumented with accelerometers and strain gages, and data acquisition was achieved using a prototype wireless sensing system. In the first portion of this study conducted in the laboratory, sensors were installed onto metallic structural elements that were fabricated to be representative of an actual wind blade. In order to control the excitation (rotation of the wind blade), a motor was used to spin the blades at controlled angular velocities. The wind turbine was installed on a shaking table for testing under rotation of turbine blades. Data measured by the sensors were recorded while the blade was operated at different speeds. On the other hand, the second part of this study utilized a small-scale wind turbine system mounted on the rooftop of a building. The main difference, as compared to the lab tests, was that the field tests relied on actual wind excitations (as opposed to a controlled motor). The raw data from both tests were analyzed using signal processing and system identification techniques for deriving the model response of the blades. The multivariate singular spectrum analysis (MSSA) and covariance-driven stochastic subspace identification method (SSI-COV) were used to identify the dynamic characteristics of the system. Damage of one turbine blade (loose bolts connection) in the lab test was also conducted. The extracted modal properties for both undamaged and damage cases under different ambient or forced excitations (earthquake loading) were compared. These tests confirmed that dynamic characterization of rotating wind turbines was feasible, and the results will guide future monitoring studies planned for larger-scale systems.
Sumithra, T G; Chaturvedi, V K; Gupta, P K; Sunita, S C; Rai, A K; Kutty, M V H; Laxmi, U; Murugan, M S
2014-05-01
A specific latex agglutination test (LAT) based on anti-PA (protective antigen) antibodies having detection limit of 5 × 10(4) formalin treated Bacillus anthracis cells or 110 ng of PA was optimized in this study. The optimized LAT could detect anthrax toxin in whole blood as well as in serum from the animal models of anthrax infection. The protocol is a simple and promising method for the specific detection of bacteria causing anthrax under routine laboratory, as well as in field, conditions without any special equipments or expertise. The article presents the first report of a latex agglutination test for the specific identification of the cultures of bacteria causing anthrax. As the test is targeting one of anthrax toxic protein (PA), this can also be used to determine virulence of suspected organisms. At the same time, the same LAT can be used directly on whole blood or sera samples under field conditions for the specific diagnosis of anthrax. © 2013 The Society for Applied Microbiology.
Mu, Dongdong; Wang, Guofeng; Fan, Yunsheng; Sun, Xiaojie; Qiu, Bingbing
2018-06-08
This paper presents a complete scheme for research on the three degrees of freedom model and response model of the vector propulsion of an unmanned surface vehicle. The object of this paper is “Lanxin”, an unmanned surface vehicle (7.02 m × 2.6 m), which is equipped with a single vector propulsion device. First, the “Lanxin” unmanned surface vehicle and the related field experiments (turning test and zig-zag test) are introduced and experimental data are collected through various sensors. Then, the thrust of the vector thruster is estimated by the empirical formula method. Third, using the hypothesis and simplification, the three degrees of freedom model and the response model of USV are deduced and established, respectively. Fourth, the parameters of the models (three degrees of freedom model, response model and thruster servo model) are obtained by system identification, and we compare the simulated turning test and zig-zag test with the actual data to verify the accuracy of the identification results. Finally, the biggest advantage of this paper is that it combines theory with practice. Based on identified response model, simulation and practical course keeping experiments are carried out to further verify feasibility and correctness of modeling and identification.
Computerized fracture critical and specialized bridge inspection program with NDE applications
NASA Astrophysics Data System (ADS)
Fish, Philip E.
1998-03-01
Wisconsin Department of Transportation implemented a Fracture Critical & Specialized Inspection Program in 1987. The program has a strong emphasis on Nondestructive Testing (NDT). The program is also completely computerized, using laptop computers to gather field data, digital cameras for pictures, and testing equipment with download features. Final inspection reports with detailed information can be delivered within days of the inspection. The program requires an experienced inspection team and qualified personnel. Individuals performing testing must be licensed ASNT (American Society for Nondestructive Testing) Level III and must be licensed Certified Weld Inspectors (American Welding Society). Several critical steps have been developed to assure that each inspection identifies all possible deficiencies that may be possible on a Fracture Critical or Unique Bridge. They include; review of all existing plans and maintenance history; identification of fracture critical members, identification of critical connection details, welds, & fatigue prone details, development of visual and NDE inspection plan; field inspection procedures; and a detailed formal report. The program has found several bridges with critical fatigue conditions which have resulted in replacement or major rehabilitation. In addition, remote monitoring systems have been installed on structures with serious cracking to monitor for changing conditions.
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Qian, Ya; Zhang, Wei; Tang, Chenghao
2017-12-01
High sensitivity of a distributed optical-fiber vibration sensing (DOVS) system based on the phase-sensitivity optical time domain reflectometry (Φ-OTDR) technology also brings in high nuisance alarm rates (NARs) in real applications. In this paper, feature extraction methods of wavelet decomposition (WD) and wavelet packet decomposition (WPD) are comparatively studied for three typical field testing signals, and an artificial neural network (ANN) is built for the event identification. The comparison results prove that the WPD performs a little better than the WD for the DOVS signal analysis and identification in oil pipeline safety monitoring. The identification rate can be improved up to 94.4%, and the nuisance alarm rate can be effectively controlled as low as 5.6% for the identification network with the wavelet packet energy distribution features.
Raman scattering spectroscopy for explosives identification
NASA Astrophysics Data System (ADS)
Nagli, L.; Gaft, M.
2007-04-01
Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-particles variety. We applied gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. Raman system was developed and tested by LDS for field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.
Evaluation of a culture-based pathogen identification kit for bacterial causes of bovine mastitis.
Viora, L; Graham, E M; Mellor, D J; Reynolds, K; Simoes, P B A; Geraghty, T E
2014-07-26
Accurate identification of mastitis-causing bacteria supports effective management and can be used to implement selective use of antimicrobials for treatment. The objectives of this study were to compare the results from a culture-based mastitis pathogen detection test kit ('VetoRapid', Vétoquinol) with standard laboratory culture and to evaluate the potential suitability of the test kit to inform a selective treatment programme. Overall 231 quarter milk samples from five UK dairy farms were collected. The sensitivity and specificity of the test kit for the identification of Escherichia coli, Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis and Enterococcus spp. ranged from 17 per cent to 84 per cent and 92 per cent to 98 per cent, respectively. In total, 23 of 68 clinical samples were assigned as meeting the requirement for antimicrobial treatment (Gram-positive organism cultured) according to standard culture results, with the test kit results having sensitivity and specificity of 91 per cent and 78 per cent, respectively. Several occurrences of misidentification are reported, including S. aureus being misidentified as coagulase-negative staphylococci and vice versa. The test kit provides rapid preliminary identification of five common causes of bovine mastitis under UK field conditions and is likely to be suitable for informing selective treatment of clinical mastitis caused by Gram-positive organisms. British Veterinary Association.
DOT National Transportation Integrated Search
2012-04-01
This study involved the identification and evaluation of laboratory conditioning methods and testing protocols considering heat oxidation, moisture, and load that more effectively simulate asphalt mixture aging in the field, and thereby help to prope...
DOT National Transportation Integrated Search
1998-09-01
Commercial Vehicle Administrative (CVO) Processes Cross-Cutting report summarizes and interprets the results of several Field Operational Tests (FOTs) conducted to evaluate systems that increase the efficiency of commercial vehicle administrative pro...
Quantifying and managing uncertainty in operational modal analysis
NASA Astrophysics Data System (ADS)
Au, Siu-Kui; Brownjohn, James M. W.; Mottershead, John E.
2018-03-01
Operational modal analysis aims at identifying the modal properties (natural frequency, damping, etc.) of a structure using only the (output) vibration response measured under ambient conditions. Highly economical and feasible, it is becoming a common practice in full-scale vibration testing. In the absence of (input) loading information, however, the modal properties have significantly higher uncertainty than their counterparts identified from free or forced vibration (known input) tests. Mastering the relationship between identification uncertainty and test configuration is of great interest to both scientists and engineers, e.g., for achievable precision limits and test planning/budgeting. Addressing this challenge beyond the current state-of-the-art that are mostly concerned with identification algorithms, this work obtains closed form analytical expressions for the identification uncertainty (variance) of modal parameters that fundamentally explains the effect of test configuration. Collectively referred as 'uncertainty laws', these expressions are asymptotically correct for well-separated modes, small damping and long data; and are applicable under non-asymptotic situations. They provide a scientific basis for planning and standardization of ambient vibration tests, where factors such as channel noise, sensor number and location can be quantitatively accounted for. The work is reported comprehensively with verification through synthetic and experimental data (laboratory and field), scientific implications and practical guidelines for planning ambient vibration tests.
NASA Astrophysics Data System (ADS)
Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco
2018-03-01
Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.
NASA Astrophysics Data System (ADS)
Lasaponara, Rosa; Masini, Nicola
2018-06-01
The identification and quantification of disturbance of archaeological sites has been generally approached by visual inspection of optical aerial or satellite pictures. In this paper, we briefly summarize the state of the art of the traditionally satellite-based approaches for looting identification and propose a new automatic method for archaeological looting feature extraction approach (ALFEA). It is based on three steps: the enhancement using spatial autocorrelation, unsupervised classification, and segmentation. ALFEA has been applied to Google Earth images of two test areas, selected in desert environs in Syria (Dura Europos), and in Peru (Cahuachi-Nasca). The reliability of ALFEA was assessed through field surveys in Peru and visual inspection for the Syrian case study. Results from the evaluation procedure showed satisfactory performance from both of the two analysed test cases with a rate of success higher than 90%.
Han, Ruizhen; He, Yong; Liu, Fei
2012-01-01
This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture. PMID:22736996
Han, Ruizhen; He, Yong; Liu, Fei
2012-01-01
This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.
Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chern-Hwa
2010-05-01
This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.
Shah, Manthan P; Shendell, Derek G; Meng, Qingyu; Ohman-Strickland, Pamela; Halperin, William
2018-04-23
The performances of a portable X-Ray Fluorescence (XRF) lead paint analyzer (RMD LPA-1, Protec Instrument Corp., Waltham, MA) and a commercially available colorimetric lead test kit (First Alert Lead Test Kit, eAccess Solutions, Inc., Palatine, IL) were evaluated for use by local or state health departments as potential cost-effective rapid analysis or "spot test" field techniques for tentative identification of lead content in sindoor powders. For both field-sampling methods, sensitivity, specificity and predictive values varied widely for samples containing <300,000 μg/g lead. For samples containing ≥300,000 μg/g lead, the aforementioned metrics were 100% (however, the CIs had a wide range). In addition, both field sampling methods showed clear, consistent positive readings only for samples containing ≥300,000 μg/g lead. Even samples with lead content as high as 5,110 μg/g were not positively identified by either field analysis technique. The results of this study suggest the XRF analyzer and colorimetric lead test kit cannot be used as a rapid field test for sindoor by health department inspectors.
10 CFR 851.21 - Hazard identification and assessment.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety..., biological, and safety workplace hazards using recognized exposure assessment and testing methodologies and... hazards and the established controls within 90 days after identifying such hazards. The Head of DOE Field...
10 CFR 851.21 - Hazard identification and assessment.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety..., biological, and safety workplace hazards using recognized exposure assessment and testing methodologies and... hazards and the established controls within 90 days after identifying such hazards. The Head of DOE Field...
10 CFR 851.21 - Hazard identification and assessment.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... Procedures must include methods to: (1) Assess worker exposure to chemical, physical, biological, or safety..., biological, and safety workplace hazards using recognized exposure assessment and testing methodologies and... hazards and the established controls within 90 days after identifying such hazards. The Head of DOE Field...
Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard
2013-01-01
The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.
Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi.
Lee, Jaikoo; Lee, Sangsun; Young, J Peter W
2008-08-01
A set of PCR primers that should amplify all subgroups of arbuscular mycorrhizal fungi (AMF, Glomeromycota), but exclude sequences from other organisms, was designed to facilitate rapid detection and identification directly from field-grown plant roots. The small subunit rRNA gene was targeted for the new primers (AML1 and AML2) because phylogenetic relationships among the Glomeromycota are well understood for this gene. Sequence comparisons indicate that the new primers should amplify all published AMF sequences except those from Archaeospora trappei. The specificity of the new primers was tested using 23 different AMF spore morphotypes from trap cultures and Miscanthus sinensis, Glycine max and Panax ginseng roots sampled from the field. Non-AMF DNA of 14 plants, 14 Basidiomycota and 18 Ascomycota was also tested as negative controls. Sequences amplified from roots using the new primers were compared with those obtained using the established NS31 and AM1 primer combination. The new primers have much better specificity and coverage of all known AMF groups.
Empirical trials of plant field guides.
Hawthorne, W D; Cable, S; Marshall, C A M
2014-06-01
We designed 3 image-based field guides to tropical forest plant species in Ghana, Grenada, and Cameroon and tested them with 1095 local residents and 20 botanists in the United Kingdom. We compared users' identification accuracy with different image formats, including drawings, specimen photos, living plant photos, and paintings. We compared users' accuracy with the guides to their accuracy with only their prior knowledge of the flora. We asked respondents to score each format for usability, beauty, and how much they would pay for it. Prior knowledge of plant names was generally low (<22%). With a few exceptions, identification accuracy did not differ significantly among image formats. In Cameroon, users identifying sterile Cola species achieved 46-56% accuracy across formats; identification was most accurate with living plant photos. Botanists in the United Kingdom accurately identified 82-93% of the same Cameroonian species; identification was most accurate with specimens. In Grenada, users accurately identified 74-82% of plants; drawings yielded significantly less accurate identifications than paintings and photos of living plants. In Ghana, users accurately identified 85% of plants. Digital color photos of living plants ranked high for beauty, usability, and what users would pay. Black and white drawings ranked low. Our results show the potential and limitations of the use of field guides and nonspecialists to identify plants, for example, in conservation applications. We recommend authors of plant field guides use the cheapest or easiest illustration format because image type had limited bearing on accuracy; match the type of illustration to the most likely use of the guide for slight improvements in accuracy; avoid black and white formats unless the audience is experienced at interpreting illustrations or keeping costs low is imperative; discourage false-positive identifications, which were common; and encourage users to ask an expert or use a herbarium for groups that are difficult to identify. © 2014 Society for Conservation Biology.
Hung, C C; Hwang, J S; Hung, M D; Yen, Y P; Hou, R F
2001-09-01
Two components, (Z)-8-dodecenyl acetate (Z8-12:Ac) and (Z)-8-dodecenol (Z8-12:OH), were isolated from sex pheromone glands of the carambola fruit borer, Eucosma notanthes, and were identified by GC, and GC-MS, chemical derivatization, and comparison of retention times. The ratio of the alcohol to acetate in the sex pheromone extracts was 2.7. However, synthetic mixtures (1 mg) in ratios ranging from 0.5 to 1.5 were more effective than other blends in trapping male moths in field tests.
Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Anderson L.; Gee, Glendon W.
2000-06-23
This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptualmore » models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.« less
Orton, Dennis J.; Doucette, Alan A.
2013-01-01
Identification of biomarkers capable of differentiating between pathophysiological states of an individual is a laudable goal in the field of proteomics. Protein biomarker discovery generally employs high throughput sample characterization by mass spectrometry (MS), being capable of identifying and quantifying thousands of proteins per sample. While MS-based technologies have rapidly matured, the identification of truly informative biomarkers remains elusive, with only a handful of clinically applicable tests stemming from proteomic workflows. This underlying lack of progress is attributed in large part to erroneous experimental design, biased sample handling, as well as improper statistical analysis of the resulting data. This review will discuss in detail the importance of experimental design and provide some insight into the overall workflow required for biomarker identification experiments. Proper balance between the degree of biological vs. technical replication is required for confident biomarker identification. PMID:28250400
Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra
Ryden, N.; Park, C.B.
2006-01-01
The conventional inversion of surface waves depends on modal identification of measured dispersion curves, which can be ambiguous. It is possible to avoid mode-number identification and extraction by inverting the complete phase-velocity spectrum obtained from a multichannel record. We use the fast simulated annealing (FSA) global search algorithm to minimize the difference between the measured phase-velocity spectrum and that calculated from a theoretical layer model, including the field setup geometry. Results show that this algorithm can help one avoid getting trapped in local minima while searching for the best-matching layer model. The entire procedure is demonstrated on synthetic and field data for asphalt pavement. The viscoelastic properties of the top asphalt layer are taken into account, and the inverted asphalt stiffness as a function of frequency compares well with laboratory tests on core samples. The thickness and shear-wave velocity of the deeper embedded layers are resolved within 10% deviation from those values measured separately during pavement construction. The proposed method may be equally applicable to normal soil site investigation and in the field of ultrasonic testing of materials. ?? 2006 Society of Exploration Geophysicists.
Modal Identification in an Automotive Multi-Component System Using HS 3D-DIC
López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2018-01-01
The modal characterization of automotive lighting systems becomes difficult using sensors due to the light weight of the elements which compose the component as well as the intricate access to allocate them. In experimental modal analysis, high speed 3D digital image correlation (HS 3D-DIC) is attracting the attention since it provides full-field contactless measurements of 3D displacements as main advantage over other techniques. Different methodologies have been published that perform modal identification, i.e., natural frequencies, damping ratios, and mode shapes using the full-field information. In this work, experimental modal analysis has been performed in a multi-component automotive lighting system using HS 3D-DIC. Base motion excitation was applied to simulate operating conditions. A recently validated methodology has been employed for modal identification using transmissibility functions, i.e., the transfer functions from base motion tests. Results make it possible to identify local and global behavior of the different elements of injected polymeric and metallic materials. PMID:29401725
Learning Disabilities: An Interdisciplinary Perspective.
ERIC Educational Resources Information Center
Zollinger, Ruth H., Ed.; Klein, Nancy K., Ed.
Presented are six papers originally delivered at a colloquium series on the problems of the learning disabled child, with emphasis on a multidisciplinary perspective. In "One Psychologist's Perspective on Learning Disabilities," J. Kessler provides an overview of the field with sections on definition and identification, etiology, testing as a…
ERIC Educational Resources Information Center
Ohkawa, Chizuru
2000-01-01
Introduces teaching materials developed for field identification of plants with synoptical keys, identification tables, cards, and programs. Selects approximately 2000 seed plants and uses visibly identifiable characteristics for classification. Recommends using the methodology of identification in other areas for biological identification. (YDS)
An Approach to Near Field Data Selection in Radio Frequency Identification
NASA Astrophysics Data System (ADS)
Winkworth, Robert D.
Personal identification is needed in many civil activities, and the common identification cards, such as a driver's license, have become the standard document de facto. Radio frequency identification has complicated this matter. Unlike their printed predecessors, contemporary RFID cards lack a practical way for users to control access to their individual fields of data. This leaves them more available to unauthorized parties, and more prone to abuse. Here, then was undertaken a means to test a novel RFID card technology that allows overlays to be used for reliable, reversible data access settings. Similar to other proposed switching mechanisms, it offers advantages that may greatly improve outcomes. RFID use is increasing in identity documents such as drivers' licenses and passports, and with it concern over the theft of personal information, which can enable unauthorized tracking or fraud. Effort put into designing a strong foundation technology now may allow for widespread development on them later. In this dissertation, such a technology was designed and constructed, to drive the central thesis that selective detuning could serve as a feasible, reliable mechanism. The concept had been illustrated effective in limiting access to all fields simultaneously before, and was here effective in limiting access to specific fields selectively. A novel card was produced in familiar dimensions, with an intuitive interface by which users may conceal the visible print of the card to conceal the wireless emissions it allows. A discussion was included of similar technologies, involving capacitive switching, that could further improve the outcomes if such a product were put to large-scale commercial fabrication. The card prototype was put to a battery of laboratory tests to measure the degree of independence between data fields and the reliability of the switching mechanism when used under realistically variable coverage, demonstrating statistically consistent performance in both. The success rate of RFID card read operations, which are already greater than 99.9%, were exceeded by the success rate of selection using the featured technology. With controls in place for the most influential factors related to card readability (namely the distance from the reader antennas and the orientation of the card antenna with respect to them), the card was shown to completely resist data acquisition from unauthorized fields while allowing unimpeded access to authorized fields, even after thousands of varied attempts. The effect was proven to be temporary and reversible. User intervention allowed for the switching to occur in a matter of seconds by sliding a conductive sleeve or applying tape to regions of the card. Strategies for widespread implementation were discussed, emphasizing factors that included cost, durability, size, simplicity, and familiarity, all of which arise in card management decisions for common state and national identification such as a driver's license. The relationship between the card and external database systems was detailed, as no such identification document could function in isolation. A practical solution involving it will include details of how multiple fields will be written to the card and separated sufficiently in external databases so as to allow for user-directed selection of data field disclosure. Opportunities for implementation in corporate and academic environments were discussed, along with the ways in which this technology could invite further investigation.
Use of synthetic oligonucleotide DNA probes for the identification of Bacteroides gingivalis.
Moncla, B J; Braham, P; Dix, K; Watanabe, S; Schwartz, D
1990-01-01
Six different oligonucleotide probes complementary to the hypervariable regions of 16S rRNA of Bacteroides gingivalis were tested for specificity and sensitivity against 77 field strains of B. gingivalis and 105 strains of 12 other Bacteroides species. The data demonstrated that these probes were very specific (range, 0.85 to 1.00) and sensitive (1.00). Some limited cross-reactions with other Bacteroides species were observed. Four of these probes should be useful for rapid detection and identification of B. gingivalis. Images PMID:1690217
Challenging an Idea Whose Time Has Gone
ERIC Educational Resources Information Center
Cross, Tracy L.; Cross, Jennifer Riedl
2017-01-01
In this response to Sternberg's article, "ACCEL: A New Model for Identifying the Gifted," we agree that IQ testing may have outlasted its usefulness as an identification tool for gifted students. The field's commitment to an imperfect formula has neglected the evolution of offerings in schools and theoretical underpinnings that are…
MALDI-TOF MS identification of Anopheles gambiae Giles blood meal crushed on Whatman filter papers.
Niare, Sirama; Almeras, Lionel; Tandina, Fatalmoudou; Yssouf, Amina; Bacar, Affane; Toilibou, Ali; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-01-01
Identification of the source of mosquito blood meals is an important component for disease control and surveillance. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an effective tool for mosquito blood meal identification, using the abdomens of freshly engorged mosquitoes. In the field, mosquito abdomens are crushed on Whatman filter papers to determine the host feeding patterns by identifying the origin of their blood meals. The aim of this study was to test whether crushing engorged mosquito abdomens on Whatman filter papers was compatible with MALDI-TOF MS for mosquito blood meal identification. Both laboratory reared and field collected mosquitoes were tested. Sixty Anopheles gambiae Giles were experimentally engorged on the blood of six distinct vertebrate hosts (human, sheep, rabbit, dog, chicken and rat). The engorged mosquito abdomens were crushed on Whatman filter papers for MALDI-TOF MS analysis. 150 Whatman filter papers, with mosquitoes engorged on cow and goat blood, were preserved. A total of 77 engorged mosquito abdomens collected in the Comoros Islands and crushed on Whatman filter papers were tested with MALDI-TOF MS. The MS profiles generated from mosquito engorged abdomens crushed on Whatman filter papers exhibited high reproducibility according to the original host blood. The blood meal host was correctly identified from mosquito abdomens crushed on Whatman filter papers by MALDI-TOF MS. The MS spectra obtained after storage were stable regardless of the room temperature and whether or not they were frozen. The MS profiles were reproducible for up to three months. For the Comoros samples, 70/77 quality MS spectra were obtained and matched with human blood spectra. This was confirmed by molecular tools. The results demonstrated that MALDI-TOF MS could identify mosquito blood meals from Whatman filter papers collected in the field during entomological surveys. The application of MALDI-TOF MS has proved to be rapid and successful, making it a new and efficient tool for mosquito-borne disease surveillance.
Palmer, Matthew A; Brewer, Neil; Weber, Nathan; Nagesh, Ambika
2013-03-01
Prior research points to a meaningful confidence-accuracy (CA) relationship for positive identification decisions. However, there are theoretical grounds for expecting that different aspects of the CA relationship (calibration, resolution, and over/underconfidence) might be undermined in some circumstances. This research investigated whether the CA relationship for eyewitness identification decisions is affected by three, forensically relevant variables: exposure duration, retention interval, and divided attention at encoding. In Study 1 (N = 986), a field experiment, we examined the effects of exposure duration (5 s vs. 90 s) and retention interval (immediate testing vs. a 1-week delay) on the CA relationship. In Study 2 (N = 502), we examined the effects of attention during encoding on the CA relationship by reanalyzing data from a laboratory experiment in which participants viewed a stimulus video under full or divided attention conditions and then attempted to identify two targets from separate lineups. Across both studies, all three manipulations affected identification accuracy. The central analyses concerned the CA relation for positive identification decisions. For the manipulations of exposure duration and retention interval, overconfidence was greater in the more difficult conditions (shorter exposure; delayed testing) than the easier conditions. Only the exposure duration manipulation influenced resolution (which was better for 5 s than 90 s), and only the retention interval manipulation affected calibration (which was better for immediate testing than delayed testing). In all experimental conditions, accuracy and diagnosticity increased with confidence, particularly at the upper end of the confidence scale. Implications for theory and forensic settings are discussed.
Król, Jaroslaw; Bania, Jacek; Florek, Magdalena; Pliszczak-Król, Aleksandra; Staroniewicz, Zdzislaw
2011-05-01
A set of polymerase chain reaction (PCR) assays for identification of the most important Pasteurellaceae species encountered in cats and dogs were developed. Primers for Pasteurella multocida were designed to detect a fragment of the kmt, a gene encoding the outer-membrane protein. Primers specific to Pasteurella canis, Pasteurella dagmatis, and Pasteurella stomatis were based on the manganese-dependent superoxide dismutase gene (sodA) and those specific to [Haemophilus] haemoglobinophilus on species-specific sequences of the 16S ribosomal RNA gene. All the primers were tested on respective reference and control strains and applied to the identification of 47 canine and feline field isolates of Pasteurellaceae. The PCR assays were shown to be species specific, providing a valuable supplement to phenotypic identification of species within this group of bacteria. © 2011 The Author(s)
NASA Astrophysics Data System (ADS)
Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.
2010-06-01
A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is based on projecting the full field images on a modal basis, constructed from sample simulations, and which can account for the variations of the full field as the elastic constants and other parameters of interest are varied. The fidelity of the decomposition depends on the number of basis vectors used. Typically even complex fields can be accurately represented with no more than a few dozen modes and for our problem we showed that only four or five modes are sufficient [5]. To further reduce the computational cost of the Bayesian approach we use response surface approximations of the POD coefficients of the fields. We show that 3rd degree polynomial response surface approximations provide a satisfying accuracy. The combination of POD decomposition and response surface methodology allows to bring down the computational time of the Bayesian identification to a few days. The proposed approach is applied to Moiré interferometry full field displacement measurements from a traction experiment on a plate with a hole. The laminate with a layup of [45,- 45,0]s is made out of a Toray® T800/3631 graphite/epoxy prepreg. The measured displacement maps are provided in Figure 1. The mean values of the identified properties joint probability density function are in agreement with previous identifications carried out on the same material. Furthermore the probability density function also provides the coefficient of variation with which the properties are identified as well as the correlations between the various properties. We find that while the longitudinal Young’s modulus is identified with good accuracy (low standard deviation), the Poisson’s ration is identified with much higher uncertainty. Several of the properties are also found to be correlated. The identified uncertainty structure of the elastic constants (i.e. variance co-variance matrix) has potential benefits to reliability analyses, by allowing a more accurate description of the input uncertainty. An additional advantage of the Bayesian approach is that it provides a natural way (in the form of the prior probability density function) for accounting for prior information that may be available on the material properties thought. This is of great interest for reducing the uncertainty on properties that can only be determined with low confidence from the plate with a hole experiment, such as Poisson’s ratio or transverse Young’s modulus in our case.
Celio, Mark A; Vetter-O'Hagen, Courtney S; Lisman, Stephen A; Johansen, Gerard E; Spear, Linda P
2011-12-01
Field methodologies offer a unique opportunity to collect ecologically valid data on alcohol use and its associated problems within natural drinking environments. However, limitations in follow-up data collection methods have left unanswered questions regarding the psychometric properties of field-based measures. The aim of the current study is to evaluate the reliability of self-report data collected in a naturally occurring environment - as indexed by the Alcohol Use Disorders Identification Test (AUDIT) - compared to self-report data obtained through an innovative web-based follow-up procedure. Individuals recruited outside of bars (N=170; mean age=21; range 18-32) provided a BAC sample and completed a self-administered survey packet that included the AUDIT. BAC feedback was provided anonymously through a dedicated web page. Upon sign in, follow-up participants (n=89; 52%) were again asked to complete the AUDIT before receiving their BAC feedback. Reliability analyses demonstrated that AUDIT scores - both continuous and dichotomized at the standard cut-point - were stable across field- and web-based administrations. These results suggest that self-report data obtained from acutely intoxicated individuals in naturally occurring environments are reliable when compared to web-based data obtained after a brief follow-up interval. Furthermore, the results demonstrate the feasibility, utility, and potential of integrating field methods and web-based data collection procedures. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A robust star identification algorithm with star shortlisting
NASA Astrophysics Data System (ADS)
Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon
2018-05-01
A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.
NASA Astrophysics Data System (ADS)
Ueno, Yuichiro; Takahashi, Isao; Ishitsu, Takafumi; Tadokoro, Takahiro; Okada, Koichi; Nagumo, Yasushi; Fujishima, Yasutake; Yoshida, Akira; Umegaki, Kikuo
2018-06-01
We developed a pinhole type gamma camera, using a compact detector module of a pixelated CdTe semiconductor, which has suitable sensitivity and quantitative accuracy for low dose rate fields. In order to improve the sensitivity of the pinhole type semiconductor gamma camera, we adopted three methods: a signal processing method to set the discriminating level lower, a high sensitivity pinhole collimator and a smoothing image filter that improves the efficiency of the source identification. We tested basic performances of the developed gamma camera and carefully examined effects of the three methods. From the sensitivity test, we found that the effective sensitivity was about 21 times higher than that of the gamma camera for high dose rate fields which we had previously developed. We confirmed that the gamma camera had sufficient sensitivity and high quantitative accuracy; for example, a weak hot spot (0.9 μSv/h) around a tree root could be detected within 45 min in a low dose rate field test, and errors of measured dose rates with point sources were less than 7% in a dose rate accuracy test.
Signal identification in acoustic emission monitoring of fatigue cracking in steel bridges
NASA Astrophysics Data System (ADS)
Yu, Jianguo P.; Ziehl, Paul; Pollock, Adrian
2012-04-01
Signal identification including noise filtering and reduction of acquired signals is needed to achieve efficient and accurate data interpretation for remote acoustic emission (AE) monitoring of in-service steel bridges. Noise filtering may ensure that genuine hits from crack growth are involved in the estimation of fatigue damage and remaining fatigue life. Reduction of the data quantity is desirable for the sensing system to conserve energy in the data transmission and processing procedures. Identification and categorization of acquired signals is a promising approach to effectively filter and reduce AE data in the application of bridge monitoring. In this study an investigation on waveform features (time domain and frequency domain) and relevant filters is carried out using the results from AE monitored fatigue tests. It is verified that duration-amplitude (D-A) filters are effective to discriminate against noise for results of steel fatigue tests. The study is helpful to find an appropriate AE data filtering protocol for field implementations.
Identification of delamination failure of boride layer on common Cr-based steels
NASA Astrophysics Data System (ADS)
Taktak, Sukru; Tasgetiren, Suleyman
2006-10-01
Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.
NASA Astrophysics Data System (ADS)
Lin, Y. Q.; Ren, W. X.; Fang, S. E.
2011-11-01
Although most vibration-based damage detection methods can acquire satisfactory verification on analytical or numerical structures, most of them may encounter problems when applied to real-world structures under varying environments. The damage detection methods that directly extract damage features from the periodically sampled dynamic time history response measurements are desirable but relevant research and field application verification are still lacking. In this second part of a two-part paper, the robustness and performance of the statistics-based damage index using the forward innovation model by stochastic subspace identification of a vibrating structure proposed in the first part have been investigated against two prestressed reinforced concrete (RC) beams tested in the laboratory and a full-scale RC arch bridge tested in the field under varying environments. Experimental verification is focused on temperature effects. It is demonstrated that the proposed statistics-based damage index is insensitive to temperature variations but sensitive to the structural deterioration or state alteration. This makes it possible to detect the structural damage for the real-scale structures experiencing ambient excitations and varying environmental conditions.
Welker, Martin; Pincus, David; Charrier, Jean-Philippe; Girard, Victoria
2017-01-01
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. PMID:28840984
van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria
2017-11-01
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.
Wells, Gary L; Steblay, Nancy K; Dysart, Jennifer E
2015-02-01
Eyewitnesses (494) to actual crimes in 4 police jurisdictions were randomly assigned to view simultaneous or sequential photo lineups using laptop computers and double-blind administration. The sequential procedure used in the field experiment mimicked how it is conducted in actual practice (e.g., using a continuation rule, witness does not know how many photos are to be viewed, witnesses resolve any multiple identifications), which is not how most lab experiments have tested the sequential lineup. No significant differences emerged in rates of identifying lineup suspects (25% overall) but the sequential procedure produced a significantly lower rate (11%) of identifying known-innocent lineup fillers than did the simultaneous procedure (18%). The simultaneous/sequential pattern did not significantly interact with estimator variables and no lineup-position effects were observed for either the simultaneous or sequential procedures. Rates of nonidentification were not significantly different for simultaneous and sequential but nonidentifiers from the sequential procedure were more likely to use the "not sure" response option than were nonidentifiers from the simultaneous procedure. Among witnesses who made an identification, 36% (41% of simultaneous and 32% of sequential) identified a known-innocent filler rather than a suspect, indicating that eyewitness performance overall was very poor. The results suggest that the sequential procedure that is used in the field reduces the identification of known-innocent fillers, but the differences are relatively small.
Evaluation of Item Candidates: The PROMIS Qualitative Item Review
DeWalt, Darren A.; Rothrock, Nan; Yount, Susan; Stone, Arthur A.
2009-01-01
One of the PROMIS (Patient-Reported Outcome Measurement Information System) network's primary goals is the development of a comprehensive item bank for patient-reported outcomes of chronic diseases. For its first set of item banks, PROMIS chose to focus on pain, fatigue, emotional distress, physical function, and social function. An essential step for the development of an item pool is the identification, evaluation, and revision of extant questionnaire items for the core item pool. In this work, we also describe the systematic process wherein items are classified for subsequent statistical processing by the PROMIS investigators. Six phases of item development are documented: identification of extant items, item classification and selection, item review and revision, focus group input on domain coverage, cognitive interviews with individual items, and final revision before field testing. Identification of items refers to the systematic search for existing items in currently available scales. Expert item review and revision was conducted by trained professionals who reviewed the wording of each item and revised as appropriate for conventions adopted by the PROMIS network. Focus groups were used to confirm domain definitions and to identify new areas of item development for future PROMIS item banks. Cognitive interviews were used to examine individual items. Items successfully screened through this process were sent to field testing and will be subjected to innovative scale construction procedures. PMID:17443114
Oligopeptide M13 Phage Display in Pathogen Research
Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael
2013-01-01
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline. PMID:24136040
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Carl N.; Amidan, Brett G.; Trease, Harold E.
This paper describes a computerized clavicle identification system, primarily designed to resolve the identities of unaccounted for US soldiers who fought in the Korean War. Elliptical Fourier analysis is used to quantify the clavicle outline shape from skeletons and postero-anterior antemortem chest radiographs to rank individuals in terms of metric distance. Similar to leading fingerprint identification systems, shortlists of the top matching candidates are extracted for subsequent human visual assessment. Two independent tests of the computerized system using 17 field-recovered skeletons and 409 chest radiographs demonstrate that true positive matches are captured within the top 5% of the sample 75%more » of the time. These results are outstanding given the eroded state of some field-recovered skeletons and the faintness of the 1950’s photoflurographs. These methods enhance the capability to resolve several hundred cold cases for which little circumstantial information exists and current DNA and dental record technologies cannot be applied.« less
Oligopeptide m13 phage display in pathogen research.
Kügler, Jonas; Zantow, Jonas; Meyer, Torsten; Hust, Michael
2013-10-16
Phage display has become an established, widely used method for selection of peptides, antibodies or alternative scaffolds. The use of phage display for the selection of antigens from genomic or cDNA libraries of pathogens which is an alternative to the classical way of identifying immunogenic proteins is not well-known. In recent years several new applications for oligopeptide phage display in disease related fields have been developed which has led to the identification of various new antigens. These novel identified immunogenic proteins provide new insights into host pathogen interactions and can be used for the development of new diagnostic tests and vaccines. In this review we focus on the M13 oligopeptide phage display system for pathogen research but will also give examples for lambda phage display and for applications in other disease related fields. In addition, a detailed technical work flow for the identification of immunogenic oligopeptides using the pHORF system is given. The described identification of immunogenic proteins of pathogens using oligopeptide phage display can be linked to antibody phage display resulting in a vaccine pipeline.
Validation of powder X-ray diffraction following EN ISO/IEC 17025.
Eckardt, Regina; Krupicka, Erik; Hofmeister, Wolfgang
2012-05-01
Powder X-ray diffraction (PXRD) is used widely in forensic science laboratories with the main focus of qualitative phase identification. Little is found in literature referring to the topic of validation of PXRD in the field of forensic sciences. According to EN ISO/IEC 17025, the method has to be tested for several parameters. Trueness, specificity, and selectivity of PXRD were tested using certified reference materials or a combination thereof. All three tested parameters showed the secure performance of the method. Sample preparation errors were simulated to evaluate the robustness of the method. These errors were either easily detected by the operator or nonsignificant for phase identification. In case of the detection limit, a statistical evaluation of the signal-to-noise ratio showed that a peak criterion of three sigma is inadequate and recommendations for a more realistic peak criterion are given. Finally, the results of an international proficiency test showed the secure performance of PXRD. © 2012 American Academy of Forensic Sciences.
2012-05-31
plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel ofPiasmodium species and strains prepared...AFMSA O&M FY10 ‘Plasmodium Project’, existing Plasmodium genus, P . falciparum , and P . vivax TaqMan assays were proposed for transfer to the RAPID...using P . vivax plasmid and P . falciparum plasmid. The assay was 100% (17/17) concordant in testing using a diverse panel of Plasmodium species and
The GlueX central drift chamber: Design and performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Haarlem, Y; Barbosa, F; Dey, B
2010-10-01
Tests and studies concerning the design and performance of the GlueX Central Drift Chamber (CDC) are presented. A full-scale prototype was built to test and steer the mechanical and electronic design. Small scale prototypes were constructed to test for sagging and to do timing and resolution studies of the detector. These studies were used to choose the gas mixture and to program a Monte Carlo simulation that can predict the detector response in an external magnetic field. Particle identification and charge division possibilities were also investigated.
Greenslade, Penelope; Florentine, Singarayer K; Hansen, Brigita D; Gell, Peter A
2016-08-01
Monitoring forms the basis for understanding ecological change. It relies on repeatability of methods to ensure detected changes accurately reflect the effect of environmental drivers. However, operator bias can influence the repeatability of field and laboratory work. We tested this for invertebrates and diatoms in three trials: (1) two operators swept invertebrates from heath vegetation, (2) four operators picked invertebrates from pyrethrum knockdown samples from tree trunk and (3) diatom identifications by eight operators in three laboratories. In each trial, operators were working simultaneously and their training in the field and laboratory was identical. No variation in catch efficiency was found between the two operators of differing experience using a random number of net sweeps to catch invertebrates when sequence, location and size of sweeps were random. Number of individuals and higher taxa collected by four operators from tree trunks varied significantly between operators and with their 'experience ranking'. Diatom identifications made by eight operators were clustered together according to which of three laboratories they belonged. These three tests demonstrated significant potential bias of operators in both field and laboratory. This is the first documented case demonstrating the significant influence of observer bias on results from invertebrate field-based studies. Examples of two long-term trials are also given that illustrate further operator bias. Our results suggest that long-term ecological studies using invertebrates need to be rigorously audited to ensure that operator bias is accounted for during analysis and interpretation. Further, taxonomic harmonisation remains an important step in merging field and laboratory data collected by different operators.
Comprehensive visual field test & diagnosis system in support of astronaut health and performance
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; Clark, Jonathan B.; Reisman, Garrett E.; Tarbell, Mark A.
Long duration spaceflight, permanent human presence on the Moon, and future human missions to Mars will require autonomous medical care to address both expected and unexpected risks. An integrated non-invasive visual field test & diagnosis system is presented for the identification, characterization, and automated classification of visual field defects caused by the spaceflight environment. This system will support the onboard medical provider and astronauts on space missions with an innovative, non-invasive, accurate, sensitive, and fast visual field test. It includes a database for examination data, and a software package for automated visual field analysis and diagnosis. The system will be used to detect and diagnose conditions affecting the visual field, while in space and on Earth, permitting the timely application of therapeutic countermeasures before astronaut health or performance are impaired. State-of-the-art perimetry devices are bulky, thereby precluding application in a spaceflight setting. In contrast, the visual field test & diagnosis system requires only a touchscreen-equipped computer or touchpad device, which may already be in use for other purposes (i.e., no additional payload), and custom software. The system has application in routine astronaut assessment (Clinical Status Exam), pre-, in-, and post-flight monitoring, and astronaut selection. It is deployable in operational space environments, such as aboard the International Space Station or during future missions to or permanent presence on the Moon and Mars.
ERIC Educational Resources Information Center
Stagg, Bethan C.; Donkin, Maria E.
2017-01-01
We investigated usability of mobile computers and field guide books with adult botanical novices, for the identification of wildflowers and deciduous trees in winter. Identification accuracy was significantly higher for wildflowers using a mobile computer app than field guide books but significantly lower for deciduous trees. User preference…
Uadiale, Kennedy; Bestman, Agatha; Kamau, Charity; Caugant, Dominique A.; Greig, Jane
2016-01-01
Background Neisseria meningitidis serogroup C (NmC) has caused outbreaks in Nigeria of increasing size in three consecutive years since 2013. Rapid diagnostic tests (RDTs) for meningitis can facilitate quick identification of the causative pathogen; Pastorex can detect N. meningitidis serogroups A, C (NmC), Y/W135, N. meningitidis serogroup B/Escherichia coli K1, Haemophilus influenzae type b (Hib), Streptococcus pneumoniae, and group B Streptococcus. There is no published field evaluation of Pastorex in the identification of NmC. We report our experience with Pastorex in detecting NmC in field conditions. Methods During sequential outbreaks of NmC in Nigeria in 2013, 2014 and 2015, cerebrospinal fluid (CSF) was collected from suspected cases of meningitis that met the case definition. Pastorex latex agglutination rapid test was done in the field and trans-isolate media were inoculated with CSF for culture and/or PCR, which was used as the reference standard for 63 paired samples. Results The sensitivity of Pastorex for NmC was 80.0% (95% CI 65.4–90.4%) and the specificity was 94.4% (95% CI 72.7–99.9%). The positive likelihood ratio (LR) was 14.4 (95% CI 2.1–97.3) and negative LR was 0.2 (95% CI 0.1–0.4). The positive and negative predictive values (PPV and NPV) were 97.3% (95% CI 85.8–99.9) and 65.4% (95% CI 44.3–82.8), respectively, with a prevalence estimate of 71.4% (95% CI 58.6–82.1). Conclusion Pastorex showed good performance in detecting NmC under field conditions. Prepositioning Pastorex at peripheral health facilities during non-epidemic periods is constrained by a short shelf-life of 1 month after the kit is opened. There is need for development of RDTs that are cheaper and with less challenging requirements for storage and usage. PMID:27496511
Grubaugh, Nathan D.; McMenamy, Scott S.; Turell, Michael J.; Lee, John S.
2013-01-01
Background Arthropod-borne viruses are important emerging pathogens world-wide. Viruses transmitted by mosquitoes, such as dengue, yellow fever, and Japanese encephalitis viruses, infect hundreds of millions of people and animals each year. Global surveillance of these viruses in mosquito vectors using molecular based assays is critical for prevention and control of the associated diseases. Here, we report an oligonucleotide DNA microarray design, termed ArboChip5.1, for multi-gene detection and identification of mosquito-borne RNA viruses from the genera Flavivirus (family Flaviviridae), Alphavirus (Togaviridae), Orthobunyavirus (Bunyaviridae), and Phlebovirus (Bunyaviridae). Methodology/Principal Findings The assay utilizes targeted PCR amplification of three genes from each virus genus for electrochemical detection on a portable, field-tested microarray platform. Fifty-two viruses propagated in cell-culture were used to evaluate the specificity of the PCR primer sets and the ArboChip5.1 microarray capture probes. The microarray detected all of the tested viruses and differentiated between many closely related viruses such as members of the dengue, Japanese encephalitis, and Semliki Forest virus clades. Laboratory infected mosquitoes were used to simulate field samples and to determine the limits of detection. Additionally, we identified dengue virus type 3, Japanese encephalitis virus, Tembusu virus, Culex flavivirus, and a Quang Binh-like virus from mosquitoes collected in Thailand in 2011 and 2012. Conclusions/Significance We demonstrated that the described assay can be utilized in a comprehensive field surveillance program by the broad-range amplification and specific identification of arboviruses from infected mosquitoes. Furthermore, the microarray platform can be deployed in the field and viral RNA extraction to data analysis can occur in as little as 12 h. The information derived from the ArboChip5.1 microarray can help to establish public health priorities, detect disease outbreaks, and evaluate control programs. PMID:23967358
Noise Source Identification in a Reverberant Field Using Spherical Beamforming
NASA Astrophysics Data System (ADS)
Choi, Young-Chul; Park, Jin-Ho; Yoon, Doo-Byung; Kwon, Hyu-Sang
Identification of noise sources, their locations and strengths, has been taken great attention. The method that can identify noise sources normally assumes that noise sources are located at a free field. However, the sound in a reverberant field consists of that coming directly from the source plus sound reflected or scattered by the walls or objects in the field. In contrast to the exterior sound field, reflections are added to sound field. Therefore, the source location estimated by the conventional methods may give unacceptable error. In this paper, we explain the effects of reverberant field on interior source identification process and propose the method that can identify noise sources in the reverberant field.
USDA-ARS?s Scientific Manuscript database
Cultivars with quick seedling emergence and stand establishment at early spring cold conditions may be planted early in the same region with an extended period of plant growth and can potentially increase either grain yield, stem sugar yield, or biomass production of sorghum. Planting cultivars with...
Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali
Diarra, Adama Zan; Almeras, Lionel; Berenger, Jean-Michel; Koné, Abdoulaye K.; Bocoum, Zakaria; Dabo, Abdoulaye; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-01-01
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali. PMID:28742123
Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali.
Diarra, Adama Zan; Almeras, Lionel; Laroche, Maureen; Berenger, Jean-Michel; Koné, Abdoulaye K; Bocoum, Zakaria; Dabo, Abdoulaye; Doumbo, Ogobara; Raoult, Didier; Parola, Philippe
2017-07-01
Ticks are considered the second vector of human and animal diseases after mosquitoes. Therefore, identification of ticks and associated pathogens is an important step in the management of these vectors. In recent years, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of arthropods including ticks. The objective of this study was to improve the conditions for the preparation of tick samples for their identification by MALDI-TOF MS from field-collected ethanol-stored Malian samples and to evaluate the capacity of this technology to distinguish infected and uninfected ticks. A total of 1,333 ticks were collected from mammals in three distinct sites from Mali. Morphological identification allowed classification of ticks into 6 species including Amblyomma variegatum, Hyalomma truncatum, Hyalomma marginatum rufipes, Rhipicephalus (Boophilus) microplus, Rhipicephalus evertsi evertsi and Rhipicephalus sanguineus sl. Among those, 471 ticks were randomly selected for molecular and proteomic analyses. Tick legs submitted to MALDI-TOF MS revealed a concordant morpho/molecular identification of 99.6%. The inclusion in our MALDI-TOF MS arthropod database of MS reference spectra from ethanol-preserved tick leg specimens was required to obtain reliable identification. When tested by molecular tools, 76.6%, 37.6%, 20.8% and 1.1% of the specimens tested were positive for Rickettsia spp., Coxiella burnetii, Anaplasmataceae and Borrelia spp., respectively. These results support the fact that MALDI-TOF is a reliable tool for the identification of ticks conserved in alcohol and enhances knowledge about the diversity of tick species and pathogens transmitted by ticks circulating in Mali.
Uncertainty law in ambient modal identification-Part I: Theory
NASA Astrophysics Data System (ADS)
Au, Siu-Kui
2014-10-01
Ambient vibration test has gained increasing popularity in practice as it provides an economical means for modal identification without artificial loading. Since the signal-to-noise ratio cannot be directly controlled, the uncertainty associated with the identified modal parameters is a primary concern. From a scientific point of view, it is of interest to know on what factors the uncertainty depends and what the relationship is. For planning or specification purposes, it is desirable to have an assessment of the test configuration required to achieve a specified accuracy in the modal parameters. For example, what is the minimum data duration to achieve a 30% coefficient of variation (c.o.v.) in the damping ratio? To address these questions, this work investigates the leading order behavior of the ‘posterior uncertainties’ (i.e., given data) of the modal parameters in a Bayesian identification framework. In the context of well-separated modes, small damping and sufficient data, it is shown rigorously that, among other results, the posterior c.o.v. of the natural frequency and damping ratio are asymptotically equal to ( and 1/(2, respectively; where ζ is the damping ratio; Nc is the data length as a multiple of the natural period; Bf and Bζ are data length factors that depend only on the bandwidth utilized for identification, for which explicit expressions have been derived. As the Bayesian approach allows full use of information contained in the data, the results are fundamental characteristics of the ambient modal identification problem. This paper develops the main theory. The companion paper investigates the implication of the results and verification with field test data.
Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe
2017-01-01
Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.
Stem cells: a model for screening, discovery and development of drugs.
Kitambi, Satish Srinivas; Chandrasekar, Gayathri
2011-01-01
The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.
Hussain, Fatma; Ahmed, Nisar; Ghorbani, Abdolbaset
2018-01-01
In pursuit of developing fast and accurate species-level molecular identification methods, we tested six DNA barcodes, namely ITS2, matK, rbcLa, ITS2+matK, ITS2+rbcLa, matK+rbcLa and ITS2+matK+rbcLa, for their capacity to identify frequently consumed but geographically isolated medicinal species of Fabaceae and Poaceae indigenous to the desert of Cholistan. Data were analysed by BLASTn sequence similarity, pairwise sequence divergence in TAXONDNA, and phylogenetic (neighbour-joining and maximum-likelihood trees) methods. Comparison of six barcode regions showed that ITS2 has the highest number of variable sites (209/360) for tested Fabaceae and (106/365) Poaceae species, the highest species-level identification (40%) in BLASTn procedure, distinct DNA barcoding gap, 100% correct species identification in BM and BCM functions of TAXONDNA, and clear cladding pattern with high nodal support in phylogenetic trees in both families. ITS2+matK+rbcLa followed ITS2 in its species-level identification capacity. The study was concluded with advocating the DNA barcoding as an effective tool for species identification and ITS2 as the best barcode region in identifying medicinal species of Fabaceae and Poaceae. Current research has practical implementation potential in the fields of pharmaco-vigilance, trade of medicinal plants and biodiversity conservation. PMID:29576968
[Genetic tests in oncology: from identification of high risk groups to therapy].
Sgambato, Alessandro; Ripani, Maurizio; Romano Spica, Vincenzo
2010-01-01
The development of genetic epidemiology in oncology has made possible more frequent analysis of high risk groups, allowing the development of promising susceptibility indicators. The main public health implications include screening and new perspectives for pharmacogenetics and nutrigenomics. The study of genetic variants allows the evaluation of individual risk of developing a disease and has important implications in primary and secondary prevention programs. The analysis of somatic mutations present in tumour cells may contribute to selecting the optimal treatment on an individual basis and to reducing the occurrence of adverse effects of chemotherapy. The authors give a summary of the state of the art of this field and analyze the potential applications of genetic tests in oncology, from identification of high risk groups to defining individualized therapies with particular emphasis on implications for prevention.
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
NASA Astrophysics Data System (ADS)
Giraudeau, A.; Pierron, F.
2010-06-01
The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.
A Field Study of an Iris Identification System
2008-05-01
conducted a field trial of a commercial iris identification scanner at the US Navy Fleet Numerical Meterology and Oceanography Center (FNMOC) in...identification scanner at the US Navy Fleet Numerical Meterology and Oceanography Center (FNMOC) in Mon- terey, CA. Scans were performed by US military guards
Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts
NASA Astrophysics Data System (ADS)
Sen Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan
2017-12-01
An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. However, manual inspection across terabytes of EMFISIS data is not feasible and as such introduces human confirmation bias. We present signal processing techniques for automated identification, shape analysis, and sweep rate characterization of high-amplitude whistler-mode chorus elements in the Van Allen radiation belts. Specifically, we develop signal processing techniques based on the radon transform that disambiguate chorus elements with a dominant sweep rate against hiss-like chorus. We present representative results validating our techniques and also provide statistical characterization of detected chorus elements across a case study of a 6 s epoch.
Raso, Lorna; Sint, Daniela; Rief, Alexander; Kaufmann, Rüdiger; Traugott, Michael
2014-01-01
In glacier forelands spiders constitute a large proportion of the invertebrate community. Therefore, it is important to be able to determine the species that can be found in these areas. Linyphiid and theridiid spider identification is currently not possible in juvenile specimens using traditional morphological based methods, however, a large proportion of the population in these areas are usually juveniles. Molecular methods permit identification of species at different life stages, making juvenile identification possible. In this study we tested a molecular tool to identify the 10 most common species of Linyphiidae and Theridiidae found in three glacier foreland communities of the Austrian Alps. Two multiplex PCR systems were developed and over 90% of the 753 field-collected spiders were identified successfully. The species targeted were found to be common in all three valleys during the summer of 2010. A comparison between the molecular and morphological data showed that although there was a slight difference in the results, the overall outcome was the same independently of the identification method used. We believe the quick and reliable identification of the spiders via the multiplex PCR assays developed here will aid the study of these families in Alpine habitats. PMID:25050841
Applying Data Mining Techniques to Improve Breast Cancer Diagnosis.
Diz, Joana; Marreiros, Goreti; Freitas, Alberto
2016-09-01
In the field of breast cancer research, and more than ever, new computer aided diagnosis based systems have been developed aiming to reduce diagnostic tests false-positives. Within this work, we present a data mining based approach which might support oncologists in the process of breast cancer classification and diagnosis. The present study aims to compare two breast cancer datasets and find the best methods in predicting benign/malignant lesions, breast density classification, and even for finding identification (mass / microcalcification distinction). To carry out these tasks, two matrices of texture features extraction were implemented using Matlab, and classified using data mining algorithms, on WEKA. Results revealed good percentages of accuracy for each class: 89.3 to 64.7 % - benign/malignant; 75.8 to 78.3 % - dense/fatty tissue; 71.0 to 83.1 % - finding identification. Among the different tests classifiers, Naive Bayes was the best to identify masses texture, and Random Forests was the first or second best classifier for the majority of tested groups.
Weed Identification Field Training Demonstrations.
ERIC Educational Resources Information Center
Murdock, Edward C.; And Others
1986-01-01
Reviews efforts undertaken in weed identification field training sessions for agriprofessionals in South Carolina. Data over a four year period (1980-1983) revealed that participants showed significant improvement in their ability to identify weeds. Reaffirms the value of the field demonstration technique. (ML)
Semi-physical simulation test for micro CMOS star sensor
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun
2008-03-01
A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.
Application of digital field photographs as documents for tropical plant inventory1
LaFrankie, James V.; Chua, Anna I.
2015-01-01
Premise of the study: We tested the credibility and significance of digital field photographs as supplements or substitutes for conventional herbarium specimens with particular relevance to exploration of the tropics. Methods: We made 113 collections in triplicate at a species-rich mountain in the Philippines while we took 1238 digital photographs of the same plants. We then identified the plants from the photographs alone, categorized the confidence of the identification and the reason for failure to identify, and compared the results to identifications based on the dried specimens. Results: We identified 72.6% of the photographic sets with high confidence and 27.4% with low confidence or only to genus. In no case was a confident identification altered by subsequent examination of the dried specimen. The failure to identify photographic sets to species was due to the lack of a key feature in 67.8% of the cases and due to a poorly understood taxonomy in 32.2%. Discussion: We conclude that digital photographs cannot replace traditional herbarium specimens as the primary elements that document tropical plant diversity. However, photographs represent a new and important artifact that aids an expedient survey of tropical plant diversity while encouraging broad public participation. PMID:25995976
On the design of innovative heterogeneous tests using a shape optimization approach
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
The development of full-field measurement methods enabled a new trend of mechanical tests. By providing the inhomogeneous strain field from the tests, these techniques are being widely used in sheet metal identification strategies, through heterogeneous mechanical tests. In this work, a heterogeneous mechanical test with an innovative tool/specimen shape, capable of producing rich heterogeneous strain paths providing extensive information on material behavior, is aimed. The specimen is found using a shape optimization process where a dedicated indicator that evaluates the richness of strain information is used. The methodology and results here presented are extended to non-specimen geometry dependence and to the non-dependence of the geometry parametrization through the use of the Ritz method for boundary value problems. Different curve models, such as Splines, B-Splines and NURBS, are used and C1 continuity throughout the specimen is guaranteed. Moreover, various optimization methods are used, deterministic and stochastic, in order to find the method or a combination of methods able to effectively minimize the cost function.
NASA Astrophysics Data System (ADS)
Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.
2016-05-01
The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.
Yasuhara-Bell, Jarred; de Silva, Asoka; Heuchelin, Scott A; Chaky, Jennifer L; Alvarez, Anne M
2016-03-01
The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.
Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.
2000-05-05
Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCRmore » amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.« less
Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente
2016-05-01
Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.
Eucalyptus Energy Farm: feasibility study and demonstration. Phase 1: site and species selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, E.O.; Wood, W.A.; Kouchoukos, P.C.
1978-06-01
The results of investigations to determine the feasibility for establishing ''Eucalyptus Energy Farms'' as a potential source of biomass derived energy are presented. Included in this report are: the results of an extensive literature search and numerous field interviews (both domestically and internationally) to identify those Eucalyptus species most suitable for use within the United States; a description of the site selection criteria, site selection process, and identification of potential sites for use in testing the Eucalyptus Energy Farm concept; a description of the Eucalyptus species selection criteria, species selection process, and an identification of the specific species recommended formore » testing at specific sites; preliminary engineering designs for each of the proposed plantation sites; and environmental impact considerations related to Eucalyptus growing. It is concluded that although the Eucalyptus are extremely temperature sensitive and the geographic areas which appear suitable for their planting (within the United States) are principally confined to western and central California and the warmest regions of the southeastern United States, each of the areas contain large amounts of marginal land which could be converted into Eucalyptus based biomass plantations. Suitable sites, which are representative of the larger marginal land areas, are immediately available for use in establishing Eucalyptus screening test sites. Furthermore, there are not significant environmental conditions which would preclude the establishment of these initial test sites. It is therefore recommended that efforts be initiated to obtain selected provenances of Eucalyptus seeds (of the designated species) for further field testing and data collection within the United States, and that actual site selection be initiated.« less
Current test results for the Athena radar responsive tag
NASA Astrophysics Data System (ADS)
Ormesher, Richard C.; Martinez, Ana; Plummer, Kenneth W.; Erlandson, David; Delaware, Sheri; Clark, David R.
2006-05-01
Sandia National Laboratories has teamed with General Atomics and Sierra Monolithics to develop the Athena tag for the Army's Radar Tag Engagement (RaTE) program. The radar-responsive Athena tag can be used for Blue Force tracking and Combat Identification (CID) as well as data collection, identification, and geolocation applications. The Athena tag is small (~4.5" x 2.4" x 4.2"), battery-powered, and has an integral antenna. Once remotely activated by a Synthetic Aperture Radar (SAR) or Moving Target Indicator (MTI) radar, the tag transponds modulated pulses to the radar at a low transmit power. The Athena tag can operate Ku-band and X-band airborne SAR and MTI radars. This paper presents results from current tag development testing activities. Topics covered include recent field tests results from the AN/APY-8 Lynx, F16/APG-66, and F15E/APG-63 V(1) radars and other Fire Control radars. Results show that the Athena tag successfully works with multiple radar platforms, in multiple radar modes, and for multiple applications. Radar-responsive tags such as Athena have numerous applications in military and government arenas. Military applications include battlefield situational awareness, combat identification, targeting, personnel recovery, and unattended ground sensors. Government applications exist in nonproliferation, counter-drug, search-and-rescue, and land-mapping activities.
Approach to identifying pollutant source and matching flow field
NASA Astrophysics Data System (ADS)
Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang
2013-07-01
Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.
Guardabassi, Luca; Hedberg, Sandra; Jessen, Lisbeth Rem; Damborg, Peter
2015-10-26
Urinary tract infection (UTI) is a common reason for antimicrobial prescription in dogs and cats. The objective of this study was to optimize and evaluate a culture-based point-of-care test for detection, identification and antimicrobial susceptibility testing of bacterial uro-pathogens in veterinary practice. Seventy-two urine samples from dogs and cats with suspected UTI presenting to seven veterinary facilities were used by clinical staff and an investigator to estimate sensitivity and specificity of Flexicult Vet A compared to laboratory reference standards for culture and susceptibility testing. Subsequently, the test was modified by inclusion of an oxacillin-containing compartment for detection of methicillin-resistant staphylococci. The performance of the modified product (Flexicult Vet B) for susceptibility testing was evaluated in vitro using a collection of 110 clinical isolates. Bacteriuria was reported by the laboratory in 25 (35 %) samples from the field study. The sensitivity and specificity of Flexicult Vet A for detection of bacteriuria were 83 and 100 %, respectively. Bacterial species were correctly identified in 53 and 100 % of the positive samples by clinical staff and the investigator, respectively. The susceptibility results were interpreted correctly by clinical staff for 70 % of the 94 drug-strain combinations. Higher percentages of correct interpretation were observed when the results were interpreted by the investigator in both the field (76 %) and the in vitro study (94 %). The most frequent errors were false resistance to β-lactams (ampicillin, amoxicillin-clavulanate and cephalotin) in Escherichia coli for Flexicult Vet A, and false amoxicillin-clavulanate resistance in E. coli and false ampicillin susceptibility in Staphylococcus pseudintermedius for Flexicult Vet B. The latter error can be prevented by categorizing staphylococcal strains growing in the oxacillin compartment as resistant to all β-lactams. Despite the shortcomings regarding species identification by clinical staff and β-lactam susceptibility testing of E. coli, Flexicult Vet B (commercial name Flexicult(®) Vet) is a time- and cost-effective point-of-care test to guide antimicrobial choice and facilitate implementation of antimicrobial use guidelines for treatment of UTIs in small animals, provided that clinical staff is adequately trained to interpret the results and that clinics meet minimum standards to operate in-house culture.
Gazes, Regina Paxton; Brown, Emily Kathryn; Basile, Benjamin M; Hampton, Robert R
2013-05-01
Cognitive abilities likely evolved in response to specific environmental and social challenges and are therefore expected to be specialized for the life history of each species. Specialized cognitive abilities may be most readily engaged under conditions that approximate the natural environment of the species being studied. While naturalistic environments might therefore have advantages over laboratory settings for cognitive research, it is difficult to conduct certain types of cognitive tests in these settings. We implemented methods for automated cognitive testing of monkeys (Macaca mulatta) in large social groups (Field station) and compared the performance to that of laboratory-housed monkeys (Laboratory). The Field station animals shared access to four touch-screen computers in a large naturalistic social group. Each Field station subject had an RFID chip implanted in each arm for computerized identification and individualized assignment of cognitive tests. The Laboratory group was housed and tested in a typical laboratory setting, with individual access to testing computers in their home cages. Monkeys in both groups voluntarily participated at their own pace for food rewards. We evaluated performance in two visual psychophysics tests, a perceptual classification test, a transitive inference test, and a delayed matching-to-sample memory test. Despite the differences in housing, social environment, age, and sex, monkeys in the two groups performed similarly in all tests. Semi-free ranging monkeys living in complex social environments are therefore viable subjects for cognitive testing designed to take advantage of the unique affordances of naturalistic testing environments.
Gazes, Regina Paxton; Brown, Emily Kathryn; Basile, Benjamin M.; Hampton, Robert R.
2013-01-01
Cognitive abilities likely evolved in response to specific environmental and social challenges and are therefore expected to be specialized for the life history of each species. Specialized cognitive abilities may be most readily engaged under conditions that approximate the natural environment of the species being studied. While naturalistic environments might therefore have advantages over laboratory settings for cognitive research, it is difficult to conduct certain types of cognitive tests in these settings. We implemented methods for automated cognitive testing of monkeys (Macaca mulatta) in large social groups (Field station) and compared the performance to that of laboratory housed monkeys (Laboratory). The Field station animals shared access to four touch screen computers in a large naturalistic social group. Each Field station subject had an RFID chip implanted in each arm for computerized identification and individualized assignment of cognitive tests. The Laboratory group was housed and tested in a typical laboratory setting, with individual access to testing computers in their home cages. Monkeys in both groups voluntarily participated at their own pace for food rewards. We evaluated performance in two visual psychophysics tests, a perceptual classification test, a transitive inference test, and a delayed matching to sample memory test. Despite differences in housing, social environment, age, and sex, monkeys in the two groups performed similarly in all tests. Semi-free ranging monkeys living in complex social environments are therefore viable subjects for cognitive testing designed to take advantage of the unique affordances of naturalistic testing environments. PMID:23263675
C.R. Lane; E. Hobden; L. Laurenson; V.C. Barton; K.J.D. Hughes; H. Swan; N. Boonham; A.J. Inman
2008-01-01
Plant health regulations to prevent the introduction and spread of Phytophthora ramorum and P. kernoviae require rapid, cost effective diagnostic methods for screening large numbers of plant samples at the time of inspection. Current on-site techniques require expensive equipment, considerable expertise and are not suited for plant...
Crop identification and acreage measurement utilizing ERTS imagery
NASA Technical Reports Server (NTRS)
Vonsteen, D. H. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. The microdensitometer will be used to analyze data acquired by ERTS-1 imagery. The classification programs and software packages have been acquired and are being prepared for use with the information as it is received. Photo and digital tapes have been acquired for coverage of virtually 100 percent of the test site areas. These areas are located in South Dakota, Idaho, Missouri, and Kansas. Hass 70mm color infrared, infrared, black and white high altitude aerial photography of the test sites is available. Collection of ground truth for updating the data base has been completed and a computer program written to count the number of fields and give total acres by size group for the segments in each test site. Results are given of data analysis performed on digitized data from densitometer measurements of fields of corn, sugar, beets, and alfalfa in Kansas.
NASA Astrophysics Data System (ADS)
Kukla, D.; Brynk, T.; Pakieła, Z.
2017-08-01
This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.
Zhang, Miao; Liu, Yinan; Chen, Lili; Quan, Sheng; Jiang, Shimeng; Zhang, Dabing; Yang, Litao
2013-01-02
Quickness, simplicity, and effectiveness are the three major criteria for establishing a good molecular diagnosis method in many fields. Herein we report a novel detection system for genetically modified organisms (GMOs), which can be utilized to perform both on-field quick screening and routine laboratory diagnosis. In this system, a newly designed inexpensive DNA extraction device was used in combination with a modified visual loop-mediated isothermal amplification (vLAMP) assay. The main parts of the DNA extraction device included a silica gel membrane filtration column and a modified syringe. The DNA extraction device could be easily operated without using other laboratory instruments, making it applicable to an on-field GMO test. High-quality genomic DNA (gDNA) suitable for polymerase chain reaction (PCR) and isothermal amplification could be quickly isolated from plant tissues using this device within 15 min. In the modified vLAMP assay, a microcrystalline wax encapsulated detection bead containing SYBR green fluorescent dye was introduced to avoid dye inhibition and cross-contaminations from post-LAMP operation. The system was successfully applied and validated in screening and identification of GM rice, soybean, and maize samples collected from both field testing and the Grain Inspection, Packers, and Stockyards Administration (GIPSA) proficiency test program, which demonstrated that it was well-adapted to both on-field testing and/or routine laboratory analysis of GMOs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conditioning area before starting test, prototype or production identification number, and test data including.... For confirmation tests, the identification number must be that of the prototype tested. (2) Video and... prototype identification number or production lot identification number of the mattress set, date and time...
Theory and Application of Magnetic Flux Leakage Pipeline Detection.
Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei
2015-12-10
Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted.
Theory and Application of Magnetic Flux Leakage Pipeline Detection
Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei
2015-01-01
Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted. PMID:26690435
Wells, Gary L
2008-02-01
The Illinois pilot program on lineup procedures has helped sharpen the focus on the types of controls that are needed in eyewitness field experiments and the limits that exist for interpreting outcome measures (rates of suspect and filler identifications). A widely-known limitation of field experiments is that, unlike simulated crime experiments, the guilt or innocence of the suspects is not easily known independently of the behavior of the eyewitnesses. Less well appreciated is that the rate of identification of lineup fillers, although clearly errors, can be a misleading measure if the filler identification rate is used to assess which of two or more lineup procedures is the better procedure. Several examples are used to illustrate that there are clearly improper procedures that would yield fewer identifications of fillers than would their proper counterparts. For example, biased lineup structure (e.g., using poorly matched fillers) as well as suggestive lineup procedures (that can result from non-blind administration of lineups) would reduce filler identification errors compared to unbiased and non-suggestive procedures. Hence, under many circumstances filler identification rates can be misleading indicators of preferred methods. Comparisons of lineup procedures in future field experiments will not be easily accepted in the absence of double-blind administration methods in all conditions plus true random assignment to conditions.
NASA Astrophysics Data System (ADS)
Cantelli, A.; D'Orta, F.; Cattini, A.; Sebastianelli, F.; Cedola, L.
2015-08-01
A computational model is developed for retrieving the positions and the emission rates of unknown pollution sources, under steady state conditions, starting from the measurements of the concentration of the pollutants. The approach is based on the minimization of a fitness function employing a genetic algorithm paradigm. The model is tested considering both pollutant concentrations generated through a Gaussian model in 25 points in a 3-D test case domain (1000m × 1000m × 50 m) and experimental data such as the Prairie Grass field experiments data in which about 600 receptors were located along five concentric semicircle arcs and the Fusion Field Trials 2007. The results show that the computational model is capable to efficiently retrieve up to three different unknown sources.
NASA Astrophysics Data System (ADS)
Dai, Qianwei; Lin, Fangpeng; Wang, Xiaoping; Feng, Deshan; Bayless, Richard C.
2017-05-01
An integrated geophysical investigation was performed at S dam located at Dadu basin in China to assess the condition of the dam curtain. The key methodology of the integrated technique used was flow-field fitting method, which allowed identification of the hydraulic connections between the dam foundation and surface water sources (upstream and downstream), and location of the anomalous leakage outlets in the dam foundation. Limitations of the flow-field fitting method were complemented with resistivity logging to identify the internal erosion which had not yet developed into seepage pathways. The results of the flow-field fitting method and resistivity logging were consistent when compared with data provided by seismic tomography, borehole television, water injection test, and rock quality designation.
2013-01-01
Background The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked to areas of high malaria endemicity due to its association with protection from disease. G6PD deficiency is also identified as the cause of severe haemolysis following administration of the anti-malarial drug primaquine and further use of this drug will likely require identification of G6PD deficiency on a population level. Current conventional methods for G6PD screening have various disadvantages for field use. Methods The WST8/1-methoxy PMS method, recently adapted for field use, was validated using a gold standard enzymatic assay (R&D Diagnostics Ltd ®) in a study involving 235 children under five years of age, who were recruited by random selection from a cohort study in Tororo, Uganda. Blood spots were collected by finger-prick onto filter paper at routine visits, and G6PD activity was determined by both tests. Performance of the WST8/1-methoxy PMS test under various temperature, light, and storage conditions was evaluated. Results The WST8/1-methoxy PMS assay was found to have 72% sensitivity and 98% specificity when compared to the commercial enzymatic assay and the AUC was 0.904, suggesting good agreement. Misclassifications were at borderline values of G6PD activity between mild and normal levels, or related to outlier haemoglobin values (<8.0 gHb/dl or >14 gHb/dl) associated with ongoing anaemia or recent haemolytic crises. Although severe G6PD deficiency was not found in the area, the test enabled identification of low G6PD activity. The assay was found to be highly robust for field use; showing less light sensitivity, good performance over a wide temperature range, and good capacity for medium-to-long term storage. Conclusions The WST8/1-methoxy PMS assay was comparable to the currently used standard enzymatic test, and offers advantages in terms of cost, storage, portability and use in resource-limited settings. Such features make this test a potential key tool for deployment in the field for point of care assessment prior to primaquine administration in malaria-endemic areas. As with other G6PD tests, outlier haemoglobin levels may confound G6PD level estimation. PMID:23782846
De Niz, Mariana; Eziefula, Alice C; Othieno, Lucas; Mbabazi, Edith; Nabukeera, Damalie; Ssemmondo, Emmanuel; Gonahasa, Samuel; Tumwebaze, Patrick; Diliberto, Deborah; Maiteki-Sebuguzi, Catherine; Staedke, Sarah G; Drakeley, Chris
2013-06-19
The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked to areas of high malaria endemicity due to its association with protection from disease. G6PD deficiency is also identified as the cause of severe haemolysis following administration of the anti-malarial drug primaquine and further use of this drug will likely require identification of G6PD deficiency on a population level. Current conventional methods for G6PD screening have various disadvantages for field use. The WST8/1-methoxy PMS method, recently adapted for field use, was validated using a gold standard enzymatic assay (R&D Diagnostics Ltd ®) in a study involving 235 children under five years of age, who were recruited by random selection from a cohort study in Tororo, Uganda. Blood spots were collected by finger-prick onto filter paper at routine visits, and G6PD activity was determined by both tests. Performance of the WST8/1-methoxy PMS test under various temperature, light, and storage conditions was evaluated. The WST8/1-methoxy PMS assay was found to have 72% sensitivity and 98% specificity when compared to the commercial enzymatic assay and the AUC was 0.904, suggesting good agreement. Misclassifications were at borderline values of G6PD activity between mild and normal levels, or related to outlier haemoglobin values (<8.0 gHb/dl or >14 gHb/dl) associated with ongoing anaemia or recent haemolytic crises. Although severe G6PD deficiency was not found in the area, the test enabled identification of low G6PD activity. The assay was found to be highly robust for field use; showing less light sensitivity, good performance over a wide temperature range, and good capacity for medium-to-long term storage. The WST8/1-methoxy PMS assay was comparable to the currently used standard enzymatic test, and offers advantages in terms of cost, storage, portability and use in resource-limited settings. Such features make this test a potential key tool for deployment in the field for point of care assessment prior to primaquine administration in malaria-endemic areas. As with other G6PD tests, outlier haemoglobin levels may confound G6PD level estimation.
Remotely Piloted Vehicles for Experimental Flight Control Testing
NASA Technical Reports Server (NTRS)
Motter, Mark A.; High, James W.
2009-01-01
A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division
Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Smirnova, Z. N.
2015-05-01
Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.
Identification of Amazonian trees with DNA barcodes.
Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme
2009-10-16
Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs.
Go, Taesik; Byeon, Hyeokjun; Lee, Sang Joon
2018-04-30
Cell types of erythrocytes should be identified because they are closely related to their functionality and viability. Conventional methods for classifying erythrocytes are time consuming and labor intensive. Therefore, an automatic and accurate erythrocyte classification system is indispensable in healthcare and biomedical fields. In this study, we proposed a new label-free sensor for automatic identification of erythrocyte cell types using a digital in-line holographic microscopy (DIHM) combined with machine learning algorithms. A total of 12 features, including information on intensity distributions, morphological descriptors, and optical focusing characteristics, is quantitatively obtained from numerically reconstructed holographic images. All individual features for discocytes, echinocytes, and spherocytes are statistically different. To improve the performance of cell type identification, we adopted several machine learning algorithms, such as decision tree model, support vector machine, linear discriminant classification, and k-nearest neighbor classification. With the aid of these machine learning algorithms, the extracted features are effectively utilized to distinguish erythrocytes. Among the four tested algorithms, the decision tree model exhibits the best identification performance for the training sets (n = 440, 98.18%) and test sets (n = 190, 97.37%). This proposed methodology, which smartly combined DIHM and machine learning, would be helpful for sensing abnormal erythrocytes and computer-aided diagnosis of hematological diseases in clinic. Copyright © 2017 Elsevier B.V. All rights reserved.
Eyewitness identification in actual criminal cases: an archival analysis.
Behrman, B W; Davey, S L
2001-10-01
This study analyzed 271 actual police cases in order to address several prevalent issues in the eyewitness literature. Suspect identification (SI) rates were obtained for 289 photographic lineups, 258 field showups, 58 live lineups, and 66 lineup identifications preceded by earlier identifications. SI rates were assessed for 3 levels of extrinsic evidence: no extrinsic evidence, evidence of minimal probative value, and evidence of substantial probative value. The SI rates for the photographic lineups were assessed as a function of delay, same vs. cross-race conditions, witness type, and weapon presence. SI rates declined significantly over time; SI rates were significantly greater for the same-race condition. SI rates were much greater for field showups than photographic lineups, 76% vs. 48%. The SI rates for the field showups did not vary as a function of eyewitness conditions. The relation between confidence and suspect/foil identifications for the live lineups was significant and moderately high. The utility of archival identification studies for eyewitness testimony research is discussed.
De-identification of clinical notes via recurrent neural network and conditional random field.
Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai
2017-11-01
De-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the "token", "strict" and "binary token" criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the "token", "strict" and "binary token" criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method. Copyright © 2017. Published by Elsevier Inc.
Bastian, Thomas; Maire, Aurélia; Dugas, Julien; Ataya, Abbas; Villars, Clément; Gris, Florence; Perrin, Emilie; Caritu, Yanis; Doron, Maeva; Blanc, Stéphane; Jallon, Pierre; Simon, Chantal
2015-03-15
"Objective" methods to monitor physical activity and sedentary patterns in free-living conditions are necessary to further our understanding of their impacts on health. In recent years, many software solutions capable of automatically identifying activity types from portable accelerometry data have been developed, with promising results in controlled conditions, but virtually no reports on field tests. An automatic classification algorithm initially developed using laboratory-acquired data (59 subjects engaging in a set of 24 standardized activities) to discriminate between 8 activity classes (lying, slouching, sitting, standing, walking, running, and cycling) was applied to data collected in the field. Twenty volunteers equipped with a hip-worn triaxial accelerometer performed at their own pace an activity set that included, among others, activities such as walking the streets, running, cycling, and taking the bus. Performances of the laboratory-calibrated classification algorithm were compared with those of an alternative version of the same model including field-collected data in the learning set. Despite good results in laboratory conditions, the performances of the laboratory-calibrated algorithm (assessed by confusion matrices) decreased for several activities when applied to free-living data. Recalibrating the algorithm with data closer to real-life conditions and from an independent group of subjects proved useful, especially for the detection of sedentary behaviors while in transports, thereby improving the detection of overall sitting (sensitivity: laboratory model = 24.9%; recalibrated model = 95.7%). Automatic identification methods should be developed using data acquired in free-living conditions rather than data from standardized laboratory activity sets only, and their limits carefully tested before they are used in field studies. Copyright © 2015 the American Physiological Society.
Systems and Methods for RFID-Enabled Pressure Sensing Apparatus
NASA Technical Reports Server (NTRS)
Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Fink, Patrick W. (Inventor)
2017-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
Systems and Methods for RFID-Enabled Dispenser
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)
2015-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
Systems and Methods for RFID-Enabled Pressure Sensing Apparatus
NASA Technical Reports Server (NTRS)
Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor)
2016-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
System and Method for RFID-Enabled Information Collection
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Kennedy, Timothy F. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Byerly, Diane (Inventor)
2016-01-01
Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierre, John W.; Wies, Richard; Trudnowski, Daniel
Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacificmore » Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a half of a second. For the mid and low-level probing, the Celilo terminal of the PDCI is modulated with a known probing signal. Similar but less extensive tests were conducted in June of 2000. The low-level probing signals were designed at the University of Wyoming. A number of important design factors are considered. The designed low-level probing signal used in the tests is a multi-sine signal. Its frequency content is focused in the range of the inter-area electromechanical modes. The most frequently used of these low-level multi-sine signals had a period of over two minutes, a root-mean-square (rms) value of 14 MW, and a peak magnitude of 20 MW. Up to 15 cycles of this probing signal were injected into the system resulting in a processing gain of 15. The resulting measured response at points throughout the system was not much larger than the ambient noise present in the measurements.« less
Al Dahouk, Sascha; Scholz, Holger C; Tomaso, Herbert; Bahn, Peter; Göllner, Cornelia; Karges, Wolfram; Appel, Bernd; Hensel, Andreas; Neubauer, Heinrich; Nöckler, Karsten
2010-10-23
A commercial biotyping system (Taxa Profile™, Merlin Diagnostika) testing the metabolization of various substrates by bacteria was used to determine if a set of phenotypic features will allow the identification of members of the genus Brucella and their differentiation into species and biovars. A total of 191 different amines, amides, amino acids, other organic acids and heterocyclic and aromatic substrates (Taxa Profile™ A), 191 different mono-, di-, tri- and polysaccharides and sugar derivates (Taxa Profile™ C) and 95 amino peptidase- and protease-reactions, 76 glycosidase-, phosphatase- and other esterase-reactions, and 17 classic reactions (Taxa Profile™ E) were tested with the 23 reference strains representing the currently known species and biovars of Brucella and a collection of 60 field isolates. Based on specific and stable reactions a 96-well "Brucella identification and typing" plate (Micronaut™) was designed and re-tested in 113 Brucella isolates and a couple of closely related bacteria.Brucella species and biovars revealed characteristic metabolic profiles and each strain showed an individual pattern. Due to their typical metabolic profiles a differentiation of Brucella isolates to the species level could be achieved. The separation of B. canis from B. suis bv 3, however, failed. At the biovar level, B. abortus bv 4, 5, 7 and B. suis bv 1-5 could be discriminated with a specificity of 100%. B. melitensis isolates clustered in a very homogenous group and could not be resolved according to their assigned biovars. The comprehensive testing of metabolic activity allows cluster analysis within the genus Brucella. The biotyping system developed for the identification of Brucella and differentiation of its species and biovars may replace or at least complement time-consuming tube testing especially in case of atypical strains. An easy to handle identification software facilitates the applicability of the Micronaut™ system for microbiology laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomew, Rachel A.; Ozanich, Richard M.; Arce, Jennifer S.
2017-02-01
The goal of this testing was to evaluate the ability of currently available commercial off-the-shelf (COTS) biological indicator tests and immunoassays to detect Bacillus anthracis (Ba) spores and ricin. In general, immunoassays provide more specific identification of biological threats as compared to indicator tests [3]. Many of these detection products are widely used by first responders and other end users. In most cases, performance data for these instruments are supplied directly from the manufacturer, but have not been verified by an external, independent assessment [1]. Our test plan modules included assessments of inclusivity (ability to generate true positive results), commonlymore » encountered hoax powders (which can cause potential interferences or false positives), and estimation of limit of detection (LOD) (sensitivity) testing.« less
NASA Astrophysics Data System (ADS)
Zhu, Hong; Huang, Mai; Sadagopan, Sriram; Yao, Hong
2017-09-01
With increasing vehicle fuel economy standards, automotive OEMs are widely using various AHSS grades including DP, TRIP, CP and 3rd Gen AHSS to reduce vehicle weight due to their good combination of strength and formability. As one of enabling technologies for AHSS application, the requirement for requiring accurate prediction of springback for cold stamped AHSS parts stimulated a large number of investigations in the past decade with reversed loading path at large strains followed by constitutive modeling. With a spectrum of complex loading histories occurring in production stamping processes, there were many challenges in this field including issues of test data reliability, loading path representability, constitutive model robustness and non-unique constitutive parameter-identification. In this paper, various testing approaches and constitutive modeling will be reviewed briefly and a systematic methodology from stress-strain characterization, constitutive model parameter identification for material card generation will be presented in order to support automotive OEM’s need on virtual stamping. This systematic methodology features a tension-compression test at large strain with robust anti-buckling device with concurrent friction force correction, properly selected loading paths to represent material behavior during different springback modes as well as the 10-parameter Yoshida model with knowledge-based parameter-identification through nonlinear optimization. Validation cases for lab AHSS parts will also be discussed to check applicability of this methodology.
Sciama, Sonia C; Dowker, Ann
2007-11-01
One experiment investigated the effects of distortion and multiple prime repetition (super-repetition) on repetition priming using divided-visual-field word identification at test and mixed-case words (e.g., goAT). The experiment measured form-specificity (the effect of matching lettercase at study and test) for two non-conceptual study tasks. For an ideal typeface, super-repetition increased form-independent priming leaving form-specificity constant. The opposite pattern was found for a distorted typeface; super-repetition increased form-specificity, leaving form-independent priming constant. These priming effects did not depend on the study task or test hemifield for either typeface. An additional finding was that only the ideal typeface showed the usual advantage of right hemifield presentation. These results demonstrate that super-repetition produced abstraction for the ideal typeface and perceptual individuation for the distorted typeface; abstraction and perceptual individuation dissociated. We suggest that there is a fundamental duality between perceptual individuation and abstraction consistent with Tulving's (1984) distinction between episodic and semantic memory. This could reflect a duality of system or process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahrens, J.S.
For over fifteen years Sandia National Laboratories has been involved in laboratory testing of biometric identification devices. The key concept of biometric identification devices is the ability for the system to identify some unique aspect of the individual rather than some object a person may be carrying or some password they are required to know. Tests were conducted to verify manufacturer`s performance claims, to determine strengths/weaknesses of devices, and to determine devices that meet the US Department of energy`s needs. However, during recent field installation, significantly different performance was observed than was predicted by laboratory tests. Although most people usingmore » the device believed it operated adequately, the performance observed was over an order of magnitude worse than predicted. The search for reasons behind this gap between the predicted and the actual performance has revealed many possible contributing factors. As engineers, the most valuable lesson to be learned from this experience is the value of scientists and engineers with (1) common sense, (2) knowledge of human behavior, (3) the ability to observe the real world, and (4) the capability to realize the significant differences between controlled experiments and actual installations.« less
Cynthia D. Huebner; Cassandra Olson; Heather C. Smith; Heather C. Smith
2005-01-01
There are many field guides available about invasive plants and their identification. The purpose of this particular field guide is to give a scientific synthesis of what is known about the behavior of such species in managed, disturbed, and pristine forested systems in addition to key information for accurate identification.
Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M; del Olmo, Iván; Grimalt, Joan O; Piña, Benjamín; Barata, Carlos
2009-08-13
A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.
Paramedic electrocardiogram and rhythm identification: a convenient training device.
Hale, Peggy; Lowe, Robert; Seamon, Jason P; Jenkins, James J
2011-10-01
A common reason for utilizing local paramedics and the emergency medical services is for the recognition and immediate treatment of chest pain, a complaint that has multiple possible etiologies. While many of those complaining of disease processes responsible for chest pain are benign, some will be life-threatening and will require immediate identification and treatment. The ability of paramedics to not only perform field electrocardiograms (ECGs), but to accurately diagnose various unstable cardiac rhythms has shown significant reduction in time to specific treatments. Increasing the overall accuracy of ECG interpretation by paramedics has the potential to facilitate early and appropriate treatment and decrease patient morbidity and mortality. A convenient training device (flip book) on ambulances and in common areas in the fire station could improve field interpretation of certain cardiac rhythms. This training device consists of illustrated sample ECG tracings and their associated diagnostic criteria. The goal was to enhance the recognition and interpretation of ECGs, and thereby, reduce delays in the initiation of treatment and potential complications associated with misinterpretation.This study was a prospective, observational study using a matched pre-test/post-test design. The study period was from November 2008 to December 2008. A total of 136 paramedics were approached to participate in this study. A pre-test consisting of 15 12-lead ECGs was given to all paramedics who agreed to participate in the study. Once the pre-tests were completed, the flip books were placed in common areas. Approximately one month after the flip books were made available to the paramedics, a post-test was administered.Statistical comparisons were made between the pre- and post-test scores for both the global test and each type of rhythm. Using these data, there were no statistically significant improvements in the global ECG interpretation or on individual rhythm interpretations. A flip book with multiple ECG rhythms and definitions without the benefit of any outside support was not effective in improving paramedic identification of ECG rhythms on a post-test. Suggestions for further research include repeating the study with a larger sample size; utilizing a lecturer to explain how to use the flip book in the most efficient manner; reiterating how to read and interpret ECGs; and answering questions. Comparing test scores of paramedic students, and newly certified paramedics as opposed to veteran paramedics also may indicate that the flip books are more suited for one group over another.
Krishnan, Anup; Sharma, Deep; Bhatt, Madhu; Dixit, Apoorv; Pradeep, P
2017-04-01
Lower limb explosive power is an important motor quality for sporting performance and indicates use of anaerobic energy systems like stored ATP and Creatine phosphate system. Weightlifting, Fencing and Wrestling use it for monitoring and identification of potential sportsmen. The Wingate test and Standing Broad Jump (SBJ) test are reliable and accurate tests for its assessment. This study conducted on elite Indian sportsmen tries to analyse feasibility of use of the SBJ test in sports and military medicine when Wingate test is impractical. 95 elite sportsmen (51 Fencers, 17 Weight lifters and 27 Wrestlers) of a sports institute were administered Wingate cycle ergometer test and SBJ under standardised conditions. The results were analysed for mass and inter-discipline correlation. Analysis using Pearson's correlation showed significant positive correlation between Peak power ( r = 0.446, p < 0.0001) and SBJ (distance) in all sportsmen. Inter-sport correlation showed positive correlation between SBJ and peak power ( r = 0.335, p < 0.016) in Fencers and between SBJ, peak power ( r = 0.686, p < 0.002) in Weightlifters. Bland-Altman plot analysis showed that about 94% pairs of peak power and SBJ were within limits of agreement for each discipline as well as among all sportsmen. The test results show definite correlation and SBJ test can be used as a field test in performance monitoring, talent identification, military recruit screening and injury prevention.
Demoranville, Leonard T; Verkouteren, Jennifer R
2013-03-15
Ion mobility spectrometry has found widespread use for the detection of explosives and illicit drugs. The technique offers rapid results with high sensitivity and little sample preparation. As such, it is well suited for field deployed screening settings. Here the response of ion mobility spectrometers for three drug-facilitated sexual assault (DFSA) agents - flunitrazepam, ketamine, and MDMA - and related metabolites has been studied in the presence of a simulated sweat. While all three DFSA agents present certain challenges for qualitative identification, IMS can provide useful information to guide the early treatment and investigation of sexual assault cases. Used as a presumptive test, the identification of DFSA agents would later require confirmatory analysis by other techniques. Published by Elsevier B.V.
[Patient satisfaction in a laboratory test collection unit].
de Moura, Gisela Maria Schebella Souto; Hilleshein, Eunice Fabiani; Schardosim, Juliana Machado; Delgado, Kátia Simone
2008-06-01
This exploratory descriptive study aimed at identifying customer satisfaction attributes in the field of laboratory tests. Data were collected in 2006, using 104 interviews in a laboratorial unit inside a teaching hospital, using the critical incident technique, and submitted to content analysis. Three attribute categories were identified: time spent in waiting for care, interpersonal contact, and technical skills. These results subsidize the assessment of the current satisfaction survey tool, and point to its reformulation. They also allow the identification of improvement needs in customer attention, and provide elements to be taken into account in personnel selection, training programs, personnel performance assessment.
Evidence-Based Prevention for Adolescent Substance Use.
Harrop, Erin; Catalano, Richard F
2016-07-01
Due to the significant consequences of adolescent substance use behaviors, researchers have increasingly focused on prevention approaches. The field of prevention science is based on the identification of predictors of problem behaviors, and the development and testing of prevention programs that seek to change these predictors. As the field of prevention science moves forward, there are many opportunities for growth, including the integration of prevention programs into service systems and primary care, an expansion of program adaptations to fit the needs of local populations, and a greater emphasis on the development of programs targeted at young adult populations. Copyright © 2016 Elsevier Inc. All rights reserved.
Pumping tests in networks of multilevel sampling wells: Motivation and methodology
Butler, J.J.; McElwee, C.D.; Bohling, Geoffrey C.
1999-01-01
The identification of spatial variations in hydraulic conductivity (K) on a scale of relevance for transport investigations has proven to be a considerable challenge. Recently, a new field method for the estimation of interwell variations in K has been proposed. This method, hydraulic tomography, essentially consists of a series of short‐term pumping tests performed in a tomographic‐like arrangement. In order to fully realize the potential of this approach, information about lateral and vertical variations in pumping‐induced head changes (drawdown) is required with detail that has previously been unobtainable in the field. Pumping tests performed in networks of multilevel sampling (MLS) wells can provide data of the needed density if drawdown can accurately and rapidly be measured in the small‐diameter tubing used in such wells. Field and laboratory experiments show that accurate transient drawdown data can be obtained in the small‐diameter MLS tubing either directly with miniature fiber‐optic pressure sensors or indirectly using air‐pressure transducers. As with data from many types of hydraulic tests, the quality of drawdown measurements from MLS tubing is quite dependent on the effectiveness of well development activities. Since MLS ports of the standard design are prone to clogging and are difficult to develop, alternate designs are necessary to ensure accurate drawdown measurements. Initial field experiments indicate that drawdown measurements obtained from pumping tests performed in MLS networks have considerable potential for providing valuable information about spatial variations in hydraulic conductivity.
Comparison of Sample and Detection Quantification Methods for Salmonella Enterica from Produce
NASA Technical Reports Server (NTRS)
Hummerick, M. P.; Khodadad, C.; Richards, J. T.; Dixit, A.; Spencer, L. M.; Larson, B.; Parrish, C., II; Birmele, M.; Wheeler, Raymond
2014-01-01
The purpose of this study was to identify and optimize fast and reliable sampling and detection methods for the identification of pathogens that may be present on produce grown in small vegetable production units on the International Space Station (ISS), thus a field setting. Microbiological testing is necessary before astronauts are allowed to consume produce grown on ISS where currently there are two vegetable production units deployed, Lada and Veggie.
Feasibility of Audio Training for Identification of Auditory Signatures of Small Arms Fire
2010-12-01
and M14) were presented through headphones. Participants were allowed to train at their own pace, were tested using the recorded material ; and were...properties (e.g., barrel length, round type), environmental conditions (e.g., temperature, wind speed, reverberant properties of the sound field; proximal...developed, training materials can be presented in a comprehensive CD-based course that can be completed in several hours and reviewed when needed. 2
Touch Spray Mass Spectrometry for In Situ Analysis of Complex Samples
Kerian, Kevin S.; Jarmusch, Alan K.; Cooks, R. Graham
2014-01-01
Touch spray, a spray-based ambient in-situ ionization method, uses a small probe, e.g. a teasing needle to pick up sample and the application of voltage and solvent to cause field-induced droplet emission. Compounds extracted from the microsample are incorporated into the sprayed micro droplets. Performance tests include disease state of tissue, microorganism identification, and therapeutic drug quantitation. Chemical derivatization is performed simultaneously with ionization. PMID:24756256
Towards incorporating epigenetic mechanisms into carcinogen identification and evaluation
Herceg, Zdenko
2013-01-01
Remarkable progress in the field of epigenetics has turned academic, medical and public attention to the potential applications of these new advances in medicine and various fields of biomedical research. The result is a broader appreciation of epigenetic phenomena in the a etiology of common human diseases, most notably cancer. These advances also represent an exciting opportunity to incorporate epigenetics and epigenomics into carcinogen identification and safety assessment. Current epigenetic studies, including major international sequencing projects, are expected to generate information for establishing the ‘normal’ epigenome of tissues and cell types as well as the physiological variability of the epigenome against which carcinogen exposure can be assessed. Recently, epigenetic events have emerged as key mechanisms in cancer development, and while our search of the Monograph Volume 100 revealed that epigenetics have played a modest role in evaluating human carcinogens by the International Agency for Research on Cancer (IARC) Monographs so far, epigenetic data might play a pivotal role in the future. Here, we review (i) the current status of incorporation of epigenetics in carcinogen evaluation in the IARC Monographs Programme, (ii) potential modes of action for epigenetic carcinogens, (iii) current in vivo and in vitro technologies to detect epigenetic carcinogens, (iv) genomic regions and epigenetic modifications and their biological consequences and (v) critical technological and biological issues in assessment of epigenetic carcinogens. We also discuss the issues related to opportunities and challenges in the application of epigenetic testing in carcinogen identification and evaluation. Although the application of epigenetic assays in carcinogen evaluation is still in its infancy, important data are being generated and valuable scientific resources are being established that should catalyse future applications of epigenetic testing. PMID:23749751
Ironside, Kirsten E; Mattson, David J; Theimer, Tad; Jansen, Brian; Holton, Brandon; Arundel, Terence; Peters, Michael; Sexton, Joseph O; Edwards, Thomas C
2017-01-01
Many studies of animal movement have focused on directed versus area-restricted movement, which rely on correlations between step-length and turn-angles and on stationarity through time to define behavioral states. Although these approaches might apply well to grazing in patchy landscapes, species that either feed for short periods on large, concentrated food sources or cache food exhibit movements that are difficult to model using the traditional metrics of turn-angle and step-length alone. We used GPS telemetry collected from a prey-caching predator, the cougar ( Puma concolor, Linnaeus ), to test whether combining metrics of site recursion, spatiotemporal clustering, speed, and turning into an index of movement using partial sums, improves the ability to identify caching behavior. The index was used to identify changes in movement characteristics over time and segment paths into behavioral classes. The identification of behaviors from the Path Identification Index (PII) was evaluated using field investigations of cougar activities at GPS locations. We tested for statistical stationarity across behaviors for use of topographic view-sheds. Changes in the frequency and duration of PII were useful for identifying seasonal activities such as migration, gestation, and denning. The comparison of field investigations of cougar activities to behavioral PII classes resulted in an overall classification accuracy of 81%. Changes in behaviors were reflected in cougars' use of topographic view-sheds, resulting in statistical nonstationarity over time, and revealed important aspects of hunting behavior. Incorporating metrics of site recursion and spatiotemporal clustering revealed the temporal structure in movements of a caching forager. The movement index PII, shows promise for identifying behaviors in species that frequently return to specific locations such as food caches, watering holes, or dens, and highlights the potential role memory and cognitive abilities play in determining animal movements.
10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Random drug testing requirements and identification of... PROGRAMS AT DOE SITES Procedures § 707.7 Random drug testing requirements and identification of testing... evidence of the use of illegal drugs of employees in testing designated positions identified in this...
10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Random drug testing requirements and identification of... PROGRAMS AT DOE SITES Procedures § 707.7 Random drug testing requirements and identification of testing... evidence of the use of illegal drugs of employees in testing designated positions identified in this...
10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Random drug testing requirements and identification of... PROGRAMS AT DOE SITES Procedures § 707.7 Random drug testing requirements and identification of testing... evidence of the use of illegal drugs of employees in testing designated positions identified in this...
10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Random drug testing requirements and identification of... PROGRAMS AT DOE SITES Procedures § 707.7 Random drug testing requirements and identification of testing... evidence of the use of illegal drugs of employees in testing designated positions identified in this...
10 CFR 707.7 - Random drug testing requirements and identification of testing designated positions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Random drug testing requirements and identification of... PROGRAMS AT DOE SITES Procedures § 707.7 Random drug testing requirements and identification of testing... evidence of the use of illegal drugs of employees in testing designated positions identified in this...
Bascomb, Shoshana; Manafi, Mammad
1998-01-01
The contribution of enzyme tests to the accurate and rapid routine identification of gram-positive cocci is introduced. The current taxonomy of the genera of aerobic and facultatively anaerobic cocci based on genotypic and phenotypic characterization is reviewed. The clinical and economic importance of members of these taxa is briefly summarized. Tables summarizing test schemes and kits available for the identification of staphylococci, enterococci, and streptococci on the basis of general requirements, number of tests, number of taxa, test classes, and completion times are discussed. Enzyme tests included in each scheme are compared on the basis of their synthetic moiety. The current understanding of the activity of enzymes important for classification and identification of the major groups, methods of testing, and relevance to the ease and speed of identification are reviewed. Publications describing the use of different identification kits are listed, and overall identification successes and problems are discussed. The relationships between the results of conventional biochemical and rapid enzyme tests are described and considered. The use of synthetic substrates for the detection of glycosidases and peptidases is reviewed, and the advantages of fluorogenic synthetic moieties are discussed. The relevance of enzyme tests to accurate and meaningful rapid routine identification is discussed. PMID:9564566
Grewal, Navnit Kaur; Mosdøl, Annhild; Aunan, Marte Bergsund; Monsen, Carina; Torheim, Liv Elin
2014-01-01
The aim of this study was to develop, test, and evaluate a 24-h recall procedure to assess the dietary intake of toddlers of Somali- and Iraqi-born mothers living in Norway. A protocol for a 24-h multiple-pass recall procedure, registration forms, and visual tools (a picture library for food identification and portion size estimation) was developed and tested in 12 mothers from Somalia and Iraq with children aged 10–21 months. Five female field workers were recruited and trained to conduct the interviews. Evaluation data for the 24-h recall procedure were collected from both the mothers and the field workers. Nutrient intake was calculated using a Norwegian dietary calculation system. Each child’s estimated energy intake was compared with its estimated energy requirement. Both the mothers and the field workers found the method feasible and the visual tools useful. The estimated energy intake corresponded well with the estimated energy requirement for most of the children (within mean ± 2 SD, except for three). The pilot study identified the need for additional foods in the picture library and some crucial aspects in training and supervising the field workers to reduce sources of error in the data collection. PMID:24949548
Extended version of the "Sniffin' Sticks" identification test: test-retest reliability and validity.
Sorokowska, A; Albrecht, E; Haehner, A; Hummel, T
2015-03-30
The extended, 32-item version of the Sniffin' Sticks identification test was developed in order to create a precise tool enabling repeated, longitudinal testing of individual olfactory subfunctions. Odors of the previous test version had to be changed for technical reasons, and the odor identification test needed re-investigation in terms of reliability, validity, and normative values. In our study we investigated olfactory abilities of a group of 100 patients with olfactory dysfunction and 100 controls. We reconfirmed the high test-retest reliability of the extended version of the Sniffin' Sticks identification test and high correlations between the new and the original part of this tool. In addition, we confirmed the validity of the test as it discriminated clearly between controls and patients with olfactory loss. The additional set of 16 odor identification sticks can be either included in the current olfactory test, thus creating a more detailed diagnosis tool, or it can be used separately, enabling to follow olfactory function over time. Additionally, the normative values presented in our paper might provide useful guidelines for interpretation of the extended identification test results. The revised version of the Sniffin' Sticks 32-item odor identification test is a reliable and valid tool for the assessment of olfactory function. Copyright © 2015 Elsevier B.V. All rights reserved.
Functional Testing and Characterisation of ISFETs on Wafer Level by Means of a Micro-droplet Cell#
Poghossian, Arshak; Schumacher, Kerstin; Kloock, Joachim P.; Rosenkranz, Christian; Schultze, Joachim W.; Müller-Veggian, Mattea; Schöning, Michael J.
2006-01-01
A wafer-level functionality testing and characterisation system for ISFETs (ion-sensitive field-effect transistor) is realised by means of integration of a specifically designed capillary electrochemical micro-droplet cell into a commercial wafer prober-station. The developed system allows the identification and selection of “good” ISFETs at the earliest stage and to avoid expensive bonding, encapsulation and packaging processes for non-functioning ISFETs and thus, to decrease costs, which are wasted for bad dies. The developed system is also feasible for wafer-level characterisation of ISFETs in terms of sensitivity, hysteresis and response time. Additionally, the system might be also utilised for wafer-level testing of further electrochemical sensors.
Forensic anthropology and mortuary archaeology in Lithuania.
Jankauskas, Rimantas
2009-12-01
Forensic anthropology (in Lithuania, as everywhere in Eastern Europe, traditionally considered as a narrower field--forensic osteology) has a long history, experience being gained both during exhumations of mass killings during the Second World War and the subsequent totalitarian regime, investigations of historical mass graves, identification of historical personalities and routine forensic work. Experts of this field (usually a branch of forensic medicine) routinely are solving "technical" questions of crime investigation, particularly identification of (usually dead) individuals. Practical implementation of the mission of forensic anthropology is not an easy task due to interdisciplinary character of the field. On one hand, physical anthropology has in its disposition numerous scientifically tested methods, however, their practical value in particular legal processes is limited. Reasons for these discrepancies can be related both to insufficient understanding of possibilities and limitations of forensic anthropology and archaeology by officials representing legal institutions that perform investigations, and sometimes too "academic" research, that is conducted at anthropological laboratories, when methods developed are not completely relevant to practical needs. Besides of answering to direct questions (number of individuals, sex, age, stature, population affinity, individual traits, evidence of violence), important humanitarian aspects--the individual's right for identity, the right of the relatives to know the fate of their beloved ones--should not be neglected. Practical use of other identification methods faces difficulties of their own (e.g., odontology--lack of regular dental registration system and compatible database). Two examples of forensic anthropological work of mass graves, even when the results were much influenced by the questions raised by investigators, can serve as an illustration of the above-mentioned issues.
A novel fiber-optical vibration defending system with on-line intelligent identification function
NASA Astrophysics Data System (ADS)
Wu, Huijuan; Xie, Xin; Li, Hanyu; Li, Xiaoyu; Wu, Yu; Gong, Yuan; Rao, Yunjiang
2013-09-01
Capacity of the sensor network is always a bottleneck problem for the novel FBG-based quasi-distributed fiberoptical defending system. In this paper, a highly sensitive sensing network with FBG vibration sensors is presented to relieve stress of the capacity and the system cost. However, higher sensitivity may cause higher Nuisance Alarm Rates (NARs) in practical uses. It is necessary to further classify the intrusion pattern or threat level and determine the validity of an unexpected event. Then an intelligent identification method is proposed by extracting the statistical features of the vibration signals in the time domain, and inputting them into a 3-layer Back-Propagation(BP) Artificial Neural Network to classify the events of interest. Experiments of both simulation and field tests are carried out to validate its effectiveness. The results show the recognition rate can be achieved up to 100% for the simulation signals and as high as 96.03% in the real tests.
Inertial aided cycle slip detection and identification for integrated PPP GPS and INS.
Du, Shuang; Gao, Yang
2012-10-25
The recently developed integrated Precise Point Positioning (PPP) GPS/INS system can be useful to many applications, such as UAV navigation systems, land vehicle/machine automation and mobile mapping systems. Since carrier phase measurements are the primary observables in PPP GPS, cycle slips, which often occur due to high dynamics, signal obstructions and low satellite elevation, must be detected and repaired in order to ensure the navigation performance. In this research, a new algorithm of cycle slip detection and identification has been developed. With the aiding from INS, the proposed method jointly uses WL and EWL phase combinations to uniquely determine cycle slips in the L1 and L2 frequencies. To verify the efficiency of the algorithm, both tactical-grade and consumer-grade IMUs are tested by using a real dataset collected from two field tests. The results indicate that the proposed algorithm can efficiently detect and identify the cycle slips and subsequently improve the navigation performance of the integrated system.
2015-05-01
Director, Operational Test and Evaluation Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2 Initial...Operational Test and Evaluation Report May 2015 This report on the Department of Defense (DOD) Automated Biometric Identification System...COVERED - 4. TITLE AND SUBTITLE Department of Defense (DOD) Automated Biometric Identification System (ABIS) Version 1.2 Initial Operational Test
Watson, C; Pulford, I D; Riddell-Black, D
2003-01-01
The aim of this study was to ascertain whether metal resistance in willow (Salix) clones grown in a hydroponics screening test correlated with data from the same clones grown independently in a field trial. If so, results from a short-term, glasshouse-based system could be extrapolated to the field, allowing rapid identification of willows suitable for planting in metal-contaminated substrates without necessitating longterm field trials. Principal Components Analysis was used to show groups of clones and to assess the relative importance of the parameters measured in both the hydroponics system and the field; including plant response factors such as increase in stem height, as well as metal concentrations in plant tissues. The clones tested fell into two distinct groups. Salix viminalis clones and the basket willow Black Maul (S. triandra) were less resistant to elevated concentrations of heavy metals than a group of hardier clones, including S. burjatica 'Germany,' S.x dasyclados, S. candida and S. spaethii. The more resistant clones produced more biomass in the glasshouse and field, and had higher metal concentrations in the wood. The less resistant clones had greater concentrations of Cu and Ni in the bark, and produced less biomass in the glasshouse and field. Significant relationships were found between the response of the same clones grown the in short-term glasshouse hydroponics system and in the field.
NASA Astrophysics Data System (ADS)
Forquin, P.; Lukić, B.
2017-11-01
The spalling technique based on the use of a single Hopkinson bar put in contact with the tested sample has been widely adopted as a reliable method for obtaining the tensile response of concrete and rock-like materials at strain rates up-to 200 s- 1. However, the traditional processing method, based on the use of Novikov acoustic approach and the rear face velocity measurement, remains quite questionable due to strong approximations of this data processing method. Recently a new technique for deriving cross-sectional stress fields of a spalling sample filmed with an ultra-high speed camera and based on using the full field measurements and the virtual fields method (VFM) was proposed. In the present work, this topic is perused by performing several spalling tests on ordinary concrete at high acquisition speed of 1Mfps to accurately measure the tensile strength, Young's modulus, strain-rate at failure and stress-strain response of concrete at high strain-rate. The stress-strain curves contain more measurement points for a more reliable identification. The observed tensile stiffness is up-to 50% lower than the initial compressive stiffness and the obtained peak stress was about 20% lower than the one obtained by applying the Novikov method. In order to support this claim, numerical simulations were performed to show that the change of stiffness between compression and tension highly affects the rear-face velocity profile. This further suggests that the processing based only on the velocity "pullback" is quite sensitive and can produce an overestimate of the tensile strength in concrete and rock-like materials.
Spathis, Jemima Grace; Connick, Mark James; Beckman, Emma Maree; Newcombe, Peter Anthony; Tweedy, Sean Michael
2015-01-01
Paralympic throwing events for athletes with physical impairments comprise seated and standing javelin, shot put, discus and seated club throwing. Identification of talented throwers would enable prediction of future success and promote participation; however, a valid and reliable talent identification battery for Paralympic throwing has not been reported. This study evaluates the reliability and validity of a talent identification battery for Paralympic throws. Participants were non-disabled so that impairment would not confound analyses, and results would provide an indication of normative performance. Twenty-eight non-disabled participants (13 M; 15 F) aged 23.6 years (±5.44) performed five kinematically distinct criterion throws (three seated, two standing) and nine talent identification tests (three anthropometric, six motor); 23 were tested a second time to evaluate test-retest reliability. Talent identification test-retest reliability was evaluated using Intra-class Correlation Coefficient (ICC) and Bland-Altman plots (Limits of Agreement). Spearman's correlation assessed strength of association between criterion throws and talent identification tests. Reliability was generally acceptable (mean ICC = 0.89), but two seated talent identification tests require more extensive familiarisation. Correlation strength (mean rs = 0.76) indicated that the talent identification tests can be used to validly identify individuals with competitively advantageous attributes for each of the five kinematically distinct throwing activities. Results facilitate further research in this understudied area.
Methods and application of system identification in shock and vibration.
NASA Technical Reports Server (NTRS)
Collins, J. D.; Young, J. P.; Kiefling, L.
1972-01-01
A logical picture is presented of current useful system identification techniques in the shock and vibration field. A technology tree diagram is developed for the purpose of organizing and categorizing the widely varying approaches according to the fundamental nature of each. Specific examples of accomplished activity for each identification category are noted and discussed. To provide greater insight into the most current trends in the system identification field, a somewhat detailed description is presented of the essential features of a recently developed technique that is based on making the maximum use of all statistically known information about a system.
Detection of pathogenic Leptospira from selected environment in Kelantan and Terengganu, Malaysia.
Ridzlan, F R; Bahaman, A R; Khairani-Bejo, S; Mutalib, A R
2010-12-01
Leptospirosis is recognized as one of the important zoonotic diseases in the world including Malaysia. A total of 145 soil and water samples were collected from selected National Service Training Centres (NSTC) in Kelantan and Terengganu. The samples were inoculated into modified semisolid Ellinghausen McCullough Johnson Harris (EMJH) medium, incubated at room temperature for 1 month and examined under the dark-field microscope. Positive growth of the leptospiral isolates were then confirmed with 8-Azaguanine Test, Polymerase Chain Reaction (PCR) assay and Microscopic Agglutination Test (MAT). Fifteen cultures (10.34%) exhibited positive growths which were seen under dark field microscope whilst only 20% (3/15) were confirmed as pathogenic species. based on 8-Azaguanine Test and PCR. Serological identification of the isolates with MAT showed that hebdomadis was the dominant serovar in Terengganu. Pathogenic leptospires can be detected in Malaysian environment and this has the potential to cause an outbreak. Therefore, precautionary steps against leptospirosis should be taken by camp authorities to ensure the safety of trainees.
NASA Astrophysics Data System (ADS)
Oregui, M.; Li, Z.; Dollevoet, R.
2015-03-01
In this paper, the feasibility of the Frequency Response Function (FRF)-based statistical method to identify the characteristic frequencies of railway track defects is studied. The method compares a damaged track state to a healthy state based on non-destructive field hammer test measurements. First, a study is carried out to investigate the repeatability of hammer tests in railway tracks. By changing the excitation and measurement locations it is shown that the variability introduced by the test process is negligible. Second, following the concepts of control charts employed in process monitoring, a method to define an approximate healthy state is introduced by using hammer test measurements at locations without visual damage. Then, the feasibility study includes an investigation into squats (i.e. a major type of rail surface defect) of varying severity. The identified frequency ranges related to squats agree with those found in an extensively validated vehicle-borne detection system. Therefore, the FRF-based statistical method in combination with the non-destructive hammer test measurements has the potential to be employed to identify the characteristic frequencies of damaged conditions in railway tracks in the frequency range of 300-3000 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, D.R.; Schaub, S.A.
1991-09-01
A literature and market search of existing technology for the detection, identification, and quantification of microorganisms in water was conducted. Based upon the availability of technologies and their configurations, an assessment of the appropriate strategies to pursue for the near and long term development plans in development of the Rapid Field Bacteriology Test Kit was performed. Near term technologies to improve the Army's capability to detect microorganisms would appear to be essentially improvements in versatility and measurement of coliform indicator organisms. New chromogenic and fluorogenic indicator substances associated with new substrates appear to be best suited for test kit developmentmore » either for quantitative membrane filter tests or presence/absence and multiple fermentation tests. Test times, incubator requirements, and operator involvement appear to be similar to older technologies. Long term development would appear to favor such technologies as genetic probes with amplification of the hydridized nucleic acid materials of positive samples, and some immunological based systems such as enzyme linked, immuno-sorbent assays. In both cases, the major problems would appear to be sample preparation and development of signal strengths from the reactions which would allow the user to see results in 1 hour.« less
Analysis of the intraseasonal stability of field test performances in young academy soccer players.
Francioni, Fabio Massimo; Figueiredo, António José; Terribili, Marco; Tessitore, Antonio
2016-01-01
This study aimed to observe the intraseasonal stability of anthropometric, technical and functional test results in academy soccer players of different age categories. In total, 103 participants (age range: 7.7-13.4 years) by 5 age categories of the same academy were recruited for this study. Players were submitted to a field-test battery comprising 3 anthropometric measurements (body mass, stature and body mass index), 6 soccer technical tests (to assess the ability of ball control, ball control with the head, pass accuracy, shooting accuracy, dribbling and dribbling with pass) and 3 functional tests (countermovement jump with the hands on the hip, countermovement jump with free hands and 15-m linear sprint) that was administered in 4 test sessions during the same season. Though anthropometric results showed a clear increment in each age category across the season, the fluctuation of technical test results depended on age category and test session. Moreover, a significant increase in the results of functional tests was observed in most of the age categories, in particular, for the assessment of lower power limb. In conclusion, collecting repeated intraseason measurements permits the identification of players' fluctuations of performance across the season and allows coaches to make frequent adjustments of their programmes.
O'Flaherty, Brigid M; Li, Yan; Tao, Ying; Paden, Clinton R; Queen, Krista; Zhang, Jing; Dinwiddie, Darrell L; Gross, Stephen M; Schroth, Gary P; Tong, Suxiang
2018-06-01
Next generation sequencing (NGS) technologies have revolutionized the genomics field and are becoming more commonplace for identification of human infectious diseases. However, due to the low abundance of viral nucleic acids (NAs) in relation to host, viral identification using direct NGS technologies often lacks sufficient sensitivity. Here, we describe an approach based on two complementary enrichment strategies that significantly improves the sensitivity of NGS-based virus identification. To start, we developed two sets of DNA probes to enrich virus NAs associated with respiratory diseases. The first set of probes spans the genomes, allowing for identification of known viruses and full genome sequencing, while the second set targets regions conserved among viral families or genera, providing the ability to detect both known and potentially novel members of those virus groups. Efficiency of enrichment was assessed by NGS testing reference virus and clinical samples with known infection. We show significant improvement in viral identification using enriched NGS compared to unenriched NGS. Without enrichment, we observed an average of 0.3% targeted viral reads per sample. However, after enrichment, 50%-99% of the reads per sample were the targeted viral reads for both the reference isolates and clinical specimens using both probe sets. Importantly, dramatic improvements on genome coverage were also observed following virus-specific probe enrichment. The methods described here provide improved sensitivity for virus identification by NGS, allowing for a more comprehensive analysis of disease etiology. © 2018 O'Flaherty et al.; Published by Cold Spring Harbor Laboratory Press.
Identification of Amazonian Trees with DNA Barcodes
Gonzalez, Mailyn Adriana; Baraloto, Christopher; Engel, Julien; Mori, Scott A.; Pétronelli, Pascal; Riéra, Bernard; Roger, Aurélien; Thébaud, Christophe; Chave, Jérôme
2009-01-01
Background Large-scale plant diversity inventories are critical to develop informed conservation strategies. However, the workload required for classic taxonomic surveys remains high and is particularly problematic for megadiverse tropical forests. Methodology/Principal Findings Based on a comprehensive census of all trees in two hectares of a tropical forest in French Guiana, we examined whether plant DNA barcoding could contribute to increasing the quality and the pace of tropical plant biodiversity surveys. Of the eight plant DNA markers we tested (rbcLa, rpoC1, rpoB, matK, ycf5, trnL, psbA-trnH, ITS), matK and ITS had a low rate of sequencing success. More critically, none of the plastid markers achieved a rate of correct plant identification greater than 70%, either alone or combined. The performance of all barcoding markers was noticeably low in few species-rich clades, such as the Laureae, and the Sapotaceae. A field test of the approach enabled us to detect 130 molecular operational taxonomic units in a sample of 252 juvenile trees. Including molecular markers increased the identification rate of juveniles from 72% (morphology alone) to 96% (morphology and molecular) of the individuals assigned to a known tree taxon. Conclusion/Significance We conclude that while DNA barcoding is an invaluable tool for detecting errors in identifications and for identifying plants at juvenile stages, its limited ability to identify collections will constrain the practical implementation of DNA-based tropical plant biodiversity programs. PMID:19834612
Selective structural source identification
NASA Astrophysics Data System (ADS)
Totaro, Nicolas
2018-04-01
In the field of acoustic source reconstruction, the inverse Patch Transfer Function (iPTF) has been recently proposed and has shown satisfactory results whatever the shape of the vibrating surface and whatever the acoustic environment. These two interesting features are due to the virtual acoustic volume concept underlying the iPTF methods. The aim of the present article is to show how this concept of virtual subsystem can be used in structures to reconstruct the applied force distribution. Some virtual boundary conditions can be applied on a part of the structure, called virtual testing structure, to identify the force distribution applied in that zone regardless of the presence of other sources outside the zone under consideration. In the present article, the applicability of the method is only demonstrated on planar structures. However, the final example show how the method can be applied to a complex shape planar structure with point welded stiffeners even in the tested zone. In that case, if the virtual testing structure includes the stiffeners the identified force distribution only exhibits the positions of external applied forces. If the virtual testing structure does not include the stiffeners, the identified force distribution permits to localize the forces due to the coupling between the structure and the stiffeners through the welded points as well as the ones due to the external forces. This is why this approach is considered here as a selective structural source identification method. It is demonstrated that this approach clearly falls in the same framework as the Force Analysis Technique, the Virtual Fields Method or the 2D spatial Fourier transform. Even if this approach has a lot in common with these latters, it has some interesting particularities like its low sensitivity to measurement noise.
Rapid identification of staphylococci by Raman spectroscopy.
Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Holá, Veronika; Ježek, Jan; Zemánek, Pavel; Sokolová, Jana; Petráš, Petr
2017-11-01
Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields. Recent studies showed that the method has a potential for use in microbiological research, too. Our work here shows a possibility to identify staphylococci by Raman spectroscopy. We present a method that enables almost 100% successful identification of 16 of the clinically most important staphylococcal species directly from bacterial colonies grown on a Mueller-Hinton agar plate. We obtained characteristic Raman spectra of 277 staphylococcal strains belonging to 16 species from a 24-hour culture of each strain grown on the Mueller-Hinton agar plate using the Raman instrument. The results show that it is possible to distinguish among the tested species using Raman spectroscopy and therefore it has a great potential for use in routine clinical diagnostics.
A constrained robust least squares approach for contaminant release history identification
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Painter, Scott L.; Wittmeyer, Gordon W.
2006-04-01
Contaminant source identification is an important type of inverse problem in groundwater modeling and is subject to both data and model uncertainty. Model uncertainty was rarely considered in the previous studies. In this work, a robust framework for solving contaminant source recovery problems is introduced. The contaminant source identification problem is first cast into one of solving uncertain linear equations, where the response matrix is constructed using a superposition technique. The formulation presented here is general and is applicable to any porous media flow and transport solvers. The robust least squares (RLS) estimator, which originated in the field of robust identification, directly accounts for errors arising from model uncertainty and has been shown to significantly reduce the sensitivity of the optimal solution to perturbations in model and data. In this work, a new variant of RLS, the constrained robust least squares (CRLS), is formulated for solving uncertain linear equations. CRLS allows for additional constraints, such as nonnegativity, to be imposed. The performance of CRLS is demonstrated through one- and two-dimensional test problems. When the system is ill-conditioned and uncertain, it is found that CRLS gave much better performance than its classical counterpart, the nonnegative least squares. The source identification framework developed in this work thus constitutes a reliable tool for recovering source release histories in real applications.
Phenomenological model for coupled multi-axial piezoelectricity
NASA Astrophysics Data System (ADS)
Wei, Yuchen; Pellegrino, Sergio
2018-03-01
A quantitative calibration of an existing phenomenological model for polycrystalline ferroelectric ceramics is presented. The model relies on remnant strain and polarization as independent variables. Innovative experimental and numerical model identification procedures are developed for the characterization of the coupled electro-mechanical, multi-axial nonlinear constitutive law. Experiments were conducted on thin PZT-5A4E plates subjected to cross-thickness electric field. Unimorph structures with different thickness ratios between PZT-5A4E plate and substrate were tested, to subject the piezo plates to coupled electro-mechanical fields. Material state histories in electric field-strain-polarization space and stress-strain-polarization space were recorded. An optimization procedure is employed for the determination of the model parameters, and the calibrated constitutive law predicts both the uncoupled and coupled experimental observations accurately.
Remote sensing capacity of Raman spectroscopy in identification of mineral and organic constituents
NASA Astrophysics Data System (ADS)
Chen, Bin; Stoker, Carol; Cabrol, Nathalie; McKay, Christopher P.
2007-09-01
We present design, integration and test results for a field Raman spectrometer science payload, integrated into the Mars Analog Research and Technology (MARTE) drilling platform. During the drilling operation, the subsurface Raman spectroscopy inspection system has obtained signatures of organic and mineral compositions. We also performed ground truth studies using both this field unit and a laboratory micro Raman spectrometer equipped with multiple laser excitation wavelengths on series of field samples including Mojave rocks, Laguna Verde salty sediment and Rio Tinto topsoil. We have evaluated laser excitation conditions and optical probe designs for further improvement. We have demonstrated promising potential for Raman spectroscopy as a non-destructive in situ, high throughput, subsurface detection technique, as well as a desirable active remote sensing tool for future planetary and space missions.
An improved design method of a tuned mass damper for an in-service footbridge
NASA Astrophysics Data System (ADS)
Shi, Weixing; Wang, Liangkun; Lu, Zheng
2018-03-01
Tuned mass damper (TMD) has a wide range of applications in the vibration control of footbridges. However, the traditional engineering design method may lead to a mistuned TMD. In this paper, an improved TMD design method based on the model updating is proposed. Firstly, the original finite element model (FEM) is studied and the natural characteristics of the in-service or newly built footbridge is identified by field test, and then the original FEM is updated. TMD is designed according to the new updated FEM, and it is optimized according to the simulation on vibration control effects. Finally, the installation and field measurement of TMD are carried out. The improved design method can be applied to both in-service and newly built footbridges. This paper illustrates the improved design method with an engineering example. The frequency identification results of field test and original FEM show that there is a relatively large difference between them. The TMD designed according to the updated FEM has better vibration control effect than the TMD designed according to the original FEM. The site test results show that TMD has good effect on controlling human-induced vibrations.
Qudratullah; Muhammad, G; Saqib, M; Bilal, M Qamar
2017-08-01
The present study was designed to investigate isolation, characterization, virulence and immunogenicity testing of field isolates of Pasteurella multocida, Staphylococcus aureus, and Streptococcus agalactiae in rabbits and mice. Isolates of P. multocida, S. aureus and Str. agalactiae recovered from field cases of Hemorragic septicemia and mastitis were scrutinized for virulence/pathogenicity and immunogenicity. Mouse LD 50 of P. multocida showed that P. multocida isolate No.1 was more virulent than isolates No. 2 and 3. Virulence of isolate No.1S. aureus and Str. agalactiae revealed that 100, 80% rabbits died within 18h of inoculation. Seven-digit numerical profiles of these 4 isolates with API ® Staph test strips isolates, No.1 (6736153) showed good identification (S. aureus id=90.3%). Indirect ELISA-based serum antibody titers to P. multocida isolate No.1, S. aureus No.1, Str. agalactiae, isolate No.1 elicited high antibody titers 1.9, 1.23, 1.12 respectively. All the pathogens of Isolate No. 1 (P. multocida, S. aureus Str. agalactiae), were high antibody than others isolates. Copyright © 2017 Elsevier B.V. All rights reserved.
Daston, George; Knight, Derek J; Schwarz, Michael; Gocht, Tilman; Thomas, Russell S; Mahony, Catherine; Whelan, Maurice
2015-01-01
The development of non-animal methodology to evaluate the potential for a chemical to cause systemic toxicity is one of the grand challenges of modern science. The European research programme SEURAT is active in this field and will conclude its first phase, SEURAT-1, in December 2015. Drawing on the experience gained in SEURAT-1 and appreciating international advancement in both basic and regulatory science, we reflect here on how SEURAT should evolve and propose that further research and development should be directed along two complementary and interconnecting work streams. The first work stream would focus on developing new 'paradigm' approaches for regulatory science. The goal here is the identification of 'critical biological targets' relevant for toxicity and to test their suitability to be used as anchors for predicting toxicity. The second work stream would focus on integration and application of new approach methods for hazard (and risk) assessment within the current regulatory 'paradigm', aiming for acceptance of animal-free testing strategies by regulatory authorities (i.e. translating scientific achievements into regulation). Components for both work streams are discussed and may provide a structure for a future research programme in the field of predictive toxicology.
Summers, Thomas; Johnson, Viviana V; Stephan, John P; Johnson, Gloria J; Leonard, George
2009-08-01
Massive transfusion of D- trauma patients in the combat setting involves the use of D+ red blood cells (RBCs) or whole blood along with suboptimal pretransfusion test result documentation. This presents challenges to the transfusion service of tertiary care military hospitals who ultimately receive these casualties because initial D typing results may only reflect the transfused RBCs. After patients are stabilized, mixed-field reaction results on D typing indicate the patient's true inherited D phenotype. This case series illustrates the utility of automated gel column agglutination in detecting mixed-field reactions in these patients. The transfusion service test results, including the automated gel column agglutination D typing results, of four massively transfused D- patients transfused D+ RBCs is presented. To test the sensitivity of the automated gel column agglutination method in detecting mixed-field agglutination reactions, a comparative analysis of three automated technologies using predetermined mixtures of D+ and D- RBCs is also presented. The automated gel column agglutination method detected mixed-field agglutination in D typing in all four patients and in the three prepared control specimens. The automated microwell tube method identified one of the three prepared control specimens as indeterminate, which was subsequently manually confirmed as a mixed-field reaction. The automated solid-phase method was unable to detect any mixed fields. The automated gel column agglutination method provides a sensitive means for detecting mixed-field agglutination reactions in the determination of the true inherited D phenotype of combat casualties transfused massive amounts of D+ RBCs.
Davidson, Shaun M; Docherty, Paul D; Murray, Rua
2017-03-01
Parameter identification is an important and widely used process across the field of biomedical engineering. However, it is susceptible to a number of potential difficulties, such as parameter trade-off, causing premature convergence at non-optimal parameter values. The proposed Dimensional Reduction Method (DRM) addresses this issue by iteratively reducing the dimension of hyperplanes where trade off occurs, and running subsequent identification processes within these hyperplanes. The DRM was validated using clinical data to optimize 4 parameters of the widely used Bergman Minimal Model of glucose and insulin kinetics, as well as in-silico data to optimize 5 parameters of the Pulmonary Recruitment (PR) Model. Results were compared with the popular Levenberg-Marquardt (LMQ) Algorithm using a Monte-Carlo methodology, with both methods afforded equivalent computational resources. The DRM converged to a lower or equal residual value in all tests run using the Bergman Minimal Model and actual patient data. For the PR model, the DRM attained significantly lower overall median parameter error values and lower residuals in the vast majority of tests. This shows the DRM has potential to provide better resolution of optimum parameter values for the variety of biomedical models in which significant levels of parameter trade-off occur. Copyright © 2017 Elsevier Inc. All rights reserved.
System identification of timber masonry walls using shaking table test
NASA Astrophysics Data System (ADS)
Roy, Timir B.; Guerreiro, Luis; Bagchi, Ashutosh
2017-04-01
Dynamic study is important in order to design, repair and rehabilitation of structures. It has played an important role in the behavior characterization of structures; such as: bridges, dams, high rise buildings etc. There had been substantial development in this area over the last few decades, especially in the field of dynamic identification techniques of structural systems. Frequency Domain Decomposition (FDD) and Time Domain Decomposition are most commonly used methods to identify modal parameters; such as: natural frequency, modal damping and mode shape. The focus of the present research is to study the dynamic characteristics of typical timber masonry walls commonly used in Portugal. For that purpose, a multi-storey structural prototype of such wall has been tested on a seismic shake table at the National Laboratory for Civil Engineering, Portugal (LNEC). Signal processing has been performed of the output response, which is collected from the shaking table experiment of the prototype using accelerometers. In the present work signal processing of the output response, based on the input response has been done in two ways: FDD and Stochastic Subspace Identification (SSI). In order to estimate the values of the modal parameters, algorithms for FDD are formulated and parametric functions for the SSI are computed. Finally, estimated values from both the methods are compared to measure the accuracy of both the techniques.
ERIC Educational Resources Information Center
Flexer, Carol; And Others
1990-01-01
Using sound field amplification which increased the intensity of the teacher's voice by 10 decibels, 9 primary-level children with developmental disabilities made fewer errors on a word identification task, were more relaxed, and responded more quickly than without amplification. (Author/JDD)
Bifocal Stereo for Multipath Person Re-Identification
NASA Astrophysics Data System (ADS)
Blott, G.; Heipke, C.
2017-11-01
This work presents an approach for the task of person re-identification by exploiting bifocal stereo cameras. Present monocular person re-identification approaches show a decreasing working distance, when increasing the image resolution to obtain a higher reidentification performance. We propose a novel 3D multipath bifocal approach, containing a rectilinear lens with larger focal length for long range distances and a fish eye lens of a smaller focal length for the near range. The person re-identification performance is at least on par with 2D re-identification approaches but the working distance of the approach is increased and on average 10% more re-identification performance can be achieved in the overlapping field of view compared to a single camera. In addition, the 3D information is exploited from the overlapping field of view to solve potential 2D ambiguities.
Shi, Xu; Barnes, Robert O; Chen, Li; Shajahan-Haq, Ayesha N; Hilakivi-Clarke, Leena; Clarke, Robert; Wang, Yue; Xuan, Jianhua
2015-07-15
Identification of protein interaction subnetworks is an important step to help us understand complex molecular mechanisms in cancer. In this paper, we develop a BMRF-Net package, implemented in Java and C++, to identify protein interaction subnetworks based on a bagging Markov random field (BMRF) framework. By integrating gene expression data and protein-protein interaction data, this software tool can be used to identify biologically meaningful subnetworks. A user friendly graphic user interface is developed as a Cytoscape plugin for the BMRF-Net software to deal with the input/output interface. The detailed structure of the identified networks can be visualized in Cytoscape conveniently. The BMRF-Net package has been applied to breast cancer data to identify significant subnetworks related to breast cancer recurrence. The BMRF-Net package is available at http://sourceforge.net/projects/bmrfcjava/. The package is tested under Ubuntu 12.04 (64-bit), Java 7, glibc 2.15 and Cytoscape 3.1.0. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fast identification of the conduction-type of nanomaterials by field emission technique.
Yang, Xun; Gan, Haibo; Tian, Yan; Peng, Luxi; Xu, Ningsheng; Chen, Jun; Chen, Huanjun; Deng, Shaozhi; Liang, Shi-Dong; Liu, Fei
2017-10-12
There are more or less dopants or defects existing in nanomaterials, so they usually have different conduct-types even for the same substrate. Therefore, fast identification of the conduction-type of nanomaterials is very essential for their practical application in functional nanodevices. Here we use the field emission (FE) technique to research nanomaterials and establish a generalized Schottky-Nordheim (SN) model, in which an important parameter λ (the image potential factor) is first introduced to describe the effective image potential. By regarding λ as the criterion, their energy-band structure can be identified: (a) λ = 1: metal; (b) 0.5 < λ < 1: n-type semiconductor; (c) 0 < λ < 0.5: p-type semiconductor. Moreover, this method can be utilized to qualitatively evaluate the doping-degree for a given semiconductor. We test numerically and experimentally a group of nanomaterial emitters and all results agree with our theoretical results very well, which suggests that our method based on FE measurements should be an ideal and powerful tool to fast ascertain the conduction-type of nanomaterials.
Knöller, Kay; Vogt, Carsten; Richnow, Hans-Herrmann; Weise, Stephan M
2006-06-15
We examined the oxygen and sulfur isotope fractionation of sulfate during anaerobic degradation of toluene by sulfate-reducing bacteria in culture experiments with Desulfobacula toluolica as a type strain and with an enrichment culture Zz5-7 obtained from a benzene, toluene, ethylbenzene, and xylene (BTEX)-contaminated aquifer. Sulfur isotope fractionation can show considerable variation upon sulfate reduction and may react extremely sensitively to changes in environmental conditions. In contrast, oxygen isotope fractionation seems to be less sensitive to environmental changes. Our results clearly indicate that oxygen isotope fractionation is dominated by isotope exchange with ambient water. To verify our experimental results and to test the applicability of oxygen and sulfur isotope investigations under realistic field conditions, we evaluated isotope data from two BTEX-contaminated aquifers presented in the recent literature. On a field scale, bacterial sulfate reduction may be superimposed by processes such as dispersion, adsorption, reoxidation, or mixing. The dual isotope approach enables the identification of such sulfur transformation processes. This identification is vital for a general qualitative evaluation of the natural attenuation potential of the contaminated aquifer.
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1981-01-01
Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.
An Advanced Neutron Spectrometer for Future Manned Exploration Missions
NASA Technical Reports Server (NTRS)
Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.;
2014-01-01
An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators
Aerodynamic instability: A case history
NASA Technical Reports Server (NTRS)
Eisenmann, R. C.
1985-01-01
The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.
Arrays of Segmented, Tapered Light Guides for Use With Large, Planar Scintillation Detectors
NASA Astrophysics Data System (ADS)
Raylman, Raymond R.; Vaigneur, Keith; Stolin, Alexander V.; Jaliparthi, Gangadhar
2015-06-01
Metabolic imaging techniques can potentially improve detection and diagnosis of cancer in women with radiodense and/or fibrocystic breasts. Our group has previously developed a high-resolution positron emission tomography imaging and biopsy device (PEM-PET) to detect and guide the biopsy of suspicious breast lesions. Initial testing revealed that the imaging field-of-view (FOV) of the scanner was smaller than the physical size of the detector's active area, which could hinder sampling of breast areas close to the chest wall. The purpose of this work was to utilize segmented, tapered light guides for optically coupling the scintillator arrays to arrays of position-sensitive photomultipliers to increase both the active FOV and identification of individual scintillator elements. Testing of the new system revealed that the optics of these structures made it possible to discern detector elements from the complete active area of the detector face. In the previous system the top and bottom rows and left and right columns were not identifiable. Additionally, use of the new light guides increased the contrast of individual detector elements by up to 129%. Improved element identification led to a spatial resolution increase by approximately 12%. Due to attenuation of light in the light guides the detector energy resolution decreased from 18.5% to 19.1%. Overall, these improvements should increase the field-of-view and spatial resolution of the dedicated breast-PET system.
Rapid and field-deployable biological and chemical Raman-based identification
NASA Astrophysics Data System (ADS)
Botonjic-Sehic, Edita; Paxon, Tracy L.; Boudries, Hacene
2011-06-01
Pathogen detection using Raman spectroscopy is achieved through the use of a sandwich immunoassay. Antibody-modified magnetic beads are used to capture and concentrate target analytes in solution and surface-enhanced Raman spectroscopy (SERS) tags are conjugated with antibodies and act as labels to enable specific detection of biological pathogens. The rapid detection of biological pathogens is critical to first responders, thus assays to detect E.Coli and Anthrax have been developed and will be reported. The problems associated with pathogen detection resulting from the spectral complexity and variability of microorganisms are overcome through the use of SERS tags, which provide an intense, easily recognizable, and spectrally consistent Raman signal. The developed E. coli assay has been tested with 5 strains of E. coli and shows a low limit of detection, on the order of 10 and 100 c.f.u. per assay. Additionally, the SERS assay utilizes magnetic beads to collect the labeled pathogens into the focal point of the detection laser beam, making the assay robust to commonly encountered white powder interferants such as flour, baking powder, and corn starch. The reagents were also found to be stable at room temperature over extended periods of time with testing conducted over a one year period. Finally, through a specialized software algorithm, the assays are interfaced to the Raman instrument, StreetLab Mobile, for rapid-field-deployable biological identification.
Chapter A7. Biological Indicators
Myers, Donna N.; Wilde, Franceska D.
2003-01-01
The National Field Manual for the Collection of Water-Quality Data (National Field Manual) provides guidelines and standard procedures for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter of the manual includes procedures for the (1) determination of biochemical oxygen demand using a 5-day bioassay test; (2) collection, identification, and enumeration of fecal indicator bacteria; (3) collection of samples and information on two laboratory methods for fecal indicator viruses (coliphages); and (4) collection of samples for protozoan pathogens. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters are posted on the World Wide Web on the USGS page 'National Field Manual for the Collection of Water-Quality Data.' The URL for this page is http://pubs.water.usgs.gov/twri9A/ (accessed November 25, 2003).
Recovery Act. Advanced Load Identification and Management for Buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Casey, Patrick; Du, Liang
2014-02-12
In response to the U.S. Department of Energy (DoE)’s goal of achieving market ready, net-zero energy residential and commercial buildings by 2020 and 2025, Eaton partnered with the Department of Energy’s National Renewable Energy Laboratory (NREL) and Georgia Institute of Technology to develop an intelligent load identification and management technology enabled by a novel “smart power strip” to provide critical intelligence and information to improve the capability and functionality of building load analysis and building power management systems. Buildings account for 41% of the energy consumption in the United States, significantly more than either transportation or industrial. Within the buildingmore » sector, plug loads account for a significant portion of energy consumption. Plug load consumes 15-20% of building energy on average. As building managers implement aggressive energy conservation measures, the proportion of plug load energy can increase to as much as 50% of building energy leaving plug loads as the largest remaining single source of energy consumption. This project focused on addressing plug-in load control and management to further improve building energy efficiency accomplished through effective load identification. The execution of the project falls into the following three major aspects; An intelligent load modeling, identification and prediction technology was developed to automatically determine the type, energy consumption, power quality, operation status and performance status of plug-in loads, using electric waveforms at a power outlet level. This project demonstrated the effectiveness of the developed technology through a large set of plug-in loads measurements and testing; A novel “Smart Power Strip (SPS) / Receptacle” prototype was developed to act as a vehicle to demonstrate the feasibility of load identification technology as a low-cost, embedded solution; and Market environment for plug-in load control and management solutions, in particular, advanced power strips (APSs) was studied. The project evaluated the market potential for Smart Power Strips (SPSs) with load identification and the likely impact of a load identification feature on APS adoption and effectiveness. The project also identified other success factors required for widespread APS adoption and market acceptance. Even though the developed technology is applicable for both residential and commercial buildings, this project is focused on effective plug-in load control and management for commercial buildings, accomplished through effective load identification. The project has completed Smart Receptacle (SR) prototype development with integration of Load ID, Control/Management, WiFi communication, and Web Service. Twenty SR units were built, tested, and demonstrated in the Eaton lab; eight SR units were tested in the National Renewable Energy Lab (NREL) for one-month of field testing. Load ID algorithm testing for extended load sets was conducted within the Eaton facility and at local university campuses. This report is to summarize the major achievements, activities, and outcomes under the execution of the project.« less
Methodology for creating dedicated machine and algorithm on sunflower counting
NASA Astrophysics Data System (ADS)
Muracciole, Vincent; Plainchault, Patrick; Mannino, Maria-Rosaria; Bertrand, Dominique; Vigouroux, Bertrand
2007-09-01
In order to sell grain lots in European countries, seed industries need a government certification. This certification requests purity testing, seed counting in order to quantify specified seed species and other impurities in lots, and germination testing. These analyses are carried out within the framework of international trade according to the methods of the International Seed Testing Association. Presently these different analyses are still achieved manually by skilled operators. Previous works have already shown that seeds can be characterized by around 110 visual features (morphology, colour, texture), and thus have presented several identification algorithms. Until now, most of the works in this domain are computer based. The approach presented in this article is based on the design of dedicated electronic vision machine aimed to identify and sort seeds. This machine is composed of a FPGA (Field Programmable Gate Array), a DSP (Digital Signal Processor) and a PC bearing the GUI (Human Machine Interface) of the system. Its operation relies on the stroboscopic image acquisition of a seed falling in front of a camera. A first machine was designed according to this approach, in order to simulate all the vision chain (image acquisition, feature extraction, identification) under the Matlab environment. In order to perform this task into dedicated hardware, all these algorithms were developed without the use of the Matlab toolbox. The objective of this article is to present a design methodology for a special purpose identification algorithm based on distance between groups into dedicated hardware machine for seed counting.
The future of forensic DNA analysis
Butler, John M.
2015-01-01
The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of ‘faster, higher, stronger’, forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. PMID:26101278
[The application of radiological image in forensic medicine].
Zhang, Ji-Zong; Che, Hong-Min; Xu, Li-Xiang
2006-04-01
Personal identification is an important work in forensic investigation included sex discrimination, age and stature estimation. Human identification depended on radiological image technique analysis is a practice and proper method in forensic science field. This paper intended to understand the advantage and defect by reviewed the employing of forensic radiology in forensic science field broadly and provide a reference to perfect the application of forensic radiology in forensic science field.
UV gated Raman spectroscopy for standoff detection of explosives
NASA Astrophysics Data System (ADS)
Gaft, M.; Nagli, L.
2008-07-01
Real-time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called improvised explosive devices (IED). It is recognized that the only method, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We have applied gated Raman spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 m.
Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...
Talent Identification in Track and Field.
ERIC Educational Resources Information Center
Henson, Phillip; And Others
Talent identification in most sports occurs through mass participation and the process of natural selection; track and field does not enjoy such widespread participation. This paper reports on a project undertaken for the following purposes: improve the means by which youth with the potential for high level performance can be identified; develop…
NASA Astrophysics Data System (ADS)
Bi, Chuan-Xing; Hu, Ding-Yu; Zhang, Yong-Bin; Jing, Wen-Qian
2015-06-01
In previous studies, an equivalent source method (ESM)-based technique for recovering the free sound field in a noisy environment has been successfully applied to exterior problems. In order to evaluate its performance when applied to a more general noisy environment, that technique is used to identify active sources inside cavities where the sound field is composed of the field radiated by active sources and that reflected by walls. A patch approach with two semi-closed surfaces covering the target active sources is presented to perform the measurements, and the field that would be radiated by these target active sources into free space is extracted from the mixed field by using the proposed technique, which will be further used as the input of nearfield acoustic holography for source identification. Simulation and experimental results validate the effectiveness of the proposed technique for source identification in cavities, and show the feasibility of performing the measurements with a double layer planar array.
Rossin, Giacomo; Villalta, Danilo; Martelli, Paola; Cecconi, Daniela; Polverari, Annalisa; Zoccatelli, Gianni
2015-01-01
Downy mildews are a group of microorganisms belonging to the Chromista kingdom that can infect specific plants. When growing on plant tissues these microbes can elicit the expression of pathogenesis-related proteins (PRs), a group of stress-induced proteins frequently described as allergens in many plant species. Our aim was to verify by a proteomic approach whether the allergic reactions experienced by a farmer working in a vineyard infected by Plasmopara viticola (Pv), the etiological agent of downy mildew, are elicited by PRs expressed by the grapevine upon infection or by allergens present in Pv. A skin prick test and prick-to-prick test with infected field grapevine leaves and control leaves were carried out. Field leaves and ad hoc Pv-inoculated leaves were compared by SDS-PAGE and IgE-immunoblotting with extracts from control leaves and Pv sporangia. IgE-binding proteins were further separated by two-dimensional electrophoresis and the positive spots analyzed by nanoHPLC-Chip and tandem mass spectrometry (MS/MS) for identification. Only infected leaves showed IgE-binding protein bands at 42 and 36 kDa. This agreed with the positive skin prick test experienced by the patient only with the infected leaves extract. Two-dimensional electrophoresis followed by MS/MS analysis led to the identification of PR-2 (β-1,3-glucanase) and harpin-binding protein 1 as putative allergens, the latter having never been reported before. The results indicate that Pv infection might represent a new source of plant allergens. © 2015 S. Karger AG, Basel.
Fine-tuned evaluation of olfactory function in patients operated for nasal polyposis.
Sonnet, Marie-Hortense; Nguyen, Duc Trung; Nguyen-Thi, Phi-Linh; Arous, Fabien; Jankowski, Roger; Rumeau, Cécile
2017-07-01
Given the forced-choice procedure of the identification test, patients with profound anosmia are more likely to have higher identification scores by chance than patients with hyposmia or normosmia. This may be a confusing factor when assessing the sense of smell, which alters the appreciation of real olfaction improvement. The aim of this study was to fine-tune the results of the identification Sniffin' Sticks test before and 6 weeks after surgery using the real identification score. A total of 133 patients underwent the Identification (I) and Threshold (T) tests the day before and 6 weeks after nasalization surgery. The scores of the identification test, called I G (global identification), were ranked from 0 to 16. Patients had to specify if their forced-choice answers were given either surely or randomly, called I H (hazard identification). The real score of identification I R was obtained as follow: I R = I G - I H . Patients with an immeasurable threshold according to the T test were more prone to give randomly correct answers. On the basis of I G scores, 43.6% of patients remained hypo-anosmic after surgery compared to 72.9% before surgery. Using I R scores, only 3.8% of patients remained anosmic (I R = 0) at 6 weeks after surgery. Hence, patients with real anosmia (I R = 0) were less prone to improve their olfaction than patients with I R > 0. The analysis of random factor when using identification test allows differentiating a real anosmia from a hyposmia. An I G ≤ 4 could be considered as a profound/real anosmia or a severe hyposmia. This procedure cannot, however, replace the forced-choice method in odor identification testing.
NASA Technical Reports Server (NTRS)
Mutchler, W H; Buzzard, R W
1930-01-01
The survey of the possibilities for distinguishing between plain carbon and chromium-molybdenum steel tubing included the Herbert pendulum hardness, magnetic, sparks, and chemical tests. The Herbert pendulum test has the disadvantages of all hardness tests in being limited to factory use and being applicable only to scale-free, normalized material. The small difference in the range of hardness values between plain carbon and chromium-molybdenum steels is likewise a disadvantage. The Rockwell hardness test, at present used in the industry for this purpose, is much more reliable. It may be concluded on the basis of the experiments performed that of all methods surveyed, spark testing appears to be, at present, the most suitable for factory use from the standpoint of speed, accuracy, nondestructiveness and reliability. It is also applicable for field use.
A whole-plant screening test to identify genotypes with superior freezing tolerance.
Bertrand, Annick; Castonguay, Yves; Bourassa, Josée
2014-01-01
Freezing tolerance is a determinant factor of persistence of perennials grown in northern climate. Selection for winterhardiness in field nurseries is difficult because of the unpredictability of occurrence of test winters allowing the identification of hardy genotypes. Here we describe a whole-plant assay entirely performed indoor in growth chambers and walk-in freezers to identify genotypes with superior tolerance to freezing within populations of open pollinated species. Three successive freezing stresses are applied to progressively eliminate 90 % of the population and to retain only the 10 % best performing genotypes. This approach can be used to generate recurrently selected populations more tolerant to freezing in different species.
Yeast identification: reassessment of assimilation tests as sole universal identifiers.
Spencer, J; Rawling, S; Stratford, M; Steels, H; Novodvorska, M; Archer, D B; Chandra, S
2011-11-01
To assess whether assimilation tests in isolation remain a valid method of identification of yeasts, when applied to a wide range of environmental and spoilage isolates. Seventy-one yeast strains were isolated from a soft drinks factory. These were identified using assimilation tests and by D1/D2 rDNA sequencing. When compared to sequencing, assimilation test identifications (MicroLog™) were 18·3% correct, a further 14·1% correct within the genus and 67·6% were incorrectly identified. The majority of the latter could be attributed to the rise in newly reported yeast species. Assimilation tests alone are unreliable as a universal means of yeast identification, because of numerous new species, variability of strains and increasing coincidence of assimilation profiles. Assimilation tests still have a useful role in the identification of common species, such as the majority of clinical isolates. It is probable, based on these results, that many yeast identifications reported in older literature are incorrect. This emphasizes the crucial need for accurate identification in present and future publications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Ndzi, Edward S.; Asonganyi, Tazoacha; Nkinin, Mary Bello; Xiao, Lihua; Didier, Elizabeth S.; Bowers, Lisa C.; Nkinin, Stephenson W.; Kaneshiro, Edna S.
2015-01-01
Several enteric microsporidia species have been detected in humans and other vertebrates and their identifications at the genotype level are currently being elucidated. As advanced methods, reagents, and disposal kits for detecting and identifying pathogens become commercially available, it is important to test them in settings other than in laboratories with “state-of-the-art” equipment and well-trained staff members. In the present study, we sought to detect microsporidia DNA preserved and extracted from FTA (fast technology analysis) cards spotted with human fecal suspensions obtained from Cameroonian volunteers living in the capital city of Yaoundé to preclude the need for employing spore-concentrating protocols. Further, we tested whether amplicon nucleotide sequencing approaches could be used on small aliquots taken from the cards to elucidate the diversity of microsporidia species and strains infecting native residents. Of 196 samples analyzed, 12 (6.1%) were positive for microsporidia DNA; Enterocytozoon bieneusi (Type IV and KIN-1), Encephalitozoon cuniculi, and Encephalitozoon intestinalis were identified. These data demonstrate the utility of the FTA cards in identifying genotypes of microsporidia DNA in human fecal samples that may be applied to field testing for prevalence studies. PMID:26303263
Data pieces-based parameter identification for lithium-ion battery
NASA Astrophysics Data System (ADS)
Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen
2016-10-01
Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.
Waste inspection tomography (WIT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardi, R.T.
1996-12-31
WIT is a self-sufficient mobile semitrailer for nondestructive evaluation and nondestructive assay of nuclear waste drums using x-ray and gamma-ray tomography. The recently completed Phase I included the design, fabrication, and initial testing of all WIT subsystems installed on-board the trailer. Initial test results include 2 MeV digital radiography, computed tomography, Anger camera imaging, single photon emission computed tomography, gamma-ray spectroscopy, collimated gamma scanning, and active and passive computed tomography using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with 3 simulated waste matrices of combustibles, heterogeneous metals, and cement usingmore » check sources of gamma active isotopes such as {sup 137}Cs and {sup 133}Ba with 9-250 {mu}Ci activities. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were demonstrated nondestructively and noninvasively in Phase I. Currently ongoing Phase II involves DOE site field test demonstrations at LLNL, RFETS, and INEL with real nuclear waste drums. Current WIT experience includes 55 gallon drums of cement, graphite, sludge, glass, metals, and combustibles. Thus far WIT has inspected drums with 0-20 gms of {sup 239}Pu.« less
Thompson, Helen; Coulson, Mike; Ruddle, Natalie; Wilkins, Selwyn; Harkin, Sarah
2016-02-01
The present study was designed to assess homing behavior of bees foraging on winter oilseed rape grown from seed treated with thiamethoxam (as Cruiser OSR), with 1 field drilled with thiamethoxam-treated seed and 2 control fields drilled with fungicide-only-treated seed. Twelve honeybee colonies were used per treatment group, 4 each located at the field edge (on-field site), at approximately 500 m and 1000 m from the field. A total of nearly 300 newly emerged bees per colony were fitted (tagged) with Mic3 radio frequency identification (RFID) transponders and introduced into each of the 36 study hives. The RFID readers fitted to the entrances of the test colonies were used to monitor the activity of the tagged bees for the duration of the 5-wk flowering period of the crop. These activity data were analyzed to assess any impact on flight activity of bees foraging on the treated compared with untreated crops. Honeybees were seen to be actively foraging within all 3 treatment groups during the exposure period. The data for the more than 3000 RFID-tagged bees and more than 90 000 foraging flights monitored throughout the exposure phase for the study follow the same trends across the treatment and controls and at each of the 3 apiary distances, indicating that there were no effects from foraging on the treated crop. Under the experimental conditions, there was no effect of foraging on thiamethoxam-treated oilseed rape on honeybee flight activity or on their ability to return to the hive. © 2015 SETAC.
Identification of Disciplines and Fields. Edis Task I Report, Work Unit 1.4.
ERIC Educational Resources Information Center
Howard Research Co., Arlington, VA.
This report presents the identification and definitions of subject oriented engineering and scientific disciplines and fields which are included in the EDIS Subject Categories. The discussion is extended to include the mix of subjects with other orientations, such as Item, Mission-Project, Expertise and Data Bank Categories. Sample queries are…
General Anisotropy Identification of Paperboard with Virtual Fields Method
J.M. Considine; F. Pierron; K.T. Turner; D.W. Vahey
2014-01-01
This work extends previous efforts in plate bending of Virtual Fields Method (VFM) parameter identification to include a general 2-D anisotropicmaterial. Such an extension was needed for instances in which material principal directions are unknown or when specimen orientation is not aligned with material principal directions. A new fixture with a multiaxial force...
Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V
2014-01-01
This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rizzo, Davinia; Blackburn, Mark
Complex systems are comprised of technical, social, political and environmental factors as well as the programmatic factors of cost, schedule and risk. Testing these systems for enhanced security requires expert knowledge in many different fields. It is important to test these systems to ensure effectiveness, but testing is limited to due cost, schedule, safety, feasibility and a myriad of other reasons. Without an effective decision framework for Test and Evaluation (T&E) planning that can take into consideration technical as well as programmatic factors and leverage expert knowledge, security in complex systems may not be assessed effectively. Therefore, this paper coversmore » the identification of the current T&E planning problem and an approach to include the full variety of factors and leverage expert knowledge in T&E planning through the use of Bayesian Networks (BN).« less
Koester, Meike; Gergs, René
2017-10-05
Analyzing food webs is essential for a better understanding of ecosystems. For example, food web interactions can undergo severe changes caused by the invasion of non-indigenous species. However, an exact identification of field predator-prey interactions is difficult in many cases. These analyses are often based on a visual evaluation of gut content or the analysis of stable isotope ratios (δ 15 N and δ 13 C). Such methods require comprehensive knowledge about, respectively, morphologic diversity or isotopic signature from individual prey organisms, leading to obstacles in the exact identification of prey organisms. Visual gut content analyses especially underestimate soft bodied prey organisms, because maceration, ingestion and digestion of prey organisms make identification of specific species difficult. Hence, polymerase chain reaction (PCR) based strategies, for example the use of group-specific primer sets, provide a powerful tool for the investigation of food web interactions. Here, we describe detailed protocols to investigate the gut contents of macroinvertebrate consumers from the field using group-specific primer sets for nuclear ribosomal deoxyribonucleic acid (rDNA). DNA can be extracted either from whole specimens (in the case of small taxa) or out of gut contents of specimens collected in the field. Presence and functional efficiency of the DNA templates need to be confirmed directly from the tested individual using universal primer sets targeting the respective subunit of DNA. We also demonstrate that consumed prey can be determined further down to species level via PCR with unmodified group-specific primers combined with subsequent single strand conformation polymorphism (SSCP) analyses using polyacrylamide gels. Furthermore, we show that the use of different fluorescent dyes as labels enables parallel screening for DNA fragments of different prey groups from multiple gut content samples via automated fragment analysis.
Detection, Identification, Location, and Remote Sensing Using SAW RFID Sensor Tags
NASA Technical Reports Server (NTRS)
Barton, Richard J.; Kennedy, Timothy F.; Williams, Robert M.; Fink, Patrick W.; Ngo, Phong H.
2009-01-01
The Electromagnetic Systems Branch (EV4) of the Avionic Systems Division at NASA Johnson Space Center in Houston, TX is studying the utility of surface acoustic wave (SAW) radiofrequency identification (RFID) tags for multiple wireless applications including detection, identification, tracking, and remote sensing of objects on the lunar surface, monitoring of environmental test facilities, structural shape and health monitoring, and nondestructive test and evaluation of assets. For all of these applications, it is anticipated that the system utilized to interrogate the SAW RFID tags may need to operate at fairly long range and in the presence of considerable multipath and multiple-access interference. Towards that end, EV4 is developing a prototype SAW RFID wireless interrogation system for use in such environments called the Passive Adaptive RFID Sensor Equipment (PARSED) system. The system utilizes a digitally beam-formed planar receiving antenna array to extend range and provide direction-of-arrival information coupled with an approximate maximum-likelihood signal processing algorithm to provide near-optimal estimation of both range and temperature. The system is capable of forming a large number of beams within the field of view and resolving the information from several tags within each beam. The combination of both spatial and waveform discrimination provides the capability to track and monitor telemetry from a large number of objects appearing simultaneously within the field of view of the receiving array. In this paper, we will consider the application of the PARSEQ system to the problem of simultaneous detection, identification, localization, and temperature estimation for multiple objects. We will summarize the overall design of the PARSEQ system and present a detailed description of the design and performance of the signal detection and estimation algorithms incorporated in the system. The system is currently configured only to measure temperature (jointly with range and tag ID), but future versions will be revised to measure parameters other than temperature as SAW tags capable of interfacing with external sensors become available. It is anticipated that the estimation of arbitrary parameters measured using SAW-based sensors will be based on techniques very similar to the joint range and temperature estimation techniques described in this paper.
Chapter 01: Wood identification and pattern recognition
Alex Wiedenhoeft
2011-01-01
Wood identification is a combination of art and science. Although the bulk of this manual focuses on the scientific characteristics used to make accurate field identifications of wood, the contribution of the artistic component to the identification process should be neither overlooked nor understated. Though the accumulation of scientific knowledge and experience is...
APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS
Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation (TIE) methods for contaminated sediments and focusing on three toxicant groups (ammoni...
Optically coded nanocrystal taggants and optical frequency IDs
NASA Astrophysics Data System (ADS)
Williams, George M., Jr.; Allen, Thomas; Dupuy, Charles; Novet, Thomas; Schut, David
2010-04-01
A series of nanocrystal and nanocrystal quantum dot taggant technologies were developed for covertly tagging and tracking objects of interest. Homogeneous and heterogeneous nanocrystal taggant designs were developed and optimized for ultraviolet through infrared emissions, utilizing either Dexter energy transfer or Förster resonant energy transfer (FRET) between specific absorbing and emitting functionalities. The conversion efficiency, target-specific identification, and adhesion properties of the taggants were engineered by means of various surface ligand chemistries. The ability to engineer poly-functional ligands was shown effective in the detection of a biological agent simulant, detected through a NC photoluminescence that is altered in the presence of the agent of interest; the technique has broad potential applicability to chemical, biological, and explosive (CBE) agent detection. The NC photoluminescence can be detected by a remote LIDAR system; the performance of a taggant system has been modeled and subsequently verified in a series of controlled field tests. LIDAR detection of visible-emitting taggants was shown to exceed 2.8 km in calibrated field tests, and from these field data and calibrated laboratory measurements we predict >5 km range in the covert shortwavelength infrared (SWIR) spectral region.
Ross, A.J.
1962-01-01
Aeromonas salmonicida, the etiological agent of furunculosis in fish, is distinctive in the field of fish diseases in that it may readily be recognized by the water-soluble reddish-brown pigment formed on culture media containing tyrosine. Additional tests for the identification of this organism include blackening of the colonial growth when flooded with an aqueous solution of p-phenylenediamine and a lack of motility (Griffin, Progressive Fish Culturist 14:74, 1952).
Directory of aerospace safety specialized information sources, volume 2
NASA Technical Reports Server (NTRS)
Rubinstein, R. I.; Pinto, J. J.; Meschkow, S. Z.
1976-01-01
A handbook of organizations and experts in specific and well-defined areas of safety technology is presented. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, and operations, as well as information on hazard and failure cause identification, accident analysis, and materials characteristics. Other related areas include the handling and transportation of hazardous chemicals, radioactive isotopes, and liquified natural gases.
Nondestructive Technique To Assess Embrittlement In Steels
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Yost, William T.; Cantrell, John H.
1990-01-01
Recent research at NASA Langley Research Center led to identification of nondestructive technique for detection of temper embrittlement in HY80 steel. Measures magnetoacoustic emission associated with reversible motion of domain walls at low magnetic fields. Of interest to engineers responsible for reliability and safety of various dynamically loaded and/or thermally cycled steel parts. Applications include testing of landing gears, naval vessels, and parts subjected to heat, such as those found in steam-pipe fittings, boilers, turbine rotors, and nuclear pressure vessels.
Extracting and identifying concrete structural defects in GPR images
NASA Astrophysics Data System (ADS)
Ye, Qiling; Jiao, Liangbao; Liu, Chuanxin; Cao, Xuehong; Huston, Dryver; Xia, Tian
2018-03-01
Traditionally most GPR data interpretations are performed manually. With the advancement of computing technologies, how to automate GPR data interpretation to achieve high efficiency and accuracy has become an active research subject. In this paper, analytical characterizations of major defects in concrete structures, including delamination, air void and moisture in GPR images, are performed. In the study, the image features of different defects are compared. Algorithms are developed for defect feature extraction and identification. For validations, both simulation results and field test data are utilized.
Centler, Florian; Heße, Falk; Thullner, Martin
2013-09-01
At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.
NASA Astrophysics Data System (ADS)
Groeneweg, J. F.; Rice, E. J.
1987-01-01
Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.
NASA Astrophysics Data System (ADS)
Groeneweg, J. F.; Rice, E. J.
1983-03-01
Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.
NASA Technical Reports Server (NTRS)
Groeneweg, J. F.; Rice, E. J.
1983-01-01
Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.
Bersinger, T; Bareille, G; Pigot, T; Bru, N; Le Hécho, I
2018-06-01
A good knowledge of the dynamic of pollutant concentration and flux in a combined sewer network is necessary when considering solutions to limit the pollutants discharged by combined sewer overflow (CSO) into receiving water during wet weather. Identification of the parameters that influence pollutant concentration and flux is important. Nevertheless, few studies have obtained satisfactory results for the identification of these parameters using statistical tools. Thus, this work uses a large database of rain events (116 over one year) obtained via continuous measurement of rainfall, discharge flow and chemical oxygen demand (COD) estimated using online turbidity for the identification of these parameters. We carried out a statistical study of the parameters influencing the maximum COD concentration, the discharge flow and the discharge COD flux. In this study a new test was used that has never been used in this field: the conditional regression tree test. We have demonstrated that the antecedent dry weather period, the rain event average intensity and the flow before the event are the three main factors influencing the maximum COD concentration during a rainfall event. Regarding the discharge flow, it is mainly influenced by the overall rainfall height but not by the maximum rainfall intensity. Finally, COD discharge flux is influenced by the discharge volume and the maximum COD concentration. Regression trees seem much more appropriate than common tests like PCA and PLS for this type of study as they take into account the thresholds and cumulative effects of various parameters as a function of the target variable. These results could help to improve sewer and CSO management in order to decrease the discharge of pollutants into receiving waters. Copyright © 2017 Elsevier B.V. All rights reserved.
Going deeper in the automated identification of Herbarium specimens.
Carranza-Rojas, Jose; Goeau, Herve; Bonnet, Pierre; Mata-Montero, Erick; Joly, Alexis
2017-08-11
Hundreds of herbarium collections have accumulated a valuable heritage and knowledge of plants over several centuries. Recent initiatives started ambitious preservation plans to digitize this information and make it available to botanists and the general public through web portals. However, thousands of sheets are still unidentified at the species level while numerous sheets should be reviewed and updated following more recent taxonomic knowledge. These annotations and revisions require an unrealistic amount of work for botanists to carry out in a reasonable time. Computer vision and machine learning approaches applied to herbarium sheets are promising but are still not well studied compared to automated species identification from leaf scans or pictures of plants in the field. In this work, we propose to study and evaluate the accuracy with which herbarium images can be potentially exploited for species identification with deep learning technology. In addition, we propose to study if the combination of herbarium sheets with photos of plants in the field is relevant in terms of accuracy, and finally, we explore if herbarium images from one region that has one specific flora can be used to do transfer learning to another region with other species; for example, on a region under-represented in terms of collected data. This is, to our knowledge, the first study that uses deep learning to analyze a big dataset with thousands of species from herbaria. Results show the potential of Deep Learning on herbarium species identification, particularly by training and testing across different datasets from different herbaria. This could potentially lead to the creation of a semi, or even fully automated system to help taxonomists and experts with their annotation, classification, and revision works.
Ghorashi, Seyed A.; Kanci, Anna; Noormohammadi, Amir H.
2015-01-01
Pathogenicity and presentation of Mycoplasma gallisepticum (MG) infection may differ from one strain to another and this may have implications on control measures. Infection of individual birds with more than one MG strain has been reported. A PCR followed by high resolution melt (HRM) curve analysis has been developed in our laboratory and routinely used for detection and differentiation of MG strains. However the potential of this test for identification of MG strains in a mixed specimen has not been evaluated. In the present study, the capability of PCR-HRM curve analysis technique, targeting vlhA and pvpA genes was assessed for identification of individual MG strains in a mixed population. Different DNA ratios of two MG strains from 1 to 10-4 ng were tested with some generated conventional and normalized curves distinct from those of individual strains alone. Using genotype confidence percentages (GCP) generated from HRM curve analysis, it was found that vlhA PCR-HRM was more consistent than pvpA PCR-HRM for the detection of MG ts-11 vaccine strain mixed with any of the MG strains 6/85, F, S6 or a field isolate. The potential of vlhA PCR-HRM to detect mixed MG strains in a specimen was found to be primarily dependent on quantity and proportion of the target DNAs in the mixture. This is the first study examining the capacity of PCR-HRM technique for identification of individual MG strains in a mixed strain population. PMID:25970590
RESULTS OF APPLYING TOXICITY IDENTIFICATION PROCEDURES TO FIELD COLLECTED SEDIMENTS
Identification of specific causes of sediment toxicity can allow for much more focused risk assessment and management decision making. We have been developing toxicity identification evaluation TIE) methods for contaminated sediments and are focusing on three toxicant groups (amm...
Pantchenko, Oxana S; Seidman, Seth J; Guag, Joshua W
2011-10-21
Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process.
2011-01-01
Background Over the last decade, the number of neurostimulator systems implanted in patients has been rapidly growing. Nearly 50, 000 neurostimulators are implanted worldwide annually. The most common type of implantable neurostimulators is indicated for pain relief. At the same time, commercial use of other electromagnetic technologies is expanding, making electromagnetic interference (EMI) of neurostimulator function an issue of concern. Typically reported sources of neurostimulator EMI include security systems, metal detectors and wireless equipment. When near such sources, patients with implanted neurostimulators have reported adverse events such as shock, pain, and increased stimulation. In recent in vitro studies, radio frequency identification (RFID) technology has been shown to inhibit the stimulation pulse of an implantable neurostimulator system during low frequency exposure at close distances. This could potentially be due to induced electrical currents inside the implantable neurostimulator leads that are caused by magnetic field coupling from the low frequency identification system. Methods To systematically address the concerns posed by EMI, we developed a test platform to assess the interference from coupled magnetic fields on implantable neurostimulator systems. To measure interference, we recorded the output of one implantable neurostimulator, programmed for best therapy threshold settings, when in close proximity to an operating low frequency RFID emitter. The output contained electrical potentials from the neurostimulator system and those induced by EMI from the RFID emitter. We also recorded the output of the same neurostimulator system programmed for best therapy threshold settings without RFID interference. Using the Spatially Extended Nonlinear Node (SENN) model, we compared threshold factors of spinal cord fiber excitation for both recorded outputs. Results The electric current induced by low frequency RFID emitter was not significant to have a noticeable effect on electrical stimulation. Conclusions We demonstrated a method for analyzing effects of coupled magnetic field interference on implantable neurostimulator system and its electrodes which could be used by device manufacturers during the design and testing phases of the development process. PMID:22014169
Flight Test Identification and Simulation of a UH-60A Helicopter and Slung Load
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Sahai, Ranjana; Tucker, George E.; McCoy, Allen H.; Tyson, Peter H.; Tischler, Mark B.; Rosen, Aviv
2001-01-01
Helicopter slung-load operations are common in both military and civil contexts. Helicopters and loads are often qualified for these operations by means of flight tests, which can be expensive and time consuming. There is significant potential to reduce such costs both through revisions in flight-test methods and by using validated simulation models. To these ends, flight tests were conducted at Moffett Field to demonstrate the identification of key dynamic parameters during flight tests (aircraft stability margins and handling-qualities parameters, and load pendulum stability), and to accumulate a data base for simulation development and validation. The test aircraft was a UH-60A Black Hawk, and the primary test load was an instrumented 8- by 6- by 6-ft cargo container. Tests were focused on the lateral and longitudinal axes, which are the axes most affected by the load pendulum modes in the frequency range of interest for handling qualities; tests were conducted at airspeeds from hover to 80 knots. Using telemetered data, the dynamic parameters were evaluated in near real time after each test airspeed and before clearing the aircraft to the next test point. These computations were completed in under 1 min. A simulation model was implemented by integrating an advanced model of the UH-60A aerodynamics, dynamic equations for the two-body slung-load system, and load static aerodynamics obtained from wind-tunnel measurements. Comparisons with flight data for the helicopter alone and with a slung load showed good overall agreement for all parameters and test points; however, unmodeled secondary dynamic losses around 2 Hz were found in the helicopter model and they resulted in conservative stability margin estimates.
Shimazu, Chisato; Hoshino, Satoshi; Furukawa, Taiji
2013-08-01
We constructed an integrated personal identification workflow chart using both bar code reading and an all in-one laboratory information system. The information system not only handles test data but also the information needed for patient guidance in the laboratory department. The reception terminals at the entrance, displays for patient guidance and patient identification tools at blood-sampling booths are all controlled by the information system. The number of patient identification errors was greatly reduced by the system. However, identification errors have not been abolished in the ultrasound department. After re-evaluation of the patient identification process in this department, we recognized that the major reason for the errors came from excessive identification workflow. Ordinarily, an ultrasound test requires patient identification 3 times, because 3 different systems are required during the entire test process, i.e. ultrasound modality system, laboratory information system and a system for producing reports. We are trying to connect the 3 different systems to develop a one-time identification workflow, but it is not a simple task and has not been completed yet. Utilization of the laboratory information system is effective, but is not yet perfect for patient identification. The most fundamental procedure for patient identification is to ask a person's name even today. Everyday checks in the ordinary workflow and everyone's participation in safety-management activity are important for the prevention of patient identification errors.
Identification of large masses of citrus fruit and rice fields in eastern Spain
NASA Technical Reports Server (NTRS)
Desagredo, F. L.; Salinas, F. G.
1973-01-01
ERTS-1 imagery has been successfully used for the identification of large areas of citrus groves and rice fields in the Valencia region of Eastern Spain. Results are encouraging and will facilitate the elaboration of a land use map with a fair degree of definition once methods prove to be fully operational.
USDA-ARS?s Scientific Manuscript database
It is important to find an appropriate pattern-recognition method for in-field plant identification based on spectral measurement in order to classify the crop and weeds accurately. In this study, the method of Support Vector Machine (SVM) was evaluated and compared with two other methods, Decision ...
Food and forensic molecular identification: update and challenges.
Teletchea, Fabrice; Maudet, Celia; Hänni, Catherine
2005-07-01
The need for accurate and reliable methods for animal species identification has steadily increased during past decades, particularly with the recent food scares and the overall crisis of biodiversity primarily resulting from the huge ongoing illegal traffic of endangered species. A relatively new biotechnological field, known as species molecular identification, based on the amplification and analysis of DNA, offers promising solutions. Indeed, despite the fact that retrieval and analysis of DNA in processed products is a real challenge, numerous technically consistent methods are now available and allow the detection of animal species in almost any organic substrate. However, this field is currently facing a turning point and should rely more on knowledge primarily from three fundamental fields--paleogenetics, molecular evolution and systematics.
A physiologically based nonhomogeneous Poisson counter model of visual identification.
Christensen, Jeppe H; Markussen, Bo; Bundesen, Claus; Kyllingsbæk, Søren
2018-04-30
A physiologically based nonhomogeneous Poisson counter model of visual identification is presented. The model was developed in the framework of a Theory of Visual Attention (Bundesen, 1990; Kyllingsbæk, Markussen, & Bundesen, 2012) and meant for modeling visual identification of objects that are mutually confusable and hard to see. The model assumes that the visual system's initial sensory response consists in tentative visual categorizations, which are accumulated by leaky integration of both transient and sustained components comparable with those found in spike density patterns of early sensory neurons. The sensory response (tentative categorizations) feeds independent Poisson counters, each of which accumulates tentative object categorizations of a particular type to guide overt identification performance. We tested the model's ability to predict the effect of stimulus duration on observed distributions of responses in a nonspeeded (pure accuracy) identification task with eight response alternatives. The time courses of correct and erroneous categorizations were well accounted for when the event-rates of competing Poisson counters were allowed to vary independently over time in a way that mimicked the dynamics of receptive field selectivity as found in neurophysiological studies. Furthermore, the initial sensory response yielded theoretical hazard rate functions that closely resembled empirically estimated ones. Finally, supplied with a Naka-Rushton type contrast gain control, the model provided an explanation for Bloch's law. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Frankham, Greta J.; McEwing, Ross; The, Dang Tat; Hogg, Carolyn J.; Lo, Nathan; Johnson, Rebecca N.
2018-01-01
Rhinoceros (rhinos) have suffered a dramatic increase in poaching over the past decade due to the growing demand for rhino horn products in Asia. One way to reverse this trend is to enhance enforcement and intelligence gathering tools used for species identification of horns, in particular making them fast, inexpensive and accurate. Traditionally, species identification tests are based on DNA sequence data, which, depending on laboratory resources, can be either time or cost prohibitive. This study presents a rapid rhino species identification test, utilizing species-specific primers within the cytochrome b gene multiplexed in a single reaction, with a presumptive species identification based on the length of the resultant amplicon. This multiplex PCR assay can provide a presumptive species identification result in less than 24 hours. Sequence-based definitive testing can be conducted if/when required (e.g. court purposes). This work also presents an actual casework scenario in which the presumptive test was successfully utlitised, in concert with sequence-based definitive testing. The test was carried out on seized suspected rhino horns tested at the Institute of Ecology and Biological Resources, the CITES mandated laboratory in Vietnam, a country that is known to be a major source of demand for rhino horns. This test represents the basis for which future ‘rapid species identification tests’ can be trialed. PMID:29902212
NASA Astrophysics Data System (ADS)
Tattoli, F.; Pierron, F.; Rotinat, R.; Casavola, C.; Pappalettere, C.
2011-01-01
One of the main problems in welding is the microstructural transformation within the area affected by the thermal history. The resulting heterogeneous microstructure within the weld nugget and the heat affected zones is often associated with changes in local material properties. The present work deals with the identification of material parameters governing the elasto—plastic behaviour of the fused and heat affected zones as well as the base material for titanium hybrid welded joints (Ti6Al4V alloy). The material parameters are identified from heterogeneous strain fields with the Virtual Fields Method. This method is based on a relevant use of the principle of virtual work and it has been shown to be useful and much less time consuming than classical finite element model updating approaches applied to similar problems. The paper will present results and discuss the problem of selection of the weld zones for the identification.
A scoring metric for multivariate data for reproducibility analysis using chemometric methods
Sheen, David A.; de Carvalho Rocha, Werickson Fortunato; Lippa, Katrice A.; Bearden, Daniel W.
2017-01-01
Process quality control and reproducibility in emerging measurement fields such as metabolomics is normally assured by interlaboratory comparison testing. As a part of this testing process, spectral features from a spectroscopic method such as nuclear magnetic resonance (NMR) spectroscopy are attributed to particular analytes within a mixture, and it is the metabolite concentrations that are returned for comparison between laboratories. However, data quality may also be assessed directly by using binned spectral data before the time-consuming identification and quantification. Use of the binned spectra has some advantages, including preserving information about trace constituents and enabling identification of process difficulties. In this paper, we demonstrate the use of binned NMR spectra to conduct a detailed interlaboratory comparison and composition analysis. Spectra of synthetic and biologically-obtained metabolite mixtures, taken from a previous interlaboratory study, are compared with cluster analysis using a variety of distance and entropy metrics. The individual measurements are then evaluated based on where they fall within their clusters, and a laboratory-level scoring metric is developed, which provides an assessment of each laboratory’s individual performance. PMID:28694553
Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao
2016-01-01
One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427
Evaluation of reliability on STR typing at leukemic patients used for forensic purposes.
Filoglu, G; Bulbul, O; Rayimoglu, G; Yediay, F E; Zorlu, T; Ongoren, S; Altuncul, H
2014-06-01
Over the past decades, main advances in the field of molecular biology, coupled with benefits in genomic technologies, have led to detailed molecular investigations in the genetic diversity generated by researchers. Short tandem repeat (STR) loci are polymorphic loci found throughout all eukaryotic genome. DNA profiling identification, parental testing and kinship analysis by analysis of STR loci have been widely used in forensic sciences since 1993. Malignant tissues may sometimes be the source of biological material for forensic analysis, including identification of individuals or paternity testing. There are a number of studies on microsatellite instability in different types of tumors by comparing the STR profiles of malignant and healthy tissues on the same individuals. Defects in DNA repair pathways (non-repair or mis-repair) and metabolism lead to an accumulation of microsatellite alterations in genomic DNA of various cancer types that result genomic instabilities on forensic analyses. Common forms of genomic instability are loss of heterozygosity (LOH) and microsatellite instability (MSI). In this study, the applicability of autosomal STR markers, which are routinely used in forensic analysis, were investigated in order to detect genotypes in blood samples collected from leukemic patients to estimate the reliability of the results when malignant tissues are used as a source of forensic individual identification. Specimens were collected from 90 acute and 10 chronic leukemia volunteers with oral swabs as well as their paired peripheral blood samples from the Oncology Centre of the Department of Hematology at Istanbul University, during the years 2010-2011. Specimens were tested and compared with 16 somatic STR loci (CSFIPO, THO1, TPOX, vWA, D2S1338, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D19S433, D21S11 and FGA) widely used in forensic identification and kinship. Only two STR instabilities were encountered among 100 specimens. An MSI in the FGA loci and a LOH in the D2S1338 loci were determined in two individuals separately. Our results demonstrate that the use of the biological samples from leukemia patients in forensic identification and kinship testing is questionable, especially if known microsatellite instability is available. Genetic instabilities may alter the STR polymorphism, leading to potential errors on forensic identification of individuals. Therefore, typing of autosomal STRs from leukemia patients should be performed with both healthy and malignant tissue samples of individual as references.
Identification of Rays through DNA Barcoding: An Application for Ecologists
Cerutti-Pereyra, Florencia; Meekan, Mark G.; Wei, Nu-Wei V.; O'Shea, Owen; Bradshaw, Corey J. A.; Austin, Chris M.
2012-01-01
DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the ‘uarnak’ complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data. PMID:22701556
A Cross-Cultural Adaptation of the Sniffin' Sticks Olfactory Identification Test for US children.
Cavazzana, Annachiara; Wesarg, Christiane; Schriever, Valentin A; Hummel, Thomas; Lundström, Johan N; Parma, Valentina
2017-02-01
Disorders associated with smell loss are common in adolescents. However, current odor identification tests focus on children from age 6 and older and no cross-cultural test has to date been validated and fully implemented. Here, we aimed to investigate how 3-to-11-year-old US children performed to an adapted and shortened (11 odors instead of 14) version of a European odor identification test-the Sniffin' Kids (Schriever VA, Mori E, Petters W, Boerner C, Smitka M, Hummel T. 2014. The "Sniffin'Kids" test: a 14-item odor identification test for children. Plos One. 9:e101086.). Results confirmed that cued odor identification performance increases with age and revealed little to no differences between girls and boys. Scores below 3 and below 6 may raise hyposmia concerns in US children aged 3-7 years and 8-10 years, respectively. Even though the completion rate of the task reached the 88%, suggesting that children below age 5 were able to finish the test, their performance was relatively poor. In comparing the overall identification performance of US children with that of German children, for whom the test was specifically developed, significant differences emerged, with higher scores obtained by the German sample. Analysis of errors indicated that a lack of semantic knowledge for the olfactory-presented objects may be at the root of poor identification skills in US children and therefore constitutes a problem in the development of an odor identification test for younger children valid across cultures. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
First tests of a multi-wavelength mini-DIAL system for the automatic detection of greenhouse gases
NASA Astrophysics Data System (ADS)
Parracino, S.; Gelfusa, M.; Lungaroni, M.; Murari, A.; Peluso, E.; Ciparisse, J. F.; Malizia, A.; Rossi, R.; Ventura, P.; Gaudio, P.
2017-10-01
Considering the increase of atmospheric pollution levels in our cities, due to emissions from vehicles and domestic heating, and the growing threat of terrorism, it is necessary to develop instrumentation and gather know-how for the automatic detection and measurement of dangerous substances as quickly and far away as possible. The Multi- Wavelength DIAL, an extension of the conventional DIAL technique, is one of the most powerful remote sensing methods for the identification of multiple substances and seems to be a promising solution compared to existing alternatives. In this paper, first in-field tests of a smart and fully automated Multi-Wavelength mini-DIAL will be presented and discussed in details. The recently developed system, based on a long-wavelength infrared (IR-C) CO2 laser source, has the potential of giving an early warning, whenever something strange is found in the atmosphere, followed by identification and simultaneous concentration measurements of many chemical species, ranging from the most important Greenhouse Gases (GHG) to other harmful Volatile Organic Compounds (VOCs). Preliminary studies, regarding the fingerprint of the investigated substances, have been carried out by cross-referencing database of infrared (IR) spectra, obtained using in-cell measurements, and typical Mixing Ratios in the examined region, extrapolated from the literature. First experiments in atmosphere have been performed into a suburban and moderately-busy area of Rome. Moreover, to optimize the automatic identification of the harmful species to be recognized on the basis of in cell measurements of the absorption coefficient spectra, an advanced multivariate statistical method for classification has been developed and tested.
For more than a decade, mutagenicity tests have had a clearly defined role in the identification of potential human mutagens and an ancillary role in the identification of potential human carcinogens. he efficiency of short-term tests in identifying germ cell mutagens has been ex...
Identification challenges for large space structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.
1990-01-01
The paper examines the on-orbit modal identification of large space structures, stressing the importance of planning and experience, in preparation for the Space Station Structural Characterization Experiment (SSSCE) for the Space Station Freedom. The necessary information to foresee and overcome practical difficulties is considered in connection with seven key factors, including test objectives, dynamic complexity of the structure, data quality, extent of exploratory studies, availability and understanding of software tools, experience with similar problems, and pretest analytical conditions. These factors affect identification success in ground tests. Comparisons with similar ground tests of assembled systems are discussed, showing that the constraints of space tests make these factors more significant. The absence of data and experiences relating to on-orbit modal identification testing is shown to make identification a uniquely mathematical problem, although all spacecraft are constructed and verified by proven engineering methods.
In Vitro Measures for Assessing Boar Semen Fertility.
Jung, M; Rüdiger, K; Schulze, M
2015-07-01
Optimization of artificial insemination (AI) for pig production and evaluation of the fertilizing capacity of boar semen are highly related. Field studies have demonstrated significant variation in semen quality and fertility. The semen quality of boars is primarily affected by breed and season. AI centres routinely examine boar semen to predict male fertility. Overall, the evaluation of classical parameters, such as sperm morphology, sperm motility, sperm concentration and ejaculate volume, allows the identification of ejaculates corresponding to poor fertility but not high-efficiency prediction of field fertility. The development of new sperm tests for measuring certain sperm functions has attempted to solve this problem. Fluorescence staining can categorize live and dead spermatozoa in the ejaculate and identify spermatozoa with active mitochondria. Computer-assisted semen analysis (CASA) provides an objective assessment of multiple kinetic sperm parameters. However, sperm tests usually assess only single factors involved in the fertilization process. Thus, basing prediction of fertilizing capacity on a selective collection of sperm tests leads to greater accuracy than using single tests. In the present brief review, recent diagnostic laboratory methods that directly relate to AI performance as well as the development of a new boar fertility in vitro index are discussed. © 2015 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Chen, Jianbo; Guo, Baolin; Yan, Rui; Sun, Suqin; Zhou, Qun
2017-07-01
With the utilization of the hand-held equipment, Fourier transform infrared (FT-IR) spectroscopy is a promising analytical technique to minimize the time cost for the chemical identification of herbal materials. This research examines the feasibility of the hand-held FT-IR spectrometer for the on-site testing of herbal materials, using Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) as examples. Correlation-based linear discriminant models for LJF and LF are established based on the benchtop and hand-held FT-IR instruments. The benchtop FT-IR models can exactly recognize all articles of LJF and LF. Although a few LF articles are misjudged at the sub-class level, the hand-held FT-IR models are able to exactly discriminate LJF and LF. As a direct and label-free analytical technique, FT-IR spectroscopy has great potential in the rapid and automatic chemical identification of herbal materials either in laboratories or in fields. This is helpful to prevent the spread and use of adulterated herbal materials in time.
Technologies for developing an advanced intelligent ATM with self-defence capabilities
NASA Astrophysics Data System (ADS)
Sako, Hiroshi
2010-01-01
We have developed several technologies for protecting automated teller machines. These technologies are based mainly on pattern recognition and are used to implement various self-defence functions. They include (i) banknote recognition and information retrieval for preventing machines from accepting counterfeit and damaged banknotes and for retrieving information about detected counterfeits from a relational database, (ii) form processing and character recognition for preventing machines from accepting remittance forms without due dates and/or insufficient payment, (iii) person identification to prevent machines from transacting with non-customers, and (iv) object recognition to guard machines against foreign objects such as spy cams that might be surreptitiously attached to them and to protect users against someone attempting to peek at their user information such as their personal identification number. The person identification technology has been implemented in most ATMs in Japan, and field tests have demonstrated that the banknote recognition technology can recognise more then 200 types of banknote from 30 different countries. We are developing an "advanced intelligent ATM" that incorporates all of these technologies.
Use of low-altitude aerial photography to identify submersed aquatic macrophytes
Schloesser, Donald W.; Manny, Bruce A.; Brown, Charles L.; Jaworski, Eugene
1987-01-01
The feasibility of using low-altitude aerial photography to identify beds of submersed macrophytes is demonstrated. True color aerial photos and collateral ground survey information for submersed aquatic macrophyte beds at 10 sites in the St.Clair-Detroit River system were obtained in September 1978. Using the photos and collateral ground survey information, a dichotomous key was developed for the identification of six classes - beds of five genera of macrophytes and one substrate type. A test was prepared to determine how accurately photo interpreters could identify the six classes. The test required an interpreter to examine an unlabeled, outlined area on photographs and identify it using the key. Six interpreters were tested. One pair of interpreters was trained in the interpretation of a variety of aerial photos, a second pair had field experience in the collection and identification of submersed macrophytes in the river system, and a third pair had neither training in the interpretation of aerial photos nor field experience. The criteria that we developed were applied equally well by the interpretors, regardless of their training or experience. Overall accuracy (i.e., omission errors) of all six classes combined was 68% correct, whereas, overall accuracy of individual classes ranged from 50 to 100% correct. Mapping accuracy (i.e. omission and commission errors) of individual classes ranged from 36 to 75%. Although the key developed for this study has only limited application outside the context of the data and sites examined in this study, it is concluded that low-altitude aerial photography, together with limited amounts of collateral ground survey information, can be used to economically identify beds of submersed macrophytes in the St. Clair-Detroit River system and other similar water bodies.
NASA Astrophysics Data System (ADS)
Crane, P.; Silliman, S. E.; Boukari, M.; Atoro, I.; Azonsi, F.
2005-12-01
Deteriorating groundwater quality, as represented by high nitrates, in the Colline province of Benin, West Africa was identified by the Benin national water agency, Direction Hydraulique. For unknown reasons the Colline province had consistently higher nitrate levels than any other region of the country. In an effort to address this water quality issue, a collaborative team was created that incorporated professionals from the Universite d'Abomey-Calavi (Benin), the University of Notre Dame (USA), Direction l'Hydraulique (a government water agency in Benin), Centre Afrika Obota (an educational NGO in Benin), and the local population of the village of Adourekoman. The goals of the project were to: (i) identify the source of nitrates, (ii) test field techniques for long term, local monitoring, and (iii) identify possible solutions to the high levels of groundwater nitrates. In order to accomplish these goals, the following methods were utilized: regional sampling of groundwater quality, field methods that allowed the local population to regularly monitor village groundwater quality, isotopic analysis, and sociological methods of surveys, focus groups, and observations. It is through the combination of these multi-disciplinary methods that all three goals were successfully addressed leading to preliminary identification of the sources of nitrates in the village of Adourekoman, confirmation of utility of field techniques, and initial assessment of possible solutions to the contamination problem.
Haag, Taiana; Santos, Anelisie S; De Angelo, Carlos; Srbek-Araujo, Ana Carolina; Sana, Dênis A; Morato, Ronaldo G; Salzano, Francisco M; Eizirik, Eduardo
2009-07-01
The elusive nature and endangered status of most carnivore species imply that efficient approaches for their non-invasive sampling are required to allow for genetic and ecological studies. Faecal samples are a major potential source of information, and reliable approaches are needed to foster their application in this field, particularly in areas where few studies have been conducted. A major obstacle to the reliable use of faecal samples is their uncertain species-level identification in the field, an issue that can be addressed with DNA-based assays. In this study we describe a sequence-based approach that efficiently distinguishes jaguar versus puma scats, and that presents several desirable properties: (1) considerably high amplification and sequencing rates; (2) multiple diagnostic sites reliably differentiating the two focal species; (3) high information content that allows for future application in other carnivores; (4) no evidence of amplification of prey DNA; and (5) no evidence of amplification of a nuclear mitochondrial DNA insertion known to occur in the jaguar. We demonstrate the reliability and usefulness of this approach by evaluating 55 field-collected samples from four locations in the highly fragmented Atlantic Forest biome of Brazil and Argentina, and document the presence of one or both of these endangered felids in each of these areas.
Moving forward: response to "Studying eyewitness investigations in the field".
Ross, Stephen J; Malpass, Roy S
2008-02-01
Field studies of eyewitness identification are richly confounded. Determining which confounds undermine interpretation is important. The blind administration confound in the Illinois study is said to undermine it's value for understanding the relative utility of simultaneous and sequential lineups. Most criticisms of the Illinois study focus on filler identifications, and related inferences about the importance of the blind confound. We find no convincing evidence supporting this line of attack and wonder at filler identifications as the major line of criticism. More debilitating problems impede using the Illinois study to address the simultaneous versus sequential lineup controversy: inability to estimate guilt independent of identification evidence, lack of protocol compliance monitoring, and assessment of lineups quality. Moving forward requires removing these limitations.
Superspace geometrical realization of the N-extended super Virasoro algebra and its dual
NASA Astrophysics Data System (ADS)
Curto, C.; Gates, S. J., Jr.; Rodgers, V. G. J.
2000-05-01
We derive properties of N-extended /GR super Virasoro algebras. These include adding central extensions, identification of all primary fields and the action of the adjoint representation on its dual. The final result suggest identification with the spectrum of fields in supergravity theories and superstring/M-theory constructed from NSR N-extended supersymmetric /GR Virasoro algebras.
NASA Technical Reports Server (NTRS)
1982-01-01
Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.
Fetal phonocardiography--past and future possibilities.
Kovács, Ferenc; Horváth, Csaba; Balogh, Adám T; Hosszú, Gábor
2011-10-01
The paper presents an overview of the 15 year long development of fetal phonocardiography including the works on the applied signal processing methods for identification of sound components. Based on the improvements achieved on this field, the paper shows that beyond the traditional CTG test the phonocardiography may be successfully applied for long-term fetal measurements and home monitoring. In addition, by indication of heart murmurs based on a comprehensive analysis of the recorded heart sound congenital heart defects can also be detected together with additional features in the third trimester. This makes an early widespread screening possible combined with the prescribed CTG test even at home using a telemedicine system. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav
2013-12-09
In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models.
[Study of cuttings identification using laser-induced breakdown spectroscopy].
Tian, Ye; Wang, Zhen-nan; Hou, Hua-ming; Zhai, Xiao-wei; Ci, Xing-hua; Zheng, Rong-er
2012-08-01
Cutting identification is one of the most important links in the course of cutting logging which is very significant in the process of oil drilling. In the present paper, LIBS was used for identification of four kinds of cutting samples coming from logging field, and then multivariate analysis was used in data processing. The whole spectra model and the feature model were built for cuttings identification using PLS-DA method. The accuracy of the whole spectra model was 88.3%, a little more than the feature model with an accuracy of 86.7%. While in the aspect of data size, the variables were decreased from 24,041 to 27 by feature extraction, which increased the efficiency of data processing observably. The obtained results demonstrate that LIBS combined with chemometrics method could be developed as a rapid and valid approach to cutting identification and has great potential to be used in logging field.
In-flight wind identification and soft landing control for autonomous unmanned powered parafoils
NASA Astrophysics Data System (ADS)
Luo, Shuzhen; Tan, Panlong; Sun, Qinglin; Wu, Wannan; Luo, Haowen; Chen, Zengqiang
2018-04-01
For autonomous unmanned powered parafoil, the ability to perform a final flare manoeuvre against the wind direction can allow a considerable reduction of horizontal and vertical velocities at impact, enabling a soft landing for a safe delivery of sensible loads; the lack of knowledge about the surface-layer winds will result in messing up terminal flare manoeuvre. Moreover, unknown or erroneous winds can also prevent the parafoil system from reaching the target area. To realize accurate trajectory tracking and terminal soft landing in the unknown wind environment, an efficient in-flight wind identification method merely using Global Positioning System (GPS) data and recursive least square method is proposed to online identify the variable wind information. Furthermore, a novel linear extended state observation filter is proposed to filter the groundspeed of the powered parafoil system calculated by the GPS information to provide a best estimation of the present wind during flight. Simulation experiments and real airdrop tests demonstrate the great ability of this method to in-flight identify the variable wind field, and it can benefit the powered parafoil system to fulfil accurate tracking control and a soft landing in the unknown wind field with high landing accuracy and strong wind-resistance ability.
Land use classification using texture information in ERTS-A MSS imagery
NASA Technical Reports Server (NTRS)
Haralick, R. M. (Principal Investigator); Shanmugam, K. S.; Bosley, R.
1973-01-01
The author has identified the following significant results. Preliminary digital analysis of ERTS-1 MSS imagery reveals that the textural features of the imagery are very useful for land use classification. A procedure for extracting the textural features of ERTS-1 imagery is presented and the results of a land use classification scheme based on the textural features are also presented. The land use classification algorithm using textural features was tested on a 5100 square mile area covered by part of an ERTS-1 MSS band 5 image over the California coastline. The image covering this area was blocked into 648 subimages of size 8.9 square miles each. Based on a color composite of the image set, a total of 7 land use categories were identified. These land use categories are: coastal forest, woodlands, annual grasslands, urban areas, large irrigated fields, small irrigated fields, and water. The automatic classifier was trained to identify the land use categories using only the textural characteristics of the subimages; 75 percent of the subimages were assigned correct identifications. Since texture and spectral features provide completely different kinds of information, a significant increase in identification accuracy will take place when both features are used together.
Qi, Beier; Liu, Bo; Liu, Sha; Liu, Haihong; Dong, Ruijuan; Zhang, Ning; Gong, Shusheng
2011-05-01
To study the effect of cochlear electrode coverage and different insertion region on speech recognition, especially tone perception of cochlear implant users whose native language is Mandarin Chinese. Setting seven test conditions by fitting software. All conditions were created by switching on/off respective channels in order to simulate different insertion position. Then Mandarin CI users received 4 Speech tests, including Vowel Identification test, Consonant Identification test, Tone Identification test-male speaker, Mandarin HINT test (SRS) in quiet and noise. To all test conditions: the average score of vowel identification was significantly different, from 56% to 91% (Rank sum test, P < 0.05). The average score of consonant identification was significantly different, from 72% to 85% (ANOVNA, P < 0.05). The average score of Tone identification was not significantly different (ANOVNA, P > 0.05). However the more channels activated, the higher scores obtained, from 68% to 81%. This study shows that there is a correlation between insertion depth and speech recognition. Because all parts of the basement membrane can help CI users to improve their speech recognition ability, it is very important to enhance verbal communication ability and social interaction ability of CI users by increasing insertion depth and actively stimulating the top region of cochlear.
Books and Balls: Antecedents and Outcomes of College Identification
ERIC Educational Resources Information Center
Porter, Thomas; Hartman, Katherine; Johnson, John Seth
2011-01-01
Identification plays a central role in models of giving to an organization. This study presents and tests a general model of giving that highlights status based and affect based drivers of identification. The model was tested using a sample of 114 alumni from 74 different colleges participated in an online survey. Identification was found to…
[Isolation and identification methods of enterobacteria group and its technological advancement].
Furuta, Itaru
2007-08-01
In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.
Machen, Alexandra; Drake, Tim; Wang, Yun F. (Wayne)
2014-01-01
Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship. PMID:24551067
Machen, Alexandra; Drake, Tim; Wang, Yun F Wayne
2014-01-01
Rapid identification and antimicrobial susceptibility testing of microorganisms causing bloodstream infections or sepsis have the potential to improve patient care. This proof-of-principle study evaluates the Lysis-Filtration Method for identification as well as antimicrobial susceptibility testing of bacteria directly from positive blood culture bottles in a clinical setting. A total of 100 non-duplicated positive blood cultures were tested and 1012 microorganism-antimicrobial combinations were assessed. An aliquot of non-charcoal blood culture broth was incubated with lysis buffer briefly before being filtered and washed. Microorganisms recovered from the filter membrane were first identified by using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight VITEK® Mass Spectrometry (VITEK MS). After quick identification from VITEK MS, filtered microorganisms were inoculated to VITEK®2 system for full panel antimicrobial susceptibility testing analysis. Of 100 bottles tested, the VITEK MS resulted in 94.0% correct organism identification to the species level. Compared to the conventional antimicrobial susceptibility testing methods, direct antimicrobial susceptibility testing from VITEK®2 resulted in 93.5% (946/1012) category agreement of antimicrobials tested, with 3.6% (36/1012) minor error, 1.7% (7/1012) major error, and 1.3% (13/1012) very major error of antimicrobials. The average time to identification and antimicrobial susceptibility testing was 11.4 hours by using the Lysis-Filtration method for both VITEK MS and VITEK®2 compared to 56.3 hours by using conventional methods (p<0.00001). Thus, the same-day results of microorganism identification and antimicrobial susceptibility testing directly from positive blood culture can be achieved and can be used for appropriate antibiotic therapy and antibiotic stewardship.
Field theory of pattern identification
NASA Astrophysics Data System (ADS)
Agu, Masahiro
1988-06-01
Based on the psychological experimental fact that images in mental space are transformed into other images for pattern identification, a field theory of pattern identification of geometrical patterns is developed with the use of gauge field theory in Euclidean space. Here, the ``image'' or state function ψ[χ] of the brain reacting to a geometrical pattern χ is made to correspond to the electron's wave function in Minkowski space. The pattern identification of the pattern χ with the modified pattern χ+Δχ is assumed to be such that their images ψ[χ] and ψ[χ+Δχ] in the brain are transformable with each other through suitable transformation groups such as parallel transformation, dilatation, or rotation. The transformation group is called the ``image potential'' which corresponds to the vector potential of the gauge field. An ``image field'' derived from the image potential is found to be induced in the brain when the two images ψ[χ] and ψ[χ+Δχ] are not transformable through suitable transformation groups or gauge transformations. It is also shown that, when the image field exists, the final state of the image ψ[χ] is expected to be different, depending on the paths of modifications of the pattern χ leading to a final pattern. The above fact is interpreted as a version of the Aharonov and Bohm effect of the electron's wave function [A. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)]. An excitation equation of the image field is also derived by postulating that patterns are identified maximally for the purpose of minimizing the number of memorized standard patterns.
41 CFR 109-38.5203 - Watercraft identification and numbers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... identification and numbers. 109-38.5203 Section 109-38.5203 Public Contracts and Property Management Federal... Watercraft identification and numbers. Watercraft in the custody of DOE or designated contractors shall display identifying numbers, whether issued by the U.S. Coast Guard, State, or local field organization...
Kostamo, K.; Toljamo, A.; Antonius, K.; Kokko, H.; Kärenlampi, S. O.
2013-01-01
Background and Aims Preservation of cultivar purity creates a particular challenge for plants that are self-incompatible, require insects for cross-pollination, and have easily germinating seeds and vigorously spreading rhizomes. As the fields must be planted with mixed populations, and a balance must be maintained between the cultivars to achieve effective pollination, methods for field monitoring of the relative density of different cultivars must be practical. Furthermore, a DNA-based method is needed for cultivar verification in the collections and outside of the growing season. The aim of this study was to develop both types of methods for Rubus arcticus (arctic bramble). Methods Morphological parameters were measured from six cultivars grown on three farms. Observations from the flowers and fruits included: petal and sepal number, flower diameter, arrangement of petals, size of calyx in relation to corolla, fruit weight, yield and soluble sugars. Observations from the leaves included: width and height of middle leaflet, shape of the base of terminal leaflet, shape of terminal leaflet, leaf margin serration and fingertip touch. The applicability of simple sequence repeat (SSR) or microsatellite DNA markers developed for red raspberry was tested on eight arctic bramble cultivars. Key Results and Conclusions Morphological and molecular identification methods were developed for R. arcticus. The best morphological characteristics were the length-to-width ratio of the middle leaflet and leaf margin serration. A particular characteristic, fingertip touch, was shown by electron microscopy to be related to the density and quality of the leaf hairs. Red raspberry SSR marker no. 126 proved to be applicable for differentiation of the eight arctic bramble cultivars tested. These identification methods are critical to secure the maintenance and management of R. arcticus. However, the challenges faced and approaches taken are equally applicable to other species with similar biology. PMID:23456688
Zhu, Yefei; Wang, Chunlei; Chen, Xiaowu; Guan, Guijun
2016-07-01
We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.
In-duct identification of fluid-borne source with high spatial resolution
NASA Astrophysics Data System (ADS)
Heo, Yong-Ho; Ih, Jeong-Guon; Bodén, Hans
2014-11-01
Source identification of acoustic characteristics of in-duct fluid machinery is required for coping with the fluid-borne noise. By knowing the acoustic pressure and particle velocity field at the source plane in detail, the sound generation mechanism of a fluid machine can be understood. The identified spatial distribution of the strength of major radiators would be useful for the low noise design. Conventional methods for measuring the source in a wide duct have not been very helpful in investigating the source properties in detail because their spatial resolution is improper for the design purpose. In this work, an inverse method to estimate the source parameters with a high spatial resolution is studied. The theoretical formulation including the evanescent modes and near-field measurement data is given for a wide duct. After validating the proposed method to a duct excited by an acoustic driver, an experiment on a duct system driven by an air blower is conducted in the presence of flow. A convergence test for the evanescent modes is performed to find the necessary number of modes to regenerate the measured pressure field precisely. By using the converged modal amplitudes, very-close near-field pressure to the source is regenerated and compared with the measured pressure, and the maximum error was -16.3 dB. The source parameters are restored from the converged modal amplitudes. Then, the distribution of source parameters on the driver and the blower is clearly revealed with a high spatial resolution for kR<1.84 in which range only plane waves can propagate to far field in a duct. Measurement using a flush mounted sensor array is discussed, and the removal of pure radial modes in the modeling is suggested.
Identification and assessment of hazardous compounds in drinking water.
Fawell, J K; Fielding, M
1985-12-01
The identification of organic chemicals in drinking water and their assessment in terms of potential hazardous effects are two very different but closely associated tasks. In relation to both continuous low-level background contamination and specific, often high-level, contamination due to pollution incidents, the identification of contaminants is a pre-requisite to evaluation of significant hazards. Even in the case of the rapidly developing short-term bio-assays which are applied to water to indicate a potential genotoxic hazard (for example Ames tests), identification of the active chemicals is becoming a major factor in the further assessment of the response. Techniques for the identification of low concentrations of organic chemicals in drinking water have developed remarkably since the early 1970s and methods based upon gas chromatography-mass spectrometry (GC-MS) have revolutionised qualitative analysis of water. Such techniques are limited to "volatile" chemicals and these usually constitute a small fraction of the total organic material in water. However, in recent years there have been promising developments in techniques for "non-volatile" chemicals in water. Such techniques include combined high-performance liquid chromatography-mass spectrometry (HPLC-MS) and a variety of MS methods, involving, for example, field desorption, fast atom bombardment and thermospray ionisation techniques. In the paper identification techniques in general are reviewed and likely future developments outlined. The assessment of hazards associated with chemicals identified in drinking and related waters usually centres upon toxicology - an applied science which involves numerous disciplines. The paper examines the toxicological information needed, the quality and deployment of such information and discusses future research needs. Application of short-term bio-assays to drinking water is a developing area and one which is closely involved with, and to some extent dependent on, powerful methods of identification. Recent developments are discussed.
Jain, Jaspreet; Kushwah, Raja Babu S; Singh, Shashi S; Sharma, Anil; Adak, Tridibes; Singh, Om P; Bhatnagar, Raj Kamal; Subbarao, Sarala K; Sunil, Sujatha
2016-10-01
Aedes aegypti and Aedes albopictus are principal vectors for the transmission of chikungunya virus (CHIKV). India is a hub for both dengue and chikungunya infections and there are several reports of co-infection of dengue and chikungunya virus in the clinical scenario. The present pilot entomological survey was conducted to evaluate vertical transmission of CHIKV in Aedes field populations. Aedes immature (larvae and pupae) collection was done in 2012, over a period of six months from selected sites in Delhi and Haryana, India. The immatures collected were reared for adult emergence and species identification was done. A. aegypti male and female mosquitoes were separated and pooled collection spot-wise, RNA extracted and RT PCR performed to test for the presence of CHIKV in the pools. Container index (CI) and minimum infection rate (MIR) were estimated. From study areas that tested positive for CHIKV, adult collections were made and females upon feeding on uninfected blood in laboratory were allowed to lay eggs. The progeny that emerged from these field-collected mothers were tested for CHIKV presence. Our pilot survey showed the existence of A. aegypti population even during peak summer season in a few foci which eventually helped the mosquitoes to tide over adverse environmental conditions and with the start of rainfall, the population exploded within a short period of time. Immatures collected from field and progeny of adults collected from the field were CHIKV positive demonstrating the presence of vertical transmission of chikungunya virus in field population of A. aegypti. The present study further demonstrates the importance of identifying permanent breeding sites for proper Aedes species control. Copyright © 2016 Elsevier B.V. All rights reserved.
Ranjbar, Parivash; Stenström, Ingeborg
2013-01-01
Monitor is a portable vibrotactile aid to improve the ability of people with severe hearing impairment or deafblindness to detect, identify, and recognize the direction of sound-producing events. It transforms and adapts sounds to the frequency sensitivity range of the skin. The aid was evaluated in the field. Four females (44-54 years) with Usher Syndrome I (three with tunnel vision and one with only light perception) tested the aid at home and in traffic in three different field studies: without Monitor, with Monitor with an omnidirectional microphone, and with Monitor with a directional microphone. The tests were video-documented, and the two field studies with Monitor were initiated after five weeks of training. The detection scores with omnidirectional and directional microphones were 100% for three participants and above 57% for one, both in their home and traffic environments. In the home environment the identification scores with the omnidirectional microphone were 70%-97% and 58%-95% with the directional microphone. The corresponding values in traffic were 29%-100% and 65%-100%, respectively. Their direction perception was improved to some extent by both microphones. Monitor improved the ability of people with deafblindness to detect, identify, and recognize the direction of events producing sounds.
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Chan, Heang-Ping; Sahiner, Berkman; Hadjiiski, Lubomir M.; Paramagul, Chintana
2004-05-01
Automated registration of multiple mammograms for CAD depends on accurate nipple identification. We developed two new image analysis techniques based on geometric and texture convergence analyses to improve the performance of our previously developed nipple identification method. A gradient-based algorithm is used to automatically track the breast boundary. The nipple search region along the boundary is then defined by geometric convergence analysis of the breast shape. Three nipple candidates are identified by detecting the changes along the gray level profiles inside and outside the boundary and the changes in the boundary direction. A texture orientation-field analysis method is developed to estimate the fourth nipple candidate based on the convergence of the tissue texture pattern towards the nipple. The final nipple location is determined from the four nipple candidates by a confidence analysis. Our training and test data sets consisted of 419 and 368 randomly selected mammograms, respectively. The nipple location identified on each image by an experienced radiologist was used as the ground truth. For 118 of the training and 70 of the test images, the radiologist could not positively identify the nipple, but provided an estimate of its location. These were referred to as invisible nipple images. In the training data set, 89.37% (269/301) of the visible nipples and 81.36% (96/118) of the invisible nipples could be detected within 1 cm of the truth. In the test data set, 92.28% (275/298) of the visible nipples and 67.14% (47/70) of the invisible nipples were identified within 1 cm of the truth. In comparison, our previous nipple identification method without using the two convergence analysis techniques detected 82.39% (248/301), 77.12% (91/118), 89.93% (268/298) and 54.29% (38/70) of the nipples within 1 cm of the truth for the visible and invisible nipples in the training and test sets, respectively. The results indicate that the nipple on mammograms can be detected accurately. This will be an important step towards automatic multiple image analysis for CAD techniques.
Organizational Identification and Social Motivation: A Field Descriptive Study in Two Organizations.
ERIC Educational Resources Information Center
Barge, J. Kevin
A study examined the relationships between leadership conversation and its impact upon organizational members' levels of organizational identification and behavior. It was hypothesized (1) that effective leader conversation would be associated with higher levels of role, means, goal and overall organizational identification, and (2) that…
PSK Shift Timing Information Detection Using Image Processing and a Matched Filter
2009-09-01
phase shifts are enhanced. Develop, design, and test the resulting phase shift identification scheme. xx Develop, design, and test an optional...and the resulting phase shift identification algorithm is investigated for SNR levels in the range -2dB to 12 dB. Detection performances are derived...test the resulting phase shift identification scheme. Develop, design, and test an optional analysis window overlapping technique to improve phase
The future of forensic DNA analysis.
Butler, John M
2015-08-05
The author's thoughts and opinions on where the field of forensic DNA testing is headed for the next decade are provided in the context of where the field has come over the past 30 years. Similar to the Olympic motto of 'faster, higher, stronger', forensic DNA protocols can be expected to become more rapid and sensitive and provide stronger investigative potential. New short tandem repeat (STR) loci have expanded the core set of genetic markers used for human identification in Europe and the USA. Rapid DNA testing is on the verge of enabling new applications. Next-generation sequencing has the potential to provide greater depth of coverage for information on STR alleles. Familial DNA searching has expanded capabilities of DNA databases in parts of the world where it is allowed. Challenges and opportunities that will impact the future of forensic DNA are explored including the need for education and training to improve interpretation of complex DNA profiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Development and Validation of a Food-Associated Olfactory Test (FAOT).
Denzer-Lippmann, Melanie Yvonne; Beauchamp, Jonathan; Freiherr, Jessica; Thuerauf, Norbert; Kornhuber, Johannes; Buettner, Andrea
2017-01-01
Olfactory tests are an important tool in human nutritional research for studying food preferences, yet comprehensive tests dedicated solely to food odors are currently lacking. Therefore, within this study, an innovative food-associated olfactory test (FAOT) system was developed. The FAOT comprises 16 odorant pens that contain representative food odors relating to different macronutrient classes. The test underwent a sensory validation based on identification rate, intensity, hedonic value, and food association scores. The accuracy of the test was further compared to the accuracy of the established Sniffin' Sticks identification test. The identification rates and intensities of this new FAOT were found to be comparable to the Sniffin' Sticks olfactory identification test. The odorant pens were also assessed chemo-analytically and were found to be chemically stable for at least 24 weeks. Overall, this new identification test for use in assessing olfaction in a food-associated context is valid both in terms of its use in sensory perception studies and its chemical stability. The FOAT is particularly suited to examinations of the sense of smell regarding food odors. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Benito, Adolfo; Lahera, Guillermo; Herrera, Sara; Muncharaz, Ramón; Benito, Guillermo; Fernández-Liria, Alberto; Montes, José Manuel
2013-01-01
To analyze the recognition, identification, and discrimination of facial emotions in a sample of outpatients with bipolar disorder (BD). Forty-four outpatients with diagnosis of BD and 48 matched control subjects were selected. Both groups were assessed with tests for recognition (Emotion Recognition-40 - ER40), identification (Facial Emotion Identification Test - FEIT), and discrimination (Facial Emotion Discrimination Test - FEDT) of facial emotions, as well as a theory of mind (ToM) verbal test (Hinting Task). Differences between groups were analyzed, controlling the influence of mild depressive and manic symptoms. Patients with BD scored significantly lower than controls on recognition (ER40), identification (FEIT), and discrimination (FEDT) of emotions. Regarding the verbal measure of ToM, a lower score was also observed in patients compared to controls. Patients with mild syndromal depressive symptoms obtained outcomes similar to patients in euthymia. A significant correlation between FEDT scores and global functioning (measured by the Functioning Assessment Short Test, FAST) was found. These results suggest that, even in euthymia, patients with BD experience deficits in recognition, identification, and discrimination of facial emotions, with potential functional implications.
Hemispheric specialization in quantification processes.
Pasini, M; Tessari, A
2001-01-01
Three experiments were carried out to study hemispheric specialization for subitizing (the rapid enumeration of small patterns) and counting (the serial quantification process based on some formal principles). The experiments consist of numerosity identification of dot patterns presented in one visual field, with a tachistoscopic technique, or eye movements monitored through glasses, and comparison between centrally presented dot patterns and lateralized tachistoscopically presented digits. Our experiments show left visual field advantage in the identification and comparison tasks in the subitizing range, whereas right visual field advantage has been found in the comparison task for the counting range.
Enzyme Mini-Test for Field Identification of Leishmania isolates from U.S. Military Personnel.
1984-08-15
was noted that L. m. peruviana has an extensive distribution which includes Venezuela, Dominican Republic, Peru , Panama, Belize and possibly 10 Costa...isolates from human hosts (6 from Dominican Republic, 5 from Venezuela, 3 from Belize, 1 each from Peru , 14 Panama, Costa Rica and Mexico). These isolates...L147, LV24 547 OWC LMJ Man R. Beach Kenya LRC-L137 551 OWC LMJ Rodent R. Beach Kenya NLB095 552 OWC LMJ Sandfly R. Beach Kenya NLB144 558 OWC LMJ Man
Large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P. (Principal Investigator); Huang, Jen-Kuang (Principal Investigator)
1996-01-01
Good progress is being made in several major areas. These include eddy current modelling and analysis, design optimization methods, wind tunnel Magnetic Suspension and Balance Systems (MSBS), payload pointing and vibration isolation systems, and system identification. In addition, another successful International Symposium has been completed, with the Proceedings being printed at the time of writing. These activities continue current work under this Grant and extend previous work on magnetic suspension systems and devices in the Guidance and Control Branch and will permit the demonstration of several new developments in the field of magnetic suspension technology.
Helmer, R; Koschorek, F; Terwey, B; Frauen, T
1986-01-01
Nuclear spin tomography since its beginnings in the seventies has steadily gained in importance as a method of examination in medical diagnostics as it produces a picture. In the field of forensic medicine the NMR technique as used for anatomic-anthropologic issues attempting to identify skulls this is a valuable supplement to an extension of the existing methods of investigation. The results of a measurement of the thickness of soft facial tissue in a live test person is shown as compared to measures obtained by sonography.
NASA Astrophysics Data System (ADS)
Ni, Yan-Chun; Zhang, Feng-Liang
2018-05-01
Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.
Jaffe, R I; Lane, J D; Albury, S V; Niemeyer, D M
2000-09-01
Methicillin-resistant staphylococci (MRS) are one of the most common causes of nosocomial infections and bacteremia. Standard bacterial identification and susceptibility testing frequently require as long as 72 h to report results, and there may be difficulty in rapidly and accurately identifying methicillin resistance. The use of the PCR is a rapid and simple process for the amplification of target DNA sequences, which can be used to identify and test bacteria for antimicrobial resistance. However, many sample preparation methods are unsuitable for PCR utilization in the clinical laboratory because they either are not cost-effective, take too long to perform, or do not provide a satisfactory DNA template for PCR. Our goal was to provide same-day results to facilitate rapid diagnosis and therapy. In this report, we describe a rapid method for extraction of bacterial DNA directly from blood culture bottles that gave quality DNA for PCR in as little as 20 min. We compared this extraction method to the standard QIAGEN method for turnaround time (TAT), cost, purity, and use of template in PCR. Specific identification of MRS was determined using intragenic primer sets for bacterial and Staphylococcus 16S rRNA and mecA gene sequences. The PCR primer sets were validated with 416 isolates of staphylococci, including methicillin-resistant Staphylococcus aureus (n = 106), methicillin-sensitive S. aureus (n = 134), and coagulase-negative Staphylococcus (n = 176). The total supply cost of our extraction method and PCR was $2.15 per sample with a result TAT of less than 4 h. The methods described herein represent a rapid and accurate DNA extraction and PCR-based identification system, which makes the system an ideal candidate for use under austere field conditions and one that may have utility in the clinical laboratory.
Stimulus Picture Identification in Articulation Testing
ERIC Educational Resources Information Center
Mullen, Patricia A.; Whitehead, Robert L.
1977-01-01
Compared with 20 normal speaking and 20 articulation defective Ss (7 and 8 years old) was the percent of correct initial identification of stimulus pictures on the Goldman-Fristoe Test of Articulation with the percent correct identification on the Arizona Articulation Proficiency Scale. (Author/IM)
NASA Astrophysics Data System (ADS)
Liu, Pudong; Zhou, Jiayuan; Shi, Runhe; Zhang, Chao; Liu, Chaoshun; Sun, Zhibin; Gao, Wei
2016-09-01
The aim of this work was to identify the coastal wetland plants between Bayes and BP neural network using hyperspectral data in order to optimize the classification method. For this purpose, we chose two dominant plants (invasive S. alterniflora and native P. australis) in the Yangtze Estuary, the leaf spectral reflectance of P. australis and S. alterniflora were measured by ASD field spectral machine. We tested the Bayes method and BP neural network for the identification of these two species. Results showed that three different bands (i.e., 555 nm 711 nm and 920 nm) could be identified as the sensitive bands for the input parameters for the two methods. Bayes method and BP neural network prediction model both performed well (Bayes prediction for 88.57% accuracy, BP neural network model prediction for about 80% accuracy), but Bayes theorem method could give higher accuracy and stability.
Standoff laser-based spectroscopy for explosives detection
NASA Astrophysics Data System (ADS)
Gaft, M.; Nagli, L.
2007-10-01
Real time detection and identification of explosives at a standoff distance is a major issue in efforts to develop defense against so-called Improvised Explosive Devices (IED). It is recognized that the only technique, which is potentially capable to standoff detection of minimal amounts of explosives is laser-based spectroscopy. LDS activity is based on a combination of laser-based spectroscopic methods with orthogonal capabilities. Our technique belongs to trace detection, namely to its micro-particles variety. It is based on commonly held belief that surface contamination was very difficult to avoid and could be exploited for standoff detection. We has applied optical techniques including gated Raman and time-resolved luminescence spectroscopy for detection of main explosive materials, both factory and homemade. We developed and tested a Raman system for the field remote detection and identification of minimal amounts of explosives on relevant surfaces at a distance of up to 30 meters.
Serodiagnosis of parasitic diseases.
Maddison, S E
1991-01-01
In this review on serodiagnosis of parasitic diseases, antibody detection, antigen detection, use of monoclonal antibodies in parasitic serodiagnosis, molecular biological technology, and skin tests are discussed. The focus at the Centers for Disease Control on developing improved antigens, a truly quantitative FAST-enzyme-linked immunosorbent assay, and the very specific immunoblot assays for antibody detection is highlighted. The last two assays are suitable for field studies. Identification of patient response in terms of immunoglobulin class or immunoglobulin G subclass isotypes or both is discussed. Immunoglobulin isotypes may asist in defining the stage of some diseases. In other instances, use of a particular anti-isotype conjugate may increase the specificity of the assay. Monoclonal antibodies have played important roles in antigen purification and identification, in competitive antibody assays with increased sensitivity and specificity, and in assays for antigen detection in serum, body fluids, or excreta. Molecular biological technology has allowed significant advances in the production of defined parasitic serodiagnostic antigens. PMID:1747862
NASA Astrophysics Data System (ADS)
Mahata, K.; Shrivastava, A.; Gore, J. A.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Kumar, A.; Gupta, S.; Patale, P.
2018-06-01
In beam test experiments have been carried out for particle identification using digital pulse shape analysis in a 500 μm thick Neutron Transmutation Doped (nTD) silicon detector with an indigenously developed FPGA based 12 bit resolution, 1 GHz sampling digitizer. The nTD Si detector was used in a low-field injection setup to detect light heavy-ions produced in reactions of ∼ 5 MeV/A 7Li and 12C beams on different targets. Pulse height, rise time and current maximum have been obtained from the digitized charge output of a high bandwidth charge and current sensitive pre-amplifier. Good isotopic separation have been achieved using only the digitized charge output in case of light heavy-ions. The setup can be used for charged particle spectroscopy in nuclear reactions involving light heavy-ions around the Coulomb barrier energies.
Photonics: From target recognition to lesion detection
NASA Technical Reports Server (NTRS)
Henry, E. Michael
1994-01-01
Since 1989, Martin Marietta has invested in the development of an innovative concept for robust real-time pattern recognition for any two-dimensioanal sensor. This concept has been tested in simulation, and in laboratory and field hardware, for a number of DOD and commercial uses from automatic target recognition to manufacturing inspection. We have now joined Rose Health Care Systems in developing its use for medical diagnostics. The concept is based on determining regions of interest by using optical Fourier bandpassing as a scene segmentation technique, enhancing those regions using wavelet filters, passing the enhanced regions to a neural network for analysis and initial pattern identification, and following this initial identification with confirmation by optical correlation. The optical scene segmentation and pattern confirmation are performed by the same optical module. The neural network is a recursive error minimization network with a small number of connections and nodes that rapidly converges to a global minimum.
Identification and modification of dominant noise sources in diesel engines
NASA Astrophysics Data System (ADS)
Hayward, Michael D.
Determination of dominant noise sources in diesel engines is an integral step in the creation of quiet engines, but is a process which can involve an extensive series of expensive, time-consuming fired and motored tests. The goal of this research is to determine dominant noise source characteristics of a diesel engine in the near and far-fields with data from fewer tests than is currently required. Pre-conditioning and use of numerically robust methods to solve a set of cross-spectral density equations results in accurate calculation of the transfer paths between the near- and far-field measurement points. Application of singular value decomposition to an input cross-spectral matrix determines the spectral characteristics of a set of independent virtual sources, that, when scaled and added, result in the input cross spectral matrix. Each virtual source power spectral density is a singular value resulting from the decomposition performed over a range of frequencies. The complex relationship between virtual and physical sources is estimated through determination of virtual source contributions to each input measurement power spectral density. The method is made more user-friendly through use of a percentage contribution color plotting technique, where different normalizations can be used to help determine the presence of sources and the strengths of their contributions. Convolution of input measurements with the estimated path impulse responses results in a set of far-field components, to which the same singular value contribution plotting technique can be applied, thus allowing dominant noise source characteristics in the far-field to also be examined. Application of the methods presented results in determination of the spectral characteristics of dominant noise sources both in the near- and far-fields from one fired test, which significantly reduces the need for extensive fired and motored testing. Finally, it is shown that the far-field noise time history of a physically altered engine can be simulated through modification of singular values and recalculation of transfer paths between input and output measurements of previously recorded data.
MMS Observatory Thermal Vacuum Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos
2014-01-01
The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.
Deployment of spatial attention to words in central and peripheral vision.
Ducrot, Stéphanie; Grainger, Jonathan
2007-05-01
Four perceptual identification experiments examined the influence of spatial cues on the recognition of words presented in central vision (with fixation on either the first or last letter of the target word) and in peripheral vision (displaced left or right of a central fixation point). Stimulus location had a strong effect on word identification accuracy in both central and peripheral vision, showing a strong right visual field superiority that did not depend on eccentricity. Valid spatial cues improved word identification for peripherally presented targets but were largely ineffective for centrally presented targets. Effects of spatial cuing interacted with visual field effects in Experiment 1, with valid cues reducing the right visual field superiority for peripherally located targets, but this interaction was shown to depend on the type of neutral cue. These results provide further support for the role of attentional factors in visual field asymmetries obtained with targets in peripheral vision but not with centrally presented targets.
Evaluation of remote sensing in control of pink bollworm in cotton. [Southern California deserts
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.
1973-01-01
The author has identified the following significant results. The main objective is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (i.e., crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to data has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.
Pfefferbaum, Rose L; Neas, Barbara R; Pfefferbaum, Betty; Norris, Fran H; Van Horn, Richard L
2013-01-01
While building community resilience to disasters is becoming an important strategy in emergency management, this is a new field of research with few available instruments for assessing community resilience. This article describes the development of the Communities Advancing Resilience Toolkit (CART) survey instrument. CART is a community intervention designed to enhance community resilience to disasters, in part, by engaging communities in measuring it. The survey instrument, originally based on community capacity and related literature and on key informant input, was refined through a series of four field tests. Community organizations worked with researchers in a participatory action process that provided access to samples and helped to guide the research. Exploratory factor analysis performed after each field test led to the identification of four interrelated constructs (also called domains) which represent the foundation for CART Connection and Caring, Resources, Transformative Potential, and Disaster Management. This model was confirmed using confirmatory factor analysis on two community samples. The CART survey can provide data for organizations and communities interested in assessing a community's resilience to disasters. Baseline data, preferably collected pre disaster can be compared to data collected post disaster and/or post intervention.
NASA Astrophysics Data System (ADS)
Facsko, Gabor; Sibeck, David; Balogh, Tamas; Kis, Arpad; Wesztergom, Viktor
2017-04-01
The bow shock and the outer rim of the outer radiation belt are detected automatically by our algorithm developed as a part of the Boundary Layer Identification Code Cluster Active Archive project. The radiation belt positions are determined from energized electron measurements working properly onboard all Cluster spacecraft. For bow shock identification we use magnetometer data and, when available, ion plasma instrument data. In addition, electrostatic wave instrument electron density, spacecraft potential measurements and wake indicator auxiliary data are also used so the events can be identified by all Cluster probes in highly redundant way, as the magnetometer and these instruments are still operational in all spacecraft. The capability and performance of the bow shock identification algorithm were tested using known bow shock crossing determined manually from January 29, 2002 to February 3,. The verification enabled 70% of the bow shock crossings to be identified automatically. The method shows high flexibility and it can be applied to observations from various spacecraft. Now these tools have been applied to Time History of Events and Macroscale Interactions during Substorms (THEMIS)/Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) magnetic field, plasma and spacecraft potential observations to identify bow shock crossings; and to Van Allen Probes supra-thermal electron observations to identify the edges of the radiation belt. The outcomes of the algorithms are checked manually and the parameters used to search for bow shock identification are refined.
MILITARY RATIONS, *MICROORGANISMS), (*FOOD, *BIOLOGICAL CONTAMINATION), DETECTION, IDENTIFICATION, STORAGE, PROCESSING, FREEZE DRYING, MICROCOCCUS , STREPTOCOCCUS, YEASTS, MOLDS(ORGANISMS), TEMPERATURE, HIGH ALTITUDE
Fast and Confident: Postdicting Eyewitness Identification Accuracy in a Field Study
ERIC Educational Resources Information Center
Sauerland, Melanie; Sporer, Siegfried L.
2009-01-01
The combined postdictive value of postdecision confidence, decision time, and Remember-Know-Familiar (RKF) judgments as markers of identification accuracy was evaluated with 10 targets and 720 participants. In a pedestrian area, passers-by were asked for directions. Identifications were made from target-absent or target-present lineups. Fast…
Testing memory for unseen visual stimuli in patients with extinction and spatial neglect.
Vuilleumier, Patrik; Schwartz, Sophie; Clarke, Karen; Husain, Masud; Driver, Jon
2002-08-15
Visual extinction after right parietal damage involves a loss of awareness for stimuli in the contralesional field when presented concurrently with ipsilesional stimuli, although contralesional stimuli are still perceived if presented alone. However, extinguished stimuli can still receive some residual on-line processing, without awareness. Here we examined whether such residual processing of extinguished stimuli can produce implicit and/or explicit memory traces lasting many minutes. We tested four patients with right parietal damage and left extinction on two sessions, each including distinct study and subsequent test phases. At study, pictures of objects were shown briefly in the right, left, or both fields. Patients were asked to name them without memory instructions (Session 1) or to make an indoor/outdoor categorization and memorize them (Session 2). They extinguished most left stimuli on bilateral presentation. During the test (up to 48 min later), fragmented pictures of the previously exposed objects (or novel objects) were presented alone in either field. Patients had to identify each object and then judge whether it had previously been exposed. Identification of fragmented pictures was better for previously exposed objects that had been consciously seen and critically also for objects that had been extinguished (as compared with novel objects), with no influence of the depth of processing during study. By contrast, explicit recollection occurred only for stimuli that were consciously seen at study and increased with depth of processing. These results suggest implicit but not explicit memory for extinguished visual stimuli in parietal patients.
Nkouawa, Agathe; Sako, Yasuhito; Li, Tiaoying; Chen, Xingwang; Nakao, Minoru; Yanagida, Tetsuya; Okamoto, Munehiro; Giraudoux, Patrick; Raoul, Francis; Nakaya, Kazuhiro; Xiao, Ning; Qiu, Jiamin; Qiu, Dongchuan; Craig, Philip S; Ito, Akira
2012-12-01
In this study, we applied a loop-mediated isothermal amplification method for identification of human Taenia tapeworms in Tibetan communities in Sichuan, China. Out of 51 proglottids recovered from 35 carriers, 9, 1, and 41 samples were identified as Taenia solium, Taenia asiatica and Taenia saginata, respectively. Same results were obtained afterwards in the laboratory, except one sample. These results demonstrated that the LAMP method enabled rapid identification of parasites in the field surveys, which suggested that this method would contribute to the control of Taenia infections in endemic areas. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
System Identification and POD Method Applied to Unsteady Aerodynamics
NASA Technical Reports Server (NTRS)
Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.
2001-01-01
The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.
Identification of phlebotomine sand fly blood meals by real-time PCR.
Sales, Kamila Gaudêncio da Silva; Costa, Pietra Lemos; de Morais, Rayana Carla Silva; Otranto, Domenico; Brandão-Filho, Sinval Pinto; Cavalcanti, Milena de Paiva; Dantas-Torres, Filipe
2015-04-16
Phlebotomine sand flies are blood-feeding insects of great medical and veterinary significance acting as vectors of Leishmania parasites. Studying the blood-feeding pattern of these insects may help in the understanding of their interactions with potential reservoir hosts of Leishmania parasites. In this study, we developed real time PCR assays for the identification of sand fly blood meal. Six pairs of primers were designed based on cytochrome b gene sequences available in GenBank of the following potential hosts: dog, cat, horse, chicken, black rat, and human. Firstly, SYBR Green-based real time PCR assays were conducted using a standard curve with eight different concentrations (i.e., 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg per 2 μl) of DNA samples extracted from EDTA blood samples from each target animal. Then, DNA samples extracted from field-collected engorged female sand flies belonging to three species (i.e., Lutzomyia longipalpis, L. migonei and L. lenti) were tested by the protocols standardized herein. Additionally, female sand flies were experimentally fed on a black rat (Rattus rattus) and used for evaluating the time course of the detection of the protocol targeting this species. The protocols performed well with detection limits of 10 pg to 100 fg. Field-collected female sand flies were fed on blood from humans (73%), chickens (23%), dogs (22%), horses (15%), black rats (11%) and cats (2%). Interestingly, 76.1% of the L. longipalpis females were positive for human blood. In total, 48% of the tested females were fed on single sources, 31% on two and 12% on three. The analysis of the time course showed that the real time PCR protocol targeting the black rat DNA was able to detect small amounts of the host DNA up to 5 days after the blood meal. The real time PCR assays standardized herein successfully detected small amounts of host DNA in female sand flies fed on different vertebrate species and, specifically for the black rats, up to 5 days after the blood meal. These assays represent promising tools for the identification of blood meal in field-collected female sand flies.
A Meta-Analysis of Gifted and Talented Identification Practices
ERIC Educational Resources Information Center
Hodges, Jaret; Tay, Juliana; Maeda, Yukiko; Gentry, Marcia
2018-01-01
Researchers consider the underrepresentation of Black, Hispanic, and Native American students is largely due to the use of traditional methods of identification (i.e., IQ and standardized achievement tests). To address this concern, researchers created novel nontraditional identification methods (e.g., nonverbal tests, student portfolios,…
Yang, A P; Du, L P; Meng, F F; Yuan, X C
2018-05-17
Electromagnetic fields at near-field exhibit distinctive properties with respect to their free-space counterparts. In particular, an optical transverse spin appearing in a confined electromagnetic field provides the foundation for many intriguing physical effects and applications. We present a transverse spin coupling configuration where plasmonic nanoparticles are employed to couple the transverse spin in a focused beam to that of a surface plasmon polariton. The plasmonic resonance of nanoparticles on a metal film plays a significant role in transverse spin coupling. We demonstrate in experiments that Ag and Au nanoparticles yield distinct imaging patterns when scanned over a focused field, because of their different plasmonic responses to the transverse and longitudinal electric fields. Such resonance-dependent spin-coupling enables the identification of nanoparticles using a focused field, as well as electric field mapping of a specific field component of a focused beam using a plasmonic nanoparticle. These interesting findings regarding the transverse spin coupling with a plasmonic nanoparticle may find valuable applications in near-field and nano-optics.
A comparative overview of modal testing and system identification for control of structures
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Pappa, R. S.
1988-01-01
A comparative overview is presented of the disciplines of modal testing used in structural engineering and system identification used in control theory. A list of representative references from both areas is given, and the basic methods are described briefly. Recent progress on the interaction of modal testing and control disciplines is discussed. It is concluded that combined efforts of researchers in both disciplines are required for unification of modal testing and system identification methods for control of flexible structures.
NASA Astrophysics Data System (ADS)
Blöcher, Johanna; Kuraz, Michal
2017-04-01
In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.
Aircrew laser eye protection: visual consequences and mission performance.
Thomas, S R
1994-05-01
Battlefield laser proliferation poses a mounting risk to aircrew and ground personnel. Laser eye protection (LEP) based on current mature, mass-producible technologies absorbs visible light and can impact visual performance and color identification. These visual consequences account for many of the mission incompatibilities associated with LEP. Laboratory experiments and field investigations that examined the effects of LEP on visual performance and mission compatibility are reviewed. Laboratory experiments assessed the ability of subjects to correctly read and identify the color of head-down display symbology and tactical pilotage charts (TPC's) with three prototype LEP visors. Field investigations included Weapons Systems Trainer (WST), ground, and flight tests of the LEP visors. Recommendations for modifying aviation lighting systems to improve LEP compatibility are proposed. Issues concerning flight safety when using LEP during air operation are discussed.
Further development of imaging near-field scatterometer
NASA Astrophysics Data System (ADS)
Uebeler, Denise; Pescoller, Lukas; Hahlweg, Cornelius
2015-09-01
In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. Beside the identification of several types of surfaces and related features, for which the method is applicable, several refinements are introduced. The theory of the method is extended, based on a mixed Fourier optical and geometrical approach, leading to rules of thumb for the resolution to be expected, giving a framework for design. Further, a refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of he layers of the surface under test, cross and parallel polarization techniques are applied. Finally, exemplary measurement results and examples are included.
Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests
Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.
1999-01-01
Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815
Cherkaoui, Abdessalam; Hibbs, Jonathan; Emonet, Stéphane; Tangomo, Manuela; Girard, Myriam; Francois, Patrice; Schrenzel, Jacques
2010-04-01
Bacterial identification relies primarily on culture-based methodologies requiring 24 h for isolation and an additional 24 to 48 h for species identification. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is an emerging technology newly applied to the problem of bacterial species identification. We evaluated two MALDI-TOF MS systems with 720 consecutively isolated bacterial colonies under routine clinical laboratory conditions. Isolates were analyzed in parallel on both devices, using the manufacturers' default recommendations. We compared MS with conventional biochemical test system identifications. Discordant results were resolved with "gold standard" 16S rRNA gene sequencing. The first MS system (Bruker) gave high-confidence identifications for 680 isolates, of which 674 (99.1%) were correct; the second MS system (Shimadzu) gave high-confidence identifications for 639 isolates, of which 635 (99.4%) were correct. Had MS been used for initial testing and biochemical identification used only in the absence of high-confidence MS identifications, the laboratory would have saved approximately US$5 per isolate in marginal costs and reduced average turnaround time by more than an 8-h shift, with no loss in accuracy. Our data suggest that implementation of MS as a first test strategy for one-step species identification would improve timeliness and reduce isolate identification costs in clinical bacteriology laboratories now.
Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence
2016-01-01
Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes. With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. PMID:26969697
Knapp, Jenny; Umhang, Gérald; Poulle, Marie-Lazarine; Millon, Laurence
2016-05-15
Studying the environmental occurrence of parasites of concern for humans and animals based on coprosamples is an expanding field of work in epidemiology and the ecology of health. Detecting and quantifying Toxocara spp. and Echinococcus multilocularis, two predominant zoonotic helminths circulating in European carnivores, in feces may help to better target measures for prevention. A rapid, sensitive, and one-step quantitative PCR (qPCR) allowing detection of E. multilocularis and Toxocara spp. was developed in the present study, combined with a host fecal test based on the identification of three carnivores (red fox, dog, and cat) involved in the life cycles of these parasites. A total of 68 coprosamples were collected from identified specimens from Vulpes vulpes, Canis lupus familiaris, Canis lupus, Felis silvestris catus, Meles meles, Martes foina, and Martes martes With DNA coprosamples, real-time PCR was performed in duplex with a qPCR inhibitor control specifically designed for this study. All the coprosample host identifications were confirmed by qPCR combined with sequencing, and parasites were detected and confirmed (E. multilocularis in red foxes and Toxocara cati in cats; 16% of samples presented inhibition). By combining parasite detection and quantification, the host fecal test, and a new qPCR inhibitor control, we created a technique with a high sensitivity that may considerably improve environmental studies of pathogens. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Field-deployable colorimetric biosensor system for the rapid detection of pathogenic organisms
NASA Astrophysics Data System (ADS)
Duy, Janice
The rapid identification of pathogenic organisms is necessary for recognizing and managing human and environmental health risks. Numerous detection schemes are available, but most are difficult to employ in non-laboratory settings due to their need for bulky, specialized equipment, multiple reagents, or highly trained personnel. To address this problem, a rapid, field-compatible biosensor system based on the colorimetric detection of nucleic acid hybrids was developed. Peptide nucleic acid (PNA) probes were used to capture ribosomal RNA sequences from environmental samples. Non-target nucleic acids, including single-base mismatches flanked by adenines and uracils, were removed with a micrococcal nuclease digestion step. Matched PNA-RNA hybrids remained intact and were indicated by the cyanine dye DiSC2(5). PNA-containing duplexes function as templates for the aggregation of DiSC2(5), visualized as a change in solution color from blue to purple. This transition can be measured as an increase in the solution absorbance at 540 nm (dye aggregate) at the expense of the dye monomer peak at 650 nm. These concomitant spectral changes were used to calculate a "hybridization signal" using the ratio A aggregate/Amonomer ≈ A540/A650. Testing with pathogenic environmental samples was accomplished using two model organisms: the harmful algal bloom-causing dinoflagellate Alexandrium species, and the potato wart disease-causing fungus Synchytrium endobioticum. In both cases, the colorimetric approach was able to distinguish the targets with sensitivities rivaling those of established techniques, but with the advantages of decreased hands-on time and cost. Assay fieldability was tested with a portable colorimeter designed to quantify the dye-indicated hybridization signal and assembled from commercially available components. Side-by-side testing revealed no difference in the sensing performance of the colorimeter compared to a laboratory spectrophotometer (Pearson's r=0.99935). Assay results were obtained within 15 minutes, with a limit of detection down to 10--17 mole. This quick, inexpensive and robust system has the potential to replace laborious pathogen identification schemes in field environments, and is easily adapted for the detection of different organisms.
Tang, Yunqing; Dai, Luru; Zhang, Xiaoming; Li, Junbai; Hendriks, Johnny; Fan, Xiaoming; Gruteser, Nadine; Meisenberg, Annika; Baumann, Arnd; Katranidis, Alexandros; Gensch, Thomas
2015-01-01
Single molecule localization based super-resolution fluorescence microscopy offers significantly higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. Such super-resolution images are reconstructed from wide-field or total internal reflection single molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules and background noise fluctuations remains a great challenge in current data analysis. Here we present a real-time, and robust single molecule identification and localization algorithm, SNSMIL (Shot Noise based Single Molecule Identification and Localization). This algorithm is based on the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent molecules in experimental or simulated datasets with high and inhomogeneous background. The implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis feasible as shown for real experimental and simulated datasets. PMID:26098742
NASA Astrophysics Data System (ADS)
Priore, Ryan J.; Jacksen, Niels
2016-05-01
Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.
Lado, Bettina; Matus, Ivan; Rodríguez, Alejandra; Inostroza, Luis; Poland, Jesse; Belzile, François; del Pozo, Alejandro; Quincke, Martín; Castro, Marina; von Zitzewitz, Jarislav
2013-01-01
In crop breeding, the interest of predicting the performance of candidate cultivars in the field has increased due to recent advances in molecular breeding technologies. However, the complexity of the wheat genome presents some challenges for applying new technologies in molecular marker identification with next-generation sequencing. We applied genotyping-by-sequencing, a recently developed method to identify single-nucleotide polymorphisms, in the genomes of 384 wheat (Triticum aestivum) genotypes that were field tested under three different water regimes in Mediterranean climatic conditions: rain-fed only, mild water stress, and fully irrigated. We identified 102,324 single-nucleotide polymorphisms in these genotypes, and the phenotypic data were used to train and test genomic selection models intended to predict yield, thousand-kernel weight, number of kernels per spike, and heading date. Phenotypic data showed marked spatial variation. Therefore, different models were tested to correct the trends observed in the field. A mixed-model using moving-means as a covariate was found to best fit the data. When we applied the genomic selection models, the accuracy of predicted traits increased with spatial adjustment. Multiple genomic selection models were tested, and a Gaussian kernel model was determined to give the highest accuracy. The best predictions between environments were obtained when data from different years were used to train the model. Our results confirm that genotyping-by-sequencing is an effective tool to obtain genome-wide information for crops with complex genomes, that these data are efficient for predicting traits, and that correction of spatial variation is a crucial ingredient to increase prediction accuracy in genomic selection models. PMID:24082033
Effects of personal identifier resynthesis on clinical text de-identification.
Yeniterzi, Reyyan; Aberdeen, John; Bayer, Samuel; Wellner, Ben; Hirschman, Lynette; Malin, Bradley
2010-01-01
De-identified medical records are critical to biomedical research. Text de-identification software exists, including "resynthesis" components that replace real identifiers with synthetic identifiers. The goal of this research is to evaluate the effectiveness and examine possible bias introduced by resynthesis on de-identification software. We evaluated the open-source MITRE Identification Scrubber Toolkit, which includes a resynthesis capability, with clinical text from Vanderbilt University Medical Center patient records. We investigated four record classes from over 500 patients' files, including laboratory reports, medication orders, discharge summaries and clinical notes. We trained and tested the de-identification tool on real and resynthesized records. We measured performance in terms of precision, recall, F-measure and accuracy for the detection of protected health identifiers as designated by the HIPAA Safe Harbor Rule. The de-identification tool was trained and tested on a collection of real and resynthesized Vanderbilt records. Results for training and testing on the real records were 0.990 accuracy and 0.960 F-measure. The results improved when trained and tested on resynthesized records with 0.998 accuracy and 0.980 F-measure but deteriorated moderately when trained on real records and tested on resynthesized records with 0.989 accuracy 0.862 F-measure. Moreover, the results declined significantly when trained on resynthesized records and tested on real records with 0.942 accuracy and 0.728 F-measure. The de-identification tool achieves high accuracy when training and test sets are homogeneous (ie, both real or resynthesized records). The resynthesis component regularizes the data to make them less "realistic," resulting in loss of performance particularly when training on resynthesized data and testing on real data.
Delov, Vera; Muth-Köhne, Elke; Schäfers, Christoph; Fenske, Martina
2014-05-01
The fish embryo toxicity test (FET) is currently one of the most advocated animal alternative tests in ecotoxicology. To date, the application of the FET with zebrafish (zFET) has focused on acute toxicity assessment, where only lethal morphological effects are accounted for. An application of the zFET beyond acute toxicity, however, necessitates the establishment of more refined and quantifiable toxicological endpoints. A valuable tool in this context is the use of gene expression-dependent fluorescent markers that can even be measured in vivo. We investigated the application of embryos of Tg(fli1:EGFP)(y1) for the identification of vasotoxic substances within the zFET. Tg(fli1:EGFP)(y1) fish express enhanced GFP in the entire vasculature under the control of the fli1 promoter, and thus enable the visualization of vascular defects in live zebrafish embryos. We assessed the fli1 driven EGFP-expression in the intersegmental blood vessels (ISVs) qualitatively and quantitatively, and found an exposure concentration related increase in vascular damage for chemicals like triclosan, cartap and genistein. The fluorescence endpoint ISV-length allowed an earlier and more sensitive detection of vasotoxins than the bright field assessment method. In combination with the standard bright field morphological effect assessment, an increase in significance and value of the zFET for a mechanism-specific toxicity evaluation was achieved. This study highlights the benefits of using transgenic zebrafish as convenient tools for identifying toxicity in vivo and to increase sensitivity and specificity of the zFET. Copyright © 2014 Elsevier B.V. All rights reserved.
Ahearne, Michael; Bhattacharya, C B; Gruen, Thomas
2005-05-01
This article presents an empirical test of organizational identification in the context of customer-company (C-C) relationships. It investigates whether customers identify with companies and what the antecedents and consequences of such identification are. The model posits that perceived company characteristics, construed external image, and the perception of the company's boundary-spanning agent lead to C-C identification. In turn, such identification is expected to impact both in-role behavior (i.e., product utilization) as well as extra-role behavior (i.e., citizenship). The model was tested in a consultative selling context of pharmaceutical sales reps calling on physicians. Results from the empirical test indicated that customers do indeed identify with organizations and that C-C identification positively impacts both product utilization behavior and extra-role behavior even when the effect of brand perception is accounted for. Second, the study found that the organization's characteristics as well as the salesperson's characteristics contributed to the development of C-C identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
XU, X. George; Zhang, X.C.
Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field usingmore » gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.« less
High levels of anomalous self-experience are associated with longer duration of untreated psychosis.
Haug, Elisabeth; Øie, Merete; Andreassen, Ole A; Bratlien, Unni; Nelson, Barnaby; Melle, Ingrid; Møller, Paul
2017-04-01
To investigate the relationship between anomalous self-experiences and duration of untreated psychosis in a sample of patients with first-episode schizophrenia spectrum disorders. Anomalous self-experiences were assessed by means of the Examination of Anomalous Self-Experience manual in 55 patients referred to their first adequate treatment for schizophrenia. Diagnoses, symptom severity, functioning and childhood trauma were assessed using the Structured Clinical Interview for the Positive and Negative Syndrome Scale, Premorbid Adjustment Scale, Social Functioning Scale and Childhood Trauma Questionnaire. Substance misuse was measured with the Drug Use Disorder Identification Test, and alcohol use was measured with the Alcohol Use Disorder Identification Test. Duration of untreated psychosis was measured in accordance with a standardized procedure. High levels of anomalous self-experiences are significantly associated with longer duration of untreated psychosis, an association which held after correcting for other variables associated with long duration of untreated psychosis. The field of early detection in psychosis is in need of additional clinical perspectives to make further progress. Improved understanding and assessment of anomalous self-experiences may help clinicians to detect these important phenomena and provide earlier help, and thus reduce treatment delay. © 2015 Wiley Publishing Asia Pty Ltd.
Medvedeva, O A; Kalutskiĭ, P V; Besedin, A V; Zhiliaeva, L V; Ostap, E V; Ivanov, A V; Medvedeva, S K
2012-01-01
Study the possible qualitative and quantitative changes of microbial community of the parietal mucin of the large intestine and the state of the wall of the large intestine in experimental animals underbackground and anomalous influence of geomagnetic field. CBA mice were put under the influence of anomalous magnetic field comparable to its intensity in Zheleznogorsk (3 Oe) for 1 and 2 weeks. Quantitative and qualitative study of mucous microflora of the large intestine of the mice was performed by bacteriological method. Identification of the microorganisms was performed by microbiological analyzer "Multiskan-Ascent" and commercial test-systems "Lachema-Czech Republic": ENTHEROtest-16, STAPHYtest-16, Streptotest-16, En-COCCUStest-16; for lactobacilli and bifidobacteria identification - API 50 CHL (bioMerieux). Bacteria content in 1 g of material was calculated by the number of microorganism colonies grown. A pattern of changes of mucous microflora of the intestine and the state of the wall of the large intestine of the experimental animals that had been put under the influence of anomalous magnetic field is shown. During evaluation of qualitative and quantitative diversity of microbial community of parietal mucin of the large intestine of the mice under the influence of magnetic field on the background and anomalous levels changes not only in quantity and frequency of detection of obligate, transitory flora but also cell elements of mucous membrane of the wall of the large intestine were established. The results of the study allow to make a conclusion about the presence of reactivity of the parietal microflora of the intestine of the mice to the influence of the anomalous magnetic field. This leads to changes in cell elements in the mucous membrane of the wall that manifest by infiltration of the connective tissue stroma by leucocytes and reconstruction of epithelium, that are features of dysbiosis.
NASA Technical Reports Server (NTRS)
Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.
1998-01-01
The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.
NASA Technical Reports Server (NTRS)
Lewis, L. N. (Principal Investigator); Coleman, V. B.; Johnson, C. W.
1974-01-01
The author has identified the following significant results. This investigation is to evaluate the use of a satellite in monitoring the cotton production regulation program of the State of California as an aid in controlling pink bollworm infestation in the southern deserts of California. Color combined images of ERTS-1 multispectral images simulating color infrared are being used for crop identification. The status of each field (crop, bare, harvested, wet, plowed) is mapped from the imagery and is then compared to ground survey information taken at the time of ERTS-1 overflights. A computer analysis has been performed to compare field and satellite data to a crop calendar. Correlation to date has been 97% for field condition. Actual crop identification varies; cotton identification is only 63% due to lack of full season coverage.
Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.
2015-01-01
In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416
Dhungyel, Om; Schiller, Natalie; Whittington, Richard
2015-04-17
As part of an outbreak-specific footrot vaccination field trial a total of 1282 footrot lesion samples were collected from 2 sheep flocks on King Island, Tasmania. Breeding rams were shared between the two flocks, suggesting a common source of infection. All samples were tested for Dichelobacter nodosus. A total of 1047 D. nodosus isolates were obtained in pure culture (490 from 670 lesion samples from flock 1, and 557 from 612 lesion samples from flock 2) were tested by agglutination and PCR tests for the 9 common Australian serogroups A to I. After the first rounds of a specific vaccination program, a significant proportion of the isolates of D. nodosus from these flocks were found to be negative in the serogrouping tests and the prevalence of the disease remained high in both. Those isolates were tested retrospectively against New Zealand and Nepal serogroup M antisera and found to be positive. Fimbrial gene (fimA) sequences of three isolates collected over three years were identical indicating that these strains belonged to one serogroup and were most closely related to New Zealand and Nepal serogroup M sequences. More than 40% of the D. nodosus isolates from these flocks belonged to serogroup M and were virulent in tests for protease activity. The next most prevalent serogroup was A (23%). This study reports the identification and characterization of serogroup M isolates of D. nodosus from Australia, and led to routine testing for serogroup M in flocks where specific vaccination will be applied for control, treatment and eradication of the virulent footrot. Copyright © 2015 Elsevier B.V. All rights reserved.
Repatriation and Identification of Finnish World War II Soldiers
Palo, Jukka U.; Hedman, Minttu; Söderholm, Niklas; Sajantila, Antti
2007-01-01
Aim To present a summary of the organization, field search, repatriation, forensic anthropological examination, and DNA analysis for the purpose of identification of Finnish soldiers with unresolved fate in World War II. Methods Field searches were organized, executed, and financed by the Ministry of Education and the Association for Cherishing the Memory of the Dead of the War. Anthropological examination conducted on human remains retrieved in the field searches was used to establish the minimum number of individuals and description of the skeletal diseases, treatment, anomalies, or injuries. DNA tests were performed by extracting DNA from powdered bones and blood samples from relatives. Mitochondrial DNA (mtDNA) sequence comparisons, together with circumstantial evidence, were used to connect the remains to the putative family members. Results At present, the skeletal remains of about a thousand soldiers have been found and repatriated. In forensic anthropological examination, several injuries related to death were documented. For the total of 181 bone samples, mtDNA HVR-1 and HVR-2 sequences were successfully obtained for 167 (92.3%) and 148 (81.8%) of the samples, respectively. Five samples yielded no reliable sequence data. Our data suggests that mtDNA preserves at least for 60 years in the boreal acidic soil. The quality of the obtained mtDNA sequence data varied depending on the sample bone type, with long compact bones (femur, tibia and humerus) having significantly better (90.0%) success rate than other bones (51.2%). Conclusion Although more than 60 years have passed since the World War II, our experience is that resolving the fate of soldiers missing in action is still of uttermost importance for people having lost their relatives in the war. Although cultural and individual differences may exist, our experience presented here gives a good perspective on the importance of individual identification performed by forensic professionals. PMID:17696308
Assessment of MALDI-TOF MS biotyping for Borrelia burgdorferi sl detection in Ixodes ricinus
Boyer, Pierre H.; Boulanger, Nathalie; Nebbak, Amira; Collin, Elodie; Jaulhac, Benoit; Almeras, Lionel
2017-01-01
Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been demonstrated to be useful for tick identification at the species level. More recently, this tool has been successfully applied for the detection of bacterial pathogens directly in tick vectors. The present work has assessed the detection of Borrelia burgdorferi sensu lato in Ixodes ricinus tick vector by MALDI-TOF MS. To this aim, experimental infection model of I. ricinus ticks by B. afzelii was carried out and specimens collected in the field were also included in the study. Borrelia infectious status of I. ricinus ticks was molecularly controlled using half-idiosome to classify specimens. Among the 39 ticks engorged on infected mice, 14 were confirmed to be infected by B. afzelii. For field collection, 14.8% (n = 12/81) I. ricinus ticks were validated molecularly as infected by B. burgdorferi sl. To determine the body part allowing the detection of MS protein profile changes between non-infected and B. afzelii infected specimens, ticks were dissected in three compartments (i.e. 4 legs, capitulum and half-idiosome) prior to MS analysis. Highly reproducible MS spectra were obtained for I. ricinus ticks according to the compartment tested and their infectious status. However, no MS profile change was found when paired body part comparison between non-infected and B. afzelii infected specimens was made. Statistical analyses did not succeed to discover, per body part, specific MS peaks distinguishing Borrelia-infected from non-infected ticks whatever their origins, laboratory reared or field collected. Despite the unsuccessful of MALDI-TOF MS to classify tick specimens according to their B. afzelii infectious status, this proteomic tool remains a promising method for rapid, economic and accurate identification of tick species. Moreover, the singularity of MS spectra between legs and half-idiosome of I. ricinus could be used to reinforce this proteomic identification by submission of both these compartments to MS. PMID:28950023
ERIC Educational Resources Information Center
Johnson, Dale D.; And Others
The work reported culminates research by the Project on the Assessment and Analysis of Word Identification Skills in Reading. The Word Identification Test battery was designed for elementary school children, with attention to the major issues pertaining to skills mastery and assessment that are raised in the review of mastery learning. Five…
40 CFR 799.9120 - TSCA acute dermal toxicity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... identification number. A system to randomly assign animals to test groups and control groups is required. (E... source of test animals. (2) Method of randomization in assigning animals to test and control groups. (3... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS...
40 CFR 799.9120 - TSCA acute dermal toxicity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... identification number. A system to randomly assign animals to test groups and control groups is required. (E... source of test animals. (2) Method of randomization in assigning animals to test and control groups. (3... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS...
40 CFR 799.9120 - TSCA acute dermal toxicity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... identification number. A system to randomly assign animals to test groups and control groups is required. (E... source of test animals. (2) Method of randomization in assigning animals to test and control groups. (3... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS...
40 CFR 799.9120 - TSCA acute dermal toxicity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... identification number. A system to randomly assign animals to test groups and control groups is required. (E... source of test animals. (2) Method of randomization in assigning animals to test and control groups. (3... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS...
40 CFR 799.9120 - TSCA acute dermal toxicity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... identification number. A system to randomly assign animals to test groups and control groups is required. (E... source of test animals. (2) Method of randomization in assigning animals to test and control groups. (3... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS...
Using Digital Image Correlation to Characterize Local Strains on Vascular Tissue Specimens.
Zhou, Boran; Ravindran, Suraj; Ferdous, Jahid; Kidane, Addis; Sutton, Michael A; Shazly, Tarek
2016-01-24
Characterization of the mechanical behavior of biological and engineered soft tissues is a central component of fundamental biomedical research and product development. Stress-strain relationships are typically obtained from mechanical testing data to enable comparative assessment among samples and in some cases identification of constitutive mechanical properties. However, errors may be introduced through the use of average strain measures, as significant heterogeneity in the strain field may result from geometrical non-uniformity of the sample and stress concentrations induced by mounting/gripping of soft tissues within the test system. When strain field heterogeneity is significant, accurate assessment of the sample mechanical response requires measurement of local strains. This study demonstrates a novel biomechanical testing protocol for calculating local surface strains using a mechanical testing device coupled with a high resolution camera and a digital image correlation technique. A series of sample surface images are acquired and then analyzed to quantify the local surface strain of a vascular tissue specimen subjected to ramped uniaxial loading. This approach can improve accuracy in experimental vascular biomechanics and has potential for broader use among other native soft tissues, engineered soft tissues, and soft hydrogel/polymeric materials. In the video, we demonstrate how to set up the system components and perform a complete experiment on native vascular tissue.
Two rapid pigmentation tests for identification of Cryptococcus neoformans.
Kaufmann, C S; Merz, W G
1982-01-01
Two tests were developed for the rapid identification of Cryptococcus neoformans based on pigment produced by the organism's phenoloxidase activity. Caffeic acid was incorporated into cornmeal agar, a medium used routinely for yeast identification. When tested on this medium, only C. neoformans isolates produced brown pigment. All other yeasts maintained their normal morphology and did not produce the reaction product. A non-medium-based test was developed for same-day identification of C. neoformans isolates. Paper strips saturated with a buffered L-beta-3,4-dihydroxyphenylalanine-ferric citrate solution were inoculated with isolates and incubated at 37 degrees C. Pigment production occurred only with C. neoformans isolates, many within 60 to 90 min. All other yeasts remained negative. PMID:7040452
Liu, Yi; Li, Yi; Chang, Runxing; Zheng, Hailing; Li, Menglu; Hu, Zhiwen; Zhou, Yang; Wang, Bing
2016-01-01
Proteinaceous materials, such as ovabumin and collagen, were commonly used as binding media, and as adhesives and protective coatings. However, the identification of ancient proteinaceous binders is a great challenge for archaeologists, due to their limited sample size, complex combinations of various ingredients and reduced availability of the binder during the process of protein degradation. In this paper, an enzyme-linked immunosorbent assay (ELISA) provides to be a particularly promising method for the detection of proteinaceous binding materials in ancient relics. The present work focused on the specific identification of proteins in archaeological binders, which was brushed on the Tripitaka. Two samples, the adhesion area (S1) and the ink area (S2), were tested by ELISA. The results showed that both S1 and S2 reacted positively when treated with an anti-collagen-I antibody. It proved the existence of proteinaceous binders in Ancient Tripitaka, and the percentage of collagen in S1 and S2 was 61.44 and 15.4%, respectively. Compared with other conventional techniques, ELISA has advantages of high specificity, sensitivity, rapidity and low cost, making it especially suitable for the protein detection in the archaeological field.
Lot quality assurance sampling for screening communities hyperendemic for Schistosoma mansoni.
Rabarijaona, L P; Boisier, P; Ravaoalimalala, V E; Jeanne, I; Roux, J F; Jutand, M A; Salamon, R
2003-04-01
Lot quality assurance sampling (LQAS) was evaluated for rapid low cost identification of communities where Schistosoma mansoni infection was hyperendemic in southern Madagascar. In the study area, S. mansoni infection shows very focused and heterogeneous distribution requiring multifariousness of local surveys. One sampling plan was tested in the field with schoolchildren and several others were simulated in the laboratory. Randomization and stool specimen collection were performed by voluntary teachers under direct supervision of the study staff and no significant problem occurred. As expected from Receiver Operating Characteristic (ROC) curves, all sampling plans allowed correct identification of hyperendemic communities and of most of the hypoendemic ones. Frequent misclassifications occurred for communities with intermediate prevalence and the cheapest plans had very low specificity. The study confirmed that LQAS would be a valuable tool for large scale screening in a country with scarce financial and staff resources. Involving teachers, appeared to be quite feasible and should not lower the reliability of surveys. We recommend that the national schistosomiasis control programme systematically uses LQAS for identification of communities, provided that sample sizes are adapted to the specific epidemiological patterns of S. mansoni infection in the main regions.
Genotype identification of Math1/LacZ knockout mice based on real-time PCR with SYBR Green I dye.
Krizhanovsky, Valery; Golenser, Esther; Ben-Arie, Nissim
2004-07-30
Knockout mice are widely used in all fields of biomedical research. Determining the genotype of every newborn mouse is a tedious task, usually performed by Southern blot hybridization or Polymerase Chain Reaction (PCR). We describe here a quick and simple genotype identification assay based on real-time PCR and SYBR Green I dye, without using fluorescent primers. The discrimination between the wild type and targeted alleles is based on a PCR design that leads to a different melting temperature for each product. The identification of the genotype is obvious immediately after amplification, and no post-PCR manipulations are needed, reducing cost and time. Therefore, while the real-time PCR amplification increases the sensitivity, the fact that the reactions tubes are never opened after amplification, reduces the risk of contamination and eliminates errors, which are common during the repeated handling of dozens of samples from the same mouse line. The protocol we provide was tested on Math1 knockout mice, but is general, and may be utilized for any knockout line and real-time thermocycler, without any further modification, accessories or special reagents. Copyright 2004 Elsevier B.V.
Portable bacterial identification system based on elastic light scatter patterns.
Bae, Euiwon; Ying, Dawei; Kramer, Donald; Patsekin, Valery; Rajwa, Bartek; Holdman, Cheryl; Sturgis, Jennifer; Davisson, V Jo; Robinson, J Paul
2012-08-28
Conventional diagnosis and identification of bacteria requires shipment of samples to a laboratory for genetic and biochemical analysis. This process can take days and imposes significant delay to action in situations where timely intervention can save lives and reduce associated costs. To enable faster response to an outbreak, a low-cost, small-footprint, portable microbial-identification instrument using forward scatterometry has been developed. This device, weighing 9 lb and measuring 12 × 6 × 10.5 in., utilizes elastic light scatter (ELS) patterns to accurately capture bacterial colony characteristics and delivers the classification results via wireless access. The overall system consists of two CCD cameras, one rotational and one translational stage, and a 635-nm laser diode. Various software algorithms such as Hough transform, 2-D geometric moments, and the traveling salesman problem (TSP) have been implemented to provide colony count and circularity, centering process, and minimized travel time among colonies. Experiments were conducted with four bacteria genera using pure and mixed plate and as proof of principle a field test was conducted in four different locations where the average classification rate ranged between 95 and 100%.
[Point-of-care Coagulation Testing in Neurosurgery].
Adam, Elisabeth Hannah; Füllenbach, Christoph; Lindau, Simone; Konczalla, Jürgen
2018-06-01
Disorders of the coagulation system can seriously impact the clinical course and outcome of neurosurgical patients. Due to the anatomical location of the central nervous system within the closed skull, bleeding complications can lead to devastating consequences such as an increase in intracranial pressure or enlargement of intracranial hematoma. Point-of-care (POC) devices for the testing of haemostatic parameters have been implemented in various fields of medicine. Major advantages of these devices are that results are available quickly and that analysis can be performed at the bedside, directly affecting patient management. POC devices allow identification of increased bleeding tendencies and therefore may enable an assessment of hemorrhagic risks in neurosurgical patients. Although data regarding the use of POC testing in neurosurgical patients are limited, they suggest that coagulation testing and hemostatic therapy using POC devices might have beneficial effects in this patient population. This article provides an overview of the application of point-of-care coagulation testing in clinical practice in neurosurgical patients. Georg Thieme Verlag KG Stuttgart · New York.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Identification of Coliform Bacteria and Escherichia coli in Finished Waters, January 2007, Version 1.1... Membrane Filter Test Method for Detection and Identification of Coliform Bacteria and Escherichia coli in... Detection and Identification of Coliform Bacteria and Escherichia coli in Finished Waters. November, 2000...
Marandi, Farinaz Rashed; Rahbar, Mohammad; Sabourian, Roghieh; Saremi, Mahnaz
2010-01-01
To determine the ability of Iranian microbiology laboratories for identification and susceptibility testing of Streptococcus pneumoniae and Haemophilus influenzae as causative agents of bacterial meningitides. Two strains of bacteria including Haemophilus influenzae and Streptococcus pneumoniae as a common causative agents of meningitides were chosen and coded as strain number 1 and number 2. The strains were distributed among 679 microbiology laboratories. All laboratories were requested for identification of each unknown microorganism and susceptibility testing of S. pneumoniae against five commonly used antibiotics. Of 679 microbiology laboratories 310 (46%) laboratories participated in the survey and among these, 258 laboratories completely identified S. pneumoniae. About 85% laboratories produced correct susceptibility testing against oxacillin, erythromycin, tetracycline, and vancomycin. Of 310 received responses only 50 laboratories identified H. influenza correctly. The majority of the laboratories did not have the capacity to identification H. influenza. Microbiology laboratories in our country are qualified for identification and susceptibility testing of S. pneumoniae. However, majority of laboratories are not qualified for identification of H. influenzae.
Füllgrabe, Christian; Rosen, Stuart
2016-01-01
With the advent of cognitive hearing science, increased attention has been given to individual differences in cognitive functioning and their explanatory power in accounting for inter-listener variability in the processing of speech in noise (SiN). The psychological construct that has received much interest in recent years is working memory. Empirical evidence indeed confirms the association between WM capacity (WMC) and SiN identification in older hearing-impaired listeners. However, some theoretical models propose that variations in WMC are an important predictor for variations in speech processing abilities in adverse perceptual conditions for all listeners, and this notion has become widely accepted within the field. To assess whether WMC also plays a role when listeners without hearing loss process speech in adverse listening conditions, we surveyed published and unpublished studies in which the Reading-Span test (a widely used measure of WMC) was administered in conjunction with a measure of SiN identification, using sentence material routinely used in audiological and hearing research. A meta-analysis revealed that, for young listeners with audiometrically normal hearing, individual variations in WMC are estimated to account for, on average, less than 2% of the variance in SiN identification scores. This result cautions against the (intuitively appealing) assumption that individual variations in WMC are predictive of SiN identification independently of the age and hearing status of the listener.
Robust polygon recognition method with similarity invariants applied to star identification
NASA Astrophysics Data System (ADS)
Hernández, E. Antonio; Alonso, Miguel A.; Chávez, Edgar; Covarrubias, David H.; Conte, Roberto
2017-02-01
In the star identification process the goal is to recognize a star by using the celestial bodies in its vicinity as context. An additional requirement is to avoid having to perform an exhaustive scan of the star database. In this paper we present a novel approach to star identification using similarity invariants. More specifically, the proposed algorithm defines a polygon for each star, using the neighboring celestial bodies in the field of view as vertices. The mapping is insensitive to similarity transformation; that is, the image of the polygon under the transformation is not affected by rotation, scaling or translations. Each polygon is associated with an essentially unique complex number. We perform an exhaustive experimental validation of the proposed algorithm using synthetic data generated from the star catalog with uniformly-distributed positional noise introduced to each star. The star identification method that we present is proven to be robust, achieving a recognition rate of 99.68% when noise levels of up to ± 424 μ radians are introduced to the location of the stars. In our tests the proposed algorithm proves that if a polygon match is found, it always corresponds to the star under analysis; no mismatches are found. In its present form our method cannot identify polygons in cases where there exist missing or false stars in the analyzed images, in those situations it only indicates that no match was found.
Comparative analysis of lip with thumbprints: An identification tool in personal authentication.
Naik, Rashmi; Ahmed Mujib, B R; Telagi, Neethu; Hallur, Jaydeva
2017-01-01
Identification of person living or dead using diverse characteristics is the basis in forensic science. The uniqueness of lip and fingerprints and further, association between them can be useful in establishing facts in legal issues. The present study was carried out to determine the distribution of different lip print patterns among subjects having different thumbprint patterns and to determine the correlation between lip print patterns and thumbprint patterns. The study sample comprised 100 students randomly selected from Bapuji Dental College Hospital, Davangere, Karnataka, 50 males and 50 females aged between 18 and 20 years. Red colored lipstick was applied on the lips by a lipstick applicator brush. Lip and thumb impressions were made on No. 1 Whatman filter paper and visualized using magnifying lens. Three main types of fingerprints (loop, whorl and arch) were identified; Tsuchihashi Y classification of lip print patterns was followed in the study. Chi-square test was used to see the association between lip and thumbprints. The correlation between lip and left thumb print patterns for gender identification was statistically significant. In both males and females, Type II lip pattern associated with loop finger pattern were most significant and in males, Type III lip pattern with whorl type of finger pattern showed statistical significance. We conclude that the correlation found between lip print and thumbprint can be utilized in the field of forensic science for gender identification.
Linear CCD attitude measurement system based on the identification of the auxiliary array CCD
NASA Astrophysics Data System (ADS)
Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan
2015-10-01
Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.
40 CFR 799.2325 - Isopropanol.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...
40 CFR 799.2325 - Isopropanol.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...
40 CFR 799.2325 - Isopropanol.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...
40 CFR 799.2325 - Isopropanol.
Code of Federal Regulations, 2014 CFR
2014-07-01
... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...
40 CFR 799.2325 - Isopropanol.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraphs (d)(5)(ii) and (d)(5)(iii) of § 798.5200, or a mouse biochemical specific locus test (MBSL) shall...) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2325 Isopropanol. (a) Identification of test substance. (1) Isopropanol (CAS No. 67-63-0) shall be...
Vortex identification from local properties of the vorticity field
NASA Astrophysics Data System (ADS)
Elsas, J. H.; Moriconi, L.
2017-01-01
A number of systematic procedures for the identification of vortices/coherent structures have been developed as a way to address their possible kinematical and dynamical roles in structural formulations of turbulence. It has been broadly acknowledged, however, that vortex detection algorithms, usually based on linear-algebraic properties of the velocity gradient tensor, can be plagued with severe shortcomings and may become, in practical terms, dependent on the choice of subjective threshold parameters in their implementations. In two-dimensions, a large class of standard vortex identification prescriptions turn out to be equivalent to the "swirling strength criterion" (λc i-criterion), which is critically revisited in this work. We classify the instances where the accuracy of the λc i-criterion is affected by nonlinear superposition effects and propose an alternative vortex detection scheme based on the local curvature properties of the vorticity graph (x ,y ,ω ) —the "vorticity curvature criterion" (λω-criterion)—which improves over the results obtained with the λc i-criterion in controlled Monte Carlo tests. A particularly problematic issue, given its importance in wall-bounded flows, is the eventual inadequacy of the λc i-criterion for many-vortex configurations in the presence of strong background shear. We show that the λω-criterion is able to cope with these cases as well, if a subtraction of the mean velocity field background is performed, in the spirit of the Reynolds decomposition procedure. A realistic comparative study for vortex identification is then carried out for a direct numerical simulation of a turbulent channel flow, including a three-dimensional extension of the λω-criterion. In contrast to the λc i-criterion, the λω-criterion indicates in a consistent way the existence of small scale isotropic turbulent fluctuations in the logarithmic layer, in consonance with long-standing assumptions commonly taken in turbulent boundary layer phenomenology.
Snapshot spectral and polarimetric imaging; target identification with multispectral video
NASA Astrophysics Data System (ADS)
Bartlett, Brent D.; Rodriguez, Mikel D.
2013-05-01
As the number of pixels continue to grow in consumer and scientific imaging devices, it has become feasible to collect the incident light field. In this paper, an imaging device developed around light field imaging is used to collect multispectral and polarimetric imagery in a snapshot fashion. The sensor is described and a video data set is shown highlighting the advantage of snapshot spectral imaging. Several novel computer vision approaches are applied to the video cubes to perform scene characterization and target identification. It is shown how the addition of spectral and polarimetric data to the video stream allows for multi-target identification and tracking not possible with traditional RGB video collection.
Visual Attention Measures Predict Pedestrian Detection in Central Field Loss: A Pilot Study
Alberti, Concetta F.; Horowitz, Todd; Bronstad, P. Matthew; Bowers, Alex R.
2014-01-01
Purpose The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of people with central field loss (CFL) to detect pedestrian hazards in simulated driving. Methods 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision). Results UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on the UFOV divided and selective attention subtests (r = −0.66 and −0.62, respectively, p<0.04), with better contrast sensitivity scores (r = 0.54, p = 0.08) and smaller scotomas (r = −0.60, p = 0.05). Conclusions Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks. PMID:24558495
Visual attention measures predict pedestrian detection in central field loss: a pilot study.
Alberti, Concetta F; Horowitz, Todd; Bronstad, P Matthew; Bowers, Alex R
2014-01-01
The ability of visually impaired people to deploy attention effectively to maximize use of their residual vision in dynamic situations is fundamental to safe mobility. We conducted a pilot study to evaluate whether tests of dynamic attention (multiple object tracking; MOT) and static attention (Useful Field of View; UFOV) were predictive of the ability of people with central field loss (CFL) to detect pedestrian hazards in simulated driving. 11 people with bilateral CFL (visual acuity 20/30-20/200) and 11 age-similar normally-sighted drivers participated. Dynamic and static attention were evaluated with brief, computer-based MOT and UFOV tasks, respectively. Dependent variables were the log speed threshold for 60% correct identification of targets (MOT) and the increase in the presentation duration for 75% correct identification of a central target when a concurrent peripheral task was added (UFOV divided and selective attention subtests). Participants drove in a simulator and pressed the horn whenever they detected pedestrians that walked or ran toward the road. The dependent variable was the proportion of timely reactions (could have stopped in time to avoid a collision). UFOV and MOT performance of CFL participants was poorer than that of controls, and the proportion of timely reactions was also lower (worse) (84% and 97%, respectively; p = 0.001). For CFL participants, higher proportions of timely reactions correlated significantly with higher (better) MOT speed thresholds (r = 0.73, p = 0.01), with better performance on the UFOV divided and selective attention subtests (r = -0.66 and -0.62, respectively, p<0.04), with better contrast sensitivity scores (r = 0.54, p = 0.08) and smaller scotomas (r = -0.60, p = 0.05). Our results suggest that brief laboratory-based tests of visual attention may provide useful measures of functional visual ability of individuals with CFL relevant to more complex mobility tasks.
King, P M
1997-01-01
The purpose of this study was to determine if a correlation exists between touch-pressure threshold testing and sensory discrimination function, specifically tactile gnosis for texture and object recognition. Twenty-nine patients diagnosed with carpal tunnel syndrome (CTS), as confirmed by electromyography or nerve conduction velocity tests, were administered three sensibility tests: the Semmes-Weinstein monofilament test, a texture discrimination test, and an object identification test. Norms were established for texture and object recognition tests using 100 subjects (50 females and 50 males) with normal touch-pressure thresholds as assessed by the Semmes-Weinstein monofilament test. The CTS patients were grouped into three categories of sensibility as determined by their performance on the Semmes-Weinstein monofilament test: normal, diminished light touch, and diminished protective sensation. Through an independent t test statistical procedure, each of the three categories mean response times for identification of textures of objects were compared with the normed response times. Accurate responses were given for identification of all textures and objects. No significant difference (p < .05) was noted in mean response times of the CTS patients with normal touch-pressure thresholds. A significant difference (p < .05) in response times by those CTS patients with diminished light touch was detected in identification in four out of six objects. Subjects with diminished protective sensation had significantly longer response times (p < .05) for identification of the textures of cork, coarse and fine sandpaper, and rubber. Significantly longer response times were recorded by the same subjects for identification of such objects as a screw and a button, and for the shapes of a square, triangle, and oval.
Ruskova, Lenka; Raclavsky, Vladislav
2011-09-01
Routine medical microbiology diagnostics relies on conventional cultivation followed by phenotypic techniques for identification of pathogenic bacteria and fungi. This is not only due to tradition and economy but also because it provides pure culture needed for antibiotic susceptibility testing. This review focuses on the potential of High Resolution Melting Analysis (HRMA) of double-stranded DNA for future routine medical microbiology. Search of MEDLINE database for publications showing the advantages of HRMA in routine medical microbiology for identification, strain typing and further characterization of pathogenic bacteria and fungi in particular. The results show increasing numbers of newly-developed and more tailor-made assays in this field. For microbiologists unfamiliar with technical aspects of HRMA, we also provide insight into the technique from the perspective of microbial characterization. We can anticipate that the routine availability of HRMA in medical microbiology laboratories will provide a strong stimulus to this field. This is already envisioned by the growing number of medical microbiology applications published recently. The speed, power, convenience and cost effectiveness of this technology virtually predestine that it will advance genetic characterization of microbes and streamline, facilitate and enrich diagnostics in routine medical microbiology without interfering with the proven advantages of conventional cultivation.
Liu, Jiang; Deng, Jun-cai; Yang, Cai-qiong; Huang, Ni; Chang, Xiao-li; Zhang, Jing; Yang, Feng; Liu, Wei-guo; Wang, Xiao-chun; Yong, Tai-wen; Du, Jun-bo; Shu, Kai; Yang, Wen-yu
2017-01-01
Continuous rain and an abnormally wet climate during harvest can easily lead to soybean plants being damaged by field mold (FM), which can reduce seed yield and quality. However, to date, the underlying pathogen and its resistance mechanism have remained unclear. The objective of the present study was to investigate the fungal diversity of various soybean varieties and to identify and confirm the FM pathogenic fungi. A total of 62,382 fungal ITS1 sequences clustered into 164 operational taxonomic units (OTUs) with 97% sequence similarity; 69 taxa were recovered from the samples by internal transcribed spacer (ITS) region sequencing. The fungal community compositions differed among the tested soybeans, with 42 OTUs being amplified from all varieties. The quadratic relationships between fungal diversity and organ-specific mildew indexes were analyzed, confirming that mildew on soybean pods can mitigate FM damage to the seeds. In addition, four potentially pathogenic fungi were isolated from FM-damaged soybean fruits; morphological and molecular identification confirmed these fungi as Aspergillus flavus, A. niger, Fusarium moniliforme, and Penicillium chrysogenum. Further re-inoculation experiments demonstrated that F. moniliforme is dominant among these FM pathogenic fungi. These results lay the foundation for future studies on mitigating or preventing FM damage to soybean. PMID:28515718
Ravindran, Prabu; Costa, Adriana; Soares, Richard; Wiedenhoeft, Alex C
2018-01-01
The current state-of-the-art for field wood identification to combat illegal logging relies on experienced practitioners using hand lenses, specialized identification keys, atlases of woods, and field manuals. Accumulation of this expertise is time-consuming and access to training is relatively rare compared to the international demand for field wood identification. A reliable, consistent and cost effective field screening method is necessary for effective global scale enforcement of international treaties such as the Convention on the International Trade in Endagered Species (CITES) or national laws (e.g. the US Lacey Act) governing timber trade and imports. We present highly effective computer vision classification models, based on deep convolutional neural networks, trained via transfer learning, to identify the woods of 10 neotropical species in the family Meliaceae, including CITES-listed Swietenia macrophylla , Swietenia mahagoni , Cedrela fissilis , and Cedrela odorata . We build and evaluate models to classify the 10 woods at the species and genus levels, with image-level model accuracy ranging from 87.4 to 97.5%, with the strongest performance by the genus-level model. Misclassified images are attributed to classes consistent with traditional wood anatomical results, and our species-level accuracy greatly exceeds the resolution of traditional wood identification. The end-to-end trained image classifiers that we present discriminate the woods based on digital images of the transverse surface of solid wood blocks, which are surfaces and images that can be prepared and captured in the field. Hence this work represents a strong proof-of-concept for using computer vision and convolutional neural networks to develop practical models for field screening timber and wood products to combat illegal logging.
Forest Species Identification with High Spectral Resolution Data
NASA Technical Reports Server (NTRS)
Olson, C. E., Jr.; Zhu, Z.
1985-01-01
Data collected over the Sleeping Bear Sand Dunes Test Site and the Saginaw Forest Test Site (Michigan) with the JPL Airborne Imaging Spectrometer and the Collins' Airborne Spectroradiometer are being used for forest species identification. The linear discriminant function has provided higher identification accuracies than have principal components analyses. Highest identification accuracies are obtained in the 450 to 520 nm spectral region. Spectral bands near 1,300, 1,685 and 2,220 nm appear to be important, also.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
NASA Technical Reports Server (NTRS)
Klingelhoefer, G.; Morris, R. V.; Blumers, M; Bernhardt, B.; Graff, T.
2014-01-01
The 2010 and 2012 In-Situ Resource Utilization Analogue Test (ISRU) [1] on the Mauna Kea volcano in Hawai'i was coordinated by the Northern Centre for Advanced Technology (NORCAT) in collaboration with the Canadian Space Agency (CSA), the German Aerospace Center (DLR), and the National Aeronautics and Space Administration (NASA), through the PISCES program. Several instruments were tested as reference candidates for future analogue testing at the new field test site at the Mauna Kea volcano in Hawai'i. The fine-grained, volcanic nature of the material is a suitable lunar and martian analogue, and can be used to test excavation, site preparation, and resource utilization techniques. The 2010 location Pu'u Hiwahine, a cinder cone located below the summit of Mauna Kea (19deg45'39.29" N, 155deg28'14.56" W) at an elevation of 2800 m, provides a large number of slopes, rock avalanches, etc. to perform mobility tests, site preparation or resource prospecting. Besides hardware testing of technologies and systems related to resource identification, also in situ science measurements played a significant role in integration of ISRU and science instruments. For the advanced Mössbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform Xray fluorescence analysis simultaneously to Mössbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The 2010 and 2012 field campaigns demonstrated that in-situ Mössbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.
Harness, B Z; Bental, E; Carmon, A
1976-03-01
Cognition and performance of patients with localized and diffuse brain damage was evaluated through the application of objective perceptual testing. A series of visual perceptual and verbal tests, memory tests, as well as reaction time tasks were administered to the patients by logic programming equipment. In order to avoid a bias due to communicative disorders, all responses were motor, and achievement was scored in terms of correct identification and latencies of response. Previously established norms based on a large sample of non-brain-damaged hospitalized patients served to standardize the performance of the brain-damaged patient since preliminary results showed that age and educational level constitute an important variable affecting performance of the control group. The achievement of brain-damaged patients, corrected for these factors, was impaired significantly in all tests with respect to both recognition and speed of performance. Lateralized effects of brain damage were not significantly demonstrated. However, when the performance was analyzed with respect to the locus of visual input, it was found that patients with right hemispheric lesions showed impairment mainly on perception of figurative material, and that this deficit was more apparent in the left visual field. Conversely, patients with left hemispheric lesions tended to show impairment on perception of visually presented verbal material when the input was delivered to the right visual field.
How to locate and appraise qualitative research in complementary and alternative medicine
2013-01-01
Background The aim of this publication is to present a case study of how to locate and appraise qualitative studies for the conduct of a meta-ethnography in the field of complementary and alternative medicine (CAM). CAM is commonly associated with individualized medicine. However, one established scientific approach to the individual, qualitative research, thus far has been explicitly used very rarely. This article demonstrates a case example of how qualitative research in the field of CAM studies was identified and critically appraised. Methods Several search terms and techniques were tested for the identification and appraisal of qualitative CAM research in the conduct of a meta-ethnography. Sixty-seven electronic databases were searched for the identification of qualitative CAM trials, including CAM databases, nursing, nutrition, psychological, social, medical databases, the Cochrane Library and DIMDI. Results 9578 citations were screened, 223 articles met the pre-specified inclusion criteria, 63 full text publications were reviewed, 38 articles were appraised qualitatively and 30 articles were included. The search began with PubMed, yielding 87% of the included publications of all databases with few additional relevant findings in the specific databases. CINHAL and DIMDI also revealed a high number of precise hits. Although CAMbase and CAM-QUEST® focus on CAM research only, almost no hits of qualitative trials were found there. Searching with broad text terms was the most effective search strategy in all databases. Conclusions This publication presents a case study on how to locate and appraise qualitative studies in the field of CAM. The example shows that the literature search for qualitative studies in the field of CAM is most effective when the search is begun in PubMed followed by CINHAL or DIMDI using broad text terms. Exclusive CAM databases delivered no additional findings to locate qualitative CAM studies. PMID:23731997
How to locate and appraise qualitative research in complementary and alternative medicine.
Franzel, Brigitte; Schwiegershausen, Martina; Heusser, Peter; Berger, Bettina
2013-06-03
The aim of this publication is to present a case study of how to locate and appraise qualitative studies for the conduct of a meta-ethnography in the field of complementary and alternative medicine (CAM). CAM is commonly associated with individualized medicine. However, one established scientific approach to the individual, qualitative research, thus far has been explicitly used very rarely. This article demonstrates a case example of how qualitative research in the field of CAM studies was identified and critically appraised. Several search terms and techniques were tested for the identification and appraisal of qualitative CAM research in the conduct of a meta-ethnography. Sixty-seven electronic databases were searched for the identification of qualitative CAM trials, including CAM databases, nursing, nutrition, psychological, social, medical databases, the Cochrane Library and DIMDI. 9578 citations were screened, 223 articles met the pre-specified inclusion criteria, 63 full text publications were reviewed, 38 articles were appraised qualitatively and 30 articles were included. The search began with PubMed, yielding 87% of the included publications of all databases with few additional relevant findings in the specific databases. CINHAL and DIMDI also revealed a high number of precise hits. Although CAMbase and CAM-QUEST® focus on CAM research only, almost no hits of qualitative trials were found there. Searching with broad text terms was the most effective search strategy in all databases. This publication presents a case study on how to locate and appraise qualitative studies in the field of CAM. The example shows that the literature search for qualitative studies in the field of CAM is most effective when the search is begun in PubMed followed by CINHAL or DIMDI using broad text terms. Exclusive CAM databases delivered no additional findings to locate qualitative CAM studies.
Search for life on Mars in surface samples: Lessons from the 1999 Marsokhod rover field experiment
Newsom, Horton E.; Bishop, J.L.; Cockell, C.; Roush, T.L.; Johnson, J. R.
2001-01-01
The Marsokhod 1999 field experiment in the Mojave Desert included a simulation of a rover-based sample selection mission. As part of this mission, a test was made of strategies and analytical techniques for identifying past or present life in environments expected to be present on Mars. A combination of visual clues from high-resolution images and the detection of an important biomolecule (chlorophyll) with visible/near-infrared (NIR) spectroscopy led to the successful identification of a rock with evidence of cryptoendolithic organisms. The sample was identified in high-resolution images (3 times the resolution of the Imager for Mars Pathfinder camera) on the basis of a green tinge and textural information suggesting the presence of a thin, partially missing exfoliating layer revealing the organisms. The presence of chlorophyll bands in similar samples was observed in visible/NIR spectra of samples in the field and later confirmed in the laboratory using the same spectrometer. Raman spectroscopy in the laboratory, simulating a remote measurement technique, also detected evidence of carotenoids in samples from the same area. Laboratory analysis confirmed that the subsurface layer of the rock is inhabited by a community of coccoid Chroococcidioposis cyanobacteria. The identification of minerals in the field, including carbonates and serpentine, that are associated with aqueous processes was also demonstrated using the visible/NIR spectrometer. Other lessons learned that are applicable to future rover missions include the benefits of web-based programs for target selection and for daily mission planning and the need for involvement of the science team in optimizing image compression schemes based on the retention of visual signature characteristics. Copyright 2000 by the American Geophysical Union.
Ordered transport and identification of particles
Shera, E.B.
1993-05-11
A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.
Ordered transport and identification of particles
Shera, E. Brooks
1993-01-01
A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.
2005-01-01
Index IMS Ion Mobility Spectrometry IR Infrared IRE Internal Reflection Element KBr Potassium Bromide LOD Limit of Detection MS Mass Spectrometer NB...Kaiser Bryant, Master of Science in Public Health, 2005 Directed By: Peter T. LaPuma, LtCol, USAF, BSC Assistant Professor, Department of Prey Med and...hereby certifies that the use of any copyrighted material in the thesis manuscript entitled: Chemical Agent Identification Using Field-Based Attenuated
USDA-ARS?s Scientific Manuscript database
Among the Phytophthora species that cause black pod of cacao, P. megakarya is the most virulent, posing a serious threat to cacao production in Africa. Correct identification of the species causing the black pod and understanding the virulence factors involved are important for developing sustainabl...
A brief review of machine vision in the context of automated wood identification systems
John C. Hermanson; Alex C. Wiedenhoeft
2011-01-01
The need for accurate and rapid field identification of wood to combat illegal logging around the world is outpacing the ability to train personnel to perform this task. Despite increased interest in non-anatomical (DNA, spectroscopic, chemical) methods for wood identification, anatomical characteristics are the least labile data that can be extracted from solid wood...
Laguardia, Alice; Wang, Jun; Shi, Fang-Lei; Shi, Kun; Riordan, Philip
2015-03-18
Many ecological studies and conservation management plans employ noninvasive scat sampling based on the assumption that species' scats can be correctly identified in the field. However, in habitats with sympatric similarly sized carnivores, misidentification of scats is frequent and can lead to bias in research results. To address the scat identification dilemma, molecular scatology techniques have been developed to extract DNA from the donor cells present on the outer lining of the scat samples. A total of 100 samples were collected in the winter of 2009 and 2011 in Taxkorgan region of Xinjiang, China. DNA was extracted successfully from 88% of samples and genetic species identification showed that more than half the scats identified in the field as snow leopard (Panthera uncia) actually belonged to fox (Vulpes vulpes). Correlation between scat characteristics and species were investigated, showing that diameter and dry weight of the scat were significantly different between the species. However it was not possible to define a precise range of values for each species because of extensive overlap between the morphological values. This preliminary study confirms that identification of snow leopard feces in the field is misleading. Research that relies upon scat samples to assess distribution or diet of the snow leopard should therefore employ molecular scatology techniques. These methods are financially accessible and employ relatively simple laboratory procedures that can give an indisputable response to species identification from scats.
Identification of gram-negative bacilli using the Autobac IDX.
Burdash, N M; Welborn, A L; Teti, G; Bannister, E R; Manos, J P
1985-01-01
The Autobac IDX is a new system for the rapid identification of clinically significant members of the Enterobacteriaceae and Aeromonas, Acinetobacter, Alcaligenes, Flavobacterium, Moraxella, and Pseudomonas species. The use of 18 differentially inhibitory compounds such as dyes and antibiotics along with a computerized algorithm based on a multivariate analysis provides the basis for the identification of 30 different groups of gram-negative bacilli. Required preliminary tests include observations on the presence or absence of swarming on a sheep blood agar plate and noting the following: growth, lactose fermentation, and bile precipitation from a MacConkey plate. Spot indole and spot oxidase tests must be performed as well. Identification by the Autobac IDX System takes 3-6 hr after completion of the preliminary tests. From a total of 403 isolates tested, the Autobac system agreed with the MicroID AND N/F systems on 382 identifications (94.8%). Four isolates, two Acinetobacter anitratus, one Serratia marcescens and one Moraxella osloensis could not be identified by IDX. Additional testing was required on 35 (8.7%) of the isolates.
NASA Astrophysics Data System (ADS)
Zima, W.; Kolenberg, K.; Briquet, M.; Breger, M.
2004-06-01
We have carried out a Hare-and-Hound test to determine the reliability of the Moment Method (Briquet & Aerts 2003) and the Pixel-by-Pixel Method (Mantegazza 2000) for the identification of pulsation modes in Delta Scuti stars. For this purpose we calculated synthetic line profiles, exhibiting six pulsation modes of low degree and with input parameters initially unknown to us. The aim was to test and increase the quality of the mode identification by applying both methods independently and by using a combined technique. Our results show that, whereas the azimuthal order m and its sign can be fixed by both methods, the degree l is not determined unambiguously. Both identification methods show a better reliability if multiple modes are fitted simultaneously. In particular, the inclination angle is better determined. We have to emphasize that the outcome of this test is only meaningful for stars having pulsational velocities below 0.2 vsini. This is the first part of a series of articles, in which we will test these spectroscopic identification methods.
NASA Boeing 757 HIRF test series low power on-the-ground tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.
1996-08-01
The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. Themore » tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false User fees for veterinary diagnostic isolation and identification tests performed at NVSL (excluding FADDL) or other authorized site. 130.15... AGRICULTURE USER FEES USER FEES § 130.15 User fees for veterinary diagnostic isolation and identification...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false User fees for veterinary diagnostic isolation and identification tests performed at NVSL (excluding FADDL) or other authorized site. 130.15... AGRICULTURE USER FEES USER FEES § 130.15 User fees for veterinary diagnostic isolation and identification...
Enzyme Mini-Test for Field Identification of Leishmania Isolates from U.S. Military Personnel.
1986-05-15
Panama Dominques L2 539 NWC LBP Man - Panama Carillo 530 NWC LBP Man - Panama Schoonmaker 063 NWC LBG Man - Peru Terborgh/Muco 294 NWC LBB Man - Brazil...NWC LMA-G Man - Panama Castro 140 NWC LMM-P Man - Peru UTA 381 NWC LMM-P Man - Panama Peters 453 NWC LMM-P Man - Dominican Republic - 457 NWC LMM-P...LV24 547 OWC LMJ Man R. Beach Kenya LRC-L137 551 OWC LMJ Rodent R. Beach Kenya NLB095 552 OWC LMJ Sandfly R. Beach Kenya NLBI44 558 OWC LMJ Man
Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies
NASA Technical Reports Server (NTRS)
Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas
2006-01-01
Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.
Determination of spectral signatures of substances in natural waters
NASA Technical Reports Server (NTRS)
Klemas, V.; Philpot, W. D.; Davis, G.
1978-01-01
Optical remote sensing of water pollution offers the possibility of fast, large scale coverage at a relatively low cost. The possibility of using the spectral characteristics of the upwelling light from water for the purpose of ocean water quality monitoring was explained. The work was broken into several broad tasks as follows: (1) definition of a remotely measured spectral signature of water, (2) collection of field data and testing of the signature analysis, and (3) the possibility of using LANDSAT data for the identification of substances in water. An attempt to extract spectral signatures of acid waste and sediment was successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, Billy C.
The measurement of the radiation characteristics of an antenna on a near-field range requires that the antenna under test be located very close to the near-field probe. Although the direct coupling is utilized for characterizing the near field, this close proximity also presents the opportunity for significant undesired interactions (for example, reflections) to occur between the antenna and the near-field probe. When uncompensated, these additional interactions will introduce error into the measurement, increasing the uncertainty in the final gain pattern obtained through the near-field-to-far-field transformation. Quantifying this gain-uncertainty contribution requires quantifying the various additional interactions. A method incorporating spatial-frequency analysismore » is described which allows the dominant interaction contributions to be easily identified and quantified. In addition to identifying the additional antenna-to-probe interactions, the method also allows identification and quantification of interactions with other nearby objects within the measurement room. Because the method is a spatial-frequency method, wide-bandwidth data is not required, and it can be applied even when data is available at only a single temporal frequency. This feature ensures that the method can be applied to narrow-band antennas, where a similar time-domain analysis would not be possible. - 3 - - 4 -« less
Jahani, Simin; Abedi, Heidarali; Khoshknab, Masoud Fallahi; Elahi, Nasrin
2018-01-01
Background: To respond to the growing and emerging needs of the people in the health sector, the nurses need to develop their working domain from the hospitals to the community and be prepared to provide entrepreneurial roles at different care levels. Thus, to discover how to identify entrepreneurial opportunities in the field of nursing entrepreneurship, a study was conducted with the aim of describing the experiences of Iranian entrepreneurs on the identification of proper opportunities in entrepreneurship. Materials and Methods: This study was a qualitative research in which the Graneheim and Lundman's content analysis was used to collect and analyze the data. Thirteen entrepreneurial nurses were purposefully selected, and the data were collected by unstructured interviews. Results: As a result of data analysis, three main themes were obtained including the resources for opportunity identification and opportunity assessment and identification of proper opportunities. Conclusion: The findings indicate how to identify entrepreneurial opportunities in the field of health by entrepreneurial nurses which is the first step in the entrepreneurial process. Therefore, the findings of this study can be used to educate nurses who are interested in entering the field of nursing entrepreneurship.
Hitting the right target: taxonomic challenges for, and of, plant invasions
Pyšek, Petr; Hulme, Philip E.; Meyerson, Laura A.; Smith, Gideon F.; Boatwright, James S.; Crouch, Neil R.; Figueiredo, Estrela; Foxcroft, Llewellyn C.; Jarošík, Vojtěch; Richardson, David M.; Suda, Jan; Wilson, John R. U.
2013-01-01
This paper explores how a lack of taxonomic expertise, and by implication a dearth of taxonomic products such as identification tools, has hindered progress in understanding and managing biological invasions. It also explores how the taxonomic endeavour could benefit from studies of invasive species. We review the literature on the current situation in taxonomy with a focus on the challenges of identifying alien plant species and explore how this has affected the study of biological invasions. Biosecurity strategies, legislation dealing with invasive species, quarantine, weed surveillance and monitoring all depend on accurate and rapid identification of non-native taxa. However, such identification can be challenging because the taxonomic skill base in most countries is diffuse and lacks critical mass. Taxonomic resources are essential for the effective management of invasive plants and incorrect identifications can impede ecological studies. On the other hand, biological invasions have provided important tests of basic theories about species concepts. Better integration of classical alpha taxonomy and modern genetic taxonomic approaches will improve the accuracy of species identification and further refine taxonomic classification at the level of populations and genotypes in the field and laboratory. Modern taxonomy therefore needs to integrate both classical and new concepts and approaches. In particular, differing points of view between the proponents of morphological and molecular approaches should be negotiated because a narrow taxonomic perspective is harmful; the rigour of taxonomic decision-making clearly increases if insights from a variety of different complementary disciplines are combined and confronted. Taxonomy plays a critical role in the study of plant invasions and in turn benefits from the insights gained from these studies.
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Personal identification by eyes.
Marinović, Dunja; Njirić, Sanja; Coklo, Miran; Muzić, Vedrana
2011-09-01
Identification of persons through the eyes is in the field of biometrical science. Many security systems are based on biometric methods of personal identification, to determine whether a person is presenting itself truly. The human eye contains an extremely large number of individual characteristics that make it particularly suitable for the process of identifying a person. Today, the eye is considered to be one of the most reliable body parts for human identification. Systems using iris recognition are among the most secure biometric systems.
Fast processing of microscopic images using object-based extended depth of field.
Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades
2016-12-22
Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.
What Happened to the Streptococci: Overview of Taxonomic and Nomenclature Changes
Facklam, Richard
2002-01-01
Since the division of the Streptococcus genus into enterococci, lactococci, and streptococci in 1984, many changes in the nomenclature and taxonomy of the Streptococcus genus have taken place. The application of genetic comparisons has improved the proper classification of the different species. The Lancefield system of serogrouping the streptococci by the expression of beta-hemolysis on blood agar plates is still very useful for the identification of streptococci for patient management. The Lancefield grouping system cannot be used in itself for accurate identification of specific beta-hemolytic species, but it can be a useful part of the identification procedure. Except for identification of the “Streptococcus bovis group” of species and Streptococcus suis, Lancefield grouping is of little value in identification of the non-beta-hemolytic streptococci and related genera. In fact, identification of the non-beta-hemolytic species is problematic for conventional as well as commercially available identification procedures. A combination of conventional tests and specific chromogenic tests suggested by several investigators is presented and discussed. Tables are included that suggest tests and procedures to guide investigators attempting to identify all the species. PMID:12364372
Nosewitness Identification: Effects of Lineup Size and Retention Interval.
Alho, Laura; Soares, Sandra C; Costa, Liliana P; Pinto, Elisa; Ferreira, Jacqueline H T; Sorjonen, Kimmo; Silva, Carlos F; Olsson, Mats J
2016-01-01
Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities.
Nosewitness Identification: Effects of Lineup Size and Retention Interval
Alho, Laura; Soares, Sandra C.; Costa, Liliana P.; Pinto, Elisa; Ferreira, Jacqueline H. T.; Sorjonen, Kimmo; Silva, Carlos F.; Olsson, Mats J.
2016-01-01
Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities. PMID:27303317
Warburton, Marilyn L; Williams, William Paul; Hawkins, Leigh; Bridges, Susan; Gresham, Cathy; Harper, Jonathan; Ozkan, Seval; Mylroie, J Erik; Shan, Xueyan
2011-07-01
A public candidate gene testing pipeline for resistance to aflatoxin accumulation or Aspergillus flavus infection in maize is presented here. The pipeline consists of steps for identifying, testing, and verifying the association of selected maize gene sequences with resistance under field conditions. Resources include a database of genetic and protein sequences associated with the reduction in aflatoxin contamination from previous studies; eight diverse inbred maize lines for polymorphism identification within any maize gene sequence; four Quantitative Trait Loci (QTL) mapping populations and one association mapping panel, all phenotyped for aflatoxin accumulation resistance and associated phenotypes; and capacity for Insertion/Deletion (InDel) and SNP genotyping in the population(s) for mapping. To date, ten genes have been identified as possible candidate genes and put through the candidate gene testing pipeline, and results are presented here to demonstrate the utility of the pipeline.
Spectrometric test of a linear array sensor
NASA Technical Reports Server (NTRS)
Brown, Kenneth S.; Kim, Moon S.
1987-01-01
A spectroradiometer which measures spectral reflectivities and irradiance in discrete spectral channels was tested to determine the accuracy of its wavelength calibration. This sensor is a primary tool in the remote sensing investigations conducted on biomass at NASA's Goddard Space Flight Center. Measurements have been collected on crop and forest plants both in the laboratory and field with this radiometer to develop crop identification and plant stress remote sensing techniques. Wavelength calibration is essential for use in referencing the study measurements with those of other investigations and satellite remote sensor data sets. This calibration determines a wavelength vs channel address conversion which was found to have an RMS deviation of approximately half a channel, or 1.5 nm in the range from 360 to 1050 nm. A comparison of these results with those of another test showed an average difference of approximately 4 nm, sufficiently accurate for most investigative work.
Automatic measurement of images on astrometric plates
NASA Astrophysics Data System (ADS)
Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.
1994-04-01
We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).
Assessment of microorganisms from Indonesian Oil Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadarwati, S.; Udiharto, M.; Rahman, M.
1995-12-31
Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms havemore » been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.« less
Greene, Joshua D
2015-02-01
The field of moral cognition has grown rapidly in recent years thanks in no small part to Cognition. Consistent with its interdisciplinary tradition, Cognition encouraged the growth of this field by supporting empirical research conducted by philosophers as well as research native to neighboring fields such as social psychology, evolutionary game theory, and behavioral economics. This research has been exceptionally diverse both in its content and methodology. I argue that this is because morality is unified at the functional level, but not at the cognitive level, much as vehicles are unified by shared function rather than shared mechanics. Research in moral cognition, then, has progressed by explaining the phenomena that we identify as "moral" (for high-level functional reasons) in terms of diverse cognitive components that are not specific to morality. In light of this, research on moral cognition may continue to flourish, not as the identification and characterization of distinctive moral processes, but as a testing ground for theories of high-level, integrative cognitive function. Copyright © 2014 Elsevier B.V. All rights reserved.
Abundance and Spatial Dispersion of Rice Stem Borer Species in Kahama, Tanzania
Leonard, Alfonce; Rwegasira, Gration M.
2015-01-01
Species diversity, abundance, and dispersion of rice stem borers in framer’s fields were studied in four major rice growing areas of Kahama District. Stem borer larvae were extracted from the damaged tillers in 16 quadrants established in each field. Adult Moths were trapped by light traps and collected in vials for identification. Results indicated the presence of Chilo partellus, Maliarpha separatella, and Sesamia calamistis in all study areas. The most abundant species was C. partellus (48.6%) followed by M. separatella (35.4%) and S. calamistis was least abundant (16.1%). Stem borers dispersion was aggregated along the edges of rice fields in three locations (wards) namely: Bulige, Chela, and Ngaya. The dispersion in the fourth ward, Kashishi was uniform as established from two of the three dispersion indices tested. Further studies would be required to establish the available alternative hosts, the extent of economic losses and the distribution of rice stem borers in the rest of the Lake zone of Tanzania. PMID:26411785
Watanabe, K; Hayano, K
1993-07-01
Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.
Development of an International Odor Identification Test for Children: The Universal Sniff Test.
Schriever, Valentin A; Agosin, Eduardo; Altundag, Aytug; Avni, Hadas; Cao Van, Helene; Cornejo, Carlos; de Los Santos, Gonzalo; Fishman, Gad; Fragola, Claudio; Guarneros, Marco; Gupta, Neelima; Hudson, Robyn; Kamel, Reda; Knaapila, Antti; Konstantinidis, Iordanis; Landis, Basile N; Larsson, Maria; Lundström, Johan N; Macchi, Alberto; Mariño-Sánchez, Franklin; Martinec Nováková, Lenka; Mori, Eri; Mullol, Joaquim; Nord, Marie; Parma, Valentina; Philpott, Carl; Propst, Evan J; Rawan, Ahmed; Sandell, Mari; Sorokowska, Agnieszka; Sorokowski, Piotr; Sparing-Paschke, Lisa-Marie; Stetzler, Carolin; Valder, Claudia; Vodicka, Jan; Hummel, Thomas
2018-07-01
To assess olfactory function in children and to create and validate an odor identification test to diagnose olfactory dysfunction in children, which we called the Universal Sniff (U-Sniff) test. This is a multicenter study involving 19 countries. The U-Sniff test was developed in 3 phases including 1760 children age 5-7 years. Phase 1: identification of potentially recognizable odors; phase 2: selection of odorants for the odor identification test; and phase 3: evaluation of the test and acquisition of normative data. Test-retest reliability was evaluated in a subgroup of children (n = 27), and the test was validated using children with congenital anosmia (n = 14). Twelve odors were familiar to children and, therefore, included in the U-Sniff test. Children scored a mean ± SD of 9.88 ± 1.80 points out of 12. Normative data was obtained and reported for each country. The U-Sniff test demonstrated a high test-retest reliability (r 27 = 0.83, P < .001) and enabled discrimination between normosmia and children with congenital anosmia with a sensitivity of 100% and specificity of 86%. The U-Sniff is a valid and reliable method of testing olfaction in children and can be used internationally. Copyright © 2018 Elsevier Inc. All rights reserved.
Masking with faces in central visual field under a variety of temporal schedules.
Daar, Marwan; Wilson, Hugh R
2015-11-01
With a few exceptions, previous studies have explored masking using either a backward mask or a common onset trailing mask, but not both. In a series of experiments, we demonstrate the use of faces in central visual field as a viable method to study the relationship between these two types of mask schedule. We tested observers in a two alternative forced choice face identification task, where both target and mask comprised synthetic faces, and show that a simple model can successfully predict masking across a variety of masking schedules ranging from a backward mask to a common onset trailing mask and a number of intermediate variations. Our data are well accounted for by a window of sensitivity to mask interference that is centered at around 100 ms. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Poldi, G.; Caglio, S.
2013-06-01
The importance of identifying pigments using non invasive (n.i.) analyses has gained increasing importance in the field of spectroscopy applied to art conservation and art studies. Among the large set of pigments synthesized and marketed during 20th century, surely phthalocyanine blue and green pigments occupy an important role in the field of painting (including restoration) and printing, thanks to their characteristics like brightness and fastness. This research focused on the most used phthalocyanine blue (PB15:1 and PB15:3) and green pigments (PG7), and on the possibility to identify these organic compounds using a methodology like reflectance spectroscopy in the UV, visible and near IR range (UV-vis-NIR RS), performed easily through portable instruments. Laboratory tests and three examples carried out on real paintings are discussed.
Shifting from the single- to the multitarget paradigm in drug discovery
Medina-Franco, José L.; Giulianotti, Marc A.; Welmaker, Gregory S.; Houghten, Richard A.
2013-01-01
Increasing evidence that several drug compounds exert their effects through interactions with multiple targets is boosting the development of research fields that challenge the data reductionism approach. In this article, we review and discuss the concepts of drug repurposing, polypharmacology, chemogenomics, phenotypic screening and highthroughput in vivo testing of mixture-based libraries in an integrated manner. These research fields offer alternatives to the current paradigm of drug discovery, from a one target–one drug model to a multiple-target approach. Furthermore, the goals of lead identification are being expanded accordingly to identify not only ‘key’ compounds that fit with a single-target ‘lock’, but also ‘master key’ compounds that favorably interact with multiple targets (i.e. operate a set of desired locks to gain access to the expected clinical effects). PMID:23340113
Iritani, B; Inzana, T J
1988-01-01
Three hundred sixty-six isolates of gram-negative, oxidase-negative bacteria from veterinary specimens were tested by a tube test for identification as Escherichia coli by production within 60 min of indole, beta-galactosidase, and beta-glucuronidase. The test correctly identified 255 of 269 isolates of E. coli (95% sensitivity) and correctly indicated that 97 of 97 isolates were not E. coli (100% specificity). We conclude that production of indole, beta-galactosidase, and beta-glucuronidase as measured by a rapid tube test is useful for identification of E. coli from veterinary specimens. PMID:3128581
Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.
2002-01-01
Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.
NASA Astrophysics Data System (ADS)
Courchesne, Samuel
Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.
An overview of the essential differences and similarities of system identification techniques
NASA Technical Reports Server (NTRS)
Mehra, Raman K.
1991-01-01
Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.
Two methods for transmission line simulation model creation based on time domain measurements
NASA Astrophysics Data System (ADS)
Rinas, D.; Frei, S.
2011-07-01
The emission from transmission lines plays an important role in the electromagnetic compatibility of automotive electronic systems. In a frequency range below 200 MHz radiation from cables is often the dominant emission factor. In higher frequency ranges radiation from PCBs and their housing becomes more relevant. Main sources for this emission are the conducting traces. The established field measurement methods according CISPR 25 for evaluation of emissions suffer from the need to use large anechoic chambers. Furthermore measurement data can not be used for simulation model creation in order to compute the overall fields radiated from a car. In this paper a method to determine the far-fields and a simulation model of radiating transmission lines, esp. cable bundles and conducting traces on planar structures, is proposed. The method measures the electromagnetic near-field above the test object. Measurements are done in time domain in order to get phase information and to reduce measurement time. On the basis of near-field data equivalent source identification can be done. Considering correlations between sources along each conductive structure in model creation process, the model accuracy increases and computational costs can be reduced.
Weikl, F; Radl, V; Munch, J C; Pritsch, K
2015-10-01
Fungi are, after pollen, the second most important producers of outdoor airborne allergens. To identify sources of airborne fungal allergens, a workflow for qPCR quantification from environmental samples was developed, thoroughly tested, and finally applied. We concentrated on determining the levels of allergenic fungi belonging to Alternaria, Cladosporium, Fusarium, and Trichoderma in plant and soil samples from agricultural fields in which cereals were grown. Our aims were to identify the major sources of allergenic fungi and factors potentially influencing their occurrence. Plant materials were the main source of the tested fungi at and after harvest. Amounts of A. alternata and C. cladosporioides varied significantly in fields under different management conditions, but absolute levels were very high in all cases. This finding suggests that high numbers of allergenic fungi may be an inevitable side effect of farming in several crops. Applied in large-scale studies, the concept described here may help to explain the high number of sensitization to airborne fungal allergens. Copyright © 2015 Elsevier B.V. All rights reserved.
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
21 CFR 886.1360 - Visual field laser instrument.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Visual field laser instrument. 886.1360 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1360 Visual field laser instrument. (a) Identification. A visual field laser instrument is an AC-powered device intended to provide...
Vegetation analysis in the Laramie Basin, Wyoming from ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Evans, M. A.; Redfern, F. R.
1973-01-01
The author has identified the following significant results. The application of ERTS-1 imagery to vegetation mapping and identification was tested and confirmed by field checking. ERTS-1 imagery interpretation and density contour mapping allows definition of minute vegetation features and estimation of vegetative biomass and species composition. Large- and small-scale vegetation maps were constructed for test areas in the Laramie Basin and Laramie mountains of Wyoming. Vegetative features reflecting grazing intensity, moisture availability, changes within the growing season, cutting of hay crops, and plant community constituents in forest and grassland are discussed and illustrated. Theoretical considerations of scattering, sun angle, slope, and instrument aperture upon image and map resolution were investigated. Future suggestions for applications of ERTS-1 data to vegetative analysis are included.
Practical Issues in Implementing Software Reliability Measurement
NASA Technical Reports Server (NTRS)
Nikora, Allen P.; Schneidewind, Norman F.; Everett, William W.; Munson, John C.; Vouk, Mladen A.; Musa, John D.
1999-01-01
Many ways of estimating software systems' reliability, or reliability-related quantities, have been developed over the past several years. Of particular interest are methods that can be used to estimate a software system's fault content prior to test, or to discriminate between components that are fault-prone and those that are not. The results of these methods can be used to: 1) More accurately focus scarce fault identification resources on those portions of a software system most in need of it. 2) Estimate and forecast the risk of exposure to residual faults in a software system during operation, and develop risk and safety criteria to guide the release of a software system to fielded use. 3) Estimate the efficiency of test suites in detecting residual faults. 4) Estimate the stability of the software maintenance process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willoner, T.; Turlington, R.; Koenig, R.
The U.S. Department of Energy (DOE) (Environmental Management [EM], Office of Packaging and Transportation [EM-45]) Packaging and Certification Program (DOE PCP) has developed a Radio Frequency Identification (RFID) tracking and monitoring system, called ARG-US, for the management of nuclear materials packages during transportation and storage. The performance of the ARG-US RFID equipment and system has been fully tested in two demonstration projects in April 2008 and August 2009. With the strong support of DOE-SR and DOE PCP, a field testing program was completed in Savannah River Site's K-Area Material Storage (KAMS) Facility, an active Category I Plutonium Storage Facility, inmore » 2010. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault for operational testing. This latest version (Mark III) of the Argonne RFID system now has the capability to measure radiation dose and dose rate. This paper will report field testing progress of the ARG-US RFID equipment in KAMS, the operability and reliability trend results associated with the applications of the system, and discuss the potential benefits in enhancing safety, security and materials accountability. The purpose of this Phase II K Area test is to verify the accuracy of the radiation monitoring and proper functionality of the ARG-US RFID equipment and system under a realistic environment in the KAMS facility. Deploying the ARG-US RFID system leads to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including environmental condition monitoring and radiation monitoring. The successful completion of the testing program will provide field data to support a future development and testing. This will increase Operation efficiency and cost effectiveness for vault operation. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault. Deploying the ARG-US RFID system lends to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including radiation and environmental monitoring. The successful completion of the testing program will provide field data to support future development and testing.« less
Identification of Load Categories in Rotor System Based on Vibration Analysis
Yang, Zhaojian
2017-01-01
Rotating machinery is often subjected to variable loads during operation. Thus, monitoring and identifying different load types is important. Here, five typical load types have been qualitatively studied for a rotor system. A novel load category identification method for rotor system based on vibration signals is proposed. This method is a combination of ensemble empirical mode decomposition (EEMD), energy feature extraction, and back propagation (BP) neural network. A dedicated load identification test bench for rotor system was developed. According to loads characteristics and test conditions, an experimental plan was formulated, and loading tests for five loads were conducted. Corresponding vibration signals of the rotor system were collected for each load condition via eddy current displacement sensor. Signals were reconstructed using EEMD, and then features were extracted followed by energy calculations. Finally, characteristics were input to the BP neural network, to identify different load types. Comparison and analysis of identifying data and test data revealed a general identification rate of 94.54%, achieving high identification accuracy and good robustness. This shows that the proposed method is feasible. Due to reliable and experimentally validated theoretical results, this method can be applied to load identification and fault diagnosis for rotor equipment used in engineering applications. PMID:28726754
NASA Technical Reports Server (NTRS)
Head, J. W., III (Principal Investigator)
1982-01-01
Analysis of HCMM data shows that the resolution provided by the thermal data is inadequate to permit the identification of individual lava flows within the volcanic test sites. Thermal data of southern California reveals that dune complexes at Kelso and Algodomes are found to be too small to permit adequate investigation of their structure. As part of the study of the San Francisco volcanic field, marked variations in the thermal properties of the region between Flagstaff and the Utah State border were observed. Several well-defined units within the Grand Canyon and the Colorado Plateau were recognized and appear to be very suitable for analysis with HCMM, SEASAT and LANDSAT images. Although individual volcanic constructs within the Cascade Range are too small to permit detailed characterization with the thermal data, the regional volcano/tectonic setting offers a good opportunity for comparing the possible thermal distinction between this area and sedimentary fold belts such as those found in the eastern United States. Strong intra-regional variations in vegetation cover were also tentatively identified for the Oregon test site.
Satellite angular velocity estimation based on star images and optical flow techniques.
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-09-25
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.
Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques
Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele
2013-01-01
An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023
Rapid identification of Corynebacterium vaginale in non-purulent vaginitis.
Wells, J I; Goei, S H
1981-01-01
A simple set of tests is proposed to give excellent probability for the identification of Corynebacterium vaginale from clinical material. Using these tests, 380 C vaginale were isolated from genital tract specimens from 1402 patients. Of these isolates 70 were from symptomatic patients. These 70 isolates were subjected to a further set of tests to confirm their identity. The advantage of these primary tests is that they can be completed on the day of isolation of the organism. Of these 70 isolates 66 were confirmed as C vaginale thus giving the primary set of tests a 94% rate of accurate identification. However this rate may be increased beyond 97% by the promotion of one of the key secondary tests to the primary set. PMID:7024317
Ewart, Kyle M; Frankham, Greta J; McEwing, Ross; Webster, Lucy M I; Ciavaglia, Sherryn A; Linacre, Adrian M T; The, Dang Tat; Ovouthan, Kanitia; Johnson, Rebecca N
2018-01-01
Rhinoceros (rhino) numbers have dwindled substantially over the past century. As a result, three of the five species are now considered to be critically endangered, one species is vulnerable and one species is near-threatened. Poaching has increased dramatically over the past decade due to a growing demand for rhino horn products, primarily in Asia. Improved wildlife forensic techniques, such as validated tests for species identification of seized horns, are critical to aid current enforcement and prosecution efforts and provide a deterrent to future rhino horn trafficking. Here, we present an internationally standardized species identification test based on a 230 base pair cytochrome-b region. This test improves on previous nested PCR protocols and can be used for the discrimination of samples with <20pg of template DNA, thus suitable for DNA extracted from horn products. The assay was designed to amplify water buffalo samples, a common 'rhino horn' substitute, but to exclude human DNA, a common contaminant. Phylogenetic analyses using this partial cytochrome-b region resolved the five extant rhino species. Testing successfully returned a sequence and correct identification for all of the known rhino horn samples and vouchered rhino samples from museum and zoo collections, and provided species level identification for 47 out of 52 unknown samples from seizures. Validation and standardization was carried out across five different laboratories, in four different countries, demonstrating it to be an effective and reproducible test, robust to inter laboratory variation in equipment and consumables (such as PCR reagents). This is one of the first species identification tests to be internationally standardized to produce data for evidential proceedings and the first published validated test for rhinos, one of the flagship species groups of the illegal wildlife trade and for which forensic tools are urgently required. This study serves as a model for how species identification tests should be standardized and disseminated for wildlife forensic testing. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Critical overview of applications of genetic testing in sport talent identification.
Roth, Stephen M
2012-12-01
Talent identification for future sport performance is of paramount interest for many groups given the challenges of finding and costs of training potential elite athletes. Because genetic factors have been implicated in many performance- related traits (strength, endurance, etc.), a natural inclination is to consider the addition of genetic testing to talent identification programs. While the importance of genetic factors to sport performance is generally not disputed, whether genetic testing can positively inform talent identification is less certain. The present paper addresses the science behind the genetic tests that are now commercially available (some under patent protection) and aimed at predicting future sport performance potential. Also discussed are the challenging ethical issues that emerge from the availability of these tests. The potential negative consequences associated with genetic testing of young athletes will very likely outweigh any positive benefit for sport performance prediction at least for the next several years. The paper ends by exploring the future possibilities for genetic testing as the science of genomics in sport matures over the coming decade(s).
High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft
NASA Astrophysics Data System (ADS)
Kumamoto, Atsushi; Tsuchiya, Fuminori; Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Imachi, Tomohiko; Ozaki, Mitsunori; Matsuda, Shoya; Shoji, Masafumi; Matsuoka, Aayako; Katoh, Yuto; Miyoshi, Yoshizumi; Obara, Takahiro
2018-05-01
The High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment onboard the Arase (ERG) spacecraft. The main purposes of the HFA include (1) determining the electron number density around the spacecraft from observations of upper hybrid resonance (UHR) waves, (2) measuring the electromagnetic field component of whistler-mode chorus in a frequency range above 20 kHz, and (3) observing radio and plasma waves excited in the storm-time magnetosphere. Two components of AC electric fields detected by Wire Probe Antenna and one component of AC magnetic fields detected by Magnetic Search Coils are fed to the HFA. By applying analog and digital signal processing in the HFA, the spectrograms of two electric fields (EE mode) or one electric field and one magnetic field (EB mode) in a frequency range from 10 kHz to 10 MHz are obtained at an interval of 8 s. For the observation of plasmapause, the HFA can also be operated in PP (plasmapause) mode, in which spectrograms of one electric field component below 1 MHz are obtained at an interval of 1 s. In the initial HFA operations from January to July, 2017, the following results are obtained: (1) UHR waves, auroral kilometric radiation (AKR), whistler-mode chorus, electrostatic electron cyclotron harmonic waves, and nonthermal terrestrial continuum radiation were observed by the HFA in geomagnetically quiet and disturbed conditions. (2) In the test operations of the polarization observations on June 10, 2017, the fundamental R-X and L-O mode AKR and the second-harmonic R-X mode AKR from different sources in the northern polar region were observed. (3) The semiautomatic UHR frequency identification by the computer and a human operator was applied to the HFA spectrograms. In the identification by the computer, we used an algorithm for narrowing down the candidates of UHR frequency by checking intensity and bandwidth. Then, the identified UHR frequency by the computer was checked and corrected if needed by the human operator. Electron number density derived from the determined UHR frequency will be useful for the investigation of the storm-time evolution of the plasmasphere and topside ionosphere.[Figure not available: see fulltext.
Crosland, Paul; Maconachie, Ross; Buckner, Sara; McGuire, Hugh; Humphries, Steve E; Qureshi, Nadeem
2018-05-17
The cost effectiveness of cascade testing for familial hypercholesterolaemia (FH) is well recognised. Less clear is the cost effectiveness of FH screening when it includes case identification strategies that incorporate routinely available data from primary and secondary care electronic health records. Nine strategies were compared, all using cascade testing in combination with different index case approaches (primary care identification, secondary care identification, and clinical assessment using the Simon Broome (SB) or Dutch Lipid Clinic Network (DLCN) criteria). A decision analytic model was informed by three systematic literature reviews and expert advice provided by a NICE Guideline Committee. The model found that the addition of primary care case identification by database search for patients with recorded total cholesterol >9.3 mmol/L was more cost effective than cascade testing alone. The incremental cost-effectiveness ratio (ICER) of clinical assessment using the DLCN criteria was £3254 per quality-adjusted life year (QALY) compared with case-finding with no genetic testing. The ICER of clinical assessment using the SB criteria was £13,365 per QALY (compared with primary care identification using the DLCN criteria), indicating that the SB criteria was preferred because it achieved additional health benefits at an acceptable cost. Secondary care identification, with either the SB or DLCN criteria, was not cost effective, alone (dominated and dominated respectively) or combined with primary care identification (£63, 514 per QALY, and £82,388 per QALY respectively). Searching primary care databases for people at high risk of FH followed by cascade testing is likely to be cost-effective. Copyright © 2018 Elsevier B.V. All rights reserved.
DNA sequence database as a tool to identify decapod crustaceans on the São Paulo coastline.
Mantelatto, Fernando L; Terossi, Mariana; Negri, Mariana; Buranelli, Raquel C; Robles, Rafael; Magalhães, Tatiana; Tamburus, Ana Francisca; Rossi, Natália; Miyazaki, Mayara J
2017-09-05
DNA barcoding has emerged as an efficient tool for taxonomy and other biodiversity fields. The vast and speciose group of decapod crustaceans is not an exception in the current scenario and comparing short DNA fragments has enabled researchers to overcome some taxonomic impediments to help broadening knowledge on the diversity of this group of crustaceans. Brazil is considered as an important area in terms of global marine biodiversity and some regions stand out in terms of decapod fauna, such as the São Paulo coastline. Thus, the aim of this study is to obtain sequences of the mitochondrial markers (COI and 16S) for decapod crustaceans distributed at the São Paulo coastline and to test the accuracy of these markers for species identification from this region by comparing our sequences to those already present in the GenBank database. We sampled along almost the 300 km of the São Paulo coastline from estuaries to offshore islands during the development of a multidisciplinary research project that took place for 5 years. All the species were processed to obtain the DNA sequences. The diversity of the decapod fauna on the São Paulo coastline comprises at least 404 species. We were able to collect 256 of those species and sequence of at least one of the target genes from 221. By testing the accuracy of these two DNA markers as a tool for identification, we were able to check our own identifications, including new records in GenBank, spot potential mistakes in GenBank, and detect potential new species.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
NASA Technical Reports Server (NTRS)
Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.
2015-01-01
High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.
Plant Taxonomy as a Field Study
ERIC Educational Resources Information Center
Dalby, D. H.
1970-01-01
Suggests methods of teaching plant identification and taxonomic theory using keys, statistical analyses, and biometrics. Population variation, genotype- environment interaction and experimental taxonomy are used in laboratory and field. (AL)
Identification of a Group's Physiological Synchronization with Earth's Magnetic Field.
Timofejeva, Inga; McCraty, Rollin; Atkinson, Mike; Joffe, Roza; Vainoras, Alfonsas; Alabdulgader, Abdullah A; Ragulskis, Minvydas
2017-09-01
A new analysis technique for the evaluation of the degree of synchronization between the physiological state of a group of people and changes in the Earth's magnetic field based on their cardiac inter-beat intervals was developed and validated. The new analysis method was then used to identify clusters of similar synchronization patterns in a group of 20 individuals over a two-week period. The algorithm for the identification of slow wave dynamics for every person was constructed in order to determine meaningful interrelationships between the participants and the local magnetic field data. The results support the hypothesis that the slow wave rhythms in heart rate variability can synchronize with changes in local magnetic field data, and that the degree of synchronization is affected by the quality of interpersonal relationships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.
2016-06-01
In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less
A touch probe method of operating an implantable RFID tag for orthopedic implant identification.
Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H
2013-06-01
The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.
Challenges and Insights in Using HIPAA Privacy Rule for Clinical Text Annotation.
Kayaalp, Mehmet; Browne, Allen C; Sagan, Pamela; McGee, Tyne; McDonald, Clement J
2015-01-01
The Privacy Rule of Health Insurance Portability and Accountability Act (HIPAA) requires that clinical documents be stripped of personally identifying information before they can be released to researchers and others. We have been manually annotating clinical text since 2008 in order to test and evaluate an algorithmic clinical text de-identification tool, NLM Scrubber, which we have been developing in parallel. Although HIPAA provides some guidance about what must be de-identified, translating those guidelines into practice is not as straightforward, especially when one deals with free text. As a result we have changed our manual annotation labels and methods six times. This paper explains why we have made those annotation choices, which have been evolved throughout seven years of practice on this field. The aim of this paper is to start a community discussion towards developing standards for clinical text annotation with the end goal of studying and comparing clinical text de-identification systems more accurately.
Li, Zhenping; Zhang, Xiang-Sun; Wang, Rui-Sheng; Liu, Hongwei; Zhang, Shihua
2013-01-01
Identification of communities in complex networks is an important topic and issue in many fields such as sociology, biology, and computer science. Communities are often defined as groups of related nodes or links that correspond to functional subunits in the corresponding complex systems. While most conventional approaches have focused on discovering communities of nodes, some recent studies start partitioning links to find overlapping communities straightforwardly. In this paper, we propose a new quantity function for link community identification in complex networks. Based on this quantity function we formulate the link community partition problem into an integer programming model which allows us to partition a complex network into overlapping communities. We further propose a genetic algorithm for link community detection which can partition a network into overlapping communities without knowing the number of communities. We test our model and algorithm on both artificial networks and real-world networks. The results demonstrate that the model and algorithm are efficient in detecting overlapping community structure in complex networks. PMID:24386268
Monterey Bay study. [analysis of Landsat 1 multispectral band scanner data
NASA Technical Reports Server (NTRS)
Bizzell, R. M.; Wade, L. C.
1975-01-01
The multispectral scanner capabilities of LANDSAT 1 were tested over California's Monterey Bay area and portions of the San Joaquin Valley. Using both computer aided and image interpretive processing techniques, the LANDSAT 1 data were analyzed to determine their potential application in terms of land use and agriculture. Utilizing LANDSAT 1 data, analysts were able to provide the identifications and areal extent of the individual land use categories ranging from very general to highly specific levels (e.g., from agricultural lands to specific field crop types and even the different stages of growth). It is shown that the LANDSAT system is useful in the identification of major crop species and the delineation of numerous land use categories on a global basis and that repeated surveillance would permit the monitoring of changes in seasonal growth characteristics of crops as well as the assessment of various cultivation practices with a minimum of onsite observation. The LANDSAT system is demonstrated to be useful in the planning and development of resource programs on earth.
NASA Astrophysics Data System (ADS)
Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.
2018-05-01
In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.
30 CFR 18.14 - Identification of tested noncertified explosion-proof enclosures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identification of tested noncertified explosion-proof enclosures. 18.14 Section 18.14 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2014 CFR
2014-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2013 CFR
2013-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
40 CFR Appendix I to Part 204 - Appendix I to Part 204
Code of Federal Regulations, 2012 CFR
2012-07-01
... plane composition: Operating speed as tested: Beginning of test rpm End of test rpm Air pressure... acceptance not permitted for this number of batches. Table IV—Recommended Format for Portable Air Compressor... capacity: cfm (m3/in). Configuration identification: Category identification: Portable air compressor...
Kim, Jae-Seok; Kang, Go-Eun; Kim, Han-Sung; Kim, Hyun Soo; Song, Wonkeun; Lee, Kyu Man
2016-01-01
The performance of molecular tests using the Verigene Gram-Positive and Gram-Negative Blood Culture nucleic acid tests (BC-GP and BC-GN, resp.; Naosphere, Northbrook, IL, USA) was evaluated for the identification of microorganisms detected from blood cultures. Ninety-nine blood cultures containing Gram-positive bacteria and 150 containing Gram-negative bacteria were analyzed using the BC-GP and BC-GN assays, respectively. Blood cultures were performed using the Bactec blood culture system (BD Diagnostic Systems, Franklin Lakes, NJ, USA) and conventional identification and antibiotic-susceptibility tests were performed using a MicroScan system (Siemens, West Sacramento, CA, USA). When a single strain of bacteria was isolated from the blood culture, Verigene assays correctly identified 97.9% (94/96) of Gram-positive bacteria and 93.8% (137/146) of Gram-negative bacteria. Resistance genes mecA and vanA were correctly detected by the BC-GP assay, while the extended-spectrum β-lactamase CTX-M and the carbapenemase OXA resistance gene were detected from 30 cases cultures by the BC-GN assay. The BC-GP and BC-GN assays showed high agreement with conventional identification and susceptibility tests. These tests are useful for rapid identification of microorganisms and the detection of clinically important resistance genes from positive Bactec blood cultures.
Learning Data Set Influence on Identification Accuracy of Gas Turbine Neural Network Model
NASA Astrophysics Data System (ADS)
Kuznetsov, A. V.; Makaryants, G. M.
2018-01-01
There are many gas turbine engine identification researches via dynamic neural network models. It should minimize errors between model and real object during identification process. Questions about training data set processing of neural networks are usually missed. This article presents a study about influence of data set type on gas turbine neural network model accuracy. The identification object is thermodynamic model of micro gas turbine engine. The thermodynamic model input signal is the fuel consumption and output signal is the engine rotor rotation frequency. Four types input signals was used for creating training and testing data sets of dynamic neural network models - step, fast, slow and mixed. Four dynamic neural networks were created based on these types of training data sets. Each neural network was tested via four types test data sets. In the result 16 transition processes from four neural networks and four test data sets from analogous solving results of thermodynamic model were compared. The errors comparison was made between all neural network errors in each test data set. In the comparison result it was shown error value ranges of each test data set. It is shown that error values ranges is small therefore the influence of data set types on identification accuracy is low.
Everett, Jeremy R.
2015-01-01
A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field. PMID:25750701
Everett, Jeremy R
2015-01-01
A new paradigm is proposed for assessing confidence in the identification of known metabolites in metabonomics studies using NMR spectroscopy approaches. This new paradigm is based upon the analysis of the amount of metabolite identification information retrieved from NMR spectra relative to the molecular size of the metabolite. Several new indices are proposed including: metabolite identification efficiency (MIE) and metabolite identification carbon efficiency (MICE), both of which can be easily calculated. These indices, together with some guidelines, can be used to provide a better indication of known metabolite identification confidence in metabonomics studies than existing methods. Since known metabolite identification in untargeted metabonomics studies is one of the key bottlenecks facing the science currently, it is hoped that these concepts based on molecular spectroscopic informatics, will find utility in the field.
Thermographic identification of wetted insulation on pipelines in the arctic oilfields
NASA Astrophysics Data System (ADS)
Miles, Jonathan J.; Dahlquist, A. L.; Dash, L. C.
2006-04-01
Steel pipes used at Alaskan oil-producing facilities to transport production crude, gas, and injection water between well house and drill site manifold building, and along cross-country lines to and from central processing facilities, must be insulated in order to protect against the severely cold temperatures that are common during the arctic winter. A problem inherent with this system is that the sealed joints between adjacent layers of the outer wrap will over time degrade and can allow water to breach the system and migrate into and through the insulation. The moisture can ultimately interact with the steel pipe and trigger external corrosion which, if left unchecked, can lead to pipe failure and spillage. A New Technology Evaluation Guideline prepared for ConocoPhillips Alaska, Inc. in 2001 is intended to guide the consideration of new technologies for pipeline inspection in a manner that is safer, faster, and more cost-effective than existing techniques. Infrared thermography (IRT) was identified as promising for identification of wetted insulation regions given that it offers the means to scan a large area quickly from a safe distance, and measure the temperature field associated with that area. However, it was also recognized that there are limiting factors associated with an IRT-based approach including instrument sensitivity, cost, portability, functionality in hostile (arctic) environments, and training required for proper interpretation of data. A methodology was developed and tested in the field that provides a technique to conduct large-scale screening for wetted regions along insulated pipelines. The results of predictive modeling analysis and testing demonstrate the feasibility under certain condition of identifying wetted insulation areas. The results of the study and recommendations for implementation are described.
Development of a model system to identify differences in spring and winter oat.
Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof
2012-01-01
Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.
Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples
Schneider, Judith; Valentini, Alice; Dejean, Tony; Montarsi, Fabrizio; Taberlet, Pierre
2016-01-01
Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects. PMID:27626642
Detection of Invasive Mosquito Vectors Using Environmental DNA (eDNA) from Water Samples.
Schneider, Judith; Valentini, Alice; Dejean, Tony; Montarsi, Fabrizio; Taberlet, Pierre; Glaizot, Olivier; Fumagalli, Luca
2016-01-01
Repeated introductions and spread of invasive mosquito species (IMS) have been recorded on a large scale these last decades worldwide. In this context, members of the mosquito genus Aedes can present serious risks to public health as they have or may develop vector competence for various viral diseases. While the Tiger mosquito (Aedes albopictus) is a well-known vector for e.g. dengue and chikungunya viruses, the Asian bush mosquito (Ae. j. japonicus) and Ae. koreicus have shown vector competence in the field and the laboratory for a number of viruses including dengue, West Nile fever and Japanese encephalitis. Early detection and identification is therefore crucial for successful eradication or control strategies. Traditional specific identification and monitoring of different and/or cryptic life stages of the invasive Aedes species based on morphological grounds may lead to misidentifications, and are problematic when extensive surveillance is needed. In this study, we developed, tested and applied an environmental DNA (eDNA) approach for the detection of three IMS, based on water samples collected in the field in several European countries. We compared real-time quantitative PCR (qPCR) assays specific for these three species and an eDNA metabarcoding approach with traditional sampling, and discussed the advantages and limitations of these methods. Detection probabilities for eDNA-based approaches were in most of the specific comparisons higher than for traditional survey and the results were congruent between both molecular methods, confirming the reliability and efficiency of alternative eDNA-based techniques for the early and unambiguous detection and surveillance of invasive mosquito vectors. The ease of water sampling procedures in the eDNA approach tested here allows the development of large-scale monitoring and surveillance programs of IMS, especially using citizen science projects.
Trace Contraband Detection Field-Test by the South Texas Specialized Crimes and Narcotics Task Force
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannum, David W.; Shannon, Gary W.
This report describes the collaboration between the South Texas Specialized Crimes and Narcotics Task Force (STSCNTF) and Sandia National Laboratories (SNL) in a field test that provided prototype hand-held trace detection technology for use in counter-drug operations. The National Institute of Justice (NIJ)/National Law Enforcement and Corrections Technology Center (NLECTC)/Border Research and Technology Center (BRTC) was contacted by STSCNTF for assistance in obtaining cutting-edge technology. The BRTC created a pilot project for Sandia National Laboratories (SNL) and the STSCNTF for the use of SNL’s Hound, a hand-held sample collection and preconcentration system that, when combined with a commercial chemical detector,more » can be used for the trace detection of illicit drugs and explosives. The STSCNTF operates in an area of high narcotics trafficking where methods of concealment make the detection of narcotics challenging. Sandia National Laboratories’ (SNL) Contraband Detection Department personnel provided the Hound system hardware and operational training. The Hound system combines the GE VaporTracer2, a hand-held commercial chemical detector, with an SNL-developed sample collection and preconcentration system. The South Texas Task force reported a variety of successes, including identification of a major shipment of methamphetamines, the discovery of hidden compartments in vehicles that contained illegal drugs and currency used in drug deals, and the identification of a suspect in a nightclub shooting. The main advantage of the hand-held trace detection unit is its ability to quickly identify the type of chemical (drugs or explosives) without a long lag time for laboratory analysis, which is the most common analysis method for current law enforcement procedures.« less
Abraham, Tintu; Sistla, Sujatha
2016-07-01
Traditionally Group A Streptococcus pyogenes (GAS) is differentiated from other beta haemolytic streptococci (BHS) by certain presumptive tests such as bacitracin sensitivity and production of Pyrollidonyl Aryl Sulfatase (PYR). The phenotypic and genotypic confirmatory tests are Lancefield grouping for cell wall carbohydrate antigen and PCR for spy1258 gene respectively. Reliance on presumptive tests alone may lead to misidentification of isolates. To compare the predictive values of routine phenotypic tests with spy1258 PCR for the identification of Streptococcus pyogenes. This comparative analytical study was carried out in the Department of Microbiology, JIPMER, Puducherry, over a period of 18 months (1(st) November 2013 to 30(th) April 2015). Two hundred and six consecutive BHS isolates from various clinical samples were subjected to phenotypic tests such as bacitracin sensitivity, PYR test and Lancefield grouping. The results were compared with spy1258 PCR which was considered 95 the confirmatory test for identification. The sensitivity and specificity of phenotypic tests were as follows; Susceptibility to bacitracin - 95.42%, 70.96%, PYR test - 95.42%, 77.41%, Lancefield grouping- 97.71%, 80.64%. Clinical laboratories should not depend on bacitracin sensitivity as a single presumptive test for the routine identification of GAS but should use supplemental tests such as PYR test or latex agglutination test and for best results use spy1258 PCR.
Towards de novo identification of metabolites by analyzing tandem mass spectra.
Böcker, Sebastian; Rasche, Florian
2008-08-15
Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms
Pacheco, Luis G C; Mattos-Guaraldi, Ana L; Santos, Carolina S; Veras, Adonney A O; Guimarães, Luis C; Abreu, Vinícius; Pereira, Felipe L; Soares, Siomar C; Dorella, Fernanda A; Carvalho, Alex F; Leal, Carlos G; Figueiredo, Henrique C P; Ramos, Juliana N; Vieira, Veronica V; Farfour, Eric; Guiso, Nicole; Hirata, Raphael; Azevedo, Vasco; Silva, Artur; Ramos, Rommel T J
2015-01-01
Non-diphtheriae Corynebacterium species have been increasingly recognized as the causative agents of infections in humans. Differential identification of these bacteria in the clinical microbiology laboratory by the most commonly used biochemical tests is challenging, and normally requires additional molecular methods. Herein, we present the annotated draft genome sequences of two isolates of "difficult-to-identify" human-pathogenic corynebacterial species: C. xerosis and C. minutissimum. The genome sequences of ca. 2.7 Mbp, with a mean number of 2,580 protein encoding genes, were also compared with the publicly available genome sequences of strains of C. amycolatum and C. striatum. These results will aid the exploration of novel biochemical reactions to improve existing identification tests as well as the development of more accurate molecular identification methods through detection of species-specific target genes for isolate's identification or drug susceptibility profiling.
Van de Vossenberg, B T L H; Van der Straten, M J
2014-08-01
The genus Spodoptera comprises 31 species, 4 of which are listed as quarantine pests for the European Union: Spodoptera eridania (Cramer), Spodoptera frugiperda (Smith), Spodoptera littoralis (Boisduval), and Spodoptera litura (F.). In international trade, the earlier life stages (eggs and larvae) are being intercepted at point of inspection most frequently, challenging the possibilities of morphological identification. To realize a rapid and reliable identification for all stages, we developed and validated four simplex real-time polymerase chain reaction identification tests based on the mitochondrial cytochrome b gene using dual-labeled hydrolysis probes. Method validation on dilutions of extracted DNA of the target organisms showed that low levels of template (up to 0.2-100 pg) can reliably be identified. No cross-reactivity was observed with 14 nontarget Spodoptera and 5 non-Spodoptera species in the specific Spodoptera tests. The tests showed to be repeatable, reproducible (both 100%), and robust. The new Spodoptera tests have proven to be suitable tools for routine identification of all life stages of S. eridania, S. frugiperda, S. littoralis, and S. litura.