[Study on the automatic parameters identification of water pipe network model].
Jia, Hai-Feng; Zhao, Qi-Feng
2010-01-01
Based on the problems analysis on development and application of water pipe network model, the model parameters automatic identification is regarded as a kernel bottleneck of model's application in water supply enterprise. The methodology of water pipe network model parameters automatic identification based on GIS and SCADA database is proposed. Then the kernel algorithm of model parameters automatic identification is studied, RSA (Regionalized Sensitivity Analysis) is used for automatic recognition of sensitive parameters, and MCS (Monte-Carlo Sampling) is used for automatic identification of parameters, the detail technical route based on RSA and MCS is presented. The module of water pipe network model parameters automatic identification is developed. At last, selected a typical water pipe network as a case, the case study on water pipe network model parameters automatic identification is conducted and the satisfied results are achieved.
Modeling of Biometric Identification System Using the Colored Petri Nets
NASA Astrophysics Data System (ADS)
Petrosyan, G. R.; Ter-Vardanyan, L. A.; Gaboutchian, A. V.
2015-05-01
In this paper we present a model of biometric identification system transformed into Petri Nets. Petri Nets, as a graphical and mathematical tool, provide a uniform environment for modelling, formal analysis, and design of discrete event systems. The main objective of this paper is to introduce the fundamental concepts of Petri Nets to the researchers and practitioners, both from identification systems, who are involved in the work in the areas of modelling and analysis of biometric identification types of systems, as well as those who may potentially be involved in these areas. In addition, the paper introduces high-level Petri Nets, as Colored Petri Nets (CPN). In this paper the model of Colored Petri Net describes the identification process much simpler.
Model Identification in Time-Series Analysis: Some Empirical Results.
ERIC Educational Resources Information Center
Padia, William L.
Model identification of time-series data is essential to valid statistical tests of intervention effects. Model identification is, at best, inexact in the social and behavioral sciences where one is often confronted with small numbers of observations. These problems are discussed, and the results of independent identifications of 130 social and…
Global Sensitivity Analysis for Process Identification under Model Uncertainty
NASA Astrophysics Data System (ADS)
Ye, M.; Dai, H.; Walker, A. P.; Shi, L.; Yang, J.
2015-12-01
The environmental system consists of various physical, chemical, and biological processes, and environmental models are always built to simulate these processes and their interactions. For model building, improvement, and validation, it is necessary to identify important processes so that limited resources can be used to better characterize the processes. While global sensitivity analysis has been widely used to identify important processes, the process identification is always based on deterministic process conceptualization that uses a single model for representing a process. However, environmental systems are complex, and it happens often that a single process may be simulated by multiple alternative models. Ignoring the model uncertainty in process identification may lead to biased identification in that identified important processes may not be so in the real world. This study addresses this problem by developing a new method of global sensitivity analysis for process identification. The new method is based on the concept of Sobol sensitivity analysis and model averaging. Similar to the Sobol sensitivity analysis to identify important parameters, our new method evaluates variance change when a process is fixed at its different conceptualizations. The variance considers both parametric and model uncertainty using the method of model averaging. The method is demonstrated using a synthetic study of groundwater modeling that considers recharge process and parameterization process. Each process has two alternative models. Important processes of groundwater flow and transport are evaluated using our new method. The method is mathematically general, and can be applied to a wide range of environmental problems.
Automated Drug Identification for Urban Hospitals
NASA Technical Reports Server (NTRS)
Shirley, Donna L.
1971-01-01
Many urban hospitals are becoming overloaded with drug abuse cases requiring chemical analysis for identification of drugs. In this paper, the requirements for chemical analysis of body fluids for drugs are determined and a system model for automated drug analysis is selected. The system as modeled, would perform chemical preparation of samples, gas-liquid chromatographic separation of drugs in the chemically prepared samples, infrared spectrophotometric analysis of the drugs, and would utilize automatic data processing and control for drug identification. Requirements of cost, maintainability, reliability, flexibility, and operability are considered.
Recent literature on structural modeling, identification, and analysis
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1990-01-01
The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.
An AI-based approach to structural damage identification by modal analysis
NASA Technical Reports Server (NTRS)
Glass, B. J.; Hanagud, S.
1990-01-01
Flexible-structure damage is presently addressed by a combined model- and parameter-identification approach which employs the AI methodologies of classification, heuristic search, and object-oriented model knowledge representation. The conditions for model-space search convergence to the best model are discussed in terms of search-tree organization and initial model parameter error. In the illustrative example of a truss structure presented, the use of both model and parameter identification is shown to lead to smaller parameter corrections than would be required by parameter identification alone.
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
ERIC Educational Resources Information Center
Renzulli, Joseph S., Ed.
Six studies are presented which investigate factors in implementing the Revolving Door Identification Model (RDIM) and the Enrichment Triad Model in gifted education for children in grades 1-8. In "An Analysis of the Productivity of Gifted Students Participating in Programs Using the Revolving Door Identification Model," S. Reis reports,…
Aeroservoelastic Model Validation and Test Data Analysis of the F/A-18 Active Aeroelastic Wing
NASA Technical Reports Server (NTRS)
Brenner, Martin J.; Prazenica, Richard J.
2003-01-01
Model validation and flight test data analysis require careful consideration of the effects of uncertainty, noise, and nonlinearity. Uncertainty prevails in the data analysis techniques and results in a composite model uncertainty from unmodeled dynamics, assumptions and mechanics of the estimation procedures, noise, and nonlinearity. A fundamental requirement for reliable and robust model development is an attempt to account for each of these sources of error, in particular, for model validation, robust stability prediction, and flight control system development. This paper is concerned with data processing procedures for uncertainty reduction in model validation for stability estimation and nonlinear identification. F/A-18 Active Aeroelastic Wing (AAW) aircraft data is used to demonstrate signal representation effects on uncertain model development, stability estimation, and nonlinear identification. Data is decomposed using adaptive orthonormal best-basis and wavelet-basis signal decompositions for signal denoising into linear and nonlinear identification algorithms. Nonlinear identification from a wavelet-based Volterra kernel procedure is used to extract nonlinear dynamics from aeroelastic responses, and to assist model development and uncertainty reduction for model validation and stability prediction by removing a class of nonlinearity from the uncertainty.
Search-based model identification of smart-structure damage
NASA Technical Reports Server (NTRS)
Glass, B. J.; Macalou, A.
1991-01-01
This paper describes the use of a combined model and parameter identification approach, based on modal analysis and artificial intelligence (AI) techniques, for identifying damage or flaws in a rotating truss structure incorporating embedded piezoceramic sensors. This smart structure example is representative of a class of structures commonly found in aerospace systems and next generation space structures. Artificial intelligence techniques of classification, heuristic search, and an object-oriented knowledge base are used in an AI-based model identification approach. A finite model space is classified into a search tree, over which a variant of best-first search is used to identify the model whose stored response most closely matches that of the input. Newly-encountered models can be incorporated into the model space. This adaptativeness demonstrates the potential for learning control. Following this output-error model identification, numerical parameter identification is used to further refine the identified model. Given the rotating truss example in this paper, noisy data corresponding to various damage configurations are input to both this approach and a conventional parameter identification method. The combination of the AI-based model identification with parameter identification is shown to lead to smaller parameter corrections than required by the use of parameter identification alone.
ERIC Educational Resources Information Center
Kyllingsbaek, Soren; Markussen, Bo; Bundesen, Claus
2012-01-01
The authors propose and test a simple model of the time course of visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks. The model implies that during stimulus analysis, tentative categorizations that stimulus i belongs to category j are made at a constant Poisson rate, v(i, j). The analysis is…
40 CFR 52.1490 - Original identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... measures. (ii) A modeling analysis indicating 1982 attainment. (iii) Documentation of the modeling analysis... agencies, (ii) Additional supporting documentation for the 1982 attainment modeling analysis which included... factors for the model. (iii) A revised 1982 attainment modeling analysis and supporting documentation...
40 CFR 52.1490 - Original identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... measures. (ii) A modeling analysis indicating 1982 attainment. (iii) Documentation of the modeling analysis... agencies, (ii) Additional supporting documentation for the 1982 attainment modeling analysis which included... factors for the model. (iii) A revised 1982 attainment modeling analysis and supporting documentation...
40 CFR 52.1490 - Original identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measures. (ii) A modeling analysis indicating 1982 attainment. (iii) Documentation of the modeling analysis... agencies, (ii) Additional supporting documentation for the 1982 attainment modeling analysis which included... factors for the model. (iii) A revised 1982 attainment modeling analysis and supporting documentation...
Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie
2018-01-01
Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber (Apostichopus japonicus) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China. PMID:29410795
Guo, Xiuhan; Cai, Rui; Wang, Shisheng; Tang, Bo; Li, Yueqing; Zhao, Weijie
2018-01-01
Sea cucumber is the major tonic seafood worldwide, and geographical origin traceability is an important part of its quality and safety control. In this work, a non-destructive method for origin traceability of sea cucumber ( Apostichopus japonicus ) from northern China Sea and East China Sea using near infrared spectroscopy (NIRS) and multivariate analysis methods was proposed. Total fat contents of 189 fresh sea cucumber samples were determined and partial least-squares (PLS) regression was used to establish the quantitative NIRS model. The ordered predictor selection algorithm was performed to select feasible wavelength regions for the construction of PLS and identification models. The identification model was developed by principal component analysis combined with Mahalanobis distance and scaling to the first range algorithms. In the test set of the optimum PLS models, the root mean square error of prediction was 0.45, and correlation coefficient was 0.90. The correct classification rates of 100% were obtained in both identification calibration model and test model. The overall results indicated that NIRS method combined with chemometric analysis was a suitable tool for origin traceability and identification of fresh sea cucumber samples from nine origins in China.
JUPITER PROJECT - JOINT UNIVERSAL PARAMETER IDENTIFICATION AND EVALUATION OF RELIABILITY
The JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) project builds on the technology of two widely used codes for sensitivity analysis, data assessment, calibration, and uncertainty analysis of environmental models: PEST and UCODE.
Model of Emotional Expressions in Movements
ERIC Educational Resources Information Center
Rozaliev, Vladimir L.; Orlova, Yulia A.
2013-01-01
This paper presents a new approach to automated identification of human emotions based on analysis of body movements, a recognition of gestures and poses. Methodology, models and automated system for emotion identification are considered. To characterize the person emotions in the model, body movements are described with linguistic variables and a…
Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching
2016-01-01
Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.
IDENTIFICATION OF REGIME SHIFTS IN TIME SERIES USING NEIGHBORHOOD STATISTICS
The identification of alternative dynamic regimes in ecological systems requires several lines of evidence. Previous work on time series analysis of dynamic regimes includes mainly model-fitting methods. We introduce two methods that do not use models. These approaches use state-...
How Captain Amerika uses neural networks to fight crime
NASA Technical Reports Server (NTRS)
Rogers, Steven K.; Kabrisky, Matthew; Ruck, Dennis W.; Oxley, Mark E.
1994-01-01
Artificial neural network models can make amazing computations. These models are explained along with their application in problems associated with fighting crime. Specific problems addressed are identification of people using face recognition, speaker identification, and fingerprint and handwriting analysis (biometric authentication).
Modeling of Diffuse Photometric Signatures of Satellites for Space Object Identification.
1982-12-01
to provide the groundwork for devel- opment of a computer program which could serve as an aid to tactical space object identification and analysis ...I Photometric Analysis Capability at the ADIC. . . . . .. 2 Operational Limitations of the Photometric Data Analysis Module (PDA...7 PDAM Diffuse Analysis . . . . . . . . . . . . . . . . . 7 Real World SOI Requirements vs POAN Capabilities . . . . 16 Statement of the Problem
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input ...
Parameter identification of material constants in a composite shell structure
NASA Technical Reports Server (NTRS)
Martinez, David R.; Carne, Thomas G.
1988-01-01
One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.
Large Modal Survey Testing Using the Ibrahim Time Domain Identification Technique
NASA Technical Reports Server (NTRS)
Ibrahim, S. R.; Pappa, R. S.
1985-01-01
The ability of the ITD identification algorithm in identifying a complete set of structural modal parameters using a large number of free-response time histories simultaneously in one analysis, assuming a math model with a high number of degrees-of-freedom, has been studied. Identification results using simulated free responses of a uniform rectangular plate, with 225 measurement stations, and experimental responses from a ground vibration test of the Long Duration Exposure Facility (LDEF) Space Shuttle payload, with 142 measurement stations, are presented. As many as 300 degrees-of-freedom were allowed in analyzing these data. In general, the use of a significantly oversized math model in the identification process was found to maintain or increase identification accuracy and to identify modes of low response level that are not identified with smaller math model sizes. The concept of a Mode Shape Correlation Constant is introduced for use when more than one identification analysis of the same structure are conducted. This constant quantifies the degree of correlation between any two sets of complex mode shapes identified using different excitation conditions, different user-selectable algorithm constants, or overlapping sets of measurements.
Large modal survey testing using the Ibrahim time domain /ITD/ identification technique
NASA Technical Reports Server (NTRS)
Ibrahim, S. R.; Pappa, R. S.
1981-01-01
The ability of the ITD identification algorithm in identifying a complete set of structural modal parameters using a large number of free-response time histories simultaneously in one analysis, assuming a math model with a high number of degrees-of-freedom, has been studied. Identification results using simulated free responses of a uniform rectangular plate, with 225 measurement stations, and experimental responses from a ground vibration test of the Long Duration Exposure Facility (LDEF) Space Shuttle payload, with 142 measurement stations, are presented. As many as 300 degrees-of-freedom were allowed in analyzing these data. In general, the use of a significantly oversized math model in the identification process was found to maintain or increase identification accuracy and to identify modes of low response level that are not identified with smaller math model sizes. The concept of a Mode Shape Correlation Constant is introduced for use when more than one identification analysis of the same structure are conducted. This constant quantifies the degree of correlation between any two sets of complex mode shapes identified using different excitation conditions, different user-selectable algorithm constants, or overlapping sets of measurements.
Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS.
Hsieh, Sen-Yung; Tseng, Chiao-Li; Lee, Yun-Shien; Kuo, An-Jing; Sun, Chien-Feng; Lin, Yen-Hsiu; Chen, Jen-Kun
2008-02-01
Accurate and rapid identification of pathogenic microorganisms is of critical importance in disease treatment and public health. Conventional work flows are time-consuming, and procedures are multifaceted. MS can be an alternative but is limited by low efficiency for amino acid sequencing as well as low reproducibility for spectrum fingerprinting. We systematically analyzed the feasibility of applying MS for rapid and accurate bacterial identification. Directly applying bacterial colonies without further protein extraction to MALDI-TOF MS analysis revealed rich peak contents and high reproducibility. The MS spectra derived from 57 isolates comprising six human pathogenic bacterial species were analyzed using both unsupervised hierarchical clustering and supervised model construction via the Genetic Algorithm. Hierarchical clustering analysis categorized the spectra into six groups precisely corresponding to the six bacterial species. Precise classification was also maintained in an independently prepared set of bacteria even when the numbers of m/z values were reduced to six. In parallel, classification models were constructed via Genetic Algorithm analysis. A model containing 18 m/z values accurately classified independently prepared bacteria and identified those species originally not used for model construction. Moreover bacteria fewer than 10(4) cells and different species in bacterial mixtures were identified using the classification model approach. In conclusion, the application of MALDI-TOF MS in combination with a suitable model construction provides a highly accurate method for bacterial classification and identification. The approach can identify bacteria with low abundance even in mixed flora, suggesting that a rapid and accurate bacterial identification using MS techniques even before culture can be attained in the near future.
ERIC Educational Resources Information Center
Carman, Carol A.
2011-01-01
One of the underutilized tools in gifted identification is personality-based measures. A multiple confirmatory factor analysis was utilized to examine the relationships between traditional identification methods and personality-based measures. The pattern of correlations indicated this model could be measuring two constructs, one related to…
Surgical instrument similarity metrics and tray analysis for multi-sensor instrument identification
NASA Astrophysics Data System (ADS)
Glaser, Bernhard; Schellenberg, Tobias; Franke, Stefan; Dänzer, Stefan; Neumuth, Thomas
2015-03-01
A robust identification of the instrument currently used by the surgeon is crucial for the automatic modeling and analysis of surgical procedures. Various approaches for intra-operative surgical instrument identification have been presented, mostly based on radio-frequency identification (RFID) or endoscopic video analysis. A novel approach is to identify the instruments on the instrument table of the scrub nurse with a combination of video and weight information. In a previous article, we successfully followed this approach and applied it to multiple instances of an ear, nose and throat (ENT) procedure and the surgical tray used therein. In this article, we present a metric for the suitability of the instruments of a surgical tray for identification by video and weight analysis and apply it to twelve trays of four different surgical domains (abdominal surgery, neurosurgery, orthopedics and urology). The used trays were digitized at the central sterile services department of the hospital. The results illustrate that surgical trays differ in their suitability for the approach. In general, additional weight information can significantly contribute to the successful identification of surgical instruments. Additionally, for ten different surgical instruments, ten exemplars of each instrument were tested for their weight differences. The samples indicate high weight variability in instruments with identical brand and model number. The results present a new metric for approaches aiming towards intra-operative surgical instrument detection and imply consequences for algorithms exploiting video and weight information for identification purposes.
F-15B Quiet Spike(TradeMark) Aeroservoelastic Flight-Test Data Analysis
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
System identification is utilized in the aerospace community for development of simulation models for robust control law design. These models are often described as linear, time-invariant processes and assumed to be uniform throughout the flight envelope. Nevertheless, it is well known that the underlying process is inherently nonlinear. Over the past several decades the controls and biomedical communities have made great advances in developing tools for the identification of nonlin ear systems. In this report, we show the application of one such nonlinear system identification technique, structure detection, for the an alysis of Quiet Spike(TradeMark)(Gulfstream Aerospace Corporation, Savannah, Georgia) aeroservoelastic flight-test data. Structure detectio n is concerned with the selection of a subset of candidate terms that best describe the observed output. Structure computation as a tool fo r black-box modeling may be of critical importance for the development of robust, parsimonious models for the flight-test community. The ob jectives of this study are to demonstrate via analysis of Quiet Spike(TradeMark) aeroservoelastic flight-test data for several flight conditions that: linear models are inefficient for modelling aeroservoelast ic data, nonlinear identification provides a parsimonious model description whilst providing a high percent fit for cross-validated data an d the model structure and parameters vary as the flight condition is altered.
Leach, Colin Wayne; van Zomeren, Martijn; Zebel, Sven; Vliek, Michael L W; Pennekamp, Sjoerd F; Doosje, Bertjan; Ouwerkerk, Jaap W; Spears, Russell
2008-07-01
Recent research shows individuals' identification with in-groups to be psychologically important and socially consequential. However, there is little agreement about how identification should be conceptualized or measured. On the basis of previous work, the authors identified 5 specific components of in-group identification and offered a hierarchical 2-dimensional model within which these components are organized. Studies 1 and 2 used confirmatory factor analysis to validate the proposed model of self-definition (individual self-stereotyping, in-group homogeneity) and self-investment (solidarity, satisfaction, and centrality) dimensions, across 3 different group identities. Studies 3 and 4 demonstrated the construct validity of the 5 components by examining their (concurrent) correlations with established measures of in-group identification. Studies 5-7 demonstrated the predictive and discriminant validity of the 5 components by examining their (prospective) prediction of individuals' orientation to, and emotions about, real intergroup relations. Together, these studies illustrate the conceptual and empirical value of a hierarchical multicomponent model of in-group identification.
[Study of cuttings identification using laser-induced breakdown spectroscopy].
Tian, Ye; Wang, Zhen-nan; Hou, Hua-ming; Zhai, Xiao-wei; Ci, Xing-hua; Zheng, Rong-er
2012-08-01
Cutting identification is one of the most important links in the course of cutting logging which is very significant in the process of oil drilling. In the present paper, LIBS was used for identification of four kinds of cutting samples coming from logging field, and then multivariate analysis was used in data processing. The whole spectra model and the feature model were built for cuttings identification using PLS-DA method. The accuracy of the whole spectra model was 88.3%, a little more than the feature model with an accuracy of 86.7%. While in the aspect of data size, the variables were decreased from 24,041 to 27 by feature extraction, which increased the efficiency of data processing observably. The obtained results demonstrate that LIBS combined with chemometrics method could be developed as a rapid and valid approach to cutting identification and has great potential to be used in logging field.
Automated Dispersion and Orientation Analysis for Carbon Nanotube Reinforced Polymer Composites
Gao, Yi; Li, Zhuo; Lin, Ziyin; Zhu, Liangjia; Tannenbaum, Allen; Bouix, Sylvain; Wong, C.P.
2012-01-01
The properties of carbon nanotube (CNT)/polymer composites are strongly dependent on the dispersion and orientation of CNTs in the host matrix. Quantification of the dispersion and orientation of CNTs by microstructure observation and image analysis has been demonstrated as a useful way to understand the structure-property relationship of CNT/polymer composites. However, due to the various morphologies and large amount of CNTs in one image, automatic and accurate identification of CNTs has become the bottleneck for dispersion/orientation analysis. To solve this problem, shape identification is performed for each pixel in the filler identification step, so that individual CNT can be exacted from images automatically. The improved filler identification enables more accurate analysis of CNT dispersion and orientation. The obtained dispersion index and orientation index of both synthetic and real images from model compounds correspond well with the observations. Moreover, these indices help to explain the electrical properties of CNT/Silicone composite, which is used as a model compound. This method can also be extended to other polymer composites with high aspect ratio fillers. PMID:23060008
Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.
2009-01-01
We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.
NASA Astrophysics Data System (ADS)
Nikiforov, M. P.; Reukov, V. V.; Thompson, G. L.; Vertegel, A. A.; Guo, S.; Kalinin, S. V.; Jesse, S.
2009-10-01
Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.
F-15B QuietSpike(TradeMark) Aeroservoelastic Flight Test Data Analysis
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2007-01-01
System identification or mathematical modelling is utilised in the aerospace community for the development of simulation models for robust control law design. These models are often described as linear, time-invariant processes and assumed to be uniform throughout the flight envelope. Nevertheless, it is well known that the underlying process is inherently nonlinear. The reason for utilising a linear approach has been due to the lack of a proper set of tools for the identification of nonlinear systems. Over the past several decades the controls and biomedical communities have made great advances in developing tools for the identification of nonlinear systems. These approaches are robust and readily applicable to aerospace systems. In this paper, we show the application of one such nonlinear system identification technique, structure detection, for the analysis of F-15B QuietSpike(TradeMark) aeroservoelastic flight test data. Structure detection is concerned with the selection of a subset of candidate terms that best describe the observed output. This is a necessary procedure to compute an efficient system description which may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modelling may be of critical importance for the development of robust, parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion which may save significant development time and costs. The objectives of this study are to demonstrate via analysis of F-15B QuietSpike(TradeMark) aeroservoelastic flight test data for several flight conditions (Mach number) that (i) linear models are inefficient for modelling aeroservoelastic data, (ii) nonlinear identification provides a parsimonious model description whilst providing a high percent fit for cross-validated data and (iii) the model structure and parameters vary as the flight condition is altered.
Liu, Xu; Jia, Shi-qiang; Wang, Chun-ying; Liu, Zhe; Gu, Jian-cheng; Zhai, Wei; Li, Shao-ming; Zhang, Xiao-dong; Zhu, De-hai; Huang, Hua-jun; An, Dong
2015-09-01
This paper explored the relationship among genetic distances, NIR spectra distances and NIR-based identification model performance of the seeds of maize inbred lines. Using 3 groups (total 15 pairs) of maize inbred lines whose genetic distaches are different as experimental materials, we calculates the genetic distance between these seeds with SSR markers and uses Euclidean distance between distributed center points of maize NIR spectrum in the PCA space as the distances of NIR spectrum. BPR method is used to build identification model of inbred lines and the identification accuracy is used as a measure of model identification performance. The results showed that, the correlation of genetic distance and spectra distancesis 0.9868, and it has a correlation of 0.9110 with the identification accuracy, which is highly correlated. This means near-Infrared spectrum of seedscan reflect genetic relationship of maize inbred lines. The smaller the genetic distance, the smaller the distance of spectrum, the poorer ability of model to identify. In practical application, near infrared spectrum analysis technology has the potential to be used to analyze maize inbred genetic relations, contributing much to genetic breeding, identification of species, purity sorting and so on. What's more, when creating a NIR-based identification model, the impact of the maize inbred lines which have closer genetic relationship should be fully considered.
SIR rumor spreading model considering the effect of difference in nodes’ identification capabilities
NASA Astrophysics Data System (ADS)
Wang, Ya-Qi; Wang, Jing
In this paper, we study the effect of difference in network nodes’ identification capabilities on rumor propagation. A novel susceptible-infected-removed (SIR) model is proposed, based on the mean-field theory, to investigate the dynamical behaviors of such model on homogeneous networks and inhomogeneous networks, respectively. Theoretical analysis and simulation results demonstrate that when we consider the influence of difference in nodes’ identification capabilities, the critical thresholds obviously increase, but the final rumor sizes are apparently reduced. We also find that the difference in nodes’ identification capabilities prolongs the time of rumor propagation reaching a steady state, and decreases the number of nodes that finally accept rumors. Additionally, under the influence of difference of nodes’ identification capabilities, compared with the homogeneous networks, the rumor transmission rate on the inhomogeneous networks is relatively large.
Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier.
van Dijk, Jeroen P; de Mello, Carla Souza; Voorhuijzen, Marleen M; Hutten, Ronald C B; Arisi, Ana Carolina Maisonnave; Jansen, Jeroen J; Buydens, Lutgarde M C; van der Voet, Hilko; Kok, Esther J
2014-10-01
An important part of the current hazard identification of novel plant varieties is comparative targeted analysis of the novel and reference varieties. Comparative analysis will become much more informative with unbiased analytical approaches, e.g. omics profiling. Data analysis estimating the similarity of new varieties to a reference baseline class of known safe varieties would subsequently greatly facilitate hazard identification. Further biological and eventually toxicological analysis would then only be necessary for varieties that fall outside this reference class. For this purpose, a one-class classifier tool was explored to assess and classify transcriptome profiles of potato (Solanum tuberosum) varieties in a model study. Profiles of six different varieties, two locations of growth, two year of harvest and including biological and technical replication were used to build the model. Two scenarios were applied representing evaluation of a 'different' variety and a 'similar' variety. Within the model higher class distances resulted for the 'different' test set compared with the 'similar' test set. The present study may contribute to a more global hazard identification of novel plant varieties. Copyright © 2014 Elsevier Inc. All rights reserved.
Identification of visual evoked response parameters sensitive to pilot mental state
NASA Technical Reports Server (NTRS)
Zacharias, G. L.
1988-01-01
Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.
ERIC Educational Resources Information Center
Luetgert, M. J.; Greenwald, Barry S.
Seventy-five male Ph.D. candidates were interviewed individually to determine which parent seemed more influential as an identification model. The interview also yielded judgments as to which parent offered more emotional intimacy and which parent was dominant in the family. A chi-square analysis between these characteristics and judged…
NASA Astrophysics Data System (ADS)
Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai
2013-08-01
With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.
Yang, Qingxia; Xu, Jun; Cao, Binggang; Li, Xiuqing
2017-01-01
Identification of internal parameters of lithium-ion batteries is a useful tool to evaluate battery performance, and requires an effective model and algorithm. Based on the least square genetic algorithm, a simplified fractional order impedance model for lithium-ion batteries and the corresponding parameter identification method were developed. The simplified model was derived from the analysis of the electrochemical impedance spectroscopy data and the transient response of lithium-ion batteries with different states of charge. In order to identify the parameters of the model, an equivalent tracking system was established, and the method of least square genetic algorithm was applied using the time-domain test data. Experiments and computer simulations were carried out to verify the effectiveness and accuracy of the proposed model and parameter identification method. Compared with a second-order resistance-capacitance (2-RC) model and recursive least squares method, small tracing voltage fluctuations were observed. The maximum battery voltage tracing error for the proposed model and parameter identification method is within 0.5%; this demonstrates the good performance of the model and the efficiency of the least square genetic algorithm to estimate the internal parameters of lithium-ion batteries. PMID:28212405
Numerical Experimentation with Maximum Likelihood Identification in Static Distributed Systems
NASA Technical Reports Server (NTRS)
Scheid, R. E., Jr.; Rodriguez, G.
1985-01-01
Many important issues in the control of large space structures are intimately related to the fundamental problem of parameter identification. One might also ask how well this identification process can be carried out in the presence of noisy data since no sensor system is perfect. With these considerations in mind the algorithms herein are designed to treat both the case of uncertainties in the modeling and uncertainties in the data. The analytical aspects of maximum likelihood identification are considered in some detail in another paper. The questions relevant to the implementation of these schemes are dealt with, particularly as they apply to models of large space structures. The emphasis is on the influence of the infinite dimensional character of the problem on finite dimensional implementations of the algorithms. Those areas of current and future analysis are highlighted which indicate the interplay between error analysis and possible truncations of the state and parameter spaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Jie; Kim, Donghun; Braun, James E.
It is important to have practical methods for constructing a good mathematical model for a building's thermal system for energy audits, retrofit analysis and advanced building controls, e.g. model predictive control. Identification approaches based on semi-physical model structures are popular in building science for those purposes. However conventional gray box identification approaches applied to thermal networks would fail when significant unmeasured heat gains present in estimation data. Although this situation is very common and practical, there has been little research to tackle this issue in building science. This paper presents an overall identification approach to alleviate influences of unmeasured disturbances,more » and hence to obtain improved gray-box building models. The approach was applied to an existing open space building and the performance is demonstrated.« less
NASA Astrophysics Data System (ADS)
Sun, Lianming; Sano, Akira
Output over-sampling based closed-loop identification algorithm is investigated in this paper. Some instinct properties of the continuous stochastic noise and the plant input, output in the over-sampling approach are analyzed, and they are used to demonstrate the identifiability in the over-sampling approach and to evaluate its identification performance. Furthermore, the selection of plant model order, the asymptotic variance of estimated parameters and the asymptotic variance of frequency response of the estimated model are also explored. It shows that the over-sampling approach can guarantee the identifiability and improve the performance of closed-loop identification greatly.
Aeroservoelastic Uncertainty Model Identification from Flight Data
NASA Technical Reports Server (NTRS)
Brenner, Martin J.
2001-01-01
Uncertainty modeling is a critical element in the estimation of robust stability margins for stability boundary prediction and robust flight control system development. There has been a serious deficiency to date in aeroservoelastic data analysis with attention to uncertainty modeling. Uncertainty can be estimated from flight data using both parametric and nonparametric identification techniques. The model validation problem addressed in this paper is to identify aeroservoelastic models with associated uncertainty structures from a limited amount of controlled excitation inputs over an extensive flight envelope. The challenge to this problem is to update analytical models from flight data estimates while also deriving non-conservative uncertainty descriptions consistent with the flight data. Multisine control surface command inputs and control system feedbacks are used as signals in a wavelet-based modal parameter estimation procedure for model updates. Transfer function estimates are incorporated in a robust minimax estimation scheme to get input-output parameters and error bounds consistent with the data and model structure. Uncertainty estimates derived from the data in this manner provide an appropriate and relevant representation for model development and robust stability analysis. This model-plus-uncertainty identification procedure is applied to aeroservoelastic flight data from the NASA Dryden Flight Research Center F-18 Systems Research Aircraft.
NASA Technical Reports Server (NTRS)
Muszynska, Agnes; Bently, Donald E.
1991-01-01
Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.
Structure Computation of Quiet Spike[Trademark] Flight-Test Data During Envelope Expansion
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
System identification or mathematical modeling is used in the aerospace community for development of simulation models for robust control law design. These models are often described as linear time-invariant processes. Nevertheless, it is well known that the underlying process is often nonlinear. The reason for using a linear approach has been due to the lack of a proper set of tools for the identification of nonlinear systems. Over the past several decades, the controls and biomedical communities have made great advances in developing tools for the identification of nonlinear systems. These approaches are robust and readily applicable to aerospace systems. In this paper, we show the application of one such nonlinear system identification technique, structure detection, for the analysis of F-15B Quiet Spike(TradeMark) aeroservoelastic flight-test data. Structure detection is concerned with the selection of a subset of candidate terms that best describe the observed output. This is a necessary procedure to compute an efficient system description that may afford greater insight into the functionality of the system or a simpler controller design. Structure computation as a tool for black-box modeling may be of critical importance for the development of robust parsimonious models for the flight-test community. Moreover, this approach may lead to efficient strategies for rapid envelope expansion, which may save significant development time and costs. The objectives of this study are to demonstrate via analysis of F-15B Quiet Spike aeroservoelastic flight-test data for several flight conditions that 1) linear models are inefficient for modeling aeroservoelastic data, 2) nonlinear identification provides a parsimonious model description while providing a high percent fit for cross-validated data, and 3) the model structure and parameters vary as the flight condition is altered.
A signal-detection analysis of eyewitness identification across the adult lifespan.
Colloff, Melissa F; Wade, Kimberley A; Wixted, John T; Maylor, Elizabeth A
2017-05-01
Middle-aged and older adults are frequently victims and witnesses of crime, but knowledge of how identification performance changes over the adult life span is sparse. The authors asked young (18-30 years), middle-aged (31-59 years), and older (60-95 years) adults (N = 2,670) to watch a video of a mock crime and to attempt to identify the culprit from a fair lineup (in which all of the lineup members matched the appearance of the suspect) or an unfair lineup (in which the suspect stood out). They also asked subjects to provide confidence ratings for their identification decisions. To examine identification performance, the authors used a standard response-type analysis, receiver operating characteristic analysis, and signal-detection process modeling. The results revealed that, in fair lineups, aging was associated with a genuine decline in recognition ability-discriminability-and not an increased willingness to choose. Perhaps most strikingly, middle-aged and older adults were generally effective at regulating their confidence judgments to reflect the likely accuracy of their suspect identification decisions. Model-fitting confirmed that the older adults spread their decision criteria such that identifications made with high confidence were likely to be highly accurate, despite the substantial decline in discriminability with age. In unfair lineups, ability to discriminate between innocent and guilty suspects was poor in all age groups. The research enhances theoretical understanding of the ways in which identification behavior changes with age, and has important practical implications for how legal decision-makers should interpret identifications made by middle-aged and older eyewitnesses. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Note: Model identification and analysis of bivalent analyte surface plasmon resonance data.
Tiwari, Purushottam Babu; Üren, Aykut; He, Jin; Darici, Yesim; Wang, Xuewen
2015-10-01
Surface plasmon resonance (SPR) is a widely used, affinity based, label-free biophysical technique to investigate biomolecular interactions. The extraction of rate constants requires accurate identification of the particular binding model. The bivalent analyte model involves coupled non-linear differential equations. No clear procedure to identify the bivalent analyte mechanism has been established. In this report, we propose a unique signature for the bivalent analyte model. This signature can be used to distinguish the bivalent analyte model from other biphasic models. The proposed method is demonstrated using experimentally measured SPR sensorgrams.
NASA Technical Reports Server (NTRS)
Pan, Jianqiang
1992-01-01
Several important problems in the fields of signal processing and model identification, such as system structure identification, frequency response determination, high order model reduction, high resolution frequency analysis, deconvolution filtering, and etc. Each of these topics involves a wide range of applications and has received considerable attention. Using the Fourier based sinusoidal modulating signals, it is shown that a discrete autoregressive model can be constructed for the least squares identification of continuous systems. Some identification algorithms are presented for both SISO and MIMO systems frequency response determination using only transient data. Also, several new schemes for model reduction were developed. Based upon the complex sinusoidal modulating signals, a parametric least squares algorithm for high resolution frequency estimation is proposed. Numerical examples show that the proposed algorithm gives better performance than the usual. Also, the problem was studied of deconvolution and parameter identification of a general noncausal nonminimum phase ARMA system driven by non-Gaussian stationary random processes. Algorithms are introduced for inverse cumulant estimation, both in the frequency domain via the FFT algorithms and in the domain via the least squares algorithm.
On-Orbit System Identification
NASA Technical Reports Server (NTRS)
Mettler, E.; Milman, M. H.; Bayard, D.; Eldred, D. B.
1987-01-01
Information derived from accelerometer readings benefits important engineering and control functions. Report discusses methodology for detection, identification, and analysis of motions within space station. Techniques of vibration and rotation analyses, control theory, statistics, filter theory, and transform methods integrated to form system for generating models and model parameters that characterize total motion of complicated space station, with respect to both control-induced and random mechanical disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luh, G.C.
1994-01-01
This thesis presents the application of advanced modeling techniques to construct nonlinear forward and inverse models of internal combustion engines for the detection and isolation of incipient faults. The NARMAX (Nonlinear Auto-Regressive Moving Average modeling with eXogenous inputs) technique of system identification proposed by Leontaritis and Billings was used to derive the nonlinear model of a internal combustion engine, over operating conditions corresponding to the I/M240 cycle. The I/M240 cycle is a standard proposed by the United States Environmental Protection Agency to measure tailpipe emissions in inspection and maintenance programs and consists of a driving schedule developed for the purposemore » of testing compliance with federal vehicle emission standards for carbon monoxide, unburned hydrocarbons, and nitrogen oxides. The experimental work for model identification and validation was performed on a 3.0 liter V6 engine installed in an engine test cell at the Center for Automotive Research at The Ohio State University. In this thesis, different types of model structures were proposed to obtain multi-input multi-output (MIMO) nonlinear NARX models. A modification of the algorithm proposed by He and Asada was used to estimate the robust orders of the derived MIMO nonlinear models. A methodology for the analysis of inverse NARX model was developed. Two methods were proposed to derive the inverse NARX model: (1) inversion from the forward NARX model; and (2) direct identification of inverse model from the output-input data set. In this thesis, invertibility, minimum-phase characteristic of zero dynamics, and stability analysis of NARX forward model are also discussed. Stability in the sense of Lyapunov is also investigated to check the stability of the identified forward and inverse models. This application of inverse problem leads to the estimation of unknown inputs and to actuator fault diagnosis.« less
Identification of drought in Dhalai river watershed using MCDM and ANN models
NASA Astrophysics Data System (ADS)
Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy
2017-03-01
An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.
Xie, Kun; Ozbay, Kaan; Kurkcu, Abdullah; Yang, Hong
2017-08-01
This study aims to explore the potential of using big data in advancing the pedestrian risk analysis including the investigation of contributing factors and the hotspot identification. Massive amounts of data of Manhattan from a variety of sources were collected, integrated, and processed, including taxi trips, subway turnstile counts, traffic volumes, road network, land use, sociodemographic, and social media data. The whole study area was uniformly split into grid cells as the basic geographical units of analysis. The cell-structured framework makes it easy to incorporate rich and diversified data into risk analysis. The cost of each crash, weighted by injury severity, was assigned to the cells based on the relative distance to the crash site using a kernel density function. A tobit model was developed to relate grid-cell-specific contributing factors to crash costs that are left-censored at zero. The potential for safety improvement (PSI) that could be obtained by using the actual crash cost minus the cost of "similar" sites estimated by the tobit model was used as a measure to identify and rank pedestrian crash hotspots. The proposed hotspot identification method takes into account two important factors that are generally ignored, i.e., injury severity and effects of exposure indicators. Big data, on the one hand, enable more precise estimation of the effects of risk factors by providing richer data for modeling, and on the other hand, enable large-scale hotspot identification with higher resolution than conventional methods based on census tracts or traffic analysis zones. © 2017 Society for Risk Analysis.
Sung, Wookje; Woehler, Meredith L; Fagan, Jesse M; Grosser, Travis J; Floyd, Theresa M; Labianca, Giuseppe Joe
2017-06-01
The authors used pre-post merger data from 599 employees experiencing a major corporate merger to compare 3 conceptual models based on the logic of social identity theory (SIT) and exchange theory to explain employees' merger responses. At issue is how perceived change in employees' own jobs and roles (i.e., personal valence) and perceived change in their organization's status and merger appropriateness (i.e., organizational valence) affect their changing organizational identification, attachment attitudes, and voluntary turnover. The first model suggests that organizational identification and organizational attachment develop independently and have distinct antecedents. The second model posits that organizational identification mediates the relationships between change in organizational and personal valence and change in attachment and turnover. The third model posits that change in personal valence moderates the relationship between changes in organizational valence and in organizational identification and attachment. Using latent difference score (LDS) modeling in an SEM framework and survival analysis, the results suggest an emergent fourth model that integrates the first and second models: Although change in organizational identification during the merger mediates the relationship between change in personal status and organizational valence and change in attachment, there is a direct and unmediated relationship between change in personal valence and attachment. This integrated model has implications for M&A theory and practice. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Díaz-Rodríguez, Miguel; Valera, Angel; Page, Alvaro; Besa, Antonio; Mata, Vicente
2016-05-01
Accurate knowledge of body segment inertia parameters (BSIP) improves the assessment of dynamic analysis based on biomechanical models, which is of paramount importance in fields such as sport activities or impact crash test. Early approaches for BSIP identification rely on the experiments conducted on cadavers or through imaging techniques conducted on living subjects. Recent approaches for BSIP identification rely on inverse dynamic modeling. However, most of the approaches are focused on the entire body, and verification of BSIP for dynamic analysis for distal segment or chain of segments, which has proven to be of significant importance in impact test studies, is rarely established. Previous studies have suggested that BSIP should be obtained by using subject-specific identification techniques. To this end, our paper develops a novel approach for estimating subject-specific BSIP based on static and dynamics identification models (SIM, DIM). We test the validity of SIM and DIM by comparing the results using parameters obtained from a regression model proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230). Both SIM and DIM are developed considering robotics formalism. First, the static model allows the mass and center of gravity (COG) to be estimated. Second, the results from the static model are included in the dynamics equation allowing us to estimate the moment of inertia (MOI). As a case study, we applied the approach to evaluate the dynamics modeling of the head complex. Findings provide some insight into the validity not only of the proposed method but also of the application proposed by De Leva (1996, "Adjustments to Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., 29(9), pp. 1223-1230) for dynamic modeling of body segments.
Banta, E.R.; Hill, M.C.; Poeter, E.; Doherty, J.E.; Babendreier, J.
2008-01-01
The open-source, public domain JUPITER (Joint Universal Parameter IdenTification and Evaluation of Reliability) API (Application Programming Interface) provides conventions and Fortran-90 modules to develop applications (computer programs) for analyzing process models. The input and output conventions allow application users to access various applications and the analysis methods they embody with a minimum of time and effort. Process models simulate, for example, physical, chemical, and (or) biological systems of interest using phenomenological, theoretical, or heuristic approaches. The types of model analyses supported by the JUPITER API include, but are not limited to, sensitivity analysis, data needs assessment, calibration, uncertainty analysis, model discrimination, and optimization. The advantages provided by the JUPITER API for users and programmers allow for rapid programming and testing of new ideas. Application-specific coding can be in languages other than the Fortran-90 of the API. This article briefly describes the capabilities and utility of the JUPITER API, lists existing applications, and uses UCODE_2005 as an example.
Data Driven Model Development for the Supersonic Semispan Transport (S(sup 4)T)
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2011-01-01
We investigate two common approaches to model development for robust control synthesis in the aerospace community; namely, reduced order aeroservoelastic modelling based on structural finite-element and computational fluid dynamics based aerodynamic models and a data-driven system identification procedure. It is shown via analysis of experimental Super- Sonic SemiSpan Transport (S4T) wind-tunnel data using a system identification approach it is possible to estimate a model at a fixed Mach, which is parsimonious and robust across varying dynamic pressures.
Schneiderhan, Wilhelm; Grundt, Alexander; Wörner, Stefan; Findeisen, Peter; Neumaier, Michael
2013-11-01
Because sepsis has a high mortality rate, rapid microbiological diagnosis is required to enable efficient therapy. The effectiveness of MALDI-TOF mass spectrometry (MALDI-TOF MS) analysis in reducing turnaround times (TATs) for blood culture (BC) pathogen identification when available in a 24-h hospital setting has not been determined. On the basis of data from a total number of 912 positive BCs collected within 140 consecutive days and work flow analyses of laboratory diagnostics, we evaluated different models to assess the TATs for batch-wise and for immediate response (real-time) MALDI-TOF MS pathogen identification of positive BC results during the night shifts. The results were compared to TATs from routine BC processing and biochemical identification performed during regular working hours. Continuous BC incubation together with batch-wise MALDI-TOF MS analysis enabled significant reductions of up to 58.7 h in the mean TATs for the reporting of the bacterial species. The TAT of batch-wise MALDI-TOF MS analysis was inferior by a mean of 4.9 h when compared to the model of the immediate work flow under ideal conditions with no constraints in staff availability. Together with continuous cultivation of BC, the 24-h availability of MALDI-TOF MS can reduce the TAT for microbial pathogen identification within a routine clinical laboratory setting. Batch-wise testing of positive BC loses a few hours compared to real-time identification but is still far superior to classical BC processing. Larger prospective studies are required to evaluate the contribution of rapid around-the-clock pathogen identification to medical decision-making for septicemic patients.
Sources of hydrocarbons in urban road dust: Identification, quantification and prediction.
Mummullage, Sandya; Egodawatta, Prasanna; Ayoko, Godwin A; Goonetilleke, Ashantha
2016-09-01
Among urban stormwater pollutants, hydrocarbons are a significant environmental concern due to their toxicity and relatively stable chemical structure. This study focused on the identification of hydrocarbon contributing sources to urban road dust and approaches for the quantification of pollutant loads to enhance the design of source control measures. The study confirmed the validity of the use of mathematical techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA) for source identification and principal component analysis/absolute principal component scores (PCA/APCS) receptor model for pollutant load quantification. Study outcomes identified non-combusted lubrication oils, non-combusted diesel fuels and tyre and asphalt wear as the three most critical urban hydrocarbon sources. The site specific variabilities of contributions from sources were replicated using three mathematical models. The models employed predictor variables of daily traffic volume (DTV), road surface texture depth (TD), slope of the road section (SLP), effective population (EPOP) and effective impervious fraction (EIF), which can be considered as the five governing parameters of pollutant generation, deposition and redistribution. Models were developed such that they can be applicable in determining hydrocarbon contributions from urban sites enabling effective design of source control measures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Identifying Seizure Onset Zone From the Causal Connectivity Inferred Using Directed Information
NASA Astrophysics Data System (ADS)
Malladi, Rakesh; Kalamangalam, Giridhar; Tandon, Nitin; Aazhang, Behnaam
2016-10-01
In this paper, we developed a model-based and a data-driven estimator for directed information (DI) to infer the causal connectivity graph between electrocorticographic (ECoG) signals recorded from brain and to identify the seizure onset zone (SOZ) in epileptic patients. Directed information, an information theoretic quantity, is a general metric to infer causal connectivity between time-series and is not restricted to a particular class of models unlike the popular metrics based on Granger causality or transfer entropy. The proposed estimators are shown to be almost surely convergent. Causal connectivity between ECoG electrodes in five epileptic patients is inferred using the proposed DI estimators, after validating their performance on simulated data. We then proposed a model-based and a data-driven SOZ identification algorithm to identify SOZ from the causal connectivity inferred using model-based and data-driven DI estimators respectively. The data-driven SOZ identification outperforms the model-based SOZ identification algorithm when benchmarked against visual analysis by neurologist, the current clinical gold standard. The causal connectivity analysis presented here is the first step towards developing novel non-surgical treatments for epilepsy.
A complete graphical criterion for the adjustment formula in mediation analysis.
Shpitser, Ilya; VanderWeele, Tyler J
2011-03-04
Various assumptions have been used in the literature to identify natural direct and indirect effects in mediation analysis. These effects are of interest because they allow for effect decomposition of a total effect into a direct and indirect effect even in the presence of interactions or non-linear models. In this paper, we consider the relation and interpretation of various identification assumptions in terms of causal diagrams interpreted as a set of non-parametric structural equations. We show that for such causal diagrams, two sets of assumptions for identification that have been described in the literature are in fact equivalent in the sense that if either set of assumptions holds for all models inducing a particular causal diagram, then the other set of assumptions will also hold for all models inducing that diagram. We moreover build on prior work concerning a complete graphical identification criterion for covariate adjustment for total effects to provide a complete graphical criterion for using covariate adjustment to identify natural direct and indirect effects. Finally, we show that this criterion is equivalent to the two sets of independence assumptions used previously for mediation analysis.
Integration of system identification and finite element modelling of nonlinear vibrating structures
NASA Astrophysics Data System (ADS)
Cooper, Samson B.; DiMaio, Dario; Ewins, David J.
2018-03-01
The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.
A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.
ERIC Educational Resources Information Center
Harrop, John W.; Velicer, Wayne F.
1985-01-01
Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)
Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network
NASA Astrophysics Data System (ADS)
Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei
2018-06-01
A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.
A hierarchical (multicomponent) model of in-group identification: examining in Russian samples.
Lovakov, Andrey V; Agadullina, Elena R; Osin, Evgeny N
2015-06-03
The aim of this study was to examine the validity and reliability of Leach et al.'s (2008) model of in-group identification in two studies using Russian samples (overall N = 621). In Study 1, a series of multi-group confirmatory factor analysis revealed that the hierarchical model of in-group identification, which included two second-order factors, self-definition (individual self-stereotyping, and in-group homogeneity) and self-investment (satisfaction, solidarity, and centrality), fitted the data well for all four group identities (ethnic, religious, university, and gender) (CFI > .93, TLI > .92, RMSEA < .06, SRMR < .06) and demonstrated a better fit, compared to the alternative models. In Study 2, the construct validity and reliability of the Russian version of the in-group identification measure was examined. Results show that these measures have adequate psychometric properties. In short, our results show that Leach et al.'s model is reproduced in Russian culture. The Russian version of this measure can be recommended for use in future in-group research in Russian-speaking samples.
System identification methods for aircraft flight control development and validation
NASA Technical Reports Server (NTRS)
Tischler, Mark B.
1995-01-01
System-identification methods compose a mathematical model, or series of models, from measurements of inputs and outputs of dynamic systems. The extracted models allow the characterization of the response of the overall aircraft or component subsystem behavior, such as actuators and on-board signal processing algorithms. This paper discusses the use of frequency-domain system-identification methods for the development and integration of aircraft flight-control systems. The extraction and analysis of models of varying complexity from nonparametric frequency-responses to transfer-functions and high-order state-space representations is illustrated using the Comprehensive Identification from FrEquency Responses (CIFER) system-identification facility. Results are presented for test data of numerous flight and simulation programs at the Ames Research Center including rotorcraft, fixed-wing aircraft, advanced short takeoff and vertical landing (ASTOVL), vertical/short takeoff and landing (V/STOL), tiltrotor aircraft, and rotor experiments in the wind tunnel. Excellent system characterization and dynamic response prediction is achieved for this wide class of systems. Examples illustrate the role of system-identification technology in providing an integrated flow of dynamic response data around the entire life-cycle of aircraft development from initial specifications, through simulation and bench testing, and into flight-test optimization.
Modelling of Biometric Identification System with Given Parameters Using Colored Petri Nets
NASA Astrophysics Data System (ADS)
Petrosyan, G.; Ter-Vardanyan, L.; Gaboutchian, A.
2017-05-01
Biometric identification systems use given parameters and function on the basis of Colored Petri Nets as a modelling language developed for systems in which communication, synchronization and distributed resources play an important role. Colored Petri Nets combine the strengths of Classical Petri Nets with the power of a high-level programming language. Coloured Petri Nets have both, formal intuitive and graphical presentations. Graphical CPN model consists of a set of interacting modules which include a network of places, transitions and arcs. Mathematical representation has a well-defined syntax and semantics, as well as defines system behavioural properties. One of the best known features used in biometric is the human finger print pattern. During the last decade other human features have become of interest, such as iris-based or face recognition. The objective of this paper is to introduce the fundamental concepts of Petri Nets in relation to tooth shape analysis. Biometric identification systems functioning has two phases: data enrollment phase and identification phase. During the data enrollment phase images of teeth are added to database. This record contains enrollment data as a noisy version of the biometrical data corresponding to the individual. During the identification phase an unknown individual is observed again and is compared to the enrollment data in the database and then system estimates the individual. The purpose of modeling biometric identification system by means of Petri Nets is to reveal the following aspects of the functioning model: the efficiency of the model, behavior of the model, mistakes and accidents in the model, feasibility of the model simplification or substitution of its separate components for more effective components without interfering system functioning. The results of biometric identification system modeling and evaluating are presented and discussed.
Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang
2017-08-23
Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.
NASA Technical Reports Server (NTRS)
Drake, R. L.; Duvoisin, P. F.; Asthana, A.; Mather, T. W.
1971-01-01
High speed automated identification and design of dynamic systems, both linear and nonlinear, are discussed. Special emphasis is placed on developing hardware and techniques which are applicable to practical problems. The basic modeling experiment and new results are described. Using the improvements developed successful identification of several systems, including a physical example as well as simulated systems, was obtained. The advantages of parameter signature analysis over signal signature analysis in go-no go testing of operational systems were demonstrated. The feasibility of using these ideas in failure mode prediction in operating systems was also investigated. An improved digital controlled nonlinear function generator was developed, de-bugged, and completely documented.
A signal detection theory analysis of an unconscious perception effect.
Haase, S J; Theios, J; Jenison, R
1999-07-01
The independent observation model (Macmillan & Creelman, 1991) is fitted to detection-identification data collected under conditions of heavy masking. The model accurately predicts a quantitative relationship between stimulus detection and stimulus identification over a wide range of detection performance. This model can also be used to offer a signal detection interpretation of the common finding of above-chance identification following a missed signal. While our finding is not a new one, the stimuli used in this experiment (redundant three-letter strings) differ slightly from those used in traditional signal detection work. Also, the stimuli were presented very briefly and heavily masked, conditions typical in the study of unconscious perception effects.
Stochastic subspace identification for operational modal analysis of an arch bridge
NASA Astrophysics Data System (ADS)
Loh, Chin-Hsiung; Chen, Ming-Che; Chao, Shu-Hsien
2012-04-01
In this paer the application of output-only system identification technique, known as Stochastic Subspace Identification (SSI) algorithms, for civil infrastructures is carried out. The ability of covariance driven stochastic subspace identification (SSI-COV) was proved through the analysis of the ambient data of an arch bridge under operational condition. A newly developed signal processing technique, Singular Spectrum analysis (SSA), capable to smooth noisy signals, is adopted for pre-processing the recorded data before the SSI. The conjunction of SSA and SSICOV provides a useful criterion for the system order determination. With the aim of estimating accurate modal parameters of the structure in off-line analysis, a stabilization diagram is constructed by plotting the identified poles of the system with increasing the size of data Hankel matrix. Identification task of a real structure, Guandu Bridge, is carried out to identify the system natural frequencies and mode shapes. The uncertainty of the identified model parameters from output-only measurement of the bridge under operation condition, such as temperature and traffic loading conditions, is discussed.
A novel model of magnetorheological damper with hysteresis division
NASA Astrophysics Data System (ADS)
Yu, Jianqiang; Dong, Xiaomin; Zhang, Zonglun
2017-10-01
Due to the complex nonlinearity of magnetorheological (MR) behavior, the modeling of MR dampers is a challenge. A simple and effective model of MR damper remains a work in progress. A novel model of MR damper is proposed with force-velocity hysteresis division method in this study. A typical hysteresis loop of MR damper can be simply divided into two novel curves with the division idea. One is the backbone curve and the other is the branch curve. The exponential-family functions which capturing the characteristics of the two curves can simplify the model and improve the identification efficiency. To illustrate and validate the novel phenomenological model with hysteresis division idea, a dual-end MR damper is designed and tested. Based on the experimental data, the characteristics of the novel curves are investigated. To simplify the parameters identification and obtain the reversibility, the maximum force part, the non-dimensional backbone part and the non-dimensional branch part are derived from the two curves. The maximum force part and the non-dimensional part are in multiplication type add-rule. The maximum force part is dependent on the current and maximum velocity. The non-dominated sorting genetic algorithm II (NSGA II) based on the design of experiments (DOE) is employed to identify the parameters of the normalized shape functions. Comparative analysis is conducted based on the identification results. The analysis shows that the novel model with few identification parameters has higher accuracy and better predictive ability.
2012-02-03
node to the analysis of eigenmodes (connected trees /networks) of disruption sequences. The identification of disruption eigenmodes is particularly...investment portfolio approach enables the identification of optimal SoS network topologies and provides a tool for acquisition professionals to...a program based on its ability to provide a new capability for a given cost, and not on its ability to meet specific performance requirements ( Spacy
NASA Astrophysics Data System (ADS)
Liu, Jianjun; Kan, Jianquan
2018-04-01
In this paper, based on the terahertz spectrum, a new identification method of genetically modified material by support vector machine (SVM) based on affinity propagation clustering is proposed. This algorithm mainly uses affinity propagation clustering algorithm to make cluster analysis and labeling on unlabeled training samples, and in the iterative process, the existing SVM training data are continuously updated, when establishing the identification model, it does not need to manually label the training samples, thus, the error caused by the human labeled samples is reduced, and the identification accuracy of the model is greatly improved.
Li, Tao; Su, Chen
2018-06-02
Rhodiola is an increasingly widely used traditional Tibetan medicine and traditional Chinese medicine in China. The composition profiles of bioactive compounds are somewhat jagged according to different species, which makes it crucial to identify authentic Rhodiola species accurately so as to ensure clinical application of Rhodiola. In this paper, a nondestructive, rapid, and efficient method in classification of Rhodiola was developed by Fourier transform near-infrared (FT-NIR) spectroscopy combined with chemometrics analysis. A total of 160 batches of raw spectra were obtained from four different species of Rhodiola by FT-NIR, such as Rhodiola crenulata, Rhodiola fastigiata, Rhodiola kirilowii, and Rhodiola brevipetiolata. After excluding the outliers, different performances of 3 sample dividing methods, 12 spectral preprocessing methods, 2 wavelength selection methods, and 2 modeling evaluation methods were compared. The results indicated that this combination was superior than others in the authenticity identification analysis, which was FT-NIR combined with sample set partitioning based on joint x-y distances (SPXY), standard normal variate transformation (SNV) + Norris-Williams (NW) + 2nd derivative, competitive adaptive reweighted sampling (CARS), and kernel extreme learning machine (KELM). The accuracy (ACCU), sensitivity (SENS), and specificity (SPEC) of the optimal model were all 1, which showed that this combination of FT-NIR and chemometrics methods had the optimal authenticity identification performance. The classification performance of the partial least squares discriminant analysis (PLS-DA) model was slightly lower than KELM model, and PLS-DA model results were ACCU = 0.97, SENS = 0.93, and SPEC = 0.98, respectively. It can be concluded that FT-NIR combined with chemometrics analysis has great potential in authenticity identification and classification of Rhodiola, which can provide a valuable reference for the safety and effectiveness of clinical application of Rhodiola. Copyright © 2018 Elsevier B.V. All rights reserved.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis.
Till, Kevin; Jones, Ben L; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification.
Identifying Talent in Youth Sport: A Novel Methodology Using Higher-Dimensional Analysis
Till, Kevin; Jones, Ben L.; Cobley, Stephen; Morley, David; O'Hara, John; Chapman, Chris; Cooke, Carlton; Beggs, Clive B.
2016-01-01
Prediction of adult performance from early age talent identification in sport remains difficult. Talent identification research has generally been performed using univariate analysis, which ignores multivariate relationships. To address this issue, this study used a novel higher-dimensional model to orthogonalize multivariate anthropometric and fitness data from junior rugby league players, with the aim of differentiating future career attainment. Anthropometric and fitness data from 257 Under-15 rugby league players was collected. Players were grouped retrospectively according to their future career attainment (i.e., amateur, academy, professional). Players were blindly and randomly divided into an exploratory (n = 165) and validation dataset (n = 92). The exploratory dataset was used to develop and optimize a novel higher-dimensional model, which combined singular value decomposition (SVD) with receiver operating characteristic analysis. Once optimized, the model was tested using the validation dataset. SVD analysis revealed 60 m sprint and agility 505 performance were the most influential characteristics in distinguishing future professional players from amateur and academy players. The exploratory dataset model was able to distinguish between future amateur and professional players with a high degree of accuracy (sensitivity = 85.7%, specificity = 71.1%; p<0.001), although it could not distinguish between future professional and academy players. The validation dataset model was able to distinguish future professionals from the rest with reasonable accuracy (sensitivity = 83.3%, specificity = 63.8%; p = 0.003). Through the use of SVD analysis it was possible to objectively identify criteria to distinguish future career attainment with a sensitivity over 80% using anthropometric and fitness data alone. As such, this suggests that SVD analysis may be a useful analysis tool for research and practice within talent identification. PMID:27224653
Time Series Model Identification by Estimating Information.
1982-11-01
principle, Applications of Statistics, P. R. Krishnaiah , ed., North-Holland: Amsterdam, 27-41. Anderson, T. W. (1971). The Statistical Analysis of Time Series...E. (1969). Multiple Time Series Modeling, Multivariate Analysis II, edited by P. Krishnaiah , Academic Press: New York, 389-409. Parzen, E. (1981...Newton, H. J. (1980). Multiple Time Series Modeling, II Multivariate Analysis - V, edited by P. Krishnaiah , North Holland: Amsterdam, 181-197. Shibata, R
Data Driven Model Development for the SuperSonic SemiSpan Transport (S(sup 4)T)
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2011-01-01
In this report, we will investigate two common approaches to model development for robust control synthesis in the aerospace community; namely, reduced order aeroservoelastic modelling based on structural finite-element and computational fluid dynamics based aerodynamic models, and a data-driven system identification procedure. It is shown via analysis of experimental SuperSonic SemiSpan Transport (S4T) wind-tunnel data that by using a system identification approach it is possible to estimate a model at a fixed Mach, which is parsimonious and robust across varying dynamic pressures.
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-01-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-10-01
The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.
NASA Technical Reports Server (NTRS)
Kanning, G.
1975-01-01
A digital computer program written in FORTRAN is presented that implements the system identification theory for deterministic systems using input-output measurements. The user supplies programs simulating the mathematical model of the physical plant whose parameters are to be identified. The user may choose any one of three options. The first option allows for a complete model simulation for fixed input forcing functions. The second option identifies up to 36 parameters of the model from wind tunnel or flight measurements. The third option performs a sensitivity analysis for up to 36 parameters. The use of each option is illustrated with an example using input-output measurements for a helicopter rotor tested in a wind tunnel.
ERIC Educational Resources Information Center
Phillips, Sharon A.
2013-01-01
Selecting appropriate performance improvement interventions is a critical component of a comprehensive model of performance improvement. Intervention selection is an interconnected process involving analysis of an organization's environment, definition of the performance problem, and identification of a performance gap and identification of causal…
Adult Services in the Third Millennium.
ERIC Educational Resources Information Center
Monroe, Margaret E.
1979-01-01
Presents a four-step model for "planning" or "forecasting" future of adult services in public libraries: (1) identification of forces at work; (2) analysis of probable impacts of one force upon another; (3) identification of preferred (and rejected) elements of future with forces that control elements; and (4) strategies to be…
Data mining for the identification of metabolic syndrome status
Worachartcheewan, Apilak; Schaduangrat, Nalini; Prachayasittikul, Virapong; Nantasenamat, Chanin
2018-01-01
Metabolic syndrome (MS) is a condition associated with metabolic abnormalities that are characterized by central obesity (e.g. waist circumference or body mass index), hypertension (e.g. systolic or diastolic blood pressure), hyperglycemia (e.g. fasting plasma glucose) and dyslipidemia (e.g. triglyceride and high-density lipoprotein cholesterol). It is also associated with the development of diabetes mellitus (DM) type 2 and cardiovascular disease (CVD). Therefore, the rapid identification of MS is required to prevent the occurrence of such diseases. Herein, we review the utilization of data mining approaches for MS identification. Furthermore, the concept of quantitative population-health relationship (QPHR) is also presented, which can be defined as the elucidation/understanding of the relationship that exists between health parameters and health status. The QPHR modeling uses data mining techniques such as artificial neural network (ANN), support vector machine (SVM), principal component analysis (PCA), decision tree (DT), random forest (RF) and association analysis (AA) for modeling and construction of predictive models for MS characterization. The DT method has been found to outperform other data mining techniques in the identification of MS status. Moreover, the AA technique has proved useful in the discovery of in-depth as well as frequently occurring health parameters that can be used for revealing the rules of MS development. This review presents the potential benefits on the applications of data mining as a rapid identification tool for classifying MS. PMID:29383020
Data mining for the identification of metabolic syndrome status.
Worachartcheewan, Apilak; Schaduangrat, Nalini; Prachayasittikul, Virapong; Nantasenamat, Chanin
2018-01-01
Metabolic syndrome (MS) is a condition associated with metabolic abnormalities that are characterized by central obesity (e.g. waist circumference or body mass index), hypertension (e.g. systolic or diastolic blood pressure), hyperglycemia (e.g. fasting plasma glucose) and dyslipidemia (e.g. triglyceride and high-density lipoprotein cholesterol). It is also associated with the development of diabetes mellitus (DM) type 2 and cardiovascular disease (CVD). Therefore, the rapid identification of MS is required to prevent the occurrence of such diseases. Herein, we review the utilization of data mining approaches for MS identification. Furthermore, the concept of quantitative population-health relationship (QPHR) is also presented, which can be defined as the elucidation/understanding of the relationship that exists between health parameters and health status. The QPHR modeling uses data mining techniques such as artificial neural network (ANN), support vector machine (SVM), principal component analysis (PCA), decision tree (DT), random forest (RF) and association analysis (AA) for modeling and construction of predictive models for MS characterization. The DT method has been found to outperform other data mining techniques in the identification of MS status. Moreover, the AA technique has proved useful in the discovery of in-depth as well as frequently occurring health parameters that can be used for revealing the rules of MS development. This review presents the potential benefits on the applications of data mining as a rapid identification tool for classifying MS.
Xiao, Chuan-Le; Chen, Xiao-Zhou; Du, Yang-Li; Sun, Xuesong; Zhang, Gong; He, Qing-Yu
2013-01-04
Mass spectrometry has become one of the most important technologies in proteomic analysis. Tandem mass spectrometry (LC-MS/MS) is a major tool for the analysis of peptide mixtures from protein samples. The key step of MS data processing is the identification of peptides from experimental spectra by searching public sequence databases. Although a number of algorithms to identify peptides from MS/MS data have been already proposed, e.g. Sequest, OMSSA, X!Tandem, Mascot, etc., they are mainly based on statistical models considering only peak-matches between experimental and theoretical spectra, but not peak intensity information. Moreover, different algorithms gave different results from the same MS data, implying their probable incompleteness and questionable reproducibility. We developed a novel peptide identification algorithm, ProVerB, based on a binomial probability distribution model of protein tandem mass spectrometry combined with a new scoring function, making full use of peak intensity information and, thus, enhancing the ability of identification. Compared with Mascot, Sequest, and SQID, ProVerB identified significantly more peptides from LC-MS/MS data sets than the current algorithms at 1% False Discovery Rate (FDR) and provided more confident peptide identifications. ProVerB is also compatible with various platforms and experimental data sets, showing its robustness and versatility. The open-source program ProVerB is available at http://bioinformatics.jnu.edu.cn/software/proverb/ .
NASA Astrophysics Data System (ADS)
Medina, Tait Runnfeldt
The increasing global reach of survey research provides sociologists with new opportunities to pursue theory building and refinement through comparative analysis. However, comparison across a broad array of diverse contexts introduces methodological complexities related to the development of constructs (i.e., measurement modeling) that if not adequately recognized and properly addressed undermine the quality of research findings and cast doubt on the validity of substantive conclusions. The motivation for this dissertation arises from a concern that the availability of cross-national survey data has outpaced sociologists' ability to appropriately analyze and draw meaningful conclusions from such data. I examine the implicit assumptions and detail the limitations of three commonly used measurement models in cross-national analysis---summative scale, pooled factor model, and multiple-group factor model with measurement invariance. Using the orienting lens of the double tension I argue that a new approach to measurement modeling that incorporates important cross-national differences into the measurement process is needed. Two such measurement models---multiple-group factor model with partial measurement invariance (Byrne, Shavelson and Muthen 1989) and the alignment method (Asparouhov and Muthen 2014; Muthen and Asparouhov 2014)---are discussed in detail and illustrated using a sociologically relevant substantive example. I demonstrate that the former approach is vulnerable to an identification problem that arbitrarily impacts substantive conclusions. I conclude that the alignment method is built on model assumptions that are consistent with theoretical understandings of cross-national comparability and provides an approach to measurement modeling and construct development that is uniquely suited for cross-national research. The dissertation makes three major contributions: First, it provides theoretical justification for a new cross-national measurement model and explicates a link between theoretical conceptions of cross-national comparability and a statistical method. Second, it provides a clear and detailed discussion of model identification in multiple-group confirmatory factor analysis that is missing from the literature. This discussion sets the stage for the introduction of the identification problem within multiple-group confirmatory factor analysis with partial measurement invariance and the alternative approach to model identification employed by the alignment method. Third, it offers the first pedagogical presentation of the alignment method using a sociologically relevant example.
A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes
Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung
2016-01-01
Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates. PMID:26964035
A forward model-based validation of cardiovascular system identification
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Cohen, R. J.
2001-01-01
We present a theoretical evaluation of a cardiovascular system identification method that we previously developed for the analysis of beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure, and instantaneous lung volume. The method provides a dynamical characterization of the important autonomic and mechanical mechanisms responsible for coupling the fluctuations (inverse modeling). To carry out the evaluation, we developed a computational model of the cardiovascular system capable of generating realistic beat-to-beat variability (forward modeling). We applied the method to data generated from the forward model and compared the resulting estimated dynamics with the actual dynamics of the forward model, which were either precisely known or easily determined. We found that the estimated dynamics corresponded to the actual dynamics and that this correspondence was robust to forward model uncertainty. We also demonstrated the sensitivity of the method in detecting small changes in parameters characterizing autonomic function in the forward model. These results provide confidence in the performance of the cardiovascular system identification method when applied to experimental data.
NASA Astrophysics Data System (ADS)
Zhong, Chongquan; Lin, Yaoyao
2017-11-01
In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.
A Frequency-Domain Substructure System Identification Algorithm
NASA Technical Reports Server (NTRS)
Blades, Eric L.; Craig, Roy R., Jr.
1996-01-01
A new frequency-domain system identification algorithm is presented for system identification of substructures, such as payloads to be flown aboard the Space Shuttle. In the vibration test, all interface degrees of freedom where the substructure is connected to the carrier structure are either subjected to active excitation or are supported by a test stand with the reaction forces measured. The measured frequency-response data is used to obtain a linear, viscous-damped model with all interface-degree of freedom entries included. This model can then be used to validate analytical substructure models. This procedure makes it possible to obtain not only the fixed-interface modal data associated with a Craig-Bampton substructure model, but also the data associated with constraint modes. With this proposed algorithm, multiple-boundary-condition tests are not required, and test-stand dynamics is accounted for without requiring a separate modal test or finite element modeling of the test stand. Numerical simulations are used in examining the algorithm's ability to estimate valid reduced-order structural models. The algorithm's performance when frequency-response data covering narrow and broad frequency bandwidths is used as input is explored. Its performance when noise is added to the frequency-response data and the use of different least squares solution techniques are also examined. The identified reduced-order models are also compared for accuracy with other test-analysis models and a formulation for a Craig-Bampton test-analysis model is also presented.
Reagent-free bacterial identification using multivariate analysis of transmission spectra
NASA Astrophysics Data System (ADS)
Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.
2012-10-01
The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.
Identification and evaluation of composition in food powder using point-scan Raman spectral imaging
USDA-ARS?s Scientific Manuscript database
This study used Raman spectral imaging coupled with self-modeling mixture analysis (SMA) for identification of three components mixed into a complex food powder mixture. Vanillin, melamine, and sugar were mixed together at 10 different concentration levels (spanning 1% to 10%, w/w) into powdered non...
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-01-01
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-12-04
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.
Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics.
Zhang, Chu; Shen, Tingting; Liu, Fei; He, Yong
2017-12-31
We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied.
Identification of Coffee Varieties Using Laser-Induced Breakdown Spectroscopy and Chemometrics
Zhang, Chu; Shen, Tingting
2017-01-01
We linked coffee quality to its different varieties. This is of interest because the identification of coffee varieties should help coffee trading and consumption. Laser-induced breakdown spectroscopy (LIBS) combined with chemometric methods was used to identify coffee varieties. Wavelet transform (WT) was used to reduce LIBS spectra noise. Partial least squares-discriminant analysis (PLS-DA), radial basis function neural network (RBFNN), and support vector machine (SVM) were used to build classification models. Loadings of principal component analysis (PCA) were used to select the spectral variables contributing most to the identification of coffee varieties. Twenty wavelength variables corresponding to C I, Mg I, Mg II, Al II, CN, H, Ca II, Fe I, K I, Na I, N I, and O I were selected. PLS-DA, RBFNN, and SVM models on selected wavelength variables showed acceptable results. SVM and RBFNN models performed better with a classification accuracy of over 80% in the prediction set, for both full spectra and the selected variables. The overall results indicated that it was feasible to use LIBS and chemometric methods to identify coffee varieties. For further studies, more samples are needed to produce robust classification models, research should be conducted on which methods to use to select spectral peaks that correspond to the elements contributing most to identification, and the methods for acquiring stable spectra should also be studied. PMID:29301228
Zenil, Hector; Kiani, Narsis A.; Ball, Gordon; Gomez-Cabrero, David
2016-01-01
Systems in nature capable of collective behaviour are nonlinear, operating across several scales. Yet our ability to account for their collective dynamics differs in physics, chemistry and biology. Here, we briefly review the similarities and differences between mathematical modelling of adaptive living systems versus physico-chemical systems. We find that physics-based chemistry modelling and computational neuroscience have a shared interest in developing techniques for model reductions aiming at the identification of a reduced subsystem or slow manifold, capturing the effective dynamics. By contrast, as relations and kinetics between biological molecules are less characterized, current quantitative analysis under the umbrella of bioinformatics focuses on signal extraction, correlation, regression and machine-learning analysis. We argue that model reduction analysis and the ensuing identification of manifolds bridges physics and biology. Furthermore, modelling living systems presents deep challenges as how to reconcile rich molecular data with inherent modelling uncertainties (formalism, variables selection and model parameters). We anticipate a new generative data-driven modelling paradigm constrained by identified governing principles extracted from low-dimensional manifold analysis. The rise of a new generation of models will ultimately connect biology to quantitative mechanistic descriptions, thereby setting the stage for investigating the character of the model language and principles driving living systems. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698038
A discrimination model in waste plastics sorting using NIR hyperspectral imaging system.
Zheng, Yan; Bai, Jiarui; Xu, Jingna; Li, Xiayang; Zhang, Yimin
2018-02-01
Classification of plastics is important in the recycling industry. A plastic identification model in the near infrared spectroscopy wavelength range 1000-2500 nm is proposed for the characterization and sorting of waste plastics using acrylonitrile butadiene styrene (ABS), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The model is built by the feature wavelengths of standard samples applying the principle component analysis (PCA), and the accuracy, property and cross-validation of the model were analyzed. The model just contains a simple equation, center of mass coordinates, and radial distance, with which it is easy to develop classification and sorting software. A hyperspectral imaging system (HIS) with the identification model verified its practical application by using the unknown plastics. Results showed that the identification accuracy of unknown samples is 100%. All results suggested that the discrimination model was potential to an on-line characterization and sorting platform of waste plastics based on HIS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sweetapple, Christine; Fu, Guangtao; Butler, David
2013-09-01
This study investigates sources of uncertainty in the modelling of greenhouse gas emissions from wastewater treatment, through the use of local and global sensitivity analysis tools, and contributes to an in-depth understanding of wastewater treatment modelling by revealing critical parameters and parameter interactions. One-factor-at-a-time sensitivity analysis is used to screen model parameters and identify those with significant individual effects on three performance indicators: total greenhouse gas emissions, effluent quality and operational cost. Sobol's method enables identification of parameters with significant higher order effects and of particular parameter pairs to which model outputs are sensitive. Use of a variance-based global sensitivity analysis tool to investigate parameter interactions enables identification of important parameters not revealed in one-factor-at-a-time sensitivity analysis. These interaction effects have not been considered in previous studies and thus provide a better understanding wastewater treatment plant model characterisation. It was found that uncertainty in modelled nitrous oxide emissions is the primary contributor to uncertainty in total greenhouse gas emissions, due largely to the interaction effects of three nitrogen conversion modelling parameters. The higher order effects of these parameters are also shown to be a key source of uncertainty in effluent quality. Copyright © 2013 Elsevier Ltd. All rights reserved.
Yang, Chunguang G; Granite, Stephen J; Van Eyk, Jennifer E; Winslow, Raimond L
2006-11-01
Protein identification using MS is an important technique in proteomics as well as a major generator of proteomics data. We have designed the protein identification data object model (PDOM) and developed a parser based on this model to facilitate the analysis and storage of these data. The parser works with HTML or XML files saved or exported from MASCOT MS/MS ions search in peptide summary report or MASCOT PMF search in protein summary report. The program creates PDOM objects, eliminates redundancy in the input file, and has the capability to output any PDOM object to a relational database. This program facilitates additional analysis of MASCOT search results and aids the storage of protein identification information. The implementation is extensible and can serve as a template to develop parsers for other search engines. The parser can be used as a stand-alone application or can be driven by other Java programs. It is currently being used as the front end for a system that loads HTML and XML result files of MASCOT searches into a relational database. The source code is freely available at http://www.ccbm.jhu.edu and the program uses only free and open-source Java libraries.
NASA Astrophysics Data System (ADS)
Wada, Daichi; Sugimoto, Yohei
2017-04-01
Aerodynamic loads on aircraft wings are one of the key parameters to be monitored for reliable and effective aircraft operations and management. Flight data of the aerodynamic loads would be used onboard to control the aircraft and accumulated data would be used for the condition-based maintenance and the feedback for the fatigue and critical load modeling. The effective sensing techniques such as fiber optic distributed sensing have been developed and demonstrated promising capability of monitoring structural responses, i.e., strains on the surface of the aircraft wings. By using the developed techniques, load identification methods for structural health monitoring are expected to be established. The typical inverse analysis for load identification using strains calculates the loads in a discrete form of concentrated forces, however, the distributed form of the loads is essential for the accurate and reliable estimation of the critical stress at structural parts. In this study, we demonstrate an inverse analysis to identify the distributed loads from measured strain information. The introduced inverse analysis technique calculates aerodynamic loads not in a discrete but in a distributed manner based on a finite element model. In order to verify the technique through numerical simulations, we apply static aerodynamic loads on a flat panel model, and conduct the inverse identification of the load distributions. We take two approaches to build the inverse system between loads and strains. The first one uses structural models and the second one uses neural networks. We compare the performance of the two approaches, and discuss the effect of the amount of the strain sensing information.
NASA Astrophysics Data System (ADS)
Rachmawati; Rohaeti, E.; Rafi, M.
2017-05-01
Taro flour on the market is usually sold at higher price than wheat and sago flour. This situation could be a cause for adulteration of taro flour from wheat and sago flour. For this reason, we will need an identification and authentication. Combination of near infrared (NIR) spectrum with multivariate analysis was used in this study to identify and authenticate taro flour from wheat and sago flour. The authentication model of taro flour was developed by using a mixture of 5%, 25%, and 50% of adulterated taro flour from wheat and sago flour. Before subjected to multivariate analysis, an initial preprocessing signal was used namely normalization and standard normal variate to the NIR spectrum. We used principal component analysis followed by discriminant analysis to make an identification and authentication model of taro flour. From the result obtained, about 90.48% of the taro flour mixed with wheat flour and 85% of taro flour mixed with sago flour were successfully classified into their groups. So the combination of NIR spectrum with chemometrics could be used for identification and authentication of taro flour from wheat and sago flour.
ERIC Educational Resources Information Center
Delgadillo, Elizabeth Montoya; Vivier, Laurent
2016-01-01
Mathematical working space (MWS) is a model that is used in research in mathematics education, particularly in the field of geometry. Some MWS elements are independent of the field while other elements must be adapted to the field in question. In this paper, we develop the MWS model for the field of analysis with an identification of paradigms. We…
Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic Control
NASA Technical Reports Server (NTRS)
Jacklin, Stephen A.
1998-01-01
This report presents an analysis and performance comparison of five system identification algorithms. The methods are presented in the context of identifying a frequency-domain transfer matrix for the higher harmonic control (HHC) of helicopter vibration. The five system identification algorithms include three previously proposed methods: (1) the weighted-least- squares-error approach (in moving-block format), (2) the Kalman filter method, and (3) the least-mean-squares (LMS) filter method. In addition there are two new ones: (4) a generalized Kalman filter method and (5) a generalized LMS filter method. The generalized Kalman filter method and the generalized LMS filter method were derived as extensions of the classic methods to permit identification by using more than one measurement per identification cycle. Simulation results are presented for conditions ranging from the ideal case of a stationary transfer matrix and no measurement noise to the more complex cases involving both measurement noise and transfer-matrix variation. Both open-loop identification and closed- loop identification were simulated. Closed-loop mode identification was more challenging than open-loop identification because of the decreasing signal-to-noise ratio as the vibration became reduced. The closed-loop simulation considered both local-model identification, with measured vibration feedback and global-model identification with feedback of the identified uncontrolled vibration. The algorithms were evaluated in terms of their accuracy, stability, convergence properties, computation speeds, and relative ease of implementation.
Identification of human operator performance models utilizing time series analysis
NASA Technical Reports Server (NTRS)
Holden, F. M.; Shinners, S. M.
1973-01-01
The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.
The role of models in estimating consequences as part of the risk assessment process.
Forde-Folle, K; Mitchell, D; Zepeda, C
2011-08-01
The degree of disease risk represented by the introduction, spread, or establishment of one or several diseases through the importation of animals and animal products is assessed by importing countries through an analysis of risk. The components of a risk analysis include hazard identification, risk assessment, risk management, and risk communication. A risk assessment starts with identification of the hazard(s) and then continues with four interrelated steps: release assessment, exposure assessment, consequence assessment, and risk estimation. Risk assessments may be either qualitative or quantitative. This paper describes how, through the integration of epidemiological and economic models, the potential adverse biological and economic consequences of exposure can be quantified.
The BCD of response time analysis in experimental economics.
Spiliopoulos, Leonidas; Ortmann, Andreas
2018-01-01
For decisions in the wild, time is of the essence. Available decision time is often cut short through natural or artificial constraints, or is impinged upon by the opportunity cost of time. Experimental economists have only recently begun to conduct experiments with time constraints and to analyze response time (RT) data, in contrast to experimental psychologists. RT analysis has proven valuable for the identification of individual and strategic decision processes including identification of social preferences in the latter case, model comparison/selection, and the investigation of heuristics that combine speed and performance by exploiting environmental regularities. Here we focus on the benefits, challenges, and desiderata of RT analysis in strategic decision making. We argue that unlocking the potential of RT analysis requires the adoption of process-based models instead of outcome-based models, and discuss how RT in the wild can be captured by time-constrained experiments in the lab. We conclude that RT analysis holds considerable potential for experimental economics, deserves greater attention as a methodological tool, and promises important insights on strategic decision making in naturally occurring environments.
System parameter identification from projection of inverse analysis
NASA Astrophysics Data System (ADS)
Liu, K.; Law, S. S.; Zhu, X. Q.
2017-05-01
The output of a system due to a change of its parameters is often approximated with the sensitivity matrix from the first order Taylor series. The system output can be measured in practice, but the perturbation in the system parameters is usually not available. Inverse sensitivity analysis can be adopted to estimate the unknown system parameter perturbation from the difference between the observation output data and corresponding analytical output data calculated from the original system model. The inverse sensitivity analysis is re-visited in this paper with improvements based on the Principal Component Analysis on the analytical data calculated from the known system model. The identification equation is projected into a subspace of principal components of the system output, and the sensitivity of the inverse analysis is improved with an iterative model updating procedure. The proposed method is numerical validated with a planar truss structure and dynamic experiments with a seven-storey planar steel frame. Results show that it is robust to measurement noise, and the location and extent of stiffness perturbation can be identified with better accuracy compared with the conventional response sensitivity-based method.
DNA barcode-based molecular identification system for fish species.
Kim, Sungmin; Eo, Hae-Seok; Koo, Hyeyoung; Choi, Jun-Kil; Kim, Won
2010-12-01
In this study, we applied DNA barcoding to identify species using short DNA sequence analysis. We examined the utility of DNA barcoding by identifying 53 Korean freshwater fish species, 233 other freshwater fish species, and 1339 saltwater fish species. We successfully developed a web-based molecular identification system for fish (MISF) using a profile hidden Markov model. MISF facilitates efficient and reliable species identification, overcoming the limitations of conventional taxonomic approaches. MISF is freely accessible at http://bioinfosys.snu.ac.kr:8080/MISF/misf.jsp .
Luyckx, Koen; Goossens, Luc; Soenens, Bart; Beyers, Wim
2006-06-01
A model of identity formation comprising four structural dimensions (Commitment Making, Identification with Commitment, Exploration in Depth, and Exploration in Breadth) was developed through confirmatory factor analysis. In a sample of 565 emerging adults, this model provided a better fit than did alternative two- and three-dimensional models, thereby validating the unpacking of both exploration and commitment. Regression analyses indicated that Commitment Making was significantly related to family context in accordance with hypotheses. Identification with Commitment and both exploration dimensions were significantly related to adjustment and family context, again in accordance with hypotheses. Identification with Commitment was positively related to positive adjustment indicators and negatively to depressive symptoms, whereas Exploration in Breadth was positively related to depressive symptoms and substance use. Exploration in Depth, on the other hand, was positively related to academic adjustment and negatively to substance use. Implications and suggestions for future research are discussed.
Autonomous frequency domain identification: Theory and experiment
NASA Technical Reports Server (NTRS)
Yam, Yeung; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.; Scheid, R. E.
1989-01-01
The analysis, design, and on-orbit tuning of robust controllers require more information about the plant than simply a nominal estimate of the plant transfer function. Information is also required concerning the uncertainty in the nominal estimate, or more generally, the identification of a model set within which the true plant is known to lie. The identification methodology that was developed and experimentally demonstrated makes use of a simple but useful characterization of the model uncertainty based on the output error. This is a characterization of the additive uncertainty in the plant model, which has found considerable use in many robust control analysis and synthesis techniques. The identification process is initiated by a stochastic input u which is applied to the plant p giving rise to the output. Spectral estimation (h = P sub uy/P sub uu) is used as an estimate of p and the model order is estimated using the produce moment matrix (PMM) method. A parametric model unit direction vector p is then determined by curve fitting the spectral estimate to a rational transfer function. The additive uncertainty delta sub m = p - unit direction vector p is then estimated by the cross spectral estimate delta = P sub ue/P sub uu where e = y - unit direction vectory y is the output error, and unit direction vector y = unit direction vector pu is the computed output of the parametric model subjected to the actual input u. The experimental results demonstrate the curve fitting algorithm produces the reduced-order plant model which minimizes the additive uncertainty. The nominal transfer function estimate unit direction vector p and the estimate delta of the additive uncertainty delta sub m are subsequently available to be used for optimization of robust controller performance and stability.
Towards large-scale FAME-based bacterial species identification using machine learning techniques.
Slabbinck, Bram; De Baets, Bernard; Dawyndt, Peter; De Vos, Paul
2009-05-01
In the last decade, bacterial taxonomy witnessed a huge expansion. The swift pace of bacterial species (re-)definitions has a serious impact on the accuracy and completeness of first-line identification methods. Consequently, back-end identification libraries need to be synchronized with the List of Prokaryotic names with Standing in Nomenclature. In this study, we focus on bacterial fatty acid methyl ester (FAME) profiling as a broadly used first-line identification method. From the BAME@LMG database, we have selected FAME profiles of individual strains belonging to the genera Bacillus, Paenibacillus and Pseudomonas. Only those profiles resulting from standard growth conditions have been retained. The corresponding data set covers 74, 44 and 95 validly published bacterial species, respectively, represented by 961, 378 and 1673 standard FAME profiles. Through the application of machine learning techniques in a supervised strategy, different computational models have been built for genus and species identification. Three techniques have been considered: artificial neural networks, random forests and support vector machines. Nearly perfect identification has been achieved at genus level. Notwithstanding the known limited discriminative power of FAME analysis for species identification, the computational models have resulted in good species identification results for the three genera. For Bacillus, Paenibacillus and Pseudomonas, random forests have resulted in sensitivity values, respectively, 0.847, 0.901 and 0.708. The random forests models outperform those of the other machine learning techniques. Moreover, our machine learning approach also outperformed the Sherlock MIS (MIDI Inc., Newark, DE, USA). These results show that machine learning proves very useful for FAME-based bacterial species identification. Besides good bacterial identification at species level, speed and ease of taxonomic synchronization are major advantages of this computational species identification strategy.
Analysis of lithology: Vegetation mixes in multispectral images
NASA Technical Reports Server (NTRS)
Adams, J. B.; Smith, M.; Adams, J. D.
1982-01-01
Discrimination and identification of lithologies from multispectral images is discussed. Rock/soil identification can be facilitated by removing the component of the signal in the images that is contributed by the vegetation. Mixing models were developed to predict the spectra of combinations of pure end members, and those models were refined using laboratory measurements of real mixtures. Models in use include a simple linear (checkerboard) mix, granular mixing, semi-transparent coatings, and combinations of the above. The use of interactive computer techniques that allow quick comparison of the spectrum of a pixel stack (in a multiband set) with laboratory spectra is discussed.
Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi
2017-01-01
Accurate identification of the material properties of the plantar soft tissue is important for computer-aided analysis of foot pathologies and design of therapeutic footwear interventions based on subject-specific models of the foot. However, parameter identification of the hyperelastic material properties of plantar soft tissues usually requires an inverse finite element analysis due to the lack of a practical contact model of the indentation test. In the present study, we derive an analytical contact model of a spherical indentation test in order to directly estimate the material properties of the plantar soft tissue. Force-displacement curves of the heel pads are obtained through an indentation experiment. The experimental data are fit to the analytical stress-strain solution of the spherical indentation in order to obtain the parameters. A spherical indentation approach successfully predicted the non-linear material properties of the heel pad without iterative finite element calculation. The force-displacement curve obtained in the present study was found to be situated lower than those identified in previous studies. The proposed framework for identifying the hyperelastic material parameters may facilitate the development of subject-specific FE modeling of the foot for possible clinical and ergonomic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Spears, Janine L.; Parrish, James L., Jr.
2013-01-01
This teaching case introduces students to a relatively simple approach to identifying and documenting security requirements within conceptual models that are commonly taught in systems analysis and design courses. An introduction to information security is provided, followed by a classroom example of a fictitious company, "Fun &…
Social comparison processes and catastrophising in fibromyalgia: A path analysis.
Cabrera-Perona, V; Buunk, A P; Terol-Cantero, M C; Quiles-Marcos, Y; Martín-Aragón, M
2017-06-01
In addition to coping strategies, social comparison may play a role in illness adjustment. However, little is known about the role of contrast and identification in social comparison in adaptation to fibromyalgia. To evaluate through a path analysis in a sample of fibromyalgia patients, the association between identification and contrast in social comparison, catastrophising and specific health outcomes (fibromyalgia illness impact and psychological distress). 131 Spanish fibromyalgia outpatients (mean age: 50.15, SD = 11.1) filled out a questionnaire. We present a model that explained 33% of the variance in catastrophising by direct effects of more use of upward contrast and downward identification. In addition, 35% of fibromyalgia illness impact variance was explained by less upward identification, more upward contrast and more catastrophising and 42% of the variance in psychological distress by a direct effect of more use of upward contrast together with higher fibromyalgia illness impact. We suggest that intervention programmes with chronic pain and fibromyalgia patients should focus on enhancing the use of upward identification in social comparison, and on minimising the use of upward contrast and downward identification in social comparison.
Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Smirnova, Z. N.
2015-05-01
Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.
Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification
NASA Astrophysics Data System (ADS)
Kim, Sang Hwa; Tahk, Min-Jea
2018-04-01
In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.
LaBudde, Robert A; Harnly, James M
2012-01-01
A qualitative botanical identification method (BIM) is an analytical procedure that returns a binary result (1 = Identified, 0 = Not Identified). A BIM may be used by a buyer, manufacturer, or regulator to determine whether a botanical material being tested is the same as the target (desired) material, or whether it contains excessive nontarget (undesirable) material. The report describes the development and validation of studies for a BIM based on the proportion of replicates identified, or probability of identification (POI), as the basic observed statistic. The statistical procedures proposed for data analysis follow closely those of the probability of detection, and harmonize the statistical concepts and parameters between quantitative and qualitative method validation. Use of POI statistics also harmonizes statistical concepts for botanical, microbiological, toxin, and other analyte identification methods that produce binary results. The POI statistical model provides a tool for graphical representation of response curves for qualitative methods, reporting of descriptive statistics, and application of performance requirements. Single collaborator and multicollaborative study examples are given.
Moderating Factors of Video-Modeling with Other as Model: A Meta-Analysis of Single-Case Studies
ERIC Educational Resources Information Center
Mason, Rose A.; Ganz, Jennifer B.; Parker, Richard I.; Burke, Mack D.; Camargo, Siglia P.
2012-01-01
Video modeling with other as model (VMO) is a more practical method for implementing video-based modeling techniques, such as video self-modeling, which requires significantly more editing. Despite this, identification of contextual factors such as participant characteristics and targeted outcomes that moderate the effectiveness of VMO has not…
Assessing efficiency of software production for NASA-SEL data
NASA Technical Reports Server (NTRS)
Vonmayrhauser, Anneliese; Roeseler, Armin
1993-01-01
This paper uses production models to identify and quantify efficient allocation of resources and key drivers of software productivity for project data in the NASA-SEL database. While analysis allows identification of efficient projects, many of the metrics that could have provided a more detailed analysis are not at a level of measurement to allow production model analysis. Production models must be used with proper parameterization to be successful. This may mean a new look at which metrics are helpful for efficiency assessment.
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
NASA Astrophysics Data System (ADS)
Tian, F.; Sivapalan, M.; Li, H.; Hu, H.
2007-12-01
The importance of diagnostic analysis of hydrological models is increasingly recognized by the scientific community (M. Sivapalan, et al., 2003; H. V. Gupta, et al., 2007). Model diagnosis refers to model structures and parameters being identified not only by statistical comparison of system state variables and outputs but also by process understanding in a specific watershed. Process understanding can be gained by the analysis of observational data and model results at the specific watershed as well as through regionalization. Although remote sensing technology can provide valuable data about the inputs, state variables, and outputs of the hydrological system, observational rainfall-runoff data still constitute the most accurate, reliable, direct, and thus a basic component of hydrology related database. One critical question in model diagnostic analysis is, therefore, what signature characteristic can we extract from rainfall and runoff data. To this date only a few studies have focused on this question, such as Merz et al. (2006) and Lana-Renault et al. (2007), still none of these studies related event analysis with model diagnosis in an explicit, rigorous, and systematic manner. Our work focuses on the identification of the dominant runoff generation mechanisms from event analysis of rainfall-runoff data, including correlation analysis and analysis of timing pattern. The correlation analysis involves the identification of the complex relationship among rainfall depth, intensity, runoff coefficient, and antecedent conditions, and the timing pattern analysis aims to identify the clustering pattern of runoff events in relation to the patterns of rainfall events. Our diagnostic analysis illustrates the changing pattern of runoff generation mechanisms in the DMIP2 test watersheds located in Oklahoma region, which is also well recognized by numerical simulations based on TsingHua Representative Elementary Watershed (THREW) model. The result suggests the usefulness of rainfall-runoff event analysis for model development as well as model diagnostics.
Closed-loop model identification of cooperative manipulators holding deformable objects
NASA Astrophysics Data System (ADS)
Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.
2017-11-01
This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.
NASA Technical Reports Server (NTRS)
Mulhall, B. D. L.
1980-01-01
The results of the analysis of the external environment of the FBI Fingerprint Identification Division are presented. Possible trends in the future environment of the Division that may have an effect on the work load were projected to determine if future work load will lie within the capability range of the proposed new system, AIDS 3. Two working models of the environment were developed, the internal and external model, and from these scenarios the projection of possible future work load volume and mixture was developed. Possible drivers of work load change were identified and assessed for upper and lower bounds of effects. Data used for the study were derived from historical information, analysis of the current situation and from interviews with various agencies who are users of or stakeholders in the present system.
[Groundwater organic pollution source identification technology system research and application].
Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan
2013-02-01
Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.
Highly Reproducible Label Free Quantitative Proteomic Analysis of RNA Polymerase Complexes*
Mosley, Amber L.; Sardiu, Mihaela E.; Pattenden, Samantha G.; Workman, Jerry L.; Florens, Laurence; Washburn, Michael P.
2011-01-01
The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports. PMID:21048197
Designing Low-Income Housing Using Local Architectural Concepts
NASA Astrophysics Data System (ADS)
Trumansyahjaya, K.; Tatura, L. S.
2018-02-01
The provision of houses for low-income people who do not have a home worthy of being one of the major problems in the city of Gorontalo, because the community in establishing the house only pay attention to their wants and needs in creating a healthy environment, the beauty of the city and the planning of the home environment in accordance with the culture of the people of Gorontalo. In relation to the condition, the focus of this research is the design of housing based on local architecture as residential house so that it can be reached by a group of low income people with house and environment form determined based on family development, social and economic development of society and environment which take into account the local culture. Stages of this research includes five (5) stages, including the identification phase characteristics Gorontalo people of low income, the characteristics of the identification phase house inhabited by low-income people, the stage of identification preference low-income households, the phase formation house prototype and the environment, as well as the stage of formation model home for low-income people. Analysis of the model homes for low-income people using descriptive analysis, Hierarchical Cluster Analysis, and discrimination analysis to produce a prototype of the house and its surroundings. The prototype is then reanalyzed to obtain the model home for low-income people in the city of Gorontalo. The shape of a model home can be used as a reference for developers of housing intended for low-income people so that housing is provided to achieve the goals and the desired target group.
NASA Astrophysics Data System (ADS)
Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen
2017-02-01
This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.
Real-time flutter identification
NASA Technical Reports Server (NTRS)
Roy, R.; Walker, R.
1985-01-01
The techniques and a FORTRAN 77 MOdal Parameter IDentification (MOPID) computer program developed for identification of the frequencies and damping ratios of multiple flutter modes in real time are documented. Physically meaningful model parameterization was combined with state of the art recursive identification techniques and applied to the problem of real time flutter mode monitoring. The performance of the algorithm in terms of convergence speed and parameter estimation error is demonstrated for several simulated data cases, and the results of actual flight data analysis from two different vehicles are presented. It is indicated that the algorithm is capable of real time monitoring of aircraft flutter characteristics with a high degree of reliability.
NASA Astrophysics Data System (ADS)
Riabkov, Dmitri
Compartment modeling of dynamic medical image data implies that the concentration of the tracer over time in a particular region of the organ of interest is well-modeled as a convolution of the tissue response with the tracer concentration in the blood stream. The tissue response is different for different tissues while the blood input is assumed to be the same for different tissues. The kinetic parameters characterizing the tissue responses can be estimated by blind identification methods. These algorithms use the simultaneous measurements of concentration in separate regions of the organ; if the regions have different responses, the measurement of the blood input function may not be required. In this work it is shown that the blind identification problem has a unique solution for two-compartment model tissue response. For two-compartment model tissue responses in dynamic cardiac MRI imaging conditions with gadolinium-DTPA contrast agent, three blind identification algorithms are analyzed here to assess their utility: Eigenvector-based Algorithm for Multichannel Blind Deconvolution (EVAM), Cross Relations (CR), and Iterative Quadratic Maximum Likelihood (IQML). Comparisons of accuracy with conventional (not blind) identification techniques where the blood input is known are made as well. The statistical accuracies of estimation for the three methods are evaluated and compared for multiple parameter sets. The results show that the IQML method gives more accurate estimates than the other two blind identification methods. A proof is presented here that three-compartment model blind identification is not unique in the case of only two regions. It is shown that it is likely unique for the case of more than two regions, but this has not been proved analytically. For the three-compartment model the tissue responses in dynamic FDG PET imaging conditions are analyzed with the blind identification algorithms EVAM and Separable variables Least Squares (SLS). A method of identification that assumes that FDG blood input in the brain can be modeled as a function of time and several parameters (IFM) is analyzed also. Nonuniform sampling SLS (NSLS) is developed due to the rapid change of the FDG concentration in the blood during the early postinjection stage. Comparisons of accuracy of EVAM, SLS, NSLS and IFM identification techniques are made.
Neumann, Steffen; Schmitt-Kopplin, Philippe
2017-01-01
Lipid identification is a major bottleneck in high-throughput lipidomics studies. However, tools for the analysis of lipid tandem MS spectra are rather limited. While the comparison against spectra in reference libraries is one of the preferred methods, these libraries are far from being complete. In order to improve identification rates, the in silico fragmentation tool MetFrag was combined with Lipid Maps and lipid-class specific classifiers which calculate probabilities for lipid class assignments. The resulting LipidFrag workflow was trained and evaluated on different commercially available lipid standard materials, measured with data dependent UPLC-Q-ToF-MS/MS acquisition. The automatic analysis was compared against manual MS/MS spectra interpretation. With the lipid class specific models, identification of the true positives was improved especially for cases where candidate lipids from different lipid classes had similar MetFrag scores by removing up to 56% of false positive results. This LipidFrag approach was then applied to MS/MS spectra of lipid extracts of the nematode Caenorhabditis elegans. Fragments explained by LipidFrag match known fragmentation pathways, e.g., neutral losses of lipid headgroups and fatty acid side chain fragments. Based on prediction models trained on standard lipid materials, high probabilities for correct annotations were achieved, which makes LipidFrag a good choice for automated lipid data analysis and reliability testing of lipid identifications. PMID:28278196
NASA Astrophysics Data System (ADS)
Wang, Haoqi; Chen, Jun; Brownjohn, James M. W.
2017-12-01
The spring-mass-damper (SMD) model with a pair of internal biomechanical forces is the simplest model for a walking pedestrian to represent his/her mechanical properties, and thus can be used in human-structure-interaction analysis in the vertical direction. However, the values of SMD stiffness and damping, though very important, are typically taken as those measured from stationary people due to lack of a parameter identification methods for a walking pedestrian. This study adopts a step-by-step system identification approach known as particle filter to simultaneously identify the stiffness, damping coefficient, and coefficients of the SMD model's biomechanical forces by ground reaction force (GRF) records. After a brief introduction of the SMD model, the proposed identification approach is explained in detail, with a focus on the theory of particle filter and its integration with the SMD model. A numerical example is first provided to verify the feasibility of the proposed approach which is then applied to several experimental GRF records. Identification results demonstrate that natural frequency and the damping ratio of a walking pedestrian are not constant but have a dependence of mean value and distribution on pacing frequency. The mean value first-order coefficient of the biomechanical force, which is expressed by the Fourier series function, also has a linear relationship with pacing frequency. Higher order coefficients do not show a clear relationship with pacing frequency but follow a logarithmic normal distribution.
DC servomechanism parameter identification: a Closed Loop Input Error approach.
Garrido, Ruben; Miranda, Roger
2012-01-01
This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xu; Bi, Fengrong; Du, Haiping
2018-05-01
This paper aims to develop an 5-degree-of-freedom driver and seating system model for optimal vibration control. A new method for identification of the driver seating system parameters from experimental vibration measurement has been developed. The parameter sensitivity analysis has been conducted considering the random excitation frequency and system parameter uncertainty. The most and least sensitive system parameters for the transmissibility ratio have been identified. The optimised PID controllers have been developed to reduce the driver's body vibration.
USDA-ARS?s Scientific Manuscript database
Modeling gully erosion in urban areas is challenging due to difficulties with equifinality and parameter identification, which complicates quantification of management impacts on runoff and sediment production. We calibrated a model (AnnAGNPS) of an ephemeral gully network that formed on unpaved ro...
NASA Astrophysics Data System (ADS)
Suhartono, Lee, Muhammad Hisyam; Rezeki, Sri
2017-05-01
Intervention analysis is a statistical model in the group of time series analysis which is widely used to describe the effect of an intervention caused by external or internal factors. An example of external factors that often occurs in Indonesia is a disaster, both natural or man-made disaster. The main purpose of this paper is to provide the results of theoretical studies on identification step for determining the order of multi inputs intervention analysis for evaluating the magnitude and duration of the impact of interventions on time series data. The theoretical result showed that the standardized residuals could be used properly as response function for determining the order of multi inputs intervention model. Then, these results are applied for evaluating the impact of a disaster on a real case in Indonesia, i.e. the magnitude and duration of the impact of the Lapindo mud on the volume of vehicles on the highway. Moreover, the empirical results showed that the multi inputs intervention model can describe and explain accurately the magnitude and duration of the impact of disasters on a time series data.
Liu, Chan-Chan; Cheng, Ming-En; Peng, Huasheng; Duan, Hai-Yan; Huang, Luqi
2015-05-01
Authentication is the first priority when evaluating the quality of Chinese herbal medicines, particularly highly toxic medicines. The most commonly used authentication methods are morphological identification and microscopic identification. Unfortunately, these methods could not effectively evaluate some herbs with complex interior structures, such as root of Aconitum species with a circular conical shape and an interior structure with successive changes. Defining the part that should be selected as the standard plays an essential role in accurate microscopic identification. In this study, we first present a visual 3D model of Aconitum carmichaeli Debx. constructed obtained from microscopic analysis of serial sections. Based on this model, we concluded that the point of largest root diameter should be used as the standard for comparison and identification. The interior structure at this point is reproducible and its shape and appearance can easily be used to distinguish among species. We also report details of the interior structures of parts not shown in the 3D model, such as stone cells and cortical thickness. To demonstrate the usefulness of the results from the 3D model, we have distinguished the microscopic structures, at their largest segments, of the other three Aconitum species used for local habitat species of Caowu. This work provides the basis for resolution of some debate regarding the microstructural differences among these species. Thus, we conclude that the 3D model composed of serial sections has enabled the selection of a standard cross-section that will enable the accurate identification of Aconitum species in Chinese medicine. © 2015 Wiley Periodicals, Inc.
Causal Analysis After Haavelmo
Heckman, James; Pinto, Rodrigo
2014-01-01
Haavelmo's seminal 1943 and 1944 papers are the first rigorous treatment of causality. In them, he distinguished the definition of causal parameters from their identification. He showed that causal parameters are defined using hypothetical models that assign variation to some of the inputs determining outcomes while holding all other inputs fixed. He thus formalized and made operational Marshall's (1890) ceteris paribus analysis. We embed Haavelmo's framework into the recursive framework of Directed Acyclic Graphs (DAGs) used in one influential recent approach to causality (Pearl, 2000) and in the related literature on Bayesian nets (Lauritzen, 1996). We compare the simplicity of an analysis of causality based on Haavelmo's methodology with the complex and nonintuitive approach used in the causal literature of DAGs—the “do-calculus” of Pearl (2009). We discuss the severe limitations of DAGs and in particular of the do-calculus of Pearl in securing identification of economic models. We extend our framework to consider models for simultaneous causality, a central contribution of Haavelmo. In general cases, DAGs cannot be used to analyze models for simultaneous causality, but Haavelmo's approach naturally generalizes to cover them. PMID:25729123
NASA Astrophysics Data System (ADS)
Lee, J.; Bong, H. J.; Ha, J.; Choi, J.; Barlat, F.; Lee, M.-G.
2018-05-01
In this study, a numerical sensitivity analysis of the springback prediction was performed using advanced strain hardening models. In particular, the springback in U-draw bending for dual-phase 780 steel sheets was investigated while focusing on the effect of the initial yield stress determined from the cyclic loading tests. The anisotropic hardening models could reproduce the flow stress behavior under the non-proportional loading condition for the considered parametric cases. However, various identification schemes for determining the yield stress of the anisotropic hardening models significantly influenced the springback prediction. The deviations from the measured springback varied from 4% to 13.5% depending on the identification method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bialasiewicz, J.T.
1995-07-01
This work uses the theory developed in NREL/TP--442-7110 to analyze simulated data from an ADAMS (Automated Dynamic Analysis of Mechanical Systems) model of the MICON 65/13 wind turbine. The Observer/Kalman Filter identification approach is expanded to use input-output time histories from ADAMS simulations or structural test data. A step by step outline is offered on how the tools developed in this research, can be used for validation of the ADAMS model.
Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O’Brien, Nada A.
2016-01-01
Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machine (SVM) modeling. We used a set of 19 pharmaceutical compounds including various active pharmaceutical ingredients (APIs) and excipients and six MicroNIR spectrometers to test model transferability. For the test of large-scale classification, we used another set of 253 pharmaceutical compounds comprised of both chemically and physically different APIs and excipients. We compared SVM with conventional chemometric modeling techniques, including soft independent modeling of class analogy, partial least squares discriminant analysis, linear discriminant analysis, and quadratic discriminant analysis. Support vector machine modeling using a linear kernel, especially when combined with a hierarchical scheme, exhibited excellent performance in both model transferability and large-scale classification. Hence, ultra-compact, portable and robust MicroNIR spectrometers coupled with SVM modeling can make on-site and in situ pharmaceutical RMID for large-volume applications highly achievable. PMID:27029624
ERIC Educational Resources Information Center
Deane, Paul; Graf, Edith Aurora; Higgins, Derrick; Futagi, Yoko; Lawless, René
2006-01-01
This study focuses on the relationship between item modeling and evidence-centered design (ECD); it considers how an appropriately generalized item modeling software tool can support systematic identification and exploitation of task-model variables, and then examines the feasibility of this goal, using linear-equation items as a test case. The…
NASA Astrophysics Data System (ADS)
Courchesne, Samuel
Knowledge of the dynamic characteristics of a fixed-wing UAV is necessary to design flight control laws and to conceive a high quality flight simulator. The basic features of a flight mechanic model include the properties of mass, inertia and major aerodynamic terms. They respond to a complex process involving various numerical analysis techniques and experimental procedures. This thesis focuses on the analysis of estimation techniques applied to estimate problems of stability and control derivatives from flight test data provided by an experimental UAV. To achieve this objective, a modern identification methodology (Quad-M) is used to coordinate the processing tasks from multidisciplinary fields, such as parameter estimation modeling, instrumentation, the definition of flight maneuvers and validation. The system under study is a non-linear model with six degrees of freedom with a linear aerodynamic model. The time domain techniques are used for identification of the drone. The first technique, the equation error method is used to determine the structure of the aerodynamic model. Thereafter, the output error method and filter error method are used to estimate the aerodynamic coefficients values. The Matlab scripts for estimating the parameters obtained from the American Institute of Aeronautics and Astronautics (AIAA) are used and modified as necessary to achieve the desired results. A commendable effort in this part of research is devoted to the design of experiments. This includes an awareness of the system data acquisition onboard and the definition of flight maneuvers. The flight tests were conducted under stable flight conditions and with low atmospheric disturbance. Nevertheless, the identification results showed that the filter error method is most effective for estimating the parameters of the drone due to the presence of process noise and measurement. The aerodynamic coefficients are validated using a numerical analysis of the vortex method. In addition, a simulation model incorporating the estimated parameters is used to compare the behavior of states measured. Finally, a good correspondence between the results is demonstrated despite a limited number of flight data. Keywords: drone, identification, estimation, nonlinear, flight test, system, aerodynamic coefficient.
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan
2006-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.
NASA Astrophysics Data System (ADS)
Zheng, Sifa; Liu, Haitao; Dan, Jiabi; Lian, Xiaomin
2015-05-01
Linear time-invariant assumption for the determination of acoustic source characteristics, the source strength and the source impedance in the frequency domain has been proved reasonable in the design of an exhaust system. Different methods have been proposed to its identification and the multi-load method is widely used for its convenience by varying the load number and impedance. Theoretical error analysis has rarely been referred to and previous results have shown an overdetermined set of open pipes can reduce the identification error. This paper contributes a theoretical error analysis for the load selection. The relationships between the error in the identification of source characteristics and the load selection were analysed. A general linear time-invariant model was built based on the four-load method. To analyse the error of the source impedance, an error estimation function was proposed. The dispersion of the source pressure was obtained by an inverse calculation as an indicator to detect the accuracy of the results. It was found that for a certain load length, the load resistance at the frequency points of one-quarter wavelength of odd multiples results in peaks and in the maximum error for source impedance identification. Therefore, the load impedance of frequency range within the one-quarter wavelength of odd multiples should not be used for source impedance identification. If the selected loads have more similar resistance values (i.e., the same order of magnitude), the identification error of the source impedance could be effectively reduced.
the Strategic Energy Analysis Center. Areas of Expertise Geothermal direct use (thermal applications ) Reservoir modeling/simulation, well testing Data analysis and visualization Research Interests Geothermal resource assessment New technologies for geothermal industry (EGS, DU, etc.) Barrier identification and
Li, Wu; Hu, Bing; Wang, Ming-wei
2014-12-01
In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species identification of borneol in Chinese medicine.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
IDENTIFICATION OF AN IDEAL REACTOR MODEL IN A SECONDARY COMBUSTION CHAMBER
Tracer analysis was applied to a secondary combustion chamber of a rotary kiln incinerator simulator to develop a computationally inexpensive networked ideal reactor model and allow for the later incorporation of detailed reaction mechanisms. Tracer data from sulfur dioxide trace...
44 CFR 65.7 - Floodway revisions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...
44 CFR 65.7 - Floodway revisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...
44 CFR 65.7 - Floodway revisions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...
44 CFR 65.7 - Floodway revisions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...
44 CFR 65.7 - Floodway revisions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program IDENTIFICATION AND... described below: (i) The floodway analysis must be performed using the hydraulic computer model used to... output data from the original and modified computer models must be submitted. (5) Delineation of the...
Identification of Historical Veziragasi Aqueduct Using the Operational Modal Analysis
Ercan, E.; Nuhoglu, A.
2014-01-01
This paper describes the results of a model updating study conducted on a historical aqueduct, called Veziragasi, in Turkey. The output-only modal identification results obtained from ambient vibration measurements of the structure were used to update a finite element model of the structure. For the purposes of developing a solid model of the structure, the dimensions of the structure, defects, and material degradations in the structure were determined in detail by making a measurement survey. For evaluation of the material properties of the structure, nondestructive and destructive testing methods were applied. The modal analysis of the structure was calculated by FEM. Then, a nondestructive dynamic test as well as operational modal analysis was carried out and dynamic properties were extracted. The natural frequencies and corresponding mode shapes were determined from both theoretical and experimental modal analyses and compared with each other. A good harmony was attained between mode shapes, but there were some differences between natural frequencies. The sources of the differences were introduced and the FEM model was updated by changing material parameters and boundary conditions. Finally, the real analytical model of the aqueduct was put forward and the results were discussed. PMID:24511287
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.
Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan
2014-06-05
Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.
The effect of call libraries and acoustic filters on the identification of bat echolocation.
Clement, Matthew J; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C
2014-09-01
Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management decisions based on acoustic surveys.
The effect of call libraries and acoustic filters on the identification of bat echolocation
Clement, Matthew J; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C
2014-01-01
Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management decisions based on acoustic surveys. PMID:25535563
Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying
2014-12-01
A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.
The effect of call libraries and acoustic filters on the identification of bat echolocation
Clement, Matthew; Murray, Kevin L; Solick, Donald I; Gruver, Jeffrey C
2014-01-01
Quantitative methods for species identification are commonly used in acoustic surveys for animals. While various identification models have been studied extensively, there has been little study of methods for selecting calls prior to modeling or methods for validating results after modeling. We obtained two call libraries with a combined 1556 pulse sequences from 11 North American bat species. We used four acoustic filters to automatically select and quantify bat calls from the combined library. For each filter, we trained a species identification model (a quadratic discriminant function analysis) and compared the classification ability of the models. In a separate analysis, we trained a classification model using just one call library. We then compared a conventional model assessment that used the training library against an alternative approach that used the second library. We found that filters differed in the share of known pulse sequences that were selected (68 to 96%), the share of non-bat noises that were excluded (37 to 100%), their measurement of various pulse parameters, and their overall correct classification rate (41% to 85%). Although the top two filters did not differ significantly in overall correct classification rate (85% and 83%), rates differed significantly for some bat species. In our assessment of call libraries, overall correct classification rates were significantly lower (15% to 23% lower) when tested on the second call library instead of the training library. Well-designed filters obviated the need for subjective and time-consuming manual selection of pulses. Accordingly, researchers should carefully design and test filters and include adequate descriptions in publications. Our results also indicate that it may not be possible to extend inferences about model accuracy beyond the training library. If so, the accuracy of acoustic-only surveys may be lower than commonly reported, which could affect ecological understanding or management decisions based on acoustic surveys.
The relation between periods’ identification and noises in hydrologic series data
NASA Astrophysics Data System (ADS)
Sang, Yan-Fang; Wang, Dong; Wu, Ji-Chun; Zhu, Qing-Ping; Wang, Ling
2009-04-01
SummaryIdentification of dominant periods is a typical and important issue in hydrologic series data analysis, since it is the basis of building effective stochastic models, understanding complex hydrologic processes, etc. However it is still a difficult task due to the influence of many interrelated factors, such as noises in hydrologic series data. In this paper, firstly the great influence of noises on periods' identification has been analyzed. Then, based on two conventional methods of hydrologic series analysis: wavelet analysis (WA) and maximum entropy spectral analysis (MESA), a new method of periods' identification of hydrologic series data, main series spectral analysis (MSSA), has been put forward, whose main idea is to identify periods of the main series on the basis of reducing hydrologic noises. Various methods (include fast Fourier transform (FFT), MESA and MSSA) have been applied to both synthetic series and observed hydrologic series. Results show that conventional methods (FFT and MESA) are not as good as expected due to the great influence of noises. However, this influence is not so strong while using the new method MSSA. In addition, by using the new de-noising method proposed in this paper, which is suitable for both normal noises and skew noises, the results are more reasonable, since noises separated from hydrologic series data generally follow skew probability distributions. In conclusion, based on comprehensive analyses, it can be stated that the proposed method MSSA could improve periods' identification by effectively reducing the influence of hydrologic noises.
SEREX analysis for tumor antigen identification in a mouse model of adenocarcinoma.
Hampton, T A; Conry, R M; Khazaeli, M B; Shaw, D R; Curiel, D T; LoBuglio, A F; Strong, T V
2000-03-01
Evaluation of immunotherapy strategies in mouse models of carcinoma is hampered by the limited number of known murine tumor antigens (Ags). Although tumor Ags can be identified based on cytotoxic T-cell activation, this approach is not readily accomplished for many tumor types. We applied an alternative strategy based on a humoral immune response, SEREX, to the identification of tumor Ags in the murine colon adenocarcinoma cell line MC38. Immunization of syngeneic C57BL/6 mice with MC38 cells by three different methods induced a protective immune response with concomitant production of anti-MC38 antibodies. Immunoscreening of an MC38-derived expression library resulted in the identification of the endogenous ecotropic leukemia virus envelope (env) protein and the murine ATRX protein as candidate tumor Ags. Northern blot analysis demonstrated high levels of expression of the env transcript in MC38 cells and in several other murine tumor cell lines, whereas expression in normal colonic epithelium was absent. ATRX was found to be variably expressed in tumor cell lines and in normal tissue. Further analysis of the expressed env sequence indicated that it represents a nonmutated tumor Ag. Polynucleotide immunization with DNA encoding the env polypeptide resulted in strong and specific antibody responses to this self Ag in all immunized mice. Thus, SEREX offers a rapid means of identifying tumor Ags in murine cancer models.
Identification of pumping influences in long-term water level fluctuations.
Harp, Dylan R; Vesselinov, Velimir V
2011-01-01
Identification of the pumping influences at monitoring wells caused by spatially and temporally variable water supply pumping can be a challenging, yet an important hydrogeological task. The information that can be obtained can be critical for conceptualization of the hydrogeological conditions and indications of the zone of influence of the individual pumping wells. However, the pumping influences are often intermittent and small in magnitude with variable production rates from multiple pumping wells. While these difficulties may support an inclination to abandon the existing dataset and conduct a dedicated cross-hole pumping test, that option can be challenging and expensive to coordinate and execute. This paper presents a method that utilizes a simple analytical modeling approach for analysis of a long-term water level record utilizing an inverse modeling approach. The methodology allows the identification of pumping wells influencing the water level fluctuations. Thus, the analysis provides an efficient and cost-effective alternative to designed and coordinated cross-hole pumping tests. We apply this method on a dataset from the Los Alamos National Laboratory site. Our analysis also provides (1) an evaluation of the information content of the transient water level data; (2) indications of potential structures of the aquifer heterogeneity inhibiting or promoting pressure propagation; and (3) guidance for the development of more complicated models requiring detailed specification of the aquifer heterogeneity. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Shao, Yongni; Li, Yuan; Jiang, Linjun; Pan, Jian; He, Yong; Dou, Xiaoming
2016-11-01
The main goal of this research is to examine the feasibility of applying Visible/Near-infrared hyperspectral imaging (Vis/NIR-HSI) and Raman microspectroscopy technology for non-destructive identification of pesticide varieties (glyphosate and butachlor). Both mentioned technologies were explored to investigate how internal elements or characteristics of Chlorella pyrenoidosa change when pesticides are applied, and in the meantime, to identify varieties of the pesticides during this procedure. Successive projections algorithm (SPA) was introduced to our study to identify seven most effective wavelengths. With those wavelengths suggested by SPA, a model of the linear discriminant analysis (LDA) was established to classify the pesticide varieties, and the correct classification rate of the SPA-LDA model reached as high as 100%. For the Raman technique, a few partial least squares discriminant analysis models were established with different preprocessing methods from which we also identified one processing approach that achieved the most optimal result. The sensitive wavelengths (SWs) which are related to algae's pigment were chosen, and a model of LDA was established with the correct identification reached a high level of 90.0%. The results showed that both Vis/NIR-HSI and Raman microspectroscopy techniques are capable to identify pesticide varieties in an indirect but effective way, and SPA is an effective wavelength extracting method. The SWs corresponding to microalgae pigments, which were influenced by pesticides, could also help to characterize different pesticide varieties and benefit the variety identification. Copyright © 2016 Elsevier Ltd. All rights reserved.
DeltaSA tool for source apportionment benchmarking, description and sensitivity analysis
NASA Astrophysics Data System (ADS)
Pernigotti, D.; Belis, C. A.
2018-05-01
DeltaSA is an R-package and a Java on-line tool developed at the EC-Joint Research Centre to assist and benchmark source apportionment applications. Its key functionalities support two critical tasks in this kind of studies: the assignment of a factor to a source in factor analytical models (source identification) and the model performance evaluation. The source identification is based on the similarity between a given factor and source chemical profiles from public databases. The model performance evaluation is based on statistical indicators used to compare model output with reference values generated in intercomparison exercises. The references values are calculated as the ensemble average of the results reported by participants that have passed a set of testing criteria based on chemical profiles and time series similarity. In this study, a sensitivity analysis of the model performance criteria is accomplished using the results of a synthetic dataset where "a priori" references are available. The consensus modulated standard deviation punc gives the best choice for the model performance evaluation when a conservative approach is adopted.
COMBINING SOURCES IN STABLE ISOTOPE MIXING MODELS: ALTERNATIVE METHODS
Stable isotope mixing models are often used to quantify source contributions to a mixture. Examples include pollution source identification; trophic web studies; analysis of water sources for soils, plants, or water bodies; and many others. A common problem is having too many s...
NASA Astrophysics Data System (ADS)
Shokravi, H.; Bakhary, NH
2017-11-01
Subspace System Identification (SSI) is considered as one of the most reliable tools for identification of system parameters. Performance of a SSI scheme is considerably affected by the structure of the associated identification algorithm. Weight matrix is a variable in SSI that is used to reduce the dimensionality of the state-space equation. Generally one of the weight matrices of Principle Component (PC), Unweighted Principle Component (UPC) and Canonical Variate Analysis (CVA) are used in the structure of a SSI algorithm. An increasing number of studies in the field of structural health monitoring are using SSI for damage identification. However, studies that evaluate the performance of the weight matrices particularly in association with accuracy, noise resistance, and time complexity properties are very limited. In this study, the accuracy, noise-robustness, and time-efficiency of the weight matrices are compared using different qualitative and quantitative metrics. Three evaluation metrics of pole analysis, fit values and elapsed time are used in the assessment process. A numerical model of a mass-spring-dashpot and operational data is used in this research paper. It is observed that the principal components obtained using PC algorithms are more robust against noise uncertainty and give more stable results for the pole distribution. Furthermore, higher estimation accuracy is achieved using UPC algorithm. CVA had the worst performance for pole analysis and time efficiency analysis. The superior performance of the UPC algorithm in the elapsed time is attributed to using unit weight matrices. The obtained results demonstrated that the process of reducing dimensionality in CVA and PC has not enhanced the time efficiency but yield an improved modal identification in PC.
Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H
2006-01-01
Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.
Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K
2009-01-01
Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.
Model validity and frequency band selection in operational modal analysis
NASA Astrophysics Data System (ADS)
Au, Siu-Kui
2016-12-01
Experimental modal analysis aims at identifying the modal properties (e.g., natural frequencies, damping ratios, mode shapes) of a structure using vibration measurements. Two basic questions are encountered when operating in the frequency domain: Is there a mode near a particular frequency? If so, how much spectral data near the frequency can be included for modal identification without incurring significant modeling error? For data with high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., for modes with low s/n ratios or close modes. In this work these questions are addressed using a Bayesian approach. The focus is on operational modal analysis, i.e., with 'output-only' ambient data, where identification uncertainty and modeling error can be significant and their control is most demanding. The approach leads to 'evidence ratios' quantifying the relative plausibility of competing sets of modeling assumptions. The latter involves modeling the 'what-if-not' situation, which is non-trivial but is resolved by systematic consideration of alternative models and using maximum entropy principle. Synthetic and field data are considered to investigate the behavior of evidence ratios and how they should be interpreted in practical applications.
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1986-01-01
This paper outlines methods for modeling, identification and estimation for static determination of flexible structures. The shape estimation schemes are based on structural models specified by (possibly interconnected) elliptic partial differential equations. The identification techniques provide approximate knowledge of parameters in elliptic systems. The techniques are based on the method of maximum-likelihood that finds parameter values such that the likelihood functional associated with the system model is maximized. The estimation methods are obtained by means of a function-space approach that seeks to obtain the conditional mean of the state given the data and a white noise characterization of model errors. The solutions are obtained in a batch-processing mode in which all the data is processed simultaneously. After methods for computing the optimal estimates are developed, an analysis of the second-order statistics of the estimates and of the related estimation error is conducted. In addition to outlining the above theoretical results, the paper presents typical flexible structure simulations illustrating performance of the shape determination methods.
[Research on identification of species of fruit trees by spectral analysis].
Xing, Dong-Xing; Chang, Qing-Rui
2009-07-01
Using the spectral reflectance data (R2) of canopies, the present paper identifies seven species of fruit trees bearing fruit in the fruit mature period. Firstly, it compares the fruit tree species identification capability of six kinds of satellite sensors and four kinds of vegetation index through re-sampling the spectral data with six kinds of pre-defined filter function and the related data processing of calculating vegetation indexes. Then, it structures a BP neural network model for identifying seven species of fruit trees on the basis of choosing the best transformation of R(lambda) and optimizing the model parameters. The main conclusions are: (1) the order of the identification capability of the six kinds of satellite sensors from strong to weak is: MODIS, ASTER, ETM+, HRG, QUICKBIRD and IKONOS; (2) among the four kinds of vegetation indexes, the identification capability of RVI is the most powerful, the next is NDVI, while the identification capability of SAVI or DVI is relatively weak; (3) The identification capability of RVI and NDVI calculated with the reflectance of near-infrared and red channels of ETM+ or MODIS sensor is relatively powerful; (4) Among R(lambda) and its 22 kinds of transformation data, d1 [log(1/R(lambda))](derivative gap is set 9 nm) is the best transformation for structuring BP neural network model; (5) The paper structures a 3-layer BP neural network model for identifying seven species of fruit trees using the best transformation of R(lambda) which is d1 [log(1/R(lambda))](derivative gap is set 9 nm).
Identification and Analysis of National Airspace System Resource Constraints
NASA Technical Reports Server (NTRS)
Smith, Jeremy C.; Marien, Ty V.; Viken, Jeffery K.; Neitzke, Kurt W.; Kwa, Tech-Seng; Dollyhigh, Samuel M.; Fenbert, James W.; Hinze, Nicolas K.
2015-01-01
This analysis is the deliverable for the Airspace Systems Program, Systems Analysis Integration and Evaluation Project Milestone for the Systems and Portfolio Analysis (SPA) focus area SPA.4.06 Identification and Analysis of National Airspace System (NAS) Resource Constraints and Mitigation Strategies. "Identify choke points in the current and future NAS. Choke points refer to any areas in the en route, terminal, oceanic, airport, and surface operations that constrain actual demand in current and projected future operations. Use the Common Scenarios based on Transportation Systems Analysis Model (TSAM) projections of future demand developed under SPA.4.04 Tools, Methods and Scenarios Development. Analyze causes, including operational and physical constraints." The NASA analysis is complementary to a NASA Research Announcement (NRA) "Development of Tools and Analysis to Evaluate Choke Points in the National Airspace System" Contract # NNA3AB95C awarded to Logistics Management Institute, Sept 2013.
Zhang, Qingqing; Huo, Mengqi; Zhang, Yanling; Qiao, Yanjiang; Gao, Xiaoyan
2018-06-01
High-resolution mass spectrometry (HRMS) provides a powerful tool for the rapid analysis and identification of compounds in herbs. However, the diversity and large differences in the content of the chemical constituents in herbal medicines, especially isomerisms, are a great challenge for mass spectrometry-based structural identification. In the current study, a new strategy for the structural characterization of potential new phthalide compounds was proposed by isomer structure predictions combined with a quantitative structure-retention relationship (QSRR) analysis using phthalide compounds in Chuanxiong as an example. This strategy consists of three steps. First, the structures of phthalide compounds were reasonably predicted on the basis of the structure features and MS/MS fragmentation patterns: (1) the collected raw HRMS data were preliminarily screened by an in-house database; (2) the MS/MS fragmentation patterns of the analogous compounds were summarized; (3) the reported phthalide compounds were identified, and the structures of the isomers were reasonably predicted. Second, the QSRR model was established and verified using representative phthalide compound standards. Finally, the retention times of the predicted isomers were calculated by the QSRR model, and the structures of these peaks were rationally characterized by matching retention times of the detected chromatographic peaks and the predicted isomers. A multiple linear regression QSRR model in which 6 physicochemical variables were screened was built using 23 phthalide standards. The retention times of the phthalide isomers in Chuanxiong were well predicted by the QSRR model combined with reasonable structure predictions (R 2 =0.955). A total of 81 peaks were detected from Chuanxiong and assigned to reasonable structures, and 26 potential new phthalide compounds were structurally characterized. This strategy can improve the identification efficiency and reliability of homologues in complex materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Proceedings of the Workshop on Identification and Control of Flexible Space Structures, Volume 2
NASA Technical Reports Server (NTRS)
Rodriguez, G. (Editor)
1985-01-01
The results of a workshop on identification and control of flexible space structures held in San Diego, CA, July 4 to 6, 1984 are discussed. The main objectives of the workshop were to provide a forum to exchange ideas in exploring the most advanced modeling, estimation, identification and control methodologies to flexible space structures. The workshop responded to the rapidly growing interest within NASA in large space systems (space station, platforms, antennas, flight experiments) currently under design. Dynamic structural analysis, control theory, structural vibration and stability, and distributed parameter systems are discussed.
NASA Astrophysics Data System (ADS)
Magalhães, F.; Cunha, A.; Caetano, E.
2012-04-01
In order to evaluate the usefulness of approaches based on modal parameters tracking for structural health monitoring of bridges, in September of 2007, a dynamic monitoring system was installed in a concrete arch bridge at the city of Porto, in Portugal. The implementation of algorithms to perform the continuous on-line identification of modal parameters based on structural responses to ambient excitation (automated Operational Modal Analysis) has permitted to create a very complete database with the time evolution of the bridge modal characteristics during more than 2 years. This paper describes the strategy that was followed to minimize the effects of environmental and operational factors on the bridge natural frequencies, enabling, in a subsequent stage, the identification of structural anomalies. Alternative static and dynamic regression models are tested and complemented by a Principal Components Analysis. Afterwards, the identification of damages is tried with control charts. At the end, it is demonstrated that the adopted processing methodology permits the detection of realistic damage scenarios, associated with frequency shifts around 0.2%, which were simulated with a numerical model.
Advancements in robust algorithm formulation for speaker identification of whispered speech
NASA Astrophysics Data System (ADS)
Fan, Xing
Whispered speech is an alternative speech production mode from neutral speech, which is used by talkers intentionally in natural conversational scenarios to protect privacy and to avoid certain content from being overheard/made public. Due to the profound differences between whispered and neutral speech in production mechanism and the absence of whispered adaptation data, the performance of speaker identification systems trained with neutral speech degrades significantly. This dissertation therefore focuses on developing a robust closed-set speaker recognition system for whispered speech by using no or limited whispered adaptation data from non-target speakers. This dissertation proposes the concept of "High''/"Low'' performance whispered data for the purpose of speaker identification. A variety of acoustic properties are identified that contribute to the quality of whispered data. An acoustic analysis is also conducted to compare the phoneme/speaker dependency of the differences between whispered and neutral data in the feature domain. The observations from those acoustic analysis are new in this area and also serve as a guidance for developing robust speaker identification systems for whispered speech. This dissertation further proposes two systems for speaker identification of whispered speech. One system focuses on front-end processing. A two-dimensional feature space is proposed to search for "Low''-quality performance based whispered utterances and separate feature mapping functions are applied to vowels and consonants respectively in order to retain the speaker's information shared between whispered and neutral speech. The other system focuses on speech-mode-independent model training. The proposed method generates pseudo whispered features from neutral features by using the statistical information contained in a whispered Universal Background model (UBM) trained from extra collected whispered data from non-target speakers. Four modeling methods are proposed for the transformation estimation in order to generate the pseudo whispered features. Both of the above two systems demonstrate a significant improvement over the baseline system on the evaluation data. This dissertation has therefore contributed to providing a scientific understanding of the differences between whispered and neutral speech as well as improved front-end processing and modeling method for speaker identification of whispered speech. Such advancements will ultimately contribute to improve the robustness of speech processing systems.
Ruiz-Aragón, Jesús; Ballestero-Téllez, Mónica; Gutiérrez-Gutiérrez, Belén; de Cueto, Marina; Rodríguez-Baño, Jesús; Pascual, Álvaro
2017-10-27
The rapid identification of bacteraemia-causing pathogens could assist clinicians in the timely prescription of targeted therapy, thereby reducing the morbidity and mortality of this infection. In recent years, numerous techniques that rapidly and directly identify positive blood cultures have been marketed, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) being one of the most commonly used. The aim of this systematic review and meta-analysis was to evaluate the accuracy of MALDI-TOF (Bruker ® ) for the direct identification of positive blood culture bottles. A meta-analysis was performed to summarize the results of the 32 studies evaluated. The overall quality of the studies was moderate. For Gram-positive bacteria, overall rates of correct identification of the species ranged from 0.17 to 0.98, with a cumulative rate (random-effects model) of 0.72 (95% CI: 0.64-0.80). For Gram-negative bacteria, correct identification rates ranged from 0.66 to 1.00, with a cumulative effect of 0.92 (95% CI: 0.88-0.95). For Enterobacteriaceae, the rate was 0.96 (95% CI: 0.94-0.97). MALDI-TOF mass spectrometry shows high accuracy for the correct identification of Gram-negative bacteria, particularly Enterobacteriaceae, directly from positive blood culture bottles, and moderate accuracy for the identification of Gram-positive bacteria (low for some species). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Positive dental identification using tooth anatomy and digital superimposition.
Johansen, Raymond J; Michael Bowers, C
2013-03-01
Dental identification of unknown human remains continues to be a relevant and reliable adjunct to forensic investigations. The advent of genomic and mitochondrial DNA procedures has not displaced the practical use of dental and related osseous structures remaining after destructive incidents that can render human remains unrecognizable, severely burned, and fragmented. The ability to conclusively identify victims of accident and homicide is based on the availability of antemortem records containing substantial and unambiguous proof of dental and related osseous characteristics. This case report documents the use of digital comparative analysis of antemortem dental models and postmortem dentition, to determine a dental identification. Images of dental models were digitally analyzed using Adobe Photoshop(TM) software. Individual tooth anatomy was compared between the antemortem and postmortem images. Digital superimposition techniques were also used for the comparison. With the absence of antemortem radiographs, this method proved useful to reach a positive identification in this case. © 2012 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Cao, Pei; Qi, Shuai; Tang, J.
2018-03-01
The impedance/admittance measurements of a piezoelectric transducer bonded to or embedded in a host structure can be used as damage indicator. When a credible model of the healthy structure, such as the finite element model, is available, using the impedance/admittance change information as input, it is possible to identify both the location and severity of damage. The inverse analysis, however, may be under-determined as the number of unknowns in high-frequency analysis is usually large while available input information is limited. The fundamental challenge thus is how to find a small set of solutions that cover the true damage scenario. In this research we cast the damage identification problem into a multi-objective optimization framework to tackle this challenge. With damage locations and severities as unknown variables, one of the objective functions is the difference between impedance-based model prediction in the parametric space and the actual measurements. Considering that damage occurrence generally affects only a small number of elements, we choose the sparsity of the unknown variables as another objective function, deliberately, the l 0 norm. Subsequently, a multi-objective Dividing RECTangles (DIRECT) algorithm is developed to facilitate the inverse analysis where the sparsity is further emphasized by sigmoid transformation. As a deterministic technique, this approach yields results that are repeatable and conclusive. In addition, only one algorithmic parameter, the number of function evaluations, is needed. Numerical and experimental case studies demonstrate that the proposed framework is capable of obtaining high-quality damage identification solutions with limited measurement information.
[Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology].
Li, Xun-lan; Yi, Shi-lai; He, Shao-lan; Lü, Qiang; Xie, Rang-jin; Zheng, Yong-qiang; Deng, Lie
2015-09-01
Existing methods for the identification of pummelo cultivars are usually time-consuming and costly, and are therefore inconvenient to be used in cases that a rapid identification is needed. This research was aimed at identifying different pummelo cultivars by hyperspectral imaging technology which can achieve a rapid and highly sensitive measurement. A total of 240 leaf samples, 60 for each of the four cultivars were investigated. Samples were divided into two groups such as calibration set (48 samples of each cultivar) and validation set (12 samples of each cultivar) by a Kennard-Stone-based algorithm. Hyperspectral images of both adaxial and abaxial surfaces of each leaf were obtained, and were segmented into a region of interest (ROI) using a simple threshold. Spectra of leaf samples were extracted from ROI. To remove the absolute noises of the spectra, only the date of spectral range 400~1000 nm was used for analysis. Multiplicative scatter correction (MSC) and standard normal variable (SNV) were utilized for data preprocessing. Principal component analysis (PCA) was used to extract the best principal components, and successive projections algorithm (SPA) was used to extract the effective wavelengths. Least squares support vector machine (LS-SVM) was used to obtain the discrimination model of the four different pummelo cultivars. To find out the optimal values of σ2 and γ which were important parameters in LS-SVM modeling, Grid-search technique and Cross-Validation were applied. The first 10 and 11 principal components were extracted by PCA for the hyperspectral data of adaxial surface and abaxial surface, respectively. There were 31 and 21 effective wavelengths selected by SPA based on the hyperspectral data of adaxial surface and abaxial surface, respectively. The best principal components and the effective wavelengths were used as inputs of LS-SVM models, and then the PCA-LS-SVM model and the SPA-LS-SVM model were built. The results showed that 99.46% and 98.44% of identification accuracy was achieved in the calibration set for the PCA-LS-SVM model and the SPA-LS-SVM model, respectively, and a 95.83% of identification accuracy was achieved in the validation set for both the PCA-LS-SVM and the SPA- LS-SVM models, which were built based on the hyperspectral data of adaxial surface. Comparatively, the results of the PCA-LS-SVM and the SPA-LS-SVM models built based on the hyperspectral data of abaxial surface both achieved identification accuracies of 100% for both calibration set and validation set. The overall results demonstrated that use of hyperspectral data of adaxial and abaxial leaf surfaces coupled with the use of PCA-LS-SVM and the SPA-LS-SVM could achieve an accurate identification of pummelo cultivars. It was feasible to use hyperspectral imaging technology to identify different pummelo cultivars, and hyperspectral imaging technology provided an alternate way of rapid identification of pummelo cultivars. Moreover, the results in this paper demonstrated that the data from the abaxial surface of leaf was more sensitive in identifying pummelo cultivars. This study provided a new method for to the fast discrimination of pummelo cultivars.
Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok
2014-01-01
Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
An Extreme-Value Approach to Anomaly Vulnerability Identification
NASA Technical Reports Server (NTRS)
Everett, Chris; Maggio, Gaspare; Groen, Frank
2010-01-01
The objective of this paper is to present a method for importance analysis in parametric probabilistic modeling where the result of interest is the identification of potential engineering vulnerabilities associated with postulated anomalies in system behavior. In the context of Accident Precursor Analysis (APA), under which this method has been developed, these vulnerabilities, designated as anomaly vulnerabilities, are conditions that produce high risk in the presence of anomalous system behavior. The method defines a parameter-specific Parameter Vulnerability Importance measure (PVI), which identifies anomaly risk-model parameter values that indicate the potential presence of anomaly vulnerabilities, and allows them to be prioritized for further investigation. This entails analyzing each uncertain risk-model parameter over its credible range of values to determine where it produces the maximum risk. A parameter that produces high system risk for a particular range of values suggests that the system is vulnerable to the modeled anomalous conditions, if indeed the true parameter value lies in that range. Thus, PVI analysis provides a means of identifying and prioritizing anomaly-related engineering issues that at the very least warrant improved understanding to reduce uncertainty, such that true vulnerabilities may be identified and proper corrective actions taken.
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.
Modeling Pupils' Understanding and Explanations Concerning Changes in Matter
ERIC Educational Resources Information Center
Hatzinikita, Vassilia; Koulaidis, Vasilios; Hatzinikitas, Agapitos
2005-01-01
The explanations of thirty primary pupils for changes in matter were recorded through individual, semi-structured interviews. The analysis of data pointed to the construction of a system for classifying pupils' explanations of changes in matter. A parallel analysis of data focused on the identification and interpretation of associations between…
NASA Astrophysics Data System (ADS)
Sindt, Nathan M.; Robison, Faith; Brick, Mark A.; Schwartz, Howard F.; Heuberger, Adam L.; Prenni, Jessica E.
2018-02-01
Matrix-assisted desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) is a fast and effective tool for microbial species identification. However, current approaches are limited to species-level identification even when genetic differences are known. Here, we present a novel workflow that applies the statistical method of partial least squares discriminant analysis (PLS-DA) to MALDI-TOF-MS protein fingerprint data of Xanthomonas axonopodis, an important bacterial plant pathogen of fruit and vegetable crops. Mass spectra of 32 X. axonopodis strains were used to create a mass spectral library and PLS-DA was employed to model the closely related strains. A robust workflow was designed to optimize the PLS-DA model by assessing the model performance over a range of signal-to-noise ratios (s/n) and mass filter (MF) thresholds. The optimized parameters were observed to be s/n = 3 and MF = 0.7. The model correctly classified 83% of spectra withheld from the model as a test set. A new decision rule was developed, termed the rolled-up Maximum Decision Rule (ruMDR), and this method improved identification rates to 92%. These results demonstrate that MALDI-TOF-MS protein fingerprints of bacterial isolates can be utilized to enable identification at the strain level. Furthermore, the open-source framework of this workflow allows for broad implementation across various instrument platforms as well as integration with alternative modeling and classification algorithms.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael
2014-05-01
Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.
USDA-ARS?s Scientific Manuscript database
A nondestructive and sensitive method was developed to detect the presence of mixed pesticides of acetamiprid, chlorpyrifos and carbendazim on apples by surface-enhanced Raman spectroscopy (SERS). Self-modeling mixture analysis (SMA) was used to extract and identify the Raman spectra of individual p...
Empirical Identification of the Major Facets of Conscientiousness
ERIC Educational Resources Information Center
MacCann, Carolyn; Duckworth, Angela Lee; Roberts, Richard D.
2009-01-01
Conscientiousness is often found to predict academic outcomes, but is defined differently by different models of personality. High school students (N = 291) completed a large number of Conscientiousness items from different models and the Big Five Inventory (BFI). Exploratory and confirmatory factor analysis of the items uncovered eight facets:…
Developing Public Education Policy through Policy-Impact Analysis.
ERIC Educational Resources Information Center
Hackett, E. Raymond; And Others
A model for analyzing policy impacts is presented that will assist state-level policy makers in education. The model comprises four stages: (1) monitoring, which includes the identification of relevant trends and issues and the development of a data base; (2) forecasting, which uses quantitative and qualitative techniques developed in futures…
Reliability Assessment for Low-cost Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Freeman, Paul Michael
Existing low-cost unmanned aerospace systems are unreliable, and engineers must blend reliability analysis with fault-tolerant control in novel ways. This dissertation introduces the University of Minnesota unmanned aerial vehicle flight research platform, a comprehensive simulation and flight test facility for reliability and fault-tolerance research. An industry-standard reliability assessment technique, the failure modes and effects analysis, is performed for an unmanned aircraft. Particular attention is afforded to the control surface and servo-actuation subsystem. Maintaining effector health is essential for safe flight; failures may lead to loss of control incidents. Failure likelihood, severity, and risk are qualitatively assessed for several effector failure modes. Design changes are recommended to improve aircraft reliability based on this analysis. Most notably, the control surfaces are split, providing independent actuation and dual-redundancy. The simulation models for control surface aerodynamic effects are updated to reflect the split surfaces using a first-principles geometric analysis. The failure modes and effects analysis is extended by using a high-fidelity nonlinear aircraft simulation. A trim state discovery is performed to identify the achievable steady, wings-level flight envelope of the healthy and damaged vehicle. Tolerance of elevator actuator failures is studied using familiar tools from linear systems analysis. This analysis reveals significant inherent performance limitations for candidate adaptive/reconfigurable control algorithms used for the vehicle. Moreover, it demonstrates how these tools can be applied in a design feedback loop to make safety-critical unmanned systems more reliable. Control surface impairments that do occur must be quickly and accurately detected. This dissertation also considers fault detection and identification for an unmanned aerial vehicle using model-based and model-free approaches and applies those algorithms to experimental faulted and unfaulted flight test data. Flight tests are conducted with actuator faults that affect the plant input and sensor faults that affect the vehicle state measurements. A model-based detection strategy is designed and uses robust linear filtering methods to reject exogenous disturbances, e.g. wind, while providing robustness to model variation. A data-driven algorithm is developed to operate exclusively on raw flight test data without physical model knowledge. The fault detection and identification performance of these complementary but different methods is compared. Together, enhanced reliability assessment and multi-pronged fault detection and identification techniques can help to bring about the next generation of reliable low-cost unmanned aircraft.
Capote, F Priego; Jiménez, J Ruiz; de Castro, M D Luque
2007-08-01
An analytical method for the sequential detection, identification and quantitation of extra virgin olive oil adulteration with four edible vegetable oils--sunflower, corn, peanut and coconut oils--is proposed. The only data required for this method are the results obtained from an analysis of the lipid fraction by gas chromatography-mass spectrometry. A total number of 566 samples (pure oils and samples of adulterated olive oil) were used to develop the chemometric models, which were designed to accomplish, step-by-step, the three aims of the method: to detect whether an olive oil sample is adulterated, to identify the type of adulterant used in the fraud, and to determine how much aldulterant is in the sample. Qualitative analysis was carried out via two chemometric approaches--soft independent modelling of class analogy (SIMCA) and K nearest neighbours (KNN)--both approaches exhibited prediction abilities that were always higher than 91% for adulterant detection and 88% for type of adulterant identification. Quantitative analysis was based on partial least squares regression (PLSR), which yielded R2 values of >0.90 for calibration and validation sets and thus made it possible to determine adulteration with excellent precision according to the Shenk criteria.
Applying Rasch model analysis in the development of the cantonese tone identification test (CANTIT).
Lee, Kathy Y S; Lam, Joffee H S; Chan, Kit T Y; van Hasselt, Charles Andrew; Tong, Michael C F
2017-01-01
Applying Rasch analysis to evaluate the internal structure of a lexical tone perception test known as the Cantonese Tone Identification Test (CANTIT). A 75-item pool (CANTIT-75) with pictures and sound tracks was developed. Respondents were required to make a four-alternative forced choice on each item. A short version of 30 items (CANTIT-30) was developed based on fit statistics, difficulty estimates, and content evaluation. Internal structure was evaluated by fit statistics and Rasch Factor Analysis (RFA). 200 children with normal hearing and 141 children with hearing impairment were recruited. For CANTIT-75, all infit and 97% of outfit values were < 2.0. RFA revealed 40.1% of total variance was explained by the Rasch measure. The first residual component explained 2.5% of total variance in an eigenvalue of 3.1. For CANTIT-30, all infit and outfit values were < 2.0. The Rasch measure explained 38.8% of total variance, the first residual component explained 3.9% of total variance in an eigenvalue of 1.9. The Rasch model provides excellent guidance for the development of short forms. Both CANTIT-75 and CANTIT-30 possess satisfactory internal structure as a construct validity evidence in measuring the lexical tone identification ability of the Cantonese speakers.
Identification and robust control of an experimental servo motor.
Adam, E J; Guestrin, E D
2002-04-01
In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.
Human operator identification model and related computer programs
NASA Technical Reports Server (NTRS)
Kessler, K. M.; Mohr, J. N.
1978-01-01
Four computer programs which provide computational assistance in the analysis of man/machine systems are reported. The programs are: (1) Modified Transfer Function Program (TF); (2) Time Varying Response Program (TVSR); (3) Optimal Simulation Program (TVOPT); and (4) Linear Identification Program (SCIDNT). The TV program converts the time domain state variable system representative to frequency domain transfer function system representation. The TVSR program computes time histories of the input/output responses of the human operator model. The TVOPT program is an optimal simulation program and is similar to TVSR in that it produces time histories of system states associated with an operator in the loop system. The differences between the two programs are presented. The SCIDNT program is an open loop identification code which operates on the simulated data from TVOPT (or TVSR) or real operator data from motion simulators.
Tichy, Diana; Pickl, Julia Maria Anna; Benner, Axel; Sültmann, Holger
2017-03-31
The identification of microRNA (miRNA) target genes is crucial for understanding miRNA function. Many methods for the genome-wide miRNA target identification have been developed in recent years; however, they have several limitations including the dependence on low-confident prediction programs and artificial miRNA manipulations. Ago-RNA immunoprecipitation combined with high-throughput sequencing (Ago-RIP-Seq) is a promising alternative. However, appropriate statistical data analysis algorithms taking into account the experimental design and the inherent noise of such experiments are largely lacking.Here, we investigate the experimental design for Ago-RIP-Seq and examine biostatistical methods to identify de novo miRNA target genes. Statistical approaches considered are either based on a negative binomial model fit to the read count data or applied to transformed data using a normal distribution-based generalized linear model. We compare them by a real data simulation study using plasmode data sets and evaluate the suitability of the approaches to detect true miRNA targets by sensitivity and false discovery rates. Our results suggest that simple approaches like linear regression models on (appropriately) transformed read count data are preferable. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
40 CFR 52.1322 - Original Identification of Plan Section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... listed below were submitted on the dates specified. (1) Budget and manpower projections were submitted by... analysis of those measures, and the results of the carbon monoxide dispersion modeling, submitted on...
40 CFR 52.1322 - Original Identification of Plan Section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... listed below were submitted on the dates specified. (1) Budget and manpower projections were submitted by... analysis of those measures, and the results of the carbon monoxide dispersion modeling, submitted on...
40 CFR 52.1322 - Original Identification of Plan Section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... listed below were submitted on the dates specified. (1) Budget and manpower projections were submitted by... analysis of those measures, and the results of the carbon monoxide dispersion modeling, submitted on...
40 CFR 52.1322 - Original Identification of Plan Section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... listed below were submitted on the dates specified. (1) Budget and manpower projections were submitted by... analysis of those measures, and the results of the carbon monoxide dispersion modeling, submitted on...
40 CFR 52.1322 - Original Identification of Plan Section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... listed below were submitted on the dates specified. (1) Budget and manpower projections were submitted by... analysis of those measures, and the results of the carbon monoxide dispersion modeling, submitted on...
Developing an Automated Method for Detection of Operationally Relevant Ocean Fronts and Eddies
NASA Astrophysics Data System (ADS)
Rogers-Cotrone, J. D.; Cadden, D. D. H.; Rivera, P.; Wynn, L. L.
2016-02-01
Since the early 90's, the U.S. Navy has utilized an observation-based process for identification of frontal systems and eddies. These Ocean Feature Assessments (OFA) rely on trained analysts to identify and position ocean features using satellite-observed sea surface temperatures. Meanwhile, as enhancements and expansion of the navy's Hybrid Coastal Ocean Model (HYCOM) and Regional Navy Coastal Ocean Model (RNCOM) domains have proceeded, the Naval Oceanographic Office (NAVO) has provided Tactical Oceanographic Feature Assessments (TOFA) that are based on data-validated model output but also rely on analyst identification of significant features. A recently completed project has migrated OFA production to the ArcGIS-based Acoustic Reach-back Cell Ocean Analysis Suite (ARCOAS), enabling use of additional observational datasets and significantly decreasing production time; however, it has highlighted inconsistencies inherent to this analyst-based identification process. Current efforts are focused on development of an automated method for detecting operationally significant fronts and eddies that integrates model output and observational data on a global scale. Previous attempts to employ techniques from the scientific community have been unable to meet the production tempo at NAVO. Thus, a system that incorporates existing techniques (Marr-Hildreth, Okubo-Weiss, etc.) with internally-developed feature identification methods (from model-derived physical and acoustic properties) is required. Ongoing expansions to the ARCOAS toolset have shown promising early results.
Peres Penteado, Alissa; Fábio Maciel, Rafael; Erbs, João; Feijó Ortolani, Cristina Lucia; Aguiar Roza, Bartira; Torres Pisa, Ivan
2015-01-01
The entire kidney transplantation process in Brazil is defined through laws, decrees, ordinances, and resolutions, but there is no defined theoretical map describing this process. From this representation it's possible to perform analysis, such as the identification of bottlenecks and information and communication technologies (ICTs) that support this process. The aim of this study was to analyze and represent the kidney transplantation workflow using business process modeling notation (BPMN) and then to identify the ICTs involved in the process. This study was conducted in eight steps, including document analysis and professional evaluation. The results include the BPMN model of the kidney transplantation process in Brazil and the identification of ICTs. We discovered that there are great delays in the process due to there being many different ICTs involved, which can cause information to be poorly integrated.
Programmatic management of multidrug-resistant tuberculosis: models from three countries.
Furin, J; Bayona, J; Becerra, M; Farmer, P; Golubkov, A; Hurtado, R; Joseph, J K; Keshavjee, S; Ponomarenko, O; Rich, M; Shin, S
2011-10-01
Although multidrug-resistant tuberculosis (MDR-TB) is a major global health problem, there is a gap in programmatic treatment implementation. This study describes MDR-TB treatment models in three countries--Peru, Russia and Lesotho-- using qualitative data collected over a 13-year period. A program analysis is presented for each country focusing on baseline medical care, initial implementation and program evolution. A pattern analysis revealed six overarching themes common to all three programs: 1) importance of baseline assessments, 2) early identification of key collaborators, 3) identification of initial locus of care, 4) minimization of patient-incurred costs, 5) targeted interventions for vulnerable populations and 6) importance of technical assistance and funding. Site commonalities and differences in each of these areas were analyzed. It is recommended that all programs providing MDR-TB treatment address these six areas during program development and implementation.
Semiparametric mixed-effects analysis of PK/PD models using differential equations.
Wang, Yi; Eskridge, Kent M; Zhang, Shunpu
2008-08-01
Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.
Yoshizaki, J.; Pollock, K.H.; Brownie, C.; Webster, R.A.
2009-01-01
Misidentification of animals is potentially important when naturally existing features (natural tags) are used to identify individual animals in a capture-recapture study. Photographic identification (photoID) typically uses photographic images of animals' naturally existing features as tags (photographic tags) and is subject to two main causes of identification errors: those related to quality of photographs (non-evolving natural tags) and those related to changes in natural marks (evolving natural tags). The conventional methods for analysis of capture-recapture data do not account for identification errors, and to do so requires a detailed understanding of the misidentification mechanism. Focusing on the situation where errors are due to evolving natural tags, we propose a misidentification mechanism and outline a framework for modeling the effect of misidentification in closed population studies. We introduce methods for estimating population size based on this model. Using a simulation study, we show that conventional estimators can seriously overestimate population size when errors due to misidentification are ignored, and that, in comparison, our new estimators have better properties except in cases with low capture probabilities (<0.2) or low misidentification rates (<2.5%). ?? 2009 by the Ecological Society of America.
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
Time Series Model Identification by Estimating Information, Memory, and Quantiles.
1983-07-01
Standards, Sect. D, 68D, 937-951. Parzen, Emanuel (1969) "Multiple time series modeling" Multivariate Analysis - II, edited by P. Krishnaiah , Academic... Krishnaiah , North Holland: Amsterdam, 283-295. Parzen, Emanuel (1979) "Forecasting and Whitening Filter Estimation" TIMS Studies in the Management...principle. Applications of Statistics, P. R. Krishnaiah , ed. North Holland: Amsterdam, 27-41. Box, G. E. P. and Jenkins, G. M. (1970) Time Series Analysis
Hewson, Kylie; Noormohammadi, Amir H; Devlin, Joanne M; Mardani, Karim; Ignjatovic, Jagoda
2009-01-01
Infectious bronchitis virus (IBV) is a coronavirus that causes upper respiratory, renal and/or reproductive diseases with high morbidity in poultry. Classification of IBV is important for implementation of vaccination strategies to control the disease in commercial poultry. Currently, the lengthy process of sequence analysis of the IBV S1 gene is considered the gold standard for IBV strain identification, with a high nucleotide identity (e.g. > or =95%) indicating related strains. However, this gene has a high propensity to mutate and/or undergo recombination, and alone it may not be reliable for strain identification. A real-time polymerase chain reaction (RT-PCR) combined with high-resolution melt (HRM) curve analysis was developed based on the 3'UTR of IBV for rapid detection and classification of IBV from commercial poultry. HRM curves generated from 230 to 435-bp PCR products of several IBV strains were subjected to further analysis using a mathematical model also developed during this study. It was shown that a combination of HRM curve analysis and the mathematical model could reliably group 189 out of 190 comparisons of pairs of IBV strains in accordance with their 3'UTR and S1 gene identities. The newly developed RT-PCR/HRM curve analysis model could detect and rapidly identify novel and vaccine-related IBV strains, as confirmed by S1 gene and 3'UTR nucleotide sequences. This model is a rapid, reliable, accurate and non-subjective system for detection of IBVs in poultry flocks.
Estimating False Positive Contamination in Crater Annotations from Citizen Science Data
NASA Astrophysics Data System (ADS)
Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.
2017-01-01
Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.
Parametric diagnosis of the adaptive gas path in the automatic control system of the aircraft engine
NASA Astrophysics Data System (ADS)
Kuznetsova, T. A.
2017-01-01
The paper dwells on the adaptive multimode mathematical model of the gas-turbine aircraft engine (GTE) embedded in the automatic control system (ACS). The mathematical model is based on the throttle performances, and is characterized by high accuracy of engine parameters identification in stationary and dynamic modes. The proposed on-board engine model is the state space linearized low-level simulation. The engine health is identified by the influence of the coefficient matrix. The influence coefficient is determined by the GTE high-level mathematical model based on measurements of gas-dynamic parameters. In the automatic control algorithm, the sum of squares of the deviation between the parameters of the mathematical model and real GTE is minimized. The proposed mathematical model is effectively used for gas path defects detecting in on-line GTE health monitoring. The accuracy of the on-board mathematical model embedded in ACS determines the quality of adaptive control and reliability of the engine. To improve the accuracy of identification solutions and sustainability provision, the numerical method of Monte Carlo was used. The parametric diagnostic algorithm based on the LPτ - sequence was developed and tested. Analysis of the results suggests that the application of the developed algorithms allows achieving higher identification accuracy and reliability than similar models used in practice.
Roberts, G; Bellinger, D; McCormick, M C
2007-03-01
Premature and low birth weight children have a high prevalence of academic difficulties. This study examines a model comprised of cumulative risk factors that allows early identification of these difficulties. This is a secondary analysis of data from a large cohort of premature (<37 weeks gestation) and LBW (<2500 g) children. The study subjects were 8 years of age and 494 had data available for reading achievement and 469 for mathematics. Potential predictor variables were categorized into 4 domains: sociodemographic, neonatal, maternal mental health and early childhood (ages 3 and 5). Regression analysis was used to create a model to predict reading and mathematics scores. Variables from all domains were significant in the model, predicting low achievement scores in reading (R (2) of 0.49, model p-value < .0001) and mathematics (R (2) of 0.44, model p-value < .0001). Significant risk factors for lower reading scores, were: lower maternal education and income, and Black or Hispanic race (sociodemographic); lower birth weight and male gender (neonatal); lower maternal responsivity (maternal mental health); lower intelligence, visual-motor skill and higher behavioral disturbance scores (early childhood). Lower mathematics scores were predicted by lower maternal education, income and age and Black or Hispanic race (sociodemographic); lower birth weight and higher head circumference (neonatal); lower maternal responsivity (maternal mental health); lower intelligence, visual-motor skill and higher behavioral disturbance scores (early childhood). Sequential early childhood risk factors in premature and LBW children lead to a cumulative risk for academic difficulties and can be used for early identification.
Adaptive convex combination approach for the identification of improper quaternion processes.
Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P
2014-01-01
Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).
NASA Technical Reports Server (NTRS)
Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.
1984-01-01
The overall purpose was to forecast the potential United States domestic telecommunications demand for satellite provided customer promises voice, data and video services through the year 2000, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: (1) development of a forecast of the total domestic telecommunications demand; (2) identification of that portion of the telecommunications demand suitable for transmission by satellite systems; (3) identification of that portion of the satellite market addressable by consumer promises service (CPS) systems; (4) identification of that portion of the satellite market addressable by Ka-band CPS system; and (5) postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.
NASA Astrophysics Data System (ADS)
Kratochvil, D.; Bowyer, J.; Bhushan, C.; Steinnagel, K.; Kaushal, D.; Al-Kinani, G.
1984-03-01
The overall purpose was to forecast the potential United States domestic telecommunications demand for satellite provided customer promises voice, data and video services through the year 2000, so that this information on service demand would be available to aid in NASA program planning. To accomplish this overall purpose the following objectives were achieved: (1) development of a forecast of the total domestic telecommunications demand; (2) identification of that portion of the telecommunications demand suitable for transmission by satellite systems; (3) identification of that portion of the satellite market addressable by consumer promises service (CPS) systems; (4) identification of that portion of the satellite market addressable by Ka-band CPS system; and (5) postulation of a Ka-band CPS network on a nationwide and local level. The approach employed included the use of a variety of forecasting models, a parametric cost model, a market distribution model and a network optimization model. Forecasts were developed for: 1980, 1990, and 2000; voice, data and video services; terrestrial and satellite delivery modes; and C, Ku and Ka-bands.
Lipidomics in triacylglycerol and cholesteryl ester oxidation.
Kuksis, Arnis
2007-05-01
Although direct mass spectrometry is capable of identification the major molecular species of lipids in crude total lipid extracts, prior chromatographic isolation is necessary for detection and identification of the minor components. This is especially important for the analysis of the oxolipids, which usually occur in trace amounts in the total lipid extract, and require prior isolation for detailed analysis. Both thin-layer chromatography and adsorption cartridges provide effective means for isolation and enrichment of lipid classes, while gas-liquid chromatography and high performance liquid chromatography with on-line mass spectrometry permit further separation and identification of molecular species. Prior chromatographic resolution is absolutely necessary for the identification of isobaric and chiral molecules, which mass spectrometry/mass spectrometry (MS/MS) cannot distinguish. Both gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry applications may require the preparation of derivatives in order to improve the chromatographic and mass spectrometric properties of the oxolipids which is a small inconvenience for securing analytical reliability. The following chapter reviews the advantages and necessity of combined chromatographic-mass spectrometric approaches to successful identification and quantification of molecular species of oxoacylglycerols and oxocholesteryl esters in in-vitro model studies of lipid peroxidation and in the analyses of oxolipids recovered from tissues.
Rødvik, Arne Kirkhorn; von Koss Torkildsen, Janne; Wie, Ona Bø; Storaker, Marit Aarvaag; Silvola, Juha Tapio
2018-04-17
The purpose of this systematic review and meta-analysis was to establish a baseline of the vowel and consonant identification scores in prelingually and postlingually deaf users of multichannel cochlear implants (CIs) tested with consonant-vowel-consonant and vowel-consonant-vowel nonsense syllables. Six electronic databases were searched for peer-reviewed articles reporting consonant and vowel identification scores in CI users measured by nonsense words. Relevant studies were independently assessed and screened by 2 reviewers. Consonant and vowel identification scores were presented in forest plots and compared between studies in a meta-analysis. Forty-seven articles with 50 studies, including 647 participants, thereof 581 postlingually deaf and 66 prelingually deaf, met the inclusion criteria of this study. The mean performance on vowel identification tasks for the postlingually deaf CI users was 76.8% (N = 5), which was higher than the mean performance for the prelingually deaf CI users (67.7%; N = 1). The mean performance on consonant identification tasks for the postlingually deaf CI users was higher (58.4%; N = 44) than for the prelingually deaf CI users (46.7%; N = 6). The most common consonant confusions were found between those with same manner of articulation (/k/ as /t/, /m/ as /n/, and /p/ as /t/). The mean performance on consonant identification tasks for the prelingually and postlingually deaf CI users was found. There were no statistically significant differences between the scores for prelingually and postlingually deaf CI users. The consonants that were incorrectly identified were typically confused with other consonants with the same acoustic properties, namely, voicing, duration, nasality, and silent gaps. A univariate metaregression model, although not statistically significant, indicated that duration of implant use in postlingually deaf adults predict a substantial portion of their consonant identification ability. As there is no ceiling effect, a nonsense syllable identification test may be a useful addition to the standard test battery in audiology clinics when assessing the speech perception of CI users.
Discriminative analysis of lip motion features for speaker identification and speech-reading.
Cetingül, H Ertan; Yemez, Yücel; Erzin, Engin; Tekalp, A Murat
2006-10-01
There have been several studies that jointly use audio, lip intensity, and lip geometry information for speaker identification and speech-reading applications. This paper proposes using explicit lip motion information, instead of or in addition to lip intensity and/or geometry information, for speaker identification and speech-reading within a unified feature selection and discrimination analysis framework, and addresses two important issues: 1) Is using explicit lip motion information useful, and, 2) if so, what are the best lip motion features for these two applications? The best lip motion features for speaker identification are considered to be those that result in the highest discrimination of individual speakers in a population, whereas for speech-reading, the best features are those providing the highest phoneme/word/phrase recognition rate. Several lip motion feature candidates have been considered including dense motion features within a bounding box about the lip, lip contour motion features, and combination of these with lip shape features. Furthermore, a novel two-stage, spatial, and temporal discrimination analysis is introduced to select the best lip motion features for speaker identification and speech-reading applications. Experimental results using an hidden-Markov-model-based recognition system indicate that using explicit lip motion information provides additional performance gains in both applications, and lip motion features prove more valuable in the case of speech-reading application.
Brancolini, Florencia; del Pazo, Felipe; Posner, Victoria Maria; Grimberg, Alexis; Arranz, Silvia Eda
2016-01-01
Valid fish species identification is essential for biodiversity conservation and fisheries management. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I for a valid identification of 79 freshwater fish species from the Lower Paraná River. Neighbour-joining analysis based on K2P genetic distances formed non-overlapping clusters for almost all species with a ≥99% bootstrap support each. Identification was successful for 97.8% of species as the minimum genetic distance to the nearest neighbour exceeded the maximum intraspecific distance in all these cases. A barcoding gap of 2.5% was apparent for the whole data set with the exception of four cases. Within-species distances ranged from 0.00% to 7.59%, while interspecific distances varied between 4.06% and 19.98%, without considering Odontesthes species with a minimum genetic distance of 0%. Sequence library validation was performed by applying BOLDs BIN analysis tool, Poisson Tree Processes model and Automatic Barcode Gap Discovery, along with a reliable taxonomic assignment by experts. Exhaustive revision of vouchers was performed when a conflicting assignment was detected after sequence analysis and BIN discordance evaluation. Thus, the sequence library presented here can be confidently used as a benchmark for identification of half of the fish species recorded for the Lower Paraná River. PMID:27442116
Identification of metabolic pathways using pathfinding approaches: a systematic review.
Abd Algfoor, Zeyad; Shahrizal Sunar, Mohd; Abdullah, Afnizanfaizal; Kolivand, Hoshang
2017-03-01
Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
System Identification Applied to Dynamic CFD Simulation and Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.; Vicroy, Dan D.
2011-01-01
Demanding aerodynamic modeling requirements for military and civilian aircraft have provided impetus for researchers to improve computational and experimental techniques. Model validation is a key component for these research endeavors so this study is an initial effort to extend conventional time history comparisons by comparing model parameter estimates and their standard errors using system identification methods. An aerodynamic model of an aircraft performing one-degree-of-freedom roll oscillatory motion about its body axes is developed. The model includes linear aerodynamics and deficiency function parameters characterizing an unsteady effect. For estimation of unknown parameters two techniques, harmonic analysis and two-step linear regression, were applied to roll-oscillatory wind tunnel data and to computational fluid dynamics (CFD) simulated data. The model used for this study is a highly swept wing unmanned aerial combat vehicle. Differences in response prediction, parameters estimates, and standard errors are compared and discussed
MEASURE: An integrated data-analysis and model identification facility
NASA Technical Reports Server (NTRS)
Singh, Jaidip; Iyer, Ravi K.
1990-01-01
The first phase of the development of MEASURE, an integrated data analysis and model identification facility is described. The facility takes system activity data as input and produces as output representative behavioral models of the system in near real time. In addition a wide range of statistical characteristics of the measured system are also available. The usage of the system is illustrated on data collected via software instrumentation of a network of SUN workstations at the University of Illinois. Initially, statistical clustering is used to identify high density regions of resource-usage in a given environment. The identified regions form the states for building a state-transition model to evaluate system and program performance in real time. The model is then solved to obtain useful parameters such as the response-time distribution and the mean waiting time in each state. A graphical interface which displays the identified models and their characteristics (with real time updates) was also developed. The results provide an understanding of the resource-usage in the system under various workload conditions. This work is targeted for a testbed of UNIX workstations with the initial phase ported to SUN workstations on the NASA, Ames Research Center Advanced Automation Testbed.
A practical approach to object based requirements analysis
NASA Technical Reports Server (NTRS)
Drew, Daniel W.; Bishop, Michael
1988-01-01
Presented here is an approach developed at the Unisys Houston Operation Division, which supports the early identification of objects. This domain oriented analysis and development concept is based on entity relationship modeling and object data flow diagrams. These modeling techniques, based on the GOOD methodology developed at the Goddard Space Flight Center, support the translation of requirements into objects which represent the real-world problem domain. The goal is to establish a solid foundation of understanding before design begins, thereby giving greater assurance that the system will do what is desired by the customer. The transition from requirements to object oriented design is also promoted by having requirements described in terms of objects. Presented is a five step process by which objects are identified from the requirements to create a problem definition model. This process involves establishing a base line requirements list from which an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the identification of objects from the requirements. An example is given of how semantic modeling may be used to improve the entity-relationship model and a brief discussion on how this approach might be used in a large scale development effort.
Software forecasting as it is really done: A study of JPL software engineers
NASA Technical Reports Server (NTRS)
Griesel, Martha Ann; Hihn, Jairus M.; Bruno, Kristin J.; Fouser, Thomas J.; Tausworthe, Robert C.
1993-01-01
This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally funded research task to study the costing process and parameters used by internally recognized software cost estimating experts. Protocol Analysis and Markov process modeling were used to capture software engineer's forecasting mental models. While there is significant variation between the mental models that were studied, it was nevertheless possible to identify a core set of cost forecasting activities, and it was also found that the mental models cluster around three forecasting techniques. Further partitioning of the mental models revealed clustering of activities, that is very suggestive of a forecasting lifecycle. The different forecasting methods identified were based on the use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps involved either forecasting software size or an additional effort forecast. Virtually no subject used risk reduction steps in combination. The results of the analysis include: the identification of a core set of well defined costing activities, a proposed software forecasting life cycle, and the identification of several basic software forecasting mental models. The paper concludes with a discussion of the implications of the results for current individual and institutional practices.
Hyperspectral Imaging and SPA-LDA Quantitative Analysis for Detection of Colon Cancer Tissue
NASA Astrophysics Data System (ADS)
Yuan, X.; Zhang, D.; Wang, Ch.; Dai, B.; Zhao, M.; Li, B.
2018-05-01
Hyperspectral imaging (HSI) has been demonstrated to provide a rapid, precise, and noninvasive method for cancer detection. However, because HSI contains many data, quantitative analysis is often necessary to distill information useful for distinguishing cancerous from normal tissue. To demonstrate that HSI with our proposed algorithm can make this distinction, we built a Vis-NIR HSI setup and made many spectral images of colon tissues, and then used a successive projection algorithm (SPA) to analyze the hyperspectral image data of the tissues. This was used to build an identification model based on linear discrimination analysis (LDA) using the relative reflectance values of the effective wavelengths. Other tissues were used as a prediction set to verify the reliability of the identification model. The results suggest that Vis-NIR hyperspectral images, together with the spectroscopic classification method, provide a new approach for reliable and safe diagnosis of colon cancer and could lead to advances in cancer diagnosis generally.
Sun, Wenjun; Liu, Wenjun; Cui, Lifeng; Zhang, Minglu; Wang, Bei
2013-08-01
This study describes the identification and characterization of a new chlorine resistant bacterium, Sphingomonas TS001, isolated from a model drinking water distribution system. The isolate was identified by 16s rRNA gene analysis and morphological and physiological characteristics. Phylogenetic analysis indicates that TS001 belongs to the genus Sphingomonas. The model distribution system HPC results showed that, when the chlorine residual was greater than 0.7 mg L(-1), 100% of detected heterotrophic bacteria (HPC) was TS001. The bench-scale inactivation efficiency testing showed that this strain was very resistant to chlorine, and 4 mg L(-1) of chlorine with 240 min retention time provided only approximately 5% viability reduction of TS001. In contrast, a 3-log inactivation (99.9%) was obtained for UV fluencies of 40 mJ cm(-2). A high chlorine-resistant and UV sensitive bacterium, Sphingomonas TS001, was documented for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.
Exploring Attachment to the “Homeland” and Its Association with Heritage Culture Identification
Ferenczi, Nelli; Marshall, Tara C.
2013-01-01
Conceptualisations of attachment to one's nation of origin reflecting a symbolic caregiver can be found cross-culturally in literature, art, and language. Despite its prevalence, the relationship with one's nation has not been investigated empirically in terms of an attachment theory framework. Two studies employed an attachment theory approach to investigate the construct validity of symbolic attachment to one's nation of origin, and its association with acculturation (operationalized as heritage and mainstream culture identification). Results for Study 1 indicated a three-factor structure of nation attachment; the factors were labelled secure-preoccupied, fearful, and dismissive nation attachment. Hierarchical linear modelling was employed to control for differing cultures across participants. Secure-preoccupied nation attachment was a significant predictor of increased heritage culture identification for participants residing in their country of birth, whilst dismissive nation attachment was a significant predictor of decreased heritage culture identification for international migrants. Secure-preoccupied nation attachment was also associated with higher levels of subjective-wellbeing. Study 2 further confirmed the validity of the nation attachment construct through confirmatory factor analysis; the three-factor model adequately fit the data. Similar to the results of Study 1, secure-preoccupied nation attachment was associated with increased levels of heritage culture identification and psychological well-being. Implications of the tripartite model of nation attachment for identity and well-being will be discussed. PMID:23372673
System identification of an unmanned quadcopter system using MRAN neural
NASA Astrophysics Data System (ADS)
Pairan, M. F.; Shamsudin, S. S.
2017-12-01
This project presents the performance analysis of the radial basis function neural network (RBF) trained with Minimal Resource Allocating Network (MRAN) algorithm for real-time identification of quadcopter. MRAN’s performance is compared with the RBF with Constant Trace algorithm for 2500 input-output pair data sampling. MRAN utilizes adding and pruning hidden neuron strategy to obtain optimum RBF structure, increase prediction accuracy and reduce training time. The results indicate that MRAN algorithm produces fast training time and more accurate prediction compared with standard RBF. The model proposed in this paper is capable of identifying and modelling a nonlinear representation of the quadcopter flight dynamics.
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
Tan, K. E.; Ellis, B. C.; Lee, R.; Stamper, P. D.; Zhang, S. X.
2012-01-01
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has been found to be an accurate, rapid, and inexpensive method for the identification of bacteria and yeasts. Previous evaluations have compared the accuracy, time to identification, and costs of the MALDI-TOF MS method against standard identification systems or commercial panels. In this prospective study, we compared a protocol incorporating MALDI-TOF MS (MALDI protocol) with the current standard identification protocols (standard protocol) to determine the performance in actual practice using a specimen-based, bench-by-bench approach. The potential impact on time to identification (TTI) and costs had MALDI-TOF MS been the first-line identification method was quantitated. The MALDI protocol includes supplementary tests, notably for Streptococcus pneumoniae and Shigella, and indications for repeat MALDI-TOF MS attempts, often not measured in previous studies. A total of 952 isolates (824 bacterial isolates and 128 yeast isolates) recovered from 2,214 specimens were assessed using the MALDI protocol. Compared with standard protocols, the MALDI protocol provided identifications 1.45 days earlier on average (P < 0.001). In our laboratory, we anticipate that the incorporation of the MALDI protocol can reduce reagent and labor costs of identification by $102,424 or 56.9% within 12 months. The model included the fixed annual costs of the MALDI-TOF MS, such as the cost of protein standards and instrument maintenance, and the annual prevalence of organisms encountered in our laboratory. This comprehensive cost analysis model can be generalized to other moderate- to high-volume laboratories. PMID:22855510
Tan, K E; Ellis, B C; Lee, R; Stamper, P D; Zhang, S X; Carroll, K C
2012-10-01
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been found to be an accurate, rapid, and inexpensive method for the identification of bacteria and yeasts. Previous evaluations have compared the accuracy, time to identification, and costs of the MALDI-TOF MS method against standard identification systems or commercial panels. In this prospective study, we compared a protocol incorporating MALDI-TOF MS (MALDI protocol) with the current standard identification protocols (standard protocol) to determine the performance in actual practice using a specimen-based, bench-by-bench approach. The potential impact on time to identification (TTI) and costs had MALDI-TOF MS been the first-line identification method was quantitated. The MALDI protocol includes supplementary tests, notably for Streptococcus pneumoniae and Shigella, and indications for repeat MALDI-TOF MS attempts, often not measured in previous studies. A total of 952 isolates (824 bacterial isolates and 128 yeast isolates) recovered from 2,214 specimens were assessed using the MALDI protocol. Compared with standard protocols, the MALDI protocol provided identifications 1.45 days earlier on average (P < 0.001). In our laboratory, we anticipate that the incorporation of the MALDI protocol can reduce reagent and labor costs of identification by $102,424 or 56.9% within 12 months. The model included the fixed annual costs of the MALDI-TOF MS, such as the cost of protein standards and instrument maintenance, and the annual prevalence of organisms encountered in our laboratory. This comprehensive cost analysis model can be generalized to other moderate- to high-volume laboratories.
2007-12-01
electromagnetic theory related to RFID in his works “ Field measurements using active scatterers” and “Theory of loaded scatterers”. At the same time...Business Case Analysis BRE: Bangor Radio Frequency Evaluation C4ISR: Command, Control, Communications, Computers, Intelligence, Surveillance...Surveillance EEDSKs: Early Entry Deployment Support Kits EHF: Extremely High Frequency xvi EUCOM: European Command FCC : Federal Communications
Johnson, G J; Buckworth, R C; Lee, H; Morgan, J A T; Ovenden, J R; McMahon, C R
2017-01-01
Multivariate and machine-learning methods were used to develop field identification techniques for two species of cryptic blacktip shark. From 112 specimens, precaudal vertebrae (PCV) counts and molecular analysis identified 95 Australian blacktip sharks Carcharhinus tilstoni and 17 common blacktip sharks Carcharhinus limbatus. Molecular analysis also revealed 27 of the 112 were C. tilstoni × C. limbatus hybrids, of which 23 had C. tilstoni PCV counts and four had C. limbatus PCV counts. In the absence of further information about hybrid phenotypes, hybrids were assigned as either C. limbatus or C. tilstoni based on PCV counts. Discriminant analysis achieved 80% successful identification, but machine-learning models were better, achieving 100% successful identification, using six key measurements (fork length, caudal-fin peduncle height, interdorsal space, second dorsal-fin height, pelvic-fin length and pelvic-fin midpoint to first dorsal-fin insertion). Furthermore, pelvic-fin markings could be used for identification: C. limbatus has a distinct black mark >3% of the total pelvic-fin area, while C. tilstoni has markings with diffuse edges, or has smaller or no markings. Machine learning and pelvic-fin marking identification methods were field tested achieving 87 and 90% successful identification, respectively. With further refinement, the techniques developed here will form an important part of a multi-faceted approach to identification of C. tilstoni and C. limbatus and have a clear management and conservation application to these commercially important sharks. The methods developed here are broadly applicable and can be used to resolve species identities in many fisheries where cryptic species exist. © 2016 The Fisheries Society of the British Isles.
Mitchell, Joshua M.; Fan, Teresa W.-M.; Lane, Andrew N.; Moseley, Hunter N. B.
2014-01-01
Large-scale identification of metabolites is key to elucidating and modeling metabolism at the systems level. Advances in metabolomics technologies, particularly ultra-high resolution mass spectrometry (MS) enable comprehensive and rapid analysis of metabolites. However, a significant barrier to meaningful data interpretation is the identification of a wide range of metabolites including unknowns and the determination of their role(s) in various metabolic networks. Chemoselective (CS) probes to tag metabolite functional groups combined with high mass accuracy provide additional structural constraints for metabolite identification and quantification. We have developed a novel algorithm, Chemically Aware Substructure Search (CASS) that efficiently detects functional groups within existing metabolite databases, allowing for combined molecular formula and functional group (from CS tagging) queries to aid in metabolite identification without a priori knowledge. Analysis of the isomeric compounds in both Human Metabolome Database (HMDB) and KEGG Ligand demonstrated a high percentage of isomeric molecular formulae (43 and 28%, respectively), indicating the necessity for techniques such as CS-tagging. Furthermore, these two databases have only moderate overlap in molecular formulae. Thus, it is prudent to use multiple databases in metabolite assignment, since each major metabolite database represents different portions of metabolism within the biosphere. In silico analysis of various CS-tagging strategies under different conditions for adduct formation demonstrate that combined FT-MS derived molecular formulae and CS-tagging can uniquely identify up to 71% of KEGG and 37% of the combined KEGG/HMDB database vs. 41 and 17%, respectively without adduct formation. This difference between database isomer disambiguation highlights the strength of CS-tagging for non-lipid metabolite identification. However, unique identification of complex lipids still needs additional information. PMID:25120557
Mukai, Tadashi; Nakazumi, Hiroyuki; Kawabata, Shin-ichirou; Kusatani, Masaru; Nakai, Seita; Honda, Sadao
2008-01-01
Direct identification of copper phthalocyanine (CuPc) and chlorinated CuPcs in paints for discrimination between blue automobile paints by means of laser desorption mass spectrometry (LDMS) in the absence of a matrix is reported. The models consisted of eight commercially available CuPc pigments applied to a piece of plain white coating paper. The relationship between the peak intensity at m/z 575 of the CuPc, the number of pulsed laser shots, and laser power was compared to optimize laser abrasion. LDMS analysis of the model paints demonstrated that all characteristic components of the CuPc pigments in the paint films were in good agreement with those in the powder pigments. Further, the chlorinated CuPcs in the paint films could be distinguished. A quantity of 42 blue paint films, representing the paints used for painting Japanese domestic trucks, was examined by LDMS analysis. Results indicate that the paints can be classified into four categories based on the chlorinated CuPc components of the paints. Therefore, LDMS spectra of CuPc pigments would be useful for the identification of paints in forensic investigations. Herein, we report the successful identification of the CuPcs in a paint smear on the frame of a bicycle damaged in a hit-and-run accident, using the LDMS spectra.
Pranada, Arthur B; Witt, Ellen; Bienia, Michael; Kostrzewa, Markus; Timke, Markus
2017-05-01
The increasing number of infections caused by nontuberculous mycobacteria (NTM) has prompted the need for rapid and precise identification methods of these pathogens. Several studies report the applicability of MALDI-TOF mass spectrometry (MS) for identification of NTM. However, some closely related species have very similar spectral mass fingerprints, and until recently, Mycobacterium chimaera and M. intracellulare could not be separated from each other by MALDI-TOF MS. The conventional identification methods used in routine diagnostics have similar limitations. Recently, the differentiation of these two species within the Mycobacterium avium complex has become increasingly important due to reports of M. chimaera infections related to open heart surgery in Europe and in the USA. In this report, a method for the distinct differentiation of M. chimaera and M. intracellulare using a more detailed analysis of MALDI-TOF mass spectra is presented. Species-specific peaks could be identified and it was possible to assign all isolates (100 %) from reference strain collections as well as clinical isolates to the correct species. We have developed a model for the accurate identification of M. chimaera and M. intracellulare by MALDI-TOF MS. This approach has the potential for routine use in microbiology laboratories, as the model itself can be easily implemented into the software of the currently available systems by MALDI-TOF MS manufacturers.
Mohamed, Hasan; Vaeyens, Roel; Matthys, Stijn; Multael, Marc; Lefevre, Johan; Lenoir, Matthieu; Philppaerts, Renaat
2009-02-01
The first part of this study examined in which basic morphological and fitness measures Under-14 (n=34) and Under-16 (n=47) male youth handball players differ from reference samples of the same age (n=430 and n=570, respectively). To help develop a talent identification model, the second part of the study investigated which specific morphological and performance measures describe differences between elite (n=18) and non-elite (n=29) Under-16 youth handball players. The results showed that Under-16 handball players were significantly taller than the reference group; this was not the case in the Under-14 age group. Physical fitness in handball players was significantly better than in the reference groups. Multivariate analysis of covariance (maturation and chronological age as covariates) showed that the Under-16 elite players were heavier and had greater muscle circumferences than their non-elite peers. Elite players scored significantly better on strength, speed and agility, and cardiorespiratory endurance but not on balance, upper limb speed, flexibility or upper body muscular endurance. Maturation was a significant covariate in anthropometric measures but not in physical performance. Discriminant analysis between elite and non-elite players revealed that height, running speed, and agility are important parameters for talent identification. Specific anthropometric measures, in addition to some performance measures, are useful for talent identification in youth handball.
MALDI-TOF MS of Trichoderma: A model system for the identification of microfungi
USDA-ARS?s Scientific Manuscript database
This investigation aimed to assess whether MALDI-TOF MS analysis of proteomics could be applied to the study of Trichoderma, a fungal genus selected because it includes many species and is phylogenetically well defined. We also investigated whether MALDI-TOF MS analysis of proteomics would reveal ap...
Romanolo, K. F.; Gorski, L.; Wang, S.; Lauzon, C. R.
2015-01-01
The use of Fourier Transform-Infrared Spectroscopy (FT-IR) in conjunction with Artificial Neural Network software NeuroDeveloper™ was examined for the rapid identification and classification of Listeria species and serotyping of Listeria monocytogenes. A spectral library was created for 245 strains of Listeria spp. to give a biochemical fingerprint from which identification of unknown samples were made. This technology was able to accurately distinguish the Listeria species with 99.03% accuracy. Eleven serotypes of Listeria monocytogenes including 1/2a, 1/2b, and 4b were identified with 96.58% accuracy. In addition, motile and non-motile forms of Listeria were used to create a more robust model for identification. FT-IR coupled with NeuroDeveloper™ appear to be a more accurate and economic choice for rapid identification of pathogenic Listeria spp. than current methods. PMID:26600423
USDA-ARS?s Scientific Manuscript database
Fisher’s linear discriminant (FLD) models for wheat variety classification were developed and validated. The inputs to the FLD models were the capacitance (C), impedance (Z), and phase angle ('), measured at two frequencies. Classification of wheat varieties was obtained as output of the FLD mod...
Mathematical Analysis of a Multiple-Look Concept Identification Model.
ERIC Educational Resources Information Center
Cotton, John W.
The behavior of focus samples central to the multiple-look model of Trabasso and Bower is examined by three methods. First, exact probabilities of success conditional upon a certain brief history of stimulation are determined. Second, possible states of the organism during the experiment are defined and a transition matrix for those states…
NASA Astrophysics Data System (ADS)
Picard de Muller, Gaël; Ait-Belkacem, Rima; Bonnel, David; Longuespée, Rémi; Stauber, Jonathan
2017-12-01
Mass spectrometry imaging datasets are mostly analyzed in terms of average intensity in regions of interest. However, biological tissues have different morphologies with several sizes, shapes, and structures. The important biological information, contained in this highly heterogeneous cellular organization, could be hidden by analyzing the average intensities. Finding an analytical process of morphology would help to find such information, describe tissue model, and support identification of biomarkers. This study describes an informatics approach for the extraction and identification of mass spectrometry image features and its application to sample analysis and modeling. For the proof of concept, two different tissue types (healthy kidney and CT-26 xenograft tumor tissues) were imaged and analyzed. A mouse kidney model and tumor model were generated using morphometric - number of objects and total surface - information. The morphometric information was used to identify m/z that have a heterogeneous distribution. It seems to be a worthwhile pursuit as clonal heterogeneity in a tumor is of clinical relevance. This study provides a new approach to find biomarker or support tissue classification with more information. [Figure not available: see fulltext.
Fusing modeling techniques to support domain analysis for reuse opportunities identification
NASA Technical Reports Server (NTRS)
Hall, Susan Main; Mcguire, Eileen
1993-01-01
Functional modeling techniques or object-oriented graphical representations, which are more useful to someone trying to understand the general design or high level requirements of a system? For a recent domain analysis effort, the answer was a fusion of popular modeling techniques of both types. By using both functional and object-oriented techniques, the analysts involved were able to lean on their experience in function oriented software development, while taking advantage of the descriptive power available in object oriented models. In addition, a base of familiar modeling methods permitted the group of mostly new domain analysts to learn the details of the domain analysis process while producing a quality product. This paper describes the background of this project and then provides a high level definition of domain analysis. The majority of this paper focuses on the modeling method developed and utilized during this analysis effort.
In-Flight System Identification
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1998-01-01
A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.
System identification of the JPL micro-precision interferometer truss - Test-analysis reconciliation
NASA Technical Reports Server (NTRS)
Red-Horse, J. R.; Marek, E. L.; Levine-West, M.
1993-01-01
The JPL Micro-Precision Interferometer (MPI) is a testbed for studying the use of control-structure interaction technology in the design of space-based interferometers. A layered control architecture will be employed to regulate the interferometer optical system to tolerances in the nanometer range. An important aspect of designing and implementing the control schemes for such a system is the need for high fidelity, test-verified analytical structural models. This paper focuses on one aspect of the effort to produce such a model for the MPI structure, test-analysis model reconciliation. Pretest analysis, modal testing, and model refinement results are summarized for a series of tests at both the component and full system levels.
Lou, Ping; Hu, Jianmin
2018-01-01
Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908
GIS-based identification of active lineaments within the Krasnokamensk Area, Transbaikalia, Russia
NASA Astrophysics Data System (ADS)
Petrov, V. A.; Lespinasse, M.; Ustinov, S. A.; Cialec, C.
2017-07-01
Lineament analysis was carried out using detailed digital elevation models (DEM) of the Krasnokamensk Area, southeastern Transbaikalia (Russia). The results of this research confirm the presence of already known faults, but also identify unknown fault zones. The primary focus was identifying small discontinuities and their relationship with extended fault zones. The developed technique allowed construction and identification of the active lineaments with their orientation of the compression and expansion axes in the horizontal plane, their direction of shear movement (right or left), and their geodynamic setting of formation (compression or stretching). The results of active faults identification and definition of their kinematics on digital elevation models were confirmed by measuring the velocities and directions of modern horizontal surface motions using a geodesic GPS, as well as identifying the principal stress axes directions of the modern stress field using modern-day earthquake data. The obtained results are deemed necessary for proper rational environmental management decisions.
Proceedings of the 9th Annual Conference on Manual Control
NASA Technical Reports Server (NTRS)
1973-01-01
Papers are reported which were presented at the conference in the areas of displays, ride qualities and handling, driving and psychomotor skills, control, system identification and signal detection, electrophysiological and systems analysis, and modelling.
2014-01-01
Background Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. Results The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input–output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on average 15% of the mean values over the succeeding parameter sets. Conclusions Our results indicate that the presented approach is effective for comparing model alternatives and reducing models to the minimum complexity replicating measured data. We therefore believe that this approach has significant potential for reparameterising existing frameworks, for identification of redundant model components of large biophysical models and to increase their predictive capacity. PMID:24886522
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jochen, J.E.; Hopkins, C.W.
1993-12-31
;Contents: Naturally fractured reservoir description; Geologic considerations; Shale-specific log model; Stress profiles; Berea reasearch; Benefits analysis; Summary of technologies; Novel well test methods; Natural fracture identification; Reverse drilling; Production data analysis; Fracture treatment quality control; Novel core analysis methods; and Shale well cleanouts.
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Dwyer, John L.
1993-01-01
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) measures reflected light in 224 contiguous spectra bands in the 0.4 to 2.45 micron region of the electromagnetic spectrum. Numerous studies have used these data for mineralogic identification and mapping based on the presence of diagnostic spectral features. Quantitative mapping requires conversion of the AVIRIS data to physical units (usually reflectance) so that analysis results can be compared and validated with field and laboratory measurements. This study evaluated two different AVIRIS calibration techniques to ground reflectance: an empirically-based method and an atmospheric model based method to determine their effects on quantitative scientific analyses. Expert system analysis and linear spectral unmixing were applied to both calibrated data sets to determine the effect of the calibration on the mineral identification and quantitative mapping results. Comparison of the image-map results and image reflectance spectra indicate that the model-based calibrated data can be used with automated mapping techniques to produce accurate maps showing the spatial distribution and abundance of surface mineralogy. This has positive implications for future operational mapping using AVIRIS or similar imaging spectrometer data sets without requiring a priori knowledge.
Ares I-X In-Flight Modal Identification
NASA Technical Reports Server (NTRS)
Bartkowicz, Theodore J.; James, George H., III
2011-01-01
Operational modal analysis is a procedure that allows the extraction of modal parameters of a structure in its operating environment. It is based on the idealized premise that input to the structure is white noise. In some cases, when free decay responses are corrupted by unmeasured random disturbances, the response data can be processed into cross-correlation functions that approximate free decay responses. Modal parameters can be computed from these functions by time domain identification methods such as the Eigenvalue Realization Algorithm (ERA). The extracted modal parameters have the same characteristics as impulse response functions of the original system. Operational modal analysis is performed on Ares I-X in-flight data. Since the dynamic system is not stationary due to propellant mass loss, modal identification is only possible by analyzing the system as a series of linearized models over short periods of time via a sliding time-window of short time intervals. A time-domain zooming technique was also employed to enhance the modal parameter extraction. Results of this study demonstrate that free-decay time domain modal identification methods can be successfully employed for in-flight launch vehicle modal extraction.
Time series modeling of human operator dynamics in manual control tasks
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.
Time Series Modeling of Human Operator Dynamics in Manual Control Tasks
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.
ERIC Educational Resources Information Center
Cho, Jaehee; Yu, Hongsik
2015-01-01
Unlike previous research on international students' social support, this current study applied the concept of organizational support to university contexts, examining the effects of university support. Mainly based on the social identity/self-categorization stress model, this study developed and tested a path model composed of four key…
Development of estrogen receptor beta binding prediction model using large sets of chemicals.
Sakkiah, Sugunadevi; Selvaraj, Chandrabose; Gong, Ping; Zhang, Chaoyang; Tong, Weida; Hong, Huixiao
2017-11-03
We developed an ER β binding prediction model to facilitate identification of chemicals specifically bind ER β or ER α together with our previously developed ER α binding model. Decision Forest was used to train ER β binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ER β binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ER β binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ER β binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ER α prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ER β or ER α .
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng
2017-10-01
Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.
Identification of spilled oils by NIR spectroscopy technology based on KPCA and LSSVM
NASA Astrophysics Data System (ADS)
Tan, Ailing; Bi, Weihong
2011-08-01
Oil spills on the sea surface are seen relatively often with the development of the petroleum exploitation and transportation of the sea. Oil spills are great threat to the marine environment and the ecosystem, thus the oil pollution in the ocean becomes an urgent topic in the environmental protection. To develop the oil spill accident treatment program and track the source of the spilled oils, a novel qualitative identification method combined Kernel Principal Component Analysis (KPCA) and Least Square Support Vector Machine (LSSVM) was proposed. The proposed method adapt Fourier transform NIR spectrophotometer to collect the NIR spectral data of simulated gasoline, diesel fuel and kerosene oil spills samples and do some pretreatments to the original spectrum. We use the KPCA algorithm which is an extension of Principal Component Analysis (PCA) using techniques of kernel methods to extract nonlinear features of the preprocessed spectrum. Support Vector Machines (SVM) is a powerful methodology for solving spectral classification tasks in chemometrics. LSSVM are reformulations to the standard SVMs which lead to solving a system of linear equations. So a LSSVM multiclass classification model was designed which using Error Correcting Output Code (ECOC) method borrowing the idea of error correcting codes used for correcting bit errors in transmission channels. The most common and reliable approach to parameter selection is to decide on parameter ranges, and to then do a grid search over the parameter space to find the optimal model parameters. To test the proposed method, 375 spilled oil samples of unknown type were selected to study. The optimal model has the best identification capabilities with the accuracy of 97.8%. Experimental results show that the proposed KPCA plus LSSVM qualitative analysis method of near infrared spectroscopy has good recognition result, which could work as a new method for rapid identification of spilled oils.
Developing an Accurate CFD Based Gust Model for the Truss Braced Wing Aircraft
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2013-01-01
The increased flexibility of long endurance aircraft having high aspect ratio wings necessitates attention to gust response and perhaps the incorporation of gust load alleviation. The design of civil transport aircraft with a strut or truss-braced high aspect ratio wing furthermore requires gust response analysis in the transonic cruise range. This requirement motivates the use of high fidelity nonlinear computational fluid dynamics (CFD) for gust response analysis. This paper presents the development of a CFD based gust model for the truss braced wing aircraft. A sharp-edged gust provides the gust system identification. The result of the system identification is several thousand time steps of instantaneous pressure coefficients over the entire vehicle. This data is filtered and downsampled to provide the snapshot data set from which a reduced order model is developed. A stochastic singular value decomposition algorithm is used to obtain a proper orthogonal decomposition (POD). The POD model is combined with a convolution integral to predict the time varying pressure coefficient distribution due to a novel gust profile. Finally the unsteady surface pressure response of the truss braced wing vehicle to a one-minus-cosine gust, simulated using the reduced order model, is compared with the full CFD.
2017-04-01
notice for non -US Government use and distribution. External use: This material may be reproduced in its entirety, without modification, and freely...Combinatorial Design Methods 4 2.1 Identification of Significant Improvement Opportunity 4 2.2 Methodology Development 4 2.3 Piloting...11 3 Process Performance Modeling and Analysis 13 3.1 Identification of Significant Improvement Opportunity 13 3.2 Methodology Development 13 3.3
[Computer simulation by passenger wound analysis of vehicle collision].
Zou, Dong-Hua; Liu, Nning-Guo; Shen, Jie; Zhang, Xiao-Yun; Jin, Xian-Long; Chen, Yi-Jiu
2006-08-15
To reconstruct the course of vehicle collision, so that to provide the reference for forensic identification and disposal of traffic accidents. Through analyzing evidences left both on passengers and vehicles, technique of momentum impulse combined with multi-dynamics was applied to simulate the motion and injury of passengers as well as the track of vehicles. Model of computer stimulation perfectly reconstructed phases of the traffic collision, which coincide with details found by forensic investigation. Computer stimulation is helpful and feasible for forensic identification in traffic accidents.
1985-06-01
purposes. 55 15 525 + 2 225L L53 + L3 ) + 2G3(L 2 + L35L4 + L45)" For the present system identification + 2G(L45 2 + L45L5 + L5 "L 1 technique, the...orbital model is comprised of 257 nodes and 819 dynamic:"DOF’s. k; were compared to ITD results for a wide variety of TD input parameters. Overall, the
Meng, Jun; Shi, Lin; Luan, Yushi
2014-01-01
Background Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions. Results Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species. Conclusions The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided. PMID:25051153
Niederkrotenthaler, Thomas; Arendt, Florian; Till, Benedikt
2015-01-01
Research on factors that influence the intention to read suicide awareness material is lacking. To identify how social and state similarities between the featured protagonist of a suicide awareness story and the audience impact on the intent to read similar stories. Laboratory experiment with n = 104 students. Participants were randomly assigned to study groups. In the first group, the role model provided his personal story of crisis and was a student. In the second group, the content was identical but the model was socially dissimilar. The third group read about a topic unrelated to suicide. Depression, identification, and exposure intent were measured after the experiment. Conditional process analysis was carried out. In the group featuring a once-suicidal role model with high social similarity, depression in the audience increased the intention to read similar material in the future via identification with the role model; 82% of individuals wanted to read similar material in the future, but only 50% wanted to do so in the group featuring a dissimilar person. Exposure intention increases via identification when role model and audience characteristics align regarding social traits and the experience of depression. These factors are relevant when developing campaigns targeting individuals with stories of recovery.
Wang, Cheng; He, Lidong; Li, Da-Wei; Bruschweiler-Li, Lei; Marshall, Alan G; Brüschweiler, Rafael
2017-10-06
Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E. coli cell lysate based on 2D/3D NMR experiments in combination with Fourier transform ion cyclotron resonance MS and MS/MS data. For 19 of the 25 model metabolites, SUMMIT yielded complete structures that matched those in the mixture independent of database information. Of those, seven top-ranked structures matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20 previously known metabolites with three or more 1 H spins independent of database information. Moreover, for 15 unknown metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or untargeted analysis of complex mixtures of unknown compounds.
A signal-detection-based diagnostic-feature-detection model of eyewitness identification.
Wixted, John T; Mickes, Laura
2014-04-01
The theoretical understanding of eyewitness identifications made from a police lineup has long been guided by the distinction between absolute and relative decision strategies. In addition, the accuracy of identifications associated with different eyewitness memory procedures has long been evaluated using measures like the diagnosticity ratio (the correct identification rate divided by the false identification rate). Framed in terms of signal-detection theory, both the absolute/relative distinction and the diagnosticity ratio are mainly relevant to response bias while remaining silent about the key issue of diagnostic accuracy, or discriminability (i.e., the ability to tell the difference between innocent and guilty suspects in a lineup). Here, we propose a signal-detection-based model of eyewitness identification, one that encourages the use of (and helps to conceptualize) receiver operating characteristic (ROC) analysis to measure discriminability. Recent ROC analyses indicate that the simultaneous presentation of faces in a lineup yields higher discriminability than the presentation of faces in isolation, and we propose a diagnostic feature-detection hypothesis to account for that result. According to this hypothesis, the simultaneous presentation of faces allows the eyewitness to appreciate that certain facial features (viz., those that are shared by everyone in the lineup) are non-diagnostic of guilt. To the extent that those non-diagnostic features are discounted in favor of potentially more diagnostic features, the ability to discriminate innocent from guilty suspects will be enhanced.
ERIC Educational Resources Information Center
Edmunds, Charlotte E. R.; Milton, Fraser; Wills, Andy J.
2018-01-01
Behavioral evidence for the COVIS dual-process model of category learning has been widely reported in over a hundred publications (Ashby & Valentin, 2016). It is generally accepted that the validity of such evidence depends on the accurate identification of individual participants' categorization strategies, a task that usually falls to…
Woldesemayat, Adugna Abdi; Van Heusden, Peter; Ndimba, Bongani K; Christoffels, Alan
2017-12-22
Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the interplay of biochemical reactions that make up the metabolic network, constituting fundamental interface for sorghum defence mechanism against drought stress. This study suggests untapped natural variability in sorghum that could be used for developing drought tolerance. The data presented here, may be regarded as an initial reference point in functional and comparative genomics in the Gramineae family.
CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS
Shpitser, Ilya; Tchetgen, Eric Tchetgen
2017-01-01
Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl’s front-door criterion. PMID:28919652
CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.
Shpitser, Ilya; Tchetgen, Eric Tchetgen
2016-12-01
Identifying causal parameters from observational data is fraught with subtleties due to the issues of selection bias and confounding. In addition, more complex questions of interest, such as effects of treatment on the treated and mediated effects may not always be identified even in data where treatment assignment is known and under investigator control, or may be identified under one causal model but not another. Increasingly complex effects of interest, coupled with a diversity of causal models in use resulted in a fragmented view of identification. This fragmentation makes it unnecessarily difficult to determine if a given parameter is identified (and in what model), and what assumptions must hold for this to be the case. This, in turn, complicates the development of estimation theory and sensitivity analysis procedures. In this paper, we give a unifying view of a large class of causal effects of interest, including novel effects not previously considered, in terms of a hierarchy of interventions, and show that identification theory for this large class reduces to an identification theory of random variables under interventions from this hierarchy. Moreover, we show that one type of intervention in the hierarchy is naturally associated with queries identified under the Finest Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG) model of Robins (via the extended g-formula), and another is naturally associated with queries identified under the Non-Parametric Structural Equation Model with Independent Errors (NPSEM-IE) of Pearl, via a more general functional we call the edge g-formula. Our results motivate the study of estimation theory for the edge g-formula, since we show it arises both in mediation analysis, and in settings where treatment assignment has unobserved causes, such as models associated with Pearl's front-door criterion.
Self-tuning regulators for multicyclic control of helicopter vibration
NASA Technical Reports Server (NTRS)
Johnson, W.
1982-01-01
A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.
Comparison of frequency-domain and time-domain rotorcraft vibration control methods
NASA Technical Reports Server (NTRS)
Gupta, N. K.
1984-01-01
Active control of rotor-induced vibration in rotorcraft has received significant attention recently. Two classes of techniques have been proposed. The more developed approach works with harmonic analysis of measured time histories and is called the frequency-domain approach. The more recent approach computes the control input directly using the measured time history data and is called the time-domain approach. The report summarizes the results of a theoretical investigation to compare the two approaches. Five specific areas were addressed: (1) techniques to derive models needed for control design (system identification methods), (2) robustness with respect to errors, (3) transient response, (4) susceptibility to noise, and (5) implementation difficulties. The system identification methods are more difficult for the time-domain models. The time-domain approach is more robust (e.g., has higher gain and phase margins) than the frequency-domain approach. It might thus be possible to avoid doing real-time system identification in the time-domain approach by storing models at a number of flight conditions. The most significant error source is the variation in open-loop vibrations caused by pilot inputs, maneuvers or gusts. The implementation requirements are similar except that the time-domain approach can be much simpler to implement if real-time system identification were not necessary.
Systems identification technology development for large space systems
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1982-01-01
A methodology for synthesizinng systems identification, both parameter and state, estimation and related control schemes for flexible aerospace structures is developed with emphasis on the Maypole hoop column antenna as a real world application. Modeling studies of the Maypole cable hoop membrane type antenna are conducted using a transfer matrix numerical analysis approach. This methodology was chosen as particularly well suited for handling a large number of antenna configurations of a generic type. A dedicated transfer matrix analysis, both by virtue of its specialization and the inherently easy compartmentalization of the formulation and numerical procedures, is significantly more efficient not only in computer time required but, more importantly, in the time needed to review and interpret the results.
Application of structured analysis to a telerobotic system
NASA Technical Reports Server (NTRS)
Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven
1990-01-01
The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.
Integrated Data Analysis for Fusion: A Bayesian Tutorial for Fusion Diagnosticians
NASA Astrophysics Data System (ADS)
Dinklage, Andreas; Dreier, Heiko; Fischer, Rainer; Gori, Silvio; Preuss, Roland; Toussaint, Udo von
2008-03-01
Integrated Data Analysis (IDA) offers a unified way of combining information relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data analysis. In IDA, all information is consistently formulated as probability density functions quantifying uncertainties in the analysis within the Bayesian probability theory. For a single diagnostic, IDA allows the identification of faulty measurements and improvements in the setup. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and integration of different diagnostics results. Validation of physics models can be performed by model comparison techniques. Typical data analysis applications benefit from IDA capabilities of nonlinear error propagation, the inclusion of systematic effects and the comparison of different physics models. Applications range from outlier detection, background discrimination, model assessment and design of diagnostics. In order to cope with next step fusion device requirements, appropriate techniques are explored for fast analysis applications.
Li, Feng; Li, Wen-Xia; Zhao, Guo-Liang; Tang, Shi-Jun; Li, Xue-Jiao; Wu, Hong-Mei
2014-10-01
A series of 354 polyester-cotton blend fabrics were studied by the near-infrared spectra (NIRS) technology, and a NIR qualitative analysis model for different spectral characteristics was established by partial least squares (PLS) method combined with qualitative identification coefficient. There were two types of spectrum for dying polyester-cotton blend fabrics: normal spectrum and slash spectrum. The slash spectrum loses its spectral characteristics, which are effected by the samples' dyes, pigments, matting agents and other chemical additives. It was in low recognition rate when the model was established by the total sample set, so the samples were divided into two types of sets: normal spectrum sample set and slash spectrum sample set, and two NIR qualitative analysis models were established respectively. After the of models were established the model's spectral region, pretreatment methods and factors were optimized based on the validation results, and the robustness and reliability of the model can be improved lately. The results showed that the model recognition rate was improved greatly when they were established respectively, the recognition rate reached up to 99% when the two models were verified by the internal validation. RC (relation coefficient of calibration) values of the normal spectrum model and slash spectrum model were 0.991 and 0.991 respectively, RP (relation coefficient of prediction) values of them were 0.983 and 0.984 respectively, SEC (standard error of calibration) values of them were 0.887 and 0.453 respectively, SEP (standard error of prediction) values of them were 1.131 and 0.573 respectively. A series of 150 bounds samples reached used to verify the normal spectrum model and slash spectrum model and the recognition rate reached up to 91.33% and 88.00% respectively. It showed that the NIR qualitative analysis model can be used for identification in the recycle site for the polyester-cotton blend fabrics.
Zhuang, Qianfen; Cao, Wei; Ni, Yongnian; Wang, Yong
2018-08-01
Most of the conventional multidimensional differential sensors currently need at least two-step fabrication, namely synthesis of probe(s) and identification of multiple analytes by mixing of analytes with probe(s), and were conducted using multiple sensing elements or several devices. In the study, we chose five different nucleobases (adenine, cytosine, guanine, thymine, and uracil) as model analytes, and found that under hydrothermal conditions, sodium citrate could react directly with various nucleobases to yield different nitrogen-doped carbon nanodots (CDs). The CDs synthesized from different nucleobases exhibited different fluorescent properties, leading to their respective characteristic fluorescence spectra. Hence, we combined the fluorescence spectra of the CDs with advanced chemometrics like principle component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA), to present a conceptually novel "synthesis-identification integration" strategy to construct a multidimensional differential sensor for nucleobase discrimination. Single-wavelength excitation fluorescence spectral data, single-wavelength emission fluorescence spectral data, and fluorescence Excitation-Emission Matrices (EEMs) of the CDs were respectively used as input data of the differential sensor. The results showed that the discrimination ability of the multidimensional differential sensor with EEM data set as input data was superior to those with single-wavelength excitation/emission fluorescence data set, suggesting that increasing the number of the data input could improve the discrimination power. Two supervised pattern recognition methods, namely KNN and SIMCA, correctly identified the five nucleobases with a classification accuracy of 100%. The proposed "synthesis-identification integration" strategy together with a multidimensional array of experimental data holds great promise in the construction of differential sensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Kloß, Sandra; Lorenz, Björn; Dees, Stefan; Labugger, Ines; Rösch, Petra; Popp, Jürgen
2015-11-01
Lower respiratory tract infections are the fourth leading cause of death worldwide. Here, a timely identification of the causing pathogens is crucial to the success of the treatment. Raman spectroscopy allows for quick identification of bacterial cells without the need for time-consuming cultivation steps, which is the current gold standard to detect pathogens. However, before Raman spectroscopy can be used to identify pathogens, they have to be isolated from the sample matrix, i.e., sputum in case of lower respiratory tract infections. In this study, we report an isolation protocol for single bacterial cells from sputum samples for Raman spectroscopic identification. Prior to the isolation, a liquefaction step using the proteolytic enzyme mixture Pronase E is required in order to deal with the high viscosity of sputum. The extraction of the bacteria was subsequently performed via different filtration and centrifugation steps, whereby isolation ratios between 46 and 57 % were achieved for sputa spiked with 6·10(7) to 6·10(4) CFU/mL of Staphylococcus aureus. The compatibility of such a liquefaction and isolation procedure towards a Raman spectroscopic classification was shown for five different model species, namely S. aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. A classification of single-cell Raman spectra of these five species with an accuracy of 98.5 % could be achieved on the basis of a principal component analysis (PCA) followed by a linear discriminant analysis (LDA). These classification results could be validated with an independent test dataset, where 97.4 % of all spectra were identified correctly. Graphical Abstract Development of an isolation protocol of bacterial cells out of sputum samples followed by Raman spectroscopic measurement and species identification using chemometrical models.
Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung
2017-09-01
Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.
Cheng, Vincent C. C.; Wong, Chun-Pong; Wong, Sally C. Y.; Yam, Wing-Cheong
2017-01-01
ABSTRACT Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. PMID:28637909
Mather, Cheryl A.; Werth, Brian J.; Sivagnanam, Shobini; SenGupta, Dhruba J.
2016-01-01
Vancomycin is the standard of care for the treatment of invasive methicillin-resistant Staphylococcus aureus (MRSA) infections. Infections with vancomycin-nonsusceptible MRSA, including vancomycin-intermediate S. aureus (VISA) and heterogeneous VISA (hVISA), are clinically challenging and are associated with poor patient outcomes. The identification of VISA in the clinical laboratory depends on standard susceptibility testing, which takes at least 24 h to complete after isolate subculture, whereas hVISA is not routinely detected in clinical labs. We therefore sought to determine whether VISA and hVISA can be differentiated from vancomycin-susceptible S. aureus (VSSA) using the spectra produced by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). Strains of MRSA were characterized for vancomycin susceptibility phenotype by broth microdilution and modified population analysis. We tested 21 VISA, 21 hVISA, and 38 VSSA isolates by MALDI-TOF MS. Susceptibility phenotypes were separated by using a support vector machine (SVM) machine learning algorithm. The resulting model was validated by leave-one-out cross validation. Models were developed and validated by using spectral profiles generated under various subculture conditions, as well as with and without hVISA strains. Using SVM, we correctly identified 100% of the VISA and 97% of the VSSA isolates with an overall classification accuracy of 98%. Addition of hVISA to the model resulted in 76% hVISA identification, 100% VISA identification, and 89% VSSA identification, for an overall classification accuracy of 89%. We conclude that VISA/hVISA and VSSA isolates are separable by MALDI-TOF MS with SVM analysis. PMID:26763961
Mather, Cheryl A; Werth, Brian J; Sivagnanam, Shobini; SenGupta, Dhruba J; Butler-Wu, Susan M
2016-04-01
Vancomycin is the standard of care for the treatment of invasive methicillin-resistantStaphylococcus aureus(MRSA) infections. Infections with vancomycin-nonsusceptible MRSA, including vancomycin-intermediateS. aureus(VISA) and heterogeneous VISA (hVISA), are clinically challenging and are associated with poor patient outcomes. The identification of VISA in the clinical laboratory depends on standard susceptibility testing, which takes at least 24 h to complete after isolate subculture, whereas hVISA is not routinely detected in clinical labs. We therefore sought to determine whether VISA and hVISA can be differentiated from vancomycin-susceptibleS. aureus(VSSA) using the spectra produced by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Strains of MRSA were characterized for vancomycin susceptibility phenotype by broth microdilution and modified population analysis. We tested 21 VISA, 21 hVISA, and 38 VSSA isolates by MALDI-TOF MS. Susceptibility phenotypes were separated by using a support vector machine (SVM) machine learning algorithm. The resulting model was validated by leave-one-out cross validation. Models were developed and validated by using spectral profiles generated under various subculture conditions, as well as with and without hVISA strains. Using SVM, we correctly identified 100% of the VISA and 97% of the VSSA isolates with an overall classification accuracy of 98%. Addition of hVISA to the model resulted in 76% hVISA identification, 100% VISA identification, and 89% VSSA identification, for an overall classification accuracy of 89%. We conclude that VISA/hVISA and VSSA isolates are separable by MALDI-TOF MS with SVM analysis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Prawin, J.; Rama Mohan Rao, A.
2018-01-01
The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.
A survey on the utility of the USEPA CADDIS stressor identification procedure.
Harwood, John J; Stroud, Robert Adam
2012-06-01
The Environmental Protection Agency (EPA) has made available on the worldwide web a systematic stream stressor identification procedure, the "Causal Analysis/Diagnosis Decision Information System" or CADDIS. We report here the results of a survey of regulators and scientists in 11 states who use CADDIS or another stressor identification procedure in their work. The 13 survey questions address guidelines as to what impairment scenarios to approach with stressor identification, what information is needed to perform stressor identification, and what the stakeholder role is in performing stressor identification. At the time of this survey (the summer of 2009), the EPA CADDIS website was less commonly used among the state regulators surveyed than the published EPA stressor identification document on which it is based. The respondents generally find the EPA stressor identification procedure useful and capable of being adapted to their individual needs. Survey respondents all use stressor identification in their Total Maximum Daily Load work, but also in a wide variety of other applications. All the "types of evidence" included in the CADDIS stressor identification procedure are used by the practitioners surveyed with the exception of the results of ecological simulation models. While the CADDIS documentation encourages the involvement of stakeholders in stressor identification, most respondents do not assemble stakeholder teams of local officials and citizens to participate in stressor analyses.
Shi, Qi; Abdel-Aty, Mohamed; Yu, Rongjie
2016-03-01
In traffic safety studies, crash frequency modeling of total crashes is the cornerstone before proceeding to more detailed safety evaluation. The relationship between crash occurrence and factors such as traffic flow and roadway geometric characteristics has been extensively explored for a better understanding of crash mechanisms. In this study, a multi-level Bayesian framework has been developed in an effort to identify the crash contributing factors on an urban expressway in the Central Florida area. Two types of traffic data from the Automatic Vehicle Identification system, which are the processed data capped at speed limit and the unprocessed data retaining the original speed were incorporated in the analysis along with road geometric information. The model framework was proposed to account for the hierarchical data structure and the heterogeneity among the traffic and roadway geometric data. Multi-level and random parameters models were constructed and compared with the Negative Binomial model under the Bayesian inference framework. Results showed that the unprocessed traffic data was superior. Both multi-level models and random parameters models outperformed the Negative Binomial model and the models with random parameters achieved the best model fitting. The contributing factors identified imply that on the urban expressway lower speed and higher speed variation could significantly increase the crash likelihood. Other geometric factors were significant including auxiliary lanes and horizontal curvature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Are Subject-Specific Musculoskeletal Models Robust to the Uncertainties in Parameter Identification?
Valente, Giordano; Pitto, Lorenzo; Testi, Debora; Seth, Ajay; Delp, Scott L.; Stagni, Rita; Viceconti, Marco; Taddei, Fulvia
2014-01-01
Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur. PMID:25390896
Visual Recognition Software for Binary Classification and its Application to Pollen Identification
NASA Astrophysics Data System (ADS)
Punyasena, S. W.; Tcheng, D. K.; Nayak, A.
2014-12-01
An underappreciated source of uncertainty in paleoecology is the uncertainty of palynological identifications. The confidence of any given identification is not regularly reported in published results, so cannot be incorporated into subsequent meta-analyses. Automated identifications systems potentially provide a means of objectively measuring the confidence of a given count or single identification, as well as a mechanism for increasing sample sizes and throughput. We developed the software ARLO (Automated Recognition with Layered Optimization) to tackle difficult visual classification problems such as pollen identification. ARLO applies pattern recognition and machine learning to the analysis of pollen images. The features that the system discovers are not the traditional features of pollen morphology. Instead, general purpose image features, such as pixel lines and grids of different dimensions, size, spacing, and resolution, are used. ARLO adapts to a given problem by searching for the most effective combination of feature representation and learning strategy. We present a two phase approach which uses our machine learning process to first segment pollen grains from the background and then classify pollen pixels and report species ratios. We conducted two separate experiments that utilized two distinct sets of algorithms and optimization procedures. The first analysis focused on reconstructing black and white spruce pollen ratios, training and testing our classification model at the slide level. This allowed us to directly compare our automated counts and expert counts to slides of known spruce ratios. Our second analysis focused on maximizing classification accuracy at the individual pollen grain level. Instead of predicting ratios of given slides, we predicted the species represented in a given image window. The resulting analysis was more scalable, as we were able to adapt the most efficient parts of the methodology from our first analysis. ARLO was able to distinguish between the pollen of black and white spruce with an accuracy of ~83.61%. This compared favorably to human expert performance. At the writing of this abstract, we are also experimenting with experimenting with the analysis of higher diversity samples, including modern tropical pollen material collected from ground pollen traps.
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.
1982-01-01
Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.
NASA Astrophysics Data System (ADS)
Rustamov, Samir; Mustafayev, Elshan; Clements, Mark A.
2018-04-01
The context analysis of customer requests in a natural language call routing problem is investigated in the paper. One of the most significant problems in natural language call routing is a comprehension of client request. With the aim of finding a solution to this issue, the Hybrid HMM and ANFIS models become a subject to an examination. Combining different types of models (ANFIS and HMM) can prevent misunderstanding by the system for identification of user intention in dialogue system. Based on these models, the hybrid system may be employed in various language and call routing domains due to nonusage of lexical or syntactic analysis in classification process.
[Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].
Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping
2014-06-01
The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.
NASA Astrophysics Data System (ADS)
Various papers on applied mathematics and mechanics are presented. Among the individual topics addressed are: dynamical systems with time-varying or unsteady structure, micromechanical modeling of creep rupture, forced vibrations of elastic sandwich plates with thick surface layers, postbuckling of a complete spherical shell under a line load, differential-geometric approach to the multibody system dynamics, stability of an oscillator with stochastic parametric excitation, identification strategies for crack-formation in rotors, identification of physical parameters of FEMs, impact model for elastic and partly plastic impacts on objects, varying delay and stability in dynamical systems. Also discussed are: parameter identification of a hybrid model for vibration analysis using the FEM, vibration behavior of a labyrinth seal with through-flow, similarities in the boundary layer of fiber composite materials, distortion parameter in shell theories, elastoplastic crack problem at finite strain, algorithm for computing effective stiffnesses of plates with periodic structure, plasticity of metal-matrix composites in a mixed stress-strain space formation, constitutive equations in directly formulated plate theories, microbuckling and homogenization for long fiber composites.
Observing Consistency in Online Communication Patterns for User Re-Identification.
Adeyemi, Ikuesan Richard; Razak, Shukor Abd; Salleh, Mazleena; Venter, Hein S
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas.
Kelman, Herbert C
2006-01-01
This chapter begins with a summary of a model, developed half a century ago, that distinguishes three qualitatively different processes of social influence: compliance, identification, and internalization. The model, originally geared to and experimentally tested in the context of persuasive communication, was subsequently applied to influence in the context of long-term relationships, including psychotherapy, international exchanges, and the socialization of national/ethnic identity. It has been extended to analysis of the relationship of individuals to social systems. Individuals' rule, role, and value orientations to a system--conceptually linked to compliance, identification, and internalization--predict different reactions to their own violations of societal standards, different patterns of personal involvement in the political system, and differences in attitude toward authorities and readiness to obey. In a further extension of the model, three approaches to peacemaking in international or intergroup conflicts are identified--conflict settlement, conflict resolution, and reconciliation--which, respectively, focus on the accommodation of interests, relationships, and identities, and are conducive to changes at the level of compliance, identification, and internalization.
Modeling Belt-Servomechanism by Chebyshev Functional Recurrent Neuro-Fuzzy Network
NASA Astrophysics Data System (ADS)
Huang, Yuan-Ruey; Kang, Yuan; Chu, Ming-Hui; Chang, Yeon-Pun
A novel Chebyshev functional recurrent neuro-fuzzy (CFRNF) network is developed from a combination of the Takagi-Sugeno-Kang (TSK) fuzzy model and the Chebyshev recurrent neural network (CRNN). The CFRNF network can emulate the nonlinear dynamics of a servomechanism system. The system nonlinearity is addressed by enhancing the input dimensions of the consequent parts in the fuzzy rules due to functional expansion of a Chebyshev polynomial. The back propagation algorithm is used to adjust the parameters of the antecedent membership functions as well as those of consequent functions. To verify the performance of the proposed CFRNF, the experiment of the belt servomechanism is presented in this paper. Both of identification methods of adaptive neural fuzzy inference system (ANFIS) and recurrent neural network (RNN) are also studied for modeling of the belt servomechanism. The analysis and comparison results indicate that CFRNF makes identification of complex nonlinear dynamic systems easier. It is verified that the accuracy and convergence of the CFRNF are superior to those of ANFIS and RNN by the identification results of a belt servomechanism.
Pattern recognition tool based on complex network-based approach
NASA Astrophysics Data System (ADS)
Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir
2013-02-01
This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.
Nonlinear stability and control study of highly maneuverable high performance aircraft, phase 2
NASA Technical Reports Server (NTRS)
Mohler, R. R.
1992-01-01
Research leading to the development of new nonlinear methodologies for the adaptive control and stability analysis of high angle of attack aircraft such as the F-18 is discussed. The emphasis has been on nonlinear adaptive control, but associated model development, system identification, stability analysis, and simulation were studied in some detail as well. Studies indicated that nonlinear adaptive control can outperform linear adaptive control for rapid maneuvers with large changes in angle of attack. Included here are studies on nonlinear model algorithmic controller design and an analysis of nonlinear system stability using robust stability analysis for linear systems.
Linear regression analysis: part 14 of a series on evaluation of scientific publications.
Schneider, Astrid; Hommel, Gerhard; Blettner, Maria
2010-11-01
Regression analysis is an important statistical method for the analysis of medical data. It enables the identification and characterization of relationships among multiple factors. It also enables the identification of prognostically relevant risk factors and the calculation of risk scores for individual prognostication. This article is based on selected textbooks of statistics, a selective review of the literature, and our own experience. After a brief introduction of the uni- and multivariable regression models, illustrative examples are given to explain what the important considerations are before a regression analysis is performed, and how the results should be interpreted. The reader should then be able to judge whether the method has been used correctly and interpret the results appropriately. The performance and interpretation of linear regression analysis are subject to a variety of pitfalls, which are discussed here in detail. The reader is made aware of common errors of interpretation through practical examples. Both the opportunities for applying linear regression analysis and its limitations are presented.
Flood Identification from Satellite Images Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Chang, L.; Kao, I.; Shih, K.
2011-12-01
Typhoons and storms hit Taiwan several times every year and they cause serious flood disasters. Because the rivers are short and steep, and their flows are relatively fast with floods lasting only few hours and usually less than one day. Flood identification can provide the flood disaster and extent information to disaster assistance and recovery centers. Due to the factors of the weather, it is not suitable for aircraft or traditional multispectral satellite; hence, the most appropriate way for investigating flooding extent is to use Synthetic Aperture Radar (SAR) satellite. In this study, back-propagation neural network (BPNN) model and multivariate linear regression (MLR) model are built to identify the flooding extent from SAR satellite images. The input variables of the BPNN model are Radar Cross Section (RCS) value and mean of the pixel, standard deviation, minimum and maximum of RCS values among its adjacent 3×3 pixels. The MLR model uses two images of the non-flooding and flooding periods, and The inputs are the difference between the RCS values of two images and the variances among its adjacent 3×3 pixels. The results show that the BPNN model can perform much better than the MLR model. The correct percentages are more than 80% and 73% in training and testing data, respectively. Many misidentified areas are very fragmented and unrelated. In order to reinforce the correct percentage, morphological image analysis is used to modify the outputs of these identification models. Through morphological operations, most of the small, fragmented and misidentified areas can be correctly assigned to flooding or non-flooding areas. The final results show that the flood identification of satellite images has been improved a lot and the correct percentages increases up to more than 90%.
Detection of Erroneous Payments Utilizing Supervised And Unsupervised Data Mining Techniques
2004-09-01
will look at which statistical analysis technique will work best in developing and enhancing existing erroneous payment models . Chapter I and II... payment models that are used for selection of records to be audited. The models are set up such that if two or more records have the same payment...Identification Number, Invoice Number and Delivery Order Number are not compared. The DM0102 Duplicate Payment Model will be analyzed in this thesis
The Total Variation Regularized L1 Model for Multiscale Decomposition
2006-01-01
L1 fidelity term, and presented impressive and successful applications of the TV-L1 model to impulsive noise removal and outlier identification. She...used to filter 1D signal [3], to remove impulsive (salt-n- pepper) noise [35], to extract textures from natural images [45], to remove varying...34, 35, 36] discovery of the usefulness of this model for removing impul- sive noise , Chan and Esedoglu’s [17] further analysis of this model, and a
ERIC Educational Resources Information Center
Soloway, Irv
An approach to the study of drug sub-culture groups and a model for predictive research in the identification and isolation of heroin addicts are developed in this thesis. The basic methodologies employed are the linguistic methods of Kenneth Pike and Claude Levi-Strauss for use in the analysis of social phenomena. Communicative mechanisms by…
Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta
2014-06-01
Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.
Identification of propulsion systems
NASA Technical Reports Server (NTRS)
Merrill, Walter; Guo, Ten-Huei; Duyar, Ahmet
1991-01-01
This paper presents a tutorial on the use of model identification techniques for the identification of propulsion system models. These models are important for control design, simulation, parameter estimation, and fault detection. Propulsion system identification is defined in the context of the classical description of identification as a four step process that is unique because of special considerations of data and error sources. Propulsion system models are described along with the dependence of system operation on the environment. Propulsion system simulation approaches are discussed as well as approaches to propulsion system identification with examples for both air breathing and rocket systems.
Using the domain identification model to study major and career decision-making processes
NASA Astrophysics Data System (ADS)
Tendhar, Chosang; Singh, Kusum; Jones, Brett D.
2018-03-01
The purpose of this study was to examine the extent to which (1) a domain identification model could be used to predict students' engineering major and career intentions and (2) the MUSIC Model of Motivation components could be used to predict domain identification. The data for this study were collected from first-year engineering students. We used a structural equation model to test the hypothesised relationship between variables in the partial domain identification model. The findings suggested that engineering identification significantly predicted engineering major intentions and career intentions and had the highest effect on those two variables compared to other motivational constructs. Furthermore, results suggested that success, interest, and caring are plausible contributors to students' engineering identification. Overall, there is strong evidence that the domain identification model can be used as a lens to study career decision-making processes in engineering, and potentially, in other fields as well.
A Multivariate Model and Analysis of Competitive Strategy in the U.S. Hardwood Lumber Industry
Robert J. Bush; Steven A. Sinclair
1991-01-01
Business-level competitive strategy in the hardwood lumber industry was modeled through the identification of strategic groups among large U.S. hardwood lumber producers. Strategy was operationalized using a measure based on the variables developed by Dess and Davis (1984). Factor and cluster analyses were used to define strategic groups along the dimensions of cost...
ERIC Educational Resources Information Center
Ozmen, E. Ruya; Doganay-Bilgi, Arzu
2016-01-01
The purpose of this case study was to improve the reading accuracy and reading comprehension of a 10-year-old fourth-grade female student with reading difficulties. For that purpose, the problem- solving model was implemented in four stages. These stages included problem identification, problem analysis, intervention, and evaluation. During the…
Formulating, Identifying and Estimating the Technology of Cognitive and Noncognitive Skill Formation
ERIC Educational Resources Information Center
Cunha, Flavio; Heckman, James J.
2008-01-01
This paper estimates models of the evolution of cognitive and noncognitive skills and explores the role of family environments in shaping these skills at different stages of the life cycle of the child. Central to this analysis is identification of the technology of skill formation. We estimate a dynamic factor model to solve the problem of…
NASA Technical Reports Server (NTRS)
Papadopoulos, Michael; Tolson, Robert H.
1993-01-01
The Modal Identification Experiment (MIE) is a proposed experiment to define the dynamic characteristics of Space Station Freedom. Previous studies emphasized free-decay modal identification. The feasibility of using a forced response method (Observer/Kalman Filter Identification (OKID)) is addressed. The interest in using OKID is to determine the input mode shape matrix which can be used for controller design or control-structure interaction analysis, and investigate if forced response methods may aid in separating closely spaced modes. A model of the SC-7 configuration of Space Station Freedom was excited using simulated control system thrusters to obtain acceleration output. It is shown that an 'optimum' number of outputs exists for OKID. To recover global mode shapes, a modified method called Global-Local OKID was developed. This study shows that using data from a long forced response followed by free-decay leads to the 'best' modal identification. Twelve out of the thirteen target modes were identified for such an output.
Yastrebov, V S; Mitikhin, V G; Solokhina, T A; Mitikhina, I A
ОBJECTIVE: a system analysis and modeling for important areas of research of the organization of psychiatric services in Russia in the study mental health of the population, identification of factors affecting the formation of the contingent of persons with mental disorders, organizational and functional structure of mental health services and mental health care. The authors analyzed scientific publications on the problems of psychiatric care organization as well as the results of own research over the last 25 years using system analysis. The approach that allows a creation of a range of population models to monitor the status of mental health based on medical, demographic and social factors (more than 60 factors) of life was suggested. The basic models and approaches for the evaluation of activity of divisions of mental health services at the macro and micro-social levels, taking into account expert information and individual characteristics of patients and relatives, were demonstrated. To improve treatment quality, the models of identification of the factors, which positively or negatively influenced the commitment to psychopharmacotherapy of patients with schizophrenia and their families, were developed.
Understanding context in knowledge translation: a concept analysis study protocol.
Squires, Janet E; Graham, Ian D; Hutchinson, Alison M; Linklater, Stefanie; Brehaut, Jamie C; Curran, Janet; Ivers, Noah; Lavis, John N; Michie, Susan; Sales, Anne E; Fiander, Michelle; Fenton, Shannon; Noseworthy, Thomas; Vine, Jocelyn; Grimshaw, Jeremy M
2015-05-01
To conduct a concept analysis of clinical practice contexts (work environments) that facilitate or militate against the uptake of research evidence by healthcare professionals in clinical practice. This will involve developing a clear definition of context by describing its features, domains and defining characteristics. The context where clinical care is delivered influences that care. While research shows that context is important to knowledge translation (implementation), we lack conceptual clarity on what is context, which contextual factors probably modify the effect of knowledge translation interventions (and hence should be considered when designing interventions) and which contextual factors themselves could be targeted as part of a knowledge translation intervention (context modification). Concept analysis. The Walker and Avant concept analysis method, comprised of eight systematic steps, will be used: (1) concept selection; (2) determination of aims; (3) identification of uses of context; (4) determination of defining attributes of context; (5) identification/construction of a model case of context; (6) identification/construction of additional cases of context; (7) identification/construction of antecedents and consequences of context; and (8) definition of empirical referents of context. This study is funded by the Canadian Institutes of Health Research (January 2014). This study will result in a much needed framework of context for knowledge translation, which identifies specific elements that, if assessed and used to tailor knowledge translation activities, will result in increased research use by nurses and other healthcare professionals in clinical practice, ultimately leading to better patient care. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong
2017-01-01
In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.
DOT National Transportation Integrated Search
1982-08-01
A detailed re-analysis of previously collected bicycle/motor-vehicle accident data (Cross and Fisher, 1977) was undertaken to define potential countermeasures. Countermeasure development was then undertaken in the areas of Training (see Volume I), Pu...
Program Evaluation: A Review and Synthesis.
ERIC Educational Resources Information Center
Webber, Charles F.
This paper reviews models of program evaluation. Major topics and issues found in the evaluation literature include quantitative versus qualitative approaches, identification and involvement of stakeholders, formulation of research questions, collection of data, analysis and interpretation of data, reporting of results, evaluation utilization, and…
Identification of Computational and Experimental Reduced-Order Models
NASA Technical Reports Server (NTRS)
Silva, Walter A.; Hong, Moeljo S.; Bartels, Robert E.; Piatak, David J.; Scott, Robert C.
2003-01-01
The identification of computational and experimental reduced-order models (ROMs) for the analysis of unsteady aerodynamic responses and for efficient aeroelastic analyses is presented. For the identification of a computational aeroelastic ROM, the CFL3Dv6.0 computational fluid dynamics (CFD) code is used. Flutter results for the AGARD 445.6 Wing and for a Rigid Semispan Model (RSM) computed using CFL3Dv6.0 are presented, including discussion of associated computational costs. Modal impulse responses of the unsteady aerodynamic system are computed using the CFL3Dv6.0 code and transformed into state-space form. The unsteady aerodynamic state-space ROM is then combined with a state-space model of the structure to create an aeroelastic simulation using the MATLAB/SIMULINK environment. The MATLAB/SIMULINK ROM is then used to rapidly compute aeroelastic transients, including flutter. The ROM shows excellent agreement with the aeroelastic analyses computed using the CFL3Dv6.0 code directly. For the identification of experimental unsteady pressure ROMs, results are presented for two configurations: the RSM and a Benchmark Supercritical Wing (BSCW). Both models were used to acquire unsteady pressure data due to pitching oscillations on the Oscillating Turntable (OTT) system at the Transonic Dynamics Tunnel (TDT). A deconvolution scheme involving a step input in pitch and the resultant step response in pressure, for several pressure transducers, is used to identify the unsteady pressure impulse responses. The identified impulse responses are then used to predict the pressure responses due to pitching oscillations at several frequencies. Comparisons with the experimental data are then presented.
Bayesian operational modal analysis with asynchronous data, Part II: Posterior uncertainty
NASA Astrophysics Data System (ADS)
Zhu, Yi-Chen; Au, Siu-Kui
2018-01-01
A Bayesian modal identification method has been proposed in the companion paper that allows the most probable values of modal parameters to be determined using asynchronous ambient vibration data. This paper investigates the identification uncertainty of modal parameters in terms of their posterior covariance matrix. Computational issues are addressed. Analytical expressions are derived to allow the posterior covariance matrix to be evaluated accurately and efficiently. Synthetic, laboratory and field data examples are presented to verify the consistency, investigate potential modelling error and demonstrate practical applications.
Modeling human pilot cue utilization with applications to simulator fidelity assessment.
Zeyada, Y; Hess, R A
2000-01-01
An analytical investigation to model the manner in which pilots perceive and utilize visual, proprioceptive, and vestibular cues in a ground-based flight simulator was undertaken. Data from a NASA Ames Research Center vertical motion simulator study of a simple, single-degree-of-freedom rotorcraft bob-up/down maneuver were employed in the investigation. The study was part of a larger research effort that has the creation of a methodology for determining flight simulator fidelity requirements as its ultimate goal. The study utilized a closed-loop feedback structure of the pilot/simulator system that included the pilot, the cockpit inceptor, the dynamics of the simulated vehicle, and the motion system. With the exception of time delays that accrued in visual scene production in the simulator, visual scene effects were not included in this study. Pilot/vehicle analysis and fuzzy-inference identification were employed to study the changes in fidelity that occurred as the characteristics of the motion system were varied over five configurations. The data from three of the five pilots who participated in the experimental study were analyzed in the fuzzy-inference identification. Results indicate that both the analytical pilot/vehicle analysis and the fuzzy-inference identification can be used to identify changes in simulator fidelity for the task examined.
Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G
2016-01-01
Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis.
Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G.
2016-01-01
Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis. PMID:26901845
Santos, Rui; Pombo, Nuno; Flórez-Revuelta, Francisco
2018-01-01
An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT). PMID:29315232
Beyramysoltan, Samira; Giffen, Justine E; Rosati, Jennifer Y; Musah, Rabi Ann
2018-06-20
Species determination of the various life stages of flies (order: Diptera) is challenging, particularly for the immature forms, because analogous life stages of different species are difficult to differentiate morphologically. It is demonstrated here that DART high-resolution mass spectrometry (DART-HRMS) combined with supervised Kohonen Self-Organizing Maps (SOM) enables accomplishment of species-level identification of larvae, pupae and adult life stages of carrion flies. DART-HRMS data for each life stage were acquired from analysis of ethanol suspensions representing Calliphoridae, Phoridae and Sarcophagidae families, without additional sample preparation. After preprocessing, the data were subjected to a combination of minimum Redundancy Maximal Relevance (mRMR) and Sparse Discriminant Analysis (SDA) methods to select the most significant variables for creating accurate SOM models. The resulting data were divided into training and validation sets, and then analyzed by the SOM method to define the proper discrimination models. The 5-fold venetian blind cross-validation misclassification error was below 7% for all life stages, and the validation samples were correctly identified in all cases. The multiclass SOM model also revealed which chemical components were the most significant markers for each species, with several of these being amino acids. The results show that processing of DART-HRMS data using artificial neural networks (ANNs) based on the Kohonen SOM approach enables rapid discrimination and identification of fly species even for the immature life stages. The ANNs can be continuously expanded to include a larger number of species, and can be used to screen DART-HRMS data from unknowns to rapidly determine species identity.
Takamura, Ayari; Watanabe, Ken; Akutsu, Tomoko; Ozawa, Takeaki
2018-05-31
Body fluid (BF) identification is a critical part of a criminal investigation because of its ability to suggest how the crime was committed and to provide reliable origins of DNA. In contrast to current methods using serological and biochemical techniques, vibrational spectroscopic approaches provide alternative advantages for forensic BF identification, such as non-destructivity and versatility for various BF types and analytical interests. However, unexplored issues remain for its practical application to forensics; for example, a specific BF needs to be discriminated from all other suspicious materials as well as other BFs, and the method should be applicable even to aged BF samples. Herein, we describe an innovative modeling method for discriminating the ATR FT-IR spectra of various BFs, including peripheral blood, saliva, semen, urine and sweat, to meet the practical demands described above. Spectra from unexpected non-BF samples were efficiently excluded as outliers by adopting the Q-statistics technique. The robustness of the models against aged BFs was significantly improved by using the discrimination scheme of a dichotomous classification tree with hierarchical clustering. The present study advances the use of vibrational spectroscopy and a chemometric strategy for forensic BF identification.
Fallatah, Fatmah; Laschinger, Heather K S; Read, Emily A
Nurses' turnover has a costly impact on organizations, patients, and nurses. Numerous studies have highlighted the critical role of nursing leadership in enhancing new nurses' retention. To examine the influence of authentic leadership on new nurses' job turnover intentions through their personal identification with the leader, organizational identification, and occupational coping self-efficacy. Secondary data analysis of a cross-sectional national study of Canadian new graduate nurses was conducted using structural equation modeling. Authentic leadership had a significant positive effect on nurses' personal identification with their leader and their organization. Personal identification mediated the relationship between authentic leadership and organizational identification. Organizational identification had a significant positive effect on occupational coping self-efficacy, which, in turn, had a negative effect on new graduate nurses' job turnover intentions. The findings demonstrate the vital role authentic leadership plays in retaining new graduate nurses. Authentic leaders foster personal and organizational identification among new graduate nurses, leading to increase in the confidence in their ability to manage work-related challenges, which subsequently results in positive outcomes in both new graduate nurses and the organization. Copyright © 2016 Elsevier Inc. All rights reserved.
Parallel approach to identifying the well-test interpretation model using a neurocomputer
NASA Astrophysics Data System (ADS)
May, Edward A., Jr.; Dagli, Cihan H.
1996-03-01
The well test is one of the primary diagnostic and predictive tools used in the analysis of oil and gas wells. In these tests, a pressure recording device is placed in the well and the pressure response is recorded over time under controlled flow conditions. The interpreted results are indicators of the well's ability to flow and the damage done to the formation surrounding the wellbore during drilling and completion. The results are used for many purposes, including reservoir modeling (simulation) and economic forecasting. The first step in the analysis is the identification of the Well-Test Interpretation (WTI) model, which determines the appropriate solution method. Mis-identification of the WTI model occurs due to noise and non-ideal reservoir conditions. Previous studies have shown that a feed-forward neural network using the backpropagation algorithm can be used to identify the WTI model. One of the drawbacks to this approach is, however, training time, which can run into days of CPU time on personal computers. In this paper a similar neural network is applied using both a personal computer and a neurocomputer. Input data processing, network design, and performance are discussed and compared. The results show that the neurocomputer greatly eases the burden of training and allows the network to outperform a similar network running on a personal computer.
NASA Astrophysics Data System (ADS)
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
Pathways to Identity: Aiding Law Enforcement in Identification Tasks With Visual Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan
The nature of identity has changed dramatically in recent years, and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but also biographical and cyber elements are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing its importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, as well as the modeling and visualization tools design to aid in those use cases.« less
Pathways to Identity. Using Visualization to Aid Law Enforcement in Identification Tasks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce, Joseph R.; Scholtz, Jean; Hodges, Duncan
The nature of identity has changed dramatically in recent years and has grown in complexity. Identities are defined in multiple domains: biological and psychological elements strongly contribute, but biographical and cyber elements also are necessary to complete the picture. Law enforcement is beginning to adjust to these changes, recognizing identity’s importance in criminal justice. The SuperIdentity project seeks to aid law enforcement officials in their identification tasks through research of techniques for discovering identity traits, generation of statistical models of identity and analysis of identity traits through visualization. We present use cases compiled through user interviews in multiple fields, includingmore » law enforcement, and describe the modeling and visualization tools design to aid in those use cases.« less
Automatic identification of bullet signatures based on consecutive matching striae (CMS) criteria.
Chu, Wei; Thompson, Robert M; Song, John; Vorburger, Theodore V
2013-09-10
The consecutive matching striae (CMS) numeric criteria for firearm and toolmark identifications have been widely accepted by forensic examiners, although there have been questions concerning its observer subjectivity and limited statistical support. In this paper, based on signal processing and extraction, a model for the automatic and objective counting of CMS is proposed. The position and shape information of the striae on the bullet land is represented by a feature profile, which is used for determining the CMS number automatically. Rapid counting of CMS number provides a basis for ballistics correlations with large databases and further statistical and probability analysis. Experimental results in this report using bullets fired from ten consecutively manufactured barrels support this developed model. Published by Elsevier Ireland Ltd.
Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis
NASA Technical Reports Server (NTRS)
Putnam, J.; Somers, J.; Wells, J.; Newby, N.; Currie-Gregg, N.; Lawrence, C.
2016-01-01
Introduction: In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.
Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis
NASA Technical Reports Server (NTRS)
Putnam, Jacob B.; Sommers, Jeffrey T.; Wells, Jessica A.; Newby, Nathaniel J.; Currie-Gregg, Nancy J.; Lawrence, Chuck
2016-01-01
In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.
Efficient alignment-free DNA barcode analytics.
Kuksa, Pavel; Pavlovic, Vladimir
2009-11-10
In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding.
The contextualized self: how team-member exchange leads to coworker identification and helping OCB.
Farmer, Steven M; Van Dyne, Linn; Kamdar, Dishan
2015-03-01
This article develops the argument that team-member exchange (TMX) relationships operate at both between- and within-group levels of analysis to influence an employee's sense of identification with coworkers in the group and their helping organizational citizenship behavior (OCB) directed at coworkers. Specifically, we propose that relatively higher quality TMX relationships of an employee as compared with other members of the group influence an employee's sense of positive uniqueness, whereas higher average level of TMX quality in the group creates a greater sense of belonging. Multilevel modeling analysis of field data from 236 bank managers and their subordinates supports the hypotheses and demonstrates 3 key findings. First, team members identify more with their coworkers when they have high relative TMX quality compared with other group members and are also embedded in groups with higher average TMX. Second, identification with coworkers is positively related to helping OCB directed toward team members. Finally, identification with coworkers mediates the interactive effect of relative TMX quality and group average TMX quality on helping. When TMX group relations allow individuals to feel a valued part of the group, but still unique, they engage in higher levels of helping. Overall moderated mediation analysis demonstrates that the mediated relationship linking relative TMX quality with helping OCB via identification with coworkers is stronger when group average TMX is high, but not present when group average TMX is low. We discuss theoretical and practical implications and recommend future research on multilevel conceptualizations of TMX. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Two-dimensional PCA-based human gait identification
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Wu, Rongteng
2012-11-01
It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.
Improving substructure identification accuracy of shear structures using virtual control system
NASA Astrophysics Data System (ADS)
Zhang, Dongyu; Yang, Yang; Wang, Tingqiang; Li, Hui
2018-02-01
Substructure identification is a powerful tool to identify the parameters of a complex structure. Previously, the authors developed an inductive substructure identification method for shear structures. The identification error analysis showed that the identification accuracy of this method is significantly influenced by the magnitudes of two key structural responses near a certain frequency; if these responses are unfavorable, the method cannot provide accurate estimation results. In this paper, a novel method is proposed to improve the substructure identification accuracy by introducing a virtual control system (VCS) into the structure. A virtual control system is a self-balanced system, which consists of some control devices and a set of self-balanced forces. The self-balanced forces counterbalance the forces that the control devices apply on the structure. The control devices are combined with the structure to form a controlled structure used to replace the original structure in the substructure identification; and the self-balance forces are treated as known external excitations to the controlled structure. By optimally tuning the VCS’s parameters, the dynamic characteristics of the controlled structure can be changed such that the original structural responses become more favorable for the substructure identification and, thus, the identification accuracy is improved. A numerical example of 6-story shear structure is utilized to verify the effectiveness of the VCS based controlled substructure identification method. Finally, shake table tests are conducted on a 3-story structural model to verify the efficacy of the VCS to enhance the identification accuracy of the structural parameters.
Bicknell, Klinton; Levy, Roger
2012-01-01
Decades of empirical work have shown that a range of eye movement phenomena in reading are sensitive to the details of the process of word identification. Despite this, major models of eye movement control in reading do not explicitly model word identification from visual input. This paper presents a argument for developing models of eye movements that do include detailed models of word identification. Specifically, we argue that insights into eye movement behavior can be gained by understanding which phenomena naturally arise from an account in which the eyes move for efficient word identification, and that one important use of such models is to test which eye movement phenomena can be understood this way. As an extended case study, we present evidence from an extension of a previous model of eye movement control in reading that does explicitly model word identification from visual input, Mr. Chips (Legge, Klitz, & Tjan, 1997), to test two proposals for the effect of using linguistic context on reading efficiency. PMID:23074362
New Flutter Analysis Technique for Time-Domain Computational Aeroelasticity
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Lung, Shun-Fat
2017-01-01
A new time-domain approach for computing flutter speed is presented. Based on the time-history result of aeroelastic simulation, the unknown unsteady aerodynamics model is estimated using a system identification technique. The full aeroelastic model is generated via coupling the estimated unsteady aerodynamic model with the known linear structure model. The critical dynamic pressure is computed and used in the subsequent simulation until the convergence of the critical dynamic pressure is achieved. The proposed method is applied to a benchmark cantilevered rectangular wing.
Bayesian Exploratory Factor Analysis
Conti, Gabriella; Frühwirth-Schnatter, Sylvia; Heckman, James J.; Piatek, Rémi
2014-01-01
This paper develops and applies a Bayesian approach to Exploratory Factor Analysis that improves on ad hoc classical approaches. Our framework relies on dedicated factor models and simultaneously determines the number of factors, the allocation of each measurement to a unique factor, and the corresponding factor loadings. Classical identification criteria are applied and integrated into our Bayesian procedure to generate models that are stable and clearly interpretable. A Monte Carlo study confirms the validity of the approach. The method is used to produce interpretable low dimensional aggregates from a high dimensional set of psychological measurements. PMID:25431517
2005-08-01
QSAR in Environmental Researth was accepted and published in April of 2005. The manuscript described the cat -SAR program in detail. We note the...analysis of this data yielded a very good model. As such, this was a suitable dataset on which to develop and test the cat -SAR program. A copy of the...developed and validated (i.e., a-c) as planned in MCASE and then with the cat -SAR program. We have also updated rodent carcinogenicity models so that
An ideal clamping analysis for a cross-ply laminate
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Murthy, P. L. N.; Rehfield, L. W.
1988-01-01
Different elementary clamping models are discussed for a three layer crossply laminate to study the sensitivity of clamping to the definition of cross-sectional rotation. All of these models leave a considerable residual warping at the edges. Using a complimentary energy principle and principle of superposition, an analysis is conducted to reduce this residual warping. This led to the identification of exact interior solution corresponding to the ideal clamping. This study also suggests a presence of stress singularities at the corners and between different layers near the fixed edge.
THE APPLICATION OF CYBERNETICS IN PEDAGOGY.
ERIC Educational Resources Information Center
ATUTOV, P.R.
THE APPLICATION OF CYBERNETICS TO PEDAGOGY CAN CREATE A PRECISE SCIENCE OF INSTRUCTION AND EDUCATION THROUGH THE TIME-CONSUMING BUT INEVITABLE TRANSITION FROM IDENTIFICATION OF QUALITATIVE RELATIONSHIPS AMONG PEDAGOGICAL OBJECTS TO QUANTITATIVE ANALYSIS OF THESE OBJECTS. THE THEORETICAL UTILITY OF MATHEMATICAL MODELS AND FORMULAE FOR EXPLANATORY…
Analysis of human scream and its impact on text-independent speaker verification.
Hansen, John H L; Nandwana, Mahesh Kumar; Shokouhi, Navid
2017-04-01
Scream is defined as sustained, high-energy vocalizations that lack phonological structure. Lack of phonological structure is how scream is identified from other forms of loud vocalization, such as "yell." This study investigates the acoustic aspects of screams and addresses those that are known to prevent standard speaker identification systems from recognizing the identity of screaming speakers. It is well established that speaker variability due to changes in vocal effort and Lombard effect contribute to degraded performance in automatic speech systems (i.e., speech recognition, speaker identification, diarization, etc.). However, previous research in the general area of speaker variability has concentrated on human speech production, whereas less is known about non-speech vocalizations. The UT-NonSpeech corpus is developed here to investigate speaker verification from scream samples. This study considers a detailed analysis in terms of fundamental frequency, spectral peak shift, frame energy distribution, and spectral tilt. It is shown that traditional speaker recognition based on the Gaussian mixture models-universal background model framework is unreliable when evaluated with screams.
Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei
2016-01-01
Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.
Teodoro, Janaína Aparecida Reis; Pereira, Hebert Vinicius; Sena, Marcelo Martins; Piccin, Evandro; Zacca, Jorge Jardim; Augusti, Rodinei
2017-12-15
A direct method based on the application of paper spray mass spectrometry (PS-MS) combined with a chemometric supervised method (partial least square discriminant analysis, PLS-DA) was developed and applied to the discrimination of authentic and counterfeit samples of blended Scottish whiskies. The developed methodology employed the negative ion mode MS, included 44 authentic whiskies from diverse brands and batches and 44 counterfeit samples of the same brands seized during operations of the Brazilian Federal Police, totalizing 88 samples. An exploratory principal component analysis (PCA) model showed a reasonable discrimination of the counterfeit whiskies in PC2. In spite of the samples heterogeneity, a robust, reliable and accurate PLS-DA model was generated and validated, which was able to correctly classify the samples with nearly 100% success rate. The use of PS-MS also allowed the identification of the main marker compounds associated with each type of sample analyzed: authentic or counterfeit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
Tensor model order reduction, recursive tensor model identification, input design for tensor model identification, software development for nonlinear feedback control laws based upon tensors, and development of the CATNAP software package for tensor modeling, identification and simulation were studied. The last of these are discussed.
ERIC Educational Resources Information Center
Rubio, M. Milagros del Saz
2011-01-01
Using (Swales, 1990) and (Swales, 2004) Create-A-Research-Space model (CARS) as an investigative tool and Hyland's (2005) model of metadiscourse, this article reports on a pragmatic two-level rhetorical analysis of the constituent moves and steps of research article introductions and focuses on the identification and mapping of the metadiscoursal…
The influence of regional deprivation index on personal happiness using multilevel analysis
Kim, Kil Hun; Chun, Jin-Ho; Sohn, Hae Sook
2015-01-01
OBJECTIVES: The objective of the present study was to identify the factors that influence the happiness index of community residents, by considering personal and regional aspects, and to use as evidence of efforts for improvement of the happiness index. METHODS: The study was conducted based on information from 16,270 participants who met the data requirement among those who participated in the 2011 South Gyeongsang Community Health Survey. Of the factors that can influence the happiness index, socioeconomic characteristics, health behavior, morbidity, and healthcare use, social contact, and participation in social activities were classified as personal factors; for regional factors, data from the 2010 census were used to extrapolate the regional deprivation indices at the submunicipal-level (eup, myeon, and dong) in South Gyeongsang Province. The happiness index for each characteristic was compared to that for others via t-test and ANOVA, and multilevel analysis was performed, using four models: a basic model for identification of only random effects, model 1 for identification of personal factors, model 2 for identification of regional factors, and model 3 for simultaneous consideration of both personal and regional factors. RESULTS: The mean happiness index was 63.2 points (64.6 points in males and 62.0 points in females), while the mean deprivation index was -1.58 points. In the multilevel analysis, the regional-level variance ratio of the basic model was 10.8%, confirming interregional differences. At the personal level, higher happiness indices were seen in groups consisting of males with high educational level, high income, high degree of physical activity, sufficient sleep, active social contact, and participation in social activities; whereas lower happiness indices were seen in people who frequently skipped breakfast, had unmet healthcare needs, and had accompanying diseases, as well as those with higher deprivation index. CONCLUSIONS: The study confirmed that the happiness index of community residents was influenced by not only personal aspects but also various regional characteristics. To increase the happiness index, interests at both personal and regional levels, as well as community emphasis on creating social rapport and engaging in selective efforts, are needed in vulnerable regions with relatively high deprivation index. PMID:26725223
The influence of regional deprivation index on personal happiness using multilevel analysis.
Kim, Kil Hun; Chun, Jin-Ho; Sohn, Hae Sook
2015-01-01
The objective of the present study was to identify the factors that influence the happiness index of community residents, by considering personal and regional aspects, and to use as evidence of efforts for improvement of the happiness index. The study was conducted based on information from 16,270 participants who met the data requirement among those who participated in the 2011 South Gyeongsang Community Health Survey. Of the factors that can influence the happiness index, socioeconomic characteristics, health behavior, morbidity, and healthcare use, social contact, and participation in social activities were classified as personal factors; for regional factors, data from the 2010 census were used to extrapolate the regional deprivation indices at the submunicipal-level (eup, myeon, and dong) in South Gyeongsang Province. The happiness index for each characteristic was compared to that for others via t-test and ANOVA, and multilevel analysis was performed, using four models: a basic model for identification of only random effects, model 1 for identification of personal factors, model 2 for identification of regional factors, and model 3 for simultaneous consideration of both personal and regional factors. The mean happiness index was 63.2 points (64.6 points in males and 62.0 points in females), while the mean deprivation index was -1.58 points. In the multilevel analysis, the regional-level variance ratio of the basic model was 10.8%, confirming interregional differences. At the personal level, higher happiness indices were seen in groups consisting of males with high educational level, high income, high degree of physical activity, sufficient sleep, active social contact, and participation in social activities; whereas lower happiness indices were seen in people who frequently skipped breakfast, had unmet healthcare needs, and had accompanying diseases, as well as those with higher deprivation index. The study confirmed that the happiness index of community residents was influenced by not only personal aspects but also various regional characteristics. To increase the happiness index, interests at both personal and regional levels, as well as community emphasis on creating social rapport and engaging in selective efforts, are needed in vulnerable regions with relatively high deprivation index.
Time series behaviour of the number of Air Asia passengers: A distributional approach
NASA Astrophysics Data System (ADS)
Asrah, Norhaidah Mohd; Djauhari, Maman Abdurachman
2013-09-01
The common practice to time series analysis is by fitting a model and then further analysis is conducted on the residuals. However, if we know the distributional behavior of time series, the analyses in model identification, parameter estimation, and model checking are more straightforward. In this paper, we show that the number of Air Asia passengers can be represented as a geometric Brownian motion process. Therefore, instead of using the standard approach in model fitting, we use an appropriate transformation to come up with a stationary, normally distributed and even independent time series. An example in forecasting the number of Air Asia passengers will be given to illustrate the advantages of the method.
Books and Balls: Antecedents and Outcomes of College Identification
ERIC Educational Resources Information Center
Porter, Thomas; Hartman, Katherine; Johnson, John Seth
2011-01-01
Identification plays a central role in models of giving to an organization. This study presents and tests a general model of giving that highlights status based and affect based drivers of identification. The model was tested using a sample of 114 alumni from 74 different colleges participated in an online survey. Identification was found to…
NASA Astrophysics Data System (ADS)
Clausing, Eric; Kraetzer, Christian; Dittmann, Jana; Vielhauer, Claus
2012-10-01
An important part of criminalistic forensics is the analysis of toolmarks. Such toolmarks often consist of plenty of single striations, scratches and dents which can allow for conclusions in regards to the sequence of events or used tools. To receive qualified results with an automated analysis and contactless acquisition of such toolmarks, a detailed digital representation of these and their orientation as well as placing to each other is required. For marks of firearms and tools the desired result of an analysis is a conclusion whether or not a mark has been generated by a tool under suspicion. For toolmark analysis on locking cylinders, the aim is not an identification of the used tool but rather an identification of the opening method. The challenge of such an identification is that a one-to-one comparison of two images is not sufficient - although two marked objects look completely different in regards to the specific location and shape of found marks they still can represent a sample for the identical opening method. This paper provides the first approach for modelling toolmarks on lock pins and takes into consideration the different requirements necessary to generate a detailed and interpretable digital representation of these traces. These requirements are 'detail', i.e. adequate features which allow for a suitable representation and interpretation of single marks, 'meta detail', i.e. adequate representation of the context and connection between all marks and 'distinctiveness', i.e. the possibility to reliably distinguish different sample types by the according model. The model is evaluated with a set of 15 physical samples (resulting in 675 digital scans) of lock pins from cylinders opened with different opening methods, contactlessly scanned with a confocal laser microscope. The presented results suggest a high suitability for the aspired purpose of opening method determination.
López Gialdi, A I; Moschen, S; Villán, C S; López Fernández, M P; Maldonado, S; Paniego, N; Heinz, R A; Fernandez, P
2016-09-01
Leaf senescence is a complex mechanism ruled by multiple genetic and environmental variables that affect crop yields. It is the last stage in leaf development, is characterized by an active decline in photosynthetic rate, nutrients recycling and cell death. The aim of this work was to identify contrasting sunflower inbred lines differing in leaf senescence and to deepen the study of this process in sunflower. Ten sunflower genotypes, previously selected by physiological analysis from 150 inbred genotypes, were evaluated under field conditions through physiological, cytological and molecular analysis. The physiological measurement allowed the identification of two contrasting senescence inbred lines, R453 and B481-6, with an increase in yield in the senescence delayed genotype. These findings were confirmed by cytological and molecular analysis using TUNEL, genomic DNA gel electrophoresis, flow sorting and gene expression analysis by qPCR. These results allowed the selection of the two most promising contrasting genotypes, which enables future studies and the identification of new biomarkers associated to early senescence in sunflower. In addition, they allowed the tuning of cytological techniques for a non-model species and its integration with molecular variables. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Simultaneous identification of transfer functions and combustion noise of a turbulent flame
NASA Astrophysics Data System (ADS)
Merk, M.; Jaensch, S.; Silva, C.; Polifke, W.
2018-05-01
The Large Eddy Simulation/System Identification (LES/SI) approach allows to deduce a flame transfer function (FTF) from LES of turbulent reacting flow: Time series of fluctuations of reference velocity and global heat release rate resulting from broad-band excitation of a simulated turbulent flame are post-processed via SI techniques to derive a low order model of the flame dynamics, from which the FTF is readily deduced. The current work investigates an extension of the established LES/SI approach: In addition to estimation of the FTF, a low order model for the combustion noise source is deduced from the same time series data. By incorporating such a noise model into a linear thermoacoustic model, it is possible to predict the overall level as well as the spectral distribution of sound pressure in confined combustion systems that do not exhibit self-excited thermoacoustic instability. A variety of model structures for estimation of a noise model are tested in the present study. The suitability and quality of these model structures are compared against each other, their sensitivity regarding certain time series properties is studied. The influence of time series length, signal-to-noise ratio as well as acoustic reflection coefficient of the boundary conditions on the identification are examined. It is shown that the Box-Jenkins model structure is superior to simpler approaches for the simultaneous identification of models that describe the FTF as well as the combustion noise source. Subsequent to the question of the most adequate model structure, the choice of optimal model order is addressed, as in particular the optimal parametrization of the noise model is not obvious. Akaike's Information Criterion and a model residual analysis are applied to draw qualitative and quantitative conclusions on the most suitable model order. All investigations are based on a surrogate data model, which allows a Monte Carlo study across a large parameter space with modest computationally effort. The conducted study constitutes a solid basis for the application of advanced SI techniques to actual LES data.
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo
2017-02-01
Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it
Modeling of multi-rotor torsional vibrations in rotating machinery using substructuring
NASA Technical Reports Server (NTRS)
Soares, Fola R.
1986-01-01
The application of FEM modeling techniques to the analysis of torsional vibrations in complex rotating systems is described and demonstrated, summarizing results reported by Soares (1985). A substructuring approach is used for determination of torsional natural frequencies and resonant-mode shapes, steady-state frequency-sweep analysis, identification of dynamically unstable speed ranges, and characterization of transient linear and nonlinear systems. Results for several sample problems are presented in diagrams, graphs, and tables. STORV, a computer code based on this approach, is in use as a preliminary design tool for drive-train torsional analysis in the High Altitude Wind Tunnel at NASA Lewis.
Giovannini, Giannina; Sbarciog, Mihaela; Steyer, Jean-Philippe; Chamy, Rolando; Vande Wouwer, Alain
2018-05-01
Hydrogen has been found to be an important intermediate during anaerobic digestion (AD) and a key variable for process monitoring as it gives valuable information about the stability of the reactor. However, simple dynamic models describing the evolution of hydrogen are not commonplace. In this work, such a dynamic model is derived using a systematic data driven-approach, which consists of a principal component analysis to deduce the dimension of the minimal reaction subspace explaining the data, followed by an identification of the kinetic parameters in the least-squares sense. The procedure requires the availability of informative data sets. When the available data does not fulfill this condition, the model can still be built from simulated data, obtained using a detailed model such as ADM1. This dynamic model could be exploited in monitoring and control applications after a re-identification of the parameters using actual process data. As an example, the model is used in the framework of a control strategy, and is also fitted to experimental data from raw industrial wine processing wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.
Foveal analysis and peripheral selection during active visual sampling
Ludwig, Casimir J. H.; Davies, J. Rhys; Eckstein, Miguel P.
2014-01-01
Human vision is an active process in which information is sampled during brief periods of stable fixation in between gaze shifts. Foveal analysis serves to identify the currently fixated object and has to be coordinated with a peripheral selection process of the next fixation location. Models of visual search and scene perception typically focus on the latter, without considering foveal processing requirements. We developed a dual-task noise classification technique that enables identification of the information uptake for foveal analysis and peripheral selection within a single fixation. Human observers had to use foveal vision to extract visual feature information (orientation) from different locations for a psychophysical comparison. The selection of to-be-fixated locations was guided by a different feature (luminance contrast). We inserted noise in both visual features and identified the uptake of information by looking at correlations between the noise at different points in time and behavior. Our data show that foveal analysis and peripheral selection proceeded completely in parallel. Peripheral processing stopped some time before the onset of an eye movement, but foveal analysis continued during this period. Variations in the difficulty of foveal processing did not influence the uptake of peripheral information and the efficacy of peripheral selection, suggesting that foveal analysis and peripheral selection operated independently. These results provide important theoretical constraints on how to model target selection in conjunction with foveal object identification: in parallel and independently. PMID:24385588
Lemaster, Margaret; Flores, Joyce M; Blacketer, Margaret S
2016-02-01
This study explored the effectiveness of simulated mouth models to improve identification and recording of dental restorations when compared to using traditional didactic instruction combined with 2-dimensional images. Simulation has been adopted into medical and dental education curriculum to improve both student learning and patient safety outcomes. A 2-sample, independent t-test analysis of data was conducted to compare graded dental recordings of dental hygiene students using simulated mouth models and dental hygiene students using 2-dimensional photographs. Evaluations from graded dental charts were analyzed and compared between groups of students using the simulated mouth models containing random placement of custom preventive and restorative materials and traditional 2-dimensional representations of didactically described conditions. Results demonstrated a statistically significant (p≤0.0001) difference: for experimental group, students using the simulated mouth models to identify and record dental conditions had a mean of 86.73 and variance of 33.84. The control group students using traditional 2-dimensional images mean graded dental chart scores were 74.43 and variance was 14.25. Using modified simulation technology for dental charting identification may increase level of dental charting skill competency in first year dental hygiene students. Copyright © 2016 The American Dental Hygienists’ Association.
Guilhaumon, François; Gimenez, Olivier; Gaston, Kevin J.; Mouillot, David
2008-01-01
Species-area relationships (SARs) are fundamental to the study of key and high-profile issues in conservation biology and are particularly widely used in establishing the broad patterns of biodiversity that underpin approaches to determining priority areas for biological conservation. Classically, the SAR has been argued in general to conform to a power-law relationship, and this form has been widely assumed in most applications in the field of conservation biology. Here, using nonlinear regressions within an information theoretical model selection framework, we included uncertainty regarding both model selection and parameter estimation in SAR modeling and conducted a global-scale analysis of the form of SARs for vascular plants and major vertebrate groups across 792 terrestrial ecoregions representing almost 97% of Earth's inhabited land. The results revealed a high level of uncertainty in model selection across biomes and taxa, and that the power-law model is clearly the most appropriate in only a minority of cases. Incorporating this uncertainty into a hotspots analysis using multimodel SARs led to the identification of a dramatically different set of global richness hotspots than when the power-law SAR was assumed. Our findings suggest that the results of analyses that assume a power-law model may be at severe odds with real ecological patterns, raising significant concerns for conservation priority-setting schemes and biogeographical studies. PMID:18832179
Causal Reasoning in Medicine: Analysis of a Protocol.
ERIC Educational Resources Information Center
Kuipers, Benjamin; Kassirer, Jerome P.
1984-01-01
Describes the construction of a knowledge representation from the identification of the problem (nephrotic syndrome) to a running computer simulation of causal reasoning to provide a vertical slice of the construction of a cognitive model. Interactions between textbook knowledge, observations of human experts, and computational requirements are…
Thermoelectric pump performance analysis computer code
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1973-01-01
A computer program is presented that was used to analyze and design dual-throat electromagnetic dc conduction pumps for the 5-kwe ZrH reactor thermoelectric system. In addition to a listing of the code and corresponding identification of symbols, the bases for this analytical model are provided.
Hypertension and cancer are prevalent diseases. Epidemiological studies suggest that hypertension may increase the long term risk of cancer. Identification of resistance and/or susceptibility genes using rodent models could provide important insights into the management and treat...
Comparative Genomics and Host Resistance against Infectious Diseases
Qureshi, Salman T.; Skamene, Emil
1999-01-01
The large size and complexity of the human genome have limited the identification and functional characterization of components of the innate immune system that play a critical role in front-line defense against invading microorganisms. However, advances in genome analysis (including the development of comprehensive sets of informative genetic markers, improved physical mapping methods, and novel techniques for transcript identification) have reduced the obstacles to discovery of novel host resistance genes. Study of the genomic organization and content of widely divergent vertebrate species has shown a remarkable degree of evolutionary conservation and enables meaningful cross-species comparison and analysis of newly discovered genes. Application of comparative genomics to host resistance will rapidly expand our understanding of human immune defense by facilitating the translation of knowledge acquired through the study of model organisms. We review the rationale and resources for comparative genomic analysis and describe three examples of host resistance genes successfully identified by this approach. PMID:10081670
Cell motion predicts human epidermal stemness
Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki
2015-01-01
Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083
Martins, Angélica Rocha; Talhavini, Márcio; Vieira, Maurício Leite; Zacca, Jorge Jardim; Braga, Jez Willian Batista
2017-08-15
The discrimination of whisky brands and counterfeit identification were performed by UV-Vis spectroscopy combined with partial least squares for discriminant analysis (PLS-DA). In the proposed method all spectra were obtained with no sample preparation. The discrimination models were built with the employment of seven whisky brands: Red Label, Black Label, White Horse, Chivas Regal (12years), Ballantine's Finest, Old Parr and Natu Nobilis. The method was validated with an independent test set of authentic samples belonging to the seven selected brands and another eleven brands not included in the training samples. Furthermore, seventy-three counterfeit samples were also used to validate the method. Results showed correct classification rates for genuine and false samples over 98.6% and 93.1%, respectively, indicating that the method can be helpful for the forensic analysis of whisky samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using color histograms and SPA-LDA to classify bacteria.
de Almeida, Valber Elias; da Costa, Gean Bezerra; de Sousa Fernandes, David Douglas; Gonçalves Dias Diniz, Paulo Henrique; Brandão, Deysiane; de Medeiros, Ana Claudia Dantas; Véras, Germano
2014-09-01
In this work, a new approach is proposed to verify the differentiating characteristics of five bacteria (Escherichia coli, Enterococcus faecalis, Streptococcus salivarius, Streptococcus oralis, and Staphylococcus aureus) by using digital images obtained with a simple webcam and variable selection by the Successive Projections Algorithm associated with Linear Discriminant Analysis (SPA-LDA). In this sense, color histograms in the red-green-blue (RGB), hue-saturation-value (HSV), and grayscale channels and their combinations were used as input data, and statistically evaluated by using different multivariate classifiers (Soft Independent Modeling by Class Analogy (SIMCA), Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), Partial Least Squares Discriminant Analysis (PLS-DA) and Successive Projections Algorithm-Linear Discriminant Analysis (SPA-LDA)). The bacteria strains were cultivated in a nutritive blood agar base layer for 24 h by following the Brazilian Pharmacopoeia, maintaining the status of cell growth and the nature of nutrient solutions under the same conditions. The best result in classification was obtained by using RGB and SPA-LDA, which reached 94 and 100 % of classification accuracy in the training and test sets, respectively. This result is extremely positive from the viewpoint of routine clinical analyses, because it avoids bacterial identification based on phenotypic identification of the causative organism using Gram staining, culture, and biochemical proofs. Therefore, the proposed method presents inherent advantages, promoting a simpler, faster, and low-cost alternative for bacterial identification.
Observing Consistency in Online Communication Patterns for User Re-Identification
Venter, Hein S.
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. PMID:27918593
Crosland, Paul; Maconachie, Ross; Buckner, Sara; McGuire, Hugh; Humphries, Steve E; Qureshi, Nadeem
2018-05-17
The cost effectiveness of cascade testing for familial hypercholesterolaemia (FH) is well recognised. Less clear is the cost effectiveness of FH screening when it includes case identification strategies that incorporate routinely available data from primary and secondary care electronic health records. Nine strategies were compared, all using cascade testing in combination with different index case approaches (primary care identification, secondary care identification, and clinical assessment using the Simon Broome (SB) or Dutch Lipid Clinic Network (DLCN) criteria). A decision analytic model was informed by three systematic literature reviews and expert advice provided by a NICE Guideline Committee. The model found that the addition of primary care case identification by database search for patients with recorded total cholesterol >9.3 mmol/L was more cost effective than cascade testing alone. The incremental cost-effectiveness ratio (ICER) of clinical assessment using the DLCN criteria was £3254 per quality-adjusted life year (QALY) compared with case-finding with no genetic testing. The ICER of clinical assessment using the SB criteria was £13,365 per QALY (compared with primary care identification using the DLCN criteria), indicating that the SB criteria was preferred because it achieved additional health benefits at an acceptable cost. Secondary care identification, with either the SB or DLCN criteria, was not cost effective, alone (dominated and dominated respectively) or combined with primary care identification (£63, 514 per QALY, and £82,388 per QALY respectively). Searching primary care databases for people at high risk of FH followed by cascade testing is likely to be cost-effective. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Lei
2013-04-01
Understanding the transport mechanism of 1,3-propanediol (1,3-PD) is of critical importance to do further research on gene regulation. Due to the lack of intracellular information, on the basis of enzyme-catalytic system, using biological robustness as performance index, we present a system identification model to infer the most possible transport mechanism of 1,3-PD, in which the performance index consists of the relative error of the extracellular substance concentrations and biological robustness of the intracellular substance concentrations. We will not use a Boolean framework but prefer a model description based on ordinary differential equations. Among other advantages, this also facilitates the robustness analysis, which is the main goal of this paper. An algorithm is constructed to seek the solution of the identification model. Numerical results show that the most possible transport way is active transport coupled with passive diffusion.
[Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].
Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan
2012-10-01
To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.
49 CFR 599.302 - Dealer application for reimbursement-submission, contents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... vehicle. (C) Model year. The model year of the vehicle. (D) Vehicle identification number (VIN). The 17... vehicle. (C) Model year. The model year of the vehicle. (D) Vehicle identification number (VIN). The 17... address of each purchaser. (C) Driver's license or State identification number. The State driver's license...
49 CFR 599.302 - Dealer application for reimbursement-submission, contents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... vehicle. (C) Model year. The model year of the vehicle. (D) Vehicle identification number (VIN). The 17... vehicle. (C) Model year. The model year of the vehicle. (D) Vehicle identification number (VIN). The 17... address of each purchaser. (C) Driver's license or State identification number. The State driver's license...
49 CFR 599.302 - Dealer application for reimbursement-submission, contents.
Code of Federal Regulations, 2014 CFR
2014-10-01
... vehicle. (C) Model year. The model year of the vehicle. (D) Vehicle identification number (VIN). The 17... vehicle. (C) Model year. The model year of the vehicle. (D) Vehicle identification number (VIN). The 17... address of each purchaser. (C) Driver's license or State identification number. The State driver's license...
Role-Model Identification and School Achievement: A Developmental Study.
ERIC Educational Resources Information Center
Williams, Peter
Research on role-model identification has demonstrated the powerful effect that models have on individuals' behavior. To extend prior research on this phenomenon, the role-model identifications of first-, third-, fifth-, and ninth-grade students were outlined and examined. The results did not support the hypothesis that adolescents identify with…
Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.
Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck
2018-04-20
Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.
Probability of identification: adulteration of American Ginseng with Asian Ginseng.
Harnly, James; Chen, Pei; Harrington, Peter De B
2013-01-01
The AOAC INTERNATIONAL guidelines for validation of botanical identification methods were applied to the detection of Asian Ginseng [Panax ginseng (PG)] as an adulterant for American Ginseng [P. quinquefolius (PQ)] using spectral fingerprints obtained by flow injection mass spectrometry (FIMS). Samples of 100% PQ and 100% PG were physically mixed to provide 90, 80, and 50% PQ. The multivariate FIMS fingerprint data were analyzed using soft independent modeling of class analogy (SIMCA) based on 100% PQ. The Q statistic, a measure of the degree of non-fit of the test samples with the calibration model, was used as the analytical parameter. FIMS was able to discriminate between 100% PQ and 100% PG, and between 100% PQ and 90, 80, and 50% PQ. The probability of identification (POI) curve was estimated based on the SD of 90% PQ. A digital model of adulteration, obtained by mathematically summing the experimentally acquired spectra of 100% PQ and 100% PG in the desired ratios, agreed well with the physical data and provided an easy and more accurate method for constructing the POI curve. Two chemometric modeling methods, SIMCA and fuzzy optimal associative memories, and two classification methods, partial least squares-discriminant analysis and fuzzy rule-building expert systems, were applied to the data. The modeling methods correctly identified the adulterated samples; the classification methods did not.
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Gene expression complex networks: synthesis, identification, and analysis.
Lopes, Fabrício M; Cesar, Roberto M; Costa, Luciano Da F
2011-10-01
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdös-Rényi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabási-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree
On the problem of modeling for parameter identification in distributed structures
NASA Technical Reports Server (NTRS)
Norris, Mark A.; Meirovitch, Leonard
1988-01-01
Structures are often characterized by parameters, such as mass and stiffness, that are spatially distributed. Parameter identification of distributed structures is subject to many of the difficulties involved in the modeling problem, and the choice of the model can greatly affect the results of the parameter identification process. Analogously to control spillover in the control of distributed-parameter systems, identification spillover is shown to exist as well and its effect is to degrade the parameter estimates. Moreover, as in modeling by the Rayleigh-Ritz method, it is shown that, for a Rayleigh-Ritz type identification algorithm, an inclusion principle exists in the identification of distributed-parameter systems as well, so that the identified natural frequencies approach the actual natural frequencies monotonically from above.
NASA Astrophysics Data System (ADS)
Weng, Shizhuang; Dong, Ronglu; Zhu, Zede; Zhang, Dongyan; Zhao, Jinling; Huang, Linsheng; Liang, Dong
2018-01-01
Conventional Surface-Enhanced Raman Spectroscopy (SERS) for fast detection of drugs in urine on the portable Raman spectrometer remains challenges because of low sensitivity and unreliable Raman signal, and spectra process with manual intervention. Here, we develop a novel detection method of drugs in urine using chemometric methods and dynamic SERS (D-SERS) with mPEG-SH coated gold nanorods (GNRs). D-SERS combined with the uniform GNRs can obtain giant enhancement, and the signal is also of high reproducibility. On the basis of the above advantages, we obtained the spectra of urine, urine with methamphetamine (MAMP), urine with 3, 4-Methylenedioxy Methamphetamine (MDMA) using D-SERS. Simultaneously, some chemometric methods were introduced for the intelligent and automatic analysis of spectra. Firstly, the spectra at the critical state were selected through using K-means. Then, the spectra were proposed by random forest (RF) with feature selection and principal component analysis (PCA) to develop the recognition model. And the identification accuracy of model were 100%, 98.7% and 96.7%, respectively. To validate the effect in practical issue further, the drug abusers'urine samples with 0.4, 3, 30 ppm MAMP were detected using D-SERS and identified by the classification model. The high recognition accuracy of > 92.0% can meet the demand of practical application. Additionally, the parameter optimization of RF classification model was simple. Compared with the general laboratory method, the detection process of urine's spectra using D-SERS only need 2 mins and 2 μL samples volume, and the identification of spectra based on chemometric methods can be finish in seconds. It is verified that the proposed approach can provide the accurate, convenient and rapid detection of drugs in urine.
Synthesis fidelity and time-varying spectral change in vowels
NASA Astrophysics Data System (ADS)
Assmann, Peter F.; Katz, William F.
2005-02-01
Recent studies have shown that synthesized versions of American English vowels are less accurately identified when the natural time-varying spectral changes are eliminated by holding the formant frequencies constant over the duration of the vowel. A limitation of these experiments has been that vowels produced by formant synthesis are generally less accurately identified than the natural vowels after which they are modeled. To overcome this limitation, a high-quality speech analysis-synthesis system (STRAIGHT) was used to synthesize versions of 12 American English vowels spoken by adults and children. Vowels synthesized with STRAIGHT were identified as accurately as the natural versions, in contrast with previous results from our laboratory showing identification rates 9%-12% lower for the same vowels synthesized using the cascade formant model. Consistent with earlier studies, identification accuracy was not reduced when the fundamental frequency was held constant across the vowel. However, elimination of time-varying changes in the spectral envelope using STRAIGHT led to a greater reduction in accuracy (23%) than was previously found with cascade formant synthesis (11%). A statistical pattern recognition model, applied to acoustic measurements of the natural and synthesized vowels, predicted both the higher identification accuracy for vowels synthesized using STRAIGHT compared to formant synthesis, and the greater effects of holding the formant frequencies constant over time with STRAIGHT synthesis. Taken together, the experiment and modeling results suggest that formant estimation errors and incorrect rendering of spectral and temporal cues by cascade formant synthesis contribute to lower identification accuracy and underestimation of the role of time-varying spectral change in vowels. .
Modeling, system identification, and control of ASTREX
NASA Technical Reports Server (NTRS)
Abhyankar, Nandu S.; Ramakrishnan, J.; Byun, K. W.; Das, A.; Cossey, Derek F.; Berg, J.
1993-01-01
The modeling, system identification and controller design aspects of the ASTREX precision space structure are presented in this work. Modeling of ASTREX is performed using NASTRAN, TREETOPS and I-DEAS. The models generated range from simple linear time-invariant models to nonlinear models used for large angle simulations. Identification in both the time and frequency domains are presented. The experimental set up and the results from the identification experiments are included. Finally, controller design for ASTREX is presented. Simulation results using this optimal controller demonstrate the controller performance. Finally the future directions and plans for the facility are addressed.
Suzuki, Shigeru
2014-01-01
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891
Identification of Dynamic Simulation Models for Variable Speed Pumped Storage Power Plants
NASA Astrophysics Data System (ADS)
Moreira, C.; Fulgêncio, N.; Silva, B.; Nicolet, C.; Béguin, A.
2017-04-01
This paper addresses the identification of reduced order models for variable speed pump-turbine plants, including the representation of the dynamic behaviour of the main components: hydraulic system, turbine governors, electromechanical equipment and power converters. A methodology for the identification of appropriated reduced order models both for turbine and pump operating modes is presented and discussed. The methodological approach consists of three main steps: 1) detailed pumped-storage power plant modelling in SIMSEN; 2) reduced order models identification and 3) specification of test conditions for performance evaluation.
Modelling runway incursion severity.
Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y
2015-06-01
Analysis of the causes underlying runway incursions is fundamental for the development of effective mitigation measures. However, there are significant weaknesses in the current methods to model these factors. This paper proposes a structured framework for modelling causal factors and their relationship to severity, which includes a description of the airport surface system architecture, establishment of terminological definitions, the determination and collection of appropriate data, the analysis of occurrences for severity and causes, and the execution of a statistical analysis framework. It is implemented in the context of U.S. airports, enabling the identification of a number of priority interventions, including the need for better investigation and causal factor capture, recommendations for airfield design, operating scenarios and technologies, and better training for human operators in the system. The framework is recommended for the analysis of runway incursions to support safety improvements and the methodology is transferable to other areas of aviation safety risk analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.
An analysis of simulated and observed storm characteristics
NASA Astrophysics Data System (ADS)
Benestad, R. E.
2010-09-01
A calculus-based cyclone identification (CCI) method has been applied to the most recent re-analysis (ERAINT) from the European Centre for Medium-range Weather Forecasts and results from regional climate model (RCM) simulations. The storm frequency for events with central pressure below a threshold value of 960-990hPa were examined, and the gradient wind from the simulated storm systems were compared with corresponding estimates from the re-analysis. The analysis also yielded estimates for the spatial extent of the storm systems, which was also included in the regional climate model cyclone evaluation. A comparison is presented between a number of RCMs and the ERAINT re-analysis in terms of their description of the gradient winds, number of cyclones, and spatial extent. Furthermore, a comparison between geostrophic wind estimated though triangules of interpolated or station measurements of SLP is presented. Wind still represents one of the more challenging variables to model realistically.
Longwave infrared observation of urban landscapes
NASA Technical Reports Server (NTRS)
Goward, S. N.
1981-01-01
An investigation is conducted regarding the feasibility to develop improved methods for the identification and analysis of urban landscapes on the basis of a utilization of longwave infrared observations. Attention is given to landscape thermal behavior, urban thermal properties, modeled thermal behavior of pavements and buildings, and observed urban landscape thermal emissions. The differential thermal behavior of buildings, pavements, and natural areas within urban landscapes is found to suggest that integrated multispectral solar radiant reflectance and terrestrial radiant emissions data will significantly increase potentials for analyzing urban landscapes. In particular, daytime satellite observations of the considered type should permit better identification of urban areas and an analysis of the density of buildings and pavements within urban areas. This capability should enhance the utility of satellite remote sensor data in urban applications.
Enabling comparative modeling of closely related genomes: Example genus Brucella
Faria, José P.; Edirisinghe, Janaka N.; Davis, James J.; ...
2014-03-08
For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this study, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as wellmore » as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.« less
Enabling comparative modeling of closely related genomes: Example genus Brucella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, José P.; Edirisinghe, Janaka N.; Davis, James J.
For many scientific applications, it is highly desirable to be able to compare metabolic models of closely related genomes. In this study, we attempt to raise awareness to the fact that taking annotated genomes from public repositories and using them for metabolic model reconstructions is far from being trivial due to annotation inconsistencies. We are proposing a protocol for comparative analysis of metabolic models on closely related genomes, using fifteen strains of genus Brucella, which contains pathogens of both humans and livestock. This study lead to the identification and subsequent correction of inconsistent annotations in the SEED database, as wellmore » as the identification of 31 biochemical reactions that are common to Brucella, which are not originally identified by automated metabolic reconstructions. We are currently implementing this protocol for improving automated annotations within the SEED database and these improvements have been propagated into PATRIC, Model-SEED, KBase and RAST. This method is an enabling step for the future creation of consistent annotation systems and high-quality model reconstructions that will support in predicting accurate phenotypes such as pathogenicity, media requirements or type of respiration.« less
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1992-01-01
An overview is presented of government contributions to the program called Design Analysis Methods for Vibrations (DAMV) which attempted to develop finite-element-based analyses of rotorcraft vibrations. NASA initiated the program with a finite-element modeling program for the CH-47D tandem-rotor helicopter. The DAMV program emphasized four areas including: airframe finite-element modeling, difficult components studies, coupled rotor-airframe vibrations, and airframe structural optimization. Key accomplishments of the program include industrywide standards for modeling metal and composite airframes, improved industrial designs for vibrations, and the identification of critical structural contributors to airframe vibratory responses. The program also demonstrated the value of incorporating secondary modeling details to improving correlation, and the findings provide the basis for an improved finite-element-based dynamics design-analysis capability.
Identification of Modules in Protein-Protein Interaction Networks
NASA Astrophysics Data System (ADS)
Erten, Sinan; Koyutürk, Mehmet
In biological systems, most processes are carried out through orchestration of multiple interacting molecules. These interactions are often abstracted using network models. A key feature of cellular networks is their modularity, which contributes significantly to the robustness, as well as adaptability of biological systems. Therefore, modularization of cellular networks is likely to be useful in obtaining insights into the working principles of cellular systems, as well as building tractable models of cellular organization and dynamics. A common, high-throughput source of data on molecular interactions is in the form of physical interactions between proteins, which are organized into protein-protein interaction (PPI) networks. This chapter provides an overview on identification and analysis of functional modules in PPI networks, which has been an active area of research in the last decade.
Identification of particle characteristics and biological mechanism(s) responsible for the adverse pulmonary and cardiovascular responses associated with particulate air pollution exposure remains a critical research activity. We have employed an oxidative stress sensitive an...
Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 μM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post...
Identification of Hierarchies of Student Learning about Percentages Using Rasch Analysis
ERIC Educational Resources Information Center
Burfitt, Joan
2013-01-01
A review of the research literature indicated that there were probable orders in which students develop understandings and skills for calculating with percentages. Such calculations might include using models to represent percentages, knowing fraction equivalents, selection of strategies to solve problems and determination of percentage change. To…
40 CFR 52.1320 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (5), Safety Inspection Results. 50-2.405 Vehicle Inspection Certificate, Vehicle Inspection Report... air quality data base St. Louis 5/2/72 5/31/72, 37 FR 10875 (5) Budget and manpower projections.... (17) Report outlining commitments to TCMs, analysis of TCMs, and results of CO dispersion modeling St...
NASA Astrophysics Data System (ADS)
Zhang, Linna; Li, Gang; Sun, Meixiu; Li, Hongxiao; Wang, Zhennan; Li, Yingxin; Lin, Ling
2017-11-01
Identifying whole bloods to be either human or nonhuman is an important responsibility for import-export ports and inspection and quarantine departments. Analytical methods and DNA testing methods are usually destructive. Previous studies demonstrated that visible diffuse reflectance spectroscopy method can realize noncontact human and nonhuman blood discrimination. An appropriate method for calibration set selection was very important for a robust quantitative model. In this paper, Random Selection (RS) method and Kennard-Stone (KS) method was applied in selecting samples for calibration set. Moreover, proper stoichiometry method can be greatly beneficial for improving the performance of classification model or quantification model. Partial Least Square Discrimination Analysis (PLSDA) method was commonly used in identification of blood species with spectroscopy methods. Least Square Support Vector Machine (LSSVM) was proved to be perfect for discrimination analysis. In this research, PLSDA method and LSSVM method was used for human blood discrimination. Compared with the results of PLSDA method, this method could enhance the performance of identified models. The overall results convinced that LSSVM method was more feasible for identifying human and animal blood species, and sufficiently demonstrated LSSVM method was a reliable and robust method for human blood identification, and can be more effective and accurate.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
NASA Astrophysics Data System (ADS)
Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.
2017-12-01
Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.
Research on the control of large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1983-01-01
The research effort on the control of large space structures at the University of Houston has concentrated on the mathematical theory of finite-element models; identification of the mass, damping, and stiffness matrix; assignment of damping to structures; and decoupling of structure dynamics. The objective of the work has been and will continue to be the development of efficient numerical algorithms for analysis, control, and identification of large space structures. The major consideration in the development of the algorithms has been the large number of equations that must be handled by the algorithm as well as sensitivity of the algorithms to numerical errors.
Lateral stability analysis for X-29A drop model using system identification methodology
NASA Technical Reports Server (NTRS)
Raney, David L.; Batterson, James G.
1989-01-01
A 22-percent dynamically scaled replica of the X-29A forward-swept-wing airplane has been flown in radio-controlled drop tests at the NASA Langley Research Center. A system identification study of the recorded data was undertaken to examine the stability and control derivatives that influence the lateral behavior of this vehicle with particular emphasis on an observed wing rock phenomenon. All major lateral stability derivatives and the damping-in-roll derivative were identified for angles of attack from 5 to 80 degrees by using a data-partitioning methodology and a modified stepwise regression algorithm.
Low-order black-box models for control system design in large power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamwa, I.; Trudel, G.; Gerin-Lajoie, L.
1996-02-01
The paper studies two multi-input multi-output (MIMO) procedures for the identification of low-order state-space models of power systems, by probing the network in open loop with low-energy pulses or random signals. Although such data may result from actual measurements, the development assumes simulated responses from a transient stability program, hence benefiting from the existing large base of stability models. While pulse data is processed using the eigensystem realization algorithm, the analysis of random responses is done by means of subspace identification methods. On a prototype Hydro-Quebec power system, including SVCs, DC lines, series compensation, and more than 1,100 buses, itmore » is verified that the two approaches are equivalent only when strict requirements are imposed on the pulse length and magnitude. The 10th-order equivalent models derived by random-signal probing allow for effective tuning of decentralized power system stabilizers (PSSs) able to damp both local and very slow inter-area modes.« less
Low-order black-box models for control system design in large power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamwa, I.; Trudel, G.; Gerin-Lajoie, L.
1995-12-31
The paper studies two multi-input multi-output (MIMO) procedures for the identification of low-order state-space models of power systems, by probing the network in open loop with low-energy pulses or random signals. Although such data may result from actual measurements, the development assumes simulated responses from a transient stability program, hence benefiting form the existing large base of stability models. While pulse data is processed using the eigensystem realization algorithm, the analysis of random responses is done by means of subspace identification methods. On a prototype Hydro-Quebec power system, including SVCs, DC lines, series compensation, and more than 1,100 buses, itmore » is verified that the two approaches are equivalent only when strict requirements are imposed on the pulse length and magnitude. The 10th-order equivalent models derived by random-signal probing allow for effective tuning of decentralized power system stabilizers (PSSs) able to damp both local and very slow inter-area modes.« less
Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.
Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David
2013-06-01
Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.
Rossitsa River Basin: Flood Hazard and Risk Identification
NASA Astrophysics Data System (ADS)
Mavrova-Guirguinova, Maria; Pencheva, Denislava
2017-04-01
The process of Flood Risk Management Planning and adaptation of measures for flood risk reduction as the Early Warning provoke the necessity of surveys involving Identification aspects. This project presents risk identification combining two lines of analysis: (1) Creation a mathematical model of rainfall-runoff processes in a watershed based on limited number of observed input and output variables; (2) Procedures for determination of critical thresholds - discharges/water levels corresponding to certain consequences. The pilot region is Rossitsa river basin, Sevlievo, Bulgaria. The first line of analysis follows next steps: (a) Creation and calibration of Unit Hydrograph Models based on limited number of observed data for discharge and precipitation; The survey at the selected region has 22 observations for excess rainfall and discharge. (b) The relations of UHM coefficients from the input parameters have been determined statistically, excluding the ANN model of the run-off coefficient as a function of 3 parameters (amount of precipitation two days before, soil condition, intensity of the rainfall) where a feedforward neural network is used. (c) Additional simulations with UHM aiming at generation of synthetic data for rainfall-runoff events, which extend the range of observed data; (d) Training, validation and testing a generalized regional ANN Model for discharge forecasting with 4 input parameters, where the training data set consists of synthetic data, validation and testing data sets consists of observations. A function between consequences and discharges has been reached in the second line of analysis concerning critical hazard levels determination. Unsteady simulations with the hydraulic model using three typical hydrographs for determination of the existing time for reaction from one to upper critical threshold are made. Correction of the critical thresholds aiming at providing necessary time for reaction between the thresholds and probability analysis of the finally determined critical thresholds are made. The result of the described method is a Catalogue for off-line flood hazard and risk identification. It can be used as interactive computer system, based on simulations of the ANN "Catalogue". Flood risk identification of the future rainfall event is made in a multi-dimensional space for each kind of soil conditions (dry, average wet and wet condition) and observed amount of precipitation two days before. Rainfall-runoff scenarios in case of intensive rainfall or sustained rainfall (more than 6 hours) are taken into account. Critical thresholds and hazard zones needed of specific operative activities (rescue and recovery) corresponded to each of the regulated flood protection levels (unite, municipality, regional or national) are presented. The Catalogue gives the opportunity for flood hazard scenarios extraction. Regarding that, the Catalogue is useful on the prevention stage of flood protection planning (emergency operations, measures and resources for their implementation planning) and creation of scenarios for training the Emergency Plans. Concerning application for Early Warning, it gives approximate forecast for flood hazard. The Catalogue supplies the necessary time for reaction of about 24 hours. Thus, Early Warning is possible to the responsible authorities, all parts if the Unified Rescue System, members of suitable Headquarters for disaster protection (on municipality, region or national level).
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6-7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification.
Optimization-Based Inverse Identification of the Parameters of a Concrete Cap Material Model
NASA Astrophysics Data System (ADS)
Král, Petr; Hokeš, Filip; Hušek, Martin; Kala, Jiří; Hradil, Petr
2017-10-01
Issues concerning the advanced numerical analysis of concrete building structures in sophisticated computing systems currently require the involvement of nonlinear mechanics tools. The efforts to design safer, more durable and mainly more economically efficient concrete structures are supported via the use of advanced nonlinear concrete material models and the geometrically nonlinear approach. The application of nonlinear mechanics tools undoubtedly presents another step towards the approximation of the real behaviour of concrete building structures within the framework of computer numerical simulations. However, the success rate of this application depends on having a perfect understanding of the behaviour of the concrete material models used and having a perfect understanding of the used material model parameters meaning. The effective application of nonlinear concrete material models within computer simulations often becomes very problematic because these material models very often contain parameters (material constants) whose values are difficult to obtain. However, getting of the correct values of material parameters is very important to ensure proper function of a concrete material model used. Today, one possibility, which permits successful solution of the mentioned problem, is the use of optimization algorithms for the purpose of the optimization-based inverse material parameter identification. Parameter identification goes hand in hand with experimental investigation while it trying to find parameter values of the used material model so that the resulting data obtained from the computer simulation will best approximate the experimental data. This paper is focused on the optimization-based inverse identification of the parameters of a concrete cap material model which is known under the name the Continuous Surface Cap Model. Within this paper, material parameters of the model are identified on the basis of interaction between nonlinear computer simulations, gradient based and nature inspired optimization algorithms and experimental data, the latter of which take the form of a load-extension curve obtained from the evaluation of uniaxial tensile test results. The aim of this research was to obtain material model parameters corresponding to the quasi-static tensile loading which may be further used for the research involving dynamic and high-speed tensile loading. Based on the obtained results it can be concluded that the set goal has been reached.
System identification and the modeling of sailing yachts
NASA Astrophysics Data System (ADS)
Legursky, Katrina
This research represents an exploration of sailing yacht dynamics with full-scale sailing motion data, physics-based models, and system identification techniques. The goal is to provide a method of obtaining and validating suitable physics-based dynamics models for use in control system design on autonomous sailing platforms, which have the capacity to serve as mobile, long range, high endurance autonomous ocean sensing platforms. The primary contributions of this study to the state-of-the-art are the formulation of a five degree-of-freedom (DOF) linear multi-input multi-output (MIMO) state space model of sailing yacht dynamics, the process for identification of this model from full-scale data, a description of the maneuvers performed during on-water tests, and an analysis method to validate estimated models. The techniques and results described herein can be directly applied to and tested on existing autonomous sailing platforms. A full-scale experiment on a 23ft monohull sailing yacht is developed to collect motion data for physics-based model identification. Measurements include 3 axes of accelerations, velocities, angular rates, and attitude angles in addition to apparent wind speed and direction. The sailing yacht herein is treated as a dynamic system with two control inputs, the rudder angle, deltaR, and the mainsail angle, delta B, which are also measured. Over 20 hours of full scale sailing motion data is collected, representing three sail configurations corresponding to a range of wind speeds: the Full Main and Genoa (abbrev. Genoa) for lower wind speeds, the Full Main and Jib (abbrev. Jib) for mid-range wind speeds, and the Reefed Main and Jib (abbrev. Reef) for the highest wind speeds. The data also covers true wind angles from upwind through a beam reach. A physics-based non-linear model to describe sailing yacht motion is outlined, including descriptions of methods to model the aerodynamics and hydrodynamics of a sailing yacht in surge, sway, roll, and yaw. Existing aerodynamic models for sailing yachts are unsuitable for control system design as they do not include a physical description of the sails' dynamic effect on the system. A new aerodynamic model is developed and validated using the full-scale sailing data which includes sail deflection as a control input to the system. The Maximum Likelihood Estimation (MLE) algorithm is used with non-linear simulation data to successfully estimate a set of hydrodynamic derivatives for a sailing yacht. It is shown that all sailing yacht models will contain a second order mode (referred to herein as Mode 1A.S or 4B.S) which is dependent upon trimmed roll angle. For the test yacht it is concluded that for this mode when the trimmed roll angle is, roll rate and roll angle are the dominant motion variables, and for surge velocity and yaw rate dominate. This second order mode is dynamically stable for . It transitions from stability in the higher values of to instability in the region defined by. These conclusions align with other work which has also found roll angle to be a driving factor in the dynamic behavior of a tall-ship (Johnson, Miles, Lasher, & Womack, 2009). It is also shown that all linear models also contain a first order mode, (referred to herein as Mode 3A.F or 1B.F), which lies very close to the origin of the complex plane indicating a long time constant. Measured models have indicated this mode can be stable or unstable. The eigenvector analysis reveals that the mode is stable if the surge contribution is < 40% and the sway contribution is > 20%. The small set of maneuvers necessary for model identification, quick OSLS estimation method, and detailed modal analysis of estimated models outlined in this work are immediately applicable to existing autonomous mono-hull sailing yachts, and could readily be adapted for use with other wind-powered vessel configurations such as wing-sails, catamarans, and tri-marans. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2017-10-01
In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.
Deconstructing the core dynamics from a complex time-lagged regulatory biological circuit.
Eriksson, O; Brinne, B; Zhou, Y; Björkegren, J; Tegnér, J
2009-03-01
Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins. Recent progress in computational biology and its application to molecular data generate a growing number of complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic oscillations in a dynamical nonlinear computational model of a protein-protein network. System analysis is performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external signals. By introducing an explicit time delay and using a 'tearing-and-zooming' approach the authors reduce the system to a piecewise linear system with two variables that capture the dynamics of this complex network. A key step in the analysis is the identification of functional subsystems by identifying the relations between state-variables within the model. These functional subsystems are referred to as dynamical modules operating as sensitive switches in the original complex model. By using reduced mathematical representations of the subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits. [Includes supplementary material].
NASA standard: Trend analysis techniques
NASA Technical Reports Server (NTRS)
1990-01-01
Descriptive and analytical techniques for NASA trend analysis applications are presented in this standard. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. This document should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend analysis is neither a precise term nor a circumscribed methodology: it generally connotes quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this document. The basic ideas needed for qualitative and quantitative assessment of trends along with relevant examples are presented.
2015-03-01
of 7 information -theoretic criteria plotted against the model order used . The legend is labeled according to the figures in which the power spectra...spectrum (Brovelli et al. 2004). 6 Fig. 2 Values of 7 information -theoretic criteria plotted against the model order used . The legend is labeled...Identification of directed influence: Granger causality, Kullback - Leibler divergence, and complexity. Neural Computation. 2012;24(7):1722–1739. doi:10.1162
Analysis of flight data from a High-Incidence Research Model by system identification methods
NASA Technical Reports Server (NTRS)
Batterson, James G.; Klein, Vladislav
1989-01-01
Data partitioning and modified stepwise regression were applied to recorded flight data from a Royal Aerospace Establishment high incidence research model. An aerodynamic model structure and corresponding stability and control derivatives were determined for angles of attack between 18 and 30 deg. Several nonlinearities in angles of attack and sideslip as well as a unique roll-dominated set of lateral modes were found. All flight estimated values were compared to available wind tunnel measurements.
Optimization of life support systems and their systems reliability
NASA Technical Reports Server (NTRS)
Fan, L. T.; Hwang, C. L.; Erickson, L. E.
1971-01-01
The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.
Linear and nonlinear ARMA model parameter estimation using an artificial neural network
NASA Technical Reports Server (NTRS)
Chon, K. H.; Cohen, R. J.
1997-01-01
This paper addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, we investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, we show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. We compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, we show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.
System/observer/controller identification toolbox
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh
1992-01-01
System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.
Identification and human condition analysis based on the human voice analysis
NASA Astrophysics Data System (ADS)
Mieshkov, Oleksandr Yu.; Novikov, Oleksandr O.; Novikov, Vsevolod O.; Fainzilberg, Leonid S.; Kotyra, Andrzej; Smailova, Saule; Kozbekova, Ainur; Imanbek, Baglan
2017-08-01
The paper presents a two-stage biotechnical system for human condition analysis that is based on analysis of human voice signal. At the initial stage, the voice signal is pre-processed and its characteristics in time domain are determined. At the first stage, the developed system is capable of identifying the person in the database on the basis of the extracted characteristics. At the second stage, the model of a human voice is built on the basis of the real voice signals after clustering the whole database.
An adapted yield criterion for the evolution of subsequent yield surfaces
NASA Astrophysics Data System (ADS)
Küsters, N.; Brosius, A.
2017-09-01
In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.
Fusion of spectral models for dynamic modeling of sEMG and skeletal muscle force.
Potluri, Chandrasekhar; Anugolu, Madhavi; Chiu, Steve; Urfer, Alex; Schoen, Marco P; Naidu, D Subbaram
2012-01-01
In this paper, we present a method of combining spectral models using a Kullback Information Criterion (KIC) data fusion algorithm. Surface Electromyographic (sEMG) signals and their corresponding skeletal muscle force signals are acquired from three sensors and pre-processed using a Half-Gaussian filter and a Chebyshev Type- II filter, respectively. Spectral models - Spectral Analysis (SPA), Empirical Transfer Function Estimate (ETFE), Spectral Analysis with Frequency Dependent Resolution (SPFRD) - are extracted from sEMG signals as input and skeletal muscle force as output signal. These signals are then employed in a System Identification (SI) routine to establish the dynamic models relating the input and output. After the individual models are extracted, the models are fused by a probability based KIC fusion algorithm. The results show that the SPFRD spectral models perform better than SPA and ETFE models in modeling the frequency content of the sEMG/skeletal muscle force data.
Applying the Team Identification-Social Psychological Health Model to Older Sport Fans
ERIC Educational Resources Information Center
Wann, Daniel L.; Rogers, Kelly; Dooley, Keith; Foley, Mary
2011-01-01
According to the Team Identification-Social Psychological Health Model (Wann, 2006b), team identification and social psychological health should be positively correlated because identification leads to important social connections which, in turn, facilitate well-being. Although past research substantiates the hypothesized positive relationship…
Finite mixture modeling for vehicle crash data with application to hotspot identification.
Park, Byung-Jung; Lord, Dominique; Lee, Chungwon
2014-10-01
The application of finite mixture regression models has recently gained an interest from highway safety researchers because of its considerable potential for addressing unobserved heterogeneity. Finite mixture models assume that the observations of a sample arise from two or more unobserved components with unknown proportions. Both fixed and varying weight parameter models have been shown to be useful for explaining the heterogeneity and the nature of the dispersion in crash data. Given the superior performance of the finite mixture model, this study, using observed and simulated data, investigated the relative performance of the finite mixture model and the traditional negative binomial (NB) model in terms of hotspot identification. For the observed data, rural multilane segment crash data for divided highways in California and Texas were used. The results showed that the difference measured by the percentage deviation in ranking orders was relatively small for this dataset. Nevertheless, the ranking results from the finite mixture model were considered more reliable than the NB model because of the better model specification. This finding was also supported by the simulation study which produced a high number of false positives and negatives when a mis-specified model was used for hotspot identification. Regarding an optimal threshold value for identifying hotspots, another simulation analysis indicated that there is a discrepancy between false discovery (increasing) and false negative rates (decreasing). Since the costs associated with false positives and false negatives are different, it is suggested that the selected optimal threshold value should be decided by considering the trade-offs between these two costs so that unnecessary expenses are minimized. Copyright © 2014 Elsevier Ltd. All rights reserved.
Benitez, Kathleen; Masys, Daniel
2010-01-01
Objective Healthcare organizations must de-identify patient records before sharing data. Many organizations rely on the Safe Harbor Standard of the HIPAA Privacy Rule, which enumerates 18 identifiers that must be suppressed (eg, ages over 89). An alternative model in the Privacy Rule, known as the Statistical Standard, can facilitate the sharing of more detailed data, but is rarely applied because of a lack of published methodologies. The authors propose an intuitive approach to de-identifying patient demographics in accordance with the Statistical Standard. Design The authors conduct an analysis of the demographics of patient cohorts in five medical centers developed for the NIH-sponsored Electronic Medical Records and Genomics network, with respect to the US census. They report the re-identification risk of patient demographics disclosed according to the Safe Harbor policy and the relative risk rate for sharing such information via alternative policies. Measurements The re-identification risk of Safe Harbor demographics ranged from 0.01% to 0.19%. The findings show alternative de-identification models can be created with risks no greater than Safe Harbor. The authors illustrate that the disclosure of patient ages over the age of 89 is possible when other features are reduced in granularity. Limitations The de-identification approach described in this paper was evaluated with demographic data only and should be evaluated with other potential identifiers. Conclusion Alternative de-identification policies to the Safe Harbor model can be derived for patient demographics to enable the disclosure of values that were previously suppressed. The method is generalizable to any environment in which population statistics are available. PMID:21169618
Rapid identification of causal mutations in tomato EMS populations via mapping-by-sequencing.
Garcia, Virginie; Bres, Cécile; Just, Daniel; Fernandez, Lucie; Tai, Fabienne Wong Jun; Mauxion, Jean-Philippe; Le Paslier, Marie-Christine; Bérard, Aurélie; Brunel, Dominique; Aoki, Koh; Alseekh, Saleh; Fernie, Alisdair R; Fraser, Paul D; Rothan, Christophe
2016-12-01
The tomato is the model species of choice for fleshy fruit development and for the Solanaceae family. Ethyl methanesulfonate (EMS) mutants of tomato have already proven their utility for analysis of gene function in plants, leading to improved breeding stocks and superior tomato varieties. However, until recently, the identification of causal mutations that underlie particular phenotypes has been a very lengthy task that many laboratories could not afford because of spatial and technical limitations. Here, we describe a simple protocol for identifying causal mutations in tomato using a mapping-by-sequencing strategy. Plants displaying phenotypes of interest are first isolated by screening an EMS mutant collection generated in the miniature cultivar Micro-Tom. A recombinant F 2 population is then produced by crossing the mutant with a wild-type (WT; non-mutagenized) genotype, and F 2 segregants displaying the same phenotype are subsequently pooled. Finally, whole-genome sequencing and analysis of allele distributions in the pools allow for the identification of the causal mutation. The whole process, from the isolation of the tomato mutant to the identification of the causal mutation, takes 6-12 months. This strategy overcomes many previous limitations, is simple to use and can be applied in most laboratories with limited facilities for plant culture and genotyping.
Talent in Female Gymnastics: a Survival Analysis Based upon Performance Characteristics.
Pion, J; Lenoir, M; Vandorpe, B; Segers, V
2015-11-01
This study investigated the link between the anthropometric, physical and motor characteristics assessed during talent identification and dropout in young female gymnasts. 3 cohorts of female gymnasts (n=243; 6-9 years) completed a test battery for talent identification. Performance-levels were monitored over 5 years of competition. Kaplan-Meier and Cox Proportional Hazards analyses were conducted to determine the survival rate and the characteristics that influence dropout respectively. Kaplan-Meier analysis indicated that only 18% of the female gymnasts that passed the baseline talent identification test survived at the highest competition level 5 years later. The Cox Proportional Hazards Model indicated that gymnasts with a score in the best quartile for a specific characteristic significantly increased chances of survival by 45-129%. These characteristics being: basic motor skills (129%), shoulder strength (96%), leg strength (53%) and 3 gross motor coordination items (45-73%). These results suggest that tests batteries commonly used for talent identification in young female gymnasts may also provide valuable insights into future dropout. Therefore, multidimensional test batteries deserve a prominent place in the selection process. The individual test results should encourage trainers to invest in an early development of basic physical and motor characteristics to prevent attrition. © Georg Thieme Verlag KG Stuttgart · New York.
Chen, Chen; Schneps, Matthew H; Masyn, Katherine E; Thomson, Jennifer M
2016-11-01
Increasing evidence has shown visual attention span to be a factor, distinct from phonological skills, that explains single-word identification (pseudo-word/word reading) performance in dyslexia. Yet, little is known about how well visual attention span explains text comprehension. Observing reading comprehension in a sample of 105 high school students with dyslexia, we used a pathway analysis to examine the direct and indirect path between visual attention span and reading comprehension while controlling for other factors such as phonological awareness, letter identification, short-term memory, IQ and age. Integrating phonemic decoding efficiency skills in the analytic model, this study aimed to disentangle how visual attention span and phonological skills work together in reading comprehension for readers with dyslexia. We found visual attention span to have a significant direct effect on more difficult reading comprehension but not on an easier level. It also had a significant direct effect on pseudo-word identification but not on word identification. In addition, we found that visual attention span indirectly explains reading comprehension through pseudo-word reading and word reading skills. This study supports the hypothesis that at least part of the dyslexic profile can be explained by visual attention abilities. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Efficient alignment-free DNA barcode analytics
Kuksa, Pavel; Pavlovic, Vladimir
2009-01-01
Background In this work we consider barcode DNA analysis problems and address them using alternative, alignment-free methods and representations which model sequences as collections of short sequence fragments (features). The methods use fixed-length representations (spectrum) for barcode sequences to measure similarities or dissimilarities between sequences coming from the same or different species. The spectrum-based representation not only allows for accurate and computationally efficient species classification, but also opens possibility for accurate clustering analysis of putative species barcodes and identification of critical within-barcode loci distinguishing barcodes of different sample groups. Results New alignment-free methods provide highly accurate and fast DNA barcode-based identification and classification of species with substantial improvements in accuracy and speed over state-of-the-art barcode analysis methods. We evaluate our methods on problems of species classification and identification using barcodes, important and relevant analytical tasks in many practical applications (adverse species movement monitoring, sampling surveys for unknown or pathogenic species identification, biodiversity assessment, etc.) On several benchmark barcode datasets, including ACG, Astraptes, Hesperiidae, Fish larvae, and Birds of North America, proposed alignment-free methods considerably improve prediction accuracy compared to prior results. We also observe significant running time improvements over the state-of-the-art methods. Conclusion Our results show that newly developed alignment-free methods for DNA barcoding can efficiently and with high accuracy identify specimens by examining only few barcode features, resulting in increased scalability and interpretability of current computational approaches to barcoding. PMID:19900305
Oda, Seitaro; Utsunomiya, Daisuke; Nakaura, Takeshi; Yuki, Hideaki; Kidoh, Masafumi; Morita, Kosuke; Takashio, Seiji; Yamamuro, Megumi; Izumiya, Yasuhiro; Hirakawa, Kyoko; Ishida, Toshifumi; Tsujita, Kenichi; Ueda, Mitsuharu; Yamashita, Taro; Ando, Yukio; Hata, Hiroyuki; Yamashita, Yasuyuki
2017-06-23
We explored the usefulness of myocardial strain analysis on cardiac magnetic resonance imaging (CMR) scans for the identification of cardiac amyloidosis.Methods and Results:The 61 patients with systemic amyloidosis underwent 3.0-T CMR, including CMR tagging and late-gadolinium enhanced (LGE) imaging. The circumferential strain (CS) of LGE-positive and LGE-negative patients was measured on midventricular short-axis images and compared. Logistic regression modeling of CMR parameters was performed to detect patients with LGE-positive cardiac amyloidosis. Of the 61 patients with systemic amyloidosis 48 were LGE-positive and 13 were LGE-negative. The peak CS was significantly lower in the LGE-positive than in the LGE-negative patients (-9.5±2.3 vs. -13.3±1.4%, P<0.01). The variability in the peak CS time was significantly greater in the LGE-positive than in the LGE-negative patients (46.1±24.5 vs. 21.2±20.1 ms, P<0.01). The peak CS significantly correlated with clinical biomarkers. The sensitivity, specificity, and accuracy of the diagnostic model using CS parameters for the identification of LGE-positive amyloidosis were 93.8%, 76.9%, and 90.2%, respectively. Myocardial strain analysis by CMR helped detect LGE-positive amyloidosis without the need for contrast medium. The peak CS and variability in the peak CS time may correlate with the severity of cardiac amyloid deposition and may be more sensitive than LGE imaging for the detection of early cardiac disease in patients with amyloidosis.
Benoussaad, Mourad; Poignet, Philippe; Hayashibe, Mitsuhiro; Azevedo-Coste, Christine; Fattal, Charles; Guiraud, David
2013-06-01
We investigated the parameter identification of a multi-scale physiological model of skeletal muscle, based on Huxley's formulation. We focused particularly on the knee joint controlled by quadriceps muscles under electrical stimulation (ES) in subjects with a complete spinal cord injury. A noninvasive and in vivo identification protocol was thus applied through surface stimulation in nine subjects and through neural stimulation in one ES-implanted subject. The identification protocol included initial identification steps, which are adaptations of existing identification techniques to estimate most of the parameters of our model. Then we applied an original and safer identification protocol in dynamic conditions, which required resolution of a nonlinear programming (NLP) problem to identify the serial element stiffness of quadriceps. Each identification step and cross validation of the estimated model in dynamic condition were evaluated through a quadratic error criterion. The results highlighted good accuracy, the efficiency of the identification protocol and the ability of the estimated model to predict the subject-specific behavior of the musculoskeletal system. From the comparison of parameter values between subjects, we discussed and explored the inter-subject variability of parameters in order to select parameters that have to be identified in each patient.
Mu, Chuang; Wang, Ruijia; Li, Tianqi; Li, Yuqiang; Tian, Meilin; Jiao, Wenqian; Huang, Xiaoting; Zhang, Lingling; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin
2016-08-01
Long non-coding RNA (lncRNA) structurally resembles mRNA but cannot be translated into protein. Although the systematic identification and characterization of lncRNAs have been increasingly reported in model species, information concerning non-model species is still lacking. Here, we report the first systematic identification and characterization of lncRNAs in two sea cucumber species: (1) Apostichopus japonicus during lipopolysaccharide (LPS) challenge and in heathy tissues and (2) Holothuria glaberrima during radial organ complex regeneration, using RNA-seq datasets and bioinformatics analysis. We identified A. japonicus and H. glaberrima lncRNAs that were differentially expressed during LPS challenge and radial organ complex regeneration, respectively. Notably, the predicted lncRNA-microRNA-gene trinities revealed that, in addition to targeting protein-coding transcripts, miRNAs might also target lncRNAs, thereby participating in a potential novel layer of regulatory interactions among non-coding RNA classes in echinoderms. Furthermore, the constructed coding-non-coding network implied the potential involvement of lncRNA-gene interactions during the regulation of several important genes (e.g., Toll-like receptor 1 [TLR1] and transglutaminase-1 [TGM1]) in response to LPS challenge and radial organ complex regeneration in sea cucumbers. Overall, this pioneer systematic identification, annotation, and characterization of lncRNAs in echinoderm pave the way for similar studies and future genetic, genomic, and evolutionary research in non-model species.
NASA Astrophysics Data System (ADS)
Kamiński, Mirosław
2017-11-01
The purpose of the study was the assessment of the viability of selected geophysical methods and the Airborne Laser Scanning (ALS) for the identification and interpretation of the geological structure. The studied area is covered with a dense forest. For this reason, the ALS numerical terrain model was applied for the analysis of the topography. Three geophysical methods were used: gravimetric, in the form of a semi-detailed gravimetric photograph, Vertical Electrical Sounding (VES), and Electrical Resistivity Tomography (ERT). The numerical terrain model enabled the identification of Jurassic limestone outcrops and interpretation of the directions of the faults network. The geological interpretation of the digitally processed gravimetric data enabled the determination of the spatial orientation of the synclines and anticlines axes and of the course directions of main faults. Vertical Electrical Sounding carried along the section line perpendicular to the Gościeradów anticline axis enabled the interpretation of the lithology of this structure and identification of its complex tectonic structure. The shallow geophysical surveys using the ERT method enabled the estimation of the thickness of Quaternary formations deposited unconformably on the highly eroded Jurassic limestone outcrop. The lithology of Quaternary, Cretaceous and Jurassic rocks was also interpreted.
Constrained maximum likelihood modal parameter identification applied to structural dynamics
NASA Astrophysics Data System (ADS)
El-Kafafy, Mahmoud; Peeters, Bart; Guillaume, Patrick; De Troyer, Tim
2016-05-01
A new modal parameter estimation method to directly establish modal models of structural dynamic systems satisfying two physically motivated constraints will be presented. The constraints imposed in the identified modal model are the reciprocity of the frequency response functions (FRFs) and the estimation of normal (real) modes. The motivation behind the first constraint (i.e. reciprocity) comes from the fact that modal analysis theory shows that the FRF matrix and therefore the residue matrices are symmetric for non-gyroscopic, non-circulatory, and passive mechanical systems. In other words, such types of systems are expected to obey Maxwell-Betti's reciprocity principle. The second constraint (i.e. real mode shapes) is motivated by the fact that analytical models of structures are assumed to either be undamped or proportional damped. Therefore, normal (real) modes are needed for comparison with these analytical models. The work done in this paper is a further development of a recently introduced modal parameter identification method called ML-MM that enables us to establish modal model that satisfies such motivated constraints. The proposed constrained ML-MM method is applied to two real experimental datasets measured on fully trimmed cars. This type of data is still considered as a significant challenge in modal analysis. The results clearly demonstrate the applicability of the method to real structures with significant non-proportional damping and high modal densities.
Experimental investigation of the mass flow gain factor in a draft tube with cavitation vortex rope
NASA Astrophysics Data System (ADS)
Landry, C.; Favrel, A.; Müller, A.; Yamamoto, K.; Alligné, S.; Avellan, F.
2017-04-01
At off-design operating operations, cavitating flow is often observed in hydraulic machines. The presence of a cavitation vortex rope may induce draft tube surge and electrical power swings at part load and full load operations. The stability analysis of these operating conditions requires a numerical pipe model taking into account the complexity of the two-phase flow. Among the hydroacoustic parameters describing the cavitating draft tube flow in the numerical model, the mass flow gain factor, representing the mass excitation source expressed as the rate of change of the cavitation volume as a function of the discharge, remains difficult to model. This paper presents a quasi-static method to estimate the mass flow gain factor in the draft tube for a given cavitation vortex rope volume in the case of a reduced scale physical model of a ν = 0.27 Francis turbine. The methodology is based on an experimental identification of the natural frequency of the test rig hydraulic system for different Thoma numbers. With the identification of the natural frequency, it is possible to model the wave speed, the cavitation compliance and the volume of the cavitation vortex rope. By applying this new methodology for different discharge values, it becomes possible to identify the mass flow gain factor and improve the accuracy of the system stability analysis.
Moore, Jason H; Amos, Ryan; Kiralis, Jeff; Andrews, Peter C
2015-01-01
Simulation plays an essential role in the development of new computational and statistical methods for the genetic analysis of complex traits. Most simulations start with a statistical model using methods such as linear or logistic regression that specify the relationship between genotype and phenotype. This is appealing due to its simplicity and because these statistical methods are commonly used in genetic analysis. It is our working hypothesis that simulations need to move beyond simple statistical models to more realistically represent the biological complexity of genetic architecture. The goal of the present study was to develop a prototype genotype–phenotype simulation method and software that are capable of simulating complex genetic effects within the context of a hierarchical biology-based framework. Specifically, our goal is to simulate multilocus epistasis or gene–gene interaction where the genetic variants are organized within the framework of one or more genes, their regulatory regions and other regulatory loci. We introduce here the Heuristic Identification of Biological Architectures for simulating Complex Hierarchical Interactions (HIBACHI) method and prototype software for simulating data in this manner. This approach combines a biological hierarchy, a flexible mathematical framework, a liability threshold model for defining disease endpoints, and a heuristic search strategy for identifying high-order epistatic models of disease susceptibility. We provide several simulation examples using genetic models exhibiting independent main effects and three-way epistatic effects. PMID:25395175
2012-06-01
brianmccue@alum.mit.edu Letters to the Editor, John Willis, Augustine Consulting, Inc., jwillis@aciedge.com Modeling and Simulation , James N. Bexfield, FS, OSD...concepts that are now being applied to modern analytical thinking. The tuto- rials are free to MORS members and $75 for the day for nonmembers. The...Overview of Agent- based Modeling and Simulation and Complex Adaptive Systems • Visual Data Analysis • Analyzing Combat Identification • Guidelines for
Unsteady aerodynamic characterization of a military aircraft in vertical gusts
NASA Technical Reports Server (NTRS)
Lebozec, A.; Cocquerez, J. L.
1985-01-01
The effects of 2.5-m/sec vertical gusts on the flight characteristics of a 1:8.6 scale model of a Mirage 2000 aircraft in free flight at 35 m/sec over a distance of 30 m are investigated. The wind-tunnel setup and instrumentation are described; the impulse-response and local-coefficient-identification analysis methods applied are discussed in detail; and the modification and calibration of the gust-detection probes are reviewed. The results are presented in graphs, and good general agreement is obtained between model calculations using the two analysis methods and the experimental measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denef, Vincent; Shah, Manesh B; Verberkmoes, Nathan C
The recent surge in microbial genomic sequencing, combined with the development of high-throughput liquid chromatography-mass-spectrometry-based (LC/LC-MS/MS) proteomics, has raised the question of the extent to which genomic information of one strain or environmental sample can be used to profile proteomes of related strains or samples. Even with decreasing sequencing costs, it remains impractical to obtain genomic sequence for every strain or sample analyzed. Here, we evaluate how shotgun proteomics is affected by amino acid divergence between the sample and the genomic database using a probability-based model and a random mutation simulation model constrained by experimental data. To assess the effectsmore » of nonrandom distribution of mutations, we also evaluated identification levels using in silico peptide data from sequenced isolates with average amino acid identities (AAI) varying between 76 and 98%. We compared the predictions to experimental protein identification levels for a sample that was evaluated using a database that included genomic information for the dominant organism and for a closely related variant (95% AAI). The range of models set the boundaries at which half of the proteins in a proteomic experiment can be identified to be 77-92% AAI between orthologs in the sample and database. Consistent with this prediction, experimental data indicated loss of half the identifiable proteins at 90% AAI. Additional analysis indicated a 6.4% reduction of the initial protein coverage per 1% amino acid divergence and total identification loss at 86% AAI. Consequently, shotgun proteomics is capable of cross-strain identifications but avoids most crossspecies false positives.« less
NASA Astrophysics Data System (ADS)
Wang, Dong
2016-03-01
Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical features, some other popular statistical models including linear discriminant analysis, quadratic discriminant analysis, classification and regression tree and naive Bayes classifier, are compared with the developed method. The results show that the developed method has the highest prediction accuracies among these statistical models. Additionally, selection of the number of new significant features and parameter selection of K-nearest neighbors are thoroughly investigated.
Content Analysis of Measures for Identification of Elder Abuse.
ERIC Educational Resources Information Center
Sengstock, Mary C.; And Others
Measures designed to detect elder abuse lack uniformity as a result of having been designed in isolation. To develop and test a uniform index for the identification of elder abuse victims, an analysis of existing abuse identification instruments was conducted. Initially, seven elder abuse identification measures were content analyzed, resulting in…
Wang, Jun; Chen, Wen Feng; Li, Qing X
2012-02-24
The need of quick diagnostics and increasing number of bacterial species isolated necessitate development of a rapid and effective phenotypic identification method. Mass spectrometry (MS) profiling of whole cell proteins has potential to satisfy the requirements. The genus Mycobacterium contains more than 154 species that are taxonomically very close and require use of multiple genes including 16S rDNA for phylogenetic identification and classification. Six strains of five Mycobacterium species were selected as model bacteria in the present study because of their 16S rDNA similarity (98.4-99.8%) and the high similarity of the concatenated 16S rDNA, rpoB and hsp65 gene sequences (95.9-99.9%), requiring high identification resolution. The classification of the six strains by MALDI TOF MS protein barcodes was consistent with, but at much higher resolution than, that of the multi-locus sequence analysis of using 16S rDNA, rpoB and hsp65. The species were well differentiated using MALDI TOF MS and MALDI BioTyper™ software after quick preparation of whole-cell proteins. Several proteins were selected as diagnostic markers for species confirmation. An integration of MALDI TOF MS, MALDI BioTyper™ software and diagnostic protein fragments provides a robust phenotypic approach for bacterial identification and classification. Copyright © 2011 Elsevier B.V. All rights reserved.
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano
2017-01-01
Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604
Hectors, Stefanie J; Besa, Cecilia; Wagner, Mathilde; Jajamovich, Guido H; Haines, George K; Lewis, Sara; Tewari, Ashutosh; Rastinehad, Ardeshir; Huang, Wei; Taouli, Bachir
2017-09-01
To quantify Tofts model (TM) and shutter-speed model (SSM) perfusion parameters in prostate cancer (PCa) and noncancerous peripheral zone (PZ) and to compare the diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to Prostate Imaging and Reporting and Data System (PI-RADS) classification for the assessment of PCa aggressiveness. Fifty PCa patients (mean age 60 years old) who underwent MRI at 3.0T followed by prostatectomy were included in this Institutional Review Board-approved retrospective study. DCE-MRI parameters (K trans , v e , k ep [TM&SSM] and intracellular water molecule lifetime τ i [SSM]) were determined in PCa and PZ. Differences in DCE-MRI parameters between PCa and PZ, and between models were assessed using Wilcoxon signed-rank tests. Receiver operating characteristic (ROC) analysis for differentiation between PCa and PZ was performed for individual and combined DCE-MRI parameters. Diagnostic performance of DCE-MRI parameters for identification of aggressive PCa (Gleason ≥8, grade group [GG] ≥3 or pathology stage pT3) was assessed using ROC analysis and compared with PI-RADSv2 scores. DCE-MRI parameters were significantly different between TM and SSM and between PZ and PCa (P < 0.037). Diagnostic performances of TM and SSM for differentiation of PCa from PZ were similar (highest AUC TM: K trans +k ep 0.76, SSM: τ i +k ep 0.80). PI-RADS outperformed TM and SSM DCE-MRI for identification of Gleason ≥8 lesions (AUC PI-RADS: 0.91, highest AUC DCE-MRI: K trans +τ i SSM 0.61, P = 0.002). The diagnostic performance of PI-RADS and DCE-MRI for identification of GG ≥3 and pT3 PCa was not significantly different (P > 0.213). SSM DCE-MRI did not increase the diagnostic performance of DCE-MRI for PCa characterization. PI-RADS outperformed both TM and SSM DCE-MRI for identification of aggressive cancer. 3 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:837-849. © 2017 International Society for Magnetic Resonance in Medicine.
Algorithms for System Identification and Source Location.
NASA Astrophysics Data System (ADS)
Nehorai, Arye
This thesis deals with several topics in least squares estimation and applications to source location. It begins with a derivation of a mapping between Wiener theory and Kalman filtering for nonstationary autoregressive moving average (ARMO) processes. Applying time domain analysis, connections are found between time-varying state space realizations and input-output impulse response by matrix fraction description (MFD). Using these connections, the whitening filters are derived by the two approaches, and the Kalman gain is expressed in terms of Wiener theory. Next, fast estimation algorithms are derived in a unified way as special cases of the Conjugate Direction Method. The fast algorithms included are the block Levinson, fast recursive least squares, ladder (or lattice) and fast Cholesky algorithms. The results give a novel derivation and interpretation for all these methods, which are efficient alternatives to available recursive system identification algorithms. Multivariable identification algorithms are usually designed only for left MFD models. In this work, recursive multivariable identification algorithms are derived for right MFD models with diagonal denominator matrices. The algorithms are of prediction error and model reference type. Convergence analysis results obtained by the Ordinary Differential Equation (ODE) method are presented along with simulations. Sources of energy can be located by estimating time differences of arrival (TDOA's) of waves between the receivers. A new method for TDOA estimation is proposed for multiple unknown ARMA sources and additive correlated receiver noise. The method is based on a formula that uses only the receiver cross-spectra and the source poles. Two algorithms are suggested that allow tradeoffs between computational complexity and accuracy. A new time delay model is derived and used to show the applicability of the methods for non -integer TDOA's. Results from simulations illustrate the performance of the algorithms. The last chapter analyzes the response of exact least squares predictors for enhancement of sinusoids with additive colored noise. Using the matrix inversion lemma and the Christoffel-Darboux formula, the frequency response and amplitude gain of the sinusoids are expressed as functions of the signal and noise characteristics. The results generalize the available white noise case.
Ballistics projectile image analysis for firearm identification.
Li, Dongguang
2006-10-01
This paper is based upon the observation that, when a bullet is fired, it creates characteristic markings on the cartridge case and projectile. From these markings, over 30 different features can be distinguished, which, in combination, produce a "fingerprint" for a firearm. By analyzing features within such a set of firearm fingerprints, it will be possible to identify not only the type and model of a firearm, but also each and every individual weapon just as effectively as human fingerprint identification. A new analytic system based on the fast Fourier transform for identifying projectile specimens by the line-scan imaging technique is proposed in this paper. This paper develops optical, photonic, and mechanical techniques to map the topography of the surfaces of forensic projectiles for the purpose of identification. Experiments discussed in this paper are performed on images acquired from 16 various weapons. Experimental results show that the proposed system can be used for firearm identification efficiently and precisely through digitizing and analyzing the fired projectiles specimens.
NASA Astrophysics Data System (ADS)
Acernese, F.; Barone, F.; de Rosa, M.; De Rosa, R.; Eleuteri, A.; Milano, L.; Tagliaferri, R.
2002-06-01
In this paper, a neural network-based approach is presented for the real time noise identification of a GW laser interferometric antenna. The 40 m Caltech laser interferometer output data provide a realistic test bed for noise identification algorithms because of the presence of many relevant effects: violin resonances in the suspensions, main power harmonics, ring-down noise from servo control systems, electronic noises, glitches and so on. These effects can be assumed to be present in all the first interferometric long baseline GW antennas such as VIRGO, LIGO, GEO and TAMA. For noise identification, we used the Caltech-40 m laser interferometer data. The results we obtained are pretty good notwithstanding the high initial computational cost. The algorithm we propose is general and robust, taking into account that it does not require a priori information on the data, nor a precise model, and it constitutes a powerful tool for time series data analysis.
System IDentification Programs for AirCraft (SIDPAC)
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2002-01-01
A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.
Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Chase A.; Gottfried, Jennifer L.; Snyder, Emily Gibb
2008-11-01
The performance of a man-portable laser induced breakdown spectrometer was evaluated for the detection of biological powders on indoor office surfaces and wipe materials. Identification of pure unknown powders was performed by comparing against a library of spectra containing biological agent surrogates and confusant materials, such as dusts, diesel soot, natural and artificial sweeteners, and drink powders, using linear correlation analysis. Simple models constructed using a second technique, partial least squares discriminant analysis, successfully identified Bacillus subtilis (BG) spores on wipe materials and office surfaces. Furthermore, these models were able to identify BG on materials not used in the trainingmore » of the model.« less
NASA Technical Reports Server (NTRS)
Mullen, T. J.; Appel, M. L.; Mukkamala, R.; Mathias, J. M.; Cohen, R. J.
1997-01-01
We applied system identification to the analysis of fluctuations in heart rate (HR), arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize quantitatively the physiological mechanisms responsible for the couplings between these variables. We characterized two autonomically mediated coupling mechanisms [the heart rate baroreflex (HR baroreflex) and respiratory sinus arrhythmia (ILV-HR)] and two mechanically mediated coupling mechanisms [the blood pressure wavelet generated with each cardiac contraction (circulatory mechanics) and the direct mechanical effects of respiration on blood pressure (ILV-->ABP)]. We evaluated the method in humans studied in the supine and standing postures under control conditions and under conditions of beta-sympathetic and parasympathetic pharmacological blockades. Combined beta-sympathetic and parasympathetic blockade abolished the autonomically mediated couplings while preserving the mechanically mediated coupling. Selective autonomic blockade and postural changes also altered the couplings in a manner consistent with known physiological mechanisms. System identification is an "inverse-modeling" technique that provides a means for creating a closed-loop model of cardiovascular regulation for an individual subject without altering the underlying physiological control mechanisms.
Speaker gender identification based on majority vote classifiers
NASA Astrophysics Data System (ADS)
Mezghani, Eya; Charfeddine, Maha; Nicolas, Henri; Ben Amar, Chokri
2017-03-01
Speaker gender identification is considered among the most important tools in several multimedia applications namely in automatic speech recognition, interactive voice response systems and audio browsing systems. Gender identification systems performance is closely linked to the selected feature set and the employed classification model. Typical techniques are based on selecting the best performing classification method or searching optimum tuning of one classifier parameters through experimentation. In this paper, we consider a relevant and rich set of features involving pitch, MFCCs as well as other temporal and frequency-domain descriptors. Five classification models including decision tree, discriminant analysis, nave Bayes, support vector machine and k-nearest neighbor was experimented. The three best perming classifiers among the five ones will contribute by majority voting between their scores. Experimentations were performed on three different datasets spoken in three languages: English, German and Arabic in order to validate language independency of the proposed scheme. Results confirm that the presented system has reached a satisfying accuracy rate and promising classification performance thanks to the discriminating abilities and diversity of the used features combined with mid-level statistics.
Xia, Youshen; Kamel, Mohamed S
2007-06-01
Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.
Gál, Lukáš; Čeppan, Michal; Reháková, Milena; Dvonka, Vladimír; Tarajčáková, Jarmila; Hanus, Jozef
2013-11-01
A method has been developed for identification of corrosive iron-gall inks in historical drawings and documents. The method is based on target-factor analysis of visible-near infrared fibre optic reflection spectra (VIS-NIR FORS). A set of reference spectra was obtained from model samples of laboratory-prepared inks covering a wide range of mixing ratios of basic ink components deposited on substrates and artificially aged. As criteria for correspondence of a studied spectrum with a reference spectrum, the apparent error in target (AET) and the empirical function SPOIL according to Malinowski were used. The capability of the proposed tool to distinguish corrosive iron-gall inks from bistre and sepia inks was evaluated by use of a set of control samples of bistre, sepia, and iron-gall inks. Examples are presented of analysis of historical drawings from the 15th and 16th centuries and written documents from the 19th century. The results of analysis based on the tool were confirmed by XRF analysis and colorimetric spot analysis.
Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
2006-08-01
conditions will necessarily be supercritical fluids . These temperatures and pressures will also cause the fuel to undergo pyrolytic reactions, which...Spectrometric Detection for 5a. CONTRACT NUMBER Analysis of Supercritical Fuels Pyrolysis Products 5b. GRANT NUMBER FA9550-05-1-0253 5c... supercritical pyrolysis experiments with the model fuels 1-methylnaphthalene and toluene. The HPLC/UV/MS instrument facilitated the identification of fifteen 5
2011-09-01
a NSS that lies in this negative explosion positive CLVD quadrant due to the large degree of tectonic release in this event that reversed the phase...Mellman (1986) in their analysis of fundamental model Love and Rayleigh wave amplitude and phase for nuclear and tectonic release source terms, and...1986). Estimating explosion and tectonic release source parameters of underground nuclear explosions from Rayleigh and Love wave observations, Air
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
Pole-zero form fractional model identification in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansouri, R.; Djamah, T.; Djennoune, S.
2009-03-05
This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.
Liwarska-Bizukojc, Ewa; Biernacki, Rafal
2010-10-01
In order to simulate biological wastewater treatment processes, data concerning wastewater and sludge composition, process kinetics and stoichiometry are required. Selection of the most sensitive parameters is an important step of model calibration. The aim of this work is to verify the predictability of the activated sludge model, which is implemented in BioWin software, and select its most influential kinetic and stoichiometric parameters with the help of sensitivity analysis approach. Two different measures of sensitivity are applied: the normalised sensitivity coefficient (S(i,j)) and the mean square sensitivity measure (delta(j)(msqr)). It occurs that 17 kinetic and stoichiometric parameters of the BioWin activated sludge (AS) model can be regarded as influential on the basis of S(i,j) calculations. Half of the influential parameters are associated with growth and decay of phosphorus accumulating organisms (PAOs). The identification of the set of the most sensitive parameters should support the users of this model and initiate the elaboration of determination procedures for the parameters, for which it has not been done yet. Copyright 2010 Elsevier Ltd. All rights reserved.
The relative pose estimation of aircraft based on contour model
NASA Astrophysics Data System (ADS)
Fu, Tai; Sun, Xiangyi
2017-02-01
This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.
Some Integrated Squared Error Procedures for Multivariate Normal Data,
1986-01-01
a lnear regresmion or experimental design model). Our procedures have &lSO been usned wcelyOn non -linear models but we do not addres nan-lnear...of fit, outliers, influence functions, experimental design , cluster analysis, robustness 24L A =TO ACT (VCefme - pvre alli of magsy MW identif by...structured data such as multivariate experimental designs . Several illustrations are provided. * 0 %41 %-. 4.’. * " , -.--, ,. -,, ., -, ’v ’ , " ,,- ,, . -,-. . ., * . - tAma- t
Benefits of detailed models of muscle activation and mechanics
NASA Technical Reports Server (NTRS)
Lehman, S. L.; Stark, L.
1981-01-01
Recent biophysical and physiological studies identified some of the detailed mechanisms involved in excitation-contraction coupling, muscle contraction, and deactivation. Mathematical models incorporating these mechanisms allow independent estimates of key parameters, direct interplay between basic muscle research and the study of motor control, and realistic model behaviors, some of which are not accessible to previous, simpler, models. The existence of previously unmodeled behaviors has important implications for strategies of motor control and identification of neural signals. New developments in the analysis of differential equations make the more detailed models feasible for simulation in realistic experimental situations.
Mixed models, linear dependency, and identification in age-period-cohort models.
O'Brien, Robert M
2017-07-20
This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Observation uncertainty in reversible Markov chains.
Metzner, Philipp; Weber, Marcus; Schütte, Christof
2010-09-01
In many applications one is interested in finding a simplified model which captures the essential dynamical behavior of a real life process. If the essential dynamics can be assumed to be (approximately) memoryless then a reasonable choice for a model is a Markov model whose parameters are estimated by means of Bayesian inference from an observed time series. We propose an efficient Monte Carlo Markov chain framework to assess the uncertainty of the Markov model and related observables. The derived Gibbs sampler allows for sampling distributions of transition matrices subject to reversibility and/or sparsity constraints. The performance of the suggested sampling scheme is demonstrated and discussed for a variety of model examples. The uncertainty analysis of functions of the Markov model under investigation is discussed in application to the identification of conformations of the trialanine molecule via Robust Perron Cluster Analysis (PCCA+) .
Sensitivity Analysis for some Water Pollution Problem
NASA Astrophysics Data System (ADS)
Le Dimet, François-Xavier; Tran Thu, Ha; Hussaini, Yousuff
2014-05-01
Sensitivity Analysis for Some Water Pollution Problems Francois-Xavier Le Dimet1 & Tran Thu Ha2 & M. Yousuff Hussaini3 1Université de Grenoble, France, 2Vietnamese Academy of Sciences, 3 Florida State University Sensitivity analysis employs some response function and the variable with respect to which its sensitivity is evaluated. If the state of the system is retrieved through a variational data assimilation process, then the observation appears only in the Optimality System (OS). In many cases, observations have errors and it is important to estimate their impact. Therefore, sensitivity analysis has to be carried out on the OS, and in that sense sensitivity analysis is a second order property. The OS can be considered as a generalized model because it contains all the available information. This presentation proposes a method to carry out sensitivity analysis in general. The method is demonstrated with an application to water pollution problem. The model involves shallow waters equations and an equation for the pollutant concentration. These equations are discretized using a finite volume method. The response function depends on the pollutant source, and its sensitivity with respect to the source term of the pollutant is studied. Specifically, we consider: • Identification of unknown parameters, and • Identification of sources of pollution and sensitivity with respect to the sources. We also use a Singular Evolutive Interpolated Kalman Filter to study this problem. The presentation includes a comparison of the results from these two methods. .
Han, Bangxing; Peng, Huasheng; Yan, Hui
2016-01-01
Mugua is a common Chinese herbal medicine. There are three main medicinal origin places in China, Xuancheng City Anhui Province, Qijiang District Chongqing City, Yichang City, Hubei Province, and suitable for food origin places Linyi City Shandong Province. To construct a qualitative analytical method to identify the origin of medicinal Mugua by near infrared spectroscopy (NIRS). Partial least squares discriminant analysis (PLSDA) model was established after the Mugua derived from five different origins were preprocessed by the original spectrum. Moreover, the hierarchical cluster analysis was performed. The result showed that PLSDA model was established. According to the relationship of the origins-related important score and wavenumber, and K-mean cluster analysis, the Muguas derived from different origins were effectively identified. NIRS technology can quickly and accurately identify the origin of Mugua, provide a new method and technology for the identification of Chinese medicinal materials. After preprocessed by D1+autoscale, more peaks were increased in the preprocessed Mugua in the near infrared spectrumFive latent variable scores could reflect the information related to the origin place of MuguaOrigins of Mugua were well-distinguished according to K. mean value clustering analysis. Abbreviations used: TCM: Traditional Chinese Medicine, NIRS: Near infrared spectroscopy, SG: Savitzky-Golay smoothness, D1: First derivative, D2: Second derivative, SNV: Standard normal variable transformation, MSC: Multiplicative scatter correction, PLSDA: Partial least squares discriminant analysis, LV: Latent variable, VIP scores: Important score.
Liu, Fei; Wang, Yuan-zhong; Yang, Chun-yan; Jin, Hang
2015-01-01
The genuineness and producing area of Panax notoginseng were studied based on infrared spectroscopy combined with discriminant analysis. The infrared spectra of 136 taproots of P. notoginseng from 13 planting point in 11 counties were collected and the second derivate spectra were calculated by Omnic 8. 0 software. The infrared spectra and their second derivate spectra in the range 1 800 - 700 cm-1 were used to build model by stepwise discriminant analysis, which was in order to distinguish study on the genuineness of P. notoginseng. The model built based on the second derivate spectra showed the better recognition effect for the genuineness of P. notoginseng. The correct rate of returned classification reached to 100%, and the prediction accuracy was 93. 4%. The stability of model was tested by cross validation and the method was performed extrapolation validation. The second derivate spectra combined with the same discriminant analysis method were used to distinguish the producing area of P. notoginseng. The recognition effect of models built based on different range of spectrum and different numbers of samples were compared and found that when the model was built by collecting 8 samples from each planting point as training sample and the spectrum in the range 1 500 - 1 200 cm-1 , the recognition effect was better, with the correct rate of returned classification reached to 99. 0%, and the prediction accuracy was 76. 5%. The results indicated that infrared spectroscopy combined with discriminant analysis showed good recognition effect for the genuineness of P. notoginseng. The method might be a hopeful new method for identification of genuineness of P. notoginseng in practice. The method could recognize the producing area of P. notoginseng to some extent and could be a new thought for identification of the producing area of P. natoginseng.
Ma, Yi; Zhang, Jie; Cui, Ting-wei
2006-12-01
Airborne hyperspectral identification of red tide organism dominant species can provide technique for distinguishing red tide and its toxin, and provide support for scaling the disaster. Based on support vector machine(SVM), the present paper provides an identification model of red tide dominant species. Utilizing this model, the authors accomplished three identification experiments with the hyperspectral data obtained on 16th July, and 19th and 25th August, 2001. It is shown from the identification results that the model has a high precision and is not restricted by high dimension of the hyperspectral data.
NASA Astrophysics Data System (ADS)
Grigorie, Teodor Lucian; Corcau, Ileana Jenica; Tudosie, Alexandru Nicolae
2017-06-01
The paper presents a way to obtain an intelligent miniaturized three-axial accelerometric sensor, based on the on-line estimation and compensation of the sensor errors generated by the environmental temperature variation. Taking into account that this error's value is a strongly nonlinear complex function of the values of environmental temperature and of the acceleration exciting the sensor, its correction may not be done off-line and it requires the presence of an additional temperature sensor. The proposed identification methodology for the error model is based on the least square method which process off-line the numerical values obtained from the accelerometer experimental testing for different values of acceleration applied to its axes of sensitivity and for different values of operating temperature. A final analysis of the error level after the compensation highlights the best variant for the matrix in the error model. In the sections of the paper are shown the results of the experimental testing of the accelerometer on all the three sensitivity axes, the identification of the error models on each axis by using the least square method, and the validation of the obtained models with experimental values. For all of the three detection channels was obtained a reduction by almost two orders of magnitude of the acceleration absolute maximum error due to environmental temperature variation.
Cao, Yang; Zhang, Chaojie; Chen, Quansheng; Li, Yanyu; Qi, Shuai; Tian, Lin; Ren, YongLin
2015-08-01
Identifying stored-product insects is essential for granary management. Automated, computer-based classification methods are rapidly developing in many areas. A hyperspectral imaging technique could potentially be developed to identify stored-product insect species and geographical strains. This study tested and adapted the technique using four geographical strains of each of two insect species, the rice weevil and maize weevil, to collect and analyse the resultant hyperspectral data. Three characteristic images that corresponded to the dominant wavelengths, 505, 659 and 955 nm, were selected by multivariate image analysis. Each image was processed, and 22 morphological and textural features from regions of interest were extracted as the inputs for an identification model. We found the backpropagation neural network model to be the superior method for distinguishing between the insect species and geographical strains. The overall recognition rates of the classification model for insect species were 100 and 98.13% for the calibration and prediction sets respectively, while the rates of the model for geographical strains were 94.17 and 86.88% respectively. This study has demonstrated that hyperspectral imaging, together with the appropriate recognition method, could provide a potential instrument for identifying insects and could become a useful tool for identification of Sitophilus oryzae and Sitophilus zeamais to aid in the management of stored-product insects. © 2014 Society of Chemical Industry.
2015-03-23
SAMPE, Long Beach, CA, 2008. [28] N Hu and H Fukunaga. A new approach for health monitoring of composite structures through identification of impact...Bernard H Minster . Hysteresis and two- dimensional nonlinear wave propagation in berea sandstone. Journal of Geo- physical Research: Solid Earth (1978–2012
America's Children & the Information Superhighway: A Briefing Book and National Action Agenda.
ERIC Educational Resources Information Center
Children's Partnership, Santa Monica, CA.
A study was conducted to determine how the information highway affects today's children and to develop a set of national children's goals and an action plan for achieving them. The study's methodology included a review of relevant child development and telecommunications literature, identification of model programs, analysis of experiences with…
Breaking the Discrepancy Code: A Meta-Analysis of the Specific Learning Disability Literature
ERIC Educational Resources Information Center
Bachmeier, Randy J.
2009-01-01
Previous "selective" meta-analyses of the literature relating to the IQ-achievement discrepancy model of specific learning disability identification have concluded that "underachieving" and "low-achieving" poor readers do not differ in any educationally meaningful way. Underachievers are those poor readers who qualify as learning disabled using an…
Calculation of total cross sections for charge exchange in molecular collisions
NASA Technical Reports Server (NTRS)
Ioup, J.
1979-01-01
Areas of investigation summarized include nitrogen ion-nitrogen molecule collisions; molecular collisions with surfaces; molecular identification from analysis of cracking patterns of selected gases; computer modelling of a quadrupole mass spectrometer; study of space charge in a quadrupole; transmission of the 127 deg cylindrical electrostatic analyzer; and mass spectrometer data deconvolution.
ERIC Educational Resources Information Center
Mattern, Krista D.; Marini, Jessica P.; Shaw, Emily J.
2015-01-01
Throughout the college retention literature, there is a recurring theme that students leave college for a variety of reasons making retention a difficult phenomenon to model. In the current study, cluster analysis techniques were employed to investigate whether multiple empirically based profiles of nonreturning students existed to more fully…
Chapter 8: Demographic characteristics and population modeling
Scott H. Stoleson; Mary J. Whitfield; Mark K. Sogge
2000-01-01
An understanding of the basic demography of a species is necessary to estimate and evaluate population trends. The relative impact of different demographic parameters on growth rates can be assessed through a sensitivity analysis, in which different parameters are altered singly to assess the effect on population growth. Identification of critical parameters can allow...
Identification of nutrient and physical seed trait QTLs in the model legume, Lotus japonicus
USDA-ARS?s Scientific Manuscript database
Legume seeds have the potential to provide a significant portion of essential micronutrients to the human diet. To identify the genetic basis for seed nutrient density, quantitative trait locus (QTL) analysis was conducted with the Gifu B-129 x Miyakojima MG-20 recombinant inbred population from th...
Difference-Equation/Flow-Graph Circuit Analysis
NASA Technical Reports Server (NTRS)
Mcvey, I. M.
1988-01-01
Numerical technique enables rapid, approximate analyses of electronic circuits containing linear and nonlinear elements. Practiced in variety of computer languages on large and small computers; for circuits simple enough, programmable hand calculators used. Although some combinations of circuit elements make numerical solutions diverge, enables quick identification of divergence and correction of circuit models to make solutions converge.
Rotational Uniqueness Conditions under Oblique Factor Correlation Metric
ERIC Educational Resources Information Center
Peeters, Carel F. W.
2012-01-01
In an addendum to his seminal 1969 article Joreskog stated two sets of conditions for rotational identification of the oblique factor solution under utilization of fixed zero elements in the factor loadings matrix (Joreskog in "Advances in factor analysis and structural equation models," pp. 40-43, 1979). These condition sets, formulated under…
Hierarchical Linear Modeling Meta-Analysis of Single-Subject Design Research
ERIC Educational Resources Information Center
Gage, Nicholas A.; Lewis, Timothy J.
2014-01-01
The identification of evidence-based practices continues to provoke issues of disagreement across multiple fields. One area of contention is the role of single-subject design (SSD) research in providing scientific evidence. The debate about SSD's utility centers on three issues: sample size, effect size, and serial dependence. One potential…
Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia
2017-01-01
This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique’s application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets. PMID:29216199
Dynamics of essential collective motions in proteins: Theory
NASA Astrophysics Data System (ADS)
Stepanova, Maria
2007-11-01
A general theoretical background is introduced for characterization of conformational motions in protein molecules, and for building reduced coarse-grained models of proteins, based on the statistical analysis of their phase trajectories. Using the projection operator technique, a system of coupled generalized Langevin equations is derived for essential collective coordinates, which are generated by principal component analysis of molecular dynamic trajectories. The number of essential degrees of freedom is not limited in the theory. An explicit analytic relation is established between the generalized Langevin equation for essential collective coordinates and that for the all-atom phase trajectory projected onto the subspace of essential collective degrees of freedom. The theory introduced is applied to identify correlated dynamic domains in a macromolecule and to construct coarse-grained models representing the conformational motions in a protein through a few interacting domains embedded in a dissipative medium. A rigorous theoretical background is provided for identification of dynamic correlated domains in a macromolecule. Examples of domain identification in protein G are given and employed to interpret NMR experiments. Challenges and potential outcomes of the theory are discussed.
NASA Astrophysics Data System (ADS)
Wang, Shuliang; Zhang, Jianhua; Zhao, Mingwei; Min, Xu
2017-05-01
This paper takes central China power grid (CCPG) as an example, and analyzes the vulnerability of the power systems under terrorist attacks. To simulate the intelligence of terrorist attacks, a method of critical attack area identification according to community structures is introduced. Meanwhile, three types of vulnerability models and the corresponding vulnerability metrics are given for comparative analysis. On this basis, influence of terrorist attacks on different critical areas is studied. Identifying the vulnerability of different critical areas will be conducted. At the same time, vulnerabilities of critical areas under different tolerance parameters and different vulnerability models are acquired and compared. Results show that only a few number of vertex disruptions may cause some critical areas collapse completely, they can generate great performance losses the whole systems. Further more, the variation of vulnerability values under different scenarios is very large. Critical areas which can cause greater damage under terrorist attacks should be given priority of protection to reduce vulnerability. The proposed method can be applied to analyze the vulnerability of other infrastructure systems, they can help decision makers search mitigation action and optimum protection strategy.
Assessment of the Structural Conditions of the San Clemente a Vomano Abbey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedettini, Francesco; Alaggio, Rocco; Fusco, Felice
2008-07-08
The simultaneous use of a Finite Element (FE) accurate modeling, dynamical tests, model updating and nonlinear analysis are used to describe the integrated approach used by the authors to assess the structural conditions and the seismic vulnerability of an historical masonry structure: the Abbey Church of San Clemente al Vomano, situated in the Notaresco territory (TE, Italy) commissioned by Ermengarda, daughter of the Emperor Ludovico II, and built at the end of IX century together with a monastery to host a monastic community. Dynamical tests 'in operational conditions' and modal identification have been used to perform the FE model validation.more » Both a simple and direct method as the kinematic analysis applied on meaningful sub-structures and a nonlinear 3D dynamic analysis conducted by using the FE model have been used to forecast the seismic performance of the Church.« less
Fowler, Stephanie; Akins, Mark; Bennett, Steffany A L
2016-01-01
Protein interaction networks at gap junction plaques are increasingly implicated in a variety of intracellular signaling cascades. Identifying protein interactions of integral membrane proteins is a valuable tool for determining channel function. However, several technical challenges exist. Subcellular fractionation of the bait protein matrix is usually required to identify less abundant proteins in complex homogenates. Sufficient solvation of the lipid environment without perturbation of the protein interactome must also be achieved. The present chapter describes the flotation of light and heavy liver tissue membrane microdomains to facilitate the identification and analysis of endogenous gap junction proteins and includes technical notes for translation to other integral membrane proteins, tissues, or cell culture models. These procedures are valuable tools for the enrichment of gap junction membrane compartments and for the identification of gap junction signaling interactomes.
NASA Astrophysics Data System (ADS)
Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.
2011-11-01
The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tardiff, Mark F.; Runkle, Robert C.; Anderson, K. K.
2006-01-23
The goal of primary radiation monitoring in support of routine screening and emergency response is to detect characteristics in vehicle radiation signatures that indicate the presence of potential threats. Two conceptual approaches to analyzing gamma-ray spectra for threat detection are isotope identification and anomaly detection. While isotope identification is the time-honored method, an emerging technique is anomaly detection that uses benign vehicle gamma ray signatures to define an expectation of the radiation signature for vehicles that do not pose a threat. Newly acquired spectra are then compared to this expectation using statistical criteria that reflect acceptable false alarm rates andmore » probabilities of detection. The gamma-ray spectra analyzed here were collected at a U.S. land Port of Entry (POE) using a NaI-based radiation portal monitor (RPM). The raw data were analyzed to develop a benign vehicle expectation by decimating the original pulse-height channels to 35 energy bins, extracting composite variables via principal components analysis (PCA), and estimating statistically weighted distances from the mean vehicle spectrum with the mahalanobis distance (MD) metric. This paper reviews the methods used to establish the anomaly identification criteria and presents a systematic analysis of the response of the combined PCA and MD algorithm to modeled mono-energetic gamma-ray sources.« less
Košir, Alexandra Bogožalec; Arulandhu, Alfred J; Voorhuijzen, Marleen M; Xiao, Hongmei; Hagelaar, Rico; Staats, Martijn; Costessi, Adalberto; Žel, Jana; Kok, Esther J; Dijk, Jeroen P van
2017-10-26
The majority of feed products in industrialised countries contains materials derived from genetically modified organisms (GMOs). In parallel, the number of reports of unauthorised GMOs (UGMOs) is gradually increasing. There is a lack of specific detection methods for UGMOs, due to the absence of detailed sequence information and reference materials. In this research, an adapted genome walking approach was developed, called ALF: Amplification of Linearly-enriched Fragments. Coupling of ALF to NGS aims for simultaneous detection and identification of all GMOs, including UGMOs, in one sample, in a single analysis. The ALF approach was assessed on a mixture made of DNA extracts from four reference materials, in an uneven distribution, mimicking a real life situation. The complete insert and genomic flanking regions were known for three of the included GMO events, while for MON15985 only partial sequence information was available. Combined with a known organisation of elements, this GMO served as a model for a UGMO. We successfully identified sequences matching with this organisation of elements serving as proof of principle for ALF as new UGMO detection strategy. Additionally, this study provides a first outline of an automated, web-based analysis pipeline for identification of UGMOs containing known GM elements.
Reservoir Identification: Parameter Characterization or Feature Classification
NASA Astrophysics Data System (ADS)
Cao, J.
2017-12-01
The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
Roy, Debananda; Singh, Gurdeep; Yadav, Pankaj
2016-10-01
Source apportionment study of PM 10 (Particulate Matter) in a critically polluted area of Jharia coalfield, India has been carried out using Dispersion model, Principle Component Analysis (PCA) and Chemical Mass Balance (CMB) techniques. Dispersion model Atmospheric Dispersion Model (AERMOD) was introduced to simplify the complexity of sources in Jharia coalfield. PCA and CMB analysis indicates that monitoring stations near the mining area were mainly affected by the emission from open coal mining and its associated activities such as coal transportation, loading and unloading of coal. Mine fire emission also contributed a considerable amount of particulate matters in monitoring stations. Locations in the city area were mostly affected by vehicular, Liquid Petroleum Gas (LPG) & Diesel Generator (DG) set emissions, residential, and commercial activities. The experimental data sampling and their analysis could aid understanding how dispersion based model technique along with receptor model based concept can be strategically used for quantitative analysis of Natural and Anthropogenic sources of PM 10 . Copyright © 2016. Published by Elsevier B.V.
Toward Real Time Neural Net Flight Controllers
NASA Technical Reports Server (NTRS)
Jorgensen, C. C.; Mah, R. W.; Ross, J.; Lu, Henry, Jr. (Technical Monitor)
1994-01-01
NASA Ames Research Center has an ongoing program in neural network control technology targeted toward real time flight demonstrations using a modified F-15 which permits direct inner loop control of actuators, rapid switching between alternative control designs, and substitutable processors. An important part of this program is the ACTIVE flight project which is examining the feasibility of using neural networks in the design, control, and system identification of new aircraft prototypes. This paper discusses two research applications initiated with this objective in mind: utilization of neural networks for wind tunnel aircraft model identification and rapid learning algorithms for on line reconfiguration and control. The first application involves the identification of aerodynamic flight characteristics from analysis of wind tunnel test data. This identification is important in the early stages of aircraft design because complete specification of control architecture's may not be possible even though concept models at varying scales are available for aerodynamic wind tunnel testing. Testing of this type is often a long and expensive process involving measurement of aircraft lift, drag, and moment of inertia at varying angles of attack and control surface configurations. This information in turn can be used in the design of the flight control systems by applying the derived lookup tables to generate piece wise linearized controllers. Thus, reduced costs in tunnel test times and the rapid transfer of wind tunnel insights into prototype controllers becomes an important factor in more efficient generation and testing of new flight systems. NASA Ames Research Center is successfully applying modular neural networks as one way of anticipating small scale aircraft model performances prior to testing, thus reducing the number of in tunnel test hours and potentially, the number of intermediate scaled models required for estimation of surface flow effects.
Applications of graph theory in protein structure identification
2011-01-01
There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers’ attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given. PMID:22165974
ERIC Educational Resources Information Center
Halbesleben, Jonathon R. B.; Wheeler, Anthony R.
2009-01-01
Although management scholars have provided a variety of metaphors to describe the role of students in management courses, researchers have yet to explore students' identification with the models and how they are linked to educational outcomes. This article develops a measurement tool for students' identification with business education models and…
NASA standard: Trend analysis techniques
NASA Technical Reports Server (NTRS)
1988-01-01
This Standard presents descriptive and analytical techniques for NASA trend analysis applications. Trend analysis is applicable in all organizational elements of NASA connected with, or supporting, developmental/operational programs. Use of this Standard is not mandatory; however, it should be consulted for any data analysis activity requiring the identification or interpretation of trends. Trend Analysis is neither a precise term nor a circumscribed methodology, but rather connotes, generally, quantitative analysis of time-series data. For NASA activities, the appropriate and applicable techniques include descriptive and graphical statistics, and the fitting or modeling of data by linear, quadratic, and exponential models. Usually, but not always, the data is time-series in nature. Concepts such as autocorrelation and techniques such as Box-Jenkins time-series analysis would only rarely apply and are not included in this Standard. The document presents the basic ideas needed for qualitative and quantitative assessment of trends, together with relevant examples. A list of references provides additional sources of information.
Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data
NASA Technical Reports Server (NTRS)
Kukreja, Sunil L.
2008-01-01
Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.
Jaiswara, Ranjana; Nandi, Diptarup; Balakrishnan, Rohini
2013-01-01
Traditional taxonomy based on morphology has often failed in accurate species identification owing to the occurrence of cryptic species, which are reproductively isolated but morphologically identical. Molecular data have thus been used to complement morphology in species identification. The sexual advertisement calls in several groups of acoustically communicating animals are species-specific and can thus complement molecular data as non-invasive tools for identification. Several statistical tools and automated identifier algorithms have been used to investigate the efficiency of acoustic signals in species identification. Despite a plethora of such methods, there is a general lack of knowledge regarding the appropriate usage of these methods in specific taxa. In this study, we investigated the performance of two commonly used statistical methods, discriminant function analysis (DFA) and cluster analysis, in identification and classification based on acoustic signals of field cricket species belonging to the subfamily Gryllinae. Using a comparative approach we evaluated the optimal number of species and calling song characteristics for both the methods that lead to most accurate classification and identification. The accuracy of classification using DFA was high and was not affected by the number of taxa used. However, a constraint in using discriminant function analysis is the need for a priori classification of songs. Accuracy of classification using cluster analysis, which does not require a priori knowledge, was maximum for 6–7 taxa and decreased significantly when more than ten taxa were analysed together. We also investigated the efficacy of two novel derived acoustic features in improving the accuracy of identification. Our results show that DFA is a reliable statistical tool for species identification using acoustic signals. Our results also show that cluster analysis of acoustic signals in crickets works effectively for species classification and identification. PMID:24086666