Sample records for identified causative mutations

  1. Mutation screening of Chinese Treacher Collins syndrome patients identified novel TCOF1 mutations.

    PubMed

    Chen, Ying; Guo, Luo; Li, Chen-Long; Shan, Jing; Xu, Hai-Song; Li, Jie-Ying; Sun, Shan; Hao, Shao-Juan; Jin, Lei; Chai, Gang; Zhang, Tian-Yu

    2018-04-01

    Treacher Collins syndrome (TCS) (OMIM 154500) is a rare congenital craniofacial disorder with an autosomal dominant manner of inheritance in most cases. To date, three pathogenic genes (TCOF1, POLR1D and POLR1C) have been identified. In this study, we conducted mutational analysis on Chinese TCS patients to reveal a mutational spectrum of known causative genes and show phenotype-genotype data to provide more information for gene counselling and future studies on the pathogenesis of TCS. Twenty-two TCS patients were recruited from two tertiary referral centres, and Sanger sequencing for the coding exons and exon-intron boundaries of TCOF1, POLR1D and POLR1C was performed. For patients without small variants, further copy number variations (CNVs) analysis was conducted using high-density SNP array platforms. The Sanger sequencing overall mutation detection rate was as high as 86.3% (19/22) for our cohort. Fifteen TCOF1 pathogenic variants, including ten novel mutations, were identified in nineteen patients. No causative mutations in POLR1D and POLR1C genes and no CNVs mutations were detected. A suspected autosomal dominant inheritance case that implies germinal mosaicism was described. Our study confirmed that TCOF1 was the main disease-causing gene for the Chinese TCS population and revealed its mutation spectrum. We also addressed the need for more studies of mosaicism in TCS cases, which could explain the mechanism of autosomal dominant inheritance in TCS cases and benefit the prevention of TCS.

  2. Whole Exome Sequencing in Dominant Cataract Identifies a New Causative Factor, CRYBA2, and a Variety of Novel Alleles in Known Genes

    PubMed Central

    Reis, Linda M.; Tyler, Rebecca C.; Muheisen, Sanaa; Raggio, Victor; Salviati, Leonardo; Han, Dennis P.; Costakos, Deborah; Yonath, Hagith; Hall, Sarah; Power, Patricia; Semina, Elena V.

    2013-01-01

    Pediatric cataracts are observed in 1–15 per 10,000 births with 10–25% of cases attributed to genetic causes; autosomal dominant inheritance is the most commonly observed pattern. Since the specific cataract phenotype is not sufficient to predict which gene is mutated, whole exome sequencing (WES) was utilized to concurrently screen all known cataract genes and to examine novel candidate factors for a disease-causing mutation in probands from 23 pedigrees affected with familial dominant cataract. Review of WES data for 36 known cataract genes identified causative mutations in nine pedigrees (39%) in CRYAA, CRYBB1, CRYBB3, CRYGC (2), CRYGD, GJA8 (2), and MIP and an additional likely causative mutation in EYA1; the CRYBB3 mutation represents the first dominant allele in this gene and demonstrates incomplete penetrance. Examination of crystallin genes not yet linked to human disease identified a novel cataract gene, CRYBA2, a member of the βγ-crystallin superfamily. The p.(Val50Met) mutation in CRYBA2 cosegregated with disease phenotype in a four-generation pedigree with autosomal dominant congenital cataracts with incomplete penetrance. Expression studies detected cryba2 transcripts during early lens development in zebrafish, supporting its role in congenital disease. Our data highlight the extreme genetic heterogeneity of dominant cataract as the eleven causative/likely causative mutations affected nine different genes and the majority of mutant alleles were novel. Furthermore, these data suggest that less than half of dominant cataract can be explained by mutations in currently known genes. PMID:23508780

  3. D117N in Cypher/ZASP may not be a causative mutation for dilated cardiomyopathy and ventricular arrhythmias.

    PubMed

    Levitas, Aviva; Konstantino, Yuval; Muhammad, Emad; Afawi, Zaid; Marc Weinstein, Jean; Amit, Guy; Etzion, Yoram; Parvari, Ruti

    2016-05-01

    Dilated cardiomyopathy (DCM) and malignant ventricular arrhythmias are important causes of congestive heart failure, heart transplantation, and sudden cardiac death in young patients. Cypher/ZASP is a cytoskeletal protein localized in the sarcomeric Z-line that has a pivotal role in maintaining adult cardiac structure and function. The putative mutation p.(D117N) in Cypher/ZASP has been suggested to cause systolic dysfunction, dilated left ventricle with hypertrabeculated myocardium, and intraventricular conduction disturbance, based on two reported sporadic cases. In two unrelated Bedouin families, one with pediatric DCM and the other with DCM and ventricular arrhythmias at young adulthood searching for the causative mutation by exome sequencing we identified the p.(D117N) variant in Cypher/ZASP. However, p.(D117N) did not segregate as the causative mutation in these families, i.e. it was not present in some patients and was found in several individuals who had no clinical manifestations. Furthermore, the carrier frequency in the Bedouin population of origin is estimated to be 5.2%, which is much higher than the incidence of idiopathic DCM in this population. Thus, our data support the notion that the p.(D117N) variant in Cypher/ZASP is not a causative mutation in the families tested by us. The results also indicates that at least in some cases, the p.(D117N) in Cypher/ZASP is not a causative mutation and the role of D117N in Cypher/ZASP in cardiac pathologies should be further clarified and re-evaluated.

  4. D117N in Cypher/ZASP may not be a causative mutation for dilated cardiomyopathy and ventricular arrhythmias

    PubMed Central

    Levitas, Aviva; Konstantino, Yuval; Muhammad, Emad; Afawi, Zaid; Marc Weinstein, Jean; Amit, Guy; Etzion, Yoram; Parvari, Ruti

    2016-01-01

    Dilated cardiomyopathy (DCM) and malignant ventricular arrhythmias are important causes of congestive heart failure, heart transplantation, and sudden cardiac death in young patients. Cypher/ZASP is a cytoskeletal protein localized in the sarcomeric Z-line that has a pivotal role in maintaining adult cardiac structure and function. The putative mutation p.(D117N) in Cypher/ZASP has been suggested to cause systolic dysfunction, dilated left ventricle with hypertrabeculated myocardium, and intraventricular conduction disturbance, based on two reported sporadic cases. In two unrelated Bedouin families, one with pediatric DCM and the other with DCM and ventricular arrhythmias at young adulthood searching for the causative mutation by exome sequencing we identified the p.(D117N) variant in Cypher/ZASP. However, p.(D117N) did not segregate as the causative mutation in these families, i.e. it was not present in some patients and was found in several individuals who had no clinical manifestations. Furthermore, the carrier frequency in the Bedouin population of origin is estimated to be 5.2%, which is much higher than the incidence of idiopathic DCM in this population. Thus, our data support the notion that the p.(D117N) variant in Cypher/ZASP is not a causative mutation in the families tested by us. The results also indicates that at least in some cases, the p.(D117N) in Cypher/ZASP is not a causative mutation and the role of D117N in Cypher/ZASP in cardiac pathologies should be further clarified and re-evaluated. PMID:26419279

  5. Identify mutation in amyotrophic lateral sclerosis cases using HaloPlex target enrichment system.

    PubMed

    Liu, Zhi-Jun; Li, Hong-Fu; Tan, Guo-He; Tao, Qing-Qing; Ni, Wang; Cheng, Xue-Wen; Xiong, Zhi-Qi; Wu, Zhi-Ying

    2014-12-01

    To date, at least 18 causative genes have been identified in amyotrophic lateral sclerosis (ALS). Because of the clinical and genetic heterogeneity, molecular diagnosis for ALS faces great challenges. HaloPlex target enrichment system is a new targeted sequencing approach, which can detect already known mutations or candidate genes. We performed this approach to screen 18 causative genes of ALS, including SOD1, SETX, FUS, ANG, TARDBP, ALS2, FIG4, VAPB, OPTN, DAO, VCP, UBQLN2, SPG11, SIGMAR1, DCTN1, SQSTM1, PFN1, and CHMP2B in 8 ALS probands. Using this approach, we got an average of 9.5 synonymous or missense mutations per sample. After validation by Sanger sequencing, we identified 3 documented SOD1 mutations (p.F21C, p.G148D, and p.C147R) and 1 novel DCTN1 p.G59R mutation in 4 probands. The novel DCTN1 mutation appeared to segregate with the disease in the pedigree and was absent in 200 control subjects. The high throughput and efficiency of this approach indicated that it could be applied to diagnose ALS and other inherited diseases with multiple causative genes in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Unlocking the Bottleneck in Forward Genetics Using Whole-Genome Sequencing and Identity by Descent to Isolate Causative Mutations

    PubMed Central

    Siggs, Owen M.; Miosge, Lisa A.; Roots, Carla M.; Enders, Anselm; Bertram, Edward M.; Crockford, Tanya L.; Whittle, Belinda; Potter, Paul K.; Simon, Michelle M.; Mallon, Ann-Marie; Brown, Steve D. M.; Beutler, Bruce; Goodnow, Christopher C.; Lunter, Gerton; Cornall, Richard J.

    2013-01-01

    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis. PMID:23382690

  7. A novel homozygous mutation in the FSHR gene is causative for primary ovarian insufficiency.

    PubMed

    Liu, Hongli; Xu, Xiaofei; Han, Ting; Yan, Lei; Cheng, Lei; Qin, Yingying; Liu, Wen; Zhao, Shidou; Chen, Zi-Jiang

    2017-12-01

    To identify the potential FSHR mutation in a Chinese woman with primary ovarian insufficiency (POI). Genetic and functional studies. University-based reproductive medicine center. A POI patient, her family members, and another 192 control women with regular menstruation. Ovarian biopsy was performed in the patient. Sanger sequencing was carried out for the patient, her sister, and parents. The novel variant identified was further confirmed with the use of control subjects. Sanger sequencing and genotype analysis to identify the potential variant of the FSHR gene; hematoxylin and eosin staining of the ovarian section to observe the follicular development; Western blotting and immunofluorescence to detect FSH receptor (FSHR) expression; and cyclic adenosine monophosphate (cAMP) assay to monitor FSH-induced signaling. Histologic examination of the ovaries in the patient revealed follicular development up to the early antral stage. Mutational screening and genotype analysis of the FSHR gene identified a novel homozygous mutation c.175C>T (p.R59X) in exon 2, which was inherited in the autosomal recessive mode from her heterozygous parents but was absent in her sister and the 192 control women. Functional studies demonstrated that in vitro the nonsense mutation caused the loss of full-length FSHR expression and that p.R59X mutant showed no response to FSH stimulation in the cAMP level. The mutation p.R59X in FSHR is causative for POI by means of arresting folliculogenesis. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. VCP gene analyses in Japanese patients with sporadic amyotrophic lateral sclerosis identify a new mutation.

    PubMed

    Hirano, Makito; Nakamura, Yusaku; Saigoh, Kazumasa; Sakamoto, Hikaru; Ueno, Shuichi; Isono, Chiharu; Mitsui, Yoshiyuki; Kusunoki, Susumu

    2015-03-01

    Accumulating evidence has proven that mutations in the VCP gene encoding valosin-containing protein (VCP) cause inclusion body myopathy with Paget disease of the bone and frontotemporal dementia. This gene was later found to be causative for amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, occurring typically in elderly persons. We thus sequenced the VCP gene in 75 Japanese patients with sporadic ALS negative for mutations in other genes causative for ALS and found a novel mutation, p.Arg487His, in 1 patient. The newly identified mutant as well as known mutants rendered neuronal cells susceptible to oxidative stress. The presence of the mutation in the Japanese population extends the geographic region for involvement of the VCP gene in sporadic ALS to East Asia. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy.

    PubMed

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo; Xu, Ge-Zhi

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. We identified two novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.

  10. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    PubMed Central

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  11. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis.

    PubMed

    Adam, Ronja; Spier, Isabel; Zhao, Bixiao; Kloth, Michael; Marquez, Jonathan; Hinrichsen, Inga; Kirfel, Jutta; Tafazzoli, Aylar; Horpaopan, Sukanya; Uhlhaas, Siegfried; Stienen, Dietlinde; Friedrichs, Nicolaus; Altmüller, Janine; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Kayser, Katrin; Thiele, Holger; Holinski-Feder, Elke; Marra, Giancarlo; Kristiansen, Glen; Nöthen, Markus M; Büttner, Reinhard; Möslein, Gabriela; Betz, Regina C; Brieger, Angela; Lifton, Richard P; Aretz, Stefan

    2016-08-04

    In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. A new mutation identified in SPATA16 in two globozoospermic patients.

    PubMed

    ElInati, Elias; Fossard, Camille; Okutman, Ozlem; Ghédir, Houda; Ibala-Romdhane, Samira; Ray, Pierre F; Saad, Ali; Hennebicq, Sylvianne; Viville, Stéphane

    2016-06-01

    The aim of this study is to identify potential genes involved in human globozoopsermia. Nineteen globozoospermic patients (previously screened for DPY19L2 mutations with no causative mutation) were recruited in this study and screened for mutations in genes implicated in human globozoospermia SPATA16 and PICK1. Using the candidate gene approach and the determination of Spata16 partners by Glutathione S-transferase (GST) pull-down four genes were also selected and screened for mutations. We identified a novel mutation of SPATA16: deletion of 22.6 Kb encompassing the first coding exon in two unrelated Tunisian patients who presented the same deletion breakpoints. The two patients shared the same haplotype, suggesting a possible ancestral founder effect for this new deletion. Four genes were selected using the candidate gene approach and the GST pull-down (GOPC, PICK1, AGFG1 and IRGC) and were screened for mutation, but no variation was identified. The present study confirms the pathogenicity of the SPATA16 mutations. The fact that no variation was detected in the coding sequence of AFGF1, GOPC, PICK1 and IRGC does not mean that they are not involved in human globozoospermia. A larger globozoospermic cohort must be studied in order to accelerate the process of identifying new genes involved in such phenotypes. Until sufficient numbers of patients have been screened, AFGF1, GOPC, PICK1 and IRGC should still be considered as candidate genes.

  13. Bovine exome sequence analysis and targeted SNP genotyping of recessive fertility defects BH1, HH2, and HH3 reveal a putative causative mutation in SMC2 for HH3.

    PubMed

    McClure, Matthew C; Bickhart, Derek; Null, Dan; Vanraden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B; Van Tassell, Curtis P; Sonstegard, Tad S

    2014-01-01

    The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array.

  14. Bovine Exome Sequence Analysis and Targeted SNP Genotyping of Recessive Fertility Defects BH1, HH2, and HH3 Reveal a Putative Causative Mutation in SMC2 for HH3

    PubMed Central

    McClure, Matthew C.; Bickhart, Derek; Null, Dan; VanRaden, Paul; Xu, Lingyang; Wiggans, George; Liu, George; Schroeder, Steve; Glasscock, Jarret; Armstrong, Jon; Cole, John B.; Van Tassell, Curtis P.; Sonstegard, Tad S.

    2014-01-01

    The recent discovery of bovine haplotypes with negative effects on fertility in the Brown Swiss, Holstein, and Jersey breeds has allowed producers to identify carrier animals using commercial single nucleotide polymorphism (SNP) genotyping assays. This study was devised to identify the causative mutations underlying defective bovine embryo development contained within three of these haplotypes (Brown Swiss haplotype 1 and Holstein haplotypes 2 and 3) by combining exome capture with next generation sequencing. Of the 68,476,640 sequence variations (SV) identified, only 1,311 genome-wide SNP were concordant with the haplotype status of 21 sequenced carriers. Validation genotyping of 36 candidate SNP identified only 1 variant that was concordant to Holstein haplotype 3 (HH3), while no variants located within the refined intervals for HH2 or BH1 were concordant. The variant strictly associated with HH3 is a non-synonymous SNP (T/C) within exon 24 of the Structural Maintenance of Chromosomes 2 (SMC2) on Chromosome 8 at position 95,410,507 (UMD3.1). This polymorphism changes amino acid 1135 from phenylalanine to serine and causes a non-neutral, non-tolerated, and evolutionarily unlikely substitution within the NTPase domain of the encoded protein. Because only exome capture sequencing was used, we could not rule out the possibility that the true causative mutation for HH3 might lie in a non-exonic genomic location. Given the essential role of SMC2 in DNA repair, chromosome condensation and segregation during cell division, our findings strongly support the non-synonymous SNP (T/C) in SMC2 as the likely causative mutation. The absence of concordant variations for HH2 or BH1 suggests either the underlying causative mutations lie within a non-exomic region or in exome regions not covered by the capture array. PMID:24667746

  15. An APRT mutation is strongly associated with and likely causative for 2,8-dihydroxyadenine urolithiasis in dogs.

    PubMed

    Furrow, Eva; Pfeifer, Randall J; Osborne, Carl A; Lulich, Jody P

    2014-03-01

    2,8-Dihydroxyadenine (2,8-DHA) urolithiasis in people is caused by autosomal recessive mutations in the adenine phosphoribosyltransferase gene (APRT). 2,8-DHA urolithiasis has recently been reported in two dogs, but, to the authors' knowledge, no studies have yet investigated the genetic basis for susceptibility to the development of 2,8-DHA urolithiasis in this species. Our aim was to sequence APRT in dogs affected by 2,8-DHA urolithiasis and compare the results to clinically healthy dogs of similar ancestral lineages. Our hypothesis was that we would identify an autosomal recessive mutation in APRT that is associated with the disease. The case population consisted of six dogs with a history of 2,8-DHA urolithiasis: five Native American Indian Dogs (NAIDs) and a mixed breed. The control population consisted of adult NAIDs with no history of urolithiasis. We sequenced APRT and identified a missense mutation in a highly conserved codon of APRT (c.260G>A; p.Arg87Gln). The c.260A mutation was present in a homozygous state in all six dogs with 2,8-DHA urolithiasis, and it was strongly associated with the disease. This exact missense mutation has been previously reported to cause loss of APRT enzyme function in a human cell line, and it is likely a causative mutation in dogs. Therefore, the dog offers a naturally-occurring genetic animal model for 2,8-DHA urolithiasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A three-step programmed method for the identification of causative gene mutations of maturity onset diabetes of the young (MODY).

    PubMed

    Li, Qian; Cao, Xi; Qiu, Hai-Yan; Lu, Jing; Gao, Rui; Liu, Chao; Yuan, Ming-Xia; Yang, Guang-Ran; Yang, Jin-Kui

    2016-08-22

    To establish a three-step programmed method to find gene mutations related to maturity onset diabetes of the young (MODY). Target region capture and next-generation sequencing (NGS) were performed using customized oligonucleotide probes designed to capture suspected genes for MODY in 11 probands with clinically diagnosed MODY. The suspected associations of certain genes with MODY were then confirmed by Sanger sequencing in the probands and their family members. Finally, to validate variants of one of the genes of interest (glucokinase, GCK) as pathogenic mutations, protein function editing by the variant genes was assessed. In the target region capture and NGS phase, a total of nine variants of seven genes (GCK, WFS1, SLC19A2, SH2B1, SERPINB4, RFX6, and GATA6) were identified in eight probands. Two heterozygous GCK mutations located on the same allele (p.Leu77Arg and p.Val101Met) were identified in a MODY family. Sanger sequencing was used to confirm the variants identified by NGS to be present in probands and their diabetic family members, but not in non-diabetic family members. Finally, enzyme kinetic and thermal stability analyses revealed that the p.Leu77Arg mutation or the p.Leu77Arg mutation in combination with the p.Val101Met mutation inactivates GCK function and stability, while mutation of p.Val101Met alone does not. The p.Leu77Arg but not p.Val101Met GCK mutation is therefore considered a pathogenic mutation associated with MODY. Genetic screening coupled with gene-editing protein function testing is an effective and reliable method by which causative gene mutations of MODY can be identified. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mutations in the newly identified RAX regulatory sequence are not a frequent cause of micro/anophthalmia.

    PubMed

    Chassaing, Nicolas; Vigouroux, Adeline; Calvas, Patrick

    2009-06-01

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (SOX2, OTX2, RAX, and CHX10) have been implicated in isolated micro/anophthalmia, but causative mutations of these genes explain less than a quarter of these developmental defects. A specifically conserved SOX2/OTX2-mediated RAX expression regulatory sequence has recently been identified. We postulated that mutations in this sequence could lead to micro/anophthalmia, and thus we performed molecular screening of this regulatory element in patients suffering from micro/anophthalmia. Fifty-one patients suffering from nonsyndromic microphthalmia (n = 40) or anophthalmia (n = 11) were included in this study after negative molecular screening for SOX2, OTX2, RAX, and CHX10 mutations. Mutation screening of the RAX regulatory sequence was performed by direct sequencing for these patients. No mutations were identified in the highly conserved RAX regulatory sequence in any of the 51 patients. Mutations in the newly identified RAX regulatory sequence do not represent a frequent cause of nonsyndromic micro/anophthalmia.

  18. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs.

    PubMed

    Cherel, Pierre; Pires, José; Glénisson, Jérôme; Milan, Denis; Iannuccelli, Nathalie; Hérault, Frédéric; Damon, Marie; Le Roy, Pascale

    2011-08-29

    Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major-effect mutations on the least affected

  19. Joint analysis of quantitative trait loci and major-effect causative mutations affecting meat quality and carcass composition traits in pigs

    PubMed Central

    2011-01-01

    Background Detection of quantitative trait loci (QTLs) affecting meat quality traits in pigs is crucial for the design of efficient marker-assisted selection programs and to initiate efforts toward the identification of underlying polymorphisms. The RYR1 and PRKAG3 causative mutations, originally identified from major effects on meat characteristics, can be used both as controls for an overall QTL detection strategy for diversely affected traits and as a scale for detected QTL effects. We report on a microsatellite-based QTL detection scan including all autosomes for pig meat quality and carcass composition traits in an F2 population of 1,000 females and barrows resulting from an intercross between a Pietrain and a Large White-Hampshire-Duroc synthetic sire line. Our QTL detection design allowed side-by-side comparison of the RYR1 and PRKAG3 mutation effects seen as QTLs when segregating at low frequencies (0.03-0.08), with independent QTL effects detected from most of the same population, excluding any carrier of these mutations. Results Large QTL effects were detected in the absence of the RYR1 and PRKGA3 mutations, accounting for 12.7% of phenotypic variation in loin colour redness CIE-a* on SSC6 and 15% of phenotypic variation in glycolytic potential on SSC1. We detected 8 significant QTLs with effects on meat quality traits and 20 significant QTLs for carcass composition and growth traits under these conditions. In control analyses including mutation carriers, RYR1 and PRKAG3 mutations were detected as QTLs, from highly significant to suggestive, and explained 53% to 5% of the phenotypic variance according to the trait. Conclusions Our results suggest that part of muscle development and backfat thickness effects commonly attributed to the RYR1 mutation may be a consequence of linkage with independent QTLs affecting those traits. The proportion of variation explained by the most significant QTLs detected in this work is close to the influence of major

  20. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform.

    PubMed

    Sharma, Shiwani; Burdon, Kathryn P; Dave, Alpana; Jamieson, Robyn V; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E

    2008-01-01

    Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the significance of NHS-A regions for

  1. A Mismatch EndoNuclease Array-Based Methodology (MENA) for Identifying Known SNPs or Novel Point Mutations.

    PubMed

    Comeron, Josep M; Reed, Jordan; Christie, Matthew; Jacobs, Julia S; Dierdorff, Jason; Eberl, Daniel F; Manak, J Robert

    2016-04-05

    Accurate and rapid identification or confirmation of single nucleotide polymorphisms (SNPs), point mutations and other human genomic variation facilitates understanding the genetic basis of disease. We have developed a new methodology (called MENA (Mismatch EndoNuclease Array)) pairing DNA mismatch endonuclease enzymology with tiling microarray hybridization in order to genotype both known point mutations (such as SNPs) as well as identify previously undiscovered point mutations and small indels. We show that our assay can rapidly genotype known SNPs in a human genomic DNA sample with 99% accuracy, in addition to identifying novel point mutations and small indels with a false discovery rate as low as 10%. Our technology provides a platform for a variety of applications, including: (1) genotyping known SNPs as well as confirming newly discovered SNPs from whole genome sequencing analyses; (2) identifying novel point mutations and indels in any genomic region from any organism for which genome sequence information is available; and (3) screening panels of genes associated with particular diseases and disorders in patient samples to identify causative mutations. As a proof of principle for using MENA to discover novel mutations, we report identification of a novel allele of the beethoven (btv) gene in Drosophila, which encodes a ciliary cytoplasmic dynein motor protein important for auditory mechanosensation.

  2. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform

    PubMed Central

    Burdon, Kathryn P.; Dave, Alpana; Jamieson, Robyn V.; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E.

    2008-01-01

    Purpose Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. Methods All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. Results Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. Conclusions This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the

  3. Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients.

    PubMed

    Maksemous, Neven; Smith, Robert A; Haupt, Larisa M; Griffiths, Lyn R

    2016-11-24

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic, hereditary, small vessel disease of the brain causing stroke and vascular dementia in adults. CADASIL has previously been shown to be caused by varying mutations in the NOTCH3 gene. The disorder is often misdiagnosed due to its significant clinical heterogeneic manifestation with familial hemiplegic migraine and several ataxia disorders as well as the location of the currently identified causative mutations. The aim of this study was to develop a new, comprehensive and efficient single assay strategy for complete molecular diagnosis of NOTCH3 mutations through the use of a custom next-generation sequencing (NGS) panel for improved routine clinical molecular diagnostic testing. Our custom NGS panel identified nine genetic variants in NOTCH3 (p.D139V, p.C183R, p.R332C, p.Y465C, p.C597W, p.R607H, p.E813E, p.C977G and p.Y1106C). Six mutations were stereotypical CADASIL mutations leading to an odd number of cysteine residues in one of the 34 NOTCH3 gene epidermal growth factor (EGF)-like repeats, including three new typical cysteine mutations identified in exon 11 (p.C597W; c.1791C>G); exon 18 (p.C977G; c.2929T>G) and exon 20 (p.Y1106C; c.3317A>G). Interestingly, a novel missense mutation in the CACNA1A gene was also identified in one CADASIL patient. All variants identified (novel and known) were further investigated using in silico bioinformatic analyses and confirmed through Sanger sequencing. NGS provides an improved and effective methodology for the diagnosis of CADASIL. The NGS approach reduced time and cost for comprehensive genetic diagnosis, placing genetic diagnostic testing within reach of more patients.

  4. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  5. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    PubMed

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Exome Sequencing Identified a Recessive RDH12 Mutation in a Family with Severe Early-Onset Retinitis Pigmentosa

    PubMed Central

    Gong, Bo; Wei, Bo; Huang, Lulin; Hao, Jilong; Li, Xiulan; Yang, Yin; Zhou, Yu; Hao, Fang; Cui, Zhihua; Zhang, Dingding; Wang, Le

    2015-01-01

    Retinitis pigmentosa (RP) is the most important hereditary retinal disease caused by progressive degeneration of the photoreceptor cells. This study is to identify gene mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in a Chinese family using next-generation sequencing technology. A Chinese family with 7 members including two individuals affected with severe early-onset RP was studied. All patients underwent a complete ophthalmic examination. Exome sequencing was performed on a single RP patient (the proband of this family) and direct Sanger sequencing on other family members and normal controls was followed to confirm the causal mutations. A homozygous mutation c.437Tidentified as being related to the phenotype of this arRP family. This homozygous mutation was detected in the two affected patients, but not present in other family members and 600 normal controls. Another three normal members in the family were found to carry this heterozygous missense mutation. Our results emphasize the importance of c.437Tcausative role of this mutation in the pathogenesis and clinical diagnosis of RP. PMID:26124963

  7. Germline mutations in SUFU cause Gorlin syndrome-associated childhood medulloblastoma and redefine the risk associated with PTCH1 mutations.

    PubMed

    Smith, Miriam J; Beetz, Christian; Williams, Simon G; Bhaskar, Sanjeev S; O'Sullivan, James; Anderson, Beverley; Daly, Sarah B; Urquhart, Jill E; Bholah, Zaynab; Oudit, Deemesh; Cheesman, Edmund; Kelsey, Anna; McCabe, Martin G; Newman, William G; Evans, D Gareth R

    2014-12-20

    Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome. © 2014 by American Society of Clinical Oncology.

  8. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    PubMed

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  9. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Pinto, Jose Renato; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Cowan, Jason; Morales, Ana; Parvatiyar, Michelle S.; Potter, James D.

    2009-01-01

    Background A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation. Methods and Results We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified six TNNT2 protein-altering variants in nine probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the nine probands had DCM without a family history, and five had familial DCM. Only one mutation (Lys210del) could be attributed as definitively causative from prior reports. Four of the five missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree and molecular genetic data these five mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca2+ sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease-causing. Conclusions We conclude that the combination of clinical, pedigree, molecular genetic and functional data strengthen the interpretation of TNNT2 mutations in DCM. PMID:20031601

  10. Whole-exome sequencing identified a homozygous FNBP4 mutation in a family with a condition similar to microphthalmia with limb anomalies.

    PubMed

    Kondo, Yukiko; Koshimizu, Eriko; Megarbane, Andre; Hamanoue, Haruka; Okada, Ippei; Nishiyama, Kiyomi; Kodera, Hirofumi; Miyatake, Satoko; Tsurusaki, Yoshinori; Nakashima, Mitsuko; Doi, Hiroshi; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi

    2013-07-01

    Microphthalmia with limb anomalies (MLA), also known as Waardenburg anophthalmia syndrome or ophthalmoacromelic syndrome, is a rare autosomal recessive disorder. Recently, we and others successfully identified SMOC1 as the causative gene for MLA. However, there are several MLA families without SMOC1 abnormality, suggesting locus heterogeneity in MLA. We aimed to identify a pathogenic mutation in one Lebanese family having an MLA-like condition without SMOC1 mutation by whole-exome sequencing (WES) combined with homozygosity mapping. A c.683C>T (p.Thr228Met) in FNBP4 was found as a primary candidate, drawing the attention that FNBP4 and SMOC1 may potentially modulate BMP signaling. Copyright © 2013 Wiley Periodicals, Inc.

  11. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis

    PubMed Central

    Soler, Vincent José; Tran-Viet, Khanh-Nhat; Galiacy, Stéphane D; Limviphuvadh, Vachiranee; Klemm, Thomas Patrick; St Germain, Elizabeth; Fournié, Pierre R; Guillaud, Céline; Maurer-Stroh, Sebastian; Hawthorne, Felicia; Suarez, Cyrielle; Kantelip, Bernadette; Afshari, Natalie A; Creveaux, Isabelle; Luo, Xiaoyan; Meng, Weihua; Calvas, Patrick; Cassagne, Myriam; Arné, Jean-Louis; Rozen, Steven G; Malecaze, François; Young, Terri L

    2014-01-01

    Background Corneal intraepithelial dyskeratosis is an extremely rare condition. The classical form, affecting Native American Haliwa-Saponi tribe members, is called hereditary benign intraepithelial dyskeratosis (HBID). Herein, we present a new form of corneal intraepithelial dyskeratosis for which we identified the causative gene by using deep sequencing technology. Methods and results A seven member Caucasian French family with two corneal intraepithelial dyskeratosis affected individuals (6-year-old proband and his mother) was ascertained. The proband presented with bilateral complete corneal opacification and dyskeratosis. Palmoplantar hyperkeratosis and laryngeal dyskeratosis were associated with the phenotype. Histopathology studies of cornea and vocal cord biopsies showed dyskeratotic keratinisation. Quantitative PCR ruled out 4q35 duplication, classically described in HBID cases. Next generation sequencing with mean coverage of 50× using the Illumina Hi Seq and whole exome capture processing was performed. Sequence reads were aligned, and screened for single nucleotide variants and insertion/deletion calls. In-house pipeline filtering analyses and comparisons with available databases were performed. A novel missense mutation M77T was discovered for the gene NLRP1 which maps to chromosome 17p13.2. This was a de novo mutation in the proband’s mother, following segregation in the family, and not found in 738 control DNA samples. NLRP1 expression was determined in adult corneal epithelium. The amino acid change was found to destabilise significantly the protein structure. Conclusions We describe a new corneal intraepithelial dyskeratosis and how we identified its causative gene. The NLRP1 gene product is implicated in inflammation, autoimmune disorders, and caspase mediated apoptosis. NLRP1 polymorphisms are associated with various diseases. PMID:23349227

  12. Whole exome analysis identifies dominant COL4A1 mutations in patients with complex ocular phenotypes involving microphthalmia.

    PubMed

    Deml, B; Reis, L M; Maheshwari, M; Griffis, C; Bick, D; Semina, E V

    2014-11-01

    Anophthalmia/microphthalmia (A/M) is a developmental ocular malformation defined as complete absence or reduction in size of the eye. A/M is a heterogenous disorder with numerous causative genes identified; however, about half the cases lack a molecular diagnosis. We undertook whole exome sequencing in an A/M family with two affected siblings, two unaffected siblings, and unaffected parents; the ocular phenotype was isolated with only mild developmental delay/learning difficulties reported and a normal brain magnetic resonance imaging (MRI) in the proband at 16 months. No pathogenic mutations were identified in 71 known A/M genes. Further analysis identified a shared heterozygous mutation in COL4A1, c.2317G>A, p.(Gly773Arg) that was not seen in the unaffected parents and siblings. Analysis of 24 unrelated A/M exomes identified a novel c.2122G>A, p.(Gly708Arg) mutation in an additional patient with unilateral microphthalmia, bilateral microcornea and Peters anomaly; the mutation was absent in the unaffected mother and the unaffected father was not available. Mutations in COL4A1 have been linked to a spectrum of human disorders; the most consistent feature is cerebrovascular disease with variable ocular anomalies, kidney and muscle defects. This study expands the spectrum of COL4A1 phenotypes and indicates screening in patients with A/M regardless of MRI findings or presumed inheritance pattern. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  14. Distribution of Gene Mutations Associated with Familial Normosmic Idiopathic Hypogonadotropic Hypogonadism

    PubMed Central

    Gürbüz, Fatih; Kotan, L. Damla; Mengen, Eda; Şıklar, Zeynep; Berberoğlu, Merih; Dökmetaş, Sebila; Kılıçlı, Mehmet Fatih; Güven, Ayla; Kirel, Birgül; Saka, Nurçin; Poyrazoğlu, Şükran; Cesur, Yaşar; Doğan, Murat; Özen, Samim; Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Kekil, M. Burcu; Temiz, Fatih; Önenli Mungan, Neslihan; Yüksel, Bilgin; Topaloğlu, Ali Kemal

    2012-01-01

    Objective: Normosmic idiopathic hypogonadotropic hypogonadism (nIHH) is characterized by failure of initiation or maintenance of puberty due to insufficient gonadotropin release, which is not associated with anosmia/hyposmia. The objective of this study was to determine the distribution of causative mutations in a hereditary form of nIHH. Methods: In this prospective collaborative study, 22 families with more than one affected individual (i.e. multiplex families) with nIHH were recruited and screened for genes known or suspected to be strong candidates for nIHH. Results: Mutations were identified in five genes (GNRHR, TACR3, TAC3, KISS1R, and KISS1) in 77% of families with autosomal recessively inherited nIHH. GNRHR and TACR3 mutations were the most common two causative mutations occurring with about equal frequency. Conclusions: Mutations in these five genes account for about three quarters of the causative mutations in nIHH families with more than one affected individual. This frequency is significantly greater than the previously reported rates in all inclusive (familial plus sporadic) cohorts. GNRHR and TACR3 should be the first two genes to be screened for diagnostic purposes. Identification of causative mutations in the remaining families will shed light on the regulation of puberty. Conflict of interest:None declared. PMID:22766261

  15. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    PubMed

    Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen

    2010-12-03

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.

  16. Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype.

    PubMed

    Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia

    2016-11-01

    Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Diagnostic screening identifies a wide range of mutations involving the SHOX gene, including a common 47.5 kb deletion 160 kb downstream with a variable phenotypic effect.

    PubMed

    Bunyan, David J; Baker, Kevin R; Harvey, John F; Thomas, N Simon

    2013-06-01

    Léri-Weill dyschondrosteosis (LWD) results from heterozygous mutations of the SHOX gene, with homozygosity or compound heterozygosity resulting in the more severe form, Langer mesomelic dysplasia (LMD). These mutations typically take the form of whole or partial gene deletions, point mutations within the coding sequence, or large (>100 kb) 3' deletions of downstream regulatory elements. We have analyzed the coding sequence of the SHOX gene and its downstream regulatory regions in a cohort of 377 individuals referred with symptoms of LWD, LMD or short stature. A causative mutation was identified in 68% of the probands with LWD or LMD (91/134). In addition, a 47.5 kb deletion was found 160 kb downstream of the SHOX gene in 17 of the 377 patients (12% of the LWD referrals, 4.5% of all referrals). In 14 of these 17 patients, this was the only potentially causative abnormality detected (13 had symptoms consistent with LWD and one had short stature only), but the other three 47.5 kb deletions were found in patients with an additional causative SHOX mutation (with symptoms of LWD rather than LMD). Parental samples were available on 14/17 of these families, and analysis of these showed a more variable phenotype ranging from apparently unaffected to LWD. Breakpoint sequence analysis has shown that the 47.5 kb deletion is identical in all 17 patients, most likely due to an ancient founder mutation rather than recurrence. This deletion was not seen in 471 normal controls (P<0.0001), providing further evidence for a phenotypic effect, albeit one with variable penetration. Copyright © 2013 Wiley Periodicals, Inc.

  18. A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.

    PubMed

    Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang

    2017-10-10

    Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.

  19. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development

    PubMed Central

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-01-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae, a distant relative of the model Caenorhabditis elegans. We used this draft to identify the likely causative mutations at the O. tipulae cov-3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13, and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. PMID:28630114

  20. [Rapid detection of hot spot mutations of FGFR3 gene with PCR-high resolution melting assay].

    PubMed

    Li, Shan; Wang, Han; Su, Hua; Gao, Jinsong; Zhao, Xiuli

    2017-08-10

    To identify the causative mutations in five individuals affected with dyschondroplasia and develop an efficient procedure for detecting hot spot mutations of the FGFR3 gene. Genomic DNA was extracted from peripheral blood samples with a standard phenol/chloroform method. PCR-Sanger sequencing was used to analyze the causative mutations in the five probands. PCR-high resolution melting (HRM) was developed to detect the identified mutations. A c.1138G>A mutation in exon 8 was found in 4 probands, while a c.1620C>G mutation was found in exon 11 of proband 5 whom had a mild phenotype. All patients were successfully distinguished from healthy controls with the PCR-HRM method. The results of HRM analysis were highly consistent with that of Sanger sequencing. The Gly380Arg and Asn540Lys are hot spot mutations of the FGFR3 gene among patients with ACH/HCH. PCR-HRM analysis is more efficient for detecting hot spot mutations of the FGFR3 gene.

  1. Waardenburg syndrome: Novel mutations in a large Brazilian sample.

    PubMed

    Bocángel, Magnolia Astrid Pretell; Melo, Uirá Souto; Alves, Leandro Ucela; Pardono, Eliete; Lourenço, Naila Cristina Vilaça; Marcolino, Humberto Vicente Cezar; Otto, Paulo Alberto; Mingroni-Netto, Regina Célia

    2018-06-01

    This paper deals with the molecular investigation of Waardenburg syndrome (WS) in a sample of 49 clinically diagnosed probands (most from southeastern Brazil), 24 of them having the type 1 (WS1) variant (10 familial and 14 isolated cases) and 25 being affected by the type 2 (WS2) variant (five familial and 20 isolated cases). Sequential Sanger sequencing of all coding exons of PAX3, MITF, EDN3, EDNRB, SOX10 and SNAI2 genes, followed by CNV detection by MLPA of PAX3, MITF and SOX10 genes in selected cases revealed many novel pathogenic variants. Molecular screening, performed in all patients, revealed 19 causative variants (19/49 = 38.8%), six of them being large whole-exon deletions detected by MLPA, seven (four missense and three nonsense substitutions) resulting from single nucleotide substitutions (SNV), and six representing small indels. A pair of dizygotic affected female twins presented the c.430delC variant in SOX10, but the mutation, imputed to gonadal mosaicism, was not found in their unaffected parents. At least 10 novel causative mutations, described in this paper, were found in this Brazilian sample. Copy-number-variation detected by MLPA identified the causative mutation in 12.2% of our cases, corresponding to 31.6% of all causative mutations. In the majority of cases, the deletions were sporadic, since they were not present in the parents of isolated cases. Our results, as a whole, reinforce the fact that the screening of copy-number-variants by MLPA is a powerful tool to identify the molecular cause in WS patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development.

    PubMed

    Besnard, Fabrice; Koutsovoulos, Georgios; Dieudonné, Sana; Blaxter, Mark; Félix, Marie-Anne

    2017-08-01

    Mapping-by-sequencing has become a standard method to map and identify phenotype-causing mutations in model species. Here, we show that a fragmented draft assembly is sufficient to perform mapping-by-sequencing in nonmodel species. We generated a draft assembly and annotation of the genome of the free-living nematode Oscheius tipulae , a distant relative of the model Caenorhabditis elegans We used this draft to identify the likely causative mutations at the O. tipulae cov -3 locus, which affect vulval development. The cov-3 locus encodes the O. tipulae ortholog of C. elegans mig-13 , and we further show that Cel-mig-13 mutants also have an unsuspected vulval-development phenotype. In a virtuous circle, we were able to use the linkage information collected during mutant mapping to improve the genome assembly. These results showcase the promise of genome-enabled forward genetics in nonmodel species. Copyright © 2017 by the Genetics Society of America.

  3. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.

    PubMed

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-02-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.

  4. Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes

    PubMed Central

    Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich

    2012-01-01

    The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404

  5. Exome Sequencing Identifies a Novel Nonsense Mutation of MYO6 as the Cause of Deafness in a Brazilian Family.

    PubMed

    Sampaio-Silva, Juliana; Batissoco, Ana Carla; Jesus-Santos, Rafaela; Abath-Neto, Osório; Scarpelli, Luciano Cesar; Nishimura, Patricia Yoshie; Galindo, Layla Testa; Bento, Ricardo Ferreira; Oiticica, Jeanne; Lezirovitz, Karina

    2018-01-01

    We investigated 313 unrelated subjects who presented with hearing loss to identify the novel genetic causes of this condition in Brazil. Causative GJB2/GJB6 mutations were found in 12.7% of the patients. Among the familial cases (100/313), four were selected for exome sequencing. In one case, two novel heterozygous variants were found and were predicted to be pathogenic based on bioinformatics tools, that is, p.Ser906* (MYO6) and p.Arg42Cys (GJB3). We confirmed that this nonsense MYO6 mutation segregated with deafness in this family. Only the proband and her unaffected mother exhibited the GJB3 mutation, which is in the same amino acid of a known Erythrokeratodermia variabilis mutation. None of the patients exhibited this skin disease, but the proband exhibited a more severe hearing loss. Hence, the GJB3 mutation was considered to be a variant of uncertain significance. In conclusion, we described a novel nonsense MYO6 mutation that was responsible for the hearing loss in a Brazilian family. This mutation resides in the neck domain of myosin-VI after the motor domain. Thus, our data give further support for genotype-phenotype correlations, which state that when the motor domain of the protein is functioning, the hearing loss is milder and has a later onset. The three remaining families without mutations in the known genes suggest that there are still deafness genes to be revealed. © 2017 John Wiley & Sons Ltd/University College London.

  6. Mutations in AAGAB underlie autosomal dominant punctate palmoplantar keratoderma.

    PubMed

    Dinani, N; Ali, M; Liu, L; McGrath, J; Mellerio, J

    2017-04-01

    Punctate palmoplantar keratoderma type 1 (PPPK1) is a rare autosomal dominant inherited skin disease, characterized by multiple hyperkeratotic lesions on the palms and soles. The causative gene for PPPK1 has been identified as AAGAB, which encodes α- and γ-adaptin-binding protein p34. We describe the clinical features in three unrelated families with PPPK1, and report three recurrent causative mutations in AAGAB. © 2017 British Association of Dermatologists.

  7. A novel start codon mutation of the MERTK gene in a patient with retinitis pigmentosa

    PubMed Central

    Jinda, Worapoj; Poungvarin, Naravat; Taylor, Todd D.; Suzuki, Yutaka; Thongnoppakhun, Wanna; Limwongse, Chanin; Lertrit, Patcharee; Suriyaphol, Prapat

    2016-01-01

    Purpose Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous group of inherited retinal degenerations characterized by progressive loss of photoreceptor cells and RPE functions. More than 70 causative genes are known to be responsible for RP. This study aimed to identify the causative gene in a patient from a consanguineous family with childhood-onset severe retinal dystrophy. Methods To identify the defective gene, whole exome sequencing was performed. Candidate causative variants were selected and validated using Sanger sequencing. Segregation analysis of the causative gene was performed in additional family members. To verify that the mutation has an effect on protein synthesis, an expression vector containing the first ten amino acids of the mutant protein fused with the DsRed2 fluorescent protein was constructed and transfected into HEK293T cells. Expression of the fusion protein in the transfected cells was measured using fluorescence microscopy. Results By filtering against public variant databases, a novel homozygous missense mutation (c.3G>A) localized in the start codon of the MERTK gene was detected as a potentially pathogenic mutation for autosomal recessive RP. The c.3G>A mutation cosegregated with the disease phenotype in the family. No expression of the first ten amino acids of the MerTK mutant fused with the DsRed2 fluorescent protein was detected in HEK293T cells, indicating that the mutation affects the translation initiation site of the gene that may lead to loss of function of the MerTK signaling pathway. Conclusions We report a novel missense mutation (c.3G>A, p.0?) in the MERTK gene that causes severe vision impairment in a patient. Taken together with previous reports, our results expand the spectrum of MERTK mutations and extend our understanding of the role of the MerTK protein in the pathogenesis of retinitis pigmentosa. PMID:27122965

  8. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.

    PubMed

    Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel

    2018-03-29

    Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.

  10. Observational goals for Max '91 to identify the causative agent for impulsive bursts

    NASA Technical Reports Server (NTRS)

    Batchelor, D. A.

    1989-01-01

    Recent studies of impulsive hard x ray and microwave bursts suggest that a propagating causative agent with a characteristic velocity of the order of 1000 km/s is responsible for these bursts. The results of these studies are summarized and observable distinguishing characteristics of the various possible agents are highlighted, with emphasis on key observational goals for the Max '91 campaigns. The most likely causative agents suggested by the evidence are shocks, thermal conduction fronts, and propagating modes of magnetic reconnection in flare plasmas. With new instrumentation planned for Max '91, high spatial resolution observations of hard x ray sources have the potential to identify the agent by revealing detailed features of source spatial evolution. Observations with the Very Large Array and other radio imaging instruments are of great importance, as well as detailed modeling of coronal loop structures to place limits on their density and temperature profiles. With the combined hard x ray and microwave imaging observations, aided by loop model results, the simplest causative agent to rule out would be the propagating modes of magnetic reconnection. To fit the observational evidence, reconnection modes would need to travel at approximately the same velocity (the Alfven velocity) in different coronal structures that vary in length by a factor of 10(exp 3). Over such a vast range in loop lengths, it is difficult to believe that the Alfven velocity is constant. Thermal conduction fronts would be suggested by sources that expand along the direction of B and exhibit relatively little particle precipitation. Particle acceleration due to shocks could produce more diverse radially expanding source geometries with precipitation at loop footprints.

  11. Single-Exome sequencing identified a novel RP2 mutation in a child with X-linked retinitis pigmentosa.

    PubMed

    Lim, Hassol; Park, Young-Mi; Lee, Jong-Keuk; Taek Lim, Hyun

    2016-10-01

    To present an efficient and successful application of a single-exome sequencing study in a family clinically diagnosed with X-linked retinitis pigmentosa. Exome sequencing study based on clinical examination data. An 8-year-old proband and his family. The proband and his family members underwent comprehensive ophthalmologic examinations. Exome sequencing was undertaken in the proband using Agilent SureSelect Human All Exon Kit and Illumina HiSeq 2000 platform. Bioinformatic analysis used Illumina pipeline with Burrows-Wheeler Aligner-Genome Analysis Toolkit (BWA-GATK), followed by ANNOVAR to perform variant functional annotation. All variants passing filter criteria were validated by Sanger sequencing to confirm familial segregation. Analysis of exome sequence data identified a novel frameshift mutation in RP2 gene resulting in a premature stop codon (c.665delC, p.Pro222fsTer237). Sanger sequencing revealed this mutation co-segregated with the disease phenotype in the child's family. We identified a novel causative mutation in RP2 from a single proband's exome sequence data analysis. This study highlights the effectiveness of the whole-exome sequencing in the genetic diagnosis of X-linked retinitis pigmentosa, over the conventional sequencing methods. Even using a single exome, exome sequencing technology would be able to pinpoint pathogenic variant(s) for X-linked retinitis pigmentosa, when properly applied with aid of adequate variant filtering strategy. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  12. Mutation Spectrum of the LRP5, NDP, and TSPAN12 Genes in Chinese Patients With Familial Exudative Vitreoretinopathy.

    PubMed

    Tang, Miao; Sun, Limei; Hu, Andina; Yuan, Miner; Yang, Yu; Peng, Xuening; Ding, Xiaoyan

    2017-11-01

    LRP5, NDP, and TSPAN12 are known to be associated with familial exudative vitreoretinopathy (FEVR). In this study, a comprehensive mutation screening for the three genes was performed in patients with a clinical diagnosis of FEVR in Han Chinese. Genomic DNA and clinical data were collected from 100 probands and their family members. Sanger sequencing was performed to screen for LRP5, NDP, and TSPAN12 mutations and phenotype-genotype correlation was analyzed. There were 23 causative mutations identified in 23 unrelated probands (10/23 in LRP5, 8/23 in TSPAN12, and 5/23 in NDP). Apart from NDP mutations, only two LRP5 mutations inherited in an autosomal recessive manner. Among the 23 causative mutations, 13 were novel variants (4/10 in LRP5, 6/8 in TSPAN12, and 3/5 in NDP). According to the modified classification system, statistical significance was observed in the distribution of mutated genes (P = 0.049). None of the causative mutations was found in group I FEVR. Probands with LRP5 or NDP mutations were mainly categorized into group III and IV, TSPAN12 mutations were mainly observed in probands with group IV and V FEVR. The detection rate for mutations in the three known genes was 23%. Mutations in LRP5 and TSPAN12 were more frequent, accounting for 10% and 8%, respectively. The NDP mutations were only identified in 6% in this cohort. There were 13 novel variants found, which provided a deeper understanding of this disease. Potential phenotype-genotype correlation was observed in the modified system. TSPAN12 mutations might lead to the most severe phenotype.

  13. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  14. Phenotypic spectrum and prevalence of INPP5E mutations in Joubert syndrome and related disorders.

    PubMed

    Travaglini, Lorena; Brancati, Francesco; Silhavy, Jennifer; Iannicelli, Miriam; Nickerson, Elizabeth; Elkhartoufi, Nadia; Scott, Eric; Spencer, Emily; Gabriel, Stacey; Thomas, Sophie; Ben-Zeev, Bruria; Bertini, Enrico; Boltshauser, Eugen; Chaouch, Malika; Cilio, Maria Roberta; de Jong, Mirjam M; Kayserili, Hulya; Ogur, Gonul; Poretti, Andrea; Signorini, Sabrina; Uziel, Graziella; Zaki, Maha S; Johnson, Colin; Attié-Bitach, Tania; Gleeson, Joseph G; Valente, Enza Maria

    2013-10-01

    Joubert syndrome and related disorders (JSRD) are clinically and genetically heterogeneous ciliopathies sharing a peculiar midbrain-hindbrain malformation known as the 'molar tooth sign'. To date, 19 causative genes have been identified, all coding for proteins of the primary cilium. There is clinical and genetic overlap with other ciliopathies, in particular with Meckel syndrome (MKS), that is allelic to JSRD at nine distinct loci. We previously identified the INPP5E gene as causative of JSRD in seven families linked to the JBTS1 locus, yet the phenotypic spectrum and prevalence of INPP5E mutations in JSRD and MKS remain largely unknown. To address this issue, we performed INPP5E mutation analysis in 483 probands, including 408 JSRD patients representative of all clinical subgroups and 75 MKS fetuses. We identified 12 different mutations in 17 probands from 11 JSRD families, with an overall 2.7% mutation frequency among JSRD. The most common clinical presentation among mutated families (7/11, 64%) was Joubert syndrome with ocular involvement (either progressive retinopathy and/or colobomas), while the remaining cases had pure JS. Kidney, liver and skeletal involvement were not observed. None of the MKS fetuses carried INPP5E mutations, indicating that the two ciliopathies are not allelic at this locus.

  15. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma.

    PubMed

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-03-03

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies.

  16. Exome Sequencing Identifies Potentially Druggable Mutations in Nasopharyngeal Carcinoma

    PubMed Central

    Chow, Yock Ping; Tan, Lu Ping; Chai, San Jiun; Abdul Aziz, Norazlin; Choo, Siew Woh; Lim, Paul Vey Hong; Pathmanathan, Rajadurai; Mohd Kornain, Noor Kaslina; Lum, Chee Lun; Pua, Kin Choo; Yap, Yoke Yeow; Tan, Tee Yong; Teo, Soo Hwang; Khoo, Alan Soo-Beng; Patel, Vyomesh

    2017-01-01

    In this study, we first performed whole exome sequencing of DNA from 10 untreated and clinically annotated fresh frozen nasopharyngeal carcinoma (NPC) biopsies and matched bloods to identify somatically mutated genes that may be amenable to targeted therapeutic strategies. We identified a total of 323 mutations which were either non-synonymous (n = 238) or synonymous (n = 85). Furthermore, our analysis revealed genes in key cancer pathways (DNA repair, cell cycle regulation, apoptosis, immune response, lipid signaling) were mutated, of which those in the lipid-signaling pathway were the most enriched. We next extended our analysis on a prioritized sub-set of 37 mutated genes plus top 5 mutated cancer genes listed in COSMIC using a custom designed HaloPlex target enrichment panel with an additional 88 NPC samples. Our analysis identified 160 additional non-synonymous mutations in 37/42 genes in 66/88 samples. Of these, 99/160 mutations within potentially druggable pathways were further selected for validation. Sanger sequencing revealed that 77/99 variants were true positives, giving an accuracy of 78%. Taken together, our study indicated that ~72% (n = 71/98) of NPC samples harbored mutations in one of the four cancer pathways (EGFR-PI3K-Akt-mTOR, NOTCH, NF-κB, DNA repair) which may be potentially useful as predictive biomarkers of response to matched targeted therapies. PMID:28256603

  17. Identification of a novel CLRN1 gene mutation in Usher syndrome type 3: two case reports.

    PubMed

    Yoshimura, Hidekane; Oshikawa, Chie; Nakayama, Jun; Moteki, Hideaki; Usami, Shin-Ichi

    2015-05-01

    This study examines the CLRN1 gene mutation analysis in Japanese patients who were diagnosed with Usher syndrome type 3 (USH3) on the basis of clinical findings. Genetic analysis using massively parallel DNA sequencing (MPS) was conducted to search for 9 causative USH genes in 2 USH3 patients. We identified the novel pathogenic mutation in the CLRN1 gene in 2 patients. The missense mutation was confirmed by functional prediction software and segregation analysis. Both patients were diagnosed as having USH3 caused by the CLRN1 gene mutation. This is the first report of USH3 with a CLRN1 gene mutation in Asian populations. Validating the presence of clinical findings is imperative for properly differentiating among USH subtypes. In addition, mutation screening using MPS enables the identification of causative mutations in USH. The clinical diagnosis of this phenotypically variable disease can then be confirmed. © The Author(s) 2015.

  18. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  19. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  20. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3.

    PubMed

    Eisenberger, Tobias; Slim, Rima; Mansour, Ahmad; Nauck, Markus; Nürnberg, Gudrun; Nürnberg, Peter; Decker, Christian; Dafinger, Claudia; Ebermann, Inga; Bergmann, Carsten; Bolz, Hanno Jörn

    2012-09-02

    Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.

  1. Recently Identified Mutations in the Ebola Virus-Makona Genome Do Not Alter Pathogenicity in Animal Models.

    PubMed

    Marzi, Andrea; Chadinah, Spencer; Haddock, Elaine; Feldmann, Friederike; Arndt, Nicolette; Martellaro, Cynthia; Scott, Dana P; Hanley, Patrick W; Nyenswah, Tolbert G; Sow, Samba; Massaquoi, Moses; Feldmann, Heinz

    2018-05-08

    Ebola virus (EBOV), isolate Makona, the causative agent of the West African EBOV epidemic, has been the subject of numerous investigations to determine the genetic diversity and its potential implication for virus biology, pathogenicity, and transmissibility. Despite various mutations that have emerged over time through multiple human-to-human transmission chains, their biological relevance remains questionable. Recently, mutations in the glycoprotein GP and polymerase L, which emerged and stabilized early during the outbreak, have been associated with improved viral fitness in cell culture. Here, we infected mice and rhesus macaques with EBOV-Makona isolates carrying or lacking those mutations. Surprisingly, all isolates behaved very similarly independent of the genotype, causing severe or lethal disease in mice and macaques, respectively. Likewise, we could not detect any evidence for differences in virus shedding. Thus, no specific biological phenotype could be associated with these EBOV-Makona mutations in two animal models. Published by Elsevier Inc.

  2. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    PubMed

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  3. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with

  4. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  5. Identification of a novel splicing mutation within SLC17A8 in a Korean family with hearing loss by whole-exome sequencing.

    PubMed

    Ryu, Nari; Lee, Seokwon; Park, Hong-Joon; Lee, Byeonghyeon; Kwon, Tae-Jun; Bok, Jinwoong; Park, Chan Ik; Lee, Kyu-Yup; Baek, Jeong-In; Kim, Un-Kyung

    2017-09-05

    Hereditary hearing loss (HHL) is a common genetically heterogeneous disorder, which follows Mendelian inheritance in humans. Because of this heterogeneity, the identification of the causative gene of HHL by linkage analysis or Sanger sequencing have shown economic and temporal limitations. With recent advances in next-generation sequencing (NGS) techniques, rapid identification of a causative gene via massively parallel sequencing is now possible. We recruited a Korean family with three generations exhibiting autosomal dominant inheritance of hearing loss (HL), and the clinical information about this family revealed that there are no other symptoms accompanied with HL. To identify a causative mutation of HL in this family, we performed whole-exome sequencing of 4 family members, 3 affected and an unaffected. As the result, A novel splicing mutation, c.763+1G>T, in the solute carrier family 17, member 8 (SLC17A8) gene was identified in the patients, and the genotypes of the mutation were co-segregated with the phenotype of HL. Additionally, this mutation was not detected in 100 Koreans with normal hearing. Via NGS, we detected a novel splicing mutation that might influence the hearing ability within the patients with autosomal dominant non-syndromic HL. Our data suggests that this technique is a powerful tool to discover causative genetic factors of HL and facilitate diagnoses of the primary cause of HHL. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A novel missense mutation in the HECT domain of NEDD4L identified in a girl with periventricular nodular heterotopia, polymicrogyria and cleft palate.

    PubMed

    Kato, Koji; Miya, Fuyuki; Hori, Ikumi; Ieda, Daisuke; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2017-09-01

    We identified a novel de novo heterozygous missense mutation in the NEDD4L gene (NM_015277: c.2617G>A; p.Glu873Lys) through whole-exome sequencing in a 3-year-old girl showing severe global developmental delay, infantile spasms, cleft palate, periventricular nodular heterotopia and polymicrogyria. Mutations in the HECT domain of NEDD4L have been reported in patients with a neurodevelopmental disorder along with similar brain malformations. All patients reported with NEDD4L HECT domain mutations showed periventricular nodular heterotopia, and most had seizures, cortex anomalies, cleft palate and syndactyly. The unique constellation of clinical features in patients with NEDD4L mutations might help clinically distinguish them from patients with other genetic mutations including FLNA, which is a well-known causative gene of periventricular nodular heterotopia. Although mutations in the HECT domain of NEDD4L that lead to AKT-mTOR pathway deregulation in forced expression system were reported, our western blot analysis did not show an increased level of AKT-mTOR activity in lymphoblastoid cell lines (LCLs) derived from the patient. In contrast to the forced overexpression system, AKT-mTOR pathway deregulation in LCLs derived from our patient seems to be subtle.

  7. Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families

    PubMed Central

    Khan, Shahid Y.; Ali, Shahbaz; Naeem, Muhammad Asif; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was conducted to localize and identify causal mutations associated with autosomal recessive retinitis pigmentosa (RP) in consanguineous familial cases of Pakistani origin. Methods Ophthalmic examinations that included funduscopy and electroretinography (ERG) were performed to confirm the affectation status. Blood samples were collected from all participating individuals, and genomic DNA was extracted. A genome-wide scan was performed, and two-point logarithm of odds (LOD) scores were calculated. Sanger sequencing was performed to identify the causative variants. Subsequently, we performed whole exome sequencing to rule out the possibility of a second causal variant within the linkage interval. Sequence conservation was performed with alignment analyses of PDE6A orthologs, and in silico splicing analysis was completed with Human Splicing Finder version 2.4.1. Results A large multigenerational consanguineous family diagnosed with early-onset RP was ascertained. An ophthalmic clinical examination consisting of fundus photography and electroretinography confirmed the diagnosis of RP. A genome-wide scan was performed, and suggestive two-point LOD scores were observed with markers on chromosome 5q. Haplotype analyses identified the region; however, the region did not segregate with the disease phenotype in the family. Subsequently, we performed a second genome-wide scan that excluded the entire genome except the chromosome 5q region harboring PDE6A. Next-generation whole exome sequencing identified a splice acceptor site mutation in intron 16: c.2028–1G>A, which was completely conserved in PDE6A orthologs and was absent in ethnically matched 350 control chromosomes, the 1000 Genomes database, and the NHLBI Exome Sequencing Project. Subsequently, we investigated our entire cohort of RP familial cases and identified a second family who harbored a splice acceptor site mutation in intron 10: c.1408–2A>G. In silico analysis suggested that these

  8. Recapitulating X-Linked Juvenile Retinoschisis in Mouse Model by Knock-In Patient-Specific Novel Mutation.

    PubMed

    Chen, Ding; Xu, Tao; Tu, Mengjun; Xu, Jinlin; Zhou, Chenchen; Cheng, Lulu; Yang, Ruqing; Yang, Tanchu; Zheng, Weiwei; He, Xiubin; Deng, Ruzhi; Ge, Xianglian; Li, Jin; Song, Zongming; Zhao, Junzhao; Gu, Feng

    2017-01-01

    X-linked juvenile retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding retinoschisin (RS1), which leads to a significant proportion of visual impairment and blindness. To develop personalized genome editing based gene therapy, knock-in animal disease models that have the exact mutation identified in the patients is extremely crucial, and that the way which genome editing in knock-in animals could be easily transferred to the patients. Here we recruited a family diagnosed with XLRS and identified the causative mutation ( RS1 , p.Y65X), then a knock-in mouse model harboring this disease-causative mutation was generated via TALEN (transcription activator-like effector nucleases). We found that the b-wave amplitude of the ERG of the RS1 -KI mice was significantly decreased. Moreover, we observed that the structure of retina in RS1 -KI mice has become disordered, including the disarray of inner nuclear layer and outer nuclear layer, chaos of outer plexiform layer, decreased inner segments of photoreceptor and the loss of outer segments. The novel knock-in mice ( RS1 -KI) harboring patient-specific mutation will be valuable for development of treatment via genome editing mediated gene correction.

  9. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    PubMed

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  10. Somatic mutation detection in human biomonitoring.

    PubMed

    Olsen, L S; Nielsen, L R; Nexø, B A; Wassermann, K

    1996-06-01

    Somatic cell gene mutation arising in vivo may be considered to be a biomarker for genotoxicity. Assays detecting mutations of the haemoglobin and glycophorin A genes in red blood cells and of the hypoxanthine-guanine phosphoribosyltransferase and human leucocyte antigenes in T-lymphocytes are available in humans. This MiniReview describes these assays and their application to studies of individuals exposed to genotoxic agents. Moreover, with the implementation of techniques of molecular biology mutation spectra can now be defined in addition to the quantitation of in vivo mutant frequencies. We describe current screening methods for unknown mutations, including the denaturing gradient gel electrophoresis, single strand conformation polymorphism analysis, heteroduplex analysis, chemical modification techniques and enzymatic cleavage methods. The advantage of mutation detection as a biomarker is that it integrates exposure and sensitivity in one measurement. With the analysis of mutation spectra it may thus be possible to identify the causative genotoxic agent.

  11. The Mutations Associated with Dilated Cardiomyopathy

    PubMed Central

    Parvari, Ruti; Levitas, Aviva

    2012-01-01

    Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes. PMID:22830024

  12. The mutations associated with dilated cardiomyopathy.

    PubMed

    Parvari, Ruti; Levitas, Aviva

    2012-01-01

    Cardiomyopathy is an important cause of heart failure and a major indication for heart transplantation in children and adults. This paper describes the state of the genetic knowledge of dilated cardiomyopathy (DCM). The identification of the causing mutation is important since presymptomatic interventions of DCM have proven value in preventing morbidity and mortality. Additionally, as in general in genetic studies, the identification of the mutated genes has a direct clinical impact for the families and population involved. Identifying causative mutations immediately amplifies the possibilities for disease prevention through carrier screening and prenatal testing. This often lifts a burden of social isolation from affected families, since healthy family members can be assured of having healthy children. Identification of the mutated genes holds the potential to lead to the understanding of disease etiology, pathophysiology, and therefore potential therapy. This paper presents the genetic variations, or disease-causing mutations, contributing to the pathogenesis of hereditary DCM, and tries to relate these to the functions of the mutated genes.

  13. Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis.

    PubMed

    Smith, Miriam J; Wallace, Andrew J; Bowers, Naomi L; Rustad, Cecilie F; Woods, C Geoff; Leschziner, Guy D; Ferner, Rosalie E; Evans, D Gareth R

    2012-05-01

    Mutations of the SMARCB1 gene have been implicated in several human tumour predisposing syndromes. They have recently been identified as an underlying cause of the tumour suppressor syndrome schwannomatosis. There is a much higher rate of mutation detection in familial disease than in sporadic disease. We have carried out extensive genetic testing on a cohort of familial and sporadic patients who fulfilled clinical diagnostic criteria for schwannomatosis. In our current cohort, we identified novel mutations within the SMARCB1 gene and detected several mutations that have been previously identified in other schwannomatosis cohorts. Of the schwannomatosis screens reported to date, including our current dataset, SMARCB1 mutations have been found in 45 % of familial probands and 7 % of sporadic patients. The exon 1 mutation, c.41C >A, and the 3' untranslated region mutation, c.*82C >T, are the most common changes reported in schwannomatosis disease so far, indicating mutation hotspots at both 5' and 3' portions of the gene. SMARCB1 mutations are found in a significant proportion of schwannomatosis patients, but there remains the possibility that further causative genes remain to be found.

  14. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3

    PubMed Central

    2012-01-01

    Background Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Methods Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Results Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Conclusion Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis. PMID:22938382

  15. Whole-exome sequencing for mutation detection in pediatric disorders of insulin secretion: Maturity onset diabetes of the young and congenital hyperinsulinism.

    PubMed

    Johnson, S R; Leo, P J; McInerney-Leo, A M; Anderson, L K; Marshall, M; McGown, I; Newell, F; Brown, M A; Conwell, L S; Harris, M; Duncan, E L

    2018-06-01

    To assess the utility of whole-exome sequencing (WES) for mutation detection in maturity-onset diabetes of the young (MODY) and congenital hyperinsulinism (CHI). MODY and CHI are the two commonest monogenic disorders of glucose-regulated insulin secretion in childhood, with 13 causative genes known for MODY and 10 causative genes identified for CHI. The large number of potential genes makes comprehensive screening using traditional methods expensive and time-consuming. Ten subjects with MODY and five with CHI with known mutations underwent WES using two different exome capture kits (Nimblegen SeqCap EZ Human v3.0 Exome Enrichment Kit, Nextera Rapid Capture Exome Kit). Analysis was blinded to previously identified mutations, and included assessment for large deletions. The target capture of five exome capture technologies was also analyzed using sequencing data from >2800 unrelated samples. Four of five MODY mutations were identified using Nimblegen (including a large deletion in HNF1B). Although targeted, one mutation (in INS) had insufficient coverage for detection. Eleven of eleven mutations (six MODY, five CHI) were identified using Nextera Rapid (including the previously missed mutation). On reconciliation, all mutations concorded with previous data and no additional variants in MODY genes were detected. There were marked differences in the performance of the capture technologies. WES can be useful for screening for MODY/CHI mutations, detecting both point mutations and large deletions. However, capture technologies require careful selection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    PubMed

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  17. Mutation analysis in a German family identified a new cataract-causing allele in the CRYBB2 gene

    PubMed Central

    Pauli, Silke; Söker, Torben; Klopp, Norman; Illig, Thomas; Engel, Wolfgang

    2007-01-01

    Purpose The study demonstrates the functional candidate gene analysis in a cataract family of German descent. Methods We screened a German family, clinically documented to have congenital cataracts, for mutation in the candidate genes CRYG (A to D) and CRYBB2 through polymerase chain reaction analyses and sequencing. Results Congenital cataract was first observed in a daughter of healthy parents. Her two children (a boy and a girl) also suffer from congenital cataracts and have been operated within the first weeks of birth. Morphologically, the cataract is characterized as nuclear with an additional ring-shaped cortical opacity. Molecular analysis revealed no causative mutation in any of the CRYG genes. However, sequencing of the exons of the CRYBB2 gene identified a sequence variation in exon 5 (383 A>T) with a substitution of Asp to Val at position 128. All three affected family members revealed this change but it was not observed in any of the unaffected persons of the family. The putative mutation creates a restriction site for the enzyme TaiI. This mutation was checked for in controls of randomly selected DNA samples from ophthalmologically normal individuals from the population-based KORA S4 study (n=96) and no mutation was observed. Moreover, the Asp at position 128 is within a stretch of 12 amino acids, which are highly conserved throughout the animal kingdom. For the mutant protein, the isoelectric point is raised from pH 6.50 to 6.75. Additionally, the random coil structure of the protein between the amino acids 126-139 is interrupted by a short extended strand structure. In addition, this region becomes hydrophobic (from neutral to +1) and the electrostatic potential in the region surrounding the exchanged amino acid alters from a mainly negative potential to an enlarged positive potential. Conclusions The D128V mutation segregates only in affected family members and is not seen in representative controls. It represents the first mutation outside exon 6

  18. The Application of Next-Generation Sequencing for Mutation Detection in Autosomal-Dominant Hereditary Hearing Impairment.

    PubMed

    Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K

    2017-07-01

    Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.

  19. Coding Sequence Mutations Identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 Patients with Familial or Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Hershberger, Ray E.; Parks, Sharie B.; Kushner, Jessica D.; Li, Duanxiang; Ludwigsen, Susan; Jakobs, Petra; Nauman, Deirdre; Burgess, Donna; Partain, Julie; Litt, Michael

    2008-01-01

    Abstract Background: More than 20 genes have been reported to cause idiopathic and familial dilated cardiomyopathy (IDC/FDC), but the frequency of genetic causation remains poorly understood. Methods and Results: Blood samples were collected and DNA prepared from 313 patients, 183 with FDC and 130 with IDC. Genomic DNA underwent bidirectional sequencing of six genes, and mutation carriers were followed up by evaluation of additional family members. We identified in 36 probands, 31 unique protein‐altering variants (11.5% overall) that were not identified in 253 control subjects (506 chromosomes). These included 13 probands (4.2%) with 12 β‐myosin heavy chain (MYH7) mutations, nine probands (2.9%) with six different cardiac troponin T (TNNT2) mutations, eight probands (2.6%) carrying seven different cardiac sodium channel (SCN5A) mutations, three probands (1.0%) with three titin‐cap or telethonin (TCAP) mutations, three probands (1.0%) with two LIM domain binding 3 (LDB3) mutations, and one proband (0.3%) with a muscle LIM protein (CSRP3) mutation. Four nucleotide changes did not segregate with phentoype and/or did not alter a conserved amino acid and were therefore considered unlikely to be disease‐causing. Mutations in 11 probands were assessed as likely disease‐causing, and in 21 probands were considered possibly disease‐causing. These 32 probands included 14 of the 130 with IDC (10.8%) and 18 of the 183 with FDC (9.8%) Conclusions: Mutations of these six genes each account for a small fraction of the genetic cause of FDC/IDC. The frequency of possible or likely disease‐causing mutations in these genes is similar for IDC and FDC. PMID:19412328

  20. Diabetes Causation Beliefs Among Spanish-Speaking Patients.

    PubMed

    Concha, Jeannie Belinda; Mayer, Sallie D; Mezuk, Briana R; Avula, Danielle

    2016-02-01

    The purpose of this study was to explore how the inquiry of cultural diabetes causation beliefs can improve Hispanic/Latino patient self-management. Two semistructured focus groups were conducted with 13 Hispanic/Latinos adults diagnosed with type 2 diabetes mellitus. Prior to taking part in the group discussion, participants completed a demographic survey and the Illness Perception Questionnaire-Revised. The top 5 diabetes causation items endorsed by participants per the questionnaire included stress or worry, behavior, hereditary, diet/eating habits, and family problems/worries. The qualitative analysis revealed stress as a recurring theme for a cause of diabetes. Work stress was specifically identified as a contributor to unhealthy eating and diabetes. Most participants were aware of and believed in susto and referred to it as coraje (anger). Participants believed that asking patients about their diabetes causation beliefs and emotional status can help health professionals (1) better understand the patient and (2) identify and prioritize diabetes treatments. Participants also indicated that the role of doctors is important and the encouragement that they give to patients is clinically and spiritually valued. Stress was identified as a cause of diabetes in addition to unhealthy diets and heredity. Asking patients about diabetes causation beliefs and emotional status may help prioritize treatment and management goals. © 2015 The Author(s).

  1. Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease.

    PubMed

    Luty, Agnes A; Kwok, John B J; Dobson-Stone, Carol; Loy, Clement T; Coupland, Kirsten G; Karlström, Helena; Sobow, Tomasz; Tchorzewska, Joanna; Maruszak, Aleksandra; Barcikowska, Maria; Panegyres, Peter K; Zekanowski, Cezary; Brooks, William S; Williams, Kelly L; Blair, Ian P; Mather, Karen A; Sachdev, Perminder S; Halliday, Glenda M; Schofield, Peter R

    2010-11-01

    Frontotemporal lobar degeneration (FTLD) is the most common cause of early-onset dementia. Pathological ubiquitinated inclusion bodies observed in FTLD and motor neuron disease (MND) comprise trans-activating response element (TAR) DNA binding protein (TDP-43) and/or fused in sarcoma (FUS) protein. Our objective was to identify the causative gene in an FTLD-MND pedigree with no mutations in known dementia genes. A mutation screen of candidate genes, luciferase assays, and quantitative polymerase chain reaction (PCR) was performed to identify the biological role of the putative mutation. Neuropathological characterization of affected individuals and western blot studies of cell lines were performed to identify the pathological mechanism of the mutation. We identified a nonpolymorphic mutation (c.672*51G>T) in the 3'-untranslated region (UTR) of the Sigma nonopioid intracellular receptor 1 (SIGMAR1) gene in affected individuals from the FTLD-MND pedigree. The c.672*51G>T mutation increased gene expression by 1.4-fold, corresponding with a significant 1.5-fold to 2-fold change in the SIGMAR1 transcript or Sigma-1 protein in lymphocyte or brain tissue. Brains of SIGMAR1 mutation carriers displayed a unique pathology with cytoplasmic inclusions immunopositive for either TDP-43 or FUS but not Sigma-1. Overexpression of SIGMAR1 shunted TDP-43 and FUS from the nucleus to the cytoplasm by 2.3-fold and 5.2-fold, respectively. Treatment of cells with Sigma-1 ligands significantly altered translocation of TDP-43 by up to 2-fold. SIGMAR1 is a causative gene for familial FTLD-MND with a unique neuropathology that differs from other FTLD and MND cases. Our findings also suggest Sigma-1 drugs as potential treatments for the TDP-43/FUS proteinopathies.

  2. Key clinical features to identify girls with CDKL5 mutations.

    PubMed

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydeé; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothée; Afenjar, Alexandra; Rio, Marlène; Héron, Delphine; N'guyen Morel, Marie Ange; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-10-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of CDKL5-associated encephalopathy. We screened the entire coding region of CDKL5 for mutations in 183 females with encephalopathy with early seizures by denaturing high liquid performance chromatography and direct sequencing, and we identified in 20 unrelated girls, 18 different mutations including 7 novel mutations. These mutations were identified in eight patients with encephalopathy with RTT-like features, five with infantile spasms and seven with encephalopathy with refractory epilepsy. Early epilepsy with normal interictal EEG and severe hypotonia are the key clinical features in identifying patients likely to have CDKL5 mutations. Our study also indicates that these patients clearly exhibit some RTT features such as deceleration of head growth, stereotypies and hand apraxia and that these RTT features become more evident in older and ambulatory patients. However, some RTT signs are clearly absent such as the so called RTT disease profile (period of nearly normal development followed by regression with loss of acquired fine finger skill in early childhood and characteristic intensive eye communication) and the characteristic evolution of the RTT electroencephalogram. Interestingly, in addition to the overall stereotypical symptomatology (age of onset and evolution of the disease) resulting from CDKL5 mutations, atypical forms of CDKL5-related conditions have also been observed. Our data suggest that phenotypic heterogeneity does not correlate with the nature or the position of the mutations or with the pattern of X-chromosome inactivation, but most probably with the functional transcriptional and/or translational consequences of CDKL5

  3. Whole-exome sequencing and digital PCR identified a novel compound heterozygous mutation in the NPHP1 gene in a case of Joubert syndrome and related disorders.

    PubMed

    Koyama, Shingo; Sato, Hidenori; Wada, Manabu; Kawanami, Toru; Emi, Mitsuru; Kato, Takeo

    2017-03-27

    Joubert syndrome and related disorders (JSRD) is a clinically and genetically heterogeneous condition with autosomal recessive or X-linked inheritance, which share a distinctive neuroradiological hallmark, the so-called molar tooth sign. JSRD is classified into six clinical subtypes based on associated variable multiorgan involvement. To date, 21 causative genes have been identified in JSRD, which makes genetic diagnosis difficult. We report here a case of a 28-year-old Japanese woman diagnosed with JS with oculorenal defects with a novel compound heterozygous mutation (p.Ser219*/deletion) in the NPHP1 gene. Whole-exome sequencing (WES) of the patient identified the novel nonsense mutation in an apparently homozygous state. However, it was absent in her mother and heterozygous in her father. A read depth-based copy number variation (CNV) detection algorithm using WES data of the family predicted a large heterozygous deletion mutation in the patient and her mother, which was validated by digital polymerase chain reaction, indicating that the patient was compound heterozygous for the paternal nonsense mutation and the maternal deletion mutation spanning the site of the single nucleotide change. It should be noted that analytical pipelines that focus purely on sequence information cannot distinguish homozygosity from hemizygosity because of its inability to detect large deletions. The ability to detect CNVs in addition to single nucleotide variants and small insertion/deletions makes WES an attractive diagnostic tool for genetically heterogeneous disorders.

  4. Diabetes Causation Beliefs Among Spanish-Speaking Patients

    PubMed Central

    Concha, Jeannie Belinda; Mayer, Sallie D.; Mezuk, Briana R.; Avula, Danielle

    2016-01-01

    Purpose The purpose of this study was to explore how the inquiry of cultural diabetes causation beliefs can improve Hispanic/Latino patient self-management. Methods Two semistructured focus groups were conducted with 13 Hispanic/Latinos adults diagnosed with type 2 diabetes mellitus. Prior to taking part in the group discussion, participants completed a demographic survey and the Illness Perception Questionnaire–Revised. Results The top 5 diabetes causation items endorsed by participants per the questionnaire included stress or worry, behavior, hereditary, diet/eating habits, and family problems/worries. The qualitative analysis revealed stress as a recurring theme for a cause of diabetes. Work stress was specifically identified as a contributor to unhealthy eating and diabetes. Most participants were aware of and believed in susto and referred to it as coraje (anger). Participants believed that asking patients about their diabetes causation beliefs and emotional status can help health professionals (1) better understand the patient and (2) identify and prioritize diabetes treatments. Participants also indicated that the role of doctors is important and the encouragement that they give to patients is clinically and spiritually valued. Conclusions Stress was identified as a cause of diabetes in addition to unhealthy diets and heredity. Asking patients about diabetes causation beliefs and emotional status may help prioritize treatment and management goals. PMID:26568376

  5. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  6. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    PubMed

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  7. Other autoinflammatory disease genes in an FMF-prevalent population: a homozygous MVK mutation and a novel heterozygous TNFRSF1A mutation in two different Turkish families with clinical FMF.

    PubMed

    Karacan, İlker; Uğurlu, Serdal; Tolun, Aslıhan; Tahir Turanlı, Eda; Ozdogan, Huri

    2017-01-01

    No MEFV mutations are detected in approximately 10% of the patients with clinical FMF in populations where the disease is highly prevalent. Causative mutations were searched in other genes in two such families with "MEFV negative clinical FMF". Father and daughter of family A had attacks of fever, abdominal pain and AA amyloidosis. The two sibs of family B complained of febrile episodes with abdominal pain and arthritis. The patients were clinically investigated. Exome analysis in the daughter in family A and linkage analysis and candidate gene sequencing for the members of family B were performed. All patients were re-evaluated in the light of the genetic findings. In the daughter in family A, filtering of the exome file for variants in 25 autoimmune/inflammatory disease-related genes revealed two heterozygous missense variants in TNFRSF1A, novel p.Cys72Phe and frequent p.Arg121Gln. In family B, novel, homozygous missense p.Cys161Arg in MVK was identified. A clinical re-evaluation of the patients revealed a phenotype consistent with FMF rather than TRAPS in family A and an overlap of FMF with HIDS in family B. In high risk populations of FMF a proportion of patients without MEFV mutations may carry causative mutations in other genes, and the clinical findings may not be fully consistent with the phenotype expected of the mutation identified but rather resemble FMF or an overlap syndrome.

  8. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis.

    PubMed

    Smith, Miriam J; Isidor, Bertand; Beetz, Christian; Williams, Simon G; Bhaskar, Sanjeev S; Richer, Wilfrid; O'Sullivan, James; Anderson, Beverly; Daly, Sarah B; Urquhart, Jill E; Fryer, Alan; Rustad, Cecilie F; Mills, Samantha J; Samii, Amir; du Plessis, Daniel; Halliday, Dorothy; Barbarot, Sebastien; Bourdeaut, Franck; Newman, William G; Evans, D Gareth

    2015-01-13

    We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation. We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation. We identified germline LZTR1 mutations in 6 of 16 patients (37.5%) with schwannomatosis who had at least one affected relative, 11 of 49 (22%) sporadic patients, and 2 of 39 patients with UVS in our cohort. Three germline mutation-positive patients in total had developed a UVS. Mosaicism was excluded in 3 patients without germline mutation in NF2, SMARCB1, or LZTR1 by mutation screening in 2 tumors from each. Our data confirm the relationship between mutations in LZTR1 and schwannomatosis. They indicate that germline mutations in LZTR1 confer an increased risk of vestibular schwannoma, providing further overlap with NF2, and that further causative genes for schwannomatosis remain to be identified. © 2014 American Academy of Neurology.

  9. Identification of Mutations Underlying 20 Inborn Errors of Metabolism in the United Arab Emirates Population

    PubMed Central

    Ben-Rebeh, Imen; Hertecant, Jozef L.; Al-Jasmi, Fatma A.; Aburawi, Hanan E.; Al-Yahyaee, Said A.; Al-Gazali, Lihadh

    2012-01-01

    Inborn errors of metabolism (IEM) are frequently encountered by physicians in the United Arab Emirates (UAE). However, the mutations underlying a large number of these disorders have not yet been determined. Therefore, the objective of this study was to identify the mutations underlying a number of IEM disorders among UAE residents from both national and expatriate families. A case series of patients from 34 families attending the metabolic clinic at Tawam Hospital were clinically evaluated, and molecular testing was carried out to determine their causative mutations. The mutation analysis was carried out at molecular genetics diagnostic laboratories. Thirty-eight mutations have been identified as responsible for twenty IEM disorders, including in the metabolism of amino acids, lipids, steroids, metal transport and mitochondrial energy metabolism, and lysosomal storage disorders. Nine of the identified mutations are novel, including two missense mutations, three premature stop codons and four splice site mutations. Mutation analysis of IEM disorders in the UAE population has an important impact on molecular diagnosis and genetic counseling for families affected by these disorders. PMID:22106832

  10. Coarse-graining as a downward causation mechanism

    NASA Astrophysics Data System (ADS)

    Flack, Jessica C.

    2017-11-01

    Downward causation is the controversial idea that `higher' levels of organization can causally influence behaviour at `lower' levels of organization. Here I propose that we can gain traction on downward causation by being operational and examining how adaptive systems identify regularities in evolutionary or learning time and use these regularities to guide behaviour. I suggest that in many adaptive systems components collectively compute their macroscopic worlds through coarse-graining. I further suggest we move from simple feedback to downward causation when components tune behaviour in response to estimates of collectively computed macroscopic properties. I introduce a weak and strong notion of downward causation and discuss the role the strong form plays in the origins of new organizational levels. I illustrate these points with examples from the study of biological and social systems and deep neural networks. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  11. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta

    PubMed Central

    2012-01-01

    Background Amelogenesis imperfecta (AI) is an inherited disorder characterized by abnormal formation of tooth enamel. Although several genes responsible for AI have been reported, not all causative genes for human AI have been identified to date. AMI rat has been reported as an autosomal recessive mutant with hypoplastic AI isolated from a colony of stroke-prone spontaneously hypertensive rat strain, but the causative gene has not yet been clarified. Through a genetic screen, we identified the causative gene of autosomal recessive AI in AMI and analyzed its role in amelogenesis. Methods cDNA sequencing of possible AI-candidate genes so far identified using total RNA of day 6 AMI rat molars identified a novel responsible mutation in specificity protein 6 (Sp6). Genetic linkage analysis was performed between Sp6 and AI phenotype in AMI. To understand a role of SP6 in AI, we generated the transgenic rats harboring Sp6 transgene in AMI (Ami/Ami + Tg). Histological analyses were performed using the thin sections of control rats, AMI, and Ami/Ami + Tg incisors in maxillae, respectively. Results We found the novel genetic linkage between a 2-bp insertional mutation of Sp6 gene and the AI phenotype in AMI rats. The position of mutation was located in the coding region of Sp6, which caused frameshift mutation and disruption of the third zinc finger domain of SP6 with 11 cryptic amino acid residues and a stop codon. Transfection studies showed that the mutant protein can be translated and localized in the nucleus in the same manner as the wild-type SP6 protein. When we introduced the CMV promoter-driven wild-type Sp6 transgene into AMI rats, the SP6 protein was ectopically expressed in the maturation stage of ameloblasts associated with the extended maturation stage and the shortened reduced stage without any other phenotypical changes. Conclusion We propose the addition of Sp6 mutation as a new molecular diagnostic criterion for the autosomal recessive AI patients

  12. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequentmore » in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.« less

  13. Exome capture sequencing identifies a novel mutation in BBS4

    PubMed Central

    Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.

    2011-01-01

    Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648

  14. Mutations in LZTR1 add to the complex heterogeneity of schwannomatosis

    PubMed Central

    Smith, Miriam J.; Isidor, Bertand; Beetz, Christian; Williams, Simon G.; Bhaskar, Sanjeev S.; Richer, Wilfrid; O'Sullivan, James; Anderson, Beverly; Daly, Sarah B.; Urquhart, Jill E.; Fryer, Alan; Rustad, Cecilie F.; Mills, Samantha J.; Samii, Amir; du Plessis, Daniel; Halliday, Dorothy; Barbarot, Sebastien; Bourdeaut, Franck

    2015-01-01

    Objectives: We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation. Methods: We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation. Results: We identified germline LZTR1 mutations in 6 of 16 patients (37.5%) with schwannomatosis who had at least one affected relative, 11 of 49 (22%) sporadic patients, and 2 of 39 patients with UVS in our cohort. Three germline mutation–positive patients in total had developed a UVS. Mosaicism was excluded in 3 patients without germline mutation in NF2, SMARCB1, or LZTR1 by mutation screening in 2 tumors from each. Conclusions: Our data confirm the relationship between mutations in LZTR1 and schwannomatosis. They indicate that germline mutations in LZTR1 confer an increased risk of vestibular schwannoma, providing further overlap with NF2, and that further causative genes for schwannomatosis remain to be identified. PMID:25480913

  15. Coarse-graining as a downward causation mechanism

    PubMed Central

    2017-01-01

    Downward causation is the controversial idea that ‘higher’ levels of organization can causally influence behaviour at ‘lower’ levels of organization. Here I propose that we can gain traction on downward causation by being operational and examining how adaptive systems identify regularities in evolutionary or learning time and use these regularities to guide behaviour. I suggest that in many adaptive systems components collectively compute their macroscopic worlds through coarse-graining. I further suggest we move from simple feedback to downward causation when components tune behaviour in response to estimates of collectively computed macroscopic properties. I introduce a weak and strong notion of downward causation and discuss the role the strong form plays in the origins of new organizational levels. I illustrate these points with examples from the study of biological and social systems and deep neural networks. This article is part of the themed issue ‘Reconceptualizing the origins of life’. PMID:29133440

  16. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes.

    PubMed

    Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung

    2009-07-01

    Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.

  17. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population.

    PubMed

    Lenato, Gennaro M; Lastella, Patrizia; Di Giacomo, Marilena C; Resta, Nicoletta; Suppressa, Patrizia; Pasculli, Giovanna; Sabbà, Carlo; Guanti, Ginevra

    2006-02-01

    Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation. 2006 Wiley-Liss, Inc.

  18. Exome-wide Sequencing Shows Low Mutation Rates and Identifies Novel Mutated Genes in Seminomas.

    PubMed

    Cutcutache, Ioana; Suzuki, Yuka; Tan, Iain Beehuat; Ramgopal, Subhashini; Zhang, Shenli; Ramnarayanan, Kalpana; Gan, Anna; Lee, Heng Hong; Tay, Su Ting; Ooi, Aikseng; Ong, Choon Kiat; Bolthouse, Jonathan T; Lane, Brian R; Anema, John G; Kahnoski, Richard J; Tan, Patrick; Teh, Bin Tean; Rozen, Steven G

    2015-07-01

    Testicular germ cell tumors are the most common cancer diagnosed in young men, and seminomas are the most common type of these cancers. There have been no exome-wide examinations of genes mutated in seminomas or of overall rates of nonsilent somatic mutations in these tumors. The objective was to analyze somatic mutations in seminomas to determine which genes are affected and to determine rates of nonsilent mutations. Eight seminomas and matched normal samples were surgically obtained from eight patients. DNA was extracted from tissue samples and exome sequenced on massively parallel Illumina DNA sequencers. Single-nucleotide polymorphism chip-based copy number analysis was also performed to assess copy number alterations. The DNA sequencing read data were analyzed to detect somatic mutations including single-nucleotide substitutions and short insertions and deletions. The detected mutations were validated by independent sequencing and further checked for subclonality. The rate of nonsynonymous somatic mutations averaged 0.31 mutations/Mb. We detected nonsilent somatic mutations in 96 genes that were not previously known to be mutated in seminomas, of which some may be driver mutations. Many of the mutations appear to have been present in subclonal populations. In addition, two genes, KIT and KRAS, were affected in two tumors each with mutations that were previously observed in other cancers and are presumably oncogenic. Our study, the first report on exome sequencing of seminomas, detected somatic mutations in 96 new genes, several of which may be targetable drivers. Furthermore, our results show that seminoma mutation rates are five times higher than previously thought, but are nevertheless low compared to other common cancers. Similar low rates are seen in other cancers that also have excellent rates of remission achieved with chemotherapy. We examined the DNA sequences of seminomas, the most common type of testicular germ cell cancer. Our study identified 96

  19. A method distinguishing expressed vs. null mutations of the Col1A1 gene in osteogenesis imperfecta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redford-Badwal, D.A.; Stover, M.L.; McKinstry, M.

    Osteogenesis imperfecta (OI) is a heterogeneous group of heritable disorders of bone characterized by increased susceptibility to fracture. Most of the causative mutations were identified in patients with the lethal form of the disease. Attention is now shifting to the milder forms of OI where glycine substitutions and null producing mutations have been found. Single amino acid substitutions can be identified by RT/PCR of total cellular RNA, but this approach does not work well for null mutations since the defective transcript does not accumulate in the cytoplasm. We have altered our RNA extraction method to separate RNA from the nuclearmore » and cytoplasmic compartments of cultured fibroblasts. Standard methods of mutation identification (RT/PCR followed by SSCP) is applied to each RNA fraction. DNA from an abnormal band on the SSCP gel is eluted and amplified by PCR for cloning and sequencing. Using this approach we have identified an Asp to Asn change in exon 50 (type II OI) and a Gly to Arg in exon 11 (type I OI) of the COL1A1 gene. These changes were found in both nuclear and cytoplasmic compartments. These putative mutations are currently being confirmed by protein studies. In contrast, three patients with mild OI associated with reduced {proportional_to}(I)mRNA, had distinguishing SSCP bands present in the nuclear but not the cytoplasmic compartment. In one case a frame shift mutation was observed, while the other two revealed polymorphisms. The compartmentalization of the mutant allele has directed us to look elsewhere in the transcript for the causative mutation. This approach to mutation identification is capable of distinguishing these fundamentally different types of mutations and allows for preferential cloning and sequencing of the abnormal allele.« less

  20. Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma.

    PubMed

    Comino-Méndez, Iñaki; Gracia-Aznárez, Francisco J; Schiavi, Francesca; Landa, Iñigo; Leandro-García, Luis J; Letón, Rocío; Honrado, Emiliano; Ramos-Medina, Rocío; Caronia, Daniela; Pita, Guillermo; Gómez-Graña, Alvaro; de Cubas, Aguirre A; Inglada-Pérez, Lucía; Maliszewska, Agnieszka; Taschin, Elisa; Bobisse, Sara; Pica, Giuseppe; Loli, Paola; Hernández-Lavado, Rafael; Díaz, José A; Gómez-Morales, Mercedes; González-Neira, Anna; Roncador, Giovanna; Rodríguez-Antona, Cristina; Benítez, Javier; Mannelli, Massimo; Opocher, Giuseppe; Robledo, Mercedes; Cascón, Alberto

    2011-06-19

    Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.

  1. Candidate causative mutation on BTA18 associated with calving and conformation traits in Holstein bulls

    USDA-ARS?s Scientific Manuscript database

    Complementing quantitative methods with sequence data analysis is a major goal of the post-genome era of biology. In this study, we analyzed Illumina HiSeq sequence data derived from 11 US Holstein bulls in order to identify putative causal mutations associated with calving and conformation traits. ...

  2. Top-down causation and emergence: some comments on mechanisms

    PubMed Central

    Ellis, George F. R.

    2012-01-01

    Both bottom-up and top-down causation occur in the hierarchy of structure and causation. A key feature is multiple realizability of higher level functions, and consequent existence of equivalence classes of lower level variables that correspond to the same higher level state. Five essentially different classes of top-down influence can be identified, and their existence demonstrated by many real-world examples. They are: algorithmic top-down causation; top-down causation via non-adaptive information control, top-down causation via adaptive selection, top-down causation via adaptive information control and intelligent top-down causation (the effect of the human mind on the physical world). Through the mind, abstract entities such as mathematical structures have causal power. The causal slack enabling top-down action to take place lies in the structuring of the system so as to attain higher level functions; in the way the nature of lower level elements is changed by context, and in micro-indeterminism combined with adaptive selection. Understanding top-down causation can have important effects on society. Two cases will be mentioned: medical/healthcare issues, and education—in particular, teaching reading and writing. In both cases, an ongoing battle between bottom-up and top-down approaches has important consequences for society. PMID:23386967

  3. Exome sequencing identifies a novel mutation of the GDI1 gene in a Chinese non-syndromic X-linked intellectual disability family

    PubMed Central

    Duan, Yongheng; Lin, Sheng; Xie, Lichun; Zheng, Kaifeng; Chen, Shiguo; Song, Hui; Zeng, Xuchun; Gu, Xueying; Wang, Heyun; Zhang, Linghua; Shao, Hao; Hong, Wenxu; Zhang, Lijie; Duan, Shan

    2017-01-01

    Abstract X-linked intellectual disability (XLID) has been associated with various genes. Diagnosis of XLID, especially for non-syndromic ones (NS-XLID), is often hampered by the heterogeneity of this disease. Here we report the case of a Chinese family in which three males suffer from intellectual disability (ID). The three patients shared the same phenotype: no typical clinical manifestation other than IQ score ≤ 70. For a genetic diagnosis for this family we carried out whole exome sequencing on the proband, and validated 16 variants of interest in the genomic DNA of all the family members. A missense mutation (c.710G > T), which mapped to exon 6 of the Rab GDP-Dissociation Inhibitor 1 (GDI1) gene, was found segregating with the ID phenotype, and this mutation changes the 237th position in the guanosine diphosphate dissociation inhibitor (GDI) protein from glycine to valine (p. Gly237Val). Through molecular dynamics simulations we found that this substitution results in a conformational change of GDI, possibly affecting the Rab-binding capacity of this protein. In conclusion, our study identified a novel GDI1 mutation that is possibly NS-XLID causative, and showed that whole exome sequencing provides advantages for detecting novel ID-associated variants and can greatly facilitate the genetic diagnosis of the disease. PMID:28863211

  4. A Novel Missense Mutation in Peripheral Myelin Protein-22 Causes Charcot-Marie-Tooth Disease.

    PubMed

    Li, Li-Xi; Dong, Hai-Lin; Xiao, Bao-Guo; Wu, Zhi-Ying

    2017-08-05

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. A great number of causative genes have been described in CMT, and among them, the heterozygous duplication of peripheral myelin protein-22 (PMP22) is the major cause. Although the missense mutation in PMP22 is rarely reported, it has been demonstrated to be associated with CMT. This study described a novel missense mutation of PMP22 in a Chinese family with CMT phenotype. Targeted next-generation sequencing (NGS) was used to screen the causative genes in a family featured with an autosomal dominant demyelinating form of CMT. The potential variants identified by targeted NGS were verified by Sanger sequencing and classified according to the American College of Medical Genetics and Genomics standards and guidelines. Further cell transfection studies were performed to characterize the function of the novel variant. Using targeted NGS, a novel heterozygous missense variant in PMP22 (c.320G>A, p.G107D) was identified. In vitro cell functional studies revealed that mutant PMP22 protein carrying p.G107D mutation lost the ability to reach the plasma membrane, was mainly retained in the endoplasmic reticulum, and induced cell apoptosis. This study supported the notion that missense mutations in PMP22 give rise to a CMT phenotype, possibly through a toxic gain-of-function mechanism.

  5. Seven functional classes of Barth syndrome mutation.

    PubMed

    Whited, Kevin; Baile, Matthew G; Currier, Pamela; Claypool, Steven M

    2013-02-01

    Patients with Barth syndrome (BTHS), a rare X-linked disease, suffer from skeletal and cardiomyopathy and bouts of cyclic neutropenia. The causative gene encodes tafazzin, a transacylase, which is the major determinant of the final acyl chain composition of the mitochondrial-specific phospholipid, CL. In addition to numerous frame shift and splice-site mutations, 36 missense mutations have been associated with BTHS. Previously, we established a BTHS-mutant panel in the yeast Saccharomyces cerevisiae that successfully models 18/21 conserved pathogenic missense mutations and defined the loss-of-function mechanism associated with a subset of the mutant tafazzins. Here, we report the biochemical and cell biological characterization of the rest of the yeast BTHS-mutant panel and in so doing identify three additional modes of tafazzin dysfunction. The largest group of mutant tafazzins is catalytically null, two mutants encode hypomorphic alleles, and another two mutants are temperature sensitive. Additionally, we have expanded the defects associated with previously characterized matrix-mislocalized-mutant tafazzins to include the rapid degradation of aggregation-prone polypeptides that correctly localize to the mitochondrial IMS. In sum, our in-depth characterization of the yeast BTHS-mutant panel has identified seven functional classes of BTHS mutation.

  6. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men.

    PubMed

    Arafat, Maram; Har-Vardi, Iris; Harlev, Avi; Levitas, Eliahu; Zeadna, Atif; Abofoul-Azab, Maram; Dyomin, Victor; Sheffield, Val C; Lunenfeld, Eitan; Huleihel, Mahmoud; Parvari, Ruti

    2017-09-01

    Azoospermia is diagnosed when sperm cells are completely absent in the ejaculate even after centrifugation. It is identified in approximately 1% of all men and in 10%-20% of infertile males. Non-obstructive azoospermia (NOA) is characterised by the absence of sperm due to either a Sertoli cell-only pattern, maturation arrest, hypospermatogenesis or mixed patterns. NOA is a severe form of male infertility, with limited treatment options and low fertility success rates. In the majority of patients, the cause for NOA is not known and mutations in only a few genes were shown to be causative. We investigated the cause of maturation arrest in five azoospermic infertile men of a large consanguineous Bedouin family. Using whole genome genotyping and exome sequencing we identified a 4 bp deletion frameshift mutation in TDRD9 as the causative mutation with a Lod Score of 3.42. We demonstrate that the mutation results in a frameshift as well as exon skipping. Immunofluorescent staining with anti-TDRD9 antibody directed towards the N terminus demonstrated the presence of the protein in testicular biopsies of patients with an intracellular distribution comparable to a control biopsy. The mutation does not cause female infertility. This is the first report of a recessive deleterious mutation in TDRD9 in humans. The clinical phenotype recapitulates that observed in the Tdrd9 knockout mice where this gene was demonstrated to participate in long interspersed element-1 retrotransposon silencing. If this function is preserved in human, our data underscore the importance of maintaining DNA stability in the human male germ line. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Large-scale identification of chemically induced mutations in Drosophila melanogaster

    PubMed Central

    Haelterman, Nele A.; Jiang, Lichun; Li, Yumei; Bayat, Vafa; Sandoval, Hector; Ugur, Berrak; Tan, Kai Li; Zhang, Ke; Bei, Danqing; Xiong, Bo; Charng, Wu-Lin; Busby, Theodore; Jawaid, Adeel; David, Gabriela; Jaiswal, Manish; Venken, Koen J.T.; Yamamoto, Shinya

    2014-01-01

    Forward genetic screens using chemical mutagens have been successful in defining the function of thousands of genes in eukaryotic model organisms. The main drawback of this strategy is the time-consuming identification of the molecular lesions causative of the phenotypes of interest. With whole-genome sequencing (WGS), it is now possible to sequence hundreds of strains, but determining which mutations are causative among thousands of polymorphisms remains challenging. We have sequenced 394 mutant strains, generated in a chemical mutagenesis screen, for essential genes on the Drosophila X chromosome and describe strategies to reduce the number of candidate mutations from an average of ∼3500 to 35 single-nucleotide variants per chromosome. By combining WGS with a rough mapping method based on large duplications, we were able to map 274 (∼70%) mutations. We show that these mutations are causative, using small 80-kb duplications that rescue lethality. Hence, our findings demonstrate that combining rough mapping with WGS dramatically expands the toolkit necessary for assigning function to genes. PMID:25258387

  8. G20210A prothrombin gene mutation identified in patients with venous leg ulcers.

    PubMed

    Jebeleanu, G; Procopciuc, L

    2001-01-01

    The G20210A mutation variant of prothrombin gene is the second most frequent mutation identified in patients with deep venous thrombosis, after factor V Leiden. The risk for developing deep venous thrombosis is high in patients identified as heterozygous for G20210A mutation. In order to identify this polymorphism in the gene coding prothrombin, the 345bp fragment in the 3'- untranslated region of the prothrombin gene was amplified using amplification by polymerase chain reaction and enzymatic digestion by HindIII (restriction endonuclease enzyme). The products of amplification and enzymatic's digestion were analized using agarose gel electrophoresis. We investigated 20 patients with venous leg ulcers and we found 2 heterozygous (10%) for G20210A mutation. None of the patients in the control group had G20210A mutation. Our study confirms the presence of G20210A mutation in the Romanian population. Our study also shows the link between venous leg ulcers and this polymorphism in the prothrombin gene.

  9. A novel truncation mutation in CRYBB1 associated with autosomal dominant congenital cataract with nystagmus.

    PubMed

    Rao, Yan; Dong, Sufang; Li, Zuhua; Yang, Guohua; Peng, Chunyan; Yan, Ming; Zheng, Fang

    2017-01-01

    To identify the potential candidate genes for a large Chinese family with autosomal dominant congenital cataract (ADCC) and nystagmus, and investigate the possible molecular mechanism underlying the role of the candidate genes in cataractogenesis. We combined the linkage analysis and direct sequencing for the candidate genes in the linkage regions to identify the causative mutation. The molecular and bio-functional properties of the proteins encoded by the candidate genes was further explored with biophysical and biochemical studies of the recombinant wild-type and mutant proteins. We identified a c. C749T (p.Q227X) transversion in exon 6 of CRYBB1 , a cataract-causative gene. This nonsense mutation changes a phylogenetically conserved glutamine to a stop codon and is predicted to truncate the C-terminus of the wild-type protein by 26 amino acids. Comparison of the biophysical and biochemical properties of the recombinant full-length and truncated βB1-crystallins revealed that the mutation led to the insolubility and the phase separation phenomenon of the truncated protein with a changed conformation. Meanwhile, the thermal stability of the truncated βB1-crystallin was significantly decreased, and the mutation diminished the chaperoning ability of αA-crystallin with the mutant under heating stress. Our findings highlight the importance of the C-terminus in βB1-crystallin in maintaining the crystalline function and stability, and provide a novel insight into the molecular mechanism underlying the pathogenesis of human autosomal dominant congenital cataract.

  10. Novel HSF4 mutation causes congenital total white cataract in a Chinese family.

    PubMed

    Ke, Tie; Wang, Qing K; Ji, Binchu; Wang, Xu; Liu, Ping; Zhang, Xianqin; Tang, Zhaohui; Ren, Xiang; Liu, Mugen

    2006-08-01

    To identify the disease-causing gene (mutation) in a Chinese family affected with autosomal dominant congenital total white cataract. Observational case series. Genotyping and linkage analyses were used to identify the linkage of the disease-causing gene in the Chinese family to the HSF4 gene encoding a member of the family of heat shock transcription factors (HSFs). Direct DNA sequence analysis was used to identify the disease-causing mutation. Polymerase chain reaction/restriction fragment length polymorphism analysis was used to demonstrate cosegregation of the HSF4 mutation with the cataract and the absence of the mutation in the normal controls. The cataract gene in the Chinese family was linked to marker D16S3043, and further haplotype analysis defined the causative gene between D16S515 and D16S415 within which HSF4 is located. A novel mutation c.221G>A was identified in HSF4, which results in substitution of a highly conserved arginine residue by histidine at codon 74 (p.R74H). The R74H mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 150 unrelated normal controls. These results identified a novel missense mutation R74H in the transcription factor gene HSF4 in a Chinese cataract family and expand the spectrum of HSF4 mutations causing cataract.

  11. Identification of a founder mutation for Pendred syndrome in families from northwest Iran.

    PubMed

    Mohseni, Marzieh; Honarpour, Asal; Mozafari, Reza; Davarnia, Behzad; Najmabadi, Hossein; Kahrizi, Kimia

    2014-11-01

    Mutations in the SLC26A4 gene cause both Pendred syndrome and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNB4 locus. The SLC26A4 mutations vary among different communities. Previous studies have shown that mutations in the SLC26A4 gene are responsible for the more common syndromic hereditary hearing loss in Iran. This study assesses the possibility of a founder mutation for Pendred syndrome in northwest Iran. In this study, we performed comprehensive clinical and genetic evaluations in two unrelated families from northwest Iran with nine members affected by hearing loss (HL). After testing short tandem repeat (STR) markers to confirm linkage to the SLC26A4 locus, we screened the SLC26A4 gene by Sanger sequencing of all 21 exons, exon-intron boundaries and the promoter region for any causative mutation. We identified the same causative mutation in these two families as we had detected earlier in two other Azeri families from northwest Iran. To investigate the possibility of a founder effect in these four families, we conducted haplotype analysis, and 14 single nucleotide polymorphisms (SNPs) throughout the SLC26A4 gene were genotyped. Patients in the two families showed the phenotype of Pendred syndrome. A known frameshift mutation (c.965insA, p.N322Fs7X) in exon 8 was identified in the two families, which was the same mutation that we detected previously in two other Azeri families. The results of haplotype analysis showed that all 15 patients from four families shared the founder mutation. Common haplotypes were not observed in noncarrier members. Based on the results of our two studies, the c.965insA mutation has only been described in Iranian families from northwest Iran, so there is evidence for a founder mutation originating in this part of Iran. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Genomic organization of the human heparan sulfate-N-deacetylase/N-sulfotransferase gene: Exclusion from a causative role in the pathogenesis of Treacher Collins syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladwin, A.J.; Dixon, J.; Loftus, S.K.

    Heparan sulfate-N-deacetylase/N-sulfotransferase (HSST) catalyzes both the N-deacetylation and the N-sulfation of heparan sulfate. Previous studies have resulted in the isolation of the human HSST gene from within the Treacher Collins syndrome locus (TCOF1) critical region on 5q. In the present study, the genomic organization of the HSST gene has been elucidated, and the 14 exons identified have been tested for TCOF1-specific mutations. As a result of these studies, mutations within the coding sequence and adjacent splice junctions of HSST can be excluded from a causative role in the pathogenesis of Treacher Collins syndrome. 13 refs., 1 fig., 2 tabs.

  13. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function

    PubMed Central

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E.; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-01-01

    Background Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. Design and Methods We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. Results All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. Conclusions The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms. PMID:20179087

  14. Identification of eight novel coagulation factor XIII subunit A mutations: implied consequences for structure and function.

    PubMed

    Ivaskevicius, Vytautas; Biswas, Arijit; Bevans, Carville; Schroeder, Verena; Kohler, Hans Peter; Rott, Hannelore; Halimeh, Susan; Petrides, Petro E; Lenk, Harald; Krause, Manuele; Miterski, Bruno; Harbrecht, Ursula; Oldenburg, Johannes

    2010-06-01

    Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer. We analyzed ten index patients and three relatives for factor XIII activity using a photometric assay and sequenced their F13A and F13B genes. Additionally, structural analysis of the wild-type protein structure from a previously reported X-ray crystallographic model identified potential structural and functional effects of the missense mutations. All individuals except one were heterozygous for factor XIIIA mutations (average factor XIII activity 51%), while the remaining homozygous individual was found to have severe factor XIII deficiency (<5% of normal factor XIII activity). Eight of the 12 heterozygous patients exhibited a bleeding tendency upon provocation. The identified missense (Pro289Arg, Arg611His, Asp668Gly) and nonsense (Gly390X, Trp664X) mutations are causative for factor XIII deficiency. A Gly592Ser variant identified in three unrelated index patients, as well as in 200 healthy controls (minor allele frequency 0.005), and two further Tyr167Cys and Arg540Gln variants, represent possible candidates for rare F13A gene polymorphisms since they apparently do not have a significant influence on the structure of the factor XIIIA protein. Future in vitro expression studies of the factor XIII mutations are required to confirm their pathological mechanisms.

  15. Monoallelic mutation analysis (MAMA) for identifying germline mutations.

    PubMed

    Papadopoulos, N; Leach, F S; Kinzler, K W; Vogelstein, B

    1995-09-01

    Dissection of germline mutations in a sensitive and specific manner presents a continuing challenge. In dominantly inherited diseases, mutations occur in only one allele and are often masked by the normal allele. Here we report the development of a sensitive and specific diagnostic strategy based on somatic cell hybridization termed MAMA (monoallelic mutation analysis). We have demonstrated the utility of this strategy in two different hereditary colorectal cancer syndromes, one caused by a defective tumour suppressor gene on chromosome 5 (familial adenomatous polyposis, FAP) and the other caused by a defective mismatch repair gene on chromosome 2 (hereditary non-polyposis colorectal cancer, HNPCC).

  16. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  17. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas: Mutational signature associated with MUTYH deficiency in cancers

    DOE PAGES

    Pilati, Camilla; Shinde, Jayendra; Alexandrov, Ludmil B.; ...

    2017-03-29

    Germline alterations in DNA repair genes are implicated in cancer predisposition and can result in characteristic mutational signatures. However, specific mutational signatures associated with base excision repair (BER) defects remain to be characterized. Here, by analysing a series of colorectal cancers (CRCs) using exome sequencing, we identified a particular spectrum of somatic mutations characterized by an enrichment of C > A transversions in NpCpA or NpCpT contexts in three tumours from a MUTYH-associated polyposis (MAP) patient and in two cases harbouring pathogenic germline MUTYH mutations. In two series of adrenocortical carcinomas (ACCs), we identified four tumours with a similar signaturemore » also presenting germline MUTYH mutations. Altogether, these findings demonstrate that MUTYH inactivation results in a particular mutational signature, which may serve as a useful marker of BER-related genomic instability in new cancer types.« less

  18. Identifying mutations in Tunisian families with retinal dystrophy.

    PubMed

    Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila

    2016-11-22

    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.

  19. Mutation screening of the HGD gene identifies a novel alkaptonuria mutation with significant founder effect and high prevalence.

    PubMed

    Sakthivel, Srinivasan; Zatkova, Andrea; Nemethova, Martina; Surovy, Milan; Kadasi, Ludevit; Saravanan, Madurai P

    2014-05-01

    Alkaptonuria (AKU) is an autosomal recessive disorder; caused by the mutations in the homogentisate 1, 2-dioxygenase (HGD) gene located on Chromosome 3q13.33. AKU is a rare disorder with an incidence of 1: 250,000 to 1: 1,000,000, but Slovakia and the Dominican Republic have a relatively higher incidence of 1: 19,000. Our study focused on studying the frequency of AKU and identification of HGD gene mutations in nomads. HGD gene sequencing was used to identify the mutations in alkaptonurics. For the past four years, from subjects suspected to be clinically affected, we found 16 positive cases among a randomly selected cohort of 41 Indian nomads (Narikuravar) settled in the specific area of Tamil Nadu, India. HGD gene mutation analysis showed that 11 of these patients carry the same homozygous splicing mutation c.87 + 1G > A; in five cases, this mutation was found to be heterozygous, while the second AKU-causing mutation was not identified in these patients. This result indicates that the founder effect and high degree of consanguineous marriages have contributed to AKU among nomads. Eleven positive samples were homozygous for a novel mutation c.87 + 1G > A, that abolishes an intron 2 donor splice site and most likely causes skipping of exon 2. The prevalence of AKU observed earlier seems to be highly increased in people of nomadic origin. © 2014 John Wiley & Sons Ltd/University College London.

  20. Causation in epidemiology

    PubMed Central

    Parascandola, M; Weed, D

    2001-01-01

    Causation is an essential concept in epidemiology, yet there is no single, clearly articulated definition for the discipline. From a systematic review of the literature, five categories can be delineated: production, necessary and sufficient, sufficient-component, counterfactual, and probabilistic. Strengths and weaknesses of these categories are examined in terms of proposed characteristics of a useful scientific definition of causation: it must be specific enough to distinguish causation from mere correlation, but not so narrow as to eliminate apparent causal phenomena from consideration. Two categories—production and counterfactual—are present in any definition of causation but are not themselves sufficient as definitions. The necessary and sufficient cause definition assumes that all causes are deterministic. The sufficient-component cause definition attempts to explain probabilistic phenomena via unknown component causes. Thus, on both of these views, heavy smoking can be cited as a cause of lung cancer only when the existence of unknown deterministic variables is assumed. The probabilistic definition, however, avoids these assumptions and appears to best fit the characteristics of a useful definition of causation. It is also concluded that the probabilistic definition is consistent with scientific and public health goals of epidemiology. In debates in the literature over these goals, proponents of epidemiology as pure science tend to favour a narrower deterministic notion of causation models while proponents of epidemiology as public health tend to favour a probabilistic view. The authors argue that a single definition of causation for the discipline should be and is consistent with both of these aims. It is concluded that a counterfactually-based probabilistic definition is more amenable to the quantitative tools of epidemiology, is consistent with both deterministic and probabilistic phenomena, and serves equally well for the acquisition and the

  1. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations.

    PubMed

    Cosgarea, Ioana; Ugurel, Selma; Sucker, Antje; Livingstone, Elisabeth; Zimmer, Lisa; Ziemer, Mirjana; Utikal, Jochen; Mohr, Peter; Pfeiffer, Christiane; Pföhler, Claudia; Hillen, Uwe; Horn, Susanne; Schadendorf, Dirk; Griewank, Klaus G; Roesch, Alexander

    2017-06-20

    Mucosal melanoma represents ~1% of all melanomas, frequently having a poor prognosis due to diagnosis at a late stage of disease. Mucosal melanoma differs from cutaneous melanoma not only in terms of poorer clinical outcome but also on the molecular level having e.g. less BRAF and more frequent KIT mutations than cutaneous melanomas. For the majority of mucosal melanomas oncogenic driver mutations remain unknown. In our study, 75 tumor tissues from patients diagnosed with mucosal melanoma were analyzed, applying a targeted next generation sequencing panel covering 29 known recurrently mutated genes in melanoma. NF1 and RAS mutations were identified as the most frequently mutated genes occurring in 18.3% and 16.9% of samples, respectively. Mutations in BRAF were identified in 8.4% and KIT in 7.0% of tumor samples. Our study identifies NF1 as the most frequently occurring driver mutation in mucosal melanoma. RAS alterations, consisting of NRAS and KRAS mutations, were the second most frequent mutation type. BRAF and KIT mutations were rare with frequencies below 10% each. Our data indicate that in mucosal melanomas RAS/NF1 alterations are frequent, implying a significant pathogenetic role for MAPK and potentially PI3K pathway activation in these tumors.

  2. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations

    PubMed Central

    Cosgarea, Ioana; Ugurel, Selma; Sucker, Antje; Livingstone, Elisabeth; Zimmer, Lisa; Ziemer, Mirjana; Utikal, Jochen; Mohr, Peter; Pfeiffer, Christiane; Pföhler, Claudia; Hillen, Uwe; Horn, Susanne; Schadendorf, Dirk

    2017-01-01

    Purpose Mucosal melanoma represents ~1% of all melanomas, frequently having a poor prognosis due to diagnosis at a late stage of disease. Mucosal melanoma differs from cutaneous melanoma not only in terms of poorer clinical outcome but also on the molecular level having e.g. less BRAF and more frequent KIT mutations than cutaneous melanomas. For the majority of mucosal melanomas oncogenic driver mutations remain unknown. Experimental Design and Results In our study, 75 tumor tissues from patients diagnosed with mucosal melanoma were analyzed, applying a targeted next generation sequencing panel covering 29 known recurrently mutated genes in melanoma. NF1 and RAS mutations were identified as the most frequently mutated genes occurring in 18.3% and 16.9% of samples, respectively. Mutations in BRAF were identified in 8.4% and KIT in 7.0% of tumor samples. Conclusions Our study identifies NF1 as the most frequently occurring driver mutation in mucosal melanoma. RAS alterations, consisting of NRAS and KRAS mutations, were the second most frequent mutation type. BRAF and KIT mutations were rare with frequencies below 10% each. Our data indicate that in mucosal melanomas RAS/NF1 alterations are frequent, implying a significant pathogenetic role for MAPK and potentially PI3K pathway activation in these tumors. PMID:28380455

  3. SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome

    PubMed Central

    Horga, Alejandro; Tomaselli, Pedro J.; Gonzalez, Michael A.; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y.; Hanna, Michael G.; Blake, Julian C.; Houlden, Henry; Züchner, Stephan

    2016-01-01

    Objective: To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor–1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. Methods: We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. Results: In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. Conclusions: We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. PMID:27629094

  4. SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome.

    PubMed

    Horga, Alejandro; Tomaselli, Pedro J; Gonzalez, Michael A; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y; Hanna, Michael G; Blake, Julian C; Houlden, Henry; Züchner, Stephan; Reilly, Mary M

    2016-10-11

    To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor-1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. © 2016 American Academy of Neurology.

  5. Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations

    PubMed Central

    Jaureguiberry, Graciana; De la Dure-Molla, Muriel; Parry, David; Quentric, Mickael; Himmerkus, Nina; Koike, Toshiyasu; Poulter, James; Klootwijk, Enriko; Robinette, Steven L.; Howie, Alexander J.; Patel, Vaksha; Figueres, Marie-Lucile; Stanescu, Horia C.; Issler, Naomi; Nicholson, Jeremy K.; Bockenhauer, Detlef; Laing, Christopher; Walsh, Stephen B.; McCredie, David A.; Povey, Sue; Asselin, Audrey; Picard, Arnaud; Coulomb, Aurore; Medlar, Alan J.; Bailleul-Forestier, Isabelle; Verloes, Alain; Le Caignec, Cedric; Roussey, Gwenaelle; Guiol, Julien; Isidor, Bertrand; Logan, Clare; Shore, Roger; Johnson, Colin; Inglehearn, Christopher; Al-Bahlani, Suhaila; Schmittbuhl, Matthieu; Clauss, François; Huckert, Mathilde; Laugel, Virginie; Ginglinger, Emmanuelle; Pajarola, Sandra; Spartà, Giuseppina; Bartholdi, Deborah; Rauch, Anita; Addor, Marie-Claude; Yamaguti, Paulo M.; Safatle, Heloisa P.; Acevedo, Ana Carolina; Martelli-Júnior, Hercílio; dos Santos Netos, Pedro E.; Coletta, Ricardo D.; Gruessel, Sandra; Sandmann, Carolin; Ruehmann, Denise; Langman, Craig B.; Scheinman, Steven J.; Ozdemir-Ozenen, Didem; Hart, Thomas C.; Hart, P. Suzanne; Neugebauer, Ute; Schlatter, Eberhard; Houillier, Pascal; Gahl, William A.; Vikkula, Miikka; Bloch-Zupan, Agnès; Bleich, Markus; Kitagawa, Hiroshi; Unwin, Robert J.; Mighell, Alan; Berdal, Ariane; Kleta, Robert

    2013-01-01

    Background/Aims Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis. PMID:23434854

  6. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Perez-Carro, Raquel; Corton, Marta; Sánchez-Navarro, Iker; Zurita, Olga; Sanchez-Bolivar, Noelia; Sánchez-Alcudia, Rocío; Lelieveld, Stefan H.; Aller, Elena; Lopez-Martinez, Miguel Angel; López-Molina, Mª Isabel; Fernandez-San Jose, Patricia; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Gilissen, Christian; Millan, Jose M; Avila-Fernandez, Almudena; Ayuso, Carmen

    2016-01-01

    Retinitis pigmentosa (RP) is a group of inherited progressive retinal dystrophies (RD) characterized by photoreceptor degeneration. RP is highly heterogeneous both clinically and genetically, which complicates the identification of causative genes and mutations. Targeted next-generation sequencing (NGS) has been demonstrated to be an effective strategy for the detection of mutations in RP. In our study, an in-house gene panel comprising 75 known RP genes was used to analyze a cohort of 47 unrelated Spanish families pre-classified as autosomal recessive or isolated RP. Disease-causing mutations were found in 27 out of 47 cases achieving a mutation detection rate of 57.4%. In total, 33 pathogenic mutations were identified, 20 of which were novel mutations (60.6%). Furthermore, not only single nucleotide variations but also copy-number variations, including three large deletions in the USH2A and EYS genes, were identified. Finally seven out of 27 families, displaying mutations in the ABCA4, RP1, RP2 and USH2A genes, could be genetically or clinically reclassified. These results demonstrate the potential of our panel-based NGS strategy in RP diagnosis. PMID:26806561

  7. De Novo Paternal FBN1 Mutation Detected in Embryos Before Implantation.

    PubMed

    Wang, Shuling; Niu, Ziru; Wang, Hui; Ma, Minyue; Zhang, Wei; Fang Wang, Shu; Wang, Jun; Yan, Hong; Liu, Yifan; Duan, Na; Zhang, Xiandong; Yao, Yuanqing

    2017-06-26

    BACKGROUND Marfan syndrome (MFS) is an autosomal dominant disease caused by mutations in the Fibrillin (FBN)1 gene and characterized by disorders in the cardiovascular, skeletal, and visual systems. The diversity of mutations and phenotypic heterogeneity of MFS make prenatal molecular diagnoses difficult. In this study, we used pre-implantation genetic diagnosis (PGD) to identify the pathogenic mutation in a male patient with MFS and to determine whether his offspring would be free of the disease. MATERIAL AND METHODS The history and pedigree of the proband were analyzed. Mutation analysis was performed on the couple and immediate family members. The couple chose IVF treatment and 4 blastocysts were biopsied. PGD was carried out by targeted high-throughput sequencing of the FBN1 gene in the embryos, along with single-nucleotide polymorphism haplotyping. Sanger sequencing was used to confirm the causative mutation. RESULTS c.2647T>C (p.Trp883Arg) was identified as the de novo likely pathogenic mutation in the proband. Whole-genome amplification and sequencing of the 3 embryos revealed that they did not carry the mutation, and 1 blastocyst was transferred back to the uterus. The amniocentesis test result analyzed by Sanger sequencing confirmed the PGD. A premature but healthy infant free of heart malformations was born. CONCLUSIONS The de novo mutation c.2647T>C (p.Trp883Arg) in FBN1 was identified in a Chinese patient with MFS. Embryos without the mutation were identified by PGD and resulted in a successful pregnancy.

  8. Investigation of FANCA mutations in Greek patients.

    PubMed

    Selenti, Nikoletta; Sofocleous, Christalena; Kattamis, Antonis; Kolialexi, Aggeliki; Kitsiou, Sophia; Fryssira, Elena; Polychronopoulou, Sophia; Kanavakis, Emmanouel; Mavrou, Ariadni

    2013-08-01

    Fanconi anemia (FA) is a rare genetic disease characterized by considerable heterogeneity. Fifteen subtypes are currently recognised and deletions of the Fanconi anemia complementation group A (FANCA) gene account for more than 65% of FA cases. We report on the results from a cohort of 166 patients referred to the Department of Medical Genetics of Athens University for genetic investigation after the clinical suspicion of FA. For clastogen-induced chromosome damage, cultures were set up with the addition of mitomycin C (MMC) and diepoxybutane (DEB), respectively. Following a positive cytogenetic result, molecular analysis was performed to allow identification of causative mutations in the FANCA gene. A total of 13/166 patients were diagnosed with FA and 8/13 belonged to the FA-A subtype. A novel point mutation was identified in exon 26 of FANCA gene. In our study 62% of FA patients were classified in the FA-A subtype and a point mutation in exon 26 was noted for the first time.

  9. C57BL/6N mutation in Cytoplasmic FMR interacting protein 2 regulates cocaine response

    PubMed Central

    Kumar, Vivek; Kim, Kyungin; Joseph, Chryshanthi; Kourrich, Saïd; Yoo, Seung Hee; Huang, Hung Chung; Vitaterna, Martha H.; de Villena, Fernando Pardo-Manuel; Churchill, Gary; Bonci, Antonello; Takahashi, Joseph S.

    2015-01-01

    The inbred mouse C57BL/6J is the reference strain for genome sequence and for most behavioral and physiological phenotypes. However the International Knockout Mouse Consortium uses an embryonic stem cell line derived from a related C57BL/6N substrain. We found that C57BL/6N has lower acute and sensitized response to cocaine and methamphetamine. We mapped a single causative locus and identified a non-synonymous mutation of serine to phenylalanine (S968F) in Cytoplasmic FMR interacting protein 2 (Cyfip2) as the causative variant. The S968F mutation destabilizes CYFIP2 and deletion of the C57BL/6N mutant allele leads to acute and sensitized cocaine response phenotypes. We propose CYFIP2 is a key regulator of cocaine response in mammals and present a framework to utilize mouse substrains to discover novel genes and alleles regulating behavior. PMID:24357318

  10. Factual causation in medical negligence.

    PubMed

    Manning, Joanna

    2007-12-01

    The conventional approach to causation in negligence is the "but for" test, decided on the balance of probabilities. Even when supplemented by the "material contribution" principle, satisfying the onus of proof of causation can be an insuperable obstacle for plaintiffs, particularly in medical cases. Yet, having found a breach of duty, a court's sympathies may gravitate toward the plaintiff at this point in the case. Accordingly, courts have sometimes accepted a relaxation of strict causation principles. The judicial devices are described: a special principle of causation in particular duties of care; a shifting burden of proof; "bridging the evidentiary gap" by drawing a robust inference of causation; treating a material increase in risk as sufficient proof of causation; and permitting causation to be established on the basis of the loss of a material chance of achieving a better outcome and discounting damages. In Accident Compensation Corp v Ambros [2007] NZCA 304 the New Zealand Court of Appeal recognised the need for a legal device to ameliorate the injustice sometimes caused by the strict rules of causation, and preferred the "inferential reasoning" approach favoured by the Canadian common law for use in the context of the accident compensation scheme. It is hoped that the New Zealand Supreme Court approves Ambros if the opportunity arises.

  11. Constitutional Mutations in RTEL1 Cause Severe Dyskeratosis Congenita

    PubMed Central

    Walne, Amanda J.; Vulliamy, Tom; Kirwan, Michael; Plagnol, Vincent; Dokal, Inderjeet

    2013-01-01

    Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction. PMID:23453664

  12. Novel mutations of ABCB6 associated with autosomal dominant dyschromatosis universalis hereditaria.

    PubMed

    Cui, Ying-Xia; Xia, Xin-Yi; Zhou, Yang; Gao, Lin; Shang, Xue-Jun; Ni, Tong; Wang, Wei-Ping; Fan, Xiao-Buo; Yin, Hong-Lin; Jiang, Shao-Jun; Yao, Bing; Hu, Yu-An; Wang, Gang; Li, Xiao-Jun

    2013-01-01

    Dyschromatosis universalis hereditaria (DUH) is a rare heterogeneous pigmentary genodermatosis, which was first described in 1933. The genetic cause has recently been discovered by the discovery of mutations in ABCB6. Here we investigated a Chinese family with typical features of autosomal dominant DUH and 3 unrelated patients with sporadic DUH. Skin tissues were obtained from the proband, of this family and the 3 sporadic patients. Histopathological examination and immunohistochemical analysis of ABCB6 were performed. Peripheral blood DNA samples were obtained from 21 affected, 14 unaffected, 11 spouses in the family and the 3 sporadic patients. A genome-wide linkage scan for the family was carried out to localize the causative gene. Exome sequencing was performed from 3 affected and 1 unaffected in the family. Sanger sequencing of ABCB6 was further used to identify the causative gene for all samples obtained from available family members, the 3 sporadic patients and a panel of 455 ethnically-matched normal Chinese individuals. Histopathological analysis showed melanocytes in normal control's skin tissue and the hyperpigmented area contained more melanized, mature melanosomes than those within the hypopigmented areas. Empty immature melanosomes were found in the hypopigmented melanocytes. Parametric multipoint linkage analysis produced a HLOD score of 4.68, with markers on chromosome 2q35-q37.2. A missense mutation (c.1663 C>A, p.Gln555Lys) in ABCB6 was identified in this family by exome and Sanger sequencing. The mutation perfectly cosegregated with the skin phenotype. An additional mutation (g.776 delC, c.459 delC) in ABCB6 was found in an unrelated sporadic patient. No mutation in ABCB6 was discovered in the other two sporadic patients. Neither of the two mutations was present in the 455 controls. Melanocytes showed positive immunoreactivity to ABCB6. Our data add new variants to the repertoire of ABCB6 mutations with DUH.

  13. Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria.

    PubMed

    Al-sbou, Mohammed

    2012-06-01

    This study was conducted to identify mutations in the homogentisate 1,2 dioxygenase gene (HGD) in alkaptonuria patients among Jordanian population. Blood samples were collected from four alkaptonuria patients, four carriers, and two healthy volunteers. DNA was isolated from peripheral blood. All 14 exons of the HGD gene were amplified using the polymerase chain reaction (PCR) technique. The PCR products were then purified and analyzed by sequencing. Five mutations were identified in our samples. Four of them were novel C1273A, T1046G, 551-552insG, T533G and had not been previously reported, and one mutation T847C has been described before. The types of mutations identified were two missense mutations, one splice site mutation, one frameshift mutation, and one polymorphism. We present the first molecular study of the HGD gene in Jordanian alkaptonuria patients. This study provides valuable information about the molecular basis of alkaptonuria in Jordanian population.

  14. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE PAGES

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric; ...

    2015-03-30

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  15. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, Kornelius; Imbeaud, Sandrine; Letouzé, Eric

    Our genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. These analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereasFGF3, FGF4, FGF19 or CCND1more » amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)–approved drugs. Finally, we identified risk factor–specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.« less

  16. Update on Novel CCM Gene Mutations in Patients with Cerebral Cavernous Malformations.

    PubMed

    Scimone, Concetta; Bramanti, Placido; Alafaci, Concetta; Granata, Francesca; Piva, Francesco; Rinaldi, Carmela; Donato, Luigi; Greco, Federica; Sidoti, Antonina; D'Angelo, Rosalia

    2017-02-01

    Cerebral cavernous malformations (CCMs) are lesions affecting brain microvessels. The pathogenesis is not clearly understood. Conventional classification criterion is based on genetics, and thus, familial and sporadic forms can be distinguished; however, classification of sporadic cases with multiple lesions still remains uncertain. To date, three CCM causative genes have been identified: CCM1/KRIT1, CCM2/MGC4607 and CCM3/PDCD10. In our previous mutation screening, performed in a cohort of 95 Italian patients, with both sporadic and familial cases, we identified several mutations in CCM genes. This study represents further molecular screening in a cohort of 19 Italian patients enrolled by us in the few last years and classified into familial, sporadic and sporadic with multiple lesions cases. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis were performed to detect point mutations and large genomic rearrangements, respectively. Effects of detected mutations and single-nucleotide polymorphisms (SNPs) were evaluated by an in silico approach and by western blot analysis. A novel nonsense mutation in CCM1 and a novel missense mutation in CCM2 were detected; moreover, several CCM2 gene polymorphisms in sporadic CCM patients were reported. We believe that these data enrich the mutation spectrum of CCM genes, which is useful for genetic counselling to identify both familial and sporadic CCM cases, as early as possible.

  17. Delineation of the KIAA2022 mutation phenotype: two patients with X-linked intellectual disability and distinctive features.

    PubMed

    Kuroda, Yukiko; Ohashi, Ikuko; Naruto, Takuya; Ida, Kazumi; Enomoto, Yumi; Saito, Toshiyuki; Nagai, Jun-Ichi; Wada, Takahito; Kurosawa, Kenji

    2015-06-01

    Next-generation sequencing has enabled the screening for a causative mutation in X-linked intellectual disability (XLID). We identified KIAA2022 mutations in two unrelated male patients by targeted sequencing. We selected 13 Japanese male patients with severe intellectual disability (ID), including four sibling patients and nine sporadic patients. Two of thirteen had a KIAA2022 mutation. Patient 1 was a 3-year-old boy. He had severe ID with autistic behavior and hypotonia. Patient 2 was a 5-year-old boy. He also had severe ID with autistic behavior, hypotonia, central hypothyroidism, and steroid-dependent nephrotic syndrome. Both patients revealed consistent distinctive features, including upswept hair, narrow forehead, downslanting eyebrows, wide palpebral fissures, long nose, hypoplastic alae nasi, open mouth, and large ears. De novo KIAA2022 mutations (p.Q705X in Patient 1, p.R322X in Patient 2) were detected by targeted sequencing and confirmed by Sanger sequencing. KIAA2022 mutations and alterations have been reported in only four families with nonsyndromic ID and epilepsy. KIAA2022 is highly expressed in the fetal and adult brain and plays a crucial role in neuronal development. These additional patients support the evidence that KIAA2022 is a causative gene for XLID. © 2015 Wiley Periodicals, Inc.

  18. A COL7A1 Mutation Causes Dystrophic Epidermolysis Bullosa in Rotes Höhenvieh Cattle

    PubMed Central

    Menoud, Annie; Welle, Monika; Tetens, Jens; Lichtner, Peter; Drögemüller, Cord

    2012-01-01

    We identified a congenital mechanobullous skin disorder in six calves on a single farm of an endangered German cattle breed in 2010. The condition presented as a large loss of skin distal to the fetlocks and at the mucosa of the muzzle. All affected calves were euthanized on humane grounds due to the severity, extent and progression of the skin and oral lesions. Examination of skin samples under light microscopy revealed detachment of the epidermis from the dermis at the level of the dermo epidermal junction, leading to the diagnosis of a subepidermal bullous dermatosis such as epidermolysis bullosa. The pedigree was consistent with monogenic autosomal recessive inheritance. We localized the causative mutation to an 18 Mb interval on chromosome 22 by homozygosity mapping. The COL7A1 gene encoding collagen type VII alpha 1 is located within this interval and COL7A1 mutations have been shown to cause inherited dystrophic epidermolysis bullosa (DEB) in humans. A SNP in the bovine COL7A1 exon 49 (c.4756C>T) was perfectly associated with the observed disease. The homozygous mutant T/T genotype was exclusively present in affected calves and their parents were heterozygous C/T confirming the assumed recessive mode of inheritance. All known cases and genotyped carriers were related to a single cow, which is supposed to be the founder animal. The mutant T allele was absent in 63 animals from 24 cattle breeds. The identified mutation causes a premature stop codon which leads to a truncated protein representing a complete loss of COL7A1 function (p.R1586*). We thus have identified a candidate causative mutation for this genetic disease using only three cases to unravel its molecular basis. Selection against this mutation can now be used to eliminate the mutant allele from the Rotes Höhenvieh breed. PMID:22715415

  19. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis.

    PubMed

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis.

  20. A novel PTCH1 mutation underlies non-syndromic cleft lip and/or palate in a Han Chinese family.

    PubMed

    Zhao, Huaxiang; Zhong, Wenjie; Leng, Chuntao; Zhang, Jieni; Zhang, Mengqi; Huang, Wenbin; Zhang, Yunfan; Li, Weiran; Jia, Peizeng; Lin, Jiuxiang; Maimaitili, Gulibaha; Chen, Feng

    2018-06-16

    Cleft lip and/or palate (CL/P) is the most common craniofacial congenital disease, and it has a complex aetiology. This study aimed to identify the causative gene mutation of a Han Chinese family with CL/P. Whole exome sequencing was conducted on the proband and her mother, who exhibited the same phenotype. A Mendelian dominant inheritance model, allele frequency, mutation regions, functional prediction and literature review were used to screen and filter the variants. The candidate was validated by Sanger sequencing. Conservation analysis and homology modelling were conducted. A heterozygous missense mutation c.1175C>T in the PTCH1 gene predicting p.Ala392Val was identified. This variant has not been reported and was predicted to be deleterious. Sanger sequencing verified the variant and the dominant inheritance model in the family. The missense alteration affects an amino acid that is evolutionarily conserved in the first extracellular loop of the PTCH1 protein. The local structure of the mutant protein was significantly altered according to homology modelling. Our findings suggest that c.1175C>T in PTCH1 (NM_000264) may be the causative mutation of this pedigree. Our results add to the evidence that PTCH1 variants play a role in the pathogenesis of orofacial clefts. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Causal diagrams for empirical legal research: a methodology for identifying causation, avoiding bias and interpreting results

    PubMed Central

    VanderWeele, Tyler J.; Staudt, Nancy

    2014-01-01

    In this paper we introduce methodology—causal directed acyclic graphs—that empirical researchers can use to identify causation, avoid bias, and interpret empirical results. This methodology has become popular in a number of disciplines, including statistics, biostatistics, epidemiology and computer science, but has yet to appear in the empirical legal literature. Accordingly we outline the rules and principles underlying this new methodology and then show how it can assist empirical researchers through both hypothetical and real-world examples found in the extant literature. While causal directed acyclic graphs are certainly not a panacea for all empirical problems, we show they have potential to make the most basic and fundamental tasks, such as selecting covariate controls, relatively easy and straightforward. PMID:25685055

  2. Deep mutational scanning identifies sites in influenza nucleoprotein that affect viral inhibition by MxA

    PubMed Central

    Ashenberg, Orr; Padmakumar, Jai

    2017-01-01

    The innate-immune restriction factor MxA inhibits influenza replication by targeting the viral nucleoprotein (NP). Human influenza virus is more resistant than avian influenza virus to inhibition by human MxA, and prior work has compared human and avian viral strains to identify amino-acid differences in NP that affect sensitivity to MxA. However, this strategy is limited to identifying sites in NP where mutations that affect MxA sensitivity have fixed during the small number of documented zoonotic transmissions of influenza to humans. Here we use an unbiased deep mutational scanning approach to quantify how all single amino-acid mutations to NP affect MxA sensitivity in the context of replication-competent virus. We both identify new sites in NP where mutations affect MxA resistance and re-identify mutations known to have increased MxA resistance during historical adaptations of influenza to humans. Most of the sites where mutations have the greatest effect are almost completely conserved across all influenza A viruses, and the amino acids at these sites confer relatively high resistance to MxA. These sites cluster in regions of NP that appear to be important for its recognition by MxA. Overall, our work systematically identifies the sites in influenza nucleoprotein where mutations affect sensitivity to MxA. We also demonstrate a powerful new strategy for identifying regions of viral proteins that affect inhibition by host factors. PMID:28346537

  3. Whole-exome sequencing identifies recurrent AKT1 mutations in sclerosing hemangioma of lung

    PubMed Central

    Jung, Seung-Hyun; Kim, Min Sung; Lee, Sung-Hak; Park, Hyun-Chun; Choi, Hyun Joo; Maeng, Leeso; Min, Ki Ouk; Kim, Jeana; Park, Tae In; Shin, Ok Ran; Kim, Tae-Jung; Xu, Haidong; Lee, Kyo Young; Kim, Tae-Min; Song, Sang Yong; Lee, Charles; Chung, Yeun-Jun; Lee, Sug Hyung

    2016-01-01

    Pulmonary sclerosing hemangioma (PSH) is a benign tumor with two cell populations (epithelial and stromal cells), for which genomic profiles remain unknown. We conducted exome sequencing of 44 PSHs and identified recurrent somatic mutations of AKT1 (43.2%) and β-catenin (4.5%). We used a second subset of 24 PSHs to confirm the high frequency of AKT1 mutations (overall 31/68, 45.6%; p.E17K, 33.8%) and recurrent β-catenin mutations (overall 3 of 68, 4.4%). Of the PSHs without AKT1 mutations, two exhibited AKT1 copy gain. AKT1 mutations existed in both epithelial and stromal cells. In two separate PSHs from one patient, we observed two different AKT1 mutations, indicating they were not disseminated but independent arising tumors. Because the AKT1 mutations were not found to co-occur with β-catenin mutations (or any other known driver alterations) in any of the PSHs studied, we speculate that this may be the single-most common driver alteration to develop PSHs. Our study revealed genomic differences between PSHs and lung adenocarcinomas, including a high rate of AKT1 mutation in PSHs. These genomic features of PSH identified in the present study provide clues to understanding the biology of PSH and for differential genomic diagnosis of lung tumors. PMID:27601661

  4. Hearing loss caused by a P2RX2 mutation identified in a MELAS family with a coexisting mitochondrial 3243AG mutation

    PubMed Central

    Moteki, Hideaki; Azaiez, Hela; Booth, Kevin T; Hattori, Mitsuru; Sato, Ai; Sato, Yoshihiko; Motobayashi, Mitsuo; Sloan, Christina M; Kolbe, Diana L; Shearer, A Eliot; Smith, Richard J H; Usami, Shin-ichi

    2015-01-01

    Objective We present a family with a mitochondrial DNA 3243A>G mutation resulting in MELAS, of which some members have hearing loss where a novel mutation in the P2RX2 gene was identified. Methods One hundred ninety-four (194) Japanese subjects from unrelated families were enrolled in the study. Targeted genomic enrichment and massively parallel sequencing of all known non-syndromic hearing loss genes were performed to identify the genetic causes of hearing loss. Results A novel mutation in the P2RX2 gene, that corresponded to c.601G>A (p.Asp201Tyr) was identified. Two patients carried the mutation, and had severe SNHL, while other members with MELAS (who did not carry the P2RX2 mutation) had normal hearing. Conclusion This is the first case report of a diagnosis of hearing loss caused by P2RX2 mutation in patients with MELAS. A potential explanation is that decreasing ATP production due to MELAS with mitochondrial 3243A>G mutation might suppress activation of P2X2 receptors. We also suggest that hearing loss caused by the P2RX2 mutation might be influenced by the decrease in ATP production due to MELAS, and that nuclear genetic factors may play a modifying role in mitochondrial dysfunction. PMID:25788561

  5. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    PubMed

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  6. Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency.

    PubMed

    Saito, Shinta; Kurosawa, Aya; Adachi, Noritaka

    2016-08-01

    In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.

  7. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder

    PubMed Central

    Zong, Liang; Guan, Jing; Ealy, Megan; Zhang, Qiujing; Wang, Dayong; Wang, Hongyang; Zhao, Yali; Shen, Zhirong; Campbell, Colleen A; Wang, Fengchao; Yang, Ju; Sun, Wei; Lan, Lan; Ding, Dalian; Xie, Linyi; Qi, Yue; Lou, Xin; Huang, Xusheng; Shi, Qiang; Chang, Suhua; Xiong, Wenping; Yin, Zifang; Yu, Ning; Zhao, Hui; Wang, Jun; Wang, Jing; Salvi, Richard J; Petit, Christine; Smith, Richard J H; Wang, Qiuju

    2015-01-01

    Background Auditory neuropathy spectrum disorder (ANSD) is a form of hearing loss in which auditory signal transmission from the inner ear to the auditory nerve and brain stem is distorted, giving rise to speech perception difficulties beyond that expected for the observed degree of hearing loss. For many cases of ANSD, the underlying molecular pathology and the site of lesion remain unclear. The X-linked form of the condition, AUNX1, has been mapped to Xq23-q27.3, although the causative gene has yet to be identified. Methods We performed whole-exome sequencing on DNA samples from the AUNX1 family and another small phenotypically similar but unrelated ANSD family. Results We identified two missense mutations in AIFM1 in these families: c.1352G>A (p.R451Q) in the AUNX1 family and c.1030C>T (p.L344F) in the second ANSD family. Mutation screening in a large cohort of 3 additional unrelated families and 93 sporadic cases with ANSD identified 9 more missense mutations in AIFM1. Bioinformatics analysis and expression studies support this gene as being causative of ANSD. Conclusions Variants in AIFM1 gene are a common cause of familial and sporadic ANSD and provide insight into the expanded spectrum of AIFM1-associated diseases. The finding of cochlear nerve hypoplasia in some patients was AIFM1-related ANSD implies that MRI may be of value in localising the site of lesion and suggests that cochlea implantation in these patients may have limited success. PMID:25986071

  8. From Snow to Hill to ALS: An epidemiological odyssey in search of ALS causation.

    PubMed

    Armon, Carmel

    2018-05-21

    Establishing mechanisms of disease causation in neurodegenerative diseases has long seemed to be beyond the pale of traditional epidemiological tools. Establishing a plausible mechanism for initiation of amyotrophic lateral sclerosis (ALS) has appeared a particularly elusive goal. This review shows that a likely mechanism for ALS initiation may be inferred by applying classical methods of epidemiological inference. Advances in characterizing the biology of ALS suggest that most cases of ALS are cortically-generated, part of the ALS-FTD spectrum, with focal onset and spread by contiguity within the motor super-network. Evidence-based methods identified the most credible exogenous risk factor - smoking. AB Hill's nine viewpoints to inferring causation from association were invoked. The most likely mechanism consistent with smoking being a risk factor for ALS was inferred: cumulative DNA damage, akin to cumulative somatic mutations in carcinogenesis. Focal onset supports the concept that these changes, occurring in a single cell, may trigger the cascade leading to clinical ALS. The plausibility of this mechanism was affirmed by its coherence/consistency with other observations in sporadic, familial and western Pacific ALS. Application of traditional epidemiological reasoning suggests that cumulative DNA damage may contribute to disease onset in ALS. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Expression of SMARCB1 (INI1) mutations in familial schwannomatosis

    PubMed Central

    Smith, Miriam J.; Walker, James A.; Shen, Yiping; Stemmer-Rachamimov, Anat; Gusella, James F.; Plotkin, Scott R.

    2012-01-01

    Genetic changes in the SMARCB1 tumor suppressor gene have recently been reported in tumors and blood from families with schwannomatosis. Exon scanning of all nine SMARCB1 exons in genomic DNA from our cohort of families meeting the criteria for ‘definite’ or ‘presumptive’ schwannomatosis previously revealed constitutional alterations in 13 of 19 families (68%). Screening of four new familial schwannomatosis probands identified one additional constitutional alteration. We confirmed the presence of mRNA transcripts for two missense alterations, four mutations of conserved splice motifs and two additional mutations, in less conserved sequences, which also affect splicing. Furthermore, we found that transcripts for a rare 3′-untranslated region (c.*82C > T) alteration shared by four unrelated families did not produce splice variants but did show unequal allelic expression, suggesting that the alteration is either causative itself or linked to an unidentified causative mutation. Overexpression studies in cells lacking SMARCB1 suggest that mutant SMARCB1 proteins, like wild-type SMARCB1 protein, retain the ability to suppress cyclin D1 activity. These data, together with the expression of SMARCB1 protein in a proportion of cells from schwannomatosis-related schwannomas, suggest that these tumors develop through a mechanism that is distinct from that of rhabdoid tumors in which SMARCB1 protein is completely absent in tumor cells. PMID:22949514

  10. Expression of SMARCB1 (INI1) mutations in familial schwannomatosis.

    PubMed

    Smith, Miriam J; Walker, James A; Shen, Yiping; Stemmer-Rachamimov, Anat; Gusella, James F; Plotkin, Scott R

    2012-12-15

    Genetic changes in the SMARCB1 tumor suppressor gene have recently been reported in tumors and blood from families with schwannomatosis. Exon scanning of all nine SMARCB1 exons in genomic DNA from our cohort of families meeting the criteria for 'definite' or 'presumptive' schwannomatosis previously revealed constitutional alterations in 13 of 19 families (68%). Screening of four new familial schwannomatosis probands identified one additional constitutional alteration. We confirmed the presence of mRNA transcripts for two missense alterations, four mutations of conserved splice motifs and two additional mutations, in less conserved sequences, which also affect splicing. Furthermore, we found that transcripts for a rare 3'-untranslated region (c.*82C > T) alteration shared by four unrelated families did not produce splice variants but did show unequal allelic expression, suggesting that the alteration is either causative itself or linked to an unidentified causative mutation. Overexpression studies in cells lacking SMARCB1 suggest that mutant SMARCB1 proteins, like wild-type SMARCB1 protein, retain the ability to suppress cyclin D1 activity. These data, together with the expression of SMARCB1 protein in a proportion of cells from schwannomatosis-related schwannomas, suggest that these tumors develop through a mechanism that is distinct from that of rhabdoid tumors in which SMARCB1 protein is completely absent in tumor cells.

  11. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome.

    PubMed

    Boileau, Catherine; Guo, Dong-Chuan; Hanna, Nadine; Regalado, Ellen S; Detaint, Delphine; Gong, Limin; Varret, Mathilde; Prakash, Siddharth K; Li, Alexander H; d'Indy, Hyacintha; Braverman, Alan C; Grandchamp, Bernard; Kwartler, Callie S; Gouya, Laurent; Santos-Cortez, Regie Lyn P; Abifadel, Marianne; Leal, Suzanne M; Muti, Christine; Shendure, Jay; Gross, Marie-Sylvie; Rieder, Mark J; Vahanian, Alec; Nickerson, Deborah A; Michel, Jean Baptiste; Jondeau, Guillaume; Milewicz, Dianna M

    2012-07-08

    A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease followed by whole-exome sequencing of affected relatives identified causative mutations in TGFB2. These mutations-a frameshift mutation in exon 6 and a nonsense mutation in exon 4-segregated with disease with a combined logarithm of odds (LOD) score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified 2 additional TGFB2 mutations. TGFB2 encodes transforming growth factor (TGF)-β2, and the mutations are predicted to cause haploinsufficiency for TGFB2; however, aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency for TGFB2 predisposes to thoracic aortic disease, suggesting that the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.

  12. Whole Genome SNP Genotyping and Exome Sequencing Reveal Novel Genetic Variants and Putative Causative Genes in Congenital Hyperinsulinism

    PubMed Central

    Proverbio, Maria Carla; Mangano, Eleonora; Gessi, Alessandra; Bordoni, Roberta; Spinelli, Roberta; Asselta, Rosanna; Valin, Paola Sogno; Di Candia, Stefania; Zamproni, Ilaria; Diceglie, Cecilia; Mora, Stefano; Caruso-Nicoletti, Manuela; Salvatoni, Alessandro; De Bellis, Gianluca; Battaglia, Cristina

    2013-01-01

    Congenital hyperinsulinism of infancy (CHI) is a rare disorder characterized by severe hypoglycemia due to inappropriate insulin secretion. The genetic causes of CHI have been found in genes regulating insulin secretion from pancreatic β-cells; recessive inactivating mutations in the ABCC8 and KCNJ11 genes represent the most common events. Despite the advances in understanding the molecular pathogenesis of CHI, specific genetic determinants in about 50 % of the CHI patients remain unknown, suggesting additional locus heterogeneity. In order to search for novel loci contributing to the pathogenesis of CHI, we combined a family-based association study, using the transmission disequilibrium test on 17 CHI patients lacking mutations in ABCC8/KCNJ11, with a whole-exome sequencing analysis performed on 10 probands. This strategy allowed the identification of the potential causative mutations in genes implicated in the regulation of insulin secretion such as transmembrane proteins (CACNA1A, KCNH6, KCNJ10, NOTCH2, RYR3, SCN8A, TRPV3, TRPC5), cytosolic (ACACB, CAMK2D, CDKAL1, GNAS, NOS2, PDE4C, PIK3R3) and mitochondrial enzymes (PC, SLC24A6), and in four genes (CSMD1, SLC37A3, SULF1, TLL1) suggested by TDT family-based association study. Moreover, the exome-sequencing approach resulted to be an efficient diagnostic tool for CHI, allowing the identification of mutations in three causative CHI genes (ABCC8, GLUD1, and HNF1A) in four out of 10 patients. Overall, the present study should be considered as a starting point to design further investigations: our results might indeed contribute to meta-analysis studies, aimed at the identification/confirmation of novel causative or modifier genes. PMID:23869231

  13. A de novo mutation in the AGXT gene causing primary hyperoxaluria type 1.

    PubMed

    Williams, Emma L; Kemper, Markus J; Rumsby, Gill

    2006-09-01

    Primary hyperoxaluria type 1 is caused by mutations in the alanine-glyoxylate aminotransferase (AGXT) gene. In cases in which no mutation was identified, linkage analysis can be used to confirm or exclude the diagnosis in other siblings. We present a family in which a sibling of the index case predicted to have primary hyperoxaluria type 1 by means of linkage analysis failed to show hyperoxaluria during the following 7 years, putting the diagnosis into question. Whole-gene sequence analysis identified 2 causative mutations in the index case, of which only 1, c.646A (Gly216Arg), was inherited. The other sequence change, c.33_34insC, was a de novo mutation occurring on the paternal allele. This particular mutation is a relatively common cause of primary hyperoxaluria type 1. It occurs in a run of 8 cytosines and therefore potentially is susceptible to polymerase slippage. This case illustrates 2 important points. First, biochemical confirmation of a genetic diagnosis should always be made in siblings diagnosed by using genetic tests. Second, de novo mutations should be considered as a potential, albeit rare, cause of primary hyperoxaluria type 1.

  14. Male Hypogonadism and Germ Cell Loss Caused by a Mutation in Polo-Like Kinase 4

    PubMed Central

    Harris, Rebecca M.; Weiss, Jeffrey

    2011-01-01

    The genetic etiologies of male infertility remain largely unknown. To identify genes potentially involved in spermatogenesis and male infertility, we performed genome-wide mutagenesis in mice with N-ethyl-N-nitrosourea and identified a line with dominant hypogonadism and patchy germ cell loss. Genomic mapping and DNA sequence analysis identified a novel heterozygous missense mutation in the kinase domain of Polo-like kinase 4 (Plk4), altering an isoleucine to asparagine at residue 242 (I242N). Genetic complementation studies using a gene trap line with disruption in the Plk4 locus confirmed that the putative Plk4 missense mutation was causative. Plk4 is known to be involved in centriole formation and cell cycle progression. However, a specific role in mammalian spermatogenesis has not been examined. PLK4 was highly expressed in the testes both pre- and postnatally. In the adult, PLK4 expression was first detected in stage VIII pachytene spermatocytes and was present through step 16 elongated spermatids. Because the homozygous Plk4I242N/I242N mutation was embryonic lethal, all analyses were performed using the heterozygous Plk4+/I242N mice. Testis size was reduced by 17%, and histology revealed discrete regions of germ cell loss, leaving only Sertoli cells in these defective tubules. Testis cord formation (embryonic day 13.5) was normal. Testis histology was also normal at postnatal day (P)1, but germ cell loss was detected at P10 and subsequent ages. We conclude that the I242N heterozygous mutation in PLK4 is causative for patchy germ cell loss beginning at P10, suggesting a role for PLK4 during the initiation of spermatogenesis. PMID:21791561

  15. A novel NHS mutation causes Nance-Horan Syndrome in a Chinese family.

    PubMed

    Tian, Qi; Li, Yunping; Kousar, Rizwana; Guo, Hui; Peng, Fenglan; Zheng, Yu; Yang, Xiaohua; Long, Zhigao; Tian, Runyi; Xia, Kun; Lin, Haiying; Pan, Qian

    2017-01-07

    Nance-Horan Syndrome (NHS) (OMIM: 302350) is a rare X-linked developmental disorder characterized by bilateral congenital cataracts, with occasional dental anomalies, characteristic dysmorphic features, brachymetacarpia and mental retardation. Carrier females exhibit similar manifestations that are less severe than in affected males. Here, we report a four-generation Chinese family with multiple affected individuals presenting Nance-Horan Syndrome. Whole-exome sequencing combined with RT-PCR and Sanger sequencing was used to search for a genetic cause underlying the disease phenotype. Whole-exome sequencing identified in all affected individuals of the family a novel donor splicing site mutation (NM_198270: c.1045 + 2T > A) in intron 4 of the gene NHS, which maps to chromosome Xp22.13. The identified mutation results in an RNA processing defect causing a 416-nucleotide addition to exon 4 of the mRNA transcript, likely producing a truncated NHS protein. The donor splicing site mutation NM_198270: c.1045 + 2T > A of the NHS gene is the causative mutation in this Nance-Horan Syndrome family. This research broadens the spectrum of NHS gene mutations, contributing to our understanding of the molecular genetics of NHS.

  16. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis

    PubMed Central

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis. PMID:28819563

  17. A novel PTCH1 mutation in a patient with Gorlin syndrome.

    PubMed

    Okamoto, Nana; Naruto, Takuya; Kohmoto, Tomohiro; Komori, Takahide; Imoto, Issei

    2014-01-01

    Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified.

  18. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes.

    PubMed

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-05-26

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes.

  19. Systematic analysis of mutation distribution in three dimensional protein structures identifies cancer driver genes

    PubMed Central

    Fujimoto, Akihiro; Okada, Yukinori; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Taniguchi, Hiroaki; Nakagawa, Hidewaki

    2016-01-01

    Protein tertiary structure determines molecular function, interaction, and stability of the protein, therefore distribution of mutation in the tertiary structure can facilitate the identification of new driver genes in cancer. To analyze mutation distribution in protein tertiary structures, we applied a novel three dimensional permutation test to the mutation positions. We analyzed somatic mutation datasets of 21 types of cancers obtained from exome sequencing conducted by the TCGA project. Of the 3,622 genes that had ≥3 mutations in the regions with tertiary structure data, 106 genes showed significant skew in mutation distribution. Known tumor suppressors and oncogenes were significantly enriched in these identified cancer gene sets. Physical distances between mutations in known oncogenes were significantly smaller than those of tumor suppressors. Twenty-three genes were detected in multiple cancers. Candidate genes with significant skew of the 3D mutation distribution included kinases (MAPK1, EPHA5, ERBB3, and ERBB4), an apoptosis related gene (APP), an RNA splicing factor (SF1), a miRNA processing factor (DICER1), an E3 ubiquitin ligase (CUL1) and transcription factors (KLF5 and EEF1B2). Our study suggests that systematic analysis of mutation distribution in the tertiary protein structure can help identify cancer driver genes. PMID:27225414

  20. Next generation sequencing in women affected by nonsyndromic premature ovarian failure displays new potential causative genes and mutations.

    PubMed

    Fonseca, Dora Janeth; Patiño, Liliana Catherine; Suárez, Yohjana Carolina; de Jesús Rodríguez, Asid; Mateus, Heidi Eliana; Jiménez, Karen Marcela; Ortega-Recalde, Oscar; Díaz-Yamal, Ivonne; Laissue, Paul

    2015-07-01

    To identify new molecular actors involved in nonsyndromic premature ovarian failure (POF) etiology. This is a retrospective case-control cohort study. University research group and IVF medical center. Twelve women affected by nonsyndromic POF. The control group included 176 women whose menopause had occurred after age 50 and had no antecedents regarding gynecological disease. A further 345 women from the same ethnic origin (general population group) were also recruited to assess allele frequency for potentially deleterious sequence variants. Next generation sequencing (NGS), Sanger sequencing, and bioinformatics analysis. The complete coding regions of 70 candidate genes were massively sequenced, via NGS, in POF patients. Bioinformatics and genetics were used to confirm NGS results and to identify potential sequence variants related to the disease pathogenesis. We have identified mutations in two novel genes, ADAMTS19 and BMPR2, that are potentially related to POF origin. LHCGR mutations, which might have contributed to the phenotype, were also detected. We thus recommend NGS as a powerful tool for identifying new molecular actors in POF and for future diagnostic/prognostic purposes. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Whole Exome Sequencing Identifies de Novo Mutations in GATA6 Associated with Congenital Diaphragmatic Hernia

    PubMed Central

    Yu, Lan; Bennett, James T.; Wynn, Julia; Carvill, Gemma L.; Cheung, Yee Him; Shen, Yufeng; Mychaliska, George B.; Azarow, Kenneth S.; Crombleholme, Timothy M.; Chung, Dai H.; Potoka, Douglas; Warner, Brad W.; Bucher, Brian; Lim, Foong-Yen; Pietsch, John; Stolar, Charles; Aspelund, Gudrun; Arkovitz, Marc S.; Mefford, Heather; Chung, Wendy K.

    2014-01-01

    Background Congenital diaphragmatic hernia (CDH) is a common birth defect affecting 1 in 3,000 births. It is characterized by herniation of abdominal viscera through an incompletely formed diaphragm. Although chromosomal anomalies and mutations in several genes have been implicated, the cause for most patients is unknown. Methods We used whole exome sequencing in two families with CDH and congenital heart disease, and identified mutations in GATA6 in both. Results In the first family, we identified a de novo missense mutation (c.1366C>T, p.R456C) in a sporadic CDH patient with tetralogy of Fallot. In the second, a nonsense mutation (c.712G>T, p.G238*) was identified in two siblings with CDH and a large ventricular septal defect. The G238* mutation was inherited from their mother, who was clinically affected with congenital absence of the pericardium, patent ductus arteriosus, and intestinal malrotation. Deep sequencing of blood and saliva derived DNA from the mother suggested somatic mosaicism as an explanation for her milder phenotype, with only approximately 15% mutant alleles. To determine the frequency of GATA6 mutations in CDH, we sequenced the gene in 378 patients with CDH. We identified one additional de novo mutation (c.1071delG, p.V358Cfs34*). Conclusions Mutations in GATA6 have been previously associated with pancreatic agenesis and congenital heart disease. We conclude that, in addition to the heart and the pancreas, GATA6 is involved in development of two additional organs, the diaphragm and the pericardium. In addition we have shown that de novo mutations can contribute to the development of CDH, a common birth defect. PMID:24385578

  2. Constitutional mutations in RTEL1 cause severe dyskeratosis congenita.

    PubMed

    Walne, Amanda J; Vulliamy, Tom; Kirwan, Michael; Plagnol, Vincent; Dokal, Inderjeet

    2013-03-07

    Dyskeratosis congenita (DC) and its phenotypically severe variant, Hoyeraal-Hreidarsson syndrome (HHS), are multisystem bone-marrow-failure syndromes in which the principal pathology is defective telomere maintenance. The genetic basis of many cases of DC and HHS remains unknown. Using whole-exome sequencing, we identified biallelic mutations in RTEL1, encoding a helicase essential for telomere maintenance and regulation of homologous recombination, in an individual with familial HHS. Additional screening of RTEL1 identified biallelic mutations in 6/23 index cases with HHS but none in 102 DC or DC-like cases. All 11 mutations in ten HHS individuals from seven families segregated in an autosomal-recessive manner, and telomere lengths were significantly shorter in cases than in controls (p = 0.0003). This group had significantly higher levels of telomeric circles, produced as a consequence of incorrect processing of telomere ends, than did controls (p = 0.0148). These biallelic RTEL1 mutations are responsible for a major subgroup (∼29%) of HHS. Our studies show that cells harboring these mutations have significant defects in telomere maintenance, but not in homologous recombination, and that incorrect resolution of T-loops is a mechanism for telomere shortening and disease causation in humans. They also demonstrate the severe multisystem consequences of its dysfunction. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. TALEN-mediated single-base-pair editing identification of an intergenic mutation upstream of BUB1B as causative of PCS (MVA) syndrome

    PubMed Central

    Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya

    2014-01-01

    Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301

  4. Carrier screening of RTEL1 mutations in the Ashkenazi Jewish population.

    PubMed

    Fedick, A M; Shi, L; Jalas, C; Treff, N R; Ekstein, J; Kornreich, R; Edelmann, L; Mehta, L; Savage, S A

    2015-08-01

    Hoyeraal-Hreidarsson syndrome (HH) is a clinically severe variant of dyskeratosis congenita (DC), characterized by cerebellar hypoplasia, microcephaly, intrauterine growth retardation, and severe immunodeficiency in addition to features of DC. Germline mutations in the RTEL1 gene have recently been identified as causative of HH. In this study, the carrier frequency for five RTEL1 mutations that occurred in individuals of Ashkenazi Jewish descent was investigated in order to advise on including them in existing clinical mutation panels for this population. Our screening showed that the carrier frequency for c.3791G>A (p.R1264H) was higher than expected, 1% in the Ashkenazi Orthodox and 0.45% in the general Ashkenazi Jewish population. Haplotype analyses suggested the presence of a common founder. We recommend that the c.3791G>A RTEL1 mutation be considered for inclusion in carrier screening panels in the Ashkenazi population. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms

    PubMed Central

    Milosevic Feenstra, Jelena D.; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N.; Cazzola, Mario

    2016-01-01

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed “triple negative.” We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. PMID:26423830

  6. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    PubMed

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  7. Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

    PubMed

    Nicolas, Aude; Kenna, Kevin P; Renton, Alan E; Ticozzi, Nicola; Faghri, Faraz; Chia, Ruth; Dominov, Janice A; Kenna, Brendan J; Nalls, Mike A; Keagle, Pamela; Rivera, Alberto M; van Rheenen, Wouter; Murphy, Natalie A; van Vugt, Joke J F A; Geiger, Joshua T; Van der Spek, Rick A; Pliner, Hannah A; Shankaracharya; Smith, Bradley N; Marangi, Giuseppe; Topp, Simon D; Abramzon, Yevgeniya; Gkazi, Athina Soragia; Eicher, John D; Kenna, Aoife; Mora, Gabriele; Calvo, Andrea; Mazzini, Letizia; Riva, Nilo; Mandrioli, Jessica; Caponnetto, Claudia; Battistini, Stefania; Volanti, Paolo; La Bella, Vincenzo; Conforti, Francesca L; Borghero, Giuseppe; Messina, Sonia; Simone, Isabella L; Trojsi, Francesca; Salvi, Fabrizio; Logullo, Francesco O; D'Alfonso, Sandra; Corrado, Lucia; Capasso, Margherita; Ferrucci, Luigi; Moreno, Cristiane de Araujo Martins; Kamalakaran, Sitharthan; Goldstein, David B; Gitler, Aaron D; Harris, Tim; Myers, Richard M; Phatnani, Hemali; Musunuri, Rajeeva Lochan; Evani, Uday Shankar; Abhyankar, Avinash; Zody, Michael C; Kaye, Julia; Finkbeiner, Steven; Wyman, Stacia K; LeNail, Alex; Lima, Leandro; Fraenkel, Ernest; Svendsen, Clive N; Thompson, Leslie M; Van Eyk, Jennifer E; Berry, James D; Miller, Timothy M; Kolb, Stephen J; Cudkowicz, Merit; Baxi, Emily; Benatar, Michael; Taylor, J Paul; Rampersaud, Evadnie; Wu, Gang; Wuu, Joanne; Lauria, Giuseppe; Verde, Federico; Fogh, Isabella; Tiloca, Cinzia; Comi, Giacomo P; Sorarù, Gianni; Cereda, Cristina; Corcia, Philippe; Laaksovirta, Hannu; Myllykangas, Liisa; Jansson, Lilja; Valori, Miko; Ealing, John; Hamdalla, Hisham; Rollinson, Sara; Pickering-Brown, Stuart; Orrell, Richard W; Sidle, Katie C; Malaspina, Andrea; Hardy, John; Singleton, Andrew B; Johnson, Janel O; Arepalli, Sampath; Sapp, Peter C; McKenna-Yasek, Diane; Polak, Meraida; Asress, Seneshaw; Al-Sarraj, Safa; King, Andrew; Troakes, Claire; Vance, Caroline; de Belleroche, Jacqueline; Baas, Frank; Ten Asbroek, Anneloor L M A; Muñoz-Blanco, José Luis; Hernandez, Dena G; Ding, Jinhui; Gibbs, J Raphael; Scholz, Sonja W; Floeter, Mary Kay; Campbell, Roy H; Landi, Francesco; Bowser, Robert; Pulst, Stefan M; Ravits, John M; MacGowan, Daniel J L; Kirby, Janine; Pioro, Erik P; Pamphlett, Roger; Broach, James; Gerhard, Glenn; Dunckley, Travis L; Brady, Christopher B; Kowall, Neil W; Troncoso, Juan C; Le Ber, Isabelle; Mouzat, Kevin; Lumbroso, Serge; Heiman-Patterson, Terry D; Kamel, Freya; Van Den Bosch, Ludo; Baloh, Robert H; Strom, Tim M; Meitinger, Thomas; Shatunov, Aleksey; Van Eijk, Kristel R; de Carvalho, Mamede; Kooyman, Maarten; Middelkoop, Bas; Moisse, Matthieu; McLaughlin, Russell L; Van Es, Michael A; Weber, Markus; Boylan, Kevin B; Van Blitterswijk, Marka; Rademakers, Rosa; Morrison, Karen E; Basak, A Nazli; Mora, Jesús S; Drory, Vivian E; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Hardiman, Orla; Williams, Kelly L; Fifita, Jennifer A; Nicholson, Garth A; Blair, Ian P; Rouleau, Guy A; Esteban-Pérez, Jesús; García-Redondo, Alberto; Al-Chalabi, Ammar; Rogaeva, Ekaterina; Zinman, Lorne; Ostrow, Lyle W; Maragakis, Nicholas J; Rothstein, Jeffrey D; Simmons, Zachary; Cooper-Knock, Johnathan; Brice, Alexis; Goutman, Stephen A; Feldman, Eva L; Gibson, Summer B; Taroni, Franco; Ratti, Antonia; Gellera, Cinzia; Van Damme, Philip; Robberecht, Wim; Fratta, Pietro; Sabatelli, Mario; Lunetta, Christian; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Camu, William; Trojanowski, John Q; Van Deerlin, Vivianna M; Brown, Robert H; van den Berg, Leonard H; Veldink, Jan H; Harms, Matthew B; Glass, Jonathan D; Stone, David J; Tienari, Pentti; Silani, Vincenzo; Chiò, Adriano; Shaw, Christopher E; Traynor, Bryan J; Landers, John E

    2018-03-21

    To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. [Analysis of gene mutation in a Chinese family with Norrie disease].

    PubMed

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  9. Report of four new patients with protein-truncating mutations in C6orf221/KHDC3L and colocalization with NLRP7

    PubMed Central

    Reddy, Ramesh; Akoury, Elie; Phuong Nguyen, Ngoc Minh; Abdul-Rahman, Omar A; Dery, Christine; Gupta, Neerja; Daley, William P; Ao, Asangla; Landolsi, Hanene; Ann Fisher, Rosemary; Touitou, Isabelle; Slim, Rima

    2013-01-01

    To date, two maternal-effect genes have been shown to have causative roles in recurrent hydatidiform moles (RHMs); NLRP7 that is mutated in 48–60% of patients with RHMs and C6orf221 (HUGO-approved nomenclature is now KHDC3L), a recently identified gene, that is mutated in 14% of patients with RHMs who are negative for NLRP7 mutations. We sequenced KHDC3L in 97 patients with RHMs and reproductive loss who are mostly negative for NLRP7 mutations. We identified three unrelated patients, each homozygous for one of the two protein-truncating mutations, a novel 4-bp deletion resulting in a frameshift, c.299_302delTCAA, p.Ile100Argfs*2, and a previously described 4-bp deletion, c.322_325delGACT, p.Asp108Ilefs*30, transmitted on a shared haplotype to three patients from different populations. We show that five HM tissues from one of these patients are diploid and biparental similar to HMs from patients with two defective NLRP7 mutations. Using immunofluorescence, we show that KHDC3L protein displays a juxta perinuclear signal and colocalizes with NLRP7 in lymphoblastoid cell lines from normal subjects. Using cell lines from patients, we demonstrate that the KHDC3L mutations do not change the subcellular localization of the protein in hematopoietic cells. Our data highlight the similarities between the two causative genes for RHMs, KHDC3L and NLRP7, in their subcellular localization, the parental contribution to the HM tissues caused by them, and the presence of several founder mutations and variants in both of them indicating positive selection and adaptation. PMID:23232697

  10. Rare deleterious mutations are associated with disease in bipolar disorder families.

    PubMed

    Rao, A R; Yourshaw, M; Christensen, B; Nelson, S F; Kerner, B

    2017-07-01

    Bipolar disorder (BD) is a common, complex and heritable psychiatric disorder characterized by episodes of severe mood swings. The identification of rare, damaging genomic mutations in families with BD could inform about disease mechanisms and lead to new therapeutic interventions. To determine whether rare, damaging mutations shared identity-by-descent in families with BD could be associated with disease, exome sequencing was performed in multigenerational families of the NIMH BD Family Study followed by in silico functional prediction. Disease association and disease specificity was determined using 5090 exomes from the Sweden-Schizophrenia (SZ) Population-Based Case-Control Exome Sequencing study. We identified 14 rare and likely deleterious mutations in 14 genes that were shared identity-by-descent among affected family members. The variants were associated with BD (P<0.05 after Bonferroni's correction) and disease specificity was supported by the absence of the mutations in patients with SZ. In addition, we found rare, functional mutations in known causal genes for neuropsychiatric disorders including holoprosencephaly and epilepsy. Our results demonstrate that exome sequencing in multigenerational families with BD is effective in identifying rare genomic variants of potential clinical relevance and also disease modifiers related to coexisting medical conditions. Replication of our results and experimental validation are required before disease causation could be assumed.

  11. Mutations in HPSE2 cause urofacial syndrome.

    PubMed

    Daly, Sarah B; Urquhart, Jill E; Hilton, Emma; McKenzie, Edward A; Kammerer, Richard A; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S; Black, Graeme C; Newman, William G

    2010-06-11

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction.

  12. Mutations in HPSE2 Cause Urofacial Syndrome

    PubMed Central

    Daly, Sarah B.; Urquhart, Jill E.; Hilton, Emma; McKenzie, Edward A.; Kammerer, Richard A.; Lewis, Malcolm; Kerr, Bronwyn; Stuart, Helen; Donnai, Dian; Long, David A.; Burgu, Berk; Aydogdu, Ozgu; Derbent, Murat; Garcia-Minaur, Sixto; Reardon, Willie; Gener, Blanca; Shalev, Stavit; Smith, Rupert; Woolf, Adrian S.; Black, Graeme C.; Newman, William G.

    2010-01-01

    Urinary voiding dysfunction in childhood, manifesting as incontinence, dysuria, and urinary frequency, is a common condition. Urofacial syndrome (UFS) is a rare autosomal recessive disease characterized by facial grimacing when attempting to smile and failure of the urinary bladder to void completely despite a lack of anatomical bladder outflow obstruction or overt neurological damage. UFS individuals often have reflux of infected urine from the bladder to the upper renal tract, with a risk of kidney damage and renal failure. Whole-genome SNP mapping in one affected individual defined an autozygous region of 16 Mb on chromosome 10q23-q24, within which a 10 kb deletion encompassing exons 8 and 9 of HPSE2 was identified. Homozygous exonic deletions, nonsense mutations, and frameshift mutations in five further unrelated families confirmed HPSE2 as the causative gene for UFS. Mutations were not identified in four additional UFS patients, indicating genetic heterogeneity. We show that HPSE2 is expressed in the fetal and adult central nervous system, where it might be implicated in controlling facial expression and urinary voiding, and also in bladder smooth muscle, consistent with a role in renal tract morphology and function. Our findings have broader implications for understanding the genetic basis of lower renal tract malformations and voiding dysfunction. PMID:20560210

  13. A novel PTCH1 mutation in a patient with Gorlin syndrome

    PubMed Central

    Okamoto, Nana; Naruto, Takuya; Kohmoto, Tomohiro; Komori, Takahide; Imoto, Issei

    2014-01-01

    Gorlin syndrome is an autosomal dominant disorder characterized by a wide range of developmental abnormalities and a predisposition to various tumors, and it is linked to the alteration of several causative genes, including PTCH1. We performed targeted resequencing using a next-generation sequencer to analyze genes associated with known clinical phenotypes in an 11-year-old male with sporadic jaw keratocysts. A novel duplication mutation (c.426dup) in PTCH1, resulting in a truncated protein, was identified. PMID:27081512

  14. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease.

    PubMed

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-11-01

    Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  15. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    PubMed Central

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-01-01

    Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643

  16. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    NASA Astrophysics Data System (ADS)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  17. Screening for ATM Mutations in an African-American Population to Identify a Predictor of Breast Cancer Susceptibility

    DTIC Science & Technology

    2006-07-01

    ATM genetic variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for each mutation examined. 15. SUBJECT...women without breast cancer. An additional objective is to determine the functional impact upon the protein encoded by the ATM gene for each mutation ...each ATM variant identified affects radiosensitivity and levels of the protein encoded by the ATM gene for mutations identified. Body STATEMENT

  18. Epidemiology and causation: a realist view.

    PubMed Central

    Renton, A

    1994-01-01

    In this paper the controversy over how to decide whether associations between factors and diseases are causal is placed within a description of the public health and scientific relevance of epidemiology. It is argued that the rise in popularity of the Popperian view of science, together with a perception of the aims of epidemiology as being to identify appropriate public health interventions, have focussed this debate on unresolved questions of inferential logic, leaving largely unanalysed the notions of causation and of disease at the ontological level. A realist ontology of causation of disease and pathogenesis is constructed within the framework of "scientific materialism", and is shown to provide a coherent basis from which to decide causes and to deal with problems of confounding and interaction in epidemiological research. It is argued that a realist analysis identifies a richer role for epidemiology as an integral part of an ontologically unified medical science. It is this unified medical science as a whole rather than epidemiological observation or experiment which decides causes and, in turn, provides a key element to the foundations of rational public health decision making. PMID:8138775

  19. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations

    PubMed Central

    Gu, Shun; Tian, Yuanyuan; Chen, Xue

    2016-01-01

    Purpose We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Methods Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease–relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Results Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant’s colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Conclusions Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all

  20. Targeted next-generation sequencing extends the phenotypic and mutational spectrums for EYS mutations.

    PubMed

    Gu, Shun; Tian, Yuanyuan; Chen, Xue; Zhao, Chen

    2016-01-01

    We aim to determine genetic lesions with a phenotypic correlation in four Chinese families with autosomal recessive retinitis pigmentosa (RP). Medical histories were carefully reviewed. All patients received comprehensive ophthalmic evaluations. The next-generation sequencing (NGS) approach targeting a panel of 205 retinal disease-relevant genes and 15 candidate genes was selectively performed on probands from the four recruited families for mutation detection. Online predictive software and crystal structure modeling were also applied to test the potential pathogenic effects of identified mutations. Of the four families, two were diagnosed with RP sino pigmento (RPSP). Patients with RPSP claimed to have earlier RP age of onset but slower disease progression. Five mutations in the eyes shut homolog (EYS) gene, involving two novel (c.7228+1G>A and c.9248G>A) and three recurrent mutations (c.4957dupA, c.6416G>A and c.6557G>A), were found as RP causative in the four families. The missense variant c.5093T>C was determined to be a variant of unknown significance (VUS) due to the variant's colocalization in the same allele with the reported pathogenic mutation c.6416G>A. The two novel variants were further confirmed absent in 100 unrelated healthy controls. Online predictive software indicated potential pathogenicity of the three missense mutations. Further, crystal structural modeling suggested generation of two abnormal hydrogen bonds by the missense mutation p.G2186E (c.6557G>A) and elongation of its neighboring β-sheet induced by p.G3083D (c.9248G>A), which could alter the tertiary structure of the eys protein and thus interrupt its physicochemical properties. Taken together, with the targeted NGS approach, we reveal novel EYS mutations and prove the efficiency of targeted NGS in the genetic diagnoses of RP. We also first report the correlation between EYS mutations and RPSP. The genotypic-phenotypic relationship in all Chinese patients carrying mutations in the EYS

  1. Top-down causation and social structures

    PubMed Central

    Elder-Vass, Dave

    2012-01-01

    Top-down causation has been implicit in many sociological accounts of social structure and its influence on social events, but the social sciences have struggled to provide a coherent account of top-down causation itself. This paper summarizes a critical realist view of causation and emergence, shows how it supports a plausible account of top-down causation and then applies this account to the social world. The argument is illustrated by an examination of the concept of a norm circle, a kind of social entity that, it is argued, is causally responsible for the influence of normative social institutions. Nevertheless, social entities are structured rather differently from ordinary material ones, with the result that the compositional level structure of reality implicit in the concept of top-down causation has some limitations in the social world. The paper closes by considering what might be involved in examining how top-down causation can be shown to be at work in the social domain. PMID:23386963

  2. Kabuki syndrome: a Chinese case series and systematic review of the spectrum of mutations.

    PubMed

    Liu, Shuang; Hong, Xiafei; Shen, Cheng; Shi, Quan; Wang, Jian; Xiong, Feng; Qiu, Zhengqing

    2015-04-21

    Kabuki syndrome is a rare hereditary disease affecting multiple organs. The causative genes identified to date are KMT2D and KDMA6. The aim of this study is to evaluate the clinical manifestations and the spectrum of mutations of KMT2D. We retrospectively retrieved a series of eight patients from two hospitals in China and conducted Sanger sequencing for all of the patients and their parents if available. We also reviewed the literature and plotted the mutation spectrum of KMT2D. The patients generally presented with typical clinical manifestations as previously reported in other countries. Uncommon symptoms included spinal bifida and Dandy-Walker malformation. With respect to the mutations, five mutations were found in five patients, including two frameshift indels, one nonsense mutation and two missense mutations. This is the first case series on Kabuki syndrome in Mainland China. Unusual symptoms, such as spinal bifida and Dandy-Walker syndrome, suggested that neurological developmental defects may accompany Kabuki syndrome. This case series helps broaden the mutation spectrum of Kabuki syndrome and adds information regarding the manifestations of Kabuki syndrome.

  3. Familial pachygyria in both genders related to a DCX mutation.

    PubMed

    Kim, Young Ok; Nam, Tai-Seung; Park, Chungoo; Kim, Seul Kee; Yoon, Woong; Choi, Seok-Yong; Kim, Myeong-Kyu; Woo, Young Jong

    2016-06-01

    Doublecortin (DCX) and tubulin play critical roles in neuronal migration. DCX mutations usually cause anterior dominant lissencephaly in males and subcortical band heterotopia (SBH) in females. We used whole-exome sequencing to investigate causative gene variants in a large family with late-childhood-onset focal epilepsy and anterior dominant pachygyria without SBH in both genders. Two potential variants were found for the genes encoding DCX and beta tubulin isotype 1 (TUBB1). The novel DCX mutation (p.D90G, NP_000546.2) appeared to be a major causative variant, whereas the novel mutation of TUBB1 (p.R62fsX, NP_110400.1) was found only in patients with more-severe intellectual disability after gender matching. We report an unusual DCX-related disorder exhibiting familial pachygyria without SBH in both genders. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  4. A novel dysfunctional germline P53 mutation identified in a family with Li-Fraumeni syndrome.

    PubMed

    Ji, Min; Wang, Lin; Shao, Yuguo; Cao, Wei; Xu, Ting; Chen, Shujie; Wang, Zhiwei; He, Qi; Yang, Kuo

    2018-01-01

    Li-Fraumeni Syndrome (LFS), which is a rare dominantly inherited cancer predisposition syndrome, is associated with germline P53 mutations. Mutations of the tumor suppressor protein P53 are associated with more than 50% of human cancers; however, almost 30% of P53 mutations occur rarely and this has raised questions about their significance. It therefore appeared of particular interest that we identified a novel mutation in a patient suffering from breast cancer and fulfilling the diagnostic criteria of LFS. In this study, a patient with remarkable family history developed breast cancer and was diagnosed with LFS. By performing next-generation sequencing on the patient and subsequent verification by Sanger sequencing among other family members, a new germ-line P53 replication error, a trinucleotide repeat mutation in the coding region, was identified in two generations of this Li-Fraumeni family.

  5. [NOTCH3 gene mutations in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy].

    PubMed

    Sun, Qiying; Li, Wenwen; Zhou, Yafang; Yi, Fang; Wang, Jianfeng; Hu, Yacen; Yao, Lingyan; Zhou, Lin; Xu, Hongwei

    2017-12-10

    To analyze potential mutations of the NOTCH3 gene in two Chinese families featuring cerebral autosomal dominant arteriopathy with subcortical infarct and leucoencephalopathy (CADASIL). The two probands and related family members and 100 healthy controls were recruited. Potential mutations of the NOTCH3 gene were screened by PCR and direct sequencing. PolyPhen-2 and SIFT software were used to predict the protein function. The conditions of both probands were adult-onset, with main clinical features including recurrent transient ischemic attacks and/or strokes, cognitive impairment. MRI findings suggested multiple cerebral infarcts and severe leukoencephalopathy. A heterozygous mutation c.328C>T (p.Arg110Cys), which was located in exon 3 of the NOTCH3 gene and known as a causative mutation, was identified in proband 1. A novel heterozygous mutation c.1013 G>C (p.Cys338Ser) located in exon 6 of the NOTCH3 gene was identified in the proband 2, which was not reported previously. The same mutations were not detected among the 100 unrelated healthy controls. Function analysis suggested that heterozygous mutation c.1013G>C can severely affect the functions of NOTCH3 protein. Two heterozygous missense mutations in the NOTCH3 gene have been identified in two families affected with CADASIL. The novel heterozygous Cys338Ser mutation in exon 6 of the NOTCH3 gene probably underlies the CADASIL.

  6. A mutation of the p63 gene in non‐syndromic cleft lip

    PubMed Central

    Leoyklang, P; Siriwan, P; Shotelersuk, V

    2006-01-01

    Mutations in the p63 gene (TP63) underlie several monogenic malformation syndromes manifesting cleft lip with or without cleft palate (CL/P). We investigated whether p63 mutations also result in non‐syndromic CL/P. Specifically, we performed mutation analysis of the 16 exons of the p63 gene for 100 Thai patients with non‐syndromic CL/P. In total, 21 variant sites were identified. All were single nucleotide changes, with six in coding regions, including three novel non‐synonymous changes: S90L, R313G, and D564H. The R313G was concluded to be pathogenic on the basis of its amino acid change, evolutionary conservation, its occurrence in a functionally important domain, its predicted damaging function, its de novo occurrence, and its absence in 500 control individuals. Our data strongly suggest, for the first time, a causative role of a heterozygous mutation in the p63 gene in non‐syndromic CL/P, highlighting the wide phenotypic spectrum of p63 gene mutations. PMID:16740912

  7. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    PubMed

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the

  8. ZMYND10--Mutation Analysis in Slavic Patients with Primary Ciliary Dyskinesia.

    PubMed

    Kurkowiak, Małgorzata; Ziętkiewicz, Ewa; Greber, Agnieszka; Voelkel, Katarzyna; Wojda, Alina; Pogorzelski, Andrzej; Witt, Michał

    2016-01-01

    Primary ciliary dyskinesia (PCD) is a rare recessive disease with a prevalence of 1/10,000; its symptoms are caused by a kinetic dysfunction of motile cilia in the respiratory epithelium, flagella in spermatozoids, and primary cilia in the embryonic node. PCD is genetically heterogeneous: genotyping the already known PCD-related genes explains the genetic basis in 60-65% of the cases, depending on the population. While identification of new genes involved in PCD pathogenesis remains crucial, the search for new, population-specific mutations causative for PCD is equally important. The Slavs remain far less characterized in this respect compared to West European populations, which significantly limits diagnostic capability. The main goal of this study was to characterize the profile of causative genetic defects in one of the PCD-causing genes, ZMYND10, in the cohort of PCD patients of Slavic origin. The study was carried out using biological material from 172 unrelated PCD individuals of Polish origin, with no causative mutation found in nine major PCD genes. While none of the previously described mutations was found using the HRM-based screening, a novel frameshift mutation (c.367delC) in ZMYND10, unique for Slavic PCD population, was found in homozygous state in two unrelated PCD patients. Immunofluorescence analysis confirmed the absence of outer and inner dynein arms from the ciliary axoneme, consistent with the already published ZMYND10-mutated phenotype; cDNA analysis revealed the lack of ZMYND10 mRNA, indicating nonsense-mediated decay of the truncated transcript.

  9. A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family.

    PubMed

    Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q

    2014-11-01

    X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype-genotype study in XLRS.

  10. A novel deletion mutation in RS1 gene caused X-linked juvenile retinoschisis in a Chinese family

    PubMed Central

    Huang, Y; Mei, L; Gui, B; Su, W; Liang, D; Wu, L; Pan, Q

    2014-01-01

    Purpose X-linked juvenile retinoschisis (XLRS), a leading cause of juvenile macular degeneration, is characterized by a spoke-wheel pattern in the macular region of the retina and splitting of the neurosensory retina. This study aimed to identify the underlying genetic defect in a Chinese family with XLRS. Methods The proband underwent complete ophthalmic examinations, including fundus examination, fundus autofluorescence, and optical coherence tomography. DNA extracted from proband and his younger brother was screened for mutations in RS1 gene. The detected RS1 mutation was tested in all available family members and 200 healthy controls. Results Reduced visual acuity, spoke-wheel pattern at the fovea, and split retina were observed in the proband. A novel frameshift mutation c.206-207delTG in the RS1 gene, leading to a truncated protein (p.L69fs16X), was identified in the proband and his younger brother. This mutation was not found in any unaffected member or in the healthy controls. The mother of the proband was hemizygous for this mutant allele. Conclusions We identified a novel causative mutation of RS1 in a Chinese family with XLRS. This finding expands the mutation spectrum of RS1 and provides evidence for a phenotype–genotype study in XLRS. PMID:25168411

  11. Two novel mutations in the homogentisate-1,2-dioxygenase gene identified in Chinese Han Child with Alkaptonuria.

    PubMed

    Li, Hongying; Zhang, Kaihui; Xu, Qun; Ma, Lixia; Lv, Xin; Sun, Ruopeng

    2015-03-01

    Alkaptonuria (AKU) is an autosomal recessive disorder of tyrosine metabolism, which is caused by a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) with subsequent accumulation of homogentisic acid. Presently, more than 100 HGD mutations have been identified as the cause of the inborn error of metabolism across different populations worldwide. However, the HGD mutation is very rarely reported in Asia, especially China. In this study, we present mutational analyses of HGD gene in one Chinese Han child with AKU, which had been identified by gas chromatography-mass spectrometry detection of organic acids in urine samples. PCR and DNA sequencing of the entire coding region as well as exon-intron boundaries of HGD have been performed. Two novel mutations were identified in the HGD gene in this AKU case, a frameshift mutation of c.115delG in exon 3 and the splicing mutation of IVS5+3 A>C, a donor splice site of the exon 5 and exon-intron junction. The identification of these mutations in this study further expands the spectrum of known HGD gene mutations and contributes to prenatal molecular diagnosis of AKU.

  12. How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats

    PubMed Central

    Schneider, Alexsandra; David, Victor A.; Johnson, Warren E.; O'Brien, Stephen J.; Barsh, Gregory S.; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the ‘black panther’ and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism. PMID:23251368

  13. How the leopard hides its spots: ASIP mutations and melanism in wild cats.

    PubMed

    Schneider, Alexsandra; David, Victor A; Johnson, Warren E; O'Brien, Stephen J; Barsh, Gregory S; Menotti-Raymond, Marilyn; Eizirik, Eduardo

    2012-01-01

    The occurrence of melanism (darkening of the background coloration) is documented in 13 felid species, in some cases reaching high frequencies at the population level. Recent analyses have indicated that it arose multiple times in the Felidae, with three different species exhibiting unique mutations associated with this trait. The causative mutations in the remaining species have so far not been identified, precluding a broader assessment of the evolutionary dynamics of melanism in the Felidae. Among these, the leopard (Panthera pardus) is a particularly important target for research, given the iconic status of the 'black panther' and the extremely high frequency of melanism observed in some Asian populations. Another felid species from the same region, the Asian golden cat (Pardofelis temminckii), also exhibits frequent records of melanism in some areas. We have sequenced the coding region of the Agouti Signaling Protein (ASIP) gene in multiple leopard and Asian golden cat individuals, and identified distinct mutations strongly associated with melanism in each of them. The single nucleotide polymorphism (SNP) detected among the P. pardus individuals was caused by a nonsense mutation predicted to completely ablate ASIP function. A different SNP was identified in P. temminckii, causing a predicted amino acid change that should also induce loss of function. Our results reveal two additional cases of species-specific mutations implicated in melanism in the Felidae, and indicate that ASIP mutations may play an important role in naturally-occurring coloration polymorphism.

  14. TP53, PIK3CA, FBXW7 and KRAS Mutations in Esophageal Cancer Identified by Targeted Sequencing.

    PubMed

    Zheng, Huili; Wang, Yan; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Zhang, Guangchun; Cao, Weihai; Li, Jingwen; Liu, Lifeng; Liu, Zhencong; Zhang, Chao; Lou, Feng; Liu, Zhiyuan; Li, Yangyang; Shi, Zhenfen; Zhang, Jingbo; Zhang, Dandan; Sun, Hong; Dong, Haichao; Dong, Zhishou; Guo, Baishuai; Yan, H E; Lu, Qingyu; Huang, Xue; Chen, Si-Yi

    2016-01-01

    Esophageal cancer (EC) is a common malignancy with significant morbidity and mortality. As individual cancers exhibit unique mutation patterns, identifying and characterizing gene mutations in EC that may serve as biomarkers might help predict patient outcome and guide treatment. Traditionally, personalized cancer DNA sequencing was impractical and expensive. Recent technological advancements have made targeted DNA sequencing more cost- and time-effective with reliable results. This technology may be useful for clinicians to direct patient treatment. The Ion PGM and AmpliSeq Cancer Panel was used to identify mutations at 737 hotspot loci of 45 cancer-related genes in 64 EC samples from Chinese patients. Frequent mutations were found in TP53 and less frequent mutations in PIK3CA, FBXW7 and KRAS. These results demonstrate that targeted sequencing can reliably identify mutations in individual tumors that make this technology a possibility for clinical use. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  15. GNAq mutations are not identified in papillary thyroid carcinomas and hyperfunctioning thyroid nodules.

    PubMed

    Cassol, Clarissa A; Guo, Miao; Ezzat, Shereen; Asa, Sylvia L

    2010-12-01

    Activating mutations of GNAq protein in a hotspot at codon 209 have been recently described in uveal melanomas. Since these neoplasms share with thyroid carcinomas a high frequency of MAP kinase pathway-activating mutations, we hypothesized whether GNAq mutations could also play a role in the development of thyroid carcinomas. Additionally, activating mutations of another subtype of G protein (GNAS1) are frequently found in hyperfunctioning thyroid adenomas, making it plausible that GNAq-activating mutations could also be found in some of these nodules. To investigate thyroid papillary carcinomas and thyroid hyperfunctioning nodules for GNAq mutations in exon 5, codon 209, a total of 32 RET/PTC, BRAF, and RAS negative thyroid papillary carcinomas and 13 hyperfunctioning thyroid nodules were evaluated. No mutations were identified. Although plausible, GNAq mutations seem not to play an important role in the development of thyroid follicular neoplasms, either benign hyperfunctioning nodules or malignant papillary carcinomas. Our results are in accordance with the literature, in which no GNAq hotspot mutations were found in thyroid papillary carcinomas, as well as in an extensive panel of other tumors. The molecular basis for MAP-kinase pathway activation in RET-PTC/BRAF/RAS negative thyroid carcinomas remains to be determined.

  16. MMACHC gene mutation in familial hypogonadism with neurological symptoms.

    PubMed

    Shi, Changhe; Shang, Dandan; Sun, Shilei; Mao, Chengyuan; Qin, Jie; Luo, Haiyang; Shao, Mingwei; Chen, Zhengguang; Liu, Yutao; Liu, Xinjing; Song, Bo; Xu, Yuming

    2015-12-15

    Recent studies have convincingly documented that hypogonadism is a component of various hereditary disorders and is often recognized as an important clinical feature in combination with various neurological symptoms, yet, the causative genes in a few related families are still unknown. High-throughput sequencing has become an efficient method to identify causative genes in related complex hereditary disorders. In this study, we performed exome sequencing in a family presenting hypergonadotropic hypogonadism with neurological presentations of mental retardation, epilepsy, ataxia, and leukodystrophy. After bioinformatic analysis and Sanger sequencing validation, we identified compound heterozygous mutations: c.482G>A (p.R161Q) and c.609G>A (p.W203X) in MMACHC gene in this pedigree. MMACHC was previously confirmed to be responsible for methylmalonic aciduria (MMA) combined with homocystinuria, cblC type (cblC disease), a hereditary vitamin B12 metabolic disorder. Biochemical and gas chromatography-mass spectrometry (GC-MS) examinations in this pedigree further supported the cblC disease diagnosis. These results indicated that hypergonadotropic hypogonadism may be a novel clinical manifestation of cblC disease, but more reports on additional patients are needed to support this hypothesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method.

    PubMed

    Tadokoro, Takashi; Matsushita, Kyoko; Abe, Yumi; Rohman, Muhammad Saifur; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2008-08-05

    Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.

  18. Ultra-sensitive Sequencing Identifies High Prevalence of Clonal Hematopoiesis-Associated Mutations throughout Adult Life.

    PubMed

    Acuna-Hidalgo, Rocio; Sengul, Hilal; Steehouwer, Marloes; van de Vorst, Maartje; Vermeulen, Sita H; Kiemeney, Lambertus A L M; Veltman, Joris A; Gilissen, Christian; Hoischen, Alexander

    2017-07-06

    Clonal hematopoiesis results from somatic mutations in hematopoietic stem cells, which give an advantage to mutant cells, driving their clonal expansion and potentially leading to leukemia. The acquisition of clonal hematopoiesis-driver mutations (CHDMs) occurs with normal aging and these mutations have been detected in more than 10% of individuals ≥65 years. We aimed to examine the prevalence and characteristics of CHDMs throughout adult life. We developed a targeted re-sequencing assay combining high-throughput with ultra-high sensitivity based on single-molecule molecular inversion probes (smMIPs). Using smMIPs, we screened more than 100 loci for CHDMs in more than 2,000 blood DNA samples from population controls between 20 and 69 years of age. Loci screened included 40 regions known to drive clonal hematopoiesis when mutated and 64 novel candidate loci. We identified 224 somatic mutations throughout our cohort, of which 216 were coding mutations in known driver genes (DNMT3A, JAK2, GNAS, TET2, and ASXL1), including 196 point mutations and 20 indels. Our assay's improved sensitivity allowed us to detect mutations with variant allele frequencies as low as 0.001. CHDMs were identified in more than 20% of individuals 60 to 69 years of age and in 3% of individuals 20 to 29 years of age, approximately double the previously reported prevalence despite screening a limited set of loci. Our findings support the occurrence of clonal hematopoiesis-associated mutations as a widespread mechanism linked with aging, suggesting that mosaicism as a result of clonal evolution of cells harboring somatic mutations is a universal mechanism occurring at all ages in healthy humans. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia.

    PubMed

    Ramasamy, Ranjith; Bakırcıoğlu, M Emre; Cengiz, Cenk; Karaca, Ender; Scovell, Jason; Jhangiani, Shalini N; Akdemir, Zeynep C; Bainbridge, Matthew; Yu, Yao; Huff, Chad; Gibbs, Richard A; Lupski, James R; Lamb, Dolores J

    2015-08-01

    To investigate the genetic cause of nonobstructive azoospermia (NOA) in a consanguineous Turkish family through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. Whole-exome sequencing (WES). Research laboratory. Two siblings in a consanguineous family with NOA. Validating all variants passing filter criteria with Sanger sequencing to confirm familial segregation and absence in the control population. Discovery of a mutation that could potentially cause NOA. A novel nonsynonymous mutation in the neuronal PAS-2 domain (NPAS2) was identified in a consanguineous family from Turkey. This mutation in exon 14 (chr2: 101592000 C>G) of NPAS2 is likely a disease-causing mutation as it is predicted to be damaging, it is a novel variant, and it segregates with the disease. Family segregation of the variants showed the presence of the homozygous mutation in the three brothers with NOA and a heterozygous mutation in the mother as well as one brother and one sister who were both fertile. The mutation is not found in the single-nucleotide polymorphism database, the 1000 Genomes Project, the Baylor College of Medicine cohort of 500 Turkish patients (not a population-specific polymorphism), or the matching 50 fertile controls. With the use of WES we identified a novel homozygous mutation in NPAS2 as a likely disease-causing variant in a Turkish family diagnosed with NOA. Our data reinforce the clinical role of WES in the molecular diagnosis of highly heterogeneous genetic diseases for which conventional genetic approaches have previously failed to find a molecular diagnosis. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. A new common mutation in the cardiac beta-myosin heavy chain gene in Finnish patients with hypertrophic cardiomyopathy.

    PubMed

    Jääskeläinen, Pertti; Heliö, Tiina; Aalto-Setälä, Katriina; Kaartinen, Maija; Ilveskoski, Erkki; Hämäläinen, Liisa; Melin, John; Kärkkäinen, Satu; Peuhkurinen, Keijo; Nieminen, Markku S; Laakso, Markku; Kuusisto, Johanna

    2014-09-01

    In the nationwide FinHCM Study including 306 Finnish patients with hypertrophic cardiomyopathy (HCM), we have previously identified two founder mutations in the alpha-tropomyosin (TPM1-D175N) and myosin-binding protein C (MYBPC3-Q1061X) genes, accounting for 18% of all cases. Objective. To screen additional mutations, previously identified in eastern Finnish cohorts with HCM, in the FinHCM Study population. Ten mutations in the beta-myosin heavy chain gene (MYH7), TPM1, and MYBPC3 were screened. MYH7-R1053Q was found in 17 of 306 patients (5.6%). No carriers of MYH7-R719W or N696S were found. A novel TPM1-D175G mutation was found in a single patient. MYBPC3 mutations were found in 14 patients: IVS5-2A-C in two, IVS14-13G-A in two, K811del in six, and A851insT in four patients. Altogether, a HCM-causing mutation was identified in 32 patients, accounting for 10.5% of all cases. In addition, two MYBPC3 variants R326Q and V896M with uncertain pathogenicity were found in eight and in 10 patients, respectively. Combining the present findings with our previous results, a causative mutation was identified in 28% of the FinHCM cohort. MYH7-R1053Q was the third most common mutation, and should be screened in all new cases of HCM in Finland.

  1. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations

    PubMed Central

    Morrone, A; Tylee, K.L.; Al-Sayed, M; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort, L.; Hegde, M.; Kubaski, F.; Lacerda, L.; Laranjeira, F.; Leistner-Segal, S.; Mooney, S.; Pajares, S.; Pollard, L.; Riberio, I.; Wang, R.Y.; Miller, N.

    2014-01-01

    Morquio A (Mucopolysaccharidosis IVA; MPS IVA) is an autosomal recessive lysosomal storage disorder caused by partial or total deficiency of the enzyme galactosamine-6-sulfate sulfatase (GALNS; also known as N-acetylgalactosamine-6-sulfate sulfatase) encoded by the GALNS gene. Patients who inherit two mutated GALNS gene alleles produce protein with decreased ability to degrade the glycosaminoglycans (GAGs) keratan sulfate and chondroitin 6-sulfate, thereby causing GAG accumulation within lysosomes and consequently pleiotropic disease. GALNS mutations occur throughout the gene and many mutations are identified only in single patients or families, causing difficulties both in mutation detection and interpretation. In this study, molecular analysis of 163 patients with Morquio A identified 99 unique mutations in the GALNS gene believed to negatively impact GALNS protein function, of which 39 are previously unpublished, together with 26 single-nucleotide polymorphisms. Recommendations for the molecular testing of patients, clear reporting of sequence findings, and interpretation of sequencing data are provided. PMID:24726177

  2. De novo point mutations in patients diagnosed with ataxic cerebral palsy

    PubMed Central

    Parolin Schnekenberg, Ricardo; Perkins, Emma M.; Miller, Jack W.; Davies, Wayne I. L.; D’Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A.; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O’Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis

    2015-01-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. PMID:25981959

  3. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders.

    PubMed

    Neerman-Arbez, Marguerite; de Moerloose, Philippe; Casini, Alessandro

    2016-06-01

    Congenital fibrinogen disorders are classified into two types of plasma fibrinogen defects: type I (quantitative fibrinogen deficiencies), that is, hypofibrinogenemia or afibrinogenemia, in which there are low or absent plasma fibrinogen antigen levels, respectively, and type II (qualitative fibrinogen deficiencies), that is, dysfibrinogenemia or hypodysfibrinogenemia, in which there are normal or reduced antigen levels associated with disproportionately low functional activity. These disorders are caused by mutations in the three fibrinogen-encoding genes FGA, FGB, and FGG. Afibrinogenemia is associated with mild to severe bleeding, whereas hypofibrinogenemia is often asymptomatic. For these quantitative disorders, the majority of mutations prevent protein production. However, in some cases, missense or late-truncating nonsense mutations allow synthesis of the mutant fibrinogen chain, but intracellular fibrinogen assembly and/or secretion are impaired. Qualitative fibrinogen disorders are associated with bleeding, thrombosis, or both thrombosis and bleeding, but many dysfibrinogenemias are asymptomatic. The majority of cases are caused by heterozygous missense mutations. Here, we review the laboratory and genetic diagnosis of fibrinogen gene anomalies with an updated discussion of causative mutations identified. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  4. A novel mutation in HSD11B2 causes apparent mineralocorticoid excess in an Omani kindred.

    PubMed

    Yau, Mabel; Azkawi, Hanan Said Al; Haider, Shozeb; Khattab, Ahmed; Badi, Maryam Al; Abdullah, Wafa; Senani, Aisha Al; Wilson, Robert C; Yuen, Tony; Zaidi, Mone; New, Maria I

    2016-07-01

    Apparent mineralocorticoid excess (AME) is a rare autosomal recessive genetic disorder causing severe hypertension in childhood due to a deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), which is encoded by HSD11B2. Without treatment, chronic hypertension leads to early development of end-organ damage. Approximately 40 causative mutations in HSD11B2 have been identified in ∼100 AME patients worldwide. We have studied the clinical presentation, biochemical parameters, and molecular genetics in six patients from a consanguineous Omani family with AME. DNA sequence analysis of affected members of this family revealed homozygous c.799A>G mutations within exon 4 of HSD11B2, corresponding to a p.T267A mutation of 11βHSD2. The structural change and predicted consequences owing to the p.T267A mutation have been modeled in silico. We conclude that this novel mutation is responsible for AME in this family. © 2016 New York Academy of Sciences.

  5. Mutations in CSPP1 lead to classical Joubert syndrome.

    PubMed

    Akizu, Naiara; Silhavy, Jennifer L; Rosti, Rasim Ozgur; Scott, Eric; Fenstermaker, Ali G; Schroth, Jana; Zaki, Maha S; Sanchez, Henry; Gupta, Neerja; Kabra, Madhulika; Kara, Majdi; Ben-Omran, Tawfeg; Rosti, Basak; Guemez-Gamboa, Alicia; Spencer, Emily; Pan, Roger; Cai, Na; Abdellateef, Mostafa; Gabriel, Stacey; Halbritter, Jan; Hildebrandt, Friedhelm; van Bokhoven, Hans; Gunel, Murat; Gleeson, Joseph G

    2014-01-02

    Joubert syndrome and related disorders (JSRDs) are genetically heterogeneous and characterized by a distinctive mid-hindbrain malformation. Causative mutations lead to primary cilia dysfunction, which often results in variable involvement of other organs such as the liver, retina, and kidney. We identified predicted null mutations in CSPP1 in six individuals affected by classical JSRDs. CSPP1 encodes a protein localized to centrosomes and spindle poles, as well as to the primary cilium. Despite the known interaction between CSPP1 and nephronophthisis-associated proteins, none of the affected individuals in our cohort presented with kidney disease, and further, screening of a large cohort of individuals with nephronophthisis demonstrated no mutations. CSPP1 is broadly expressed in neural tissue, and its encoded protein localizes to the primary cilium in an in vitro model of human neurogenesis. Here, we show abrogated protein levels and ciliogenesis in affected fibroblasts. Our data thus suggest that CSPP1 is involved in neural-specific functions of primary cilia. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Invited Review: The Myosins: Exploration of the Development of Our Current Understanding of These Mutations in the Motor

    PubMed Central

    Moore, Jeffrey R.; Leinwand, Leslie; Warshaw, David M.

    2013-01-01

    Hypertrophic (HCM) and dilated (DCM) cardiomyopathies are inherited diseases with a high incidence of death due to electrical abnormalities or outflow tract obstruction. In many of the families afflicted with either disease, causative mutations have been identified in various sarcomeric proteins. In this review, we focus on mutations in the cardiac muscle molecular motor, myosin and its associated light chains. Despite the >300 identified mutations there is still no clear understanding of how these mutations within the same myosin molecule can lead to the dramatically different clinical phenotypes associated with HCM and DCM. Localizing mutations within myosin’s molecular structure provides insight into the potential consequence of these perturbations to key functional domains of the motor. Review of biochemical and biophysical data that characterize the functional capacities of these mutant myosins suggests that mutant myosins with enhanced contractility lead to HCM while those displaying reduced contractility lead to DCM. With gain and loss of function potentially being the primary consequence of a specific mutation, how these functional changes trigger the hypertrophic response and lead to the distinct HCM and DCM phenotypes will be the future investigative challenge. PMID:22821910

  7. Mutations Affecting the SAND Domain of DEAF1 Cause Intellectual Disability with Severe Speech Impairment and Behavioral Problems

    PubMed Central

    Vulto-van Silfhout, Anneke T.; Rajamanickam, Shivakumar; Jensik, Philip J.; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J.; Raghavan, Ramya; Reardon, Sara N.; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L.; Huggenvik, Jodi I.; McKnight, G. Stanley; Rose, Gregory M.; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W.M.; Lugtenberg, Dorien; de Vries, Petra F.; Veltman, Joris A.; van Bokhoven, Hans; Brunner, Han G.; Rauch, Anita; de Brouwer, Arjan P.M.; Carvill, Gemma L.; Hoischen, Alexander; Mefford, Heather C.; Eichler, Evan E.; Vissers, Lisenka E.L.M.; Menten, Björn; Collard, Michael W.; de Vries, Bert B.A.

    2014-01-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. PMID:24726472

  8. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  9. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  10. Contrasting Causatives: A Minimalist Approach

    ERIC Educational Resources Information Center

    Tubino Blanco, Mercedes

    2010-01-01

    This dissertation explores the mechanisms behind the linguistic expression of causation in English, Hiaki (Uto-Aztecan) and Spanish. Pylkkanen's (2002, 2008) analysis of causatives as dependent on the parameterization of the functional head v[subscript CAUSE] is chosen as a point of departure. The studies conducted in this dissertation confirm…

  11. Molecular analysis of Cypriot patients with Glutaric aciduria type I: identification of two novel mutations.

    PubMed

    Georgiou, Theodoros; Nicolaidou, Paola; Hadjichristou, Anastasia; Ioannou, Rodothea; Dionysiou, Maria; Siama, Elli; Chappa, Georgia; Anastasiadou, Violetta; Drousiotou, Anthi

    2014-09-01

    The purpose of this study was to identify the mutations in the glutaryl-CoA dehydrogenase gene (GCDH) in ten Cypriot patients with Glutaric aciduria type I (GAI). Molecular analysis of the GCDH gene was performed by direct sequencing of the patients' genomic DNA. In silico tools were applied to predict the effect of the novel variants on the structure and function of the protein. All disease alleles were characterized (mutation detection rate 100%). Five missense mutations were identified: c.192G>T (p.Glu64Asp) and c.803G>T (p.Gly268Val), which are novel, and three previously described mutations, c.1123T>C (p.Cys375Arg), c.1204C>T (p.Arg402Trp) and c.1286C>T (p.Thr429Met). Two novel mutations, p.Glu64Asp and p.Gly268Val, account for the majority of disease alleles (76.5%) in Cypriot patients with Glutaric aciduria type I. A founder effect for the p.Glu64Asp and the p.Gly268Val can be suggested based on the place of origin of the carriers of these mutations. Identification of the causative mutations of GAI in Cypriot patients will facilitate carrier detection as well as post- and pre-natal diagnosis. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Novel nonsense mutation of the endothelin-B receptor gene in a family with Waardenburg-Hirschsprung disease.

    PubMed

    Syrris, P; Carter, N D; Patton, M A

    1999-11-05

    Waardenburg syndrome (WS) comprises sensorineural hearing loss, hypopigmentation of skin and hair, and pigmentary disturbances of the irides. Four types of WS have been classified to date; in WS type IV (WS4), patients additionally have colonic aganglionosis (Hirschsprung disease, HSCR). Mutations in the endothelin-3 (EDN3), endothelin-B receptor (EDNRB), and Sox10 genes have been identified as causative for WS type IV. We screened a family with a combined WS-HSCR phenotype for mutations in the EDNRB locus using standard DNA mutation analysis and sequencing techniques. We have identified a novel nonsense mutation at codon 253 (CGA-->TGA, Arg-->STOP). This mutation leads to a premature end of the translation of EDNRB at exon 3, and it is predicted to produce a truncated and nonfunctional endothelin-B receptor. All affected relatives were heterozygous for the Arg(253)-->STOP mutation, whereas it was not observed in over 50 unrelated individuals used as controls. These data confirm the role of EDNRB in the cause of the Waardenburg-Hirschsprung syndrome and demonstrate that in WS-HSCR there is a lack of correlation between phenotype and genotype and a variable expression of disease even within the same family. Copyright 1999 Wiley-Liss, Inc.

  13. CCR4 frameshift mutation identifies a distinct group of adult T cell leukaemia/lymphoma with poor prognosis.

    PubMed

    Yoshida, Noriaki; Miyoshi, Hiroaki; Kato, Takeharu; Sakata-Yanagimoto, Mamiko; Niino, Daisuke; Taniguchi, Hiroaki; Moriuchi, Yukiyoshi; Miyahara, Masaharu; Kurita, Daisuke; Sasaki, Yuya; Shimono, Joji; Kawamoto, Keisuke; Utsunomiya, Atae; Imaizumi, Yoshitaka; Seto, Masao; Ohshima, Koichi

    2016-04-01

    Adult T cell leukaemia/lymphoma (ATLL) is an intractable T cell neoplasm caused by human T cell leukaemia virus type 1. Next-generation sequencing-based comprehensive mutation studies have revealed recurrent somatic CCR4 mutations in ATLL, although clinicopathological findings associated with CCR4 mutations remain to be delineated. In the current study, 184 cases of peripheral T cell lymphoma, including 113 cases of ATLL, were subjected to CCR4 mutation analysis. This sequence analysis identified mutations in 27% (30/113) of cases of ATLL and 9% (4/44) of cases of peripheral T cell lymphoma not otherwise specified. Identified mutations included nonsense (NS) and frameshift (FS) mutations. No significant differences in clinicopathological findings were observed between ATLL cases stratified by presence of CCR4 mutation. All ATLL cases with CCR4 mutations exhibited cell-surface CCR4 positivity. Semi-quantitative CCR4 protein analysis of immunohistochemical sections revealed higher CCR4 expression in cases with NS mutations of CCR4 than in cases with wild-type (WT) CCR4. Furthermore, among ATLL cases, FS mutation was significantly associated with a poor prognosis, compared with NS mutation and WT CCR4. These results suggest that CCR4 mutation is an important determinant of the clinical course in ATLL cases, and that NS and FS mutations of CCR4 behave differently with respect to ATLL pathophysiology. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Common Variable Immunodeficiency Caused by FANC Mutations.

    PubMed

    Sekinaka, Yujin; Mitsuiki, Noriko; Imai, Kohsuke; Yabe, Miharu; Yabe, Hiromasa; Mitsui-Sekinaka, Kanako; Honma, Kenichi; Takagi, Masatoshi; Arai, Ayako; Yoshida, Kenichi; Okuno, Yusuke; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Miyano, Satoru; Muramatsu, Hideki; Kojima, Seiji; Hira, Asuka; Takata, Minoru; Ohara, Osamu; Ogawa, Seishi; Morio, Tomohiro; Nonoyama, Shigeaki

    2017-07-01

    Common variable immunodeficiency (CVID) is the most common adult-onset primary antibody deficiency disease due to various causative genes. Several genes, which are known to be the cause of different diseases, have recently been reported as the cause of CVID in patients by performing whole exome sequencing (WES) analysis. Here, we found FANC gene mutations as a cause of adult-onset CVID in two patients. B cells were absent and CD4 + T cells were skewed toward CD45RO + memory T cells. T-cell receptor excision circles (TRECs) and signal joint kappa-deleting recombination excision circles (sjKRECs) were undetectable in both patients. Both patients had no anemia, neutropenia, or thrombocytopenia. Using WES, we identified compound heterozygous mutations of FANCE in one patient and homozygous mutation of FANCA in another patient. The impaired function of FANC protein complex was confirmed by a monoubiquitination assay and by chromosome fragility test. We then performed several immunological evaluations including quantitative lymphocyte analysis and TRECs/sjKRECs analysis for 32 individuals with Fanconi anemia (FA). In total, 22 FA patients (68.8%) were found to have immunological abnormalities, suggesting that such immunological findings may be common in FA patients. These data indicate that FANC mutations are involved in impaired lymphogenesis probably by the accumulation of DNA replication stress, leading to CVID. It is important to diagnose FA because it drastically changes clinical management. We propose that FANC mutations can cause isolated immunodeficiency in addition to bone marrow failure and malignancy.

  15. Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease.

    PubMed

    Peng, Ting; Wang, Li; Zhou, Shu-Feng; Li, Xiaotian

    2010-12-01

    A number of mutations in GATA4 and NKX2.5 have been identified to be causative for a subset of familial congenital heart defects (CHDs) and a small number of sporadic CHDs. In this study, we evaluated common GATA4 and NKX2.5 mutations in 135 Chinese pediatric patients with non-familial congenital heart defects. Two novel mutations in the coding region of GATA4 were identified, namely, 487C >T (Pro163Ser) in exon 1 in a child with tetralogy of Fallot and 1220C >A (Pro407Gln) in exon 6 in a pediatric patient with outlet membranous ventricular septal defect. We also found 848C >A (Pro283Gln) in exon 2 of the NKX2.5 gene in a pediatric patient with ventricular septal defect, patent ductus arteriosus and aortic isthmus stenosis. None of the mutations was detected in healthy control subjects (n = 114). This study suggests that GATA4 and NKX2.5 missense mutations may be associated with congenital heart defects in pediatric Chinese patients. Further clinical studies with large samples are warranted.

  16. Homozygous nonsense mutation in SGCA is a common cause of limb-girdle muscular dystrophy in Assiut, Egypt.

    PubMed

    Reddy, Hemakumar M; Hamed, Sherifa A; Lek, Monkol; Mitsuhashi, Satomi; Estrella, Elicia; Jones, Michael D; Mahoney, Lane J; Duncan, Anna R; Cho, Kyung-Ah; Macarthur, Daniel G; Kunkel, Louis M; Kang, Peter B

    2016-10-01

    The genetic causes of limb-girdle muscular dystrophy (LGMD) have been studied in numerous countries, but such investigations have been limited in Egypt. A cohort of 30 families with suspected LGMD from Assiut, Egypt, was studied using immunohistochemistry, homozygosity mapping, Sanger sequencing, and whole exome sequencing. Six families were confirmed to have pathogenic mutations, 4 in SGCA and 2 in DMD. Of these, 3 families harbored a single nonsense mutation in SGCA, suggesting that this may be a common mutation in Assiut, Egypt, originating from a founder effect. The Assiut region in Egypt appears to share at least several of the common LGMD genes found in other parts of the world. It is notable that 4 of the 6 mutations were ascertained by means of whole exome sequencing, even though it was the last approach adopted. This illustrates the power of this technique for identifying causative mutations for muscular dystrophies. Muscle Nerve 54: 690-695, 2016. © 2016 Wiley Periodicals, Inc.

  17. New VMD2 gene mutations identified in patients affected by Best vitelliform macular dystrophy

    PubMed Central

    Marchant, D; Yu, K; Bigot, K; Roche, O; Germain, A; Bonneau, D; Drouin‐Garraud, V; Schorderet, D F; Munier, F; Schmidt, D; Neindre, P Le; Marsac, C; Menasche, M; Dufier, J L; Fischmeister, R; Hartzell, C; Abitbol, M

    2007-01-01

    Purpose The mutations responsible for Best vitelliform macular dystrophy (BVMD) are found in a gene called VMD2. The VMD2 gene encodes a transmembrane protein named bestrophin‐1 (hBest1) which is a Ca2+‐sensitive chloride channel. This study was performed to identify disease‐specific mutations in 27 patients with BVMD. Because this disease is characterised by an alteration in Cl− channel function, patch clamp analysis was used to test the hypothesis that one of the VMD2 mutated variants causes the disease. Methods Direct sequencing analysis of the 11 VMD2 exons was performed to detect new abnormal sequences. The mutant of hBest1 was expressed in HEK‐293 cells and the associated Cl− current was examined using whole‐cell patch clamp analysis. Results Six new VMD2 mutations were identified, located exclusively in exons four, six and eight. One of these mutations (Q293H) was particularly severe. Patch clamp analysis of human embryonic kidney cells expressing the Q293H mutant showed that this mutant channel is non‐functional. Furthermore, the Q293H mutant inhibited the function of wild‐type bestrophin‐1 channels in a dominant negative manner. Conclusions This study provides further support for the idea that mutations in VMD2 are a necessary factor for Best disease. However, because variable expressivity of VMD2 was observed in a family with the Q293H mutation, it is also clear that a disease‐linked mutation in VMD2 is not sufficient to produce BVMD. The finding that the Q293H mutant does not form functional channels in the membrane could be explained either by disruption of channel conductance or gating mechanisms or by improper trafficking of the protein to the plasma membrane. PMID:17287362

  18. Mutation screening of 75 candidate genes in 152 complex I deficiency cases identifies pathogenic variants in 16 genes including NDUFB9.

    PubMed

    Haack, Tobias B; Madignier, Florence; Herzer, Martina; Lamantea, Eleonora; Danhauser, Katharina; Invernizzi, Federica; Koch, Johannes; Freitag, Martin; Drost, Rene; Hillier, Ingo; Haberberger, Birgit; Mayr, Johannes A; Ahting, Uwe; Tiranti, Valeria; Rötig, Agnes; Iuso, Arcangela; Horvath, Rita; Tesarova, Marketa; Baric, Ivo; Uziel, Graziella; Rolinski, Boris; Sperl, Wolfgang; Meitinger, Thomas; Zeviani, Massimo; Freisinger, Peter; Prokisch, Holger

    2012-02-01

    Mitochondrial complex I deficiency is the most common cause of mitochondrial disease in childhood. Identification of the molecular basis is difficult given the clinical and genetic heterogeneity. Most patients lack a molecular definition in routine diagnostics. A large-scale mutation screen of 75 candidate genes in 152 patients with complex I deficiency was performed by high-resolution melting curve analysis and Sanger sequencing. The causal role of a new disease allele was confirmed by functional complementation assays. The clinical phenotype of patients carrying mutations was documented using a standardised questionnaire. Causative mutations were detected in 16 genes, 15 of which had previously been associated with complex I deficiency: three mitochondrial DNA genes encoding complex I subunits, two mitochondrial tRNA genes and nuclear DNA genes encoding six complex I subunits and four assembly factors. For the first time, a causal mutation is described in NDUFB9, coding for a complex I subunit, resulting in reduction in NDUFB9 protein and both amount and activity of complex I. These features were rescued by expression of wild-type NDUFB9 in patient-derived fibroblasts. Mutant NDUFB9 is a new cause of complex I deficiency. A molecular diagnosis related to complex I deficiency was established in 18% of patients. However, most patients are likely to carry mutations in genes so far not associated with complex I function. The authors conclude that the high degree of genetic heterogeneity in complex I disorders warrants the implementation of unbiased genome-wide strategies for the complete molecular dissection of mitochondrial complex I deficiency.

  19. On Reciprocal Causation in the Evolutionary Process.

    PubMed

    Svensson, Erik I

    2018-01-01

    Recent calls for a revision of standard evolutionary theory (SET) are based partly on arguments about the reciprocal causation. Reciprocal causation means that cause-effect relationships are bi-directional, as a cause could later become an effect and vice versa. Such dynamic cause-effect relationships raise questions about the distinction between proximate and ultimate causes, as originally formulated by Ernst Mayr. They have also motivated some biologists and philosophers to argue for an Extended Evolutionary Synthesis (EES). The EES will supposedly expand the scope of the Modern Synthesis (MS) and SET, which has been characterized as gene-centred, relying primarily on natural selection and largely neglecting reciprocal causation. Here, I critically examine these claims, with a special focus on the last conjecture. I conclude that reciprocal causation has long been recognized as important by naturalists, ecologists and evolutionary biologists working in the in the MS tradition, although it it could be explored even further. Numerous empirical examples of reciprocal causation in the form of positive and negative feedback are now well known from both natural and laboratory systems. Reciprocal causation have also been explicitly incorporated in mathematical models of coevolutionary arms races, frequency-dependent selection, eco-evolutionary dynamics and sexual selection. Such dynamic feedback were already recognized by Richard Levins and Richard Lewontin in their bok The Dialectical Biologist . Reciprocal causation and dynamic feedback might also be one of the few contributions of dialectical thinking and Marxist philosophy in evolutionary theory. I discuss some promising empirical and analytical tools to study reciprocal causation and the implications for the EES. Finally, I briefly discuss how quantitative genetics can be adapated to studies of reciprocal causation, constructive inheritance and phenotypic plasticity and suggest that the flexibility of this approach

  20. Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function

    PubMed Central

    Mendoza-Ferreira, Natalia; Coutelier, Marie; Janzen, Eva; Hosseinibarkooie, Seyyedmohsen; Löhr, Heiko; Schneider, Svenja; Milbradt, Janine; Karakaya, Mert; Riessland, Markus; Pichlo, Christian; Torres-Benito, Laura; Singleton, Andrew; Zuchner, Stephan; Brice, Alexis; Durr, Alexandra; Hammerschmidt, Matthias; Stevanin, Giovanni

    2018-01-01

    Objective: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. Methods: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. Results: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. Conclusions: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders. PMID:29379881

  1. [Two novel pathogenic mutations of GAN gene identified in a patient with giant axonal neuropathy].

    PubMed

    Wang, Juan; Ma, Qingwen; Cai, Qin; Liu, Yanna; Wang, Wei; Ren, Zhaorui

    2016-06-01

    To explore the disease-causing mutations in a patient suspected for giant axonal neuropathy(GAN). Target sequence capture sequencing was used to screen potential mutations in genomic DNA extracted from peripheral blood sample of the patient. Sanger sequencing was applied to confirm the detected mutation. The mutation was verified among 400 GAN alleles from 200 healthy individuals by Sanger sequencing. The function of the mutations was predicted by bioinformatics analysis. The patient was identified as a compound heterozygote carrying two novel pathogenic GAN mutations, i.e., c.778G>T (p.Glu260Ter) and c.277G>A (p.Gly93Arg). Sanger sequencing confirmed that the c.778G>T (p.Glu260Ter) mutation was inherited from his father, while c.277G>A (p.Gly93Arg) was inherited from his mother. The same mutations was not found in the 200 healthy individuals. Bioinformatics analysis predicted that the two mutations probably caused functional abnormality of gigaxonin. Two novel GAN mutations were detected in a patient with GAN. Both mutations are pathogenic and can cause abnormalities of gigaxonin structure and function, leading to pathogenesis of GAN. The results may also offer valuable information for similar diseases.

  2. Novel domain-specific POU3F4 mutations are associated with X-linked deafness: examples from different populations.

    PubMed

    Bademci, Guney; Lasisi, Akeem; Yariz, Kemal O; Montenegro, Paola; Menendez, Ibis; Vinueza, Rodrigo; Paredes, Rosario; Moreta, Germania; Subasioglu, Asli; Blanton, Susan; Fitoz, Suat; Incesulu, Armagan; Sennaroglu, Levent; Tekin, Mustafa

    2015-02-25

    Mutations in the POU3F4 gene cause X-linked deafness type 3 (DFN3), which is characterized by inner ear anomalies. Three Turkish, one Ecuadorian, and one Nigerian families were included based on either inner ear anomalies detected in probands or X-linked family histories. Exome sequencing and/or Sanger sequencing were performed in order to identify the causative DNA variants in these families. Four novel, c.707A>C (p.(Glu236Ala)), c.772delG (p.(Glu258ArgfsX30)), c.902C>T (p.(Pro301Leu)), c.987T>C (p.(Ile308Thr)), and one previously reported mutation c.346delG (p.(Ala116ProfsX26)) in POU3F4, were identified. All mutations identified are predicted to affect the POU-specific or POU homeo domains of the protein and co-segregated with deafness in all families. Expanding the spectrum of POU3F4 mutations in different populations along with their associated phenotypes provides better understanding of their clinical importance and will be helpful in clinical evaluation and counseling of the affected individuals.

  3. Mutations in the Kinase Domain of the HER2/ERBB2 Gene Identified in a Wide Variety of Human Cancers.

    PubMed

    Wen, Wenhsiang; Chen, Wangjuh Sting; Xiao, Nick; Bender, Ryan; Ghazalpour, Anatole; Tan, Zheng; Swensen, Jeffrey; Millis, Sherri Z; Basu, Gargi; Gatalica, Zoran; Press, Michael F

    2015-09-01

    The HER2 (official name ERBB2) gene encodes a membrane receptor in the epidermal growth factor receptor family amplified and overexpressed in adenocarcinoma. Activating mutations also occur in several cancers. We report mutation analyses of the HER2 kinase domain in 7497 histologically diverse cancers. Forty-five genes, including the kinase domain of HER2 with HER2 IHC and dual in situ hybridization, were analyzed in tumors from 7497 patients with cancer, including 850 breast, 770 colorectal, 910 non-small cell lung, 823 uterine or cervical, 1372 ovarian, and 297 pancreatic cancers, as well as 323 melanomas and 2152 other solid tumors. Sixty-nine HER2 kinase domain mutations were identified in tumors from 68 patients (approximately 1% of all cases, ranging from absent in sarcomas to 4% in urothelial cancers), which included previously published activating mutations and 13 novel mutations. Fourteen cases with coexisting HER2 mutation and amplification and/or overexpression were identified. Fifty-two of 68 patients had additional mutations in other analyzed genes, whereas 16 patients (23%) had HER2 mutations identified as the sole driver mutation. HER2 mutations coexisted with HER2 gene amplification and overexpression and with mutations in other functionally important genes. HER2 mutations were identified as the only driver mutation in a significant proportion of solid cancers. Evaluation of anti-HER2 therapies in nonamplified, HER2-mutated cancers is warranted. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. A CACNA1D mutation in a patient with persistent hyperinsulinaemic hypoglycaemia, heart defects, and severe hypotonia.

    PubMed

    Flanagan, S E; Vairo, F; Johnson, M B; Caswell, R; Laver, T W; Lango Allen, H; Hussain, K; Ellard, S

    2017-06-01

    Congenital hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or it may present as part of a wider syndrome. For approximately 40%-50% of individuals with this condition, sequence analysis of the known HH genes identifies a causative mutation. Identifying the underlying genetic aetiology in the remaining cases is important as a genetic diagnosis will inform on recurrence risk, may guide medical management and will provide valuable insights into β-cell physiology. We sequenced the exome of a child with persistent diazoxide-responsive HH, mild aortic insufficiency, severe hypotonia, and developmental delay as well as the unaffected parents. This analysis identified a de novo mutation, p.G403D, in the proband's CACNA1D gene. CACNA1D encodes the main L-type voltage-gated calcium channel in the pancreatic β-cell, a key component of the insulin secretion pathway. The p.G403D mutation had been reported previously as an activating mutation in an individual with primary hyper-aldosteronism, neuromuscular abnormalities, and transient hypoglycaemia. Sequence analysis of the CACNA1D gene in 60 further cases with HH did not identify a pathogenic mutation. Identification of an activating CACNA1D mutation in a second patient with congenital HH confirms the aetiological role of CACNA1D mutations in this disorder. A genetic diagnosis is important as treatment with a calcium channel blocker may be an option for the medical management of this patient. © 2017 The Authors. Pediatric Diabetes published by John Wiley & Sons Ltd.

  5. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  6. Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans

    PubMed Central

    Keays, David A.; Tian, Guoling; Poirier, Karine; Huang, Guo-Jen; Siebold, Christian; Cleak, James; Oliver, Peter L.; Fray, Martin; Harvey, Robert J.; Molnár, Zoltán; Piñon, Maria C.; Dear, Neil; Valdar, William; Brown, Steve D.M.; Davies, Kay E.; Rawlins, J. Nicholas P.; Cowan, Nicholas J.; Nolan, Patrick; Chelly, Jamel; Flint, Jonathan

    2007-01-01

    Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders. PMID:17218254

  7. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.

    PubMed

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens

    2015-08-25

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.

  8. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations.

    PubMed

    Wardell, Christopher P; Fujita, Masashi; Yamada, Toru; Simbolo, Michele; Fassan, Matteo; Karlic, Rosa; Polak, Paz; Kim, Jaegil; Hatanaka, Yutaka; Maejima, Kazuhiro; Lawlor, Rita T; Nakanishi, Yoshitsugu; Mitsuhashi, Tomoko; Fujimoto, Akihiro; Furuta, Mayuko; Ruzzenente, Andrea; Conci, Simone; Oosawa, Ayako; Sasaki-Oku, Aya; Nakano, Kaoru; Tanaka, Hiroko; Yamamoto, Yujiro; Michiaki, Kubo; Kawakami, Yoshiiku; Aikata, Hiroshi; Ueno, Masaki; Hayami, Shinya; Gotoh, Kunihito; Ariizumi, Shun-Ichi; Yamamoto, Masakazu; Yamaue, Hiroki; Chayama, Kazuaki; Miyano, Satoru; Getz, Gad; Scarpa, Aldo; Hirano, Satoshi; Nakamura, Toru; Nakagawa, Hidewaki

    2018-05-01

    Biliary tract cancers (BTCs) are clinically and pathologically heterogeneous and respond poorly to treatment. Genomic profiling can offer a clearer understanding of their carcinogenesis, classification and treatment strategy. We performed large-scale genome sequencing analyses on BTCs to investigate their somatic and germline driver events and characterize their genomic landscape. We analyzed 412 BTC samples from Japanese and Italian populations, 107 by whole-exome sequencing (WES), 39 by whole-genome sequencing (WGS), and a further 266 samples by targeted sequencing. The subtypes were 136 intrahepatic cholangiocarcinomas (ICCs), 101 distal cholangiocarcinomas (DCCs), 109 peri-hilar type cholangiocarcinomas (PHCs), and 66 gallbladder or cystic duct cancers (GBCs/CDCs). We identified somatic alterations and searched for driver genes in BTCs, finding pathogenic germline variants of cancer-predisposing genes. We predicted cell-of-origin for BTCs by combining somatic mutation patterns and epigenetic features. We identified 32 significantly and commonly mutated genes including TP53, KRAS, SMAD4, NF1, ARID1A, PBRM1, and ATR, some of which negatively affected patient prognosis. A novel deletion of MUC17 at 7q22.1 affected patient prognosis. Cell-of-origin predictions using WGS and epigenetic features suggest hepatocyte-origin of hepatitis-related ICCs. Deleterious germline mutations of cancer-predisposing genes such as BRCA1, BRCA2, RAD51D, MLH1, or MSH2 were detected in 11% (16/146) of BTC patients. BTCs have distinct genetic features including somatic events and germline predisposition. These findings could be useful to establish treatment and diagnostic strategies for BTCs based on genetic information. We here analyzed genomic features of 412 BTC samples from Japanese and Italian populations. A total of 32 significantly and commonly mutated genes were identified, some of which negatively affected patient prognosis, including a novel deletion of MUC17 at 7q22.1. Cell

  9. Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

    PubMed Central

    Drögemüller, Cord; Tetens, Jens; Sigurdsson, Snaevar; Gentile, Arcangelo; Testoni, Stefania; Lindblad-Toh, Kerstin; Leeb, Tosso

    2010-01-01

    Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development. PMID:20865119

  10. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  11. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  12. Representing Causation

    ERIC Educational Resources Information Center

    Wolff, Phillip

    2007-01-01

    The dynamics model, which is based on L. Talmy's (1988) theory of force dynamics, characterizes causation as a pattern of forces and a position vector. In contrast to counterfactual and probabilistic models, the dynamics model naturally distinguishes between different cause-related concepts and explains the induction of causal relationships from…

  13. The importance of de novo mutations for pediatric neurological disease--It is not all in utero or birth trauma.

    PubMed

    Erickson, Robert P

    2016-01-01

    The advent of next generation sequencing (NGS, which consists of massively parallel sequencing to perform TGS (total genome sequencing) or WES (whole exome sequencing)) has abundantly discovered many causative mutations in patients with pediatric neurological disease. A surprisingly high number of these are de novo mutations which have not been inherited from either parent. For epilepsy, autism spectrum disorders, and neuromotor disorders, including cerebral palsy, initial estimates put the frequency of causative de novo mutations at about 15% and about 10% of these are somatic. There are some shared mutated genes between these three classes of disease. Studies of copy number variation by comparative genomic hybridization (CGH) proceded the NGS approaches but they also detect de novo variation which is especially important for ASDs. There are interesting differences between the mutated genes detected by CGS and NGS. In summary, de novo mutations cause a very significant proportion of pediatric neurological disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. X-exome sequencing in Finnish families with Intellectual Disability - four novel mutations and two novel syndromic phenotypes

    PubMed Central

    2014-01-01

    Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations

  15. De novo point mutations in patients diagnosed with ataxic cerebral palsy.

    PubMed

    Parolin Schnekenberg, Ricardo; Perkins, Emma M; Miller, Jack W; Davies, Wayne I L; D'Adamo, Maria Cristina; Pessia, Mauro; Fawcett, Katherine A; Sims, David; Gillard, Elodie; Hudspith, Karl; Skehel, Paul; Williams, Jonathan; O'Regan, Mary; Jayawant, Sandeep; Jefferson, Rosalind; Hughes, Sarah; Lustenberger, Andrea; Ragoussis, Jiannis; Jackson, Mandy; Tucker, Stephen J; Németh, Andrea H

    2015-07-01

    Cerebral palsy is a sporadic disorder with multiple likely aetiologies, but frequently considered to be caused by birth asphyxia. Genetic investigations are rarely performed in patients with cerebral palsy and there is little proven evidence of genetic causes. As part of a large project investigating children with ataxia, we identified four patients in our cohort with a diagnosis of ataxic cerebral palsy. They were investigated using either targeted next generation sequencing or trio-based exome sequencing and were found to have mutations in three different genes, KCNC3, ITPR1 and SPTBN2. All the mutations were de novo and associated with increased paternal age. The mutations were shown to be pathogenic using a combination of bioinformatics analysis and in vitro model systems. This work is the first to report that the ataxic subtype of cerebral palsy can be caused by de novo dominant point mutations, which explains the sporadic nature of these cases. We conclude that at least some subtypes of cerebral palsy may be caused by de novo genetic mutations and patients with a clinical diagnosis of cerebral palsy should be genetically investigated before causation is ascribed to perinatal asphyxia or other aetiologies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. The albinism of the feral Asinara white donkeys (Equus asinus) is determined by a missense mutation in a highly conserved position of the tyrosinase (TYR) gene deduced protein.

    PubMed

    Utzeri, V J; Bertolini, F; Ribani, A; Schiavo, G; Dall'Olio, S; Fontanesi, L

    2016-02-01

    A feral donkey population (Equus asinus), living in the Asinara National Park (an island north-west of Sardinia, Italy), includes a unique white albino donkey subpopulation or colour morph that is a major attraction of this park. Disrupting mutations in the tyrosinase (TYR) gene are known to cause recessive albinisms in humans (oculocutaneous albinism Type 1; OCA1) and other species. In this study, we analysed the donkey TYR gene as a strong candidate to identify the causative mutation of the albinism of these donkeys. The TYR gene was sequenced from 13 donkeys (seven Asinara white albino and six coloured animals). Seven single nucleotide polymorphisms were identified. A missense mutation (c.604C>G; p.His202Asp) in a highly conserved amino acid position (even across kingdoms), which disrupts the first copper-binding site (CuA) of functional protein, was identified in the homozygous condition (G/G or D/D) in all Asinara white albino donkeys and in the albino son of a trio (the grey parents had genotype C/G or H/D), supporting the recessive mode of inheritance of this mutation. Genotyping 82 donkeys confirmed that Asinara albino donkeys had genotype G/G whereas all other coloured donkeys had genotype C/C or C/G. Across-population association between the c.604C>G genotypes and the albino coat colour was highly significant (P = 6.17E-18). The identification of the causative mutation of the albinism in the Asinara white donkeys might open new perspectives to study the dynamics of this putative deleterious allele in a feral population and to manage this interesting animal genetic resource. © 2015 Stichting International Foundation for Animal Genetics.

  17. Mutations affecting the SAND domain of DEAF1 cause intellectual disability with severe speech impairment and behavioral problems.

    PubMed

    Vulto-van Silfhout, Anneke T; Rajamanickam, Shivakumar; Jensik, Philip J; Vergult, Sarah; de Rocker, Nina; Newhall, Kathryn J; Raghavan, Ramya; Reardon, Sara N; Jarrett, Kelsey; McIntyre, Tara; Bulinski, Joseph; Ownby, Stacy L; Huggenvik, Jodi I; McKnight, G Stanley; Rose, Gregory M; Cai, Xiang; Willaert, Andy; Zweier, Christiane; Endele, Sabine; de Ligt, Joep; van Bon, Bregje W M; Lugtenberg, Dorien; de Vries, Petra F; Veltman, Joris A; van Bokhoven, Hans; Brunner, Han G; Rauch, Anita; de Brouwer, Arjan P M; Carvill, Gemma L; Hoischen, Alexander; Mefford, Heather C; Eichler, Evan E; Vissers, Lisenka E L M; Menten, Björn; Collard, Michael W; de Vries, Bert B A

    2014-05-01

    Recently, we identified in two individuals with intellectual disability (ID) different de novo mutations in DEAF1, which encodes a transcription factor with an important role in embryonic development. To ascertain whether these mutations in DEAF1 are causative for the ID phenotype, we performed targeted resequencing of DEAF1 in an additional cohort of over 2,300 individuals with unexplained ID and identified two additional individuals with de novo mutations in this gene. All four individuals had severe ID with severely affected speech development, and three showed severe behavioral problems. DEAF1 is highly expressed in the CNS, especially during early embryonic development. All four mutations were missense mutations affecting the SAND domain of DEAF1. Altered DEAF1 harboring any of the four amino acid changes showed impaired transcriptional regulation of the DEAF1 promoter. Moreover, behavioral studies in mice with a conditional knockout of Deaf1 in the brain showed memory deficits and increased anxiety-like behavior. Our results demonstrate that mutations in DEAF1 cause ID and behavioral problems, most likely as a result of impaired transcriptional regulation by DEAF1. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing.

    PubMed

    Patiño, Liliana Catherine; Beau, Isabelle; Carlosama, Carolina; Buitrago, July Constanza; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Delemer, Brigitte; Young, Jacques; Binart, Nadine; Laissue, Paul

    2017-07-01

    Is it possible to identify new mutations potentially associated with non-syndromic primary ovarian insufficiency (POI) via whole-exome sequencing (WES)? WES is an efficient tool to study genetic causes of POI as we have identified new mutations, some of which lead to protein destablization potentially contributing to the disease etiology. POI is a frequently occurring complex pathology leading to infertility. Mutations in only few candidate genes, mainly identified by Sanger sequencing, have been definitively related to the pathogenesis of the disease. This is a retrospective cohort study performed on 69 women affected by POI. WES and an innovative bioinformatics analysis were used on non-synonymous sequence variants in a subset of 420 selected POI candidate genes. Mutations in BMPR1B and GREM1 were modeled by using fragment molecular orbital analysis. Fifty-five coding variants in 49 genes potentially related to POI were identified in 33 out of 69 patients (48%). These genes participate in key biological processes in the ovary, such as meiosis, follicular development, granulosa cell differentiation/proliferation and ovulation. The presence of at least two mutations in distinct genes in 42% of the patients argued in favor of a polygenic nature of POI. It is possible that regulatory regions, not analyzed in the present study, carry further variants related to POI. WES and the in silico analyses presented here represent an efficient approach for mapping variants associated with POI etiology. Sequence variants presented here represents potential future genetic biomarkers. This study was supported by the Universidad del Rosario and Colciencias (Grants CS/CIGGUR-ABN062-2016 and 672-2014). Colciencias supported Liliana Catherine Patiño´s work (Fellowship: 617, 2013). The authors declare no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For

  19. Comparative analysis of primary versus relapse/refractory DLBCL identifies shifts in mutation spectrum.

    PubMed

    Greenawalt, Danielle M; Liang, Winnie S; Saif, Sakina; Johnson, Justin; Todorov, Petar; Dulak, Austin; Enriquez, Daniel; Halperin, Rebecca; Ahmed, Ambar; Saveliev, Vladislav; Carpten, John; Craig, David; Barrett, J Carl; Dougherty, Brian; Zinda, Michael; Fawell, Stephen; Dry, Jonathan R; Byth, Kate

    2017-11-21

    Current understanding of the mutation spectrum of relapsed/refractory (RR) tumors is limited. We performed whole exome sequencing (WES) on 47 diffuse large B cell lymphoma (DLBCL) tumors that persisted after R-CHOP treatment, 8 matched to primary biopsies. We compared genomic alterations from the RR cohort against two treatment-naïve DLBCL cohorts (n=112). While the overall number and types of mutations did not differ significantly, we identified frequency changes in DLBCL driver genes. The overall frequency of MYD88 mutant samples increased (12% to 19%), but we noted a decrease in p.L265P (8% to 4%) and increase in p.S219C mutations (2% to 6%). CARD11 p.D230N, PIM1 p.K115N and CD79B p.Y196C mutations were not observed in the RR cohort, although these mutations were prominent in the primary DLBCL samples. We observed an increase in BCL2 mutations (21% to 38% of samples), BCL2 amplifications (3% to 6% of samples) and CREBBP mutations (31% to 42% of samples) in the RR cohort, supported by acquisition of mutations in these genes in relapsed compared to diagnostic biopsies from the same patient. These increases may reflect the genetic characteristics of R-CHOP RR tumors expected to be enriched for during clinical trial enrollment. These findings hold significance for a number of emerging targeted therapies aligned to genetic targets and biomarkers in DLBCL, reinforcing the importance of time-of-treatment biomarker screening during DLBCL therapy selection.

  20. Comparative analysis of primary versus relapse/refractory DLBCL identifies shifts in mutation spectrum

    PubMed Central

    Greenawalt, Danielle M.; Liang, Winnie S.; Saif, Sakina; Johnson, Justin; Todorov, Petar; Dulak, Austin; Enriquez, Daniel; Halperin, Rebecca; Ahmed, Ambar; Saveliev, Vladislav; Carpten, John; Craig, David; Barrett, J. Carl; Dougherty, Brian; Zinda, Michael; Fawell, Stephen; Dry, Jonathan R.; Byth, Kate

    2017-01-01

    Current understanding of the mutation spectrum of relapsed/refractory (RR) tumors is limited. We performed whole exome sequencing (WES) on 47 diffuse large B cell lymphoma (DLBCL) tumors that persisted after R-CHOP treatment, 8 matched to primary biopsies. We compared genomic alterations from the RR cohort against two treatment-naïve DLBCL cohorts (n=112). While the overall number and types of mutations did not differ significantly, we identified frequency changes in DLBCL driver genes. The overall frequency of MYD88 mutant samples increased (12% to 19%), but we noted a decrease in p.L265P (8% to 4%) and increase in p.S219C mutations (2% to 6%). CARD11 p.D230N, PIM1 p.K115N and CD79B p.Y196C mutations were not observed in the RR cohort, although these mutations were prominent in the primary DLBCL samples. We observed an increase in BCL2 mutations (21% to 38% of samples), BCL2 amplifications (3% to 6% of samples) and CREBBP mutations (31% to 42% of samples) in the RR cohort, supported by acquisition of mutations in these genes in relapsed compared to diagnostic biopsies from the same patient. These increases may reflect the genetic characteristics of R-CHOP RR tumors expected to be enriched for during clinical trial enrollment. These findings hold significance for a number of emerging targeted therapies aligned to genetic targets and biomarkers in DLBCL, reinforcing the importance of time-of-treatment biomarker screening during DLBCL therapy selection. PMID:29245897

  1. Fluid convection, constraint and causation

    PubMed Central

    Bishop, Robert C.

    2012-01-01

    Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955

  2. Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome.

    PubMed

    Cameron, Jessie M; MacKay, Nevena; Feigenbaum, Annette; Tarnopolsky, Mark; Blaser, Susan; Robinson, Brian H; Schulze, Andreas

    2015-09-01

    Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  3. Validation of dye-binding/high-resolution thermal denaturation for the identification of mutations in the SLC22A5 gene.

    PubMed

    Dobrowolski, Steven F; McKinney, Jason T; Amat di San Filippo, Cristina; Giak Sim, Keow; Wilcken, Bridget; Longo, Nicola

    2005-03-01

    Primary carnitine deficiency is an autosomal recessive disorder of fatty acid oxidation resulting from defective carnitine transport. This disease is caused by mutations in the OCTN2 carnitine transporter encoded by the SLC22A5 gene. Here we validate dye-binding/high-resolution thermal denaturation as a screening procedure to identify novel mutations in this gene. This procedure is based on the amplification of DNA by PCR in capillaries with the dsDNA binding dye LCGreen I. The PCR reaction is then analyzed in the same capillary by high-resolution thermal denaturation. Samples with abnormal melting profiles are sequenced. This technique correctly identified all known patients who were compound heterozygotes for different mutations in the carnitine transporter gene and about 30% of homozygous patients. The remaining 70% of homozygous patients were identified by a second amplification, in which the patient's DNA was mixed with the DNA of a normal control. This screening system correctly identified eight novel mutations and both abnormal alleles in six new families with primary carnitine deficiency. The causative role of the missense mutations identified (c.3G>T/p.M1I, c.695C>T/p.T232M, and c.1403 C>G/p.T468R) was confirmed by expression in Chinese hamster ovary (CHO) cells. These results expand the mutational spectrum in primary carnitine deficiency and indicate dye-binding/high-resolution thermal denaturation as an ideal system to screen for mutations in diseases with no prevalent molecular alteration. (c) 2005 Wiley-Liss, Inc.

  4. Dissecting the Mutational Landscape of Cutaneous Melanoma: An Omic Analysis Based on Patients from Greece

    PubMed Central

    Piroti, Georgia; Papadodima, Olga

    2018-01-01

    Melanoma is a lethal type of skin cancer, unless it is diagnosed early. Formalin-fixed, paraffin-embedded (FFPE) tissue is a valuable source for molecular assays after diagnostic examination, but isolated nucleic acids often suffer from degradation. Here, for the first time, we examine primary melanomas from Greek patients, using whole exome sequencing, so as to derive their mutational profile. Application of a bioinformatic framework revealed a total of 10,030 somatic mutations. Regarding the genes containing putative protein-altering mutations, 73 were common in at least three patients. Sixty-five of these 73 top common genes have been previously identified in melanoma cases. Biological processes related to melanoma were affected by varied genes in each patient, suggesting differences in the components of a pathway possibly contributing to pathogenesis. We performed a multi-level analysis highlighting a short list of candidate genes with a probable causative role in melanoma. PMID:29596374

  5. A hemizygous GYG2 mutation and Leigh syndrome: a possible link?

    PubMed

    Imagawa, Eri; Osaka, Hitoshi; Yamashita, Akio; Shiina, Masaaki; Takahashi, Eihiko; Sugie, Hideo; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Ogata, Kazuhiro; Matsumoto, Naomichi; Miyake, Noriko

    2014-02-01

    Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder characterized by unique, bilateral neuropathological findings in brainstem, basal ganglia, cerebellum and spinal cord. LS is genetically heterogeneous, with the majority of the causative genes affecting mitochondrial malfunction, and many cases still remain unsolved. Here, we report male sibs affected with LS showing ketonemia, but no marked elevation of lactate and pyruvate. To identify their genetic cause, we performed whole exome sequencing. Candidate variants were narrowed down based on autosomal recessive and X-linked recessive models. Only one hemizygous missense mutation (c.665G>C, p.W222S) in glycogenin-2 (GYG2) (isoform a: NM_001079855) in both affected sibs and a heterozygous change in their mother were identified, being consistent with the X-linked recessive trait. GYG2 encodes glycogenin-2 (GYG2) protein, which plays an important role in the initiation of glycogen synthesis. Based on the structural modeling, the mutation can destabilize the structure and result in protein malfunctioning. Furthermore, in vitro experiments showed mutant GYG2 was unable to undergo the self-glucosylation, which is observed in wild-type GYG2. This is the first report of GYG2 mutation in human, implying a possible link between GYG2 abnormality and LS.

  6. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases

    PubMed Central

    Ullah, Inayat; Kabir, Firoz; Iqbal, Muhammad; Gottsch, Clare Brooks S.; Naeem, Muhammad Asif; Assir, Muhammad Zaman; Khan, Shaheen N.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2016-01-01

    Purpose To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. Methods Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon–intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. Results The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10−6) that affected individuals inherited the causal mutation from a common ancestor. Conclusions Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families. PMID:27440997

  7. Frequent life-threatening laryngeal attacks in two Croatian families with hereditary angioedema due to C1 inhibitor deficiency harbouring a novel frameshift mutation in SERPING1.

    PubMed

    Karadža-Lapić, Ljerka; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Cikojević, Draško; Lozić, Bernarda; Rijavec, Matija

    2016-11-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease caused by mutations in the SERPING1 gene. It can affect many regions in the body, but potentially life-threatening laryngeal oedemas are of concern. Twenty-three subjects from two families were recruited for clinical data evaluation and molecular analysis at General Hospital Šibenik, Croatia. Decreased levels of C1 inhibitor were detected in 12 adult patients and three young asymptomatic persons. The same novel deletion of two nucleotides on exon 3 (c.74_75delAT) was identified in all of them. A history of laryngeal oedema was present in 10 patients (83%), and all patients reported laryngeal attacks at least once a year. The delay in diagnosis decreased noticeably from the first to the last generation. We identified a novel causative mutation in SERPING1 in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship. Key messages Hereditary angioedema due to C1 inhibitor deficiency is a rare autosomal dominant disease caused by mutations in the SERPING1 gene, and laryngeal oedema is of concern because it can cause death by asphyxiation. A novel causative mutation in SERPING1, a deletion of two nucleotides on exon 3 (c.74_75delAT), was identified in several affected members of two apparently unrelated families with a high frequency of laryngeal oedema. Molecular analysis of large C1-INH-HAE families will provide new insights on the genotype-phenotype relationship because it appears that the mutation type may affect disease severity.

  8. A novel H395R mutation in MKKS/BBS6 causes retinitis pigmentosa and polydactyly without other findings of Bardet-Biedl or McKusick-Kaufman syndrome

    PubMed Central

    Hulleman, John D.; Nguyen, Annie; Ramprasad, V.L.; Murugan, Sakthivel; Gupta, Ravi; Mahindrakar, Avinash; Angara, Ravi; Sankurathri, Chandrasekhar

    2016-01-01

    Purpose To identify the causative mutation in two siblings from a consanguineous family in India with retinitis pigmentosa (RP) and polydactyly without other findings of Bardet-Biedl syndrome (BBS). We also performed functional characterization of the mutant protein to explore its role in this limited form of BBS. Methods The siblings underwent a thorough ophthalmological examination, including retinal optical coherence tomography (OCT) imaging, and an extensive physical examination with abdominal ultrasonography to characterize the disease phenotype. Next-generation sequencing (NGS) using a panel targeting retinal degeneration genes was performed on genomic DNA samples from the siblings and parents. Upon identification of the causative mutation, functional characterization was accomplished by performing protein–protein interaction studies in human embryonic kidney (HEK-293T) and human adult retinal pigmented epithelium (ARPE-19) cells. Results The two siblings showed signs of RP and polydactyly. The patients did not have truncal obesity, renal anomalies, hydrometrocolpos, congenital heart disease, or overt cognitive defects. NGS identified a homozygous c.1184A>G mutation in the MKKS/BBS6 gene in both patients resulting in a p.H395R substitution in the MKKS/BBS6 protein. This mutant protein decreased the interaction of MKKS/BBS6 with BBS12 but did so to a different extent in the HEK-293T versus ARPE-19 cells. Nonetheless, the effect of the H395R variant on disrupting interactions with BBS12 was not as profound as other reported MKKS/BBS6 mutations associated with syndromic RP. Conclusions We identified a novel H395R substitution in MKKS/BBS6 that results in a unique phenotype of only RP and polydactyly. Our observations reaffirm the notion that mutations in MKKS/BBS6 cause phenotypic heterogeneity and do not always result in classic MKKS or BBS findings. PMID:26900326

  9. Visual Outcomes in Japanese Patients with Retinitis Pigmentosa and Usher Syndrome Caused by USH2A Mutations.

    PubMed

    Nagase, Yasunori; Kurata, Kentaro; Hosono, Katsuhiro; Suto, Kimiko; Hikoya, Akiko; Nakanishi, Hiroshi; Mizuta, Kunihiro; Mineta, Hiroyuki; Minoshima, Shinsei; Hotta, Yoshihiro

    2017-07-05

    EYS and USH2A are the most common causative genes for retinitis pigmentosa (RP) in Japan. We determined the clinical outcomes for USH2A-related non-syndromic RP or Usher syndrome type II (USH2). Two non-syndromic RP and 11 USH2 patients with previously identified USH2A mutations were included. Their complete history and medical records were collected using standard procedures. Visual fields and acuity were compared with those of patients with EYS mutations. Clinical analyses were based on ophthalmic and otolaryngologic examinations. In all patients, the fundus displayed changes typical of RP. Most patients showed relatively well-preserved visual acuity in their thirties or forties, with rapid deterioration in their fifties. Concentric constriction started in the twenties or thirties, and no effective residual visual field was observed after the fifties. The visual outcome for non-syndromic RP or USH2 patients with USH2A mutations is consistent with that for RP patients with EYS mutations.

  10. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  11. Riboflavin transporter 3 involvement in infantile Brown-Vialetto-Van Laere disease: two novel mutations.

    PubMed

    Ciccolella, Marianna; Corti, Stefania; Catteruccia, Michela; Petrini, Stefania; Tozzi, Giulia; Rizza, Teresa; Carrozzo, Rosalba; Nizzardo, Monica; Bordoni, Andreina; Ronchi, Dario; D'Amico, Adele; Rizzo, Cristiano; Comi, Giacomo Pietro; Bertini, Enrico

    2013-02-01

    Brown-Vialetto-Van Laere (BVVL) syndrome is a rare disorder characterised by progressive pontobulbar palsy and sensorineural deafness. Causative mutations in genes encoding human riboflavin transporter 2 (hRFT2) and 3 (hRFT3) have been identified in BVVL patients. We report the clinical and molecular features of a severe BVVL patient in whom screening of SLC52A3/hRFT2 was negative. Sequence analysis identified two novel compound heterozygous mutations in SLC52A2/hRFT3, namely c.155C>T and c.1255G>A, leading to the amino acid changes p.S52F and p.G419S, respectively. Functional studies show that these defects impair the gene expression of the corresponding transporter, resulting in a significant reduction of riboflavin transport. These findings support the pathogenetic role of SLC52A2/hRFT3 in BVVL with important clinical and therapeutic implications.

  12. Identification of novel TFG mutation in HMSN-P pedigree: Emphasis on variable clinical presentations.

    PubMed

    Khani, Marzieh; Shamshiri, Hosein; Alavi, Afagh; Nafissi, Shahriar; Elahi, Elahe

    2016-10-15

    We aimed to identify the genetic cause of neurological disease in an Iranian pedigree whose manifestations suggested hereditary motor and sensory neuropathy with proximal predominance (HMSN-P). Identification of a p.Gly269Val mutation in TFG, the known HMSN-P causative gene, provided supportive evidence. Subjective, biochemical, electrodiagnostic, and imaging data were compared with previously reported HMSN-P patients, including patients of an earlier described Iranian pedigree. Although notable clinical variability was found, comparable involvement of proximal and distal muscles was observed in both Iranian pedigrees. Interestingly, the same p.Gly269Val mutation was recently reported as cause of Charcot-Marie-Tooth disease type 2 in a Taiwanese pedigree. The likelihood that the two pedigrees with the p.Gly269Val mutation are not affected with different diseases is discussed. Identification of a second Iranian HMSN-P pedigree further confirms that HMSN-P is not confined to the Far East. Furthermore, p.Pro285Leu that has been the only TFG mutation thus far reported in HMSN-P patients is not the only mutation that can cause the disease. It is emphasized HMSN-P is a neuronopathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The role of mutations in the SCN5A gene in cardiomyopathies.

    PubMed

    Zaklyazminskaya, Elena; Dzemeshkevich, Sergei

    2016-07-01

    The SCN5A gene encodes the alpha-subunit of the Nav1.5 ion channel protein, which is responsible for the sodium inward current (INa). Since 1995 several hundred mutations in this gene have been found to be causative for inherited arrhythmias including Long QT syndrome, Brugada syndrome, cardiac conduction disease, sudden infant death syndrome, etc. As expected these syndromes are primarily electrical heart diseases leading to life-threatening arrhythmias with an "apparently normal heart". In 2003 a new form of dilated cardiomyopathy was identified associated with mutations in the SCN5A gene. Recently mutations have been also found in patients with arrhythmogenic right ventricular cardiomyopathy and atrial standstill. The purpose of this review is to outline and analyze the following four topics: 1) SCN5A genetic variants linked to different cardiomyopathies; 2) clinical manifestations of the known mutations; 3) possible molecular mechanisms of myocardial remodeling; and 4) the potential implications of gene-specific treatment for those disorders. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Mutations and mechanisms in congenital and age-related cataracts

    PubMed Central

    Shiels, Alan; Hejtmancik, J. Fielding

    2017-01-01

    The crystalline lens plays an important role in the refractive vision of vertebrates by facilitating variable fine focusing of light onto the retina. Loss of lens transparency, or cataract, is a frequently acquired cause of visual impairment in adults and may also present during childhood. Genetic studies have identified mutations in over 30 causative genes for congenital or other early-onset forms of cataract as well as several gene variants associated with age-related cataract. However, the pathogenic mechanisms resulting from genetic determinants of cataract are only just beginning to be understood. Here, we briefly summarize current concepts pointing to differences in the molecular mechanisms underlying congenital and age-related forms of cataract. PMID:27334249

  15. Homozygosity mapping in autosomal recessive retinitis pigmentosa families detects novel mutations

    PubMed Central

    Marzouka, Nour al Dain; Hebrard, Maxime; Manes, Gaël; Sénéchal, Audrey; Meunier, Isabelle; Hamel, Christian P.

    2013-01-01

    Purpose Autosomal recessive retinitis pigmentosa (arRP) is a genetically heterogeneous disease resulting in progressive loss of photoreceptors that leads to blindness. To date, 36 genes are known to cause arRP, rendering the molecular diagnosis a challenge. The aim of this study was to use homozygosity mapping to identify the causative mutation in a series of inbred families with arRP. Methods arRP patients underwent standard ophthalmic examination, Goldman perimetry, fundus examination, retinal OCT, autofluorescence measurement, and full-field electroretinogram. Fifteen consanguineous families with arRP excluded for USH2A and EYS were genotyped on 250 K SNP arrays. Homozygous regions were listed, and known genes within these regions were PCR sequenced. Familial segregation and mutation analyzes were performed. Results We found ten mutations, seven of which were novel mutations in eight known genes, including RP1, IMPG2, NR2E3, PDE6A, PDE6B, RLBP1, CNGB1, and C2ORF71, in ten out of 15 families. The patients carrying RP1, C2ORF71, and IMPG2 mutations presented with severe RP, while those with PDE6A, PDE6B, and CNGB1 mutations were less severely affected. The five families without mutations in known genes could be a source of identification of novel genes. Conclusions Homozygosity mapping combined with systematic screening of known genes results in a positive molecular diagnosis in 66.7% of families. PMID:24339724

  16. Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients.

    PubMed

    Zhytnik, Lidiia; Maasalu, Katre; Reimann, Ene; Prans, Ele; Kõks, Sulev; Märtson, Aare

    2017-08-15

    Osteogenesis imperfecta (OI) is a rare bone disorder. In 90% of cases, OI is caused by mutations in the COL1A1/2 genes, which code procollagen α1 and α2 chains. The main aim of the current research was to identify the mutational spectrum of COL1A1/2 genes in Estonian patients. The small population size of Estonia provides a unique chance to explore the collagen I mutational profile of 100% of OI families in the country. We performed mutational analysis of peripheral blood gDNA of 30 unrelated Estonian OI patients using Sanger sequencing of COL1A1 and COL1A2 genes, including all intron-exon junctions and 5'UTR and 3'UTR regions, to identify causative OI mutations. We identified COL1A1/2 mutations in 86.67% of patients (26/30). 76.92% of discovered mutations were located in the COL1A1 (n = 20) and 23.08% in the COL1A2 (n = 6) gene. Half of the COL1A1/2 mutations appeared to be novel. The percentage of quantitative COL1A1/2 mutations was 69.23%. Glycine substitution with serine was the most prevalent among missense mutations. All qualitative mutations were situated in the chain domain of pro-α1/2 chains. Our study shows that among the Estonian OI population, the range of collagen I mutations is quite high, which agrees with other described OI cohorts of Northern Europe. The Estonian OI cohort differs due to the high number of quantitative variants and simple missense variants, which are mostly Gly to Ser substitutions and do not extend the chain domain of COL1A1/2 products.

  17. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    PubMed

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  18. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta

    PubMed Central

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene (MMP20) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI. PMID:28659819

  19. Evolutionary Analysis Predicts Sensitive Positions of MMP20 and Validates Newly- and Previously-Identified MMP20 Mutations Causing Amelogenesis Imperfecta.

    PubMed

    Gasse, Barbara; Prasad, Megana; Delgado, Sidney; Huckert, Mathilde; Kawczynski, Marzena; Garret-Bernardin, Annelyse; Lopez-Cazaux, Serena; Bailleul-Forestier, Isabelle; Manière, Marie-Cécile; Stoetzel, Corinne; Bloch-Zupan, Agnès; Sire, Jean-Yves

    2017-01-01

    Amelogenesis imperfecta (AI) designates a group of genetic diseases characterized by a large range of enamel disorders causing important social and health problems. These defects can result from mutations in enamel matrix proteins or protease encoding genes. A range of mutations in the enamel cleavage enzyme matrix metalloproteinase-20 gene ( MMP20 ) produce enamel defects of varying severity. To address how various alterations produce a range of AI phenotypes, we performed a targeted analysis to find MMP20 mutations in French patients diagnosed with non-syndromic AI. Genomic DNA was isolated from saliva and MMP20 exons and exon-intron boundaries sequenced. We identified several homozygous or heterozygous mutations, putatively involved in the AI phenotypes. To validate missense mutations and predict sensitive positions in the MMP20 sequence, we evolutionarily compared 75 sequences extracted from the public databases using the Datamonkey webserver. These sequences were representative of mammalian lineages, covering more than 150 million years of evolution. This analysis allowed us to find 324 sensitive positions (out of the 483 MMP20 residues), pinpoint functionally important domains, and build an evolutionary chart of important conserved MMP20 regions. This is an efficient tool to identify new- and previously-identified mutations. We thus identified six functional MMP20 mutations in unrelated families, finding two novel mutated sites. The genotypes and phenotypes of these six mutations are described and compared. To date, 13 MMP20 mutations causing AI have been reported, making these genotypes and associated hypomature enamel phenotypes the most frequent in AI.

  20. Sequencing ASMT identifies rare mutations in Chinese Han patients with autism.

    PubMed

    Wang, Lifang; Li, Jun; Ruan, Yanyan; Lu, Tianlan; Liu, Chenxing; Jia, Meixiang; Yue, Weihua; Liu, Jing; Bourgeron, Thomas; Zhang, Dai

    2013-01-01

    Melatonin is involved in the regulation of circadian and seasonal rhythms and immune function. Prior research reported low melatonin levels in autism spectrum disorders (ASD). ASMT located in pseudo-autosomal region 1 encodes the last enzyme of the melatonin biosynthesis pathway. A previous study reported an association between ASD and single nucleotide polymorphisms (SNPs) rs4446909 and rs5989681 located in the promoter of ASMT. Furthermore, rare deleterious mutations were identified in a subset of patients. To investigate the association between ASMT and autism, we sequenced all ASMT exons and its neighboring region in 398 Chinese Han individuals with autism and 437 healthy controls. Although our study did not detect significant differences of genotypic distribution and allele frequencies of the common SNPs in ASMT between patients with autism and healthy controls, we identified new rare coding mutations of ASMT. Among these rare variants, 4 were exclusively detected in patients with autism including a stop mutation (p.R115W, p.V166I, p.V179G, and p.W257X). These four coding variants were observed in 6 of 398 (1.51%) patients with autism and none in 437 controls (Chi-Square test, Continuity Correction p = 0.032, two-sided). Functional prediction of impact of amino acid showed that p.R115W might affect protein function. These results indicate that ASMT might be a susceptibility gene for autism. Further studies in larger samples are needed to better understand the degree of variation in this gene as well as to understand the biochemical and clinical impacts of ASMT/melatonin deficiency.

  1. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II).

    PubMed

    Zheng, Hui; Shao, Chong; Zheng, Yan; He, Jin-Wei; Fu, Wen-Zhen; Wang, Chun; Zhang, Zhen-Lin

    2016-07-01

    Autosomal dominant osteopetrosis type II (ADO-II) is a heritable bone disorder characterized by osteosclerosis, predominantly involving the spine (vertebral end-plate thickening, or rugger-jersey spine), the pelvis ("bone-within-bone" structures) and the skull base. Chloride channel 7 (CLCN7) has been reported to be the causative gene. In this study, we aimed to identify the pathogenic mutation in four Chinese families with ADO-II. All 25 exons of the CLCN7 gene, including the exon-intron boundaries, were amplified and sequenced directly in four probands from the Chinese families with ADO-II. The mutation site was then identified in other family members and 250 healthy controls. In family 1, a known missense mutation c.296A>G in exon 4 of CLCN7 was identified in the proband, resulting in a tyrosine (UAU) to cysteine (UGU) substitution at p.99 (Y99C); the mutation was also identified in his affected father. In family 2, a novel missense mutation c.865G>C in exon 10 was identified in the proband, resulting in a valine (GUC) to leucine (CUC) substitution at p.289 (V289L); the mutation was also identified in her healthy mother and sister. In family 3, a novel missense mutation c.1625C>T in exon 17 of CLCN7 was identified in the proband, resulting in an alanine (GCG) to valine (GUG) substitution at p.542 (A542V); the mutation was also identified in her father. In family 4, a hot spot, R767W (c.2299C>T, CGG>TGG), in exon 24 was found in the proband which once again proved the susceptibility of the site or the similar genetic background in different races. Moreover, two novel mutations, V289L and A542V, occurred at a highly conserved position, found by a comparison of the protein sequences from eight vertebrates, and were predicted to have a pathogenic effect by PolyPhen-2 software, which showed "probably damaging" with a score of approximately 1. These mutation sites were not identified in 250 healthy controls. Our present findings suggest that the novel missense

  2. Prevalence of GJB2 Mutations in Affected Individuals from United Arab Emirates with Autosomal Recessive Nonsyndromic Hearing Loss.

    PubMed

    Tlili, Abdelaziz; Al Mutery, Abdullah; Kamal Eddine Ahmad Mohamed, Walaa; Mahfood, Mona; Hadj Kacem, Hassen

    2017-11-01

    Mutations in the gap junction protein beta 2 (GJB2) gene are responsible for more cases of nonsyndromic recessive hearing loss than any other gene. The purpose of our study was to evaluate the prevalence of GJB2 mutations among affected individuals from United Arab Emirates (UAE). There were 50 individuals diagnosed with hereditary hearing loss and 120 healthy individuals enrolled in the study. The Sanger sequencing method was used to screen the GJB2 coding region in all affected individuals. The c.-1G>A variant was determined by the polymerase chain reaction-restriction fragment length polymorphism method in normal individuals. Nine cases with bi-allelic mutations and three cases with mono-allelic mutations were detected in 12 out of 50 patients (24%). The homozygous mutation c.35delG was identified as the cause of hearing loss in six participants (12%). The mutation c.506G>A was identified in three affected individuals (6%). The allelic frequency (14%) and low percentage of individuals that were homozygous (2%) for the c.35delG mutation suggest that there are other genes responsible for nonsyndromic deafness in the UAE population. The results reported here are a preliminary step in collecting epidemiological data regarding autosomal recessive nonsyndromic hearing loss related to GJB2 gene mutations among the UAE population. The c.35delG mutation of the GJB2 gene is the most frequently seen causative mutation in the UAE and is followed by the p.Cys169Tyr mutation.

  3. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network.

    PubMed

    Wei, Pi-Jing; Zhang, Di; Xia, Junfeng; Zheng, Chun-Hou

    2016-12-23

    Cancer is a complex disease which is characterized by the accumulation of genetic alterations during the patient's lifetime. With the development of the next-generation sequencing technology, multiple omics data, such as cancer genomic, epigenomic and transcriptomic data etc., can be measured from each individual. Correspondingly, one of the key challenges is to pinpoint functional driver mutations or pathways, which contributes to tumorigenesis, from millions of functional neutral passenger mutations. In this paper, in order to identify driver genes effectively, we applied a generalized additive model to mutation profiles to filter genes with long length and constructed a new gene-gene interaction network. Then we integrated the mutation data and expression data into the gene-gene interaction network. Lastly, greedy algorithm was used to prioritize candidate driver genes from the integrated data. We named the proposed method Length-Net-Driver (LNDriver). Experiments on three TCGA datasets, i.e., head and neck squamous cell carcinoma, kidney renal clear cell carcinoma and thyroid carcinoma, demonstrated that the proposed method was effective. Also, it can identify not only frequently mutated drivers, but also rare candidate driver genes.

  4. A non-stop S-antigen gene mutation is associated with late onset hereditary retinal degeneration in dogs

    PubMed Central

    Jordan, Julie Ann; Aguirre, Gustavo D.; Acland, Gregory M.

    2013-01-01

    Purpose To identify the causative mutation of canine progressive retinal atrophy (PRA) segregating as an adult onset autosomal recessive disorder in the Basenji breed of dog. Methods Basenji dogs were ascertained for the PRA phenotype by clinical ophthalmoscopic examination. Blood samples from six affected cases and three nonaffected controls were collected, and DNA extraction was used for a genome-wide association study using the canine HD Illumina single nucleotide polymorphism (SNP) array and PLINK. Positional candidate genes identified within the peak association signal region were evaluated. Results The highest -Log10(P) value of 4.65 was obtained for 12 single nucleotide polymorphisms on three chromosomes. Homozygosity and linkage disequilibrium analyses favored one chromosome, CFA25, and screening of the S-antigen (SAG) gene identified a non-stop mutation (c.1216T>C), which would result in the addition of 25 amino acids (p.*405Rext*25). Conclusions Identification of this non-stop SAG mutation in dogs affected with retinal degeneration establishes this canine disease as orthologous to Oguchi disease and SAG-associated retinitis pigmentosa in humans, and offers opportunities for genetic therapeutic intervention. PMID:24019744

  5. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis.

    PubMed

    Jiang, Jingjing; Wang, Yuhui; Ling, Yan; Kayoumu, Abudurexiti; Liu, George; Gao, Xin

    2016-01-16

    The severe forms of hypertriglyceridemia are usually caused by genetic defects. In this study, we described a Chinese female with severe hypertriglyceridemia caused by a novel homozygous mutation in the APOC2 gene. Lipid profiles of the pedigree were studied in detail. LPL and HL activity were also measured. The coding regions of 5 candidate genes (namely LPL, APOC2, APOA5, LMF1, and GPIHBP1) were sequenced using genomic DNA from peripheral leucocytes. The ApoE gene was also genotyped. Serum triglyceride level was extremely high in the proband, compared with other family members. Plasma LPL activity was also significantly reduced in the proband. Serum ApoCII was very low in the proband as well as in the heterozygous mutation carriers. A novel mutation (c.86A > CC) was identified on exon 3 [corrected] of the APOC2 gene, which converted the Asp [corrected] codon at position 29 into Ala, followed by a termination codon (TGA). This study presented the first case of ApoCII deficiency in the Chinese population, with a novel mutation c.86A > CC in the APOC2 gene identified. Serum ApoCII protein might be a useful screening test for identifying mutation carriers.

  6. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types

    PubMed Central

    Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun

    2016-01-01

    Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139

  7. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  8. Molecular basis of non-syndromic hypospadias: systematic mutation screening and genome-wide copy-number analysis of 62 patients.

    PubMed

    Kon, M; Suzuki, E; Dung, V C; Hasegawa, Y; Mitsui, T; Muroya, K; Ueoka, K; Igarashi, N; Nagasaki, K; Oto, Y; Hamajima, T; Yoshino, K; Igarashi, M; Kato-Fukui, Y; Nakabayashi, K; Hayashi, K; Hata, K; Matsubara, Y; Moriya, K; Ogata, T; Nonomura, K; Fukami, M

    2015-03-01

    What percentage of cases with non-syndromic hypospadias can be ascribed to mutations in known causative/candidate/susceptibility genes or submicroscopic copy-number variations (CNVs) in the genome? Monogenic and digenic mutations in known causative genes and cryptic CNVs account for >10% of cases with non-syndromic hypospadias. While known susceptibility polymorphisms appear to play a minor role in the development of this condition, further studies are required to validate this observation. Fifteen causative, three candidate, and 14 susceptible genes, and a few submicroscopic CNVs have been implicated in non-syndromic hypospadias. Systematic mutation screening and genome-wide copy-number analysis of 62 patients. The study group consisted of 57 Japanese and five Vietnamese patients with non-syndromic hypospadias. Systematic mutation screening was performed for 25 known causative/candidate/susceptibility genes using a next-generation sequencer. Functional consequences of nucleotide alterations were assessed by in silico assays. The frequencies of polymorphisms in the patient group were compared with those in the male general population. CNVs were analyzed by array-based comparative genomic hybridization and characterized by fluorescence in situ hybridization. Seven of 62 patients with anterior or posterior hypospadias carried putative pathogenic mutations, such as hemizygous mutations in AR, a heterozygous mutation in BNC2, and homozygous mutations in SRD5A2 and HSD3B2. Two of the seven patients had mutations in multiple genes. We did not find any rare polymorphisms that were abundant specifically in the patient group. One patient carried mosaic dicentric Y chromosome. The patient group consisted solely of Japanese and Vietnamese individuals and clinical and hormonal information of the patients remained rather fragmentary. In addition, mutation analysis focused on protein-altering substitutions. Our data provide evidence that pathogenic mutations can underlie both

  9. In silico analysis of novel mutations in maple syrup urine disease patients from Iran.

    PubMed

    Abiri, Maryam; Karamzadeh, Razieh; Mojbafan, Marziyeh; Alaei, Mohammad Reza; Jodaki, Atefeh; Safi, Masomeh; Kianfar, Soodeh; Bandehi Sarhaddi, Ameneh; Noori-Daloii, Mohammad Reza; Karimipoor, Morteza; Zeinali, Sirous

    2017-02-01

    Maple Syrup Urine Disease (MSUD) is a rare autosomal recessive disorder of branched-chain amino acid (BCAA) metabolism. The disease is mainly caused by mutations either in the BCKDHA, BCKDHB, DBT or DLD genes encoding components of the E1α, E1β, E2 and E3 subunits of branched-chain α-keto acid dehydrogenase complex (BCKDC), respectively. BCKDC is a mitochondrial enzyme which is responsible for the normal breakdown of BCAA. The rate of consanguineous marriage in Iran is 38.6 %, so the prevalence of autosomal recessive disorders is higher in comparison to other countries. Consanguinity increases the chance of the presence of pathogenic mutations in a homoallelic state. This phenomenon has made homozygosity mapping a powerful tool for finding the probable causative gene in heterogeneous disorders like IEM (Inborn Errors of Metabolism). In this study, two sets of multiplex polymorphic STR (Short Tandem Repeat) markers linked to the above-mentioned genes were selected to identify the probable pathogenic gene in the studied families. The families who showed a homozygous haplotype for the STR markers of the BCKDHB gene were subsequently sequenced. Four novel mutations including c.633 + 1G > A, c.988G > A, c.833_834insCAC, and a homozygous deletion of whole exon 3 c. (274 + 1_275-1) _(343 + 1_344-1), as well as one recently reported (c. 508G > T) mutation have been identified. Interestingly, three families shared a common haplotype structure along with the c. 508G > T mutation. Also, four other families revealed another similar haplotype with c.988G > A mutation. Founder effect can be a suggestive mechanism for the disease. Additionally, structural models of MSUD mutations have been performed to predict the pathogenesis of the newly identified variants.

  10. Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis.

    PubMed

    Skorczyk, Anna; Krawczyński, Maciej R

    2012-01-01

    To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming diagnosis and counseling, but cannot

  11. Four novel RS1 gene mutations in Polish patients with X-linked juvenile retinoschisis

    PubMed Central

    Skorczyk, Anna

    2012-01-01

    Purpose To determine the clinical features and to identify mutations in the retinoschisis gene (RS1) in ten patients with X-linked retinoschisis (XLRS). Methods Ten male patients from nine Polish families were included in this study. Ophthalmologic examinations, including optical coherence tomography (OCT) and full-field electroretinography (ERG), were performed in all affected boys. The entire coding region encompassing six exons of the RS1 gene was amplified with PCR and directly sequenced in all the patients. Results All affected individuals showed typical retinoschisis signs and symptoms, and all appeared to have a mutation in the RS1 gene. Seven different mutations were identified, including two novel missense substitutions: c.176G>C (p.Cys59Ser), c.451T>A (p.Tyr151Asp); one novel nonsense substitution: c.218C>A (p.Ser73*); and one novel frameshift mutation: c.354_355delCA (p.Asp118Glufs*2). We also found two missense substitutions that had been previously described: c.214G>A (p.Glu72Lys) and c.626G>T (p.Arg209Leu) and one known splice site mutation in intron 5: c.522+1G>T (IVS5+1G>T). Conclusions This study provides the first molecular genetic characteristics of patients with juvenile retinoschisis from the previously unexplored Polish population. We investigated the molecular background of XLRS in ten boys. The present study reports for the first time four novel mutations, including two missense substitutions, one nonsense substitution, and one frameshift deletion. One of these substitutions and 2-bp deletion created stop codons. Moreover, we described three substitutions that had been previously reported (one is a splicing mutation). Further genetic characterization of Polish patients with XLRS will be helpful in understanding the worldwide spectrum of RS1 mutations. Despite the mutation heterogeneity found in a small group of our patients, they presented a relatively uniform clinical picture. Identifying the causative mutation is helpful in confirming

  12. Further evidence for causal FAM20A mutations and first case of amelogenesis imperfecta and gingival hyperplasia syndrome in Morocco: a case report.

    PubMed

    Cherkaoui Jaouad, Imane; El Alloussi, Mustapha; Chafai El Alaoui, Siham; Laarabi, Fatima Zahra; Lyahyai, Jaber; Sefiani, Abdelaziz

    2015-01-30

    Amelogenesis imperfecta represents a group of developmental conditions, clinically and genetically heterogeneous, that affect the structure and clinical appearance of enamel. Amelogenesis imperfecta occurred as an isolated trait or as part of a genetic syndrome. Recently, disease-causing mutations in the FAM20A gene were identified, in families with an autosomal recessive syndrome associating amelogenesis imperfecta and gingival fibromatosis. We report, the first description of a Moroccan patient with amelogenesis imperfecta and gingival fibromatosis, in whom we performed Sanger sequencing of the entire coding sequence of FAM20A and identified a homozygous mutation in the FAM20A gene (c.34_35delCT), already reported in a family with this syndrome. Our finding confirms that the mutations of FAM20A gene are causative for amelogenesis imperfecta and gingival fibromatosis and underlines the recurrent character of the c.34_35delCT in two different ethnic groups.

  13. A KCNJ10 mutation previously identified in the Russell group of terriers also occurs in Smooth-Haired Fox Terriers with hereditary ataxia and in related breeds.

    PubMed

    Rohdin, Cecilia; Gilliam, Douglas; O'Leary, Caroline A; O'Brien, Dennis P; Coates, Joan R; Johnson, Gary S; Jäderlund, Karin Hultin

    2015-05-23

    Hereditary ataxias with similar phenotypes were reported in the Smooth-Haired Fox Terrier, the Jack Russell Terrier and the Parson Russell Terrier. However, segregation analyses showed differing inheritance modes in these breeds. Recently, molecular genetic studies on the Russell group of terriers found independent mutations in KCNJ10 and CAPN1, each associated with a specific clinical subtype of inherited ataxia. The aim of this study was to clarify whether or not Smooth-Haired Fox Terriers with hereditary ataxia and dogs of other related breeds harbor either of the same mutations. A sub goal was to update the results of KCNJ10 genotyping in Russell group terriers. Three Smooth-Haired Fox Terriers with hereditary ataxia and two Toy Fox Terriers with a similar phenotype were all homozygous for the KCNJ10 mutation. The same mutation was also found in a heterozygous state in clinically unaffected Tenterfield Terriers (n = 5) and, in agreement with previous studies, in Jack Russell Terriers, Parson Russell Terriers, and Russell Terriers. A KCNJ10 mutation, previously associated with an autosomal recessive spinocerebellar ataxia in Jack Russell Terriers, Parson Russell Terriers, and Russell Terriers segregates in at least three more breeds descended from British hunting terriers. Ataxic members of two of these breeds, the Smooth-Haired Fox Terrier and the Toy Fox Terrier, were homozygous for the mutation, strengthening the likelihood that this genetic defect is indeed the causative mutation for the disease known as "hereditary ataxia" in Fox Terriers and "spinocerebellar ataxia with myokymia, seizures or both" in the Russell group of terriers.

  14. Exome sequencing identifies titin mutations causing hereditary myopathy with early respiratory failure (HMERF) in families of diverse ethnic origins.

    PubMed

    Toro, Camilo; Olivé, Montse; Dalakas, Marinos C; Sivakumar, Kumaraswami; Bilbao, Juan M; Tyndel, Felix; Vidal, Noemí; Farrero, Eva; Sambuughin, Nyamkhishig; Goldfarb, Lev G

    2013-03-20

    Hereditary myopathy with early respiratory failure (HMERF) was described in several North European families and recently linked to a titin gene (TTN) mutation. We independently studied HMERF-like diseases with the purpose to identify the cause, refine diagnostic criteria, and estimate the frequency of this disease among myopathy patients of various ethnic origins. Whole exome sequencing analysis was carried out in a large U.S. family that included seven members suffering from skeletal muscle weakness and respiratory failure. Subsequent mutation screening was performed in further 45 unrelated probands with similar phenotypes. Studies included muscle strength evaluation, nerve conduction studies and concentric needle EMG, respiratory function test, cardiologic examination, and muscle biopsy. A novel TTN p.Gly30150Asp mutation was identified in the highly conserved A-band of titin that co-segregated with the disease in the U.S. family. Screening of 45 probands initially diagnosed as myofibrillar myopathy (MFM) but excluded based on molecular screening for the known MFM genes led to the identification of a previously reported TTN p.Cys30071Arg mutation in one patient. This same mutation was also identified in a patient with suspected HMERF. The p.Gly30150Asp and p.Cys30071Arg mutations are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin. Missense mutations in TTN are the cause of HMERF in families of diverse origins. A comparison of phenotypic features of HMERF caused by the three known TTN mutations in various populations allowed to emphasize distinct clinical/pathological features that can serve as the basis for diagnosis. The newly identified p.Gly30150Asp and the p.Cys30071Arg mutation are localized to a side chain of fibronectin type III element A150 of the 10th C-zone super-repeat of titin.

  15. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs. PMID:26622071

  16. Spectrum of mutations in leiomyosarcomas identified by clinical targeted next-generation sequencing.

    PubMed

    Lee, Paul J; Yoo, Naomi S; Hagemann, Ian S; Pfeifer, John D; Cottrell, Catherine E; Abel, Haley J; Duncavage, Eric J

    2017-02-01

    Recurrent genomic mutations in uterine and non-uterine leiomyosarcomas have not been well established. Using a next generation sequencing (NGS) panel of common cancer-associated genes, 25 leiomyosarcomas arising from multiple sites were examined to explore genetic alterations, including single nucleotide variants (SNV), small insertions/deletions (indels), and copy number alterations (CNA). Sequencing showed 86 non-synonymous, coding region somatic variants within 151 gene targets in 21 cases, with a mean of 4.1 variants per case; 4 cases had no putative mutations in the panel of genes assayed. The most frequently altered genes were TP53 (36%), ATM and ATRX (16%), and EGFR and RB1 (12%). CNA were identified in 85% of cases, with the most frequent copy number losses observed in chromosomes 10 and 13 including PTEN and RB1; the most frequent gains were seen in chromosomes 7 and 17. Our data show that deletions in canonical cancer-related genes are common in leiomyosarcomas. Further, the spectrum of gene mutations observed shows that defects in DNA repair and chromosomal maintenance are central to the biology of leiomyosarcomas, and that activating mutations observed in other common cancer types are rare in leiomyosarcomas. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures.

    PubMed

    Bodian, Dale L; Schreiber, John M; Vilboux, Thierry; Khromykh, Alina; Hauser, Natalie S

    2018-06-01

    Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in ∼20%-50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5 This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield. © 2018 Bodian et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Mutation in an alternative transcript of CDKL5 in a boy with early-onset seizures

    PubMed Central

    Bodian, Dale L.; Schreiber, John M.; Vilboux, Thierry; Khromykh, Alina; Hauser, Natalie S.

    2018-01-01

    Infantile-onset epilepsies are a set of severe, heterogeneous disorders for which clinical genetic testing yields causative mutations in ∼20%–50% of affected individuals. We report the case of a boy presenting with intractable seizures at 2 wk of age, for whom gene panel testing was unrevealing. Research-based whole-genome sequencing of the proband and four unaffected family members identified a de novo mutation, NM_001323289.1:c.2828_2829delGA in CDKL5, a gene associated with X-linked early infantile epileptic encephalopathy 2. CDKL5 has multiple alternative transcripts, and the mutation lies in an exon in the brain-expressed forms. The mutation was undetected by gene panel sequencing because of its intronic location in the CDKL5 transcript typically used to define the exons of this gene for clinical exon-based tests (NM_003159). This is the first report of a patient with a mutation in an alternative transcript of CDKL5. This finding suggests that incorporating alternative transcripts into the design and variant interpretation of exon-based tests, including gene panel and exome sequencing, could improve the diagnostic yield. PMID:29444904

  19. A FBN1 mutation association with different phenotypes of Marfan syndrome in a Chinese family.

    PubMed

    Li, Yapeng; Xu, Jianhua; Chen, Mingjie; Du, Binbin; Li, Qiaoli; Xing, Qinghe; Zhang, Yanzhou

    2016-09-01

    Previous studies demonstrated that patients with different FBN1 mutations often present more considerable phenotypic variation compared to different members of the related family carrying a same mutation. The purpose of our study was to identify pathogenic mutation and provide more information about genotype-phenotypic correlations in a large Chinese family with Marfan syndrome. 15 related family members from a Chinese 4-generation pedigree with Marfan syndrome underwent physical, ophthalmologic, radiological and cardiovascular examinations. The propositus has De Bakey III aortic dissection and didn't fulfill the revised Ghent criteria for Marfan syndrome. Nine family members have ectopia lentis and their echocardiogram was normal. Five other family members have no evidence of Marfan syndrome. Genomic DNA was isolated from blood leukocytes. The exome sequencing was employed on the propositus, then the Sanger sequencing was conducted for mutation verification in other 14 participants of this family. The causative mutation in FBN1 discovered in the propositus was a known heterozygous missense mutation, c.1633T>G (p.R545C), in exon 14 (NM 000138). This same mutation was also identified in all 9 ectopia lentis patients and one unaffected 8-year-old girl. However, the same mutation was not discovered in other 4 unaffected family members. Our data enhance the information of genotype-phenotype correlation owing to FBN1 mutations. To our current knowledge, we firstly reported that the same FBN1 mutation, c. 1633C>T (Arg545Cys), was detected simultaneously in three different cardinal phenotypes (ectopia lentis, aortic dissection and unaffected) within one family. The unaffected girl with FBN1 mutation may presumably represent a rare case of nonpenetrance. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    PubMed

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss.

  1. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene

    PubMed Central

    2011-01-01

    Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926

  2. Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis.

    PubMed

    Kim, Hee-Jung; Kwon, Min-Jung; Choi, Won-Jun; Oh, Ki-Wook; Oh, Seong-Il; Ki, Chang-Seok; Kim, Seung Hyun

    2014-08-01

    Mutations in the UBQLN2 and SIGMAR1 genes were recently identified in X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia (ALS and/or FTD) and FTD and/or motor neuron disease, respectively. Subsequent studies, however, found that UBQLN2 mutations were rare, and the pathogenicity of SIGMAR1 mutation in FTD and/or motor neuron disease was controversial. In the present study, we analyzed mutations in the UBQLN2 and SIGMAR1 genes in a Korean cohort of 258 patients with familial ALS (n = 9) or sporadic (sALS; n = 258) ALS. One novel UBQLN2 variant (p.D314E) was observed in 2 patients with sALS and 5 of 727 controls indicating that this variant might be a rare polymorphism rather than a disease-causing mutation. A novel SIGMAR1 gene variant in the 3'-untranslated region (c.*58T>C) was found in 1 sALS and was absent in 727 control samples. Taken together, our data suggest that causative mutations in the UBQLN2 and SIGMAR1 genes are rare in Korean patients with either familial or sporadic ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Two Novel HOGA1 Splicing Mutations Identified in a Chinese Patient with Primary Hyperoxaluria Type 3.

    PubMed

    Wang, Xinsheng; Zhao, Xiangzhong; Wang, Xiaoling; Yao, Jian; Zhang, Feifei; Lang, Yanhua; Tuffery-Giraud, Sylvie; Bottillo, Irene; Shao, Leping

    2015-01-01

    Twenty-six HOGA1 mutations have been reported in primary hyperoxaluria (PH) type 3 (PH3) patients with c.700 + 5G>T accounting for about 50% of the total alleles. However, PH3 has never been described in Asians. A Chinese child with early-onset nephrolithiasis was suspected of having PH. We searched for AGXT, GRHPR and HOGA1 gene mutations in this patient and his parents. All coding regions, including intron-exon boundaries, were analyzed using PCR followed by direct sequence analysis. Two heterozygous mutations not previously described in the literature about HOGA1 were identified (compound heterozygous). One mutation was a successive 2 bp substitution at the last nucleotide of exon 6 and at the first nucleotide of intron 6, respectively (c.834_834 + 1GG>TT), while the other one was a guanine to adenine substitution of the last nucleotide of exon 6 (c.834G>A). Direct sequencing analysis failed to find these mutations in 100 unrelated healthy subjects and the functional role on splicing of both variants found in this study was confirmed by a minigene assay based on the pSPL3 exon trapping vector. In addition, we found a SNP in this family (c.715G>A, p.V239I). There were no mutations detected in AGXT and GRHPR. Two novel HOGA1 mutations were identified in association with PH3. This is the first description and investigation on mutant gene analysis of PH3 in an Asian. © 2015 S. Karger AG, Basel

  4. An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins.

    PubMed

    Rawat, Puneet; Kumar, Sandeep; Michael Gromiha, M

    2018-06-24

    Newly synthesized polypeptides must pass stringent quality controls in cells to ensure appropriate folding and function. However, mutations, environmental stresses and aging can reduce efficiencies of these controls, leading to accumulation of protein aggregates, amyloid fibrils and plaques. In-vitro experiments have shown that even single amino acid substitutions can drastically enhance or mitigate protein aggregation kinetics. In this work, we have collected a dataset of 220 unique mutations in 25 proteins and classified them as enhancers or mitigators on the basis of their effect on protein aggregation rate. The data were analyzed via machine learning to identify features capable of distinguishing between aggregation rate enhancers and mitigators. Our initial Support Vector Machine (SVM) model separated such mutations with an overall accuracy of 69%. When local secondary structures at the mutation sites were considered, the accuracies further improved by 13-15%. The machine-learnt features are distinct for each secondary structure class at mutation sites. Protein stability and flexibility changes are important features for mutations in α-helices. β-strand propensity, polarity and charge become important when mutations occur in β-strands and ability to form secondary structure, helical tendency and aggregation propensity are important for mutations lying in coils. These results have been incorporated into a sequence-based algorithm (available at http://www.iitm.ac.in/bioinfo/aggrerate-disc/) capable of predicting whether a mutation will enhance or mitigate a protein's aggregation rate. This algorithm will find several applications towards understanding protein aggregation in human diseases, enable in-silico optimization of biopharmaceuticals and enzymes for improved biophysical attributes and de novo design of bio-nanomaterials. Copyright © 2018. Published by Elsevier B.V.

  5. Historical Perspectives of the Causation of Lung Cancer

    PubMed Central

    2015-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Less-known forces are involved in the etiology of lung cancer and have relevant implications for providers in ameliorating care. The purpose of this article is to discuss theories of causation of lung cancer using historical analyses of the evolution of the disease and incorporating related explanations integrating the relationships of science, nursing, medicine, and society. Literature from 160 years was searched and Thagard’s model of causation networks was used to exhibit how nursing and medicine were significant influences in lung cancer causation theory. Disease causation interfaces with sociological norms of behavior to form habits and rates of health behavior. Historically, nursing was detrimentally manipulated by the tobacco industry, engaging in harmful smoking behaviors, thus negatively affecting patient care. Understanding the underlying history behind lung cancer causation may empower nurses to play an active role in a patient’s health. PMID:28462309

  6. Digenic mutations involving both the BSND and GJB2 genes detected in Bartter syndrome type IV.

    PubMed

    Wang, Hong-Han; Feng, Yong; Li, Hai-Bo; Wu, Hong; Mei, Ling-Yun; Wang, Xing-Wei; Jiang, Lu; He, Chu-Feng

    2017-01-01

    Bartter syndrome type IV, characterized by salt-losing nephropathies and sensorineural deafness, is caused by mutations of BSND or simultaneous mutations of both CLCNKA and CLCNKB. GJB2 is the primary causative gene for non-syndromic sensorineural deafness and associated with several syndromic sensorineural deafness. Owing to the rarity of Bartter syndrome, only a few mutations have been reported in the abovementioned causative genes. To investigate the underlying mutations in a Chinese patient with Bartter syndrome type IV, genetic analysis of BSND, CLCNKA, CLCNKB and GJB2 were performed by polymerase chain reaction and direct sequencing. Finally, double homozygous mutations c.22C > T (p.Arg8Trp) and c.127G > A (Val43Ile) were detected in exon 1 of BSND. Intriguingly, compound heterozygous mutations c.235delC (p.Leu79CysfsX3) and c.109G > A (p.Val37Ile) were also revealed in exon 2 of GJB2 in the same patient. No pathogenic mutations were found in CLCNKA and CLCNKB. Our results indicated that the homozygous mutation c.22C > T was the key genetic reason for the proband, and a digenic effect of BSND and GJB2 might contributed to sensorineural deafness. To our knowledge, it was the first report showing that the GJB2 gene mutations were detected in Bartter syndrome. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

    PubMed Central

    Foley, A. Reghan; Menezes, Manoj P.; Pandraud, Amelie; Gonzalez, Michael A.; Al-Odaib, Ahmad; Abrams, Alexander J.; Sugano, Kumiko; Yonezawa, Atsushi; Manzur, Adnan Y.; Burns, Joshua; Hughes, Imelda; McCullagh, B. Gary; Jungbluth, Heinz; Lim, Ming J.; Lin, Jean-Pierre; Megarbane, Andre; Urtizberea, J. Andoni; Shah, Ayaz H.; Antony, Jayne; Webster, Richard; Broomfield, Alexander; Ng, Joanne; Mathew, Ann A.; O’Byrne, James J.; Forman, Eva; Scoto, Mariacristina; Prasad, Manish; O’Brien, Katherine; Olpin, Simon; Oppenheim, Marcus; Hargreaves, Iain; Land, John M.; Wang, Min X.; Carpenter, Kevin; Horvath, Rita; Straub, Volker; Lek, Monkol; Gold, Wendy; Farrell, Michael O.; Brandner, Sebastian; Phadke, Rahul; Matsubara, Kazuo; McGarvey, Michael L.; Scherer, Steven S.; Baxter, Peter S.; King, Mary D.; Clayton, Peter; Rahman, Shamima; Reilly, Mary M.; Ouvrier, Robert A.; Christodoulou, John; Züchner, Stephan; Muntoni, Francesco

    2014-01-01

    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can

  8. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2.

    PubMed

    Foley, A Reghan; Menezes, Manoj P; Pandraud, Amelie; Gonzalez, Michael A; Al-Odaib, Ahmad; Abrams, Alexander J; Sugano, Kumiko; Yonezawa, Atsushi; Manzur, Adnan Y; Burns, Joshua; Hughes, Imelda; McCullagh, B Gary; Jungbluth, Heinz; Lim, Ming J; Lin, Jean-Pierre; Megarbane, Andre; Urtizberea, J Andoni; Shah, Ayaz H; Antony, Jayne; Webster, Richard; Broomfield, Alexander; Ng, Joanne; Mathew, Ann A; O'Byrne, James J; Forman, Eva; Scoto, Mariacristina; Prasad, Manish; O'Brien, Katherine; Olpin, Simon; Oppenheim, Marcus; Hargreaves, Iain; Land, John M; Wang, Min X; Carpenter, Kevin; Horvath, Rita; Straub, Volker; Lek, Monkol; Gold, Wendy; Farrell, Michael O; Brandner, Sebastian; Phadke, Rahul; Matsubara, Kazuo; McGarvey, Michael L; Scherer, Steven S; Baxter, Peter S; King, Mary D; Clayton, Peter; Rahman, Shamima; Reilly, Mary M; Ouvrier, Robert A; Christodoulou, John; Züchner, Stephan; Muntoni, Francesco; Houlden, Henry

    2014-01-01

    Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can

  9. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  10. Modeling Autism by SHANK Gene Mutations in Mice

    PubMed Central

    Jiang, Yong-hui; Ehlers, Michael D.

    2013-01-01

    Summary Shank family proteins (Shank1, Shank2, and Shank3) are synaptic scaffolding proteins that organize an extensive protein complex at the postsynaptic density (PSD) of excitatory glutamatergic synapses. Recent human genetic studies indicate that SHANK family genes (SHANK1, SHANK2, and SHANK3) are causative genes for idiopathic autism spectrum disorders (ASD). Neurobiological studies of Shank mutations in mice support a general hypothesis of synaptic dysfunction in the pathophysiology of ASD. However, the molecular diversity of SHANK family gene products, as well as the heterogeneity in human and mouse phenotypes, pose challenges to modeling human SHANK mutations. Here, we review the molecular genetics of SHANK mutations in human ASD and discuss recent findings where such mutations have been modeled in mice. Conserved features of synaptic dysfunction and corresponding behaviors in Shank mouse mutants may help dissect the pathophysiology of ASD, but also highlight divergent phenotypes that arise from different mutations in the same gene. PMID:23583105

  11. OPTN 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes

    PubMed Central

    Goldstein, Orly; Nayshool, Omri; Nefussy, Beatrice; Traynor, Bryan J.; Renton, Alan E.; Gana-Weisz, Mali; Drory, Vivian E.

    2016-01-01

    Objective: To detect genetic variants underlying familial and sporadic amyotrophic lateral sclerosis (ALS). Methods: We analyzed 2 founder Jewish populations of Moroccan and Ashkenazi origins and ethnic matched controls. Exome sequencing of 2 sisters with ALS from Morocco was followed by genotyping the identified causative null mutation in 379 unrelated patients with ALS and 1,000 controls. The shared risk haplotype was characterized using whole-genome single nucleotide polymorphism array. Results: We identified 5 unrelated patients with ALS homozygous for the null 691_692insAG mutation in the optineurin gene (OPTN), accounting for 5.8% of ALS of Moroccan origin and 0.3% of Ashkenazi. We also identified a high frequency of heterozygous carriers among patients with ALS, 8.7% and 2.9%, respectively, compared to 0.75% and 1.0% in controls. The risk of carriers for ALS was significantly increased, with odds ratio of 13.46 and 2.97 in Moroccan and Ashkenazi Jews, respectively. We determined that 691_692insAG is a founder mutation in the tested populations with a minimal risk haplotype of 58.5 Kb, encompassing the entire OPTN gene. Conclusions: Our data show that OPTN 691_692insAG mutation is a founder mutation in Moroccan and Ashkenazi Jews. This mutation causes autosomal recessive ALS and significantly increases the risk to develop the disease in heterozygous carriers, suggesting both a recessive mode of inheritance and a dominant with incomplete penetrance. These data emphasize the important role of OPTN in ALS pathogenesis, and demonstrate the complex genetics of ALS, as the same mutation leads to different phenotypes and appears in 2 patterns of inheritance. PMID:26740678

  12. [Schinzel-Giedion syndrome: a new mutation in SETBP1].

    PubMed

    López-González, V; Domingo-Jiménez, M R; Burglen, L; Ballesta-Martínez, M J; Whalen, S; Piñero-Fernández, J A; Guillén-Navarro, E

    2015-01-01

    Schinzel-Giedion syndrome (SGS) (#MIM 269150) is a rare genetic disorder characterized by very marked craniofacial dysmorphism, multiple congenital anomalies and severe intellectual disability. Most affected patients die in early childhood. SETBP1 was identified as the causative gene, but a limited number of patients with molecular confirmation have been reported to date. The case is reported of a 4 and a half year-old male patient, affected by SGS. SETBP1 sequencing analysis revealed the presence of a non-previously described mutation: c.2608G>T (p.Gly870Cys). The clinical features and differential diagnosis of this rare condition are reviewed. Dysmorphic features are strongly suggestive of SGS. Its clinical recognition is essential to enable an early diagnosis, a proper follow-up, and to provide the family with genetic counseling. To date, this is the seventeenth SGS patient published with SETBP1 mutation, and the first in Spain, helping to widen clinical and molecular knowledge of the disease. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  13. Targeted next-generation sequencing reveals novel USH2A mutations associated with diverse disease phenotypes: implications for clinical and molecular diagnosis.

    PubMed

    Chen, Xue; Sheng, Xunlun; Liu, Xiaoxing; Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen

    2014-01-01

    USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also

  14. Targeted Next-Generation Sequencing Reveals Novel USH2A Mutations Associated with Diverse Disease Phenotypes: Implications for Clinical and Molecular Diagnosis

    PubMed Central

    Li, Huiping; Liu, Yani; Rong, Weining; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Zhao, Kanxing; Zhao, Chen

    2014-01-01

    USH2A mutations have been implicated in the disease etiology of several inherited diseases, including Usher syndrome type 2 (USH2), nonsyndromic retinitis pigmentosa (RP), and nonsyndromic deafness. The complex genetic and phenotypic spectrums relevant to USH2A defects make it difficult to manage patients with such mutations. In the present study, we aim to determine the genetic etiology and to characterize the correlated clinical phenotypes for three Chinese pedigrees with nonsyndromic RP, one with RP sine pigmento (RPSP), and one with USH2. Family histories and clinical details for all included patients were reviewed. Ophthalmic examinations included best corrected visual acuities, visual field measurements, funduscopy, and electroretinography. Targeted next-generation sequencing (NGS) was applied using two sequence capture arrays to reveal the disease causative mutations for each family. Genotype-phenotype correlations were also annotated. Seven USH2A mutations, including four missense substitutions (p.P2762A, p.G3320C, p.R3719H, and p.G4763R), two splice site variants (c.8223+1G>A and c.8559-2T>C), and a nonsense mutation (p.Y3745*), were identified as disease causative in the five investigated families, of which three reported to have consanguineous marriage. Among all seven mutations, six were novel, and one was recurrent. Two homozygous missense mutations (p.P2762A and p.G3320C) were found in one individual family suggesting a potential double hit effect. Significant phenotypic divergences were revealed among the five families. Three families of the five families were affected with early, moderated, or late onset RP, one with RPSP, and the other one with USH2. Our study expands the genotypic and phenotypic variability relevant to USH2A mutations, which would help with a clear insight into the complex genetic and phenotypic spectrums relevant to USH2A defects, and is complementary for a better management of patients with such mutations. We have also

  15. Genome-Wide Linkage Analysis to Identify Genetic Modifiers of ALK Mutation Penetrance in Familial Neuroblastoma

    PubMed Central

    Devoto, Marcella; Specchia, Claudia; Laudenslager, Marci; Longo, Luca; Hakonarson, Hakon; Maris, John; Mossé, Yael

    2011-01-01

    Background Neuroblastoma (NB) is an important childhood cancer with a strong genetic component related to disease susceptibility. Approximately 1% of NB cases have a positive family history. Following a genome-wide linkage analysis and sequencing of candidate genes in the critical region, we identified ALK as the major familial NB gene. Dominant mutations in ALK are found in more than 50% of familial NB cases. However, in the families used for the linkage study, only about 50% of carriers of ALK mutations are affected by NB. Methods To test whether genetic variation may explain the reduced penetrance of the disease phenotype, we analyzed genome-wide genotype data in ALK mutation-positive families using a model-based linkage approach with different liability classes for carriers and non-carriers of ALK mutations. Results The region with the highest LOD score was located at chromosome 2p23–p24 and included the ALK locus under models of dominant and recessive inheritance. Conclusions This finding suggests that variants in the non-mutated ALK gene or another gene linked to it may affect penetrance of the ALK mutations and risk of developing NB in familial cases. PMID:21734404

  16. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia.

    PubMed

    Wang, RuNan; Yoshida, Kenichi; Toki, Tsutomu; Sawada, Takafumi; Uechi, Tamayo; Okuno, Yusuke; Sato-Otsubo, Aiko; Kudo, Kazuko; Kamimaki, Isamu; Kanezaki, Rika; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Sato, Tomohiko; Iribe, Yuji; Ohga, Shouichi; Kuramitsu, Madoka; Hamaguchi, Isao; Ohara, Akira; Hara, Junichi; Goi, Kumiko; Matsubara, Kousaku; Koike, Kenichi; Ishiguro, Akira; Okamoto, Yasuhiro; Watanabe, Kenichiro; Kanno, Hitoshi; Kojima, Seiji; Miyano, Satoru; Kenmochi, Naoya; Ogawa, Seishi; Ito, Etsuro

    2015-03-01

    Diamond-Blackfan anaemia is a congenital bone marrow failure syndrome that is characterized by red blood cell aplasia. The disease has been associated with mutations or large deletions in 11 ribosomal protein genes including RPS7, RPS10, RPS17, RPS19, RPS24, RPS26, RPS29, RPL5, RPL11, RPL26 and RPL35A as well as GATA1 in more than 50% of patients. However, the molecular aetiology of many Diamond-Blackfan anaemia cases remains to be uncovered. To identify new mutations responsible for Diamond-Blackfan anaemia, we performed whole-exome sequencing analysis of 48 patients with no documented mutations/deletions involving known Diamond-Blackfan anaemia genes except for RPS7, RPL26, RPS29 and GATA1. Here, we identified a de novo splicing error mutation in RPL27 and frameshift deletion in RPS27 in sporadic patients with Diamond-Blackfan anaemia. In vitro knockdown of gene expression disturbed pre-ribosomal RNA processing. Zebrafish models of rpl27 and rps27 mutations showed impairments of erythrocyte production and tail and/or brain development. Additional novel mutations were found in eight patients, including RPL3L, RPL6, RPL7L1T, RPL8, RPL13, RPL14, RPL18A and RPL31. In conclusion, we identified novel germline mutations of two ribosomal protein genes responsible for Diamond-Blackfan anaemia, further confirming the concept that mutations in ribosomal protein genes lead to Diamond-Blackfan anaemia. © 2014 John Wiley & Sons Ltd.

  17. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    NASA Astrophysics Data System (ADS)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  18. Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients.

    PubMed

    Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei

    2016-09-19

    Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

  19. Medical negligence. An overview of legal theory and neurosurgical practice: causation.

    PubMed

    Todd, Nicholas V

    2014-06-01

    This article discusses the principles of the law in relation to legal causation as applied to neurosurgical practice. Causation is a causal link between a breach of duty of care and the final harm. The fundamental "but-for" test for causation will be discussed, together with Chester v Afshar modified causation, prospective and retrospective probabilities of harm, loss of a chance, causation following breach of duty of care by omission, breaking the chain of causation, material contribution and the law in relation to multiple defendants, with neurosurgical examples.

  20. Clinical and mutation analysis of 51 probands with anophthalmia and/or severe microphthalmia from a single center

    PubMed Central

    Gerth-Kahlert, Christina; Williamson, Kathleen; Ansari, Morad; Rainger, Jacqueline K; Hingst, Volker; Zimmermann, Theodor; Tech, Stefani; Guthoff, Rudolf F; van Heyningen, Veronica; FitzPatrick, David R

    2013-01-01

    Clinical evaluation and mutation analysis was performed in 51 consecutive probands with severe eye malformations – anophthalmia and/or severe microphthalmia – seen in a single specialist ophthalmology center. The mutation analysis consisted of bidirectional sequencing of the coding regions of SOX2, OTX2, PAX6 (paired domain), STRA6, BMP4, SMOC1, FOXE3, and RAX, and genome-wide array-based copy number assessment. Fifteen (29.4%) of the 51 probands had likely causative mutations affecting SOX2 (9/51), OTX2 (5/51), and STRA6 (1/51). Of the cases with bilateral anophthalmia, 9/12 (75%) were found to be mutation positive. Three of these mutations were large genomic deletions encompassing SOX2 (one case) or OTX2 (two cases). Familial inheritance of three intragenic, plausibly pathogenic, and heterozygous mutations was observed. An unaffected carrier parent of an affected child with an identified OTX2 mutation confirmed the previously reported nonpenetrance for this disorder. Two families with SOX2 mutations demonstrated a parent and child both with significant but highly variable eye malformations. Heterozygous loss-of-function mutations in SOX2 and OTX2 are the most common genetic pathology associated with severe eye malformations and bi-allelic loss-of-function in STRA6 is confirmed as an emerging cause of nonsyndromal eye malformations. PMID:24498598

  1. Exome analysis of a family with Wolff-Parkinson-White syndrome identifies a novel disease locus.

    PubMed

    Bowles, Neil E; Jou, Chuanchau J; Arrington, Cammon B; Kennedy, Brett J; Earl, Aubree; Matsunami, Norisada; Meyers, Lindsay L; Etheridge, Susan P; Saarel, Elizabeth V; Bleyl, Steven B; Yost, H Joseph; Yandell, Mark; Leppert, Mark F; Tristani-Firouzi, Martin; Gruber, Peter J

    2015-12-01

    Wolff-Parkinson-White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5'-AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene. © 2015 Wiley Periodicals, Inc.

  2. Exome Analysis of a Family with Wolff–Parkinson–White Syndrome Identifies a Novel Disease Locus

    PubMed Central

    Bowles, Neil E.; Jou, Chuanchau J.; Arrington, Cammon B.; Kennedy, Brett J.; Earl, Aubree; Matsunami, Norisada; Meyers, Lindsay L.; Etheridge, Susan P.; Saarel, Elizabeth V.; Bleyl, Steven B.; Yost, H. Joseph; Yandell, Mark; Leppert, Mark F.; Tristani-Firouzi, Martin; Gruber, Peter J.

    2016-01-01

    Wolff–Parkinson–White (WPW) syndrome is a common cause of supraventricular tachycardia that carries a risk of sudden cardiac death. To date, mutations in only one gene, PRKAG2, which encodes the 5’ -AMP-activated protein kinase subunit γ-2, have been identified as causative for WPW. DNA samples from five members of a family with WPW were analyzed by exome sequencing. We applied recently designed prioritization strategies (VAAST/pedigree VAAST) coupled with an ontology-based algorithm (Phevor) that reduced the number of potentially damaging variants to 10: a variant in KCNE2 previously associated with Long QT syndrome was also identified. Of these 11 variants, only MYH6 p.E1885K segregated with the WPW phenotype in all affected individuals and was absent in 10 unaffected family members. This variant was predicted to be damaging by in silico methods and is not present in the 1,000 genome and NHLBI exome sequencing project databases. Screening of a replication cohort of 47 unrelated WPW patients did not identify other likely causative variants in PRKAG2 or MYH6. MYH6 variants have been identified in patients with atrial septal defects, cardiomyopathies, and sick sinus syndrome. Our data highlight the pleiotropic nature of phenotypes associated with defects in this gene. PMID:26284702

  3. Events in the Grammar of Direct and Indirect Causation

    ERIC Educational Resources Information Center

    Vecchiato, Antonella

    2011-01-01

    This work investigates the differences between two widespread types of causative constructions: the so called lexical causative as in Gianna opened the door or the corresponding Italian sentence Gianna ha aperto la porta, and the periphrastic causative, as in the Italian Gianna ha fatto aprire la porta (Gianna had the door opened/made the door…

  4. Linkage analyses in Caribbean Hispanic families identify novel loci associated with familial late-onset Alzheimer's disease.

    PubMed

    Barral, Sandra; Cheng, Rong; Reitz, Christiane; Vardarajan, Badri; Lee, Joseph; Kunkle, Brian; Beecham, Gary; Cantwell, Laura S; Pericak-Vance, Margaret A; Farrer, Lindsay A; Haines, Jonathan L; Goate, Alison M; Foroud, Tatiana; Boerwinkle, Eric; Schellenberg, Gerard D; Mayeux, Richard

    2015-12-01

    We performed linkage analyses in Caribbean Hispanic families with multiple late-onset Alzheimer's disease (LOAD) cases to identify regions that may contain disease causative variants. We selected 67 LOAD families to perform genome-wide linkage scan. Analysis of the linked regions was repeated using the entire sample of 282 families. Validated chromosomal regions were analyzed using joint linkage and association. We identified 26 regions linked to LOAD (HLOD ≥3.6). We validated 13 of the regions (HLOD ≥2.5) using the entire family sample. The strongest signal was at 11q12.3 (rs2232932: HLODmax = 4.7, Pjoint = 6.6 × 10(-6)), a locus located ∼2 Mb upstream of the membrane-spanning 4A gene cluster. We additionally identified a locus at 7p14.3 (rs10255835: HLODmax = 4.9, Pjoint = 1.2 × 10(-5)), a region harboring genes associated with the nervous system (GARS, GHRHR, and NEUROD6). Future sequencing efforts should focus on these regions because they may harbor familial LOAD causative mutations. Copyright © 2015 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  5. A novel mutation in SMOC1 and variable phenotypic expression in two patients with Waardenburg anophthalmia syndrome.

    PubMed

    Jamshidi, Javad; Abdollahi, Shokoufeh; Ghaedi, Hamid; Alehabib, Elham; Tafakhori, Abbas; Alinaghi, Somayeh; Chapi, Marjan; Johari, Amir Hossein; Darvish, Hossein

    2017-11-01

    Waardenburg anophthalmia syndrome (WAS) is a rare disorder that mostly affects the eyes and distal limbs. In the current study we reported two Iranian patients with WAS. The first case was a 26-year-old girl with unilateral anophthalmia, bilateral camptodactyly and clinodactyly in her hands, oligodactly in her left foot and syndactyly of the second to fifth toes in her right foot. She also had severe hearing loss in both ears. The second case was a 12-year-old boy with bilateral anophthalmia, camptodactyly in his right hand, oligodactyly in his foot, clubfoot, and cryptorchidism. Both patients were mentally normal. To detect the causative mutation all exons and exon-intron boundaries of SMOC1 gene were sequenced in patients and other normal family members. We found a homozygous missense mutation (NM_001034852.2(SMOC1):c.367T > C) in exon 3 of SMOC1 gene in both patients. As the mutation segregated with the disease in the family, it should be the causative mutation. Our study extended the mutation spectrum of SMOC1 gene related to WAS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. A Frameshift Mutation in the Cubilin Gene (CUBN) in Border Collies with Imerslund-Gräsbeck Syndrome (Selective Cobalamin Malabsorption)

    PubMed Central

    Owczarek-Lipska, Marta; Jagannathan, Vidhya; Drögemüller, Cord; Lutz, Sabina; Glanemann, Barbara

    2013-01-01

    Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies. PMID:23613799

  7. Gain-of-Function Mutations in SCN11A Cause Familial Episodic Pain

    PubMed Central

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-01-01

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3–p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel’s electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. PMID:24207120

  8. Gain-of-function mutations in SCN11A cause familial episodic pain.

    PubMed

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-11-07

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3-p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel's electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. A computable expression of closure to efficient causation.

    PubMed

    Mossio, Matteo; Longo, Giuseppe; Stewart, John

    2009-04-07

    In this paper, we propose a mathematical expression of closure to efficient causation in terms of lambda-calculus; we argue that this opens up the perspective of developing principled computer simulations of systems closed to efficient causation in an appropriate programming language. An important implication of our formulation is that, by exhibiting an expression in lambda-calculus, which is a paradigmatic formalism for computability and programming, we show that there are no conceptual or principled problems in realizing a computer simulation or model of closure to efficient causation. We conclude with a brief discussion of the question whether closure to efficient causation captures all relevant properties of living systems. We suggest that it might not be the case, and that more complex definitions could indeed create crucial some obstacles to computability.

  10. Novel and Recurrent MYO7A Mutations in Usher Syndrome Type 1 and Type 2

    PubMed Central

    Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease. PMID:24831256

  11. Novel and recurrent MYO7A mutations in Usher syndrome type 1 and type 2.

    PubMed

    Rong, Weining; Chen, Xue; Zhao, Kanxing; Liu, Yani; Liu, Xiaoxing; Ha, Shaoping; Liu, Wenzhou; Kang, Xiaoli; Sheng, Xunlun; Zhao, Chen

    2014-01-01

    Usher syndrome (USH) is a group of disorders manifested as retinitis pigmentosa and bilateral sensorineural hearing loss, with or without vestibular dysfunction. Here, we recruited three Chinese families affected with autosomal recessive USH for detailed clinical evaluations and for mutation screening in the genes associated with inherited retinal diseases. Using targeted next-generation sequencing (NGS) approach, three new alleles and one known mutation in MYO7A gene were identified in the three families. In two families with USH type 1, novel homozygous frameshift variant p.Pro194Hisfs*13 and recurrent missense variant p.Thr165Met were demonstrated as the causative mutations respectively. Crystal structural analysis denoted that p.Thr165Met would very likely change the tertiary structure of the protein encoded by MYO7A. In another family affected with USH type 2, novel biallelic mutations in MYO7A, c.[1343+1G>A];[2837T>G] or p.[?];[Met946Arg], were identified with clinical significance. Because MYO7A, to our knowledge, has rarely been correlated with USH type 2, our findings therefore reveal distinguished clinical phenotypes associated with MYO7A. We also conclude that targeted NGS is an effective approach for genetic diagnosis for USH, which can further provide better understanding of genotype-phenotype relationship of the disease.

  12. Exome sequencing identifies a novel SMCHD1 mutation in facioscapulohumeral muscular dystrophy 2.

    PubMed

    Mitsuhashi, Satomi; Boyden, Steven E; Estrella, Elicia A; Jones, Takako I; Rahimov, Fedik; Yu, Timothy W; Darras, Basil T; Amato, Anthony A; Folkerth, Rebecca D; Jones, Peter L; Kunkel, Louis M; Kang, Peter B

    2013-12-01

    FSHD2 is a rare form of facioscapulohumeral muscular dystrophy (FSHD) characterized by the absence of a contraction in the D4Z4 macrosatellite repeat region on chromosome 4q35 that is the hallmark of FSHD1. However, hypomethylation of this region is common to both subtypes. Recently, mutations in SMCHD1 combined with a permissive 4q35 allele were reported to cause FSHD2. We identified a novel p.Lys275del SMCHD1 mutation in a family affected with FSHD2 using whole-exome sequencing and linkage analysis. This mutation alters a highly conserved amino acid in the ATPase domain of SMCHD1. Subject III-11 is a male who developed asymmetrical muscle weakness characteristic of FSHD at 13 years. Physical examination revealed marked bilateral atrophy at biceps brachii, bilateral scapular winging, some asymmetrical weakness at tibialis anterior and peroneal muscles, and mild lower facial weakness. Biopsy of biceps brachii in subject II-5, the father of III-11, demonstrated lobulated fibers and dystrophic changes. Endomysial and perivascular inflammation was found, which has been reported in FSHD1 but not FSHD2. Given the previous report of SMCHD1 mutations in FSHD2 and the clinical presentations consistent with the FSHD phenotype, we conclude that the SMCHD1 mutation is the likely cause of the disease in this family. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mutation Detection with Next-Generation Resequencing through a Mediator Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtzel, Omri; Dori-Bachash, Mally; Pietrokovski, Shmuel

    2010-12-31

    The affordability of next generation sequencing (NGS) is transforming the field of mutation analysis in bacteria. The genetic basis for phenotype alteration can be identified directly by sequencing the entire genome of the mutant and comparing it to the wild-type (WT) genome, thus identifying acquired mutations. A major limitation for this approach is the need for an a-priori sequenced reference genome for the WT organism, as the short reads of most current NGS approaches usually prohibit de-novo genome assembly. To overcome this limitation we propose a general framework that utilizes the genome of relative organisms as mediators for comparing WTmore » and mutant bacteria. Under this framework, both mutant and WT genomes are sequenced with NGS, and the short sequencing reads are mapped to the mediator genome. Variations between the mutant and the mediator that recur in the WT are ignored, thus pinpointing the differences between the mutant and the WT. To validate this approach we sequenced the genome of Bdellovibrio bacteriovorus 109J, an obligatory bacterial predator, and its prey-independent mutant, and compared both to the mediator species Bdellovibrio bacteriovorus HD100. Although the mutant and the mediator sequences differed in more than 28,000 nucleotide positions, our approach enabled pinpointing the single causative mutation. Experimental validation in 53 additional mutants further established the implicated gene. Our approach extends the applicability of NGS-based mutant analyses beyond the domain of available reference genomes.« less

  14. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    PubMed Central

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  15. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis.

    PubMed

    Rajagopal, Abbhirami; Braslavsky, Débora; Lu, James T; Kleppe, Soledad; Clément, Florencia; Cassinelli, Hamilton; Liu, David S; Liern, Jose Miguel; Vallejo, Graciela; Bergadá, Ignacio; Gibbs, Richard A; Campeau, Phillipe M; Lee, Brendan H

    2014-11-01

    Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. The goal of this study was to identify genetic causes of the clinical findings in the two siblings. Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition.

  16. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These

  17. The role of mutation in the new cancer paradigm.

    PubMed

    Prehn, Richmond T

    2005-04-26

    The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia.Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible.

  18. Novel mutation of FKBP10 in a pediatric patient with osteogenesis imperfecta type XI identified by clinical exome sequencing

    PubMed Central

    Velasco, Harvy Mauricio; Morales, Jessica L

    2017-01-01

    Osteogenesis imperfecta (OI) is a hereditary disease characterized by bone fragility caused by mutations in the proteins that support the formation of the extracellular matrix in the bone. The diagnosis of OI begins with clinical suspicion, from phenotypic findings at birth, low-impact fractures during childhood or family history that may lead to it. However, the variability in the semiology of the disease does not allow establishing an early diagnosis in all cases, and unfortunately, specific clinical data provided by the literature only report 28 patients with OI type XI. This information is limited and heterogeneous, and therefore, detailed information on the natural history of this disease is not yet available. This paper reports the case of a male patient who, despite undergoing multidisciplinary management, did not have a diagnosis for a long period of time, and could only be given one with the use of whole-exome sequencing. The use of the next-generation sequencing in patients with ultrarare genetic diseases, including skeletal dysplasias, should be justified when clear clinical criteria and an improvement in the quality of life of the patients and their families are intended while reducing economic and time costs. Thus, this case report corresponds to the 29th patient affected with OI type XI, and the 18th mutation in FKBP10, causative of this pathology. PMID:29158687

  19. A short insertion mutation disrupts genesis of miR-16 and causes increased body weight in domesticated chicken.

    PubMed

    Jia, Xinzheng; Lin, Huiran; Nie, Qinghua; Zhang, Xiquan; Lamont, Susan J

    2016-11-03

    Body weight is one of the most important quantitative traits with high heritability in chicken. We previously mapped a quantitative trait locus (QTL) for body weight by genome-wide association study (GWAS) in an F2 chicken resource population. To identify the causal mutations linked to this QTL, expression profiles were determined on livers of high-weight and low-weight chicken lines by microarray. Combining the expression pattern with SNP effects by GWAS, miR-16 was identified as the most likely potential candidate with a 3.8-fold decrease in high-weight lines. Re-sequencing revealed that a 54-bp insertion mutation in the upstream region of miR-15a-16 displayed high allele frequencies in high-weight commercial broiler line. This mutation resulted in lower miR-16 expression by introducing three novel splicing sites instead of the missing 5' terminal splicing of mature miR-16. Elevating miR-16 significantly inhibited DF-1 chicken embryo cell proliferation, consistent with a role in suppression of cellular growth. The 54-bp insertion was significantly associated with increased body weight, bone size and muscle mass. Also, the insertion mutation tended towards fixation in commercial broilers (Fst > 0.4). Our findings revealed a novel causative mutation for body weight regulation that aids our basic understanding of growth regulation in birds.

  20. A short insertion mutation disrupts genesis of miR-16 and causes increased body weight in domesticated chicken

    PubMed Central

    Jia, Xinzheng; Lin, Huiran; Nie, Qinghua; Zhang, Xiquan; Lamont, Susan J.

    2016-01-01

    Body weight is one of the most important quantitative traits with high heritability in chicken. We previously mapped a quantitative trait locus (QTL) for body weight by genome-wide association study (GWAS) in an F2 chicken resource population. To identify the causal mutations linked to this QTL, expression profiles were determined on livers of high-weight and low-weight chicken lines by microarray. Combining the expression pattern with SNP effects by GWAS, miR-16 was identified as the most likely potential candidate with a 3.8-fold decrease in high-weight lines. Re-sequencing revealed that a 54-bp insertion mutation in the upstream region of miR-15a-16 displayed high allele frequencies in high-weight commercial broiler line. This mutation resulted in lower miR-16 expression by introducing three novel splicing sites instead of the missing 5′ terminal splicing of mature miR-16. Elevating miR-16 significantly inhibited DF-1 chicken embryo cell proliferation, consistent with a role in suppression of cellular growth. The 54-bp insertion was significantly associated with increased body weight, bone size and muscle mass. Also, the insertion mutation tended towards fixation in commercial broilers (Fst > 0.4). Our findings revealed a novel causative mutation for body weight regulation that aids our basic understanding of growth regulation in birds. PMID:27808177

  1. Low-level APC mutational mosaicism is the underlying cause in a substantial fraction of unexplained colorectal adenomatous polyposis cases.

    PubMed

    Spier, Isabel; Drichel, Dmitriy; Kerick, Martin; Kirfel, Jutta; Horpaopan, Sukanya; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Adam, Ronja; Zhao, Bixiao; Becker, Tim; Lifton, Richard P; Perner, Sven; Hoffmann, Per; Kristiansen, Glen; Timmermann, Bernd; Nöthen, Markus M; Holinski-Feder, Elke; Schweiger, Michal R; Aretz, Stefan

    2016-03-01

    In 30-50% of patients with colorectal adenomatous polyposis, no germline mutation in the known genes APC, causing familial adenomatous polyposis, MUTYH, causing MUTYH-associated polyposis, or POLE or POLD1, causing polymerase-proofreading-associated polyposis can be identified, although a hereditary aetiology is likely. This study aimed to explore the impact of APC mutational mosaicism in unexplained polyposis. To comprehensively screen for somatic low-level APC mosaicism, high-coverage next-generation sequencing of the APC gene was performed using DNA from leucocytes and a total of 53 colorectal tumours from 20 unrelated patients with unexplained sporadic adenomatous polyposis. APC mosaicism was assumed if the same loss-of-function APC mutation was present in ≥ 2 anatomically separated colorectal adenomas/carcinomas per patient. All mutations were validated using diverse methods. In 25% (5/20) of patients, somatic mosaicism of a pathogenic APC mutation was identified as underlying cause of the disease. In 2/5 cases, the mosaic level in leucocyte DNA was slightly below the sensitivity threshold of Sanger sequencing; while in 3/5 cases, the allelic fraction was either very low (0.1-1%) or no mutations were detectable. The majority of mosaic mutations were located outside the somatic mutation cluster region of the gene. The present data indicate a high prevalence of pathogenic mosaic APC mutations below the detection thresholds of routine diagnostics in adenomatous polyposis, even if high-coverage sequencing of leucocyte DNA alone is taken into account. This has important implications for both routine work-up and strategies to identify new causative genes in this patient group. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Mutations, associated with early-onset Alzheimer’s disease, discovered in Asian countries

    PubMed Central

    Bagyinszky, Eva; Youn, Young Chul; An, Seong Soo A; Kim, SangYun

    2016-01-01

    Alzheimer’s disease (AD), the most common form of senile dementia, is a genetically complex disorder. In most Asian countries, the population and the number of AD patients are growing rapidly, and the genetics of AD has been extensively studied, except in Japan. However, recent studies have been started to investigate the genes and mutations associated with AD in Korea, the People’s Republic of China, and Malaysia. This review describes all of the known mutations in three early-onset AD (EOAD) causative genes (APP, PSEN1, and PSEN2) that were discovered in Asian countries. Most of the EOAD-associated mutations have been detected in PSEN1, and several novel PSEN1 mutations were recently identified in patients from various parts of the world, including Asia. Until 2014, no PSEN2 mutations were found in Asian patients; however, emerging studies from Korea and the People’s Republic of China discovered probably pathogenic PSEN2 mutations. Since several novel mutations were discovered in these three genes, we also discuss the predictions on their pathogenic nature. This review briefly summarizes genome-wide association studies of late-onset AD and the genes that might be associated with AD in Asian countries. Standard sequencing is a widely used method, but it has limitations in terms of time, cost, and efficacy. Next-generation sequencing strategies could facilitate genetic analysis and association studies. Genetic testing is important for the accurate diagnosis and for understanding disease-associated pathways and might also improve disease therapy and prevention. PMID:27799753

  3. NLGN3/NLGN4 gene mutations are not responsible for autism in the Quebec population.

    PubMed

    Gauthier, Julie; Bonnel, Anna; St-Onge, Judith; Karemera, Liliane; Laurent, Sandra; Mottron, Laurent; Fombonne, Eric; Joober, Ridha; Rouleau, Guy A

    2005-01-05

    Jamain [2003: Nat Genet 34:27-29] recently reported mutations in two neuroligin genes in sib-pairs affected with autism. In order to confirm these causative mutations in our autistic population and to determine their frequency we screened 96 individuals affected with autism. We found no mutations in these X-linked genes. These results indicate that mutations in NLGN3 and NLGN4 genes are responsible for at most a small fraction of autism cases and additional screenings in other autistic populations are needed to better determine the frequency with which mutations in NLGN3 and NLGN4 occur in autism. Copyright 2004 Wiley-Liss, Inc.

  4. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis☆

    PubMed Central

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-01-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by “intermediate osteopetrosis”, which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. PMID:24269275

  5. Thyrotropin receptor mutations and thyroid hyperfunctioning adenomas ten years after their first discovery: unresolved questions.

    PubMed

    Arturi, F; Scarpelli, D; Coco, A; Sacco, R; Bruno, R; Filetti, S; Russo, D

    2003-04-01

    Ten years after the first description of activating mutations in the thyroid stimulating hormone receptor (TSHR) gene in sporadic autonomous hyperfunctioning thyroid adenomas, there is general agreement in assigning a major pathogenic role of this genetic abnormality, acting via the constitutive activation of the cAMP pathway, in both the growth and functional characteristic of these tumours. From the beginning, however, the pathophysiological and clinical relevance of somatic TSHR mutations has been debated and some arguments still exist against a fully causative role of these mutations and the practical value of detecting these mutations for the diagnosis, treatment and prognosis of thyroid hot nodules. Some major issues will be examined herein, including (a) the frequency of TSHR alterations in various reports showing that the genetic abnormality underlying the pathogenesis of a substantial subset of thyroid tumours has yet to be identified; (b) the limitations of the present experimental models, which suggest greater caution in the interpretation of in vitro results; (c) the still unresolved question of absence of genotype-phenotype correlation. Clarification of these issues may hopefully provide new and useful tools for improving the clinical management of this disease.

  6. Phenotype/genotype correlation in a case series of Stargardt's patients identifies novel mutations in the ABCA4 gene.

    PubMed

    Gemenetzi, M; Lotery, A J

    2013-11-01

    To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.

  7. Whole exome sequencing identifies driver mutations in asymptomatic computed tomography-detected lung cancers with normal karyotype.

    PubMed

    Belloni, Elena; Veronesi, Giulia; Rotta, Luca; Volorio, Sara; Sardella, Domenico; Bernard, Loris; Pece, Salvatore; Di Fiore, Pier Paolo; Fumagalli, Caterina; Barberis, Massimo; Spaggiari, Lorenzo; Pelicci, Pier Giuseppe; Riva, Laura

    2015-04-01

    The efficacy of curative surgery for lung cancer could be largely improved by non-invasive screening programs, which can detect the disease at early stages. We previously showed that 18% of screening-identified lung cancers demonstrate a normal karyotype and, following high-density genome scanning, can be subdivided into samples with 1) numerous; 2) none; and 3) few copy number alterations. Whole exome sequencing was applied to the two normal karyotype, screening-detected lung cancers, constituting group 2, as well as normal controls. We identified mutations in both tumors, including KEAP1 (commonly mutated in lung cancers) in one, and TP53, PMS1, and MSH3 (well-characterized DNA-repair genes) in the other. The two normal karyotype screening-detected lung tumors displayed a typical lung cancer mutational profile that only next generation sequencing could reveal, which offered an additional contribution to the over-diagnosis bias concept hypothesized within lung cancer screening programs. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  9. Comparative analysis of the large truck crash causation study and naturalistic driving data.

    DOT National Transportation Integrated Search

    2016-11-01

    The aim of this study was to compare the Large Truck Crash Causation Study (LTCCS) and Naturalistic Driving : (ND) datasets to identify discrepancies and to determine the source(s) of these discrepancies. The project included a : generalized comparat...

  10. A pilot study identifying a potential plasma biomarker for determining EGFR mutations in exons 19 or 21 in lung cancer patients

    PubMed Central

    Pamungkas, Aryo D.; Medriano, Carl A.; Sim, Eunjung; Lee, Sungyong; Park, Youngja H.

    2017-01-01

    The most common type of lung cancer is non-small cell lung cancer (NSCLC), which is frequently characterized by a mutation in the epidermal growth factor receptor (EGFR). Determining the presence of an EGFR mutation in lung cancer is important, as it determines the type of treatment that a patients will receive. Therefore, the aim of the present study was to apply high-resolution metabolomics (HRM) using liquid chromatography-mass spectrometry to identify significant compounds in human plasma samples obtained from South Korean NSCLC patients, as potential biomarkers for providing early detection and diagnosis of minimally-invasive NSCLC. The metabolic differences between lung cancer patients without EGFR mutations were compared with patients harboring EGFR mutations. Univariate analysis was performed, with a false discovery rate of q=0.05, in order to identify significant metabolites between the two groups. In addition, hierarchical clustering analysis was performed to discriminate between the metabolic profiles of the two groups. Furthermore, the significant metabolites were identified and mapped using Mummichog software, in order to generate a potential metabolic network model. Using metabolome-wide association studies, metabolic alterations were identified. Linoleic acid [303.23 m/z, (M+Na)+], 5-methyl tetrahydrofolate [231.10 m/z, (M+2H)+] and N-succinyl-L-glutamate-5 semialdehyde [254.06 m/z, (M+Na)+], were observed to be elevated in patients harboring EGFR mutations, whereas tetradecanoyl carnitine [394.29 m/z, (M+Na)+] was observed to be reduced. This suggests that these compounds may be affected by the EGFR mutation. In conclusion, the present study identified four potential biomarkers in patients with EGFR mutations, using HRM combined with pathway analysis. These results may facilitate the development of novel diagnostic tools for EGFR mutation detection in patients with lung cancer. PMID:28487968

  11. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  12. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome

    PubMed Central

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; İncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strømme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI: http://dx.doi.org/10.7554/eLife.06602.001 PMID:26026149

  13. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    PubMed

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1.

  14. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands.

    PubMed

    Xu, Yan; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Xin, Wei; Wang, Panfeng; Sun, Wenmin; Huang, Li; Guo, Xiangming; Zhang, Qingjiong

    2016-08-01

    Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Summary of mutations underlying autosomal recessive congenital ichthyoses (ARCI) in Arabs with four novel mutations in ARCI-related genes from the United Arab Emirates.

    PubMed

    Bastaki, Fatma; Mohamed, Madiha; Nair, Pratibha; Saif, Fatima; Mustafa, Ethar M; Bizzari, Sami; Al-Ali, Mahmoud T; Hamzeh, Abdul Rezzak

    2017-05-01

    Clinical and molecular heterogeneity is a prominent characteristic of congenital ichthyoses, with the involvement of numerous causative loci. Mutations in these loci feature in autosomal recessive congenital ichthyoses (ARCIs) quite variably, with certain genes/mutations being more frequently uncovered in particular populations. In this study, we used whole exome sequencing as well as direct Sanger sequencing to uncover four novel mutations in ARCI-related genes, which were found in families from the United Arab Emirates. In silico tools such as CADD and SIFT Indel were used to predict the functional consequences of these mutations. The here-presented mutations occurred in three genes (ALOX12B, TGM1, ABCA12), and these are a mixture of missense and indel variants with damaging functional consequences on their encoded proteins. This study presents an overview of the mutations that were found in ARCI-related genes in Arabs and discusses molecular and clinical details pertaining to the above-mentioned Emirati cases and their novel mutations with special emphasis on the resulting protein changes. © 2017 The International Society of Dermatology.

  16. Genetic identification and molecular modeling characterization reveal a novel PROM1 mutation in Stargardt4-like macular dystrophy

    PubMed Central

    Imani, Saber; Cheng, Jingliang; Shasaltaneh, Marzieh Dehghan; Wei, Chunli; Yang, Lisha; Fu, Shangyi; Zou, Hui; Khan, Md. Asaduzzaman; Zhang, Xianqin; Chen, Hanchun; Zhang, Dianzheng; Duan, Chengxia; Lv, Hongbin; Li, Yumei; Chen, Rui; Fu, Junjiang

    2018-01-01

    Stargardt disease-4 (STGD4) is an autosomal dominant complex, genetically heterogeneous macular degeneration/dystrophy (MD) disorder. In this paper, we used targeted next generation sequencing and multiple molecular dynamics analyses to identify and characterize a disease-causing genetic variant in four generations of a Chinese family with STGD4-like MD. We found a novel heterozygous missense mutation, c.734T>C (p.L245P) in the PROM1 gene. Structurally, this mutation most likely impairs PROM1 protein stability, flexibility, and amino acid interaction network after changing the amino acid residue Leucine into Proline in the basic helix-loop-helix leucine zipper domain. Molecular dynamic simulation and principal component analysis provide compelling evidence that this PROM1 mutation contributes to disease causativeness or susceptibility variants in patients with STGD4-like MD. Thus, this finding defines new approaches in genetic characterization, accurate diagnosis, and prevention of STGD4-like MD. PMID:29416601

  17. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma

    PubMed Central

    Wong, Stephen Q.; Behren, Andreas; Mar, Victoria J.; Woods, Katherine; Li, Jason; Martin, Claire; Sheppard, Karen E.; Wolfe, Rory; Kelly, John; Cebon, Jonathan; Dobrovic, Alexander; McArthur, Grant A.

    2015-01-01

    Melanoma is often caused by mutations due to exposure to ultraviolet radiation. This study reports a recurrent somatic C > T change causing a P131L mutation in the RQCD1 (Required for Cell Differentiation1 Homolog) gene identified through whole exome sequencing of 20 metastatic melanomas. Screening in 715 additional primary melanomas revealed a prevalence of ~4%. This represents the first reported recurrent mutation in a member of the CCR4-NOT complex in cancer. Compared to tumors without the mutation, the P131L mutant positive tumors were associated with increased thickness (p = 0.02), head and neck (p = 0.009) and upper limb (p = 0.03) location, lentigo maligna melanoma subtype (p = 0.02) and BRAF V600K (p = 0.04) but not V600E or NRAS codon 61 mutations. There was no association with nodal disease (p = 0.3). Mutually exclusive mutations of other members of the CCR4-NOT complex were found in ~20% of the TCGA melanoma dataset suggesting the complex may play an important role in melanoma biology. Mutant RQCD1 was predicted to bind strongly to HLA-A0201 and HLA-Cw3 MHC1 complexes. From thirteen patients with mutant RQCD1, an anti-tumor CD8+ T cell response was observed from a single patient's peripheral blood mononuclear cell population stimulated with mutated peptide compared to wildtype indicating a neoantigen may be formed. PMID:25544760

  18. Novel POC1A mutation in primordial dwarfism reveals new insights for centriole biogenesis.

    PubMed

    Koparir, Asuman; Karatas, Omer F; Yuceturk, Betul; Yuksel, Bayram; Bayrak, Ali O; Gerdan, Omer F; Sagiroglu, Mahmut S; Gezdirici, Alper; Kirimtay, Koray; Selcuk, Ece; Karabay, Arzu; Creighton, Chad J; Yuksel, Adnan; Ozen, Mustafa

    2015-10-01

    POC1A encodes a WD repeat protein localizing to centrioles and spindle poles and is associated with short stature, onychodysplasia, facial dysmorphism and hypotrichosis (SOFT) syndrome. These main features are related to the defect in cell proliferation of chondrocytes in growth plate. In the current study, we aimed at identifying the molecular basis of two patients with primordial dwarfism (PD) in a single family through utilization of whole-exome sequencing. A novel homozygous p.T120A missense mutation was detected in POC1A in both patients, a known causative gene of SOFT syndrome, and confirmed using Sanger sequencing. To test the pathogenicity of the detected mutation, primary fibroblast cultures obtained from the patients and a control individual were used. For evaluating the global gene expression profile of cells carrying p.T120A mutation in POC1A, we performed the gene expression array and compared their expression profiles to those of control fibroblast cells. The gene expression array analysis showed that 4800 transcript probes were significantly deregulated in cells with p.T120A mutation in comparison to the control. GO term association results showed that deregulated genes are mostly involved in the extracellular matrix and cytoskeleton. Furthermore, the p.T120A missense mutation in POC1A caused the formation of abnormal mitotic spindle structure, including supernumerary centrosomes, and changes in POC1A were accompanied by alterations in another centrosome-associated WD repeat protein p80-katanin. As a result, we identified a novel mutation in POC1A of patients with PD and showed that this mutation causes the formation of multiple numbers of centrioles and multipolar spindles with abnormal chromosome arrangement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Head injury causation scenarios for belted, rear-seated children in frontal impacts.

    PubMed

    Bohman, Katarina; Arbogast, Kristy B; Bostrom, Ola

    2011-02-01

    Head injuries are the most common serious injuries sustained by children in motor vehicle crashes and are of critical importance with regard to long-term disability. There is a lack of understanding of how seat belt-restrained children sustain head injuries in frontal impacts. The aim of the study was to identify the AIS2+ head injury causation scenarios for rear-seated, belt-restrained children in frontal impacts, including the set of parameters contributing to the injury. In-depth crash investigations from two National Highway Traffic Safety Administration (NHTSA) databases, the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS; 1997-2008) and the Crash Injury Research and Engineering Network (CIREN; 1996-2009), were collected and analyzed in detail. Selection criteria were all frontal impacts with principal direction of force (PDOF) of 11, 12, and 1 o'clock involving rear-seated, three-point belt-restrained, with or without booster cushion, children from 3 to 13 years with an AIS2+ head injury. Cases were analyzed using the BioTab method of injury causation assessment in order to systematically analyze the injury causation scenario for each case. There were 27 cases meeting the inclusion criteria, 19 cases with MAIS2 head injuries and 8 cases with MAIS3+ head injuries, including 2 fatalities. Three major injury causation scenarios were identified, including head contact with seatback (10 cases), head contact with side interior (7 cases,) and no evidence of head contact (9 cases). Head injuries with seatback or side interior contact typically included a PDOF greater than 10 degree (similar to the Insurance Institute for Highway Safety [IIHS] and EuroNCAP offset frontal testing) and vehicle maneuvers. For seatback contact, the vehicle's movements contributed to occupant kinematics inboard the vehicle, causing a less than optimal restraint of the torso and/or torso roll out of the shoulder belt. For side interior contact, the PDOF and

  20. Exome Sequencing Identifies a Novel Homozygous Mutation in the Phosphate Transporter SLC34A1 in Hypophosphatemia and Nephrocalcinosis

    PubMed Central

    Rajagopal, Abbhirami; Braslavsky, Débora; Lu, James T.; Kleppe, Soledad; Clément, Florencia; Cassinelli, Hamilton; Liu, David S.; Liern, Jose Miguel; Vallejo, Graciela; Bergadá, Ignacio; Gibbs, Richard A.; Campeau, Phillipe M.

    2014-01-01

    Context: Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. Objective: The goal of this study was to identify genetic causes of the clinical findings in the two siblings. Design: Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. Patients and Other Participants: Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. Results: A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. Conclusions: The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition. PMID:25050900

  1. A novel CYP27B1 mutation causes a feline vitamin D-dependent rickets type IA.

    PubMed

    Grahn, Robert A; Ellis, Melanie R; Grahn, Jennifer C; Lyons, Leslie A

    2012-08-01

    A 12-week-old domestic cat presented at a local veterinary clinic with hypocalcemia and skeletal abnormalities suggestive of rickets. Osteomalacia (rickets) is a disease caused by impaired bone mineralization leading to an increased prevalence of fractures and deformity. Described in a variety of species, rickets is most commonly caused by vitamin D or calcium deficiencies owing to both environmental and or genetic abnormalities. Vitamin D-dependent rickets type 1A (VDDR-1A) is a result of the enzymatic pathway defect caused by mutations in the 25-hydroxyvitamin D(3)-1-alpha-hydroxylase gene [cytochrome P27 B1 (CYP27B1)]. Calcitriol, the active form of vitamin D(3), regulates calcium homeostasis, which requires sufficient dietary calcium availability and correct hormonal function for proper bone growth and maintenance. Patient calcitriol concentrations were low while calcidiol levels were normal suggestive of VDDR-1A. The entire DNA coding sequencing of CYP27B1 was evaluated. The affected cat was wild type for previously identified VDDR-1A causative mutations. However, six novel mutations were identified, one of which was a nonsense mutation at G637T in exon 4. The exon 4 G637T nonsense mutation results in a premature protein truncation, changing a glutamic acid to a stop codon, E213X, likely causing the clinical presentation of rickets. The previously documented genetic mutation resulting in feline VDDR-1A rickets, as well as the case presented in this research, result from novel exon 4 CYP27B1 mutations, thus exon 4 should be the initial focus of future sequencing efforts.

  2. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer

    PubMed Central

    Leder, Kevin; Riester, Markus; Iwasa, Yoh; Lengauer, Christoph; Michor, Franziska

    2015-01-01

    The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such “driver” mutations from innocuous “passenger” events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery. PMID:26379039

  3. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease.

    PubMed

    Okou, David T; Mondal, Kajari; Faubion, William A; Kobrynski, Lisa J; Denson, Lee A; Mulle, Jennifer G; Ramachandran, Dhanya; Xiong, Yuning; Svingen, Phyllis; Patel, Viren; Bose, Promita; Waters, Jon P; Prahalad, Sampath; Cutler, David J; Zwick, Michael E; Kugathasan, Subra

    2014-05-01

    Inflammatory bowel disease (IBD) is heritable, but a total of 163 variants commonly implicated in IBD pathogenesis account for only 25% of the heritability. Rare, highly penetrant genetic variants may also explain mendelian forms of IBD and some of the missing heritability. To test the hypothesis that rare loss-of-function mutations can be causative, we performed whole exome sequencing (WES) on 5 members of a 2-generation family of European ancestry presenting with an early-onset and atypical form of IBD. WES was performed for all of the 5 family members; the mother and 3 male offspring were affected, whereas the father was unaffected. Mapping, annotation, and filtering criteria were used to reduce candidate variants. For functional testing we performed forkhead box P3 (FOXP3) staining and a T-cell suppression assay. We identified a novel missense variant in exon 6 of the X-linked FOXP3 gene. The c.694A>C substitution in FOXP3 results in a cysteine-to-glycine change at the protein position 232 that is completely conserved among all vertebrates. This variant (heterozygous in the mother and hemizygous in all 3 affected sons) did not impair FOXP3 protein expression, but significantly reduced the ability of the host's T regulatory cells to suppress an inappropriate autoimmune response. The variant results in a milder immune dysregulation, polyendocrinopathy, enteropathy, and X-linked phenotype with early-onset IBD. Our study illustrates the successful application of WES for making a definitive molecular diagnosis in a case of multiply affected families, with atypical IBD-like phenotype. Our results also have important implications for disease biology and disease-directed therapeutic development.

  4. Hierarchy, causation and explanation: ubiquity, locality and pluralism

    PubMed Central

    Love, Alan C.

    2012-01-01

    The ubiquity of top-down causal explanations within and across the sciences is prima facie evidence for the existence of top-down causation. Much debate has been focused on whether top-down causation is coherent or in conflict with reductionism. Less attention has been given to the question of whether these representations of hierarchical relations pick out a single, common hierarchy. A negative answer to this question undermines a commonplace view that the world is divided into stratified ‘levels’ of organization and suggests that attributions of causal responsibility in different hierarchical representations may not have a meaningful basis for comparison. Representations used in top-down and bottom-up explanations are primarily ‘local’ and tied to distinct domains of science, illustrated here by protein structure and folding. This locality suggests that no single metaphysical account of hierarchy for causal relations to obtain within emerges from the epistemology of scientific explanation. Instead, a pluralist perspective is recommended—many different kinds of top-down causation (explanation) can exist alongside many different kinds of bottom-up causation (explanation). Pluralism makes plausible why different senses of top-down causation can be coherent and not in conflict with reductionism, thereby illustrating a productive interface between philosophical analysis and scientific inquiry. PMID:23386966

  5. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift

    PubMed Central

    Cingolani, Pablo; Patel, Viral M.; Coon, Melissa; Nguyen, Tung; Land, Susan J.; Ruden, Douglas M.; Lu, Xiangyi

    2012-01-01

    This paper describes a new program SnpSift for filtering differential DNA sequence variants between two or more experimental genomes after genotoxic chemical exposure. Here, we illustrate how SnpSift can be used to identify candidate phenotype-relevant variants including single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertions, and deletions (InDels) in mutant strains isolated from genome-wide chemical mutagenesis of Drosophila melanogaster. First, the genomes of two independently isolated mutant fly strains that are allelic for a novel recessive male-sterile locus generated by genotoxic chemical exposure were sequenced using the Illumina next-generation DNA sequencer to obtain 20- to 29-fold coverage of the euchromatic sequences. The sequencing reads were processed and variants were called using standard bioinformatic tools. Next, SnpEff was used to annotate all sequence variants and their potential mutational effects on associated genes. Then, SnpSift was used to filter and select differential variants that potentially disrupt a common gene in the two allelic mutant strains. The potential causative DNA lesions were partially validated by capillary sequencing of polymerase chain reaction-amplified DNA in the genetic interval as defined by meiotic mapping and deletions that remove defined regions of the chromosome. Of the five candidate genes located in the genetic interval, the Pka-like gene CG12069 was found to carry a separate pre-mature stop codon mutation in each of the two allelic mutants whereas the other four candidate genes within the interval have wild-type sequences. The Pka-like gene is therefore a strong candidate gene for the male-sterile locus. These results demonstrate that combining SnpEff and SnpSift can expedite the identification of candidate phenotype-causative mutations in chemically mutagenized Drosophila strains. This technique can also be used to characterize the variety of mutations generated by genotoxic chemicals

  6. DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss.

    PubMed

    Hildebrand, Michael S; Morín, Matías; Meyer, Nicole C; Mayo, Fernando; Modamio-Hoybjor, Silvia; Mencía, Angeles; Olavarrieta, Leticia; Morales-Angulo, Carmelo; Nishimura, Carla J; Workman, Heather; DeLuca, Adam P; del Castillo, Ignacio; Taylor, Kyle R; Tompkins, Bruce; Goodman, Corey W; Schrauwen, Isabelle; Wesemael, Maarten Van; Lachlan, K; Shearer, A Eliot; Braun, Terry A; Huygen, Patrick L M; Kremer, Hannie; Van Camp, Guy; Moreno, Felipe; Casavant, Thomas L; Smith, Richard J H; Moreno-Pelayo, Miguel A

    2011-07-01

    The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL. © 2011 Wiley-Liss, Inc.

  7. Novel genes and mutations in patients affected by recurrent pregnancy loss.

    PubMed

    Quintero-Ronderos, Paula; Mercier, Eric; Fukuda, Michiko; González, Ronald; Suárez, Carlos Fernando; Patarroyo, Manuel Alfonso; Vaiman, Daniel; Gris, Jean-Christophe; Laissue, Paul

    2017-01-01

    Recurrent pregnancy loss is a frequently occurring human infertility-related disease affecting ~1% of women. It has been estimated that the cause remains unexplained in >50% cases which strongly suggests that genetic factors may contribute towards the phenotype. Concerning its molecular aetiology numerous studies have had limited success in identifying the disease's genetic causes. This might have been due to the fact that hundreds of genes are involved in each physiological step necessary for guaranteeing reproductive success in mammals. In such scenario, next generation sequencing provides a potentially interesting tool for research into recurrent pregnancy loss causative mutations. The present study involved whole-exome sequencing and an innovative bioinformatics analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss. We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of patients). The affected genes, which were enriched by potentially deleterious sequence variants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy biology. Using a quantum chemical approach method we established that mutations in MMP-10 and FGA proteins led to substantial energetic modifications suggesting an impact on their functions and/or stability. The next generation sequencing and bioinformatics approaches presented here represent an efficient way to find mutations, having potentially moderate/strong functional effects, associated with recurrent pregnancy loss aetiology. We consider that some of these variants (and genes) represent probable future biomarkers for recurrent pregnancy loss.

  8. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    PubMed

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  9. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    PubMed

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  10. The role of mutation in the new cancer paradigm

    PubMed Central

    Prehn, Richmond T

    2005-01-01

    The almost universal belief that cancer is caused by mutation may gradually be giving way to the belief that cancer begins as a cellular adaptation that involves the local epigenetic silencing of various genes. In my own interpretation of the new epigenetic paradigm, the genes epigenetically suppressed are genes that normally serve in post-embryonic life to suppress and keep suppressed those other genes upon which embryonic development depends. Those other genes, if not silenced or suppressed in the post-embryonic animal, become, I suggest, the oncogenes that are the basis of neoplasia. Mutations that occur in silenced genes supposedly go unrepaired and are, therefore, postulated to accumulate, but such mutations probably play little or no causative role in neoplasia because they occur in already epigenetically silenced genes. These mutations probably often serve to make the silencing, and therefore the cancer, epigenetically irreversible. PMID:15854226

  11. A family of oculofaciocardiodental syndrome (OFCD) with a novel BCOR mutation and genomic rearrangements involving NHS.

    PubMed

    Kondo, Yukiko; Saitsu, Hirotomo; Miyamoto, Toshinobu; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Ryoo, Na-Kyung; Kim, Jeong Hun; Yu, Young Suk; Matsumoto, Naomichi

    2012-03-01

    Oculofaciocardiodental syndrome (OFCD) is an X-linked dominant disorder associated with male lethality, presenting with congenital cataract, dysmorphic face, dental abnormalities and septal heart defects. Mutations in BCOR (encoding BCL-6-interacting corepressor) cause OFCD. Here, we report on a Korean family with common features of OFCD including bilateral 2nd-3rd toe syndactyly and septal heart defects in three affected females (mother and two daughters). Through the mutation screening and copy number analysis using genomic microarray, we identified a novel heterozygous mutation, c.888delG, in the BCOR gene and two interstitial microduplications at Xp22.2-22.13 and Xp21.3 in all the three affected females. The BCOR mutation may lead to a premature stop codon (p.N297IfsX80). The duplication at Xp22.2-22.13 involved the NHS gene causative for Nance-Horan syndrome, which is an X-linked disorder showing similar clinical features with OFCD in affected males, and in carrier females with milder presentation. Considering the presence of bilateral 2nd-3rd toe syndactyly and septal heart defects, which is unique to OFCD, the mutation in BCOR is likely to be the major determinant for the phenotypes in this family.

  12. Autoimmune Disease in a DFNA6/14/38 Family carrying a Novel Missense Mutation in WFS1

    PubMed Central

    Hildebrand, Michael S.; Sorensen, Jessica L.; Jensen, Maren; Kimberling, William J.; Smith, Richard J.H.

    2008-01-01

    Most familial cases of autosomal dominant low frequency sensorineural hearing loss (LFSNHL) are attributable to mutations in the Wolframin syndrome 1 (WFS1) gene at the DFNA6/14/38 locus. WFS1 mutations at this locus were first described in 2001 in six families segregating LFSNHL that was non-progressive below 2000 Hz; the causative mutations all clustered in the C-terminal domain of the wolframin protein. Mutations in WFS1 also cause Wolfram syndrome (WS), an autosomal recessive neurodegenerative disorder defined by diabetes mellitus, optic atrophy and often deafness, while numerous single nucleotide polymorphisms (SNPs) in WFS1 have been associated with increased risk for diabetes mellitus, psychiatric illnesses and Parkinson’s disease. This study was conducted in an American family segregating autosomal dominant LFSNHL. Two hearing impaired family members also had autoimmune diseases - Graves disease (GD) and Crohn’s disease (CD). Based on the low frequency audioprofile, mutation screening of WFS1 was completed and a novel missense mutation (c.2576G→A) that results in an arginine-to-glutamine substitution (p.R859Q) was identified in the C-terminal domain of the wolframin protein where most LFSNHL-causing mutations cluster. The family member with GD also carried polymorphisms in WFS1 that have been associated with other autoimmune diseases. PMID:18688868

  13. Use of causative variants and SNP weighting in a single-step GBLUP context

    USDA-ARS?s Scientific Manuscript database

    Much effort has been recently put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, aiming genomic prediction. Among the genomic methods available, single-step GBLUP (ssGBLUP) became the choice because of its simplicity and potentially higher accuracy. When QTN are ...

  14. Non-coding cancer driver candidates identified with a sample- and position-specific model of the somatic mutation rate

    PubMed Central

    Juul, Malene; Bertl, Johanna; Guo, Qianyun; Nielsen, Morten Muhlig; Świtnicki, Michał; Hornshøj, Henrik; Madsen, Tobias; Hobolth, Asger; Pedersen, Jakob Skou

    2017-01-01

    Non-coding mutations may drive cancer development. Statistical detection of non-coding driver regions is challenged by a varying mutation rate and uncertainty of functional impact. Here, we develop a statistically founded non-coding driver-detection method, ncdDetect, which includes sample-specific mutational signatures, long-range mutation rate variation, and position-specific impact measures. Using ncdDetect, we screened non-coding regulatory regions of protein-coding genes across a pan-cancer set of whole-genomes (n = 505), which top-ranked known drivers and identified new candidates. For individual candidates, presence of non-coding mutations associates with altered expression or decreased patient survival across an independent pan-cancer sample set (n = 5454). This includes an antigen-presenting gene (CD1A), where 5’UTR mutations correlate significantly with decreased survival in melanoma. Additionally, mutations in a base-excision-repair gene (SMUG1) correlate with a C-to-T mutational-signature. Overall, we find that a rich model of mutational heterogeneity facilitates non-coding driver identification and integrative analysis points to candidates of potential clinical relevance. DOI: http://dx.doi.org/10.7554/eLife.21778.001 PMID:28362259

  15. Novel Mutation in the ATP-Binding Cassette Transporter A3 (ABCA3) Encoding Gene Causes Respiratory Distress Syndrome in A Term Newborn in Southwest Iran

    PubMed Central

    Rezaei, Farideh; Shafiei, Mohammad; Shariati, Gholamreza; Dehdashtian, Ali; Mohebbi, Maryam; Galehdari, Hamid

    2016-01-01

    Introduction ABCA3 glycoprotein belongs to the ATP-binding cassette (ABC) superfamily of transporters, which utilize the energy derived from hydrolysis of ATP for the translocation of a wide variety of substrates across the plasma membrane. Mutations in the ABCA3 gene are knowingly causative for fatal surfactant deficiency, particularly respiratory distress syndrome (RDS) in term babies. Case Presentation In this study, Sanger sequencing of the whole ABCA3 gene (NCBI NM_001089) was performed in a neonatal boy with severe RDS. A homozygous mutation has been identified in the patient. Parents were heterozygous for the same missense mutation GGA > AGA at position 202 in exon 6 of the ABCA3 gene (c.604G > A; p.G202R). Furthermore, 70 normal individuals have been analyzed for the mentioned change with negative results. Conclusions Regarding Human Genome Mutation Database (HGMD) and other literature recherche, the detected change is a novel mutation and has not been reported before. Bioinformatics mutation predicting tools prefer it as pathogenic. PMID:27437095

  16. Exome sequencing identifies CTSK mutations in patients originally diagnosed as intermediate osteopetrosis.

    PubMed

    Pangrazio, Alessandra; Puddu, Alessandro; Oppo, Manuela; Valentini, Maria; Zammataro, Luca; Vellodi, Ashok; Gener, Blanca; Llano-Rivas, Isabel; Raza, Jamal; Atta, Irum; Vezzoni, Paolo; Superti-Furga, Andrea; Villa, Anna; Sobacchi, Cristina

    2014-02-01

    Autosomal Recessive Osteopetrosis is a genetic disorder characterized by increased bone density due to lack of resorption by the osteoclasts. Genetic studies have widely unraveled the molecular basis of the most severe forms, while cases of intermediate severity are more difficult to characterize, probably because of a large heterogeneity. Here, we describe the use of exome sequencing in the molecular diagnosis of 2 siblings initially thought to be affected by "intermediate osteopetrosis", which identified a homozygous mutation in the CTSK gene. Prompted by this finding, we tested by Sanger sequencing 25 additional patients addressed to us for recessive osteopetrosis and found CTSK mutations in 4 of them. In retrospect, their clinical and radiographic features were found to be compatible with, but not typical for, Pycnodysostosis. We sought to identify modifier genes that might have played a role in the clinical manifestation of the disease in these patients, but our results were not informative. In conclusion, we underline the difficulties of differential diagnosis in some patients whose clinical appearance does not fit the classical malignant or benign picture and recommend that CTSK gene be included in the molecular diagnosis of high bone density conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Analysis of SOX10 mutations identified in Waardenburg-Hirschsprung patients: Differential effects on target gene regulation.

    PubMed

    Chan, Kwok Keung; Wong, Corinne Kung Yen; Lui, Vincent Chi Hang; Tam, Paul Kwong Hang; Sham, Mai Har

    2003-10-15

    SOX10 is a member of the SOX gene family related by homology to the high-mobility group (HMG) box region of the testis-determining gene SRY. Mutations of the transcription factor gene SOX10 lead to Waardenburg-Hirschsprung syndrome (Waardenburg-Shah syndrome, WS4) in humans. A number of SOX10 mutations have been identified in WS4 patients who suffer from different extents of intestinal aganglionosis, pigmentation, and hearing abnormalities. Some patients also exhibit signs of myelination deficiency in the central and peripheral nervous systems. Although the molecular bases for the wide range of symptoms displayed by the patients are still not clearly understood, a few target genes for SOX10 have been identified. We have analyzed the impact of six different SOX10 mutations on the activation of SOX10 target genes by yeast one-hybrid and mammalian cell transfection assays. To investigate the transactivation activities of the mutant proteins, three different SOX target binding sites were introduced into luciferase reporter gene constructs and examined in our series of transfection assays: consensus HMG domain protein binding sites; SOX10 binding sites identified in the RET promoter; and Sox10 binding sites identified in the P0 promoter. We found that the same mutation could have different transactivation activities when tested with different target binding sites and in different cell lines. The differential transactivation activities of the SOX10 mutants appeared to correlate with the intestinal and/or neurological symptoms presented in the patients. Among the six mutant SOX10 proteins tested, much reduced transactivation activities were observed when tested on the SOX10 binding sites from the RET promoter. Of the two similar mutations X467K and 1400del12, only the 1400del12 mutant protein exhibited an increase of transactivation through the P0 promoter. While the lack of normal SOX10 mediated activation of RET transcription may lead to intestinal aganglionosis

  18. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia.

    PubMed

    Shimada, T; Mizutani, S; Muto, T; Yoneya, T; Hino, R; Takeda, S; Takeuchi, Y; Fujita, T; Fukumoto, S; Yamashita, T

    2001-05-22

    Tumor-induced osteomalacia (TIO) is one of the paraneoplastic diseases characterized by hypophosphatemia caused by renal phosphate wasting. Because removal of responsible tumors normalizes phosphate metabolism, an unidentified humoral phosphaturic factor is believed to be responsible for this syndrome. To identify the causative factor of TIO, we obtained cDNA clones that were abundantly expressed only in a tumor causing TIO and constructed tumor-specific cDNA contigs. Based on the sequence of one major contig, we cloned 2,270-bp cDNA, which turned out to encode fibroblast growth factor 23 (FGF23). Administration of recombinant FGF23 decreased serum phosphate in mice within 12 h. When Chinese hamster ovary cells stably expressing FGF23 were s.c. implanted into nude mice, hypophosphatemia with increased renal phosphate clearance was observed. In addition, a high level of serum alkaline phosphatase, low 1,25-dihydroxyvitamin D, deformity of bone, and impairment of body weight gain became evident. Histological examination showed marked increase of osteoid and widening of growth plate. Thus, continuous production of FGF23 reproduced clinical, biochemical, and histological features of TIO in vivo. Analyses for recombinant FGF23 products produced by Chinese hamster ovary cells indicated proteolytic cleavage of FGF23 at the RXXR motif. Recent genetic study indicates that missense mutations in this RXXR motif of FGF23 are responsible for autosomal dominant hypophosphatemic rickets, another hypophosphatemic disease with similar features to TIO. We conclude that overproduction of FGF23 causes TIO, whereas mutations in the FGF23 gene result in autosomal dominant hypophosphatemic rickets possibly by preventing proteolytic cleavage and enhancing biological activity of FGF23.

  19. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia

    PubMed Central

    Shimada, Takashi; Mizutani, Satoru; Muto, Takanori; Yoneya, Takashi; Hino, Rieko; Takeda, Shu; Takeuchi, Yasuhiro; Fujita, Toshiro; Fukumoto, Seiji; Yamashita, Takeyoshi

    2001-01-01

    Tumor-induced osteomalacia (TIO) is one of the paraneoplastic diseases characterized by hypophosphatemia caused by renal phosphate wasting. Because removal of responsible tumors normalizes phosphate metabolism, an unidentified humoral phosphaturic factor is believed to be responsible for this syndrome. To identify the causative factor of TIO, we obtained cDNA clones that were abundantly expressed only in a tumor causing TIO and constructed tumor-specific cDNA contigs. Based on the sequence of one major contig, we cloned 2,270-bp cDNA, which turned out to encode fibroblast growth factor 23 (FGF23). Administration of recombinant FGF23 decreased serum phosphate in mice within 12 h. When Chinese hamster ovary cells stably expressing FGF23 were s.c. implanted into nude mice, hypophosphatemia with increased renal phosphate clearance was observed. In addition, a high level of serum alkaline phosphatase, low 1,25-dihydroxyvitamin D, deformity of bone, and impairment of body weight gain became evident. Histological examination showed marked increase of osteoid and widening of growth plate. Thus, continuous production of FGF23 reproduced clinical, biochemical, and histological features of TIO in vivo. Analyses for recombinant FGF23 products produced by Chinese hamster ovary cells indicated proteolytic cleavage of FGF23 at the RXXR motif. Recent genetic study indicates that missense mutations in this RXXR motif of FGF23 are responsible for autosomal dominant hypophosphatemic rickets, another hypophosphatemic disease with similar features to TIO. We conclude that overproduction of FGF23 causes TIO, whereas mutations in the FGF23 gene result in autosomal dominant hypophosphatemic rickets possibly by preventing proteolytic cleavage and enhancing biological activity of FGF23. PMID:11344269

  20. Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants

    PubMed Central

    Houlleberghs, Hellen; Dekker, Marleen; Lantermans, Hildo; Kleinendorst, Roos; Dubbink, Hendrikus Jan; Hofstra, Robert M. W.; Verhoef, Senno; te Riele, Hein

    2016-01-01

    Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that “oligo targeting” can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors. PMID:26951660

  1. Mutation analysis for DJ-1 in sporadic and familial parkinsonism: screening strategy in parkinsonism.

    PubMed

    Tomiyama, Hiroyuki; Li, Yuanzhe; Yoshino, Hiroyo; Mizuno, Yoshikuni; Kubo, Shin-Ichiro; Toda, Tatsushi; Hattori, Nobutaka

    2009-05-22

    DJ-1 mutations cause autosomal recessive parkinsonism (ARP). Although some reports of DJ-1 mutations have been published, there is lack of information on the prevalence of these mutations in large-scale studies of both familial and sporadic parkinsonism. In this genetic screening study, we analyzed the distribution and frequency of DJ-1 mutations by direct nucleotide sequencing of coding exons and exon-intron boundaries of DJ-1, in 386 parkin-negative parkinsonism patients (371 index cases: 67 probands of autosomal recessive parkinsonism families, 90 probands of autosomal dominant parkinsonism families, 201 patients with sporadic parkinsonism, and 13 with unknown family histories) from 12 countries (Japan 283, China 27, Taiwan 22, Korea 22, Israel 16, Turkey 5, Philippines 2, Bulgaria 2, Greece 2, Tunisia 1, USA 2, Ukraine 1, unknown 1). None had causative mutation in DJ-1, suggesting DJ-1 mutation is very rare among patients with familial and sporadic parkinsonism from Asian countries and those with other ethnic background. This is in contrast to the higher frequencies and worldwide distribution of parkin- and PINK1-related parkinsonism in ARP and sporadic parkinsonism. Thus, after obtaining clinical information, screening for mutations in (1) parkin, (2) PINK1, (3) DJ-1, (4) ATP13A2 should be conducted in that order, in ARP and sporadic parkinsonism, based on their reported frequencies. In addition, haplotype analysis should be employed to check for homozygosity of 1p36, which harbors a cluster of causative genes for ARP such as DJ-1, PINK1 and ATP13A2 in ARP and sporadic parkinsonism, especially in parkinsonism with consanguinity.

  2. A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease

    PubMed Central

    An, Seong Soo; Park, Sun Ah; Bagyinszky, Eva; Bae, Sun Oh; Kim, Yoon-Jeong; Im, Ji Young; Park, Kyung Won; Park, Kee Hyung; Kim, Eun-Joo; Jeong, Jee Hyang; Kim, Jong Hun; Han, Hyun Jeong; Choi, Seong Hye; Kim, SangYun

    2016-01-01

    Early-onset Alzheimer’s disease (EOAD) has distinct clinical characteristics in comparison to late-onset Alzheimer’s disease (LOAD). The genetic contribution is suggested to be more potent in EOAD. However, the frequency of causative mutations in EOAD could be variable depending on studies. Moreover, no mutation screening study has been performed yet employing large population in Korea. Previously, we reported that the rate of family history of dementia in EOAD patients was 18.7% in a nationwide hospital-based cohort study, the Clinical Research Center for Dementia of South Korea (CREDOS) study. This rate is much lower than in other countries and is even comparable to the frequency of LOAD patients in our country. To understand the genetic characteristics of EOAD in Korea, we screened the common Alzheimer’s disease (AD) mutations in the consecutive EOAD subjects from the CREDOS study from April 2012 to February 2014. We checked the sequence of APP (exons 16–17), PSEN1 (exons 3–12), and PSEN2 (exons 3–12) genes. We identified different causative or probable pathogenic AD mutations, PSEN1 T116I, PSEN1 L226F, and PSEN2 V214L, employing 24 EOAD subjects with a family history and 80 without a family history of dementia. PSEN1 T116I case demonstrated autosomal dominant trait of inheritance, with at least 11 affected individuals over 2 generations. However, there was no family history of dementia within first-degree relation in PSEN1 L226F and PSEN2 V214L cases. Approximately, 55.7% of the EOAD subjects had APOE ε4 allele, while none of the mutation-carrying subjects had the allele. The frequency of genetic mutation in this study is lower compared to the studies from other countries. The study design that was based on nationwide cohort, which minimizes selection bias, is thought to be one of the contributors to the lower frequency of genetic mutation. However, the possibility of the greater likeliness of earlier onset of sporadic AD in Korea cannot be

  3. Amplicon Resequencing Identified Parental Mosaicism for Approximately 10% of “de novo” SCN1A Mutations in Children with Dravet Syndrome

    PubMed Central

    Xu, Xiaojing; Yang, Xiaoxu; Wu, Qixi; Liu, Aijie; Yang, Xiaoling; Ye, Adam Yongxin; Huang, August Yue; Li, Jiarui; Wang, Meng; Yu, Zhe; Wang, Sheng; Zhang, Zhichao; Wu, Xiru

    2015-01-01

    ABSTRACT The majority of children with Dravet syndrome (DS) are caused by de novo SCN1A mutations. To investigate the origin of the mutations, we developed and applied a new method that combined deep amplicon resequencing with a Bayesian model to detect and quantify allelic fractions with improved sensitivity. Of 174 SCN1A mutations in DS probands which were considered “de novo” by Sanger sequencing, we identified 15 cases (8.6%) of parental mosaicism. We identified another five cases of parental mosaicism that were also detectable by Sanger sequencing. Fraction of mutant alleles in the 20 cases of parental mosaicism ranged from 1.1% to 32.6%. Thirteen (65% of 20) mutations originated paternally and seven (35% of 20) maternally. Twelve (60% of 20) mosaic parents did not have any epileptic symptoms. Their mutant allelic fractions were significantly lower than those in mosaic parents with epileptic symptoms (P = 0.016). We identified mosaicism with varied allelic fractions in blood, saliva, urine, hair follicle, oral epithelium, and semen, demonstrating that postzygotic mutations could affect multiple somatic cells as well as germ cells. Our results suggest that more sensitive tools for detecting low‐level mosaicism in parents of families with seemingly “de novo” mutations will allow for better informed genetic counseling. PMID:26096185

  4. Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies.

    PubMed

    Dohrn, Maike F; Glöckle, Nicola; Mulahasanovic, Lejla; Heller, Corina; Mohr, Julia; Bauer, Christine; Riesch, Erik; Becker, Andrea; Battke, Florian; Hörtnagel, Konstanze; Hornemann, Thorsten; Suriyanarayanan, Saranya; Blankenburg, Markus; Schulz, Jörg B; Claeys, Kristl G; Gess, Burkhard; Katona, Istvan; Ferbert, Andreas; Vittore, Debora; Grimm, Alexander; Wolking, Stefan; Schöls, Ludger; Lerche, Holger; Korenke, G Christoph; Fischer, Dirk; Schrank, Bertold; Kotzaeridou, Urania; Kurlemann, Gerhard; Dräger, Bianca; Schirmacher, Anja; Young, Peter; Schlotter-Weigel, Beate; Biskup, Saskia

    2017-12-01

    Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot-Marie-Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X-linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty-four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time- and cost-effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations. © 2017 International Society for Neurochemistry.

  5. Novel Mutations Causing C5 Deficiency in Three North-African Families.

    PubMed

    Colobran, Roger; Franco-Jarava, Clara; Martín-Nalda, Andrea; Baena, Neus; Gabau, Elisabeth; Padilla, Natàlia; de la Cruz, Xavier; Pujol-Borrell, Ricardo; Comas, David; Soler-Palacín, Pere; Hernández-González, Manuel

    2016-05-01

    The complement system plays a central role in defense to encapsulated bacteria through opsonization and membrane attack complex (MAC) dependent lysis. The three activation pathways (classical, lectin, and alternative) converge in the cleavage of C5, which initiates MAC formation and target lysis. C5 deficiency is associated to recurrent infections by Neisseria spp. In the present study, complement deficiency was suspected in three families of North-African origin after one episode of invasive meningitis due to a non-groupable and two uncommon Meningococcal serotypes (E29, Y). Activity of alternative and classical pathways of complement were markedly reduced and the measurement of terminal complement components revealed total C5 absence. C5 gene analysis revealed two novel mutations as causative of the deficiency: Family A propositus carried a homozygous deletion of two adenines in the exon 21 of C5 gene, resulting in a frameshift and a truncated protein (c.2607_2608del/p.Ser870ProfsX3 mutation). Families B and C probands carried the same homozygous deletion of three consecutive nucleotides (CAA) in exon 9 of the C5 gene, leading to the deletion of asparagine 320 (c.960_962del/p.Asn320del mutation). Family studies confirmed an autosomal recessive inheritance pattern. Although sharing the same geographical origin, families B and C were unrelated. This prompted us to investigate this mutation prevalence in a cohort of 768 North-African healthy individuals. We identified one heterozygous carrier of the p.Asn320del mutation (allelic frequency = 0.065 %), indicating that this mutation is present at low frequency in North-African population.

  6. A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis

    PubMed Central

    Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun

    2014-01-01

    Purpose: Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. Methods: We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. Results: We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Conclusion: Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis. PMID:24763291

  7. A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis.

    PubMed

    Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun

    2014-10-01

    Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis.Genet Med 16 10, 787-792.

  8. Identifying uniformly mutated segments within repeats.

    PubMed

    Sahinalp, S Cenk; Eichler, Evan; Goldberg, Paul; Berenbrink, Petra; Friedetzky, Tom; Ergun, Funda

    2004-12-01

    Given a long string of characters from a constant size alphabet we present an algorithm to determine whether its characters have been generated by a single i.i.d. random source. More specifically, consider all possible n-coin models for generating a binary string S, where each bit of S is generated via an independent toss of one of the n coins in the model. The choice of which coin to toss is decided by a random walk on the set of coins where the probability of a coin change is much lower than the probability of using the same coin repeatedly. We present a procedure to evaluate the likelihood of a n-coin model for given S, subject a uniform prior distribution over the parameters of the model (that represent mutation rates and probabilities of copying events). In the absence of detailed prior knowledge of these parameters, the algorithm can be used to determine whether the a posteriori probability for n=1 is higher than for any other n>1. Our algorithm runs in time O(l4logl), where l is the length of S, through a dynamic programming approach which exploits the assumed convexity of the a posteriori probability for n. Our test can be used in the analysis of long alignments between pairs of genomic sequences in a number of ways. For example, functional regions in genome sequences exhibit much lower mutation rates than non-functional regions. Because our test provides means for determining variations in the mutation rate, it may be used to distinguish functional regions from non-functional ones. Another application is in determining whether two highly similar, thus evolutionarily related, genome segments are the result of a single copy event or of a complex series of copy events. This is particularly an issue in evolutionary studies of genome regions rich with repeat segments (especially tandemly repeated segments).

  9. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.

    PubMed

    Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi

    2015-03-30

    Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Next-generation sequencing identifies three novel missense variants in ILDR1 and MYO6 genes in an Iranian family with hearing loss with review of the literature.

    PubMed

    Talebi, Farah; Mardasi, Farideh Ghanbari; Asl, Javad Mohammadi; Sayahi, Masoomeh

    2017-12-01

    Hearing impairment is the most common sensorineural disorder and is genetically heterogeneous. Identification of the pathogenic mutations underlying hearing impairment is difficult, since causative mutations in 127 different genes have so far been reported. In this study, we performed Next-generation sequencing (NGS) in 2 individuals from a consanguineous family with hearing loss. Three novel mutations in known deafness genes were identified in the family; MYO6-p.R928C and -p.D1223N in heterozygous state and ILDR1-p.Y143C in homozygous state. Sanger sequencing confirmed co-segregation of the three mutations with deafness in the family. The identified mutation in ILDR1 gene is located in the immunoglobulin-type domain of the ILDR1 protein and the detected mutations in MY06 are located in the tail domain of the MYO6 protein. The mutations are predicted to be pathogenic by SIFT, PolyPhen and Mutation Taster. Our results suggest that either the homozygous ILDR1-p.Y143C mutation might be the pathogenic variant for ARNSHL or heterozygous MYO6- p.R928C, -p.D1223N might be involved in these patient's disorder due to compound heterozygousity. To our knowledge, this is the first ILDR1 and MYO6 mutations recognized in the southwest Iran. Our data expands the spectrum of mutations in ILDR1 and MYO6 genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Solving the mystery of human sleep schedules one mutation at a time.

    PubMed

    Hallows, William C; Ptáček, Louis J; Fu, Ying-Hui

    2013-01-01

    Sleep behavior remains one of the most enigmatic areas of life. The unanswered questions range from "why do we sleep?" to "how we can improve sleep in today's society?" Identification of mutations responsible for altered circadian regulation of human sleep lead to unique opportunities for probing these territories. In this review, we summarize causative circadian mutations found from familial genetic studies to date. We also describe how these mutations mechanistically affect circadian function and lead to altered sleep behaviors, including shifted or shortening of sleep patterns. In addition, we discuss how the investigation of mutations can not only expand our understanding of the molecular mechanisms regulating the circadian clock and sleep duration, but also bridge the pathways between clock/sleep and other human physiological conditions and ailments such as metabolic regulation and migraine headaches.

  13. Assessment of clinical analytical sensitivity and specificity of next-generation sequencing for detection of simple and complex mutations.

    PubMed

    Chin, Ephrem L H; da Silva, Cristina; Hegde, Madhuri

    2013-02-19

    Detecting mutations in disease genes by full gene sequence analysis is common in clinical diagnostic laboratories. Sanger dideoxy terminator sequencing allows for rapid development and implementation of sequencing assays in the clinical laboratory, but it has limited throughput, and due to cost constraints, only allows analysis of one or at most a few genes in a patient. Next-generation sequencing (NGS), on the other hand, has evolved rapidly, although to date it has mainly been used for large-scale genome sequencing projects and is beginning to be used in the clinical diagnostic testing. One advantage of NGS is that many genes can be analyzed easily at the same time, allowing for mutation detection when there are many possible causative genes for a specific phenotype. In addition, regions of a gene typically not tested for mutations, like deep intronic and promoter mutations, can also be detected. Here we use 20 previously characterized Sanger-sequenced positive controls in disease-causing genes to demonstrate the utility of NGS in a clinical setting using standard PCR based amplification to assess the analytical sensitivity and specificity of the technology for detecting all previously characterized changes (mutations and benign SNPs). The positive controls chosen for validation range from simple substitution mutations to complex deletion and insertion mutations occurring in autosomal dominant and recessive disorders. The NGS data was 100% concordant with the Sanger sequencing data identifying all 119 previously identified changes in the 20 samples. We have demonstrated that NGS technology is ready to be deployed in clinical laboratories. However, NGS and associated technologies are evolving, and clinical laboratories will need to invest significantly in staff and infrastructure to build the necessary foundation for success.

  14. Identification of Novel Compound Mutations in PLA2G6-Associated Neurodegeneration Patient with Characteristic MRI Imaging.

    PubMed

    Guo, Sen; Yang, Liu; Liu, Huijie; Chen, Wei; Li, Jinchen; Yu, Ping; Sun, Zhong Sheng; Chen, Xiang; Du, Jie; Cai, Tao

    2017-08-01

    Neurodegeneration with brain iron accumulation comprises a heterogeneous group of disorders characterized clinically by progressive motor dysfunction. Accurate identification of de novo and rare inherited mutations is important for determining causative genes of undiagnosed neurological diseases. In the present study, we report a unique case with cerebellar ataxia symptoms and social communication difficulties in an intermarriage family. MRI showed a marked cerebellar atrophy and the "eye-of-the-tiger"-like sign in the medial globus pallidus. Potential genetic defects were screened by whole-exome sequencing (WES) for the patient and four additional family members. A previously undescribed de novo missense mutation (c.1634A>G, p.K545R) in the exon 12 of the PLA2G6 gene was identified. A second rare variant c.1077G>A at the end of exon 7 was also identified, which was inherited from the mother, and resulted in a frame-shift mutation (c.1074_1077del.GTCG) due to an alternative splicing. In conclusion, the identification of the "eye-of-the-tiger"-like sign in the globus pallidus of the patient expands the phenotypic spectrum of PLA2G6-associated disorders and reveals its value in differential diagnosis of PLA2G6-associated disorders.

  15. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    PubMed

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Targeted exome sequencing reveals novel USH2A mutations in Chinese patients with simplex Usher syndrome.

    PubMed

    Shu, Hai-Rong; Bi, Huai; Pan, Yang-Chun; Xu, Hang-Yu; Song, Jian-Xin; Hu, Jie

    2015-09-16

    Usher syndrome (USH) is an autosomal recessive disorder characterized by hearing impairment and vision dysfunction due to retinitis pigmentosa. Phenotypic and genetic heterogeneities of this disease make it impractical to obtain a genetic diagnosis by conventional Sanger sequencing. In this study, we applied a next-generation sequencing approach to detect genetic abnormalities in patients with USH. Two unrelated Chinese families were recruited, consisting of two USH afflicted patients and four unaffected relatives. We selected 199 genes related to inherited retinal diseases as targets for deep exome sequencing. Through systematic data analysis using an established bioinformatics pipeline, all variants that passed filter criteria were validated by Sanger sequencing and co-segregation analysis. A homozygous frameshift mutation (c.4382delA, p.T1462Lfs*2) was revealed in exon20 of gene USH2A in the F1 family. Two compound heterozygous mutations, IVS47 + 1G > A and c.13156A > T (p.I4386F), located in intron 48 and exon 63 respectively, of USH2A, were identified as causative mutations for the F2 family. Of note, the missense mutation c.13156A > T has not been reported so far. In conclusion, targeted exome sequencing precisely and rapidly identified the genetic defects in two Chinese USH families and this technique can be applied as a routine examination for these disorders with significant clinical and genetic heterogeneity.

  17. 8-oxoguanine causes spontaneous de novo germline mutations in mice.

    PubMed

    Ohno, Mizuki; Sakumi, Kunihiko; Fukumura, Ryutaro; Furuichi, Masato; Iwasaki, Yuki; Hokama, Masaaki; Ikemura, Toshimichi; Tsuzuki, Teruhisa; Gondo, Yoichi; Nakabeppu, Yusaku

    2014-04-15

    Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.

  18. VWF mutations and new sequence variations identified in healthy controls are more frequent in the African-American population.

    PubMed

    Bellissimo, Daniel B; Christopherson, Pamela A; Flood, Veronica H; Gill, Joan Cox; Friedman, Kenneth D; Haberichter, Sandra L; Shapiro, Amy D; Abshire, Thomas C; Leissinger, Cindy; Hoots, W Keith; Lusher, Jeanne M; Ragni, Margaret V; Montgomery, Robert R

    2012-03-01

    Diagnosis and classification of VWD is aided by molecular analysis of the VWF gene. Because VWF polymorphisms have not been fully characterized, we performed VWF laboratory testing and gene sequencing of 184 healthy controls with a negative bleeding history. The controls included 66 (35.9%) African Americans (AAs). We identified 21 new sequence variations, 13 (62%) of which occurred exclusively in AAs and 2 (G967D, T2666M) that were found in 10%-15% of the AA samples, suggesting they are polymorphisms. We identified 14 sequence variations reported previously as VWF mutations, the majority of which were type 1 mutations. These controls had VWF Ag levels within the normal range, suggesting that these sequence variations might not always reduce plasma VWF levels. Eleven mutations were found in AAs, and the frequency of M740I, H817Q, and R2185Q was 15%-18%. Ten AA controls had the 2N mutation H817Q; 1 was homozygous. The average factor VIII level in this group was 99 IU/dL, suggesting that this variation may confer little or no clinical symptoms. This study emphasizes the importance of sequencing healthy controls to understand ethnic-specific sequence variations so that asymptomatic sequence variations are not misidentified as mutations in other ethnic or racial groups.

  19. Identifying Attenuating Mutations: Tools for a New Vaccine Design against Flaviviruses.

    PubMed

    Khou, Cécile; Pardigon, Nathalie

    2017-01-01

    Emerging Flaviviruses pose an increasing threat to global human health. To date, human vaccines against yellow fever virus (YFV), Japanese encephalitis virus (JEV), dengue virus (DV), and tick-borne encephalitis virus (TBEV) exist. However, there is no human vaccine against other Flaviviruses such as Zika virus (ZIKV) and West Nile virus (WNV). In order to restrict their spread and to protect populations against the diseases they induce, vaccines against these emerging viruses must be designed. Obtaining new live attenuated Flavivirus vaccines using molecular biology methods is now possible. Molecular infectious clones of the parental viruses are relatively easy to generate. Key mutations present in live attenuated vaccines or mutations known to have a key role in the Flavivirus life cycle and/or interactions with their hosts can be identified by sequencing, and are then inserted in infectious clones by site-directed mutagenesis. More recently, the use of chimeric viruses and large-scale reencoding and introduction of microRNA target sequences have also been tested. Indeed, a combination of these methods will help in designing new generations of vaccines against emerging and reemerging Flaviviruses. © 2017 S. Karger AG, Basel.

  20. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype.

    PubMed

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  1. Causative Agents of Aspergillosis Including Cryptic Aspergillus Species and A. fumigatus.

    PubMed

    Toyotome, Takahito

    2016-01-01

    Aspergillosis is an important deep mycosis. The causative agents are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, of which A. fumigatus is the most prevalent. Cryptic Aspergillus spp., which morphologically resemble representative species of each Aspergillus section, also cause aspergillosis. Most of the cryptic species reveal different susceptibility patterns and/or different secondary metabolite profiles, also called exometabolome in this manuscript, from those representative species. On the other hand, azole-resistant A. fumigatus strains in clinical specimens and in the environment have been reported. Therefore, it is imperative to precisely identify the species, including cryptic Aspergillus spp., and evaluate the susceptibility of isolates.In this manuscript, some of the causative cryptic Aspergillus spp. are briefly reviewed. In addition, the exometabolome of Aspergillus section Fumigati is described. Finally, azole resistance of A. fumigatus is also discussed, in reference to several studies from Japan.

  2. Novel mutations and phenotypic associations identified through APC, MUTYH, NTHL1, POLD1, POLE gene analysis in Indian Familial Adenomatous Polyposis cohort.

    PubMed

    Khan, Nikhat; Lipsa, Anuja; Arunachal, Gautham; Ramadwar, Mukta; Sarin, Rajiv

    2017-05-22

    Colo-Rectal Cancer is a common cancer worldwide with 5-10% cases being hereditary. Familial Adenomatous Polyposis (FAP) syndrome is due to germline mutations in the APC or rarely MUTYH gene. NTHL1, POLD1, POLE have been recently reported in previously unexplained FAP cases. Unlike the Caucasian population, FAP phenotype and its genotypic associations have not been widely studied in several geoethnic groups. We report the first FAP cohort from South Asia and the only non-Caucasian cohort with comprehensive analysis of APC, MUTYH, NTHL1, POLD1, POLE genes. In this cohort of 112 individuals from 53 FAP families, we detected germline APC mutations in 60 individuals (45 families) and biallelic MUTYH mutations in 4 individuals (2 families). No NTHL1, POLD1, POLE mutations were identified. Fifteen novel APC mutations and a new Indian APC mutational hotspot at codon 935 were identified. Eight very rare FAP phenotype or phenotypes rarely associated with mutations outside specific APC regions were observed. APC genotype-phenotype association studies in different geo-ethnic groups can enrich the existing knowledge about phenotypic consequences of distinct APC mutations and guide counseling and risk management in different populations. A stepwise cost-effective mutation screening approach is proposed for genetic testing of south Asian FAP patients.

  3. Laws, causation and dynamics at different levels.

    PubMed

    Butterfield, Jeremy

    2012-02-06

    I have two main aims. The first is general, and more philosophical (§2). The second is specific, and more closely related to physics (§§3 and 4). The first aim is to state my general views about laws and causation at different 'levels'. The main task is to understand how the higher levels sustain notions of law and causation that 'ride free' of reductions to the lower level or levels. I endeavour to relate my views to those of other symposiasts. The second aim is to give a framework for describing dynamics at different levels, emphasizing how the various levels' dynamics can mesh or fail to mesh. This framework is essentially that of elementary dynamical systems theory. The main idea will be, for simplicity, to work with just two levels, dubbed 'micro' and 'macro', which are related by coarse-graining. I use this framework to describe, in part, the first four of Ellis' five types of top-down causation.

  4. A novel NOTCH3 mutation identified in patients with oral cancer by whole exome sequencing.

    PubMed

    Yi, Yanjun; Tian, Zhuowei; Ju, Houyu; Ren, Guoxin; Hu, Jingzhou

    2017-06-01

    Oral cancer is a serious disease caused by environmental factors and/or susceptible genes. In the present study, in order to identify useful genetic biomarkers for cancer prediction and prevention, and for personalized treatment, we detected somatic mutations in 5 pairs of oral cancer tissues and blood samples using whole exome sequencing (WES). Finally, we confirmed a novel nonsense single-nucleotide polymorphism (SNP; chr19:15288426A>C) in the NOTCH3 gene with sanger sequencing, which resulted in a N1438T mutation in the protein sequence. Using multiple in silico analyses, this variant was found to mildly damaging effects on the NOTCH3 gene, which was supported by the results from analyses using PANTHER, SNAP and SNPs&GO. However, further analysis using Mutation Taster revealed that this SNP had a probability of 0.9997 to be 'disease causing'. In addition, we performed 3D structure simulation analysis and the results suggested that this variant had little effect on the solubility and hydrophobicity of the protein and thus on its function; however, it decreased the stability of the protein by increasing the total energy following minimization (-1,051.39 kcal/mol for the mutant and -1,229.84 kcal/mol for the native) and decreasing one stabilizing residue of the protein. Less stability of the N1438T mutant was also supported by analysis using I-Mutant with a DDG value of -1.67. Overall, the present study identified and confirmed a novel mutation in the NOTCH3 gene, which may decrease the stability of NOTCH3, and may thus prove to be helpful in cancer prognosis.

  5. Next-Generation Sequencing-based genomic profiling of brain metastases of primary ovarian cancer identifies high number of BRCA-mutations.

    PubMed

    Balendran, S; Liebmann-Reindl, S; Berghoff, A S; Reischer, T; Popitsch, N; Geier, C B; Kenner, L; Birner, P; Streubel, B; Preusser, M

    2017-07-01

    Ovarian cancer represents the most common gynaecological malignancy and has the highest mortality of all female reproductive cancers. It has a rare predilection to develop brain metastases (BM). In this study, we evaluated the mutational profile of ovarian cancer metastases through Next-Generation Sequencing (NGS) with the aim of identifying potential clinically actionable genetic alterations with options for small molecule targeted therapy. Library preparation was conducted using Illumina TruSight Rapid Capture Kit in combination with a cancer specific enrichment kit covering 94 genes. BRCA-mutations were confirmed by using TruSeq Custom Amplicon Low Input Kit in combination with a custom-designed BRCA gene panel. In our cohort all eight sequenced BM samples exhibited a multitude of variant alterations, each with unique molecular profiles. The 37 identified variants were distributed over 22 cancer-related genes (23.4%). The number of mutated genes per sample ranged from 3 to 7 with a median of 4.5. The most commonly altered genes were BRCA1/2, TP53, and ATM. In total, 7 out of 8 samples revealed either a BRCA1 or a BRCA2 pathogenic mutation. Furthermore, all eight BM samples showed mutations in at least one DNA repair gene. Our NGS study of BM of ovarian carcinoma revealed a significant number of BRCA-mutations beside TP53, ATM and CHEK2 mutations. These findings strongly suggest the implication of BRCA and DNA repair malfunction in ovarian cancer metastasizing to the brain. Based on these findings, pharmacological PARP inhibition could be one potential targeted therapeutic for brain metastatic ovarian cancer patients.

  6. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families.

    PubMed

    Zhao, Feng; Pan, Xinyuan; Zhao, Kanxing; Zhao, Chen

    2013-01-01

    To identify the causative mutations in two Chinese families with autosomal dominant Marfan syndrome and to describe the associated phenotypes. Complete physical, ophthalmic, and cardiovascular examinations were given to the patients and unaffected individuals in the two families. Exclusive linkage mapping was performed for transforming growth factor beta receptor II (TGFBR2) and fibrillin-1 (FBN1) loci in both families. The entire coding region and flanking splice sites of the FBN1 gene were screened for mutations in the two families with Sanger sequencing. The potential mutations of FBN1 were tested in 100 normal controls. Lens dislocation was observed in two out of ten patients in the MF1 family and all patients in the MF2 family. However, the MF1 family displayed more severe cardiovascular and skeletal system involvement compared with the MF2 family. The transforming growth factor beta receptor II locus was excluded in both families by linkage analysis. A maximum multipoint lod score score of 2.83 was obtained for marker D15S992 (located in the FBN1 gene) in the MF1 family and 1.51 for the same marker in the MF2 family. Two novel mutations of FBN1, p.C271* and p.C637Y, were identified in the MF1 and MF2 families, respectively. Genotype-phenotype correlations in this study indicate that nonsense mutations of FBN1 may correlate with relatively severe systemic phenotypes when compared with cysteine substitutions, the most common type of FBN1 mutations. Genetic diagnosis for patients with Marfan syndrome would help with genetic counseling, clinical intervention, and prognosis.

  7. Two novel mutations of fibrillin-1 gene correlate with different phenotypes of Marfan syndrome in Chinese families

    PubMed Central

    Zhao, Feng; Pan, Xinyuan; Zhao, Kanxing

    2013-01-01

    Purpose To identify the causative mutations in two Chinese families with autosomal dominant Marfan syndrome and to describe the associated phenotypes. Methods Complete physical, ophthalmic, and cardiovascular examinations were given to the patients and unaffected individuals in the two families. Exclusive linkage mapping was performed for transforming growth factor beta receptor II (TGFBR2) and fibrillin-1 (FBN1) loci in both families. The entire coding region and flanking splice sites of the FBN1 gene were screened for mutations in the two families with Sanger sequencing. The potential mutations of FBN1 were tested in 100 normal controls. Results Lens dislocation was observed in two out of ten patients in the MF1 family and all patients in the MF2 family. However, the MF1 family displayed more severe cardiovascular and skeletal system involvement compared with the MF2 family. The transforming growth factor beta receptor II locus was excluded in both families by linkage analysis. A maximum multipoint lod score score of 2.83 was obtained for marker D15S992 (located in the FBN1 gene) in the MF1 family and 1.51 for the same marker in the MF2 family. Two novel mutations of FBN1, p.C271* and p.C637Y, were identified in the MF1 and MF2 families, respectively. Conclusions Genotype-phenotype correlations in this study indicate that nonsense mutations of FBN1 may correlate with relatively severe systemic phenotypes when compared with cysteine substitutions, the most common type of FBN1 mutations. Genetic diagnosis for patients with Marfan syndrome would help with genetic counseling, clinical intervention, and prognosis. PMID:23592911

  8. Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with hereditary breast cancer susceptibility.

    PubMed

    Mantere, Tuomo; Tervasmäki, Anna; Nurmi, Anna; Rapakko, Katrin; Kauppila, Saila; Tang, Jiangbo; Schleutker, Johanna; Kallioniemi, Anne; Hartikainen, Jaana M; Mannermaa, Arto; Nieminen, Pentti; Hanhisalo, Riitta; Lehto, Sini; Suvanto, Maija; Grip, Mervi; Jukkola-Vuorinen, Arja; Tengström, Maria; Auvinen, Päivi; Kvist, Anders; Borg, Åke; Blomqvist, Carl; Aittomäki, Kristiina; Greenberg, Roger A; Winqvist, Robert; Nevanlinna, Heli; Pylkäs, Katri

    2017-04-06

    Several known breast cancer susceptibility genes encode proteins involved in DNA damage response (DDR) and are characterized by rare loss-of-function mutations. However, these explain less than half of the familial cases. To identify novel susceptibility factors, 39 rare truncating mutations, identified in 189 Northern Finnish hereditary breast cancer patients in parallel sequencing of 796 DDR genes, were studied for disease association. Mutation screening was performed for Northern Finnish breast cancer cases (n = 578-1565) and controls (n = 337-1228). Mutations showing potential cancer association were analyzed in additional Finnish cohorts. c.7253dupT in TEX15, encoding a DDR factor important in meiosis, associated with hereditary breast cancer (p = 0.018) and likely represents a Northern Finnish founder mutation. A deleterious c.2715 + 1G > A mutation in the Fanconi anemia gene, FANCD2, was over two times more common in the combined Finnish hereditary cohort compared to controls. A deletion (c.640_644del5) in RNF168, causative for recessive RIDDLE syndrome, had high prevalence in majority of the analyzed cohorts, but did not associate with breast cancer. In conclusion, truncating variants in TEX15 and FANCD2 are potential breast cancer risk factors, warranting further investigations in other populations. Furthermore, high frequency of RNF168 c.640_644del5 indicates the need for its testing in Finnish patients with RIDDLE syndrome symptoms.

  9. A Spirochaete is suggested as the causative agent of Akoya oyster disease by metagenomic analysis

    PubMed Central

    Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Takano, Tomokazu; Takeuchi, Takeshi; Satoh, Noriyuki; Adachi, Yoshikazu; Tsuchihashi, Yasushi; Aoki, Hideo; Odawara, Kazushi; Iwanaga, Shunsuke; Kurita, Jun; Kamaishi, Takashi; Nakayasu, Chihaya

    2017-01-01

    Mass mortality that is acompanied by reddish browning of the soft tissues has been occurring in cultured pearl oyster, Pinctada fucata martensii. The disease is called Akoya oyster disease (AOD). Although spreading pattern of the disease and transmission experiments suggest that the disease is infectious, the causative agent has not yet been identified. We used shotgun and 16S rRNA-based metagenomic analysis to identify genes that are present specifically in affected oysters. The genes found only in diseased oysters were mostly bacterial origin, suggesting that the causative agent was a bacterial pathogen. This hypothesis was supported by the inhibition of AOD development in naïve oysters injected with the hemolymph of diseased animals followed immediately with penicillin bath-administration. Further analyses of the hemolymph and mantle specifically and universally detected genes of bacteria that belong to phylum Spirochaetes in diseased pearl oysters but not in healthy oysters. By in situ hybridization or immunostaining, a Brachyspira-like bacterium was observed in the smears of hemolymph from affected oysters, but not from healthy oysters. Phylogenetic analysis using 16S rRNA sequences showed that the presumptive causative bacterium was outside of but most closely related to family Brachyspiraceae. We propose ‘Candidatus Maribrachyspira akoyae’ gen. nov, sp nov., for this bacterium. PMID:28771537

  10. The clinical spectrum of the m.10191T>C mutation in complex I-deficient Leigh syndrome.

    PubMed

    Nesbitt, Victoria; Morrison, Patrick J; Crushell, Ellen; Donnelly, Deirdre E; Alston, Charlotte L; He, Langping; McFarland, Robert; Taylor, Robert W

    2012-06-01

    Mitochondrial respiratory chain diseases represent one of the most common inherited neurometabolic disorders of childhood, affecting a minimum of 1 in 7500 live births. The marked clinical, biochemical, and genetic heterogeneity means that accurate genetic counselling relies heavily upon the identification of the underlying causative mutation in the individual and determination of carrier status in the parents. Isolated complex I deficiency is the most common respiratory chain defect observed in children, resulting in organ-specific or multisystem disease, but most often presenting as Leigh syndrome, for which mitochondrial DNA mutations are important causes. Several recurrent, pathogenic point mutations in the MTND3 gene - including m.10191T>C (p.Ser45Pro) - have been previously identified. In this short clinical review we evaluate the case reports of the m.10191T>C mutation causing complex I-deficient Leigh syndrome described in the literature, in addition to two new ones diagnosed in our laboratory. Both of these appear to have arisen de novo without transmission of the mutation from mother to offspring, illustrating the importance not only of fully characterizing the mitochondrial genome as part of the investigation of children with complex I-deficient Leigh syndrome but also of assessing maternal samples to provide crucial genetic advice for families. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  11. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome.

    PubMed

    Lim, Sze Chern; Smith, Katherine R; Stroud, David A; Compton, Alison G; Tucker, Elena J; Dasvarma, Ayan; Gandolfo, Luke C; Marum, Justine E; McKenzie, Matthew; Peters, Heidi L; Mowat, David; Procopis, Peter G; Wilcken, Bridget; Christodoulou, John; Brown, Garry K; Ryan, Michael T; Bahlo, Melanie; Thorburn, David R

    2014-02-06

    Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. The contribution of de novo coding mutations to autism spectrum disorder

    PubMed Central

    Iossifov, Ivan; O’Roak, Brian J.; Sanders, Stephan J.; Ronemus, Michael; Krumm, Niklas; Levy, Dan; Stessman, Holly A.; Witherspoon, Kali; Vives, Laura; Patterson, Karynne E.; Smith, Joshua D.; Paeper, Bryan; Nickerson, Deborah A.; Dea, Jeanselle; Dong, Shan; Gonzalez, Luis E.; Mandell, Jefferey D.; Mane, Shrikant M.; Murtha, Michael T.; Sullivan, Catherine A.; Walker, Michael F.; Waqar, Zainulabedin; Wei, Liping; Willsey, A. Jeremy; Yamrom, Boris; Lee, Yoon-ha; Grabowska, Ewa; Dalkic, Ertugrul; Wang, Zihua; Marks, Steven; Andrews, Peter; Leotta, Anthony; Kendall, Jude; Hakker, Inessa; Rosenbaum, Julie; Ma, Beicong; Rodgers, Linda; Troge, Jennifer; Narzisi, Giuseppe; Yoon, Seungtai; Schatz, Michael C.; Ye, Kenny; McCombie, W. Richard; Shendure, Jay; Eichler, Evan E.; State, Matthew W.; Wigler, Michael

    2015-01-01

    We sequenced exomes from more than 2,500 simplex families each having a child with an autistic spectrum disorder (ASD). By comparing affected to unaffected siblings, we estimate that 13% of de novo (DN) missense mutations and 42% of DN likely gene-disrupting (LGD) mutations contribute to 12% and 9% of diagnoses, respectively. Including copy number variants, coding DN mutations contribute to about 30% of all simplex and 45% of female diagnoses. Virtually all LGD mutations occur opposite wild-type alleles. LGD targets in affected females significantly overlap the targets in males of lower IQ, but neither overlaps significantly with targets in males of higher IQ. We estimate that LGD mutation in about 400 genes can contribute to the joint class of affected females and males of lower IQ, with an overlapping and similar number of genes vulnerable to causative missense mutation. LGD targets in the joint class overlap with published targets for intellectual disability and schizophrenia, and are enriched for chromatin modifiers, FMRP-associated genes and embryonically expressed genes. Virtually all significance for the latter comes from affected females. PMID:25363768

  13. CTNNB1 (beta-catenin) mutation identifies low grade, early stage endometrial cancer patients at increased risk of recurrence.

    PubMed

    Kurnit, Katherine C; Kim, Grace N; Fellman, Bryan M; Urbauer, Diana L; Mills, Gordon B; Zhang, Wei; Broaddus, Russell R

    2017-07-01

    Although the majority of low grade, early stage endometrial cancer patients will have good survival outcomes with surgery alone, those patients who do recur tend to do poorly. Optimal identification of the subset of patients who are at high risk of recurrence and would benefit from adjuvant treatment has been difficult. The purpose of this study was to evaluate the impact of somatic tumor mutation on survival outcomes in this patient population. For this study, low grade was defined as endometrioid FIGO grades 1 or 2, while early stage was defined as endometrioid stages I or II (disease confined to the uterus). Next-generation sequencing was performed using panels comprised of 46-200 genes. Recurrence-free and overall survival was compared across gene mutational status in both univariate and multivariate analyses. In all, 342 patients were identified, 245 of which had endometrioid histology. For grades 1-2, stages I-II endometrioid endometrial cancer patients, age (HR 1.07, 95% CI 1.03-1.10), CTNNB1 mutation (HR 5.97, 95% CI 2.69-13.21), and TP53 mutation (HR 4.07, 95% CI 1.57-10.54) were associated with worse recurrence-free survival on multivariate analysis. When considering endometrioid tumors of all grades and stages, CTNNB1 mutant tumors were associated with significantly higher rates of grades 1-2 disease, lower rates of deep myometrial invasion, and lower rates of lymphatic/vascular space invasion. When both TP53 and CTNNB1 mutations were considered, presence of either TP53 mutation or CTNNB1 mutation remained a statistically significant predictor of recurrence-free survival on multivariate analysis and was associated with a more precise confidence interval (HR 4.69, 95% CI 2.38-9.24). Thus, mutational analysis of a 2 gene panel of CTNNB1 and TP53 can help to identify a subset of low grade, early stage endometrial cancer patients who are at high risk of recurrence.

  14. Identification of a Novel HADHB Gene Mutation in an Iranian Patient with Mitochondrial Trifunctional Protein Deficiency.

    PubMed

    Shahrokhi, Mahdiyeh; Shafiei, Mohammad; Galehdari, Hamid; Shariati, Gholamreza

    2017-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer composed of eight parts (subunits): four α-subunits containing LCEH (long-chain 2,3-enoyl-CoA  hydratase) and LCHAD (long-chain 3-hydroxyacyl CoA dehydrogenase) activity, and four β-subunits that possess LCKT (long-chain  3-ketoacyl-CoA thiolase) activity which catalyzes three out of four steps in β-oxidation spiral of long-chain fatty acid. Its deficiency is an autosomal recessive disorder that causes a clinical spectrum of diseases. A blood spot was collected from the patient's original newborn screening card with parental informed consent. A newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS were performed. After isolation of DNA and Amplification of all exons of the HADHA and HADHB, directly Sequence analyses of all exons and the flanking introns both of genes were performed. Here, we report a novel mutation in a patient with MTP deficiency diagnosed with newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS and then confirmed by enzyme analysis in cultured fibroblasts and direct sequencing of the HADHA and HADHB genes. Molecular analysis of causative genes showed a missense mutation (p.Q385P) c.1154A > C in exon 14 of HADHB gene. Since this mutation was not found in 50 normal control cases; so it was concluded that c.1154A > C mutation was a causative mutation. Phenotype analysis of this mutation predicted pathogenesis which reduces the stability of the MTP protein complex.

  15. Genetic basis of early-onset, MODY-like diabetes in Japan and features of patients without mutations in the major MODY genes: dominance of maternal inheritance.

    PubMed

    Yorifuji, Tohru; Higuchi, Shinji; Kawakita, Rie; Hosokawa, Yuki; Aoyama, Takane; Murakami, Akiko; Kawae, Yoshiko; Hatake, Kazue; Nagasaka, Hironori; Tamagawa, Nobuyoshi

    2018-06-21

    Causative mutations cannot be identified in the majority of Asian patients with suspected maturity-onset diabetes of the young (MODY). To elucidate the genetic basis of Japanese patients with MODY-like diabetes and gain insight into the etiology of patients without mutations in the major MODY genes. 263 Japanese patients with early-onset, nonobese, MODY-like diabetes mellitus referred to Osaka City General Hospital for diagnosis. Mutational analysis of the four major MODY genes (GCK, HNF1A, HNF4A, HNF1B) by Sanger sequencing. Mutation-positive and mutation-negative patients were further analyzed for clinical features. Mutations were identified in 103 (39.2%) patients; 57 mutations in GCK; 29, HNF1A; 7, HNF4A; and 10, HNF1B. Contrary to conventional diagnostic criteria, 18.4% of mutation-positive patients did not have affected parents and 8.2% were in the overweight range (BMI >85 th percentile). HOMA-IR at diagnosis was elevated (>2) in 15 of 66 (22.7%) mutation-positive patients. Compared with mutation-positive patients, mutation-negative patients were significantly older (p = 0.003), and had higher BMI percentile at diagnosis (p = 0.0006). Interestingly, maternal inheritance of diabetes was significantly more common in mutation-negative patients (p = 0.0332) and these patients had significantly higher BMI percentile as compared with mutation-negative patients with paternal inheritance (p = 0.0106). Contrary to the conventional diagnostic criteria, de novo diabetes, overweight, and insulin-resistance are common in Japanese patients with mutation-positive MODY. A significant fraction of mutation-negative patients had features of early-onset type 2 diabetes common in Japanese, and non-Mendelian inheritance needs to be considered for these patients. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. WholeGenome Sequencing of High-Risk Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition

    DTIC Science & Technology

    2014-10-01

    4 APPENDICES 4 INTRODUCTION: Despite tremendous advances in mutation detection with gene panels...population frequency and overlap with ENCODE regions. 2a. Align reads to the reference sequence (months 4-10) 2b. Identify SNPs, indels, CNVs and

  17. Exome Sequencing Identifies Truncating Mutations in Human SERPINF1 in Autosomal-Recessive Osteogenesis Imperfecta

    PubMed Central

    Becker, Jutta; Semler, Oliver; Gilissen, Christian; Li, Yun; Bolz, Hanno Jörn; Giunta, Cecilia; Bergmann, Carsten; Rohrbach, Marianne; Koerber, Friederike; Zimmermann, Katharina; de Vries, Petra; Wirth, Brunhilde; Schoenau, Eckhard; Wollnik, Bernd; Veltman, Joris A.; Hoischen, Alexander; Netzer, Christian

    2011-01-01

    Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder characterized by bone fragility and susceptibility to fractures after minimal trauma. After mutations in all known OI genes had been excluded by Sanger sequencing, we applied next-generation sequencing to analyze the exome of a single individual who has a severe form of the disease and whose parents are second cousins. A total of 26,922 variations from the human reference genome sequence were subjected to several filtering steps. In addition, we extracted the genotypes of all dbSNP130-annotated SNPs from the exome sequencing data and used these 299,494 genotypes as markers for the genome-wide identification of homozygous regions. A single homozygous truncating mutation, affecting SERPINF1 on chromosome 17p13.3, that was embedded into a homozygous stretch of 2.99 Mb remained. The mutation was also homozygous in the affected brother of the index patient. Subsequently, we identified homozygosity for two different truncating SERPINF1 mutations in two unrelated patients with OI and parental consanguinity. All four individuals with SERPINF1 mutations have severe OI. Fractures of long bones and severe vertebral compression fractures with resulting deformities were observed as early as the first year of life in these individuals. Collagen analyses with cultured dermal fibroblasts displayed no evidence for impaired collagen folding, posttranslational modification, or secretion. SERPINF1 encodes pigment epithelium-derived factor (PEDF), a secreted glycoprotein of the serpin superfamily. PEDF is a multifunctional protein and one of the strongest inhibitors of angiogenesis currently known in humans. Our data provide genetic evidence for PEDF involvement in human bone homeostasis. PMID:21353196

  18. Target enrichment and high-throughput sequencing of 80 ribosomal protein genes to identify mutations associated with Diamond-Blackfan anaemia.

    PubMed

    Gerrard, Gareth; Valgañón, Mikel; Foong, Hui En; Kasperaviciute, Dalia; Iskander, Deena; Game, Laurence; Müller, Michael; Aitman, Timothy J; Roberts, Irene; de la Fuente, Josu; Foroni, Letizia; Karadimitris, Anastasios

    2013-08-01

    Diamond-Blackfan anaemia (DBA) is caused by inactivating mutations in ribosomal protein (RP) genes, with mutations in 13 of the 80 RP genes accounting for 50-60% of cases. The remaining 40-50% cases may harbour mutations in one of the remaining RP genes, but the very low frequencies render conventional genetic screening as challenging. We, therefore, applied custom enrichment technology combined with high-throughput sequencing to screen all 80 RP genes. Using this approach, we identified and validated inactivating mutations in 15/17 (88%) DBA patients. Target enrichment combined with high-throughput sequencing is a robust and improved methodology for the genetic diagnosis of DBA. © 2013 John Wiley & Sons Ltd.

  19. Mutations in the mitochondrial seryl-tRNA synthetase cause hyperuricemia, pulmonary hypertension, renal failure in infancy and alkalosis, HUPRA syndrome.

    PubMed

    Belostotsky, Ruth; Ben-Shalom, Efrat; Rinat, Choni; Becker-Cohen, Rachel; Feinstein, Sofia; Zeligson, Sharon; Segel, Reeval; Elpeleg, Orly; Nassar, Suheir; Frishberg, Yaacov

    2011-02-11

    An uncharacterized multisystemic mitochondrial cytopathy was diagnosed in two infants from consanguineous Palestinian kindred living in a single village. The most significant clinical findings were tubulopathy (hyperuricemia, metabolic alkalosis), pulmonary hypertension, and progressive renal failure in infancy (HUPRA syndrome). Analysis of the consanguineous pedigree suggested that the causative mutation is in the nuclear DNA. By using genome-wide SNP homozygosity analysis, we identified a homozygous identity-by-descent region on chromosome 19 and detected the pathogenic mutation c.1169A>G (p.Asp390Gly) in SARS2, encoding the mitochondrial seryl-tRNA synthetase. The same homozygous mutation was later identified in a third infant with HUPRA syndrome. The carrier rate of this mutation among inhabitants of this Palestinian isolate was found to be 1:15. The mature enzyme catalyzes the ligation of serine to two mitochondrial tRNA isoacceptors: tRNA(Ser)(AGY) and tRNA(Ser)(UCN). Analysis of amino acylation of the two target tRNAs, extracted from immortalized peripheral lymphocytes derived from two patients, revealed that the p.Asp390Gly mutation significantly impacts on the acylation of tRNA(Ser)(AGY) but probably not that of tRNA(Ser)(UCN). Marked decrease in the expression of the nonacylated transcript and the complete absence of the acylated tRNA(Ser)(AGY) suggest that this mutation leads to significant loss of function and that the uncharged transcripts undergo degradation. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Digenic mutational inheritance of the integrin alpha 7 and the myosin heavy chain 7B genes causes congenital myopathy with left ventricular non-compact cardiomyopathy.

    PubMed

    Esposito, Teresa; Sampaolo, Simone; Limongelli, Giuseppe; Varone, Antonio; Formicola, Daniela; Diodato, Daria; Farina, Olimpia; Napolitano, Filomena; Pacileo, Giuseppe; Gianfrancesco, Fernando; Di Iorio, Giuseppe

    2013-06-21

    We report an Italian family in which the proband showed a severe phenotype characterized by the association of congenital fiber type disproportion (CFTD) with a left ventricular non-compaction cardiomyopathy (LVNC). This study was focused on the identification of the responsible gene/s. Using the whole-exome sequencing approach, we identified the proband homozygous missense mutations in two genes, the myosin heavy chain 7B (MYH7B) and the integrin alpha 7 (ITGA7). Both genes are expressed in heart and muscle tissues, and both mutations were predicted to be deleterious and were not found in the healthy population.The R890C mutation in the MYH7B gene segregated with the LVNC phenotype in the examined family. It was also found in one unrelated patient affected by LVNC, confirming a causative role in cardiomyopathy.The E882K mutation in the ITGA7 gene, a key component of the basal lamina of muscle fibers, was found only in the proband, suggesting a role in CFTD. This study identifies two novel disease genes. Mutation in MYH7B causes a classical LVNC phenotype, whereas mutation in ITGA7 causes CFTD. Both phenotypes represent alterations of skeletal and cardiac muscle maturation and are usually not severe. The severe phenotype of the proband is most likely due to a synergic effect of these two mutations.This study provides new insights into the genetics underlying Mendelian traits and demonstrates a role for digenic inheritance in complex phenotypes.

  1. A case of boomerang dysplasia with a novel causative mutation in filamin B: identification of typical imaging findings on ultrasonography and 3D-CT imaging.

    PubMed

    Tsutsumi, Seiji; Maekawa, Ayako; Obata, Miyuki; Morgan, Timothy; Robertson, Stephen P; Kurachi, Hirohisa

    2012-01-01

    Boomerang dysplasia is a rare lethal osteochondrodysplasia characterized by disorganized mineralization of the skeleton, leading to complete nonossification of some limb bones and vertebral elements, and a boomerang-like aspect to some of the long tubular bones. Like many short-limbed skeletal dysplasias with accompanying thoracic hypoplasia, the potential lethality of the phenotype can be difficult to ascertain prenatally. We report a case of boomerang dysplasia prenatally diagnosed by use of ultrasonography and 3D-CT imaging, and identified a novel mutation in the gene encoding the cytoskeletal protein filamin B (FLNB) postmortem. Findings that aided the radiological diagnosis of this condition in utero included absent ossification of two out of three long bones in each limb and elements of the vertebrae and a boomerang-like shape to the ulnae. The identified mutation is the third described for this disorder and is predicted to lead to amino acid substitution in the actin-binding domain of the filamin B molecule. Copyright © 2012 S. Karger AG, Basel.

  2. Minichromosome maintenance complex component 8 mutations cause primary ovarian insufficiency.

    PubMed

    Dou, Xiaoyun; Guo, Ting; Li, Guangyu; Zhou, LiGuang; Qin, Yingying; Chen, Zi-Jiang

    2016-11-01

    To investigate whether mutations in the minichromosome maintenance complex component 8 (MCM8) gene were present in 192 patients with sporadic primary ovarian insufficiency (POI). Retrospective case-control cohort study. University-based reproductive medicine center. A total of 192 patients with sporadic POI and 312 control women with regular menstruation (192 age-matched women and 120 women >45 years old). Sanger sequencing was performed in patients with sporadic POI, and potentially pathogenic variants were confirmed in matched controls. DNA damage was induced by mitomycinC (MMC) treatment, and DNA repair capacity was evaluated by histone H2AX phosphorylation level. Sanger sequencing for MCM8 was performed in 192 patients with sporadic POI, and functional experiments were performed to explore the deleterious effects of mutations identified. Two novel missense variants in MCM8, c. A950T (p. H317L), and c. A1802G (p. H601R), were identified in two patients with POI but absent in 312 controls (the upper 90% confidence limit for the proportion 2/192 is 2.24%). The HeLa cells overexpressing mutant p. H317L and p. H601R showed higher sensitivity to MMC compared with wild type. Furthermore, mutant p. H317L showed decreased repair capacity after MMC treatment with much more histone H2AX phosphorylation remaining after 2 hours of recovery. Our result suggests novel mutations p. H317L and p. H601R in the MCM8 gene are potentially causative for POI by dysfunctional DNA repair. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Genome-Wide Linkage, Exome Sequencing and Functional Analyses Identify ABCB6 as the Pathogenic Gene of Dyschromatosis Universalis Hereditaria

    PubMed Central

    Wang, Na; Wang, Chuan; Chen, Xuechao; Sheng, Donglai; Fu, Xi’an; See, Kelvin; Foo, Jia Nee; Low, Huiqi; Liany, Herty; Irwan, Ishak Darryl; Liu, Jian; Yang, Baoqi; Chen, Mingfei; Yu, Yongxiang; Yu, Gongqi; Niu, Guiye; You, Jiabao; Zhou, Yan; Ma, Shanshan; Wang, Ting; Yan, Xiaoxiao; Goh, Boon Kee; Common, John E. A.; Lane, Birgitte E.; Sun, Yonghu; Zhou, Guizhi; Lu, Xianmei; Wang, Zhenhua; Tian, Hongqing; Cao, Yuanhua; Chen, Shumin; Liu, Qiji; Liu, Jianjun; Zhang, Furen

    2014-01-01

    Background As a genetic disorder of abnormal pigmentation, the molecular basis of dyschromatosis universalis hereditaria (DUH) had remained unclear until recently when ABCB6 was reported as a causative gene of DUH. Methodology We performed genome-wide linkage scan using Illumina Human 660W-Quad BeadChip and exome sequencing analyses using Agilent SureSelect Human All Exon Kits in a multiplex Chinese DUH family to identify the pathogenic mutations and verified the candidate mutations using Sanger sequencing. Quantitative RT-PCR and Immunohistochemistry was performed to verify the expression of the pathogenic gene, Zebrafish was also used to confirm the functional role of ABCB6 in melanocytes and pigmentation. Results Genome-wide linkage (assuming autosomal dominant inheritance mode) and exome sequencing analyses identified ABCB6 as the disease candidate gene by discovering a coding mutation (c.1358C>T; p.Ala453Val) that co-segregates with the disease phenotype. Further mutation analysis of ABCB6 in four other DUH families and two sporadic cases by Sanger sequencing confirmed the mutation (c.1358C>T; p.Ala453Val) and discovered a second, co-segregating coding mutation (c.964A>C; p.Ser322Lys) in one of the four families. Both mutations were heterozygous in DUH patients and not present in the 1000 Genome Project and dbSNP database as well as 1,516 unrelated Chinese healthy controls. Expression analysis in human skin and mutagenesis interrogation in zebrafish confirmed the functional role of ABCB6 in melanocytes and pigmentation. Given the involvement of ABCB6 mutations in coloboma, we performed ophthalmological examination of the DUH carriers of ABCB6 mutations and found ocular abnormalities in them. Conclusion Our study has advanced our understanding of DUH pathogenesis and revealed the shared pathological mechanism between pigmentary DUH and ocular coloboma. PMID:24498303

  4. Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia

    PubMed Central

    Desmaison, Annaïck; Vigouroux, Adeline; Rieubland, Claudine; Peres, Christine; Calvas, Patrick

    2010-01-01

    Purpose Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. Methods Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. Results Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. Conclusions Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia. PMID:21203406

  5. Mutations in the LHX2 gene are not a frequent cause of micro/anophthalmia.

    PubMed

    Desmaison, Annaïck; Vigouroux, Adeline; Rieubland, Claudine; Peres, Christine; Calvas, Patrick; Chassaing, Nicolas

    2010-12-18

    Microphthalmia and anophthalmia are at the severe end of the spectrum of abnormalities in ocular development. A few genes (orthodenticle homeobox 2 [OTX2], retina and anterior neural fold homeobox [RAX], SRY-box 2 [SOX2], CEH10 homeodomain-containing homolog [CHX10], and growth differentiation factor 6 [GDF6]) have been implicated mainly in isolated micro/anophthalmia but causative mutations of these genes explain less than a quarter of these developmental defects. The essential role of the LIM homeobox 2 (LHX2) transcription factor in early eye development has recently been documented. We postulated that mutations in this gene could lead to micro/anophthalmia, and thus performed molecular screening of its sequence in patients having micro/anophthalmia. Seventy patients having non-syndromic forms of colobomatous microphthalmia (n=25), isolated microphthalmia (n=18), or anophthalmia (n=17), and syndromic forms of micro/anophthalmia (n=10) were included in this study after negative molecular screening for OTX2, RAX, SOX2, and CHX10 mutations. Mutation screening of LHX2 was performed by direct sequencing of the coding sequences and intron/exon boundaries. Two heterozygous variants of unknown significance (c.128C>G [p.Pro43Arg]; c.776C>A [p.Pro259Gln]) were identified in LHX2 among the 70 patients. These variations were not identified in a panel of 100 control patients of mixed origins. The variation c.776C>A (p.Pro259Gln) was considered as non pathogenic by in silico analysis, while the variation c.128C>G (p.Pro43Arg) considered as deleterious by in silico analysis and was inherited from the asymptomatic father. Mutations in LHX2 do not represent a frequent cause of micro/anophthalmia.

  6. Causative Pathogens of Febrile Neutropaenia in Children Treated for Acute Lymphoblastic Leukaemia.

    PubMed

    Lam, Joyce Cm; Chai, Jie Yang; Wong, Yi Ling; Tan, Natalie Wh; Ha, Christina Tt; Chan, Mei Yoke; Tan, Ah Moy

    2015-11-01

    Treatment of acute lymphoblastic leukaemia (ALL) using intensive chemotherapy has resulted in high cure rates but also substantial morbidity. Infective complications represent a significant proportion of treatment-related toxicity. The objective of this study was to describe the microbiological aetiology and clinical outcome of episodes of chemotherapy-induced febrile neutropaenia in a cohort of children treated for ALL at our institution. Patients with ALL were treated with either the HKSGALL93 or the Malaysia-Singapore (Ma-Spore) 2003 chemotherapy protocols. The records of 197 patients who completed the intensive phase of treatment, defined as the period of treatment from induction, central nervous system (CNS)-directed therapy to reinduction from June 2000 to January 2010 were retrospectively reviewed. There were a total of 587 episodes of febrile neutropaenia in 197 patients, translating to an overall rate of 2.98 episodes per patient. A causative pathogen was isolated in 22.7% of episodes. An equal proportion of Gram-positive bacteria (36.4%) and Gram-negative bacteria (36.4%) were most frequently isolated followed by viral pathogens (17.4%), fungal pathogens (8.4%) and other bacteria (1.2%). Fungal organisms accounted for a higher proportion of clinically severe episodes of febrile neutropaenia requiring admission to the high-dependency or intensive care unit (23.1%). The overall mortality rate from all episodes was 1.5%. Febrile neutropaenia continues to be of concern in ALL patients undergoing intensive chemotherapy. The majority of episodes will not have an identifiable causative organism. Gram-positive bacteria and Gram-negative bacteria were the most common causative pathogens identified. With appropriate antimicrobial therapy and supportive management, the overall risk of mortality from febrile neutropaenia is extremely low.

  7. Time, space and form: Necessary for causation in health, disease and intervention?

    PubMed

    Evans, David W; Lucas, Nicholas; Kerry, Roger

    2016-06-01

    Sir Austin Bradford Hill's 'aspects of causation' represent some of the most influential thoughts on the subject of proximate causation in health and disease. Hill compiled a list of features that, when present and known, indicate an increasing likelihood that exposure to a factor causes-or contributes to the causation of-a disease. The items of Hill's list were not labelled 'criteria', as this would have inferred every item being necessary for causation. Hence, criteria that are necessary for causation in health, disease and intervention processes, whether known, knowable, or not, remain undetermined and deserve exploration. To move beyond this position, this paper aims to explore factors that are necessary in the constitution of causative relationships between health, disease processes, and intervention. To this end, disease is viewed as a causative pathway through the often overlapping stages of aetiology, pathology and patho-physiology. Intervention is viewed as a second, independent causative pathway, capable of causing changes in health for benefit or harm. For the natural course of a disease pathway to change, we argue that intervention must not only occupy the same time and space, but must also share a common form; the point at which the two pathways converge and interact. This improved conceptualisation may be used to facilitate the interpretation of clinical observations and inform future research, particularly enabling predictions of the mechanistic relationship between health, disease and intervention.

  8. The incidence and causative organisms of infection in elective shoulder surgery.

    PubMed

    Mayne, Alistair I W; Bidwai, Amit S; Clifford, Rachael; Smith, Matthew G; Guisasola, Inigo; Brownson, Peter

    2018-07-01

    Deep infection remains a serious complication of orthopaedic surgery. Knowledge of infection rates and causative organisms is important to guide infection control measures. The aim of the present study was to determine infection rates and causative organisms in elective shoulder surgery. Cases complicated by infection were identified and prospectively recorded over a 2-year period. All patients undergoing elective shoulder surgery in the concurrent period at a single Specialist Upper Limb Unit in the UK were identified from the hospital electronic database. In total, 1574 elective shoulder cases were performed: 1359 arthroscopic (540 with implant insertion) and 215 open (197 with implant insertion). The overall infection rate in open surgery of 2.5% was significantly higher than arthroscopic implant cases at 0.7% ( p  < 0.005). The overall infection rate in implant arthroscopic surgery was significantly higher at 0.7% compared to 0% in non-implant related surgery. ( p  < 0.05). Patients undergoing open shoulder surgery have a significantly higher risk of infection compared to arthroscopic shoulder surgery. Arthroscopic surgery with implant insertion has a statistically significantly higher risk of developing deep infection compared to procedures with no implant insertion. We recommend prophylactic antibiotics in open shoulder surgery and arthroscopic shoulder surgery with implant insertion.

  9. Health effects of urea formaldehyde foam insulation: evidence of causation.

    PubMed Central

    Norman, G R; Newhouse, M T

    1986-01-01

    Studies of health effects of urea formaldehyde foam insulation (UFFI) were critically reviewed by means of accepted rules for evidence of causation. Three categories of health effects were examined: reported symptoms, primarily of the upper respiratory tract, lower respiratory tract disease and cancer. Most of the studies purporting to demonstrate health effects of UFFI failed to meet minimal methodologic criteria for evidence of causation. Evidence from the adequate studies provides little support for the hypothesis of a causative role of UFFI in health problems. PMID:3512066

  10. Targeted high-throughput sequencing identifies mutations in atlastin-1 as a cause of hereditary sensory neuropathy type I.

    PubMed

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R; Janecke, Andreas R; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-07

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders.

  11. Retro-causation, Minimum Contradictions and Non-locality

    NASA Astrophysics Data System (ADS)

    Kafatos, Menas; Nassikas, Athanassios A.

    2011-11-01

    Retro-causation has been experimentally verified by Bem and proposed by Kafatos in the form of space-time non-locality in the quantum framework. Every theory includes, beyond its specific axioms, the principles of logical communication (logical language), through which it is defined. This communication obeys the Aristotelian logic (Classical Logic), the Leibniz Sufficient Reason Principle, and a hidden axiom, which basically states that there is anterior-posterior relationship everywhere in communication. By means of a theorem discussed here, it can be proved that the communication mentioned implies contradictory statements, which can only be transcended through silence, i.e. the absence of any statements. Moreover, the breaking of silence is meaningful through the claim for minimum contradictions, which implies the existence of both a logical and an illogical dimension; contradictions refer to causality, implying its opposite, namely retro-causation, and the anterior posterior axiom, implying space-time non-locality. The purpose of this paper is to outline a framework accounting for retro-causation, through both purely theoretical and reality based points of view.

  12. Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree.

    PubMed

    Kooshavar, Daniz; Razipour, Masoumeh; Movasat, Morteza; Keramatipour, Mohammad

    2018-01-01

    Usher syndrome (USH) is characterized by congenital hearing loss and retinitis pigmentosa (RP) with a later onset. It is an autosomal recessive trait with clinical and genetic heterogeneity which makes the molecular diagnosis much difficult. In this study, we introduce a pedigree with two affected members with USH type 1 and represent a cost and time effective approach for genetic diagnosis of USH as a genetically heterogeneous disorder. Target region capture in the genes of interest, followed by next generation sequencing (NGS) was used to determine the causative mutations in one of the probands. Then segregation analysis in the pedigree was conducted using PCR-Sanger sequencing. Targeted NGS detected a novel homozygous nonsense variant c.4513G > T (p.Glu1505Ter) in MYO7A. The variant is segregating in the pedigree with an autosomal recessive pattern. In this study, a novel stop gained variant c.4513G > T (p.Glu1505Ter) in MYO7A was found in an Iranian pedigree with two affected members with USH type 1. Bioinformatic as well as pedigree segregation analyses were in line with pathogenic nature of this variant. Targeted NGS panel was showed to be an efficient method for mutation detection in hereditary disorders with locus heterogeneity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: Tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type

    PubMed Central

    2011-01-01

    Background Genetic Hypophosphatemic Rickets (HR) is a group of diseases characterized by renal phosphate wasting with inappropriately low or normal 1,25-dihydroxyvitamin D3 (1,25(OH)2D) serum levels. The most common form of HR is X-linked dominant HR (XLHR) which is caused by inactivating mutations in the PHEX gene. The purpose of this study was to perform genetic diagnosis in a cohort of patients with clinical diagnosis of HR, to perform genotype-phenotype correlations of those patients and to compare our data with other HR cohort studies. Methods Forty three affected individuals from 36 non related families were analyzed. For the genetic analysis, the PHEX gene was sequenced in all of the patients and in 13 cases the study was complemented by mRNA sequencing and Multiple Ligation Probe Assay. For the genotype-phenotype correlation study, the clinical and biochemical phenotype of the patients was compared with the type of mutation, which was grouped into clearly deleterious or likely causative, using the Mann-Whitney and Fisher's exact test. Results Mutations in the PHEX gene were identified in all the patients thus confirming an XLHR. Thirty four different mutations were found distributed throughout the gene with higher density at the 3' end. The majority of the mutations were novel (69.4%), most of them resulted in a truncated PHEX protein (83.3%) and were family specific (88.9%). Tubular reabsorption of phosphate (TRP) and 1,25(OH)2D serum levels were significantly lower in patients carrying clearly deleterious mutations than in patients carrying likely causative ones (61.39 ± 19.76 vs. 80.14 ± 8.80%, p = 0.028 and 40.93 ± 30.73 vs. 78.46 ± 36.27 pg/ml, p = 0.013). Conclusions PHEX gene mutations were found in all the HR cases analyzed, which was in contrast with other cohort studies. Patients with clearly deleterious PHEX mutations had lower TRP and 1,25(OH)2D levels suggesting that the PHEX type of mutation might predict the XLHR phenotype severity. PMID

  14. Germ line mutation analysis in families with multiple endocrine neoplasia type 2A or familial medullary thyroid carcinoma.

    PubMed

    Karga, H J; Karayianni, M K; Linos, D A; Tseleni, S C; Karaiskos, K D; Papapetrou, P D

    1998-10-01

    The RET proto-oncogene has been identified as the multiple endocrine neoplasia type 2 disease gene. An association between specific RET mutation and disease phenotype has been reported. We present the phenotype-genotype of 12 Greek families with multiple endocrine neoplasia type 2A (MEN 2A) or familial medullary thyroid carcinoma (FMTC). Seventy members were studied and DNA analysis for RET mutations was performed in fifty-eight of them. Exons 10, 11, 13, 14 and 16 of the RET proto-oncogene were analyzed by single strand conformation polymorphism analysis, direct DNA sequencing and/or restriction enzyme analysis. No mutations of the RET proto-oncogene were identified in 1 of 9 families with MEN 2A and in the 3 families with FMTC. In 7 MEN 2A families, the mutation was demonstrated in codon 634 and in 1 family it was demonstrated in codon 620. There was a low frequency, about 8%, of hyperparathyroidism associated with MEN 2A. The specific causative mutations for pararthyroid disease were C634R or C634Y. Among the MEN 2A individuals there was one case with de novo C634R mutation and one case, C634Y, with cutaneous lichen amyloidosis which predated by 24 years the diagnosis of MEN 2A. In 2 children who were MEN 2A gene carriers, microscopic medullary thyroid carcinomas were found. These data show a low frequency of hyperparathyroidism in our cases and provide further evidence that individuals with C634R as well as with C634Y mutations of the RET proto-oncogene could be at risk for parathyroid disease. Cutaneous lichen amyloidosis could be an early feature of MEN 2A. Additionally, direct DNA testing provided an opportunity to resect medullary thyroid carcinoma at an early stage.

  15. Gene panel sequencing in familial breast/ovarian cancer patients identifies multiple novel mutations also in genes others than BRCA1/2.

    PubMed

    Kraus, Cornelia; Hoyer, Juliane; Vasileiou, Georgia; Wunderle, Marius; Lux, Michael P; Fasching, Peter A; Krumbiegel, Mandy; Uebe, Steffen; Reuter, Miriam; Beckmann, Matthias W; Reis, André

    2017-01-01

    Breast and ovarian cancer (BC/OC) predisposition has been attributed to a number of high- and moderate to low-penetrance susceptibility genes. With the advent of next generation sequencing (NGS) simultaneous testing of these genes has become feasible. In this monocentric study, we report results of panel-based screening of 14 BC/OC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, CHEK2, PALB2, ATM, NBN, CDH1, TP53, MLH1, MSH2, MSH6 and PMS2) in a group of 581 consecutive individuals from a German population with BC and/or OC fulfilling diagnostic criteria for BRCA1 and BRCA2 testing including 179 with a triple-negative tumor. Altogether we identified 106 deleterious mutations in 105 (18%) patients in 10 different genes, including seven different exon deletions. Of these 106 mutations, 16 (15%) were novel and only six were found in BRCA1/2. To further characterize mutations located in or nearby splicing consensus sites we performed RT-PCR analysis which allowed confirmation of pathogenicity in 7 of 9 mutations analyzed. In PALB2, we identified a deleterious variant in six cases. All but one were associated with early onset BC and a positive family history indicating that penetrance for PALB2 mutations is comparable to BRCA2. Overall, extended testing beyond BRCA1/2 identified a deleterious mutation in further 6% of patients. As a downside, 89 variants of uncertain significance were identified highlighting the need for comprehensive variant databases. In conclusion, panel testing yields more accurate information on genetic cancer risk than assessing BRCA1/2 alone and wide-spread testing will help improve penetrance assessment of variants in these risk genes. © 2016 UICC.

  16. Genetic analysis and literature review of Chinese patients with familial renal glucosuria: Identification of a novel SLC5A2 mutation.

    PubMed

    Wang, Xiaojing; Yu, Miao; Wang, Tong; Zhang, Huabing; Ping, Fan; Zhang, Qian; Xu, Jianping; Feng, Kai; Xiao, Xinhua

    2017-06-01

    Familial renal glucosuria (FRG) is an inherited renal tubular disorder characterized by persistent isolated glucosuria with normal blood glucose. SLC5A2 gene mutation was the causative of FRG. Molecular genetic analysis of SLC5A2 gene by Sanger sequencing was conducted in two unrelated non-consanguineous Chinese families with isolated glucosuria. Extensive laboratory test and physical examination were performed. In silico algorithms were used to explore the potential effect of novel mutation on SGLT2 function. We also summarized the reported SLC5A2 mutations in the Chinese patients with FRG. A novel missense mutation (c.877A>T, p.Ser293Cys) in exon 3 was detected in proband 1 with weight loss accompanying by glucosuria and in her father with normal phenotype. In family 2, a previously reported compound heterozygous mutation (c.229G>C, p.Gly77Arg; c.1540C>T, p.Pro514Ser) was identified, and her healthy parents were heterozygous mutation carriers. The p.S293C mutation was predicted to be pathogenic. No hot spot mutation was found in reported Chinese patients with FRG. The novel pathogenic SLC5A2 mutation p.S293C was responsible for the onset of FRG. Our study further confirmed the co-dominant inheritance trait with variable penetrance and expanded the clinical and genetic spectrum of FRG. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Biophysical Properties of 9 KCNQ1 Mutations Associated with Long QT Syndrome (LQTS)

    PubMed Central

    Yang, Tao; Chung, Seo-Kyung; Zhang, Wei; Mullins, Jonathan G.L.; McCulley, Caroline H.; Crawford, Jackie; MacCormick, Judith; Eddy, Carey-Anne; Shelling, Andrew N.; French, John K.; Yang, Ping; Skinner, Jonathan R.; Roden, Dan M.; Rees, Mark I.

    2009-01-01

    Background Inherited long QT syndrome (LQTS) is characterized by prolonged QT interval on the EKG, syncope and sudden death due to ventricular arrhythmia. Causative mutations occur mostly in cardiac potassium and sodium channel subunit genes. Confidence in mutation pathogenicity is usually reached through family genotype-phenotype tracking, control population studies, molecular modelling and phylogenetic alignments, however, biophysical testing offers a higher degree of validating evidence. Methods and Results By using in-vitro electrophysiological testing of transfected mutant and wild-type LQTS constructs into Chinese Hamster Ovary cells, we investigated the biophysical properties of 9 KCNQ1 missense mutations (A46T, T265I, F269S, A302V, G316E, F339S, R360G, H455Y, and S546L) identified in a New Zealand based LQTS screening programme. We demonstrate through electrophysiology and molecular modeling that seven of the missense mutations have profound pathological dominant negative loss-of-function properties confirming their likely disease-causing nature. This supports the use of these mutations in diagnostic family screening. Two mutations (A46T, T265I) show suggestive evidence of pathogenicity within the experimental limits of biophysical testing, indicating that these variants are disease-causing via delayed or fast activation kinetics. Further investigation of the A46T family has revealed an inconsistent co-segregation of the variant with the clinical phenotype. Conclusions Electrophysiological characterisation should be used to validate LQTS pathogenicity of novel missense channelopathies. When such results are inconclusive, great care should be taken with genetic counselling and screening of such families, and alternative disease causing mechanisms should be considered. PMID:19808498

  18. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    PubMed Central

    Vigorito, Elena; Kuchenbaecker, Karoline B.; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A.; Andrulis, Irene L.; Arun, Banu K.; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A.; Campbell, Ian; Chan, Salina B.; Claes, Kathleen B. M.; Cohn, David E.; Cook, Jackie; Daly, Mary B.; Damiola, Francesca; Davidson, Rosemarie; de Pauw, Antoine; Delnatte, Capucine; Diez, Orland; Domchek, Susan M.; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F.; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D. Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D.; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A.; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K.; Goldgar, David E.; Hake, Christopher R.; Hansen, Thomas V. O.; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B. L.; Houdayer, Claude; Hulick, Peter J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M.; Vijai, Joseph; Karlan, Beth Y.; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L.; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R.; Montagna, Marco; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I.; Ong, Kai-ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M.; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C.; Rookus, Matti A.; Ross, Eric A.; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F.; Slavin, Thomas P.; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I.; Tea, Muy-Kheng; Teixeira, Manuel R.; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J.; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N.; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J.; Greene, Mark H.; Couch, Fergus J.; Offit, Kenneth; Pharoah, Paul D. P.; Chenevix-Trench, Georgia; Antoniou, Antonis C.

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10−16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10−6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population. PMID:27463617

  19. Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.

    PubMed

    Vigorito, Elena; Kuchenbaecker, Karoline B; Beesley, Jonathan; Adlard, Julian; Agnarsson, Bjarni A; Andrulis, Irene L; Arun, Banu K; Barjhoux, Laure; Belotti, Muriel; Benitez, Javier; Berger, Andreas; Bojesen, Anders; Bonanni, Bernardo; Brewer, Carole; Caldes, Trinidad; Caligo, Maria A; Campbell, Ian; Chan, Salina B; Claes, Kathleen B M; Cohn, David E; Cook, Jackie; Daly, Mary B; Damiola, Francesca; Davidson, Rosemarie; Pauw, Antoine de; Delnatte, Capucine; Diez, Orland; Domchek, Susan M; Dumont, Martine; Durda, Katarzyna; Dworniczak, Bernd; Easton, Douglas F; Eccles, Diana; Edwinsdotter Ardnor, Christina; Eeles, Ros; Ejlertsen, Bent; Ellis, Steve; Evans, D Gareth; Feliubadalo, Lidia; Fostira, Florentia; Foulkes, William D; Friedman, Eitan; Frost, Debra; Gaddam, Pragna; Ganz, Patricia A; Garber, Judy; Garcia-Barberan, Vanesa; Gauthier-Villars, Marion; Gehrig, Andrea; Gerdes, Anne-Marie; Giraud, Sophie; Godwin, Andrew K; Goldgar, David E; Hake, Christopher R; Hansen, Thomas V O; Healey, Sue; Hodgson, Shirley; Hogervorst, Frans B L; Houdayer, Claude; Hulick, Peter J; Imyanitov, Evgeny N; Isaacs, Claudine; Izatt, Louise; Izquierdo, Angel; Jacobs, Lauren; Jakubowska, Anna; Janavicius, Ramunas; Jaworska-Bieniek, Katarzyna; Jensen, Uffe Birk; John, Esther M; Vijai, Joseph; Karlan, Beth Y; Kast, Karin; Investigators, KConFab; Khan, Sofia; Kwong, Ava; Laitman, Yael; Lester, Jenny; Lesueur, Fabienne; Liljegren, Annelie; Lubinski, Jan; Mai, Phuong L; Manoukian, Siranoush; Mazoyer, Sylvie; Meindl, Alfons; Mensenkamp, Arjen R; Montagna, Marco; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Niederacher, Dieter; Olah, Edith; Olopade, Olufunmilayo I; Ong, Kai-Ren; Osorio, Ana; Park, Sue Kyung; Paulsson-Karlsson, Ylva; Pedersen, Inge Sokilde; Peissel, Bernard; Peterlongo, Paolo; Pfeiler, Georg; Phelan, Catherine M; Piedmonte, Marion; Poppe, Bruce; Pujana, Miquel Angel; Radice, Paolo; Rennert, Gad; Rodriguez, Gustavo C; Rookus, Matti A; Ross, Eric A; Schmutzler, Rita Katharina; Simard, Jacques; Singer, Christian F; Slavin, Thomas P; Soucy, Penny; Southey, Melissa; Steinemann, Doris; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Sutter, Christian; Szabo, Csilla I; Tea, Muy-Kheng; Teixeira, Manuel R; Teo, Soo-Hwang; Terry, Mary Beth; Thomassen, Mads; Tibiletti, Maria Grazia; Tihomirova, Laima; Tognazzo, Silvia; van Rensburg, Elizabeth J; Varesco, Liliana; Varon-Mateeva, Raymonda; Vratimos, Athanassios; Weitzel, Jeffrey N; McGuffog, Lesley; Kirk, Judy; Toland, Amanda Ewart; Hamann, Ute; Lindor, Noralane; Ramus, Susan J; Greene, Mark H; Couch, Fergus J; Offit, Kenneth; Pharoah, Paul D P; Chenevix-Trench, Georgia; Antoniou, Antonis C

    2016-01-01

    Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

  20. Eosinophilic myositis as first manifestation in a patient with type 2 myotonic dystrophy CCTG expansion mutation and rheumatoid arthritis.

    PubMed

    Meyer, Alain; Lannes, Béatrice; Carapito, Raphaël; Bahram, Seiamak; Echaniz-Laguna, Andoni; Geny, Bernard; Sibilia, Jean; Gottenberg, Jacques Eric

    2015-02-01

    Eosinophilic myositis is characterized by eosinophilic infiltration of skeletal muscles. In the absence of an identifiable causative factor or source (including parasitic infection, intake of drugs or L-tryptophan, certain systemic disorders as well as malignant diseases), the diagnosis of idiopathic eosinophilic myositis is usually retained. However, some muscular dystrophies have been recently identified in this subset of eosinophilic myositis. Here, we report a patient with an 8 kb CCTG expansion in intron 1 of the CNBP gene, a mutation characteristic of myotonic dystrophy type 2 (DM2), whose first manifestation was "idiopathic" eosinophilic myositis. This report suggests that in "idiopathic" eosinophilic myositis, clinicians should consider muscular dystrophies, including DM2. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Use of mutational pattern in 5'-NCR and VP1 regions of polioviruses for molecular diagnosis.

    PubMed

    Pliaka, V; Dedepsidis, E; Kyriakopoulou, Z; Papadopoulou, I; Levidiotou, S; Markoulatos, P

    2007-08-01

    Polioviruses are members of the enterovirus genus, belonging to the Picornaviridae family. They are the causative agents of poliomyelitis, a paralytic and sometimes fatal disease in humans. The number of poliomyelitis cases caused by wild poliovirus infections has been dramatically reduced by the extensive use of two available vaccines: the inactivated poliovirus vaccine (IPV) and the oral poliovirus vaccine (OPV). Despite the importance of OPV in the reduction of poliomyelitis cases, one of the disadvantages associated with this vaccine is the rare occurrence of vaccine-associated paralytic poliomyelitis (VAPP) in vaccinees or their healthy contacts through the accumulation of mutations and/or recombination in Sabin strains genome. Thirteen clinical isolates originating from healthy vaccinees and VAPP cases were investigated in order to identify genomic modifications in 5' non-coding region (5'-NCR) and VP1 genomic regions. The analysis of samples was conducted by RT-PCR, RFLP, sequencing and bioinformatics analysis. All clinical isolates were characterized as OPV-like viruses. Our results showed that analysis of 5'-NCR and VP1 regions of Poliovirus Sabin strains is important in order to identify mutations that increase the neurovirulence conducting to the eventuality of emergence of VAPP cases.

  2. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia and coloboma: a new dimension to the STRA6 phenotype

    PubMed Central

    Casey, Jillian; Kawaguchi, Riki; Morrissey, Maria; Sun, Hui; McGettigan, Paul; Nielsen, Jens Erik; Conroy, Judith; Regan, Regina; Kenny, Elaine; Cormican, Paul; Morris, Derek W; Tormey, Peter; Chróinín, Muireann Ní; Kennedy, Breandan N; Lynch, SallyAnn; Green, Andrew; Ennis, Sean

    2014-01-01

    Microphthalmia, anophthalmia and coloboma (MAC) are structural congenital eye malformations that cause a significant proportion of childhood visual impairments. Several disease genes have been identified but do not account for all MAC cases, suggesting that additional risk loci exist. We used SNP homozygosity mapping (HM) and targeted next-generation sequencing to identify the causative mutation for autosomal recessive isolated colobomatous micro-anophthalmia (MCOPCB) in a consanguineous Irish Traveller family. We identified a double nucleotide polymorphism (g.1157G>A and g.1156G>A; p.G304K) in STRA6 that was homozygous in all of the MCOPCB patients. The STRA6 p.G304K mutation was subsequently detected in additional MCOPCB patients, including one individual with Matthew-Wood syndrome (MWS; MCOPS9). STRA6 encodes a transmembrane receptor involved in vitamin A uptake, a process essential to eye development and growth. We have shown that the G304K mutant STRA6 protein is mislocalised and has severely reduced vitamin A uptake activity. Furthermore, we reproduced the MCOPCB phenotype in a zebrafish disease model by inhibiting retinoic acid synthesis, suggesting that diminished retinoic acid levels account for the eye malformations in STRA6 p.G304K patients. The current study demonstrates that STRA6 mutations can cause isolated eye malformations in addition to the congenital anomalies observed in MWS. PMID:21901792

  3. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype.

    PubMed

    Casey, Jillian; Kawaguchi, Riki; Morrissey, Maria; Sun, Hui; McGettigan, Paul; Nielsen, Jens E; Conroy, Judith; Regan, Regina; Kenny, Elaine; Cormican, Paul; Morris, Derek W; Tormey, Peter; Chróinín, Muireann Ní; Kennedy, Breandan N; Lynch, SallyAnn; Green, Andrew; Ennis, Sean

    2011-12-01

    Microphthalmia, anophthalmia, and coloboma (MAC) are structural congenital eye malformations that cause a significant proportion of childhood visual impairments. Several disease genes have been identified but do not account for all MAC cases, suggesting that additional risk loci exist. We used single nucleotide polymorphism (SNP) homozygosity mapping (HM) and targeted next-generation sequencing to identify the causative mutation for autosomal recessive isolated colobomatous microanophthalmia (MCOPCB) in a consanguineous Irish Traveller family. We identified a double-nucleotide polymorphism (g.1157G>A and g.1156G>A; p.G304K) in STRA6 that was homozygous in all of the MCOPCB patients. The STRA6 p.G304K mutation was subsequently detected in additional MCOPCB patients, including one individual with Matthew-Wood syndrome (MWS; MCOPS9). STRA6 encodes a transmembrane receptor involved in vitamin A uptake, a process essential to eye development and growth. We have shown that the G304K mutant STRA6 protein is mislocalized and has severely reduced vitamin A uptake activity. Furthermore, we reproduced the MCOPCB phenotype in a zebrafish disease model by inhibiting retinoic acid (RA) synthesis, suggesting that diminished RA levels account for the eye malformations in STRA6 p.G304K patients. The current study demonstrates that STRA6 mutations can cause isolated eye malformations in addition to the congenital anomalies observed in MWS. © 2011 Wiley Periodicals, Inc.

  4. Key Clinical Features to Identify Girls with "CDKL5" Mutations

    ERIC Educational Resources Information Center

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydee; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothee; Afenjar, Alexandra; Rio, Marlene; Heron, Delphine; Morel, Marie Ange N'Guyen; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-01-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 ("CDKL5") gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of…

  5. Whole Exome Sequencing Identifies RAI1 Mutation in a Morbidly Obese Child Diagnosed With ROHHAD Syndrome

    PubMed Central

    Esteves, Kristyn M.; Towne, Meghan C.; Brownstein, Catherine A.; James, Philip M.; Crowley, Laura; Hirschhorn, Joel N.; Elsea, Sarah H.; Beggs, Alan H.; Picker, Jonathan

    2015-01-01

    Context: The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. Objective: To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. Results: We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. Conclusions: This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity. PMID:25781356

  6. Whole exome sequencing identifies RAI1 mutation in a morbidly obese child diagnosed with ROHHAD syndrome.

    PubMed

    Thaker, Vidhu V; Esteves, Kristyn M; Towne, Meghan C; Brownstein, Catherine A; James, Philip M; Crowley, Laura; Hirschhorn, Joel N; Elsea, Sarah H; Beggs, Alan H; Picker, Jonathan; Agrawal, Pankaj B

    2015-05-01

    The current obesity epidemic is attributed to complex interactions between genetic and environmental factors. However, a limited number of cases, especially those with early-onset severe obesity, are linked to single gene defects. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is one of the syndromes that presents with abrupt-onset extreme weight gain with an unknown genetic basis. To identify the underlying genetic etiology in a child with morbid early-onset obesity, hypoventilation, and autonomic and behavioral disturbances who was clinically diagnosed with ROHHAD syndrome. Design/Setting/Intervention: The index patient was evaluated at an academic medical center. Whole-exome sequencing was performed on the proband and his parents. Genetic variants were validated by Sanger sequencing. We identified a novel de novo nonsense mutation, c.3265 C>T (p.R1089X), in the retinoic acid-induced 1 (RAI1) gene in the proband. Mutations in the RAI1 gene are known to cause Smith-Magenis syndrome (SMS). On further evaluation, his clinical features were not typical of either SMS or ROHHAD syndrome. This study identifies a de novo RAI1 mutation in a child with morbid obesity and a clinical diagnosis of ROHHAD syndrome. Although extreme early-onset obesity, autonomic disturbances, and hypoventilation are present in ROHHAD, several of the clinical findings are consistent with SMS. This case highlights the challenges in the diagnosis of ROHHAD syndrome and its potential overlap with SMS. We also propose RAI1 as a candidate gene for children with morbid obesity.

  7. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    PubMed Central

    Gu, Xiaodong; Su, Wenling; Tang, Mingliang; Guo, Luo; Zhao, Liping

    2016-01-01

    DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions. PMID:28116169

  8. De novo FBXO11 mutations are associated with intellectual disability and behavioural anomalies.

    PubMed

    Fritzen, Daniel; Kuechler, Alma; Grimmel, Mona; Becker, Jessica; Peters, Sophia; Sturm, Marc; Hundertmark, Hela; Schmidt, Axel; Kreiß, Martina; Strom, Tim M; Wieczorek, Dagmar; Haack, Tobias B; Beck-Wödl, Stefanie; Cremer, Kirsten; Engels, Hartmut

    2018-05-01

    Intellectual disability (ID) has an estimated prevalence of 1.5-2%. In most affected individuals, its genetic basis remains unclear. Whole exome sequencing (WES) studies have identified a multitude of novel causative gene defects and have shown that a large proportion of sporadic ID cases results from de novo mutations. Here, we present two unrelated individuals with similar clinical features and deleterious de novo variants in FBXO11 detected by WES. Individual 1, a 14-year-old boy, has mild ID as well as mild microcephaly, corrected cleft lip and alveolus, hyperkinetic disorder, mild brain atrophy and minor facial dysmorphism. WES detected a heterozygous de novo 1 bp insertion in the splice donor site of exon 3. Individual 2, a 3-year-old boy, showed ID and pre- and postnatal growth retardation, postnatal mild microcephaly, hyperkinetic and restless behaviour, as well as mild dysmorphism. WES detected a heterozygous de novo frameshift mutation. While ten individuals with ID and de novo variants in FBXO11 have been reported as part of larger studies, only one of the reports has some additional clinical data. Interestingly, the latter individual carries the identical mutation as our individual 2 and also displays ID, intrauterine growth retardation, microcephaly, behavioural anomalies, and dysmorphisms. Thus, we confirm deleterious de novo mutations in FBXO11 as a cause of ID and start the delineation of the associated clinical picture which may also comprise postnatal microcephaly or borderline small head size and behavioural anomalies.

  9. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    PubMed Central

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  10. MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement.

    PubMed

    Brancati, Francesco; Iannicelli, Miriam; Travaglini, Lorena; Mazzotta, Annalisa; Bertini, Enrico; Boltshauser, Eugen; D'Arrigo, Stefano; Emma, Francesco; Fazzi, Elisa; Gallizzi, Romina; Gentile, Mattia; Loncarevic, Damir; Mejaski-Bosnjak, Vlatka; Pantaleoni, Chiara; Rigoli, Luciana; Salpietro, Carmelo D; Signorini, Sabrina; Stringini, Gilda Rita; Verloes, Alain; Zabloka, Dominika; Dallapiccola, Bruno; Gleeson, Joseph G; Valente, Enza Maria

    2009-02-01

    The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the "molar tooth sign", a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs. (c) 2008 Wiley-Liss, Inc.

  11. MKS3/TMEM67 Mutations Are a Major Cause of COACH Syndrome, a Joubert Syndrome Related Disorder with Liver Involvement

    PubMed Central

    Brancati, Francesco; Iannicelli, Miriam; Travaglini, Lorena; Mazzotta, Annalisa; Bertini, Enrico; Boltshauser, Eugen; D’Arrigo, Stefano; Emma, Francesco; Fazzi, Elisa; Gallizzi, Romina; Gentile, Mattia; Loncarevic, Damir; Mejaski-Bosnjak, Vlatka; Pantaleoni, Chiara; Rigoli, Luciana; Salpietro, Carmelo D.; Signorini, Sabrina; Stringini, Gilda Rita; Verloes, Alain; Zabloka, Dominika; Dallapiccola, Bruno; Gleeson, Joseph G.; Valente, Enza Maria

    2008-01-01

    The acronym COACH defines an autosomal recessive condition of Cerebellar vermis hypo/aplasia, Oligophrenia, congenital Ataxia, Coloboma and Hepatic fibrosis. Patients present the “molar tooth sign”, a midbrain-hindbrain malformation pathognomonic for Joubert Syndrome (JS) and Related Disorders (JSRDs). The main feature of COACH is congenital hepatic fibrosis (CHF), resulting from malformation of the embryonic ductal plate. CHF is invariably found also in Meckel syndrome (MS), a lethal ciliopathy already found to be allelic with JSRDs at the CEP290 and RPGRIP1L genes. Recently, mutations in the MKS3 gene (approved symbol TMEM67), causative of about 7% MS cases, have been detected in few Meckel-like and pure JS patients. Analysis of MKS3 in 14 COACH families identified mutations in 8 (57%). Features such as colobomas and nephronophthisis were found only in a subset of mutated cases. These data confirm COACH as a distinct JSRD subgroup with core features of JS plus CHF, which major gene is MKS3, and further strengthen gene-phenotype correlates in JSRDs. PMID:19058225

  12. A COL11A2 mutation in Labrador retrievers with mild disproportionate dwarfism.

    PubMed

    Frischknecht, Mirjam; Niehof-Oellers, Helena; Jagannathan, Vidhya; Owczarek-Lipska, Marta; Drögemüller, Cord; Dietschi, Elisabeth; Dolf, Gaudenz; Tellhelm, Bernd; Lang, Johann; Tiira, Katriina; Lohi, Hannes; Leeb, Tosso

    2013-01-01

    We describe a mild form of disproportionate dwarfism in Labrador Retrievers, which is not associated with any obvious health problems such as secondary arthrosis. We designate this phenotype as skeletal dysplasia 2 (SD2). It is inherited as a monogenic autosomal recessive trait with incomplete penetrance primarily in working lines of the Labrador Retriever breed. Using 23 cases and 37 controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 4.44 Mb interval on chromosome 12. We re-sequenced the genome of one affected dog at 30x coverage and detected 92 non-synonymous variants in the critical interval. Only two of these variants, located in the lymphotoxin A (LTA) and collagen alpha-2(XI) chain gene (COL11A2), respectively, were perfectly associated with the trait. Previously described COL11A2 variants in humans or mice lead to skeletal dysplasias and/or deafness. The dog variant associated with disproportionate dwarfism, COL11A2:c.143G>C or p.R48P, probably has only a minor effect on collagen XI function, which might explain the comparatively mild phenotype seen in our study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of COL11A2 mutations. We speculate that non-pathogenic COL11A2 variants might even contribute to the heritable variation in height.

  13. Etiology in psychiatry: embracing the reality of poly‐gene‐environmental causation of mental illness

    PubMed Central

    Uher, Rudolf; Zwicker, Alyson

    2017-01-01

    Intriguing findings on genetic and environmental causation suggest a need to reframe the etiology of mental disorders. Molecular genetics shows that thousands of common and rare genetic variants contribute to mental illness. Epidemiological studies have identified dozens of environmental exposures that are associated with psychopathology. The effect of environment is likely conditional on genetic factors, resulting in gene‐environment interactions. The impact of environmental factors also depends on previous exposures, resulting in environment‐environment interactions. Most known genetic and environmental factors are shared across multiple mental disorders. Schizophrenia, bipolar disorder and major depressive disorder, in particular, are closely causally linked. Synthesis of findings from twin studies, molecular genetics and epidemiological research suggests that joint consideration of multiple genetic and environmental factors has much greater explanatory power than separate studies of genetic or environmental causation. Multi‐factorial gene‐environment interactions are likely to be a generic mechanism involved in the majority of cases of mental illness, which is only partially tapped by existing gene‐environment studies. Future research may cut across psychiatric disorders and address poly‐causation by considering multiple genetic and environmental measures across the life course with a specific focus on the first two decades of life. Integrative analyses of poly‐causation including gene‐environment and environment‐environment interactions can realize the potential for discovering causal types and mechanisms that are likely to generate new preventive and therapeutic tools. PMID:28498595

  14. Novel Mutations in the ZEB1 Gene Identified in Czech and British Patients With Posterior Polymorphous Corneal Dystrophy

    PubMed Central

    Liskova, Petra; Tuft, Stephen J.; Gwilliam, Rhian; Ebenezer, Neil D.; Jirsova, Katerina; Prescott, Quincy; Martincova, Radka; Pretorius, Marike; Sinclair, Neil; Boase, David L.; Jeffrey, Margaret J.; Deloukas, Panos; Hardcastle, Alison J.; Filipec, Martin; Bhattacharya, Shomi S.

    2009-01-01

    We describe the search for mutations in six unrelated Czech and four unrelated British families with posterior polymorphous corneal dystrophy (PPCD); a relatively rare eye disorder. Coding exons and intron/exon boundaries of all three genes (VSX1, COL8A2, and ZEB1/TCF8) previously reported to be implicated in the pathogenesis of this disorder were screened by DNA sequencing. Four novel pathogenic mutations were identified in four families; two deletions, one nonsense, and one duplication within exon 7 in the ZEB1 gene located at 10p11.2. We also genotyped the Czech patients to test for a founder haplotype and lack of disease segregation with the 20p11.2 locus we previously described. Although a systematic clinical examination was not performed, our investigation does not support an association between ZEB1 changes and self reported non-ocular anomalies. In the remaining six families no disease causing mutations were identified thereby indicating that as yet unidentified gene(s) are likely to be responsible for PPCD. PMID:17437275

  15. Physical Causation. Phil Dowe, Physical causation (Cambridge Studies in Probability, Induction, and Decision Theory), Cambridge University Press, Cambridge, 2000, pp. ix+224, price US60.00, ISBN: 0-521-78049-7 hbk

    NASA Astrophysics Data System (ADS)

    Hausman, Daniel M.

    Causation is a frustrating subject. Suppose one begins with some promising idea such as that causation is counterfactual dependence or statistical relevance. One then develops this idea with care and intelligence, revises and improves it to cope with criticisms, and by the time one is finished, sane people will be looking elsewhere. If one wants conclusive reasons to reject the counterfactual theory of causation, one can do no better than to read Lewis' (1986) many postscripts. If one wants the best refutation of a probabilistic theory of causation, then one should read my colleague, Ellery Eells' (1991) magisterial defense. In Physical Causation, Phil Dowe performs the same service for physical process/interaction theories of causation.

  16. Assessment of canine BEST1 variations identifies new mutations and establishes an independent bestrophinopathy model (cmr3)

    PubMed Central

    Wickström, Kaisa; Slavik, Julianna; Lindauer, Sarah J.; Ahonen, Saija; Schelling, Claude; Lohi, Hannes; Guziewicz, Karina E.; Aguirre, Gustavo D.

    2010-01-01

    Purpose Mutations in bestrophin 1 (BEST1) are associated with a group of retinal disorders known as bestrophinopathies in man and canine multifocal retinopathies (cmr) in the dog. To date, the dog is the only large animal model suitable for the complex characterization and in-depth studies of Best-related disorders. In the first report of cmr, the disease was described in a group of mastiff-related breeds (cmr1) and the Coton de Tulear (cmr2). Additional breeds, e.g., the Lapponian herder (LH) and others, subsequently were recognized with similar phenotypes, but linked loci are unknown. Analysis of the BEST1 gene aimed to identify mutations in these additional populations and extend our understanding of genotype–phenotype associations. Methods Animals were subjected to routine eye exams, phenotypically characterized, and samples were collected for molecular studies. Known BEST1 mutations were assessed, and the canine BEST1 coding exons were amplified and sequenced in selected individuals that exhibited a cmr compatible phenotype but that did not carry known mutations. Resulting sequence changes were genotyped in several different breeds and evaluated in the context of the phenotype. Results Seven novel coding variants were identified in exon 10 of cBEST1. Two linked mutations were associated with cmr exclusive to the LH breed (cmr3). Two individuals of Jämthund and Norfolk terrier breeds were heterozygous for two conservative changes, but these were unlikely to have disease-causing potential. Another three substitutions were found in the Bernese mountain dog that were predicted to have a deleterious effect on protein function. Previously reported mutations were excluded from segregation in these populations, but cmr1 was confirmed in another mastiff-related breed, the Italian cane corso. Conclusions A third independent canine model for human bestrophinopathies has been established in the LH breed. While exhibiting a phenotype comparable to cmr1 and cmr2, the

  17. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  18. An Investigation of the Spanish Causatives: "Hacer Ver, Hacer Creer, Hacer Pensar, Hacer Saber."

    ERIC Educational Resources Information Center

    Dowling, Lee H.

    1981-01-01

    Presents study which shows that although these causatives have same surface structure as productive causative constructions they differ in several ways, e.g., unlike other productive causatives their meaning changes when "que" subjunctive is substituted for the infinitive, and they function like lexical causatives which involve agent-patient, not…

  19. The CDC Hemophilia A Mutation Project (CHAMP) Mutation List: a New Online Resource

    PubMed Central

    Payne, Amanda B.; Miller, Connie H.; Kelly, Fiona M.; Soucie, J. Michael; Hooper, W. Craig

    2015-01-01

    Genotyping efforts in hemophilia A (HA) populations in many countries have identified large numbers of unique mutations in the Factor VIII gene (F8). To assist HA researchers conducting genotyping analyses, we have developed a listing of F8 mutations including those listed in existing locus-specific databases as well as those identified in patient populations and reported in the literature. Each mutation was reviewed and uniquely identified using Human Genome Variation Society (HGVS) nomenclature standards for coding DNA and predicted protein changes as well as traditional nomenclature based on the mature, processed protein. Listings also include the associated hemophilia severity classified by International Society of Thrombosis and Haemostasis (ISTH) criteria, associations of the mutations with inhibitors, and reference information. The mutation list currently contains 2,537 unique mutations known to cause HA. HA severity caused by the mutation is available for 2,022 mutations (80%) and information on inhibitors is available for 1,816 mutations (72%). The CDC Hemophilia A Mutation Project (CHAMP) Mutation List is available at http://www.cdc.gov/hemophiliamutations for download and search and will be updated quarterly based on periodic literature reviews and submitted reports. PMID:23280990

  20. Whole Genome Sequencing of High-Risk Families to Identify New Mutational Mechanisms of Breast Cancer Predisposition

    DTIC Science & Technology

    2014-10-01

    INTRODUCTION: Despite tremendous advances in mutation detection with gene panels and exome sequencing the majority of high risk breast...2a. Align reads to the reference sequence (months 4-10) 2b. Identify SNPs, indels, CNVs and rearrangements by bioinformatic tools (months 4-10) 2c

  1. Wrongful life: the problem of causation.

    PubMed

    Mason, J K

    2004-01-01

    The paper considers the status of the wrongful life action particularly in the light of the recent acceptance of such actions in continental Europe. It is considered that the hurdle of causation is still not adequately overcome in these cases and, in a search for an answer to the difficulty, the author re-examines the Canadian case of Cherry v Borsman. This case was originally thought of as one of wrongful life associated with a negligently performed abortion and the paper attempts to overcome the problems of causation by comparing and contrasting the roles of the genetic counsellor and the abortionist. While the attempt is by no means wholly successful, it also serves to draw attention to some significant differences between wrongful life actions based on physical and mental disability in the neonate.

  2. Targeted High-Throughput Sequencing Identifies Mutations in atlastin-1 as a Cause of Hereditary Sensory Neuropathy Type I

    PubMed Central

    Guelly, Christian; Zhu, Peng-Peng; Leonardis, Lea; Papić, Lea; Zidar, Janez; Schabhüttl, Maria; Strohmaier, Heimo; Weis, Joachim; Strom, Tim M.; Baets, Jonathan; Willems, Jan; De Jonghe, Peter; Reilly, Mary M.; Fröhlich, Eleonore; Hatz, Martina; Trajanoski, Slave; Pieber, Thomas R.; Janecke, Andreas R.; Blackstone, Craig; Auer-Grumbach, Michaela

    2011-01-01

    Hereditary sensory neuropathy type I (HSN I) is an axonal form of autosomal-dominant hereditary motor and sensory neuropathy distinguished by prominent sensory loss that leads to painless injuries. Unrecognized, these can result in delayed wound healing and osteomyelitis, necessitating distal amputations. To elucidate the genetic basis of an HSN I subtype in a family in which mutations in the few known HSN I genes had been excluded, we employed massive parallel exon sequencing of the 14.3 Mb disease interval on chromosome 14q. We detected a missense mutation (c.1065C>A, p.Asn355Lys) in atlastin-1 (ATL1), a gene that is known to be mutated in early-onset hereditary spastic paraplegia SPG3A and that encodes the large dynamin-related GTPase atlastin-1. The mutant protein exhibited reduced GTPase activity and prominently disrupted ER network morphology when expressed in COS7 cells, strongly supporting pathogenicity. An expanded screen in 115 additional HSN I patients identified two further dominant ATL1 mutations (c.196G>C [p.Glu66Gln] and c.976 delG [p.Val326TrpfsX8]). This study highlights an unexpected major role for atlastin-1 in the function of sensory neurons and identifies HSN I and SPG3A as allelic disorders. PMID:21194679

  3. Functional examination of MLH1, MSH2, and MSH6 intronic mutations identified in Danish colorectal cancer patients.

    PubMed

    Petersen, Sanne M; Dandanell, Mette; Rasmussen, Lene J; Gerdes, Anne-Marie; Krogh, Lotte N; Bernstein, Inge; Okkels, Henrik; Wikman, Friedrik; Nielsen, Finn C; Hansen, Thomas V O

    2013-10-03

    Germ-line mutations in the DNA mismatch repair genes MLH1, MSH2, and MSH6 predispose to the development of colorectal cancer (Lynch syndrome or hereditary nonpolyposis colorectal cancer). These mutations include disease-causing frame-shift, nonsense, and splicing mutations as well as large genomic rearrangements. However, a large number of mutations, including missense, silent, and intronic variants, are classified as variants of unknown clinical significance. Intronic MLH1, MSH2, or MSH6 variants were investigated using in silico prediction tools and mini-gene assay to asses the effect on splicing. We describe in silico and in vitro characterization of nine intronic MLH1, MSH2, or MSH6 mutations identified in Danish colorectal cancer patients, of which four mutations are novel. The analysis revealed aberrant splicing of five mutations (MLH1 c.588 + 5G > A, MLH1 c.677 + 3A > T, MLH1 c.1732-2A > T, MSH2 c.1276 + 1G > T, and MSH2 c.1662-2A > C), while four mutations had no effect on splicing compared to wild type (MLH1 c.117-34A > T, MLH1 c.1039-8 T > A, MSH2 c.2459-18delT, and MSH6 c.3439-16C > T). In conclusion, we classify five MLH1/MSH2 mutations as pathogenic, whereas four MLH1/MSH2/MSH6 mutations are classified as neutral. This study supports the notion that in silico prediction tools and mini-gene assays are important for the classification of intronic variants, and thereby crucial for the genetic counseling of patients and their family members.

  4. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS

    PubMed Central

    Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don

    2016-01-01

    Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928

  5. Whole genome re-sequencing identifies a mutation in an ABC transporter (mdr2) in a Plasmodium chabaudi clone with altered susceptibility to antifolate drugs☆

    PubMed Central

    Martinelli, Axel; Henriques, Gisela; Cravo, Pedro; Hunt, Paul

    2011-01-01

    In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates. PMID:20858498

  6. Mutation Spectrum and Phenotypic Features in Noonan Syndrome with PTPN11 Mutations: Definition of Two Novel Mutations.

    PubMed

    Atik, Tahir; Aykut, Ayca; Hazan, Filiz; Onay, Huseyin; Goksen, Damla; Darcan, Sukran; Tukun, Ajlan; Ozkinay, Ferda

    2016-06-01

    To evaluate the spectrum of PTPN11 gene mutations in Noonan syndrome patients and to study the genotype-phenotype associations. In this study, twenty Noonan syndrome patients with PTPN11 mutations were included. The patients underwent a detailed clinical and physical evaluation. To identify inherited cases, parents of all mutation positive patients were analyzed. Thirteen different PTPN11 mutations, two of them being novel, were detected in the study group. These mutations included eleven missense mutations: p.G60A, p.D61N, p.Y62D, p.Y63C, p.E69Q, p.Q79R, p.Y279C,p.N308D, p.N308S, p.M504V, p.Q510R and two novel missense mutations: p.I56V and p.I282M. The frequency of cardiac abnormalities and short stature were found to be 80 % and 80 %, respectively. Mental retardation was not observed in patients having exon 8 mutations. No significant correlations were detected between other phenotypic features and genotypes. By identifying genotype-phenotype correlations, this study provides information on phenotypes observed in NS patients with different PTPN11 mutations.

  7. Novel mutations in the CHST6 gene associated with macular corneal dystrophy in southern India.

    PubMed

    Warren, John F; Aldave, Anthony J; Srinivasan, M; Thonar, Eugene J; Kumar, Abha B; Cevallos, Vicky; Whitcher, John P; Margolis, Todd P

    2003-11-01

    To further characterize the role of the carbohydrate sulfotransferase (CHST6) gene in macular corneal dystrophy (MCD) through identification of causative mutations in a cohort of affected patients from southern India. Genomic DNA was extracted from buccal epithelium of 75 patients (51 families) with MCD, 33 unaffected relatives, and 48 healthy volunteers. The coding region of the CHST6 gene was evaluated by means of polymerase chain reaction amplification and direct sequencing. Subtyping of MCD into types I and II was performed by measuring serum levels of antigenic keratan sulfate. Seventy patients were classified as having type I MCD, and 5 patients as having type II MCD. Analysis of the CHST6 coding region in patients with type I MCD identified 11 homozygous missense mutations (Leu22Arg, His42Tyr, Arg50Cys, Arg50Leu, Ser53Leu, Arg97Pro, Cys102Tyr, Arg127Cys, Arg205Gln, His249Pro, and Glu274Lys), 2 compound heterozygous missense mutations (Arg93His and Ala206Thr), 5 homozygous deletion mutations (delCG707-708, delC890, delA1237, del1748-1770, and delORF), and 2 homozygous replacement mutations (ACCTAC 1273 GGT, and GCG 1304 AT). One patient with type II MCD was heterozygous for the C890 deletion mutation, whereas 4 possessed no CHST6 coding region mutations. A variety of previously unreported mutations in the coding region of the CHST6 gene are associated with type I MCD in a cohort of patients in southern India. An improved understanding of the genetic basis of MCD allows for earlier, more accurate diagnosis of affected individuals, and may provide the foundation for the development of novel disease treatments.

  8. Mutations in SOX17 are Associated with Congenital Anomalies of the Kidney and the Urinary Tract

    PubMed Central

    Gimelli, Stefania; Caridi, Gianluca; Beri, Silvana; McCracken, Kyle; Bocciardi, Renata; Zordan, Paola; Dagnino, Monica; Fiorio, Patrizia; Murer, Luisa; Benetti, Elisa; Zuffardi, Orsetta; Giorda, Roberto; Wells, James M; Gimelli, Giorgio; Ghiggeri, Gian Marco

    2010-01-01

    Congenital anomalies of the kidney and the urinary tract (CAKUT) represent a major source of morbidity and mortality in children. Several factors (PAX, SOX,WNT, RET, GDFN, and others) play critical roles during the differentiation process that leads to the formation of nephron epithelia. We have identified mutations in SOX17, an HMG-box transcription factor and Wnt signaling antagonist, in eight patients with CAKUT (seven vesico-ureteric reflux, one pelvic obstruction). One mutation, c.775T>A (p.Y259N), recurred in six patients. Four cases derived from two small families; renal scars with urinary infection represented the main symptom at presentation in all but two patients. Transfection studies indicated a 5–10-fold increase in the levels of the mutant protein relative to wild-type SOX17 in transfected kidney cells. Moreover we observed a corresponding increase in the ability of SOX17 p.Y259N to inhibit Wnt/β-catenin transcriptional activity, which is known to regulate multiple stages of kidney and urinary tract development. In conclusion, SOX17 p.Y259N mutation is recurrent in patients with CAKUT. Our data shows that this mutation correlates with an inappropriate accumulation of SOX17-p.Y259N protein and inhibition of the β-catenin/Wnt signaling pathway. These data indicate a role of SOX17 in human kidney and urinary tract development and implicate the SOX17–p.Y259N mutation as a causative factor in CAKUT. Hum Mutat 31:1352–1359, 2010. © 2010 Wiley-Liss, Inc. PMID:20960469

  9. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation.

    PubMed

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H; Yang, Rui; Killela, Patrick J; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Liang, Junbo; Wang, Sizhen; Jiao, Yuchen; Yan, Hai; Tao, Hou-Quan

    2015-05-01

    Several somatic mutation hotspots were recently identified in the telomerase reverse transcriptase (TERT) promoter region in human cancers. Large scale studies of these mutations in multiple tumour types are limited, in particular in Asian populations. This study aimed to: analyse TERT promoter mutations in multiple tumour types in a large Chinese patient cohort, investigate novel tumour types and assess the functional significance of the mutations. TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumour types and 799 tumour tissues from Chinese cancer patients. Thymic epithelial tumours, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), telomerase activity by the telomeric repeat amplification protocol (TRAP) assay and promoter activity by the luciferase reporter assay. TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%) and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in gastrointestinal stromal tumour (GIST), thymic epithelial tumours, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. TERT promoter mutations are frequent in multiple tumour types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumourigenesis, making them

  10. Risk, Causation, Mediation, and Moderation

    ERIC Educational Resources Information Center

    Kumsta, Robert; Rutter, Michael; Stevens, Suzanne; Sonuga-Barke, Edmund J.

    2010-01-01

    Throughout this monograph, there has been frequent reference to levels of risk, inference of causation, testing for mediating variables, and the need to consider possible moderating influences. In this chapter, the authors review what is meant by these concepts, and then seek to pull together the findings from the English and Romanian Adoptee…

  11. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2

    PubMed Central

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-01-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF. PMID:28356565

  12. Functional analysis of a nonstop mutation in MITF gene identified in a patient with Waardenburg syndrome type 2.

    PubMed

    Sun, Jie; Hao, Ziqi; Luo, Hunjin; He, Chufeng; Mei, Lingyun; Liu, Yalan; Wang, Xueping; Niu, Zhijie; Chen, Hongsheng; Li, Jia-Da; Feng, Yong

    2017-07-01

    Waardenburg syndrome (WS) is an autosomal dominant inherited neurogenic disorder with the combination of various degrees of sensorineural deafness and pigmentary abnormalities affecting the skin, hair and eye. The four subtypes of WS were defined on the basis of the presence or absence of additional symptoms. Mutation of human microphthalmia-associated transcription factor (MITF) gene gives rise to WS2. Here, we identified a novel WS-associated mutation at the stop codon of MITF (p.X420Y) in a Chinese WS2 patient. This mutation resulted in an extension of extra 33 amino-acid residues in MITF. The mutant MITF appeared in both the nucleus and the cytoplasm, whereas the wild-type MITF was localized in the nucleus exclusively. The mutation led to a reduction in the transcriptional activities, whereas the DNA-binding activity was not altered. We show that the foremost mechanism was haploinsufficiency for the mild phenotypes of WS2 induced in X420Y MITF.

  13. Modality and Causation in Serbian Dative Anticausatives: A Crosslinguistic Perspective

    ERIC Educational Resources Information Center

    Ilic, Tatjana

    2013-01-01

    In this dissertation I provide a principled, unified account of modality and causation in Serbian dative anticausatives using a typological, cognitive approach. This analysis is set within a larger claim that the causative and modal meanings crosslinguistically arise in the same morphosyntactic environments, indicating a shared conceptual base…

  14. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB.

    PubMed

    Bicknell, Louise S; Farrington-Rock, Claire; Shafeghati, Yousef; Rump, Patrick; Alanay, Yasemin; Alembik, Yves; Al-Madani, Navid; Firth, Helen; Karimi-Nejad, Mohammad Hassan; Kim, Chong Ae; Leask, Kathryn; Maisenbacher, Melissa; Moran, Ellen; Pappas, John G; Prontera, Paolo; de Ravel, Thomy; Fryns, Jean-Pierre; Sweeney, Elizabeth; Fryer, Alan; Unger, Sheila; Wilson, L C; Lachman, Ralph S; Rimoin, David L; Cohn, Daniel H; Krakow, Deborah; Robertson, Stephen P

    2007-02-01

    Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied. Probands were screened for mutations in FLNB using a combination of denaturing high-performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated. The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome-associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G-->A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non-random, with clusters of mutations leading to substitutions in the actin-binding domain and filamin repeats 13-17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB.

  15. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus

    PubMed Central

    Ameratunga, Rohan; Koopmans, Wikke; Woon, See-Tarn; Leung, Euphemia; Lehnert, Klaus; Slade, Charlotte A; Tempany, Jessica C; Enders, Anselm; Steele, Richard; Browett, Peter; Hodgkin, Philip D; Bryant, Vanessa L

    2017-01-01

    Common variable immunodeficiency disorders (CVID) are a group of primary immunodeficiencies where monogenetic causes account for only a fraction of cases. On this evidence, CVID is potentially polygenic and epistatic although there are, as yet, no examples to support this hypothesis. We have identified a non-consanguineous family, who carry the C104R (c.310T>C) mutation of the Transmembrane Activator Calcium-modulator and cyclophilin ligand Interactor (TACI, TNFRSF13B) gene. Variants in TNFRSF13B/TACI are identified in up to 10% of CVID patients, and are associated with, but not solely causative of CVID. The proband is heterozygous for the TNFRSF13B/TACI C104R mutation and meets the Ameratunga et al. diagnostic criteria for CVID and the American College of Rheumatology criteria for systemic lupus erythematosus (SLE). Her son has type 1 diabetes, arthritis, reduced IgG levels and IgA deficiency, but has not inherited the TNFRSF13B/TACI mutation. Her brother, homozygous for the TNFRSF13B/TACI mutation, is in good health despite profound hypogammaglobulinemia and mild cytopenias. We hypothesised that a second unidentified mutation contributed to the symptomatic phenotype of the proband and her son. Whole-exome sequencing of the family revealed a de novo nonsense mutation (T168fsX191) in the Transcription Factor 3 (TCF3) gene encoding the E2A transcription factors, present only in the proband and her son. We demonstrate mutations of TNFRSF13B/TACI impair immunoglobulin isotype switching and antibody production predominantly via T-cell-independent signalling, while mutations of TCF3 impair both T-cell-dependent and -independent pathways of B-cell activation and differentiation. We conclude that epistatic interactions between mutations of the TNFRSF13B/TACI and TCF3 signalling networks lead to the severe CVID-like disorder and SLE in the proband. PMID:29114388

  16. Spectrum of mutations in steroid-resistant nephrotic syndrome in Chinese children

    PubMed Central

    Wang, Fang; Zhang, Yanqin; Mao, Jianhua; Yu, Zihua; Yi, Zhuwen; Yu, Li; Sun, Jun; Wei, Xiuxiu; Ding, Fangrui; Zhang, Hongwen; Xiao, Huijie; Yao, Yong; Tan, Weizhen; Lovric, Svjetlana; Ding, Jie; Hildebrandt, Friedhelm

    2017-01-01

    Background The aim of this study was to elucidate whether genetic screening test results of pediatric steroid-resistant nephrotic syndrome (SRNS) patients vary with ethnicity. Methods Using high-throughput DNA sequencing, 28 nephrotic syndrome-related genes were analyzed in 110 children affected with SRNS and 10 children with isolated proteinuria enrolled by 5 centers in China (67 males, 53 females). Their age at disease onset was 1 day to 208 months (median, 48.8 months). Patients were excluded if their age of onset of disease was beyond 18 years or if they were diagnosed as Alport’s syndrome. Results A genetic etiology was identified in 28.3% of our cohort and the likelihood of establishing a genetic diagnosis decreased as the age of onset of nephrotic syndrome increased. The most common mutated genes were ADCK4 (6.67%), NPHS1 (5.83%), WT1 (5.83%), and NPHS2 (3.33%), and the difference in the frequencies of ADCK4 and NPHS2 mutations between this study and a study on monogenic causes of SRNS in the largest international cohort of 1,783 different families was significant. A case with congenital nephrotic syndrome was attributed to a homozygous missense mutation in ADCK4, and a de novo missense mutation in TRPC6 was detected in a case with infantile nephrotic syndrome. Conclusions Our results showed that, in the first and the largest multicenter cohort of Chinese pediatric SRNS reported to date, ADCK4 is the most common causative gene, whereas there is a low prevalence of NPHS2 mutations. Our data indicated that the genetic testing results for pediatric SRNS patients vary with different ethnicities, and this information will help to improve management of the disease in clinical practice. PMID:28204945

  17. The Development of the Causative Construction in Persian Child Language

    ERIC Educational Resources Information Center

    Family, Neiloufar; Allen, Shanley E. M.

    2015-01-01

    The acquisition of systematic patterns and exceptions in different languages can be readily examined using the causative construction. Persian allows four types of causative structures, including one productive multiword structure (i.e. the light verb construction). In this study, we examine the development of all four structures in Persian child…

  18. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma.

    PubMed

    Hintzsche, Jennifer D; Gorden, Nicholas T; Amato, Carol M; Kim, Jihye; Wuensch, Kelsey E; Robinson, Steven E; Applegate, Allison J; Couts, Kasey L; Medina, Theresa M; Wells, Keith R; Wisell, Joshua A; McCarter, Martin D; Box, Neil F; Shellman, Yiqun G; Gonzalez, Rene C; Lewis, Karl D; Tentler, John J; Tan, Aik Choon; Robinson, William A

    2017-06-01

    Mucosal melanomas are a rare subtype of melanoma, arising in mucosal tissues, which have a very poor prognosis due to the lack of effective targeted therapies. This study aimed to better understand the molecular landscape of these cancers and find potential new therapeutic targets. Whole-exome sequencing was performed on mucosal melanomas from 19 patients and 135 sun-exposed cutaneous melanomas, with matched peripheral blood samples when available. Mutational profiles were compared between mucosal subgroups and sun-exposed cutaneous melanomas. Comparisons of molecular profiles identified 161 genes enriched in mucosal melanoma (P<0.05). KIT and NF1 were frequently comutated (32%) in the mucosal subgroup, with a significantly higher incidence than that in cutaneous melanoma (4%). Recurrent SF3B1 R625H/S/C mutations were identified and validated in 7 of 19 (37%) mucosal melanoma patients. Mutations in the spliceosome pathway were found to be enriched in mucosal melanomas when compared with cutaneous melanomas. Alternative splicing in four genes were observed in SF3B1-mutant samples compared with the wild-type samples. This study identified potential new therapeutic targets for mucosal melanoma, including comutation of NF1 and KIT, and recurrent R625 mutations in SF3B1. This is the first report of SF3B1 R625 mutations in vulvovaginal mucosal melanoma, with the largest whole-exome sequencing project of mucosal melanomas to date. The results here also indicated that the mutations in SF3B1 lead to alternative splicing in multiple genes. These findings expand our knowledge of this rare disease.

  19. Homozygous Loss-of-function Mutations in SOHLH1 in Patients With Nonsyndromic Hypergonadotropic Hypogonadism

    PubMed Central

    Bayram, Yavuz; Gulsuner, Suleyman; Guran, Tulay; Abaci, Ayhan; Yesil, Gozde; Gulsuner, Hilal Unal; Atay, Zeynep; Pierce, Sarah B.; Gambin, Tomasz; Lee, Ming; Turan, Serap; Bober, Ece; Atik, Mehmed M.; Walsh, Tom; Karaca, Ender; Pehlivan, Davut; Jhangiani, Shalini N.; Muzny, Donna; Bereket, Abdullah; Buyukgebiz, Atilla; Boerwinkle, Eric; Gibbs, Richard A.

    2015-01-01

    Context: Hypergonadotropic hypogonadism presents in females with delayed or arrested puberty, primary or secondary amenorrhea due to gonadal dysfunction, and is further characterized by elevated gonadotropins and low sex steroids. Chromosomal aberrations and various specific gene defects can lead to hypergonadotropic hypogonadism. Responsible genes include those with roles in gonadal development or maintenance, sex steroid synthesis, or end-organ resistance to gonadotropins. Identification of novel causative genes in this disorder will contribute to our understanding of the regulation of human reproductive function. Objectives: The aim of this study was to identify and report the gene responsible for autosomal-recessive hypergonadotropic hypogonadism in two unrelated families. Design and Participants: Clinical evaluation and whole-exome sequencing were performed in two pairs of sisters with nonsyndromic hypergonadotropic hypogonadism from two unrelated families. Results: Exome sequencing analysis revealed two different truncating mutations in the same gene: SOHLH1 c.705delT (p.Pro235fs*4) and SOHLH1 c.27C>G (p.Tyr9stop). Both mutations were unique to the families and segregation was consistent with Mendelian expectations for an autosomal-recessive mode of inheritance. Conclusions: Sohlh1 was known from previous mouse studies to be a transcriptional regulator that functions in the maintenance and survival of primordial ovarian follicles, but loss-of-function mutations in human females have not been reported. Our results provide evidence that homozygous-truncating mutations in SOHLH1 cause female nonsyndromic hypergonadotropic hypogonadism. PMID:25774885

  20. Identification of a Ninein (NIN) mutation in a family with spondyloepimetaphyseal dysplasia with joint laxity (leptodactylic type)-like phenotype.

    PubMed

    Grosch, Melanie; Grüner, Barbara; Spranger, Stephanie; Stütz, Adrian M; Rausch, Tobias; Korbel, Jan O; Seelow, Dominik; Nürnberg, Peter; Sticht, Heinrich; Lausch, Ekkehart; Zabel, Bernhard; Winterpacht, Andreas; Tagariello, Andreas

    2013-01-01

    Spondyloepimetaphyseal dysplasia with joint laxity-leptodactylic type (SEMDJL2) is an autosomal dominant skeletal dysplasia which is characterized by midface hypoplasia, short stature, joint laxity with dislocations, genua valga, progressive scoliosis, and slender fingers. Recently, heterozygous missense mutations in KIF22, a gene which encodes a member of the kinesin-like protein family, have been identified in sporadic as well as familial cases of SEMDJL2. In the present study homozygosity mapping and whole-exome sequencing were combined to analyze a consanguineous family with a phenotype resembling SEMDJL2. We identified homozygous missense mutations in the two nearby genes NIN (Ninein) and POLE2 (DNA polymerase epsilon subunit B) which segregate with the disease in the family and were not present in 500 healthy control individuals and in the 1094 control individuals contained within the 1000-genomes database. We present several lines of evidence that mutant Ninein is most likely causative for the SEMDJL2-like phenotype. The centrosomal protein NIN shows a functional relationship with KIF22 and other proteins associated with chromosome congression/movement, centrosomal function, and ciliogenesis, which have been associated with skeletal dysplasias. Moreover, compound heterozygous missense mutations at more N-terminal positions of Ninein have very recently been identified in a family with microcephalic primordial dwarfism. Together with the present report this strongly supports a fundamental role of Ninein in skeletal development. Copyright © 2013 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  1. Spectrum of benzo[a]pyrene-induced mutations in the Pig-a gene of L5178YTk+/- cells identified with next generation sequencing.

    PubMed

    Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N

    2017-12-01

    We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.

  2. Pedestrian injury causation parameters. Phase 2

    DOT National Transportation Integrated Search

    1981-10-01

    This report describes data collection, quality control and data analysis procedures for a five-team program to study pedestrian injury causation factors. The data file contains 1,997 pedestrian accidents collected during a two and one-half year perio...

  3. Confirmation of Pig-a mutation in flow cytometry-identified CD48-deficient T-lymphocytes from F344 rats.

    PubMed

    Revollo, Javier; Pearce, Mason G; Petibone, Dayton M; Mittelstaedt, Roberta A; Dobrovolsky, Vasily N

    2015-05-01

    The Pig-a assay is used for monitoring somatic cell mutation in laboratory animals and humans. The assay detects haematopoietic cells deficient in glycosylphosphatidylinositol (GPI)-anchored protein surface markers using flow cytometry. However, given that synthesis of the protein markers (and the expression of their genes) is independent of the expression of the X-linked Pig-a gene and the function of its enzyme product, the deficiency of markers at the surface of the cells may be caused by a number of events (e.g. by mutation or epigenetic silencing in the marker gene itself or in any of about two dozen autosomal genes involved in the synthesis of GPI). Here we provide direct evidence that the deficiency of the GPI-anchored surface marker CD48 in rat T-cells is accompanied by mutation in the endogenous X-linked Pig-a gene. We treated male F344 rats with N-ethyl-N-nitrosourea (ENU), and established colonies from flow cytometry-identified and sorted CD48-deficient spleen T-lymphocytes. Molecular analysis confirmed that the expanded sorted cells have mutations in the Pig-a gene. The spectrum of Pig-a mutation in our model was consistent with the spectrum of ENU-induced mutation determined in other in vivo models, mostly base-pair substitutions at A:T with the mutated T on the non-transcribed strand of Pig-a genomic DNA. We also used next generation sequencing to derive a similar mutational spectrum from a pool of 64 clones developed from flow-sorted CD48-deficient lymphocytes. Our findings confirm that Pig-a assays detect what they are designed to detect-gene mutation in the Pig-a gene. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Are Abeta and its derivatives causative agents or innocent bystanders in AD?

    PubMed

    Robakis, Nikolaos K

    2010-01-01

    Alzheimer's disease (AD) is characterized by neurodegeneration in neocortical regions of the brain. Currently, Abeta-based theories, including amyloid depositions and soluble Abeta, form the basis of most therapeutic approaches to AD. It remains unclear, however, whether Abeta and its derivatives are the primary causative agents of neuronal loss in AD. Reported studies show no significant correlations between brain amyloid depositions and either degree of dementia or loss of neurons, and brain amyloid loads similar to AD are often found in normal individuals. Furthermore, behavioral abnormalities in animal models overexpressing amyloid precursor protein seem independent of amyloid depositions. Soluble Abeta theories propose toxic Abeta42 or its oligomers as the agents that promote cell death in AD. Abeta peptides, however, are normal components of human serum and CSF, and it is unclear under what conditions these peptides become toxic. Presently, there is little evidence of disease-associated abnormalities in soluble Abeta and no toxic oligomers specific to AD have been found. That familial AD mutations of amyloid precursor protein, PS1 and PS2 promote neurodegeneration suggests the biological functions of these proteins play critical roles in neuronal survival. Evidence shows that the PS/gamma-secretase system promotes production of peptides involved in cell surface-to-nucleus signaling and gene expression, providing support for the hypothesis that familial AD mutations may contribute to neurodegeneration by inhibiting PS-dependent signaling pathways. Copyright 2010 S. Karger AG, Basel.

  5. Are Aβ and Its Derivatives Causative Agents or Innocent Bystanders in AD?

    PubMed Central

    Robakis, Nikolaos K.

    2010-01-01

    Alzheimer's disease (AD) is characterized by neurodegeneration in neocortical regions of the brain. Currently, Aβ-based theories, including amyloid depositions and soluble Aβ, form the basis of most therapeutic approaches to AD. It remains unclear, however, whether Aβ and its derivatives are the primary causative agents of neuronal loss in AD. Reported studies show no significant correlations between brain amyloid depositions and either degree of dementia or loss of neurons, and brain amyloid loads similar to AD are often found in normal individuals. Furthermore, behavioral abnormalities in animal models overexpressing amyloid precursor protein seem independent of amyloid depositions. Soluble Aβ theories propose toxic Aβ42 or its oligomers as the agents that promote cell death in AD. Aβ peptides, however, are normal components of human serum and CSF, and it is unclear under what conditions these peptides become toxic. Presently, there is little evidence of disease-associated abnormalities in soluble Aβ and no toxic oligomers specific to AD have been found. That familial AD mutations of amyloid precursor protein, PS1 and PS2 promote neurodegeneration suggests the biological functions of these proteins play critical roles in neuronal survival. Evidence shows that the PS/γ-secretase system promotes production of peptides involved in cell surface-to-nucleus signaling and gene expression, providing support for the hypothesis that familial AD mutations may contribute to neurodegeneration by inhibiting PS-dependent signaling pathways. PMID:20160455

  6. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree

    PubMed Central

    Marconi, Caterina; Brunamonti Binello, Paolo; Badiali, Giovanni; Caci, Emanuela; Cusano, Roberto; Garibaldi, Joseph; Pippucci, Tommaso; Merlini, Alberto; Marchetti, Claudio; Rhoden, Kerry J; Galietta, Luis J V; Lalatta, Faustina; Balbi, Paolo; Seri, Marco

    2013-01-01

    Gnathodiaphyseal dysplasia (GDD) is an autosomal dominant syndrome characterized by frequent bone fractures at a young age, bowing of tubular bones and cemento-osseus lesions of the jawbones. Anoctamin 5 (ANO5) belongs to the anoctamin protein family that includes calcium-activated chloride channels. However, recent data together with our own experiments reported here add weight to the hypothesis that ANO5 may not function as calcium-activated chloride channel. By sequencing the entire ANO5 gene coding region and untranslated regions in a large Italian GDD family, we found a novel missense mutation causing the p.Thr513Ile substitution. The mutation segregates with the disease in the family and has never been described in any database as a polymorphism. To date, only two mutations on the same cysteine residue at position 356 of ANO5 amino-acid sequence have been described in GDD families. As ANO5 has also been found to be mutated in two different forms of muscular dystrophy, the finding of this third mutation in GDD adds clues to the role of ANO5 in these disorders. PMID:23047743

  7. An inter-residue network model to identify mutational-constrained regions on the Ebola coat glycoprotein

    PubMed Central

    Quinlan, Devin S.; Raman, Rahul; Tharakaraman, Kannan; Subramanian, Vidya; del Hierro, Gabriella; Sasisekharan, Ram

    2017-01-01

    Recently, progress has been made in the development of vaccines and monoclonal antibody cocktails that target the Ebola coat glycoprotein (GP). Based on the mutation rates for Ebola virus given its natural sequence evolution, these treatment strategies are likely to impose additional selection pressure to drive acquisition of mutations in GP that escape neutralization. Given the high degree of sequence conservation among GP of Ebola viruses, it would be challenging to determine the propensity of acquiring mutations in response to vaccine or treatment with one or a cocktail of monoclonal antibodies. In this study, we analyzed the mutability of each residue using an approach that captures the structural constraints on mutability based on the extent of its inter-residue interaction network within the three-dimensional structure of the trimeric GP. This analysis showed two distinct clusters of highly networked residues along the GP1-GP2 interface, part of which overlapped with epitope surfaces of known neutralizing antibodies. This network approach also permitted us to identify additional residues in the network of the known hotspot residues of different anti-Ebola antibodies that would impact antibody-epitope interactions. PMID:28397835

  8. Novel mutations in the GPIHBP1 gene identified in 2 patients with recurrent acute pancreatitis.

    PubMed

    Ariza, María José; Martínez-Hernández, Pedro Luis; Ibarretxe, Daiana; Rabacchi, Claudio; Rioja, José; Grande-Aragón, Cristina; Plana, Nuria; Tarugi, Patrizia; Olivecrona, Gunilla; Calandra, Sebastiano; Valdivielso, Pedro

    2016-01-01

    Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) has been demonstrated to be essential for the in vivo function of lipoprotein lipase (LPL), the major triglyceride (TG)-hydrolyzing enzyme involved in the intravascular lipolysis of TG-rich lipoproteins. Recently, loss-of-function mutations of GPIHBP1 have been reported as the cause of type I hyperlipoproteinemia in several patients. Two unrelated patients were referred to our Lipid Units because of a severe hypertriglyceridemia and recurrent pancreatitis. We measured LPL activity in postheparin plasma and serum ApoCII and sequenced LPL, APOC2, and GPIHBP1. The 2 patients exhibited very low LPL activity not associated with mutations in LPL gene or with ApoCII deficiency. The sequence of GPIHBP1 revealed 2 novel point mutations. One patient (proband 1) was found to be homozygous for a C>A transversion in exon 3 resulting in the conversion of threonine to lysine at position 80 (p.Thr80Lys). The other patient (proband 2) was found to be homozygous for a G>T transversion in the third base of the ATG translation initiation codon in exon 1, resulting in the conversion of methionine to isoleucine (p.Met1Ile). In conclusion, we have identified 2 novel GPIHBP1 missense mutations in 2 unrelated patients as the cause of their severe hypertriglyceridemia. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of current prediction models for Lynch syndrome: updating the PREMM5 model to identify PMS2 mutation carriers.

    PubMed

    Goverde, A; Spaander, M C W; Nieboer, D; van den Ouweland, A M W; Dinjens, W N M; Dubbink, H J; Tops, C J; Ten Broeke, S W; Bruno, M J; Hofstra, R M W; Steyerberg, E W; Wagner, A

    2018-07-01

    Until recently, no prediction models for Lynch syndrome (LS) had been validated for PMS2 mutation carriers. We aimed to evaluate MMRpredict and PREMM5 in a clinical cohort and for PMS2 mutation carriers specifically. In a retrospective, clinic-based cohort we calculated predictions for LS according to MMRpredict and PREMM5. The area under the operator receiving characteristic curve (AUC) was compared between MMRpredict and PREMM5 for LS patients in general and for different LS genes specifically. Of 734 index patients, 83 (11%) were diagnosed with LS; 23 MLH1, 17 MSH2, 31 MSH6 and 12 PMS2 mutation carriers. Both prediction models performed well for MLH1 and MSH2 (AUC 0.80 and 0.83 for PREMM5 and 0.79 for MMRpredict) and fair for MSH6 mutation carriers (0.69 for PREMM5 and 0.66 for MMRpredict). MMRpredict performed fair for PMS2 mutation carriers (AUC 0.72), while PREMM5 failed to discriminate PMS2 mutation carriers from non-mutation carriers (AUC 0.51). The only statistically significant difference between PMS2 mutation carriers and non-mutation carriers was proximal location of colorectal cancer (77 vs. 28%, p < 0.001). Adding location of colorectal cancer to PREMM5 considerably improved the models performance for PMS2 mutation carriers (AUC 0.77) and overall (AUC 0.81 vs. 0.72). We validated these results in an external cohort of 376 colorectal cancer patients, including 158 LS patients. MMRpredict and PREMM5 cannot adequately identify PMS2 mutation carriers. Adding location of colorectal cancer to PREMM5 may improve the performance of this model, which should be validated in larger cohorts.

  10. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer.

    PubMed

    Paulo, Paula; Maia, Sofia; Pinto, Carla; Pinto, Pedro; Monteiro, Augusta; Peixoto, Ana; Teixeira, Manuel R

    2018-04-01

    Considering that mutations in known prostate cancer (PrCa) predisposition genes, including those responsible for hereditary breast/ovarian cancer and Lynch syndromes, explain less than 5% of early-onset/familial PrCa, we have sequenced 94 genes associated with cancer predisposition using next generation sequencing (NGS) in a series of 121 PrCa patients. We found monoallelic truncating/functionally deleterious mutations in seven genes, including ATM and CHEK2, which have previously been associated with PrCa predisposition, and five new candidate PrCa associated genes involved in cancer predisposing recessive disorders, namely RAD51C, FANCD2, FANCI, CEP57 and RECQL4. Furthermore, using in silico pathogenicity prediction of missense variants among 18 genes associated with breast/ovarian cancer and/or Lynch syndrome, followed by KASP genotyping in 710 healthy controls, we identified "likely pathogenic" missense variants in ATM, BRIP1, CHEK2 and TP53. In conclusion, this study has identified putative PrCa predisposing germline mutations in 14.9% of early-onset/familial PrCa patients. Further data will be necessary to confirm the genetic heterogeneity of inherited PrCa predisposition hinted in this study.

  11. De novo SOX10 Nonsense Mutation in a Patient with Kallmann Syndrome, Deafness, Iris Hypopigmentation, and Hyperthyroidism.

    PubMed

    Wang, Fang; Zhao, Shaoli; Xie, Yanhong; Yang, Wenjun; Mo, Zhaohui

    2018-03-01

    Kallmann syndrome (KS) is a clinically and genetically heterogeneous disorder characterized by hypogonadotropic hypogonadism and olfactory dysfunction. Recently, mutations in SOX10, a well-known causative gene of Waardenburg syndrome (WS), have been identified in a few KS patients with additional developmental defects including hearing loss. However, the understanding of SOX10 mutation associates with KS and other clinical consequences remains fragmentary. A 30-year-old Chinese male patient presented with no pubertal sex development when he was at the age of twelve years. Additionally, he showed anosmia, sensory deafness, and blue irises. Last year, he developed clinical symptoms of hyperthyroidism with a fast heartbeat, heat intolerance and weight loss. Blood examinations revealed low levels of FSH, LH, and testosterone. Thyroid function showed high levels of FT3, FT4 and extremely low level of TSH. Molecular analysis detected a de novo (c.565G>T/p.E189X) mutation in SOX10, which has previously been reported in a patient with WS4 (WS with Hirschsprung). The mutation was predicted to be probably damaging. These results highlight the significance of SOX10 haploinsufficiency as a genetic cause of KS. Importantly, our result implies that the same SOX10 mutation can underlie both typical KS and WS, while the correlation between SOX10 and hyperthyroidism still needs to be clarified in the future. © 2018 by the Association of Clinical Scientists, Inc.

  12. [Retinal vasculopathy with cerebral leukoencephalopathy carrying TREX1 mutation diagnosed by the intracranial calcification: a case report].

    PubMed

    Komaki, Ryouhei; Ueda, Takehiro; Tsuji, Yukio; Miyawaki, Toko; Kusuhara, Sentaro; Hara, Shigeo; Toda, Tatsushi

    2018-02-28

    A 40-year-old woman with renal dysfunction for 2 years was admitted to our hospital suffering from a headache. Family history revealed that her mother had a headache, renal dysfunction, and brain infarction in younger age. She had a retinal hemorrhage, a retinal atrophy, pitting edema in her lower extremities. Her neurological findings were unremarkable. Brain imaging showed multiple white matter lesions accompanied with calcifications and slightly enhancement. Kidney biopsy showed the thrombotic microangiopathy, Gene analysis demonstrated a causative mutation in three-prime repair exonuclease-1 (TREX1) gene, c.703_704insG (p.Val235GlyfsX6), thereby we diagnosed her as retinal vasculopathy with cerebral leukoencephalopathy (RVCL). RVCL is an autosomal dominant condition caused by C-terminal frame-shift mutation in TREX1. TREX1 protein is a major 3' to 5' DNA exonuclease, which are important in DNA repair. While TREX1 mutations identified in Aicardi-Goutieres syndrome patients lead to a reduction of enzyme activity, it is suggested that mutations in RVCL alter an intracellular location of TREX1 protein. There are no treatments based evidences in RVCL. We administered cilostazol to protect endothelial function, and her brain lesions and renal function have not become worse for 10 months after. It is necessary to consider RVCL associated with TREX1 mutation if a patient has retinal lesions, white matter lesions accompanied with calcifications, and multiple organ dysfunction.

  13. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    PubMed Central

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  14. BRAFV600E mutation and its association with clinicopathological features of colorectal cancer: a systematic review and meta-analysis.

    PubMed

    Chen, Dong; Huang, Jun-Fu; Liu, Kai; Zhang, Li-Qun; Yang, Zhao; Chuai, Zheng-Ran; Wang, Yun-Xia; Shi, Da-Chuan; Huang, Qing; Fu, Wei-Ling

    2014-01-01

    Colorectal cancer (CRC) is a heterogeneous disease with multiple underlying causative genetic mutations. The B-type Raf proto-oncogene (BRAF) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade during CRC. The presence of BRAFV600E mutation can determine the response of a tumor to chemotherapy. However, the association between the BRAFV600E mutation and the clinicopathological features of CRC remains controversial. We performed a systematic review and meta-analysis to estimate the effect of BRAFV600E mutation on the clinicopathological characteristics of CRC. We identified studies that examined the effect of BRAFV600E mutation on CRC within the PubMed, ISI Science Citation Index, and Embase databases. The effect of BRAFV600E on outcome parameters was estimated by odds ratios (ORs) with 95% confidence intervals (CIs) for each study using a fixed effects or random effects model. 25 studies with a total of 11,955 CRC patients met inclusion criteria. The rate of BRAFV600 was 10.8% (1288/11955). The BRAFV600E mutation in CRC was associated with advanced TNM stage, poor differentiation, mucinous histology, microsatellite instability (MSI), CpG island methylator phenotype (CIMP). This mutation was also associated with female gender, older age, proximal colon, and mutL homolog 1 (MLH1) methylation. This meta-analysis demonstrated that BRAFV600E mutation was significantly correlated with adverse pathological features of CRC and distinct clinical characteristics. These data suggest that BRAFV600E mutation could be used to supplement standard clinical and pathological staging for the better management of individual CRC patients, and could be considered as a poor prognostic marker for CRC.

  15. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients.

    PubMed

    Ali, Bassam R; Xu, Huifang; Akawi, Nadia A; John, Anne; Karuvantevida, Noushad S; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-06-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity.

  16. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients

    PubMed Central

    Ali, Bassam R.; Xu, Huifang; Akawi, Nadia A.; John, Anne; Karuvantevida, Noushad S.; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-01-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity. PMID:20223752

  17. Fast Homozygosity Mapping and Identification of a Zebrafish ENU-Induced Mutation by Whole-Genome Sequencing

    PubMed Central

    Voz, Marianne L.; Coppieters, Wouter; Manfroid, Isabelle; Baudhuin, Ariane; Von Berg, Virginie; Charlier, Carole; Meyer, Dirk; Driever, Wolfgang; Martial, Joseph A.; Peers, Bernard

    2012-01-01

    Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish. PMID:22496837

  18. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis

    PubMed Central

    DeLuca, Adam P.; Whitmore, S. Scott; Barnes, Jenna; Sharma, Tasneem P.; Westfall, Trudi A.; Scott, C. Anthony; Weed, Matthew C.; Wiley, Jill S.; Wiley, Luke A.; Johnston, Rebecca M.; Schnieders, Michael J.; Lentz, Steven R.; Tucker, Budd A.; Mullins, Robert F.; Scheetz, Todd E.; Stone, Edwin M.; Slusarski, Diane C.

    2016-01-01

    Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina. PMID:26494905

  19. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers.

    PubMed

    Győrffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero

    2014-05-01

    Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Whole-exome sequencing identifies recurrent SF3B1 R625 mutation and comutation of NF1 and KIT in mucosal melanoma

    PubMed Central

    Hintzsche, Jennifer D.; Gorden, Nicholas T.; Amato, Carol M.; Kim, Jihye; Wuensch, Kelsey E.; Robinson, Steven E.; Applegate, Allison J.; Couts, Kasey L.; Medina, Theresa M.; Wells, Keith R.; Wisell, Joshua A.; McCarter, Martin D.; Box, Neil F.; Shellman, Yiqun G.; Gonzalez, Rene C.; Lewis, Karl D.; Tentler, John J.

    2017-01-01

    Mucosal melanomas are a rare subtype of melanoma, arising in mucosal tissues, which have a very poor prognosis due to the lack of effective targeted therapies. This study aimed to better understand the molecular landscape of these cancers and find potential new therapeutic targets. Whole-exome sequencing was performed on mucosal melanomas from 19 patients and 135 sun-exposed cutaneous melanomas, with matched peripheral blood samples when available. Mutational profiles were compared between mucosal subgroups and sun-exposed cutaneous melanomas. Comparisons of molecular profiles identified 161 genes enriched in mucosal melanoma (P<0.05). KIT and NF1 were frequently comutated (32%) in the mucosal subgroup, with a significantly higher incidence than that in cutaneous melanoma (4%). Recurrent SF3B1 R625H/S/C mutations were identified and validated in 7 of 19 (37%) mucosal melanoma patients. Mutations in the spliceosome pathway were found to be enriched in mucosal melanomas when compared with cutaneous melanomas. Alternative splicing in four genes were observed in SF3B1-mutant samples compared with the wild-type samples. This study identified potential new therapeutic targets for mucosal melanoma, including comutation of NF1 and KIT, and recurrent R625 mutations in SF3B1. This is the first report of SF3B1 R625 mutations in vulvovaginal mucosal melanoma, with the largest whole-exome sequencing project of mucosal melanomas to date. The results here also indicated that the mutations in SF3B1 lead to alternative splicing in multiple genes. These findings expand our knowledge of this rare disease. PMID:28296713

  1. Homozygous mutation of VPS16 gene is responsible for an autosomal recessive adolescent-onset primary dystonia.

    PubMed

    Cai, Xiaodong; Chen, Xin; Wu, Song; Liu, Wenlan; Zhang, Xiejun; Zhang, Doudou; He, Sijie; Wang, Bo; Zhang, Mali; Zhang, Yuan; Li, Zongyang; Luo, Kun; Cai, Zhiming; Li, Weiping

    2016-05-12

    Dystonia is a neurological movement disorder that is clinically and genetically heterogeneous. Herein, we report the identification a novel homozygous missense mutation, c.156 C > A in VPS16, co-segregating with disease status in a Chinese consanguineous family with adolescent-onset primary dystonia by whole exome sequencing and homozygosity mapping. To assess the biological role of c.156 C > A homozygous mutation of VPS16, we generated mice with targeted mutation site of Vps16 through CRISPR-Cas9 genome-editing approach. Vps16 c.156 C > A homozygous mutant mice exhibited significantly impaired motor function, suggesting that VPS16 is a new causative gene for adolescent-onset primary dystonia.

  2. A COL11A2 Mutation in Labrador Retrievers with Mild Disproportionate Dwarfism

    PubMed Central

    Frischknecht, Mirjam; Niehof-Oellers, Helena; Jagannathan, Vidhya; Owczarek-Lipska, Marta; Drögemüller, Cord; Dietschi, Elisabeth; Dolf, Gaudenz; Tellhelm, Bernd; Lang, Johann; Tiira, Katriina; Lohi, Hannes; Leeb, Tosso

    2013-01-01

    We describe a mild form of disproportionate dwarfism in Labrador Retrievers, which is not associated with any obvious health problems such as secondary arthrosis. We designate this phenotype as skeletal dysplasia 2 (SD2). It is inherited as a monogenic autosomal recessive trait with incomplete penetrance primarily in working lines of the Labrador Retriever breed. Using 23 cases and 37 controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 4.44 Mb interval on chromosome 12. We re-sequenced the genome of one affected dog at 30x coverage and detected 92 non-synonymous variants in the critical interval. Only two of these variants, located in the lymphotoxin A (LTA) and collagen alpha-2(XI) chain gene (COL11A2), respectively, were perfectly associated with the trait. Previously described COL11A2 variants in humans or mice lead to skeletal dysplasias and/or deafness. The dog variant associated with disproportionate dwarfism, COL11A2:c.143G>C or p.R48P, probably has only a minor effect on collagen XI function, which might explain the comparatively mild phenotype seen in our study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of COL11A2 mutations. We speculate that non-pathogenic COL11A2 variants might even contribute to the heritable variation in height. PMID:23527306

  3. Germline recessive mutations in PI4KA are associated with perisylvian polymicrogyria, cerebellar hypoplasia and arthrogryposis

    PubMed Central

    Pagnamenta, Alistair T.; Howard, Malcolm F.; Wisniewski, Eva; Popitsch, Niko; Knight, Samantha J.L.; Keays, David A.; Quaghebeur, Gerardine; Cox, Helen; Cox, Phillip; Balla, Tamas; Taylor, Jenny C.; Kini, Usha

    2015-01-01

    Polymicrogyria (PMG) is a structural brain abnormality involving the cerebral cortex that results from impaired neuronal migration and although several genes have been implicated, many cases remain unsolved. In this study, exome sequencing in a family where three fetuses had all been diagnosed with PMG and cerebellar hypoplasia allowed us to identify regions of the genome for which both chromosomes were shared identical-by-descent, reducing the search space for causative variants to 8.6% of the genome. In these regions, the only plausibly pathogenic mutations were compound heterozygous variants in PI4KA, which Sanger sequencing confirmed segregated consistent with autosomal recessive inheritance. The paternally transmitted variant predicted a premature stop mutation (c.2386C>T; p.R796X), whereas the maternally transmitted variant predicted a missense substitution (c.5560G>A; p.D1854N) at a conserved residue within the catalytic domain. Functional studies using expressed wild-type or mutant PI4KA enzyme confirmed the importance of p.D1854 for kinase activity. Our results emphasize the importance of phosphoinositide signalling in early brain development. PMID:25855803

  4. A Presenilin-1 Mutation Identified in Familial Alzheimer Disease with Cotton Wool Plaques Causes a Nearly Complete Loss of γ-Secretase Activity*

    PubMed Central

    Heilig, Elizabeth A.; Xia, Weiming; Shen, Jie; Kelleher, Raymond J.

    2010-01-01

    Mutations in presenilin-1 and presenilin-2 (PS1 and PS2) are the most common cause of familial Alzheimer disease. PS1 and PS2 are the presumptive catalytic components of the multisubunit γ-secretase complex, which proteolyzes a number of type I transmembrane proteins, including the amyloid precursor protein (APP) and Notch. APP processing by γ-secretase produces β-amyloid peptides (Aβ40 and Aβ42) that accumulate in the Alzheimer disease brain. Here we identify a pathogenic L435F mutation in PS1 in two affected siblings with early-onset familial Alzheimer disease characterized by deposition of cerebral cotton wool plaques. The L435F mutation resides in a conserved C-terminal PAL sequence implicated in active site conformation and catalytic activity. The impact of PS1 mutations in and around the PAL motif on γ-secretase activity was assessed by expression of mutant PS1 in mouse embryo fibroblasts lacking endogenous PS1 and PS2. Surprisingly, the L435F mutation caused a nearly complete loss of γ-secretase activity, including >90% reductions in the generation of Aβ40, Aβ42, and the APP and Notch intracellular domains. Two nonpathogenic PS1 mutations, P433L and L435R, caused essentially complete loss of γ-secretase activity, whereas two previously identified pathogenic PS1 mutations, P436Q and P436S, caused partial loss of function with substantial reductions in production of Aβ40, Aβ42, and the APP and Notch intracellular domains. These results argue against overproduction of Aβ42 as an essential property of presenilin proteins bearing pathogenic mutations. Rather, our findings provide support for the hypothesis that pathogenic mutations cause a general loss of presenilin function. PMID:20460383

  5. Fine Mapping for Weaver Syndrome in Brown Swiss Cattle and the Identification of 41 Concordant Mutations across NRCAM, PNPLA8 and CTTNBP2

    PubMed Central

    McClure, Matthew; Kim, Euisoo; Bickhart, Derek; Null, Daniel; Cooper, Tabatha; Cole, John; Wiggans, George; Ajmone-Marsan, Paolo; Colli, Licia; Santus, Enrico; Liu, George E.; Schroeder, Steve; Matukumalli, Lakshmi; Van Tassell, Curt; Sonstegard, Tad

    2013-01-01

    Bovine Progressive Degenerative Myeloencephalopathy (Weaver Syndrome) is a recessive neurological disease that has been observed in the Brown Swiss cattle breed since the 1970’s in North America and Europe. Bilateral hind leg weakness and ataxia appear in afflicted animals at 6 to 18 months of age, and slowly progresses to total loss of hind limb control by 3 to 4 years of age. While Weaver has previously been mapped to Bos taurus autosome (BTA) 4∶46–56 Mb and a diagnostic test based on the 6 microsatellite (MS) markers is commercially available, neither the causative gene nor mutation has been identified; therefore misdiagnosis can occur due to recombination between the diagnostic MS markers and the causative mutation. Analysis of 34,980 BTA 4 SNPs genotypes derived from the Illumina BovineHD assay for 20 Brown Swiss Weaver carriers and 49 homozygous normal bulls refined the Weaver locus to 48–53 Mb. Genotyping of 153 SNPs, identified from whole genome sequencing of 10 normal and 10 carrier animals, across a validation set of 841 animals resulted in the identification of 41 diagnostic SNPs that were concordant with the disease. Except for one intergenic SNP all are associated with genes expressed in nervous tissues: 37 distal to NRCAM, one non-synonymous (serine to asparagine) in PNPLA8, one synonymous and one non-synonymous (lysine to glutamic acid) in CTTNBP2. Haplotype and imputation analyses of 7,458 Brown Swiss animals with Illumina BovineSNP50 data and the 41 diagnostic SNPs resulted in the identification of only one haplotype concordant with the Weaver phenotype. Use of this haplotype and the diagnostic SNPs more accurately identifies Weaver carriers in both Brown Swiss purebred and influenced herds. PMID:23527149

  6. Applying Bradford Hill's criteria for causation to neuropsychiatry: challenges and opportunities.

    PubMed

    van Reekum, R; Streiner, D L; Conn, D K

    2001-01-01

    Establishing an argument of causation is an important research activity with major clinical and scientific implications. Sir Austin Bradford Hill proposed criteria to establish such an argument. These criteria include the strength of the association, consistency, specificity, temporal sequence, biological gradient, biologic rationale, coherence, experimental evidence, and analogous evidence. These criteria are reviewed with the goal of facilitating an increase in rigor for establishing arguments of causation in neuropsychiatry. The challenges and opportunities related to these criteria in neuropsychiatry are reviewed, as are two important arguments for causation: one for poststroke depression and one for brain injury as a cause of psychiatric disorders.

  7. Functional characterization of novel ABCB6 mutations and their clinical implications in familial pseudohyperkalemia

    PubMed Central

    Andolfo, Immacolata; Russo, Roberta; Manna, Francesco; De Rosa, Gianluca; Gambale, Antonella; Zouwail, Soha; Detta, Nicola; Pardo, Catia Lo; Alper, Seth L.; Brugnara, Carlo; Sharma, Alok K.; De Franceschi, Lucia; Iolascon, Achille

    2016-01-01

    Isolated familial pseudohyperkalemia is a dominant red cell trait characterized by cold-induced ‘passive leak’ of red cell potassium ions into plasma. The causative gene of this condition is ABCB6, which encodes an erythrocyte membrane ABC transporter protein bearing the Langereis blood group antigen system. In this study analyzing three new families, we report the first functional characterization of ABCB6 mutants, including the homozygous mutation V454A, heterozygous mutation R276W, and compound heterozygous mutations R276W and R723Q (in trans). All these mutations are annotated in public databases, suggesting that familial pseudohyperkalemia could be common in the general population. Indeed, we identified variant R276W in one of 327 random blood donors (0.3%). Four weeks’ storage of heterozygous R276W blood cells resulted in massive loss of potassium compared to that from healthy control red blood cells. Moreover, measurement of cation flux demonstrated greater loss of potassium or rubidium ions from HEK-293 cells expressing ABCB6 mutants than from cells expressing wild-type ABCB6. The R276W/R723Q mutations elicited greater cellular potassium ion efflux than did the other mutants tested. In conclusion, ABCB6 missense mutations in red blood cells from subjects with familial pseudohyperkalemia show elevated potassium ion efflux. The prevalence of such individuals in the blood donor population is moderate. The fact that storage of blood from these subjects leads to significantly increased levels of potassium in the plasma could have serious clinical implications for neonates and infants receiving large-volume transfusions of whole blood. Genetic tests for familial pseudohyperkalemia could be added to blood donor pre-screening. Further study of ABCB6 function and trafficking could be informative for the study of other pathologies of red blood cell hydration. PMID:27151991

  8. Embryonic left-right separation mechanism allows confinement of mutation-induced phenotypes to one lateral body half of bilaterians.

    PubMed

    Ma, Kun

    2013-12-01

    A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations. © 2013 Wiley Periodicals, Inc.

  9. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference.

    PubMed

    Etzler, J; Peyrl, A; Zatkova, A; Schildhaus, H-U; Ficek, A; Merkelbach-Bruse, S; Kratz, C P; Attarbaschi, A; Hainfellner, J A; Yao, S; Messiaen, L; Slavc, I; Wimmer, K

    2008-02-01

    Heterozygous germline mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6, and PMS2 cause hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome, a dominantly inherited cancer susceptibility syndrome. Recent reports provide evidence for a novel recessively inherited cancer syndrome with constitutive MMR deficiency due to biallelic germline mutations in one of the MMR genes. MMR-deficiency (MMR-D) syndrome is characterized by childhood brain tumors, hematological and/or gastrointestinal malignancies, and signs of neurofibromatosis type 1 (NF1). We established an RNA-based mutation detection assay for the four MMR genes, since 1) a number of splicing defects may escape detection by the analysis of genomic DNA, and 2) DNA-based mutation detection in the PMS2 gene is severely hampered by the presence of multiple highly similar pseudogenes, including PMS2CL. Using this assay, which is based on direct cDNA sequencing of RT-PCR products, we investigated two families with children suspected to suffer from MMR-D syndrome. We identified a homozygous complex MSH6 splicing alteration in the index patients of the first family and a novel homozygous PMS2 mutation (c.182delA) in the index patient of the second family. Furthermore, we demonstrate, by the analysis of a PMS2/PMS2CL "hybrid" allele carrier, that RNA-based PMS2 testing effectively avoids the caveats of genomic DNA amplification approaches; i.e., pseudogene coamplification as well as allelic dropout, and will, thus, allow more sensitive mutation analysis in MMR deficiency and in HNPCC patients with PMS2 defects. (c) 2007 Wiley-Liss, Inc.

  10. Do bus accidents cause nonepileptic seizures?: complex issues of medicolegal causation.

    PubMed

    LaFrance, W Curt; Self, Janet A

    2008-01-01

    The question of causation is approached through a case description and analysis. An alternative perspective is discussed for addressing neuropsychiatric cases in the medicolegal context. Viewing medical litigation from the perspective of risk factors, timeline, and baseline may add clarity to the difficulty of understanding causation.

  11. Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa

    PubMed Central

    Davidson, Alice E.; Schwarz, Nele; Zelinger, Lina; Stern-Schneider, Gabriele; Shoemark, Amelia; Spitzbarth, Benjamin; Gross, Menachem; Laxer, Uri; Sosna, Jacob; Sergouniotis, Panagiotis I.; Waseem, Naushin H.; Wilson, Robert; Kahn, Richard A.; Plagnol, Vincent; Wolfrum, Uwe; Banin, Eyal; Hardcastle, Alison J.; Cheetham, Michael E.; Sharon, Dror; Webster, Andrew R.

    2013-01-01

    Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101−1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated centriole of photoreceptors and the periciliary extension of the inner segment. Depletion of ARL2BP caused cilia shortening. Moreover, depletion of ARL2, but not ARL3, caused displacement of ARL2BP from the basal body, suggesting that ARL2 is vital for recruiting or anchoring ARL2BP at the base of the cilium. This hypothesis is supported by the finding that the p.Met45Arg amino acid substitution reduced binding to ARL2 and caused the loss of ARL2BP localization at the basal body in ciliated nasal epithelial cells. These data demonstrate a role for ARL2BP and ARL2 in primary cilia function and that this role is essential for normal photoreceptor maintenance and function. PMID:23849777

  12. Meier–Gorlin syndrome genotype–phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis

    PubMed Central

    de Munnik, Sonja A; Bicknell, Louise S; Aftimos, Salim; Al-Aama, Jumana Y; van Bever, Yolande; Bober, Michael B; Clayton-Smith, Jill; Edrees, Alaa Y; Feingold, Murray; Fryer, Alan; van Hagen, Johanna M; Hennekam, Raoul C; Jansweijer, Maaike C E; Johnson, Diana; Kant, Sarina G; Opitz, John M; Ramadevi, A Radha; Reardon, Willie; Ross, Alison; Sarda, Pierre; Schrander-Stumpel, Constance T R M; Schoots, Jeroen; Temple, I Karen; Terhal, Paulien A; Toutain, Annick; Wise, Carol A; Wright, Michael; Skidmore, David L; Samuels, Mark E; Hoefsloot, Lies H; Knoers, Nine V A M; Brunner, Han G; Jackson, Andrew P; Bongers, Ernie M H F

    2012-01-01

    Meier–Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, patellar aplasia/hypoplasia, and short stature. Recently, mutations in five genes from the pre-replication complex (ORC1, ORC4, ORC6, CDT1, and CDC6), crucial in cell-cycle progression and growth, were identified in individuals with MGS. Here, we report on genotype–phenotype studies in 45 individuals with MGS (27 females, 18 males; age 3 months–47 years). Thirty-five individuals had biallelic mutations in one of the five causative pre-replication genes. No homozygous or compound heterozygous null mutations were detected. In 10 individuals, no definitive molecular diagnosis was made. The triad of microtia, absent/hypoplastic patellae, and short stature was observed in 82% of individuals with MGS. Additional frequent clinical features were mammary hypoplasia (100%) and abnormal genitalia (42% predominantly cryptorchidism and hypoplastic labia minora/majora). One individual with ORC1 mutations only had short stature, emphasizing the highly variable clinical spectrum of MGS. Individuals with ORC1 mutations had significantly shorter stature and smaller head circumferences than individuals from other gene categories. Furthermore, compared with homozygous missense mutations, compound heterozygous mutations appeared to have a more severe effect on phenotype, causing more severe growth retardation in ORC4 and more frequently pulmonary emphysema in CDT1. A lethal phenotype was seen in four individuals with compound heterozygous ORC1 and CDT1 mutations. No other clear genotype–phenotype association was observed. Growth hormone and estrogen treatment may be of some benefit, respectively, to growth retardation and breast hypoplasia, though further studies in this patient group are needed. PMID:22333897

  13. Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability

    PubMed Central

    Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel

    2014-01-01

    Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613

  14. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan.

    PubMed

    Carss, Keren J; Stevens, Elizabeth; Foley, A Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G; Abdenur, Jose E; Grosmann, Carla M; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B; Young, Helen K; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G; North, Kathryn N; Hoffman, Eric; Stemple, Derek L; Hurles, Matthew E; van Bokhoven, Hans; Campbell, Kevin P; Lefeber, Dirk J; Lin, Yung-Yao; Muntoni, Francesco

    2013-07-11

    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Novel mutations and their genotype-phenotype correlations in patients with Noonan syndrome, using next-generation sequencing.

    PubMed

    Tafazoli, Alireza; Eshraghi, Peyman; Pantaleoni, Francesca; Vakili, Rahim; Moghaddassian, Morteza; Ghahraman, Martha; Muto, Valentina; Paolacci, Stefano; Golyan, Fatemeh Fardi; Abbaszadegan, Mohammad Reza

    2018-03-01

    Noonan Syndrome (NS) is an autosomal dominant disorder with many variable and heterogeneous conditions. The genetic basis for 20-30% of cases is still unknown. This study evaluates Iranian Noonan patients both clinically and genetically for the first time. Mutational analysis of PTPN11 gene was performed in 15 Iranian patients, using PCR and Sanger sequencing at phase one. Then, as phase two, Next Generation Sequencing (NGS) in the form of targeted resequencing was utilized for analysis of exons from other related genes. Homology modelling for the novel founded mutations was performed as well. The genotype, phenotype correlation was done according to the molecular findings and clinical features. Previously reported mutation (p.N308D) in some patients and a novel mutation (p.D155N) in one of the patients were identified in phase one. After applying NGS methods, known and new variants were found in four patients in other genes, including: CBL (p. V904I), KRAS (p. L53W), SOS1 (p. I1302V), and SOS1 (p. R552G). Structural studies of two deduced novel mutations in related genes revealed deficiencies in the mutated proteins. Following genotype, phenotype correlation, a new pattern of the presence of intellectual disability in two patients was registered. NS shows strong variable expressivity along the high genetic heterogeneity especially in distinct populations and ethnic groups. Also possibly unknown other causative genes may be exist. Obviously, more comprehensive and new technologies like NGS methods are the best choice for detection of molecular defects in patients for genotype, phenotype correlation and disease management. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  16. FLG mutations in ichthyosis vulgaris and atopic eczema: spectrum of mutations and population genetics.

    PubMed

    Akiyama, M

    2010-03-01

    Filaggrin is a key protein involved in skin barrier function. Mutations in the gene encoding filaggrin (FLG) have been identified as the cause of ichthyosis vulgaris and have been shown to be major predisposing factors for atopic eczema (AE), initially in European populations. Subsequently, FLG mutations were identified in Japanese, Chinese, Taiwanese and Korean populations. It was demonstrated that FLG mutations are closely associated with AE in the Japanese population. Notably, the same FLG mutations identified in the European population were rarely found in Asians. These results exemplify differences in filaggrin population genetics between Europe and Asia. For mutation screening, background information needs to be obtained on prevalent FLG mutations for each geographical population. It is therefore important to establish the global population genetics maps for FLG mutations. Mutations at any site within FLG, even mutations in C-terminal imperfect filaggrin repeats, cause significant reductions in amounts of profilaggrin/filaggrin peptide in patient epidermis as the C-terminal region is essential for proper processing of profilaggrin into filaggrin. Thus, no genotype-phenotype correlation has been observed in patients with FLG mutations. A restoration of the barrier function seems a feasible and promising strategy for treatment and prevention in individuals with filaggrin deficiency.

  17. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract.

    PubMed

    Gimelli, Stefania; Caridi, Gianluca; Beri, Silvana; McCracken, Kyle; Bocciardi, Renata; Zordan, Paola; Dagnino, Monica; Fiorio, Patrizia; Murer, Luisa; Benetti, Elisa; Zuffardi, Orsetta; Giorda, Roberto; Wells, James M; Gimelli, Giorgio; Ghiggeri, Gian Marco

    2010-12-01

    Congenital anomalies of the kidney and the urinary tract (CAKUT) represent a major source of morbidity and mortality in children. Several factors (PAX, SOX,WNT, RET, GDFN, and others) play critical roles during the differentiation process that leads to the formation of nephron epithelia. We have identified mutations in SOX17, an HMG-box transcription factor and Wnt signaling antagonist, in eight patients with CAKUT (seven vesico-ureteric reflux, one pelvic obstruction). One mutation, c.775T>A (p.Y259N), recurred in six patients. Four cases derived from two small families; renal scars with urinary infection represented the main symptom at presentation in all but two patients. Transfection studies indicated a 5-10-fold increase in the levels of the mutant protein relative to wild-type SOX17 in transfected kidney cells. Moreover we observed a corresponding increase in the ability of SOX17 p.Y259N to inhibit Wnt/β-catenin transcriptional activity, which is known to regulate multiple stages of kidney and urinary tract development. In conclusion, SOX17 p.Y259N mutation is recurrent in patients with CAKUT. Our data shows that this mutation correlates with an inappropriate accumulation of SOX17-p.Y259N protein and inhibition of the β-catenin/Wnt signaling pathway. These data indicate a role of SOX17 in human kidney and urinary tract development and implicate the SOX17-p.Y259N mutation as a causative factor in CAKUT. © 2010 Wiley-Liss, Inc.

  18. Exome Capture and Massively Parallel Sequencing Identifies a Novel HPSE2 Mutation in a Saudi Arabian Child with Ochoa (Urofacial) Syndrome

    PubMed Central

    Al Badr, Wisam; Al Bader, Suha; Otto, Edgar; Hildebrandt, Friedhelm; Ackley, Todd; Peng, Weiping; Xu, Jishu; Li, Jun; Owens, Kailey M.; Bloom, David; Innis, Jeffrey W.

    2011-01-01

    We describe a child of Middle Eastern descent by first-cousin mating with idiopathic neurogenic bladder and high grade vesicoureteral reflux at 1 year of age, whose characteristic facial grimace led to the diagnosis of Ochoa (Urofacial) syndrome at age 5 years. We used homozygosity mapping, exome capture and paired end sequencing to identify the disease causing mutation in the proband. We reviewed the literature with respect to the urologic manifestations of Ochoa syndrome. A large region of marker homozygosity was observed at 10q24, consistent with known autosomal recessive inheritance, family consanguinity and previous genetic mapping in other families with Ochoa syndrome. A homozygous mutation was identified in the proband in HPSE2: c.1374_1378delTGTGC, a deletion of 5 nucleotides in exon 10 that is predicted to lead to a frameshift followed by replacement of 132 C-terminal amino acids with 153 novel amino acids (p.Ala458Alafsdel132ins153). This mutation is novel relative to very recently published mutations in HPSE2 in other families. Early intervention and recognition of Ochoa syndrome with control of risk factors and close surveillance will decrease complications and renal failure. PMID:21450525

  19. A homozygous FITM2 mutation causes a deafness-dystonia syndrome with motor regression and signs of ichthyosis and sensory neuropathy.

    PubMed

    Zazo Seco, Celia; Castells-Nobau, Anna; Joo, Seol-Hee; Schraders, Margit; Foo, Jia Nee; van der Voet, Monique; Velan, S Sendhil; Nijhof, Bonnie; Oostrik, Jaap; de Vrieze, Erik; Katana, Radoslaw; Mansoor, Atika; Huynen, Martijn; Szklarczyk, Radek; Oti, Martin; Tranebjærg, Lisbeth; van Wijk, Erwin; Scheffer-de Gooyert, Jolanda M; Siddique, Saadat; Baets, Jonathan; de Jonghe, Peter; Kazmi, Syed Ali Raza; Sadananthan, Suresh Anand; van de Warrenburg, Bart P; Khor, Chiea Chuen; Göpfert, Martin C; Qamar, Raheel; Schenck, Annette; Kremer, Hannie; Siddiqi, Saima

    2017-02-01

    A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2. © 2017. Published by The Company of Biologists Ltd.

  20. A new compound heterozygous CFTR mutation in a Chinese family with cystic fibrosis.

    PubMed

    Xie, Yingjun; Huang, Xueqiong; Liang, Yujian; Xu, Lingling; Pei, Yuxin; Cheng, Yucai; Zhang, Lidan; Tang, Wen

    2017-11-01

    Cystic fibrosis (CF) is the most common autosomal recessive disease among Caucasians but is rarer in the Chinese population, because mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To elucidate the causative role of a novel compound heterozygous mutation of CF. In this study, clinical samples were obtained from two siblings with recurrent airway infections, clubbed fingers, salt-sweat and failure to gain weight in a non-consanguineous Chinese family. Next-generation sequencing was performed on the 27 coding exons of CFTR in both children, with confirmation by Sanger sequencing. Next-generation sequencing showed the same compound heterozygous CFTR mutation (c.865A>T p.Arg289X and c.3651_3652insAAAT p.Tyr1219X) in both children. As this mutation is consistent with the clinical manifestations of CF and no other mutations were detected after scanning the gene sequence, we suggest that the CF phenotype is caused by compound heterozygosity for c.865A>T and c.3651_3652insAAAT. As c865A>T is not currently listed in the "Cystic Fibrosis Mutation Database", this information about CF in a Chinese population is of interest. © 2015 John Wiley & Sons Ltd.