Yang, Jing; Mei, Ying; Hook, Andrew L.; Taylor, Michael; Urquhart, Andrew J.; Bogatyrev, Said R.; Langer, Robert; Anderson, Daniel G.; Davies, Martyn C.; Alexander, Morgan R.
2010-01-01
High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterisation (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), x-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability of identifying surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis. PMID:20832108
Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens
2009-11-01
The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.
Targeted Identification of Metastasis-associated Cell-surface Sialoglycoproteins in Prostate Cancer*
Yang, Lifang; Nyalwidhe, Julius O.; Guo, Siqi; Drake, Richard R.; Semmes, O. John
2011-01-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC4ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells. PMID:21447706
Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer.
Yang, Lifang; Nyalwidhe, Julius O; Guo, Siqi; Drake, Richard R; Semmes, O John
2011-06-01
Covalent attachment of carbohydrates to proteins is one of the most common post-translational modifications. At the cell surface, sugar moieties of glycoproteins contribute to molecular recognition events involved in cancer metastasis. We have combined glycan metabolic labeling with mass spectrometry analysis to identify and characterize metastasis-associated cell surface sialoglycoproteins. Our model system used syngeneic prostate cancer cell lines derived from PC3 (N2, nonmetastatic, and ML2, highly metastatic). The metabolic incorporation of AC(4)ManNAz and subsequent specific labeling of cell surface sialylation was confirmed by flow cytometry and confocal microscopy. Affinity isolation of the modified sialic-acid containing cell surface proteins via click chemistry was followed by SDS-PAGE separation and liquid chromatography-tandem MS analysis. We identified 324 proteins from N2 and 372 proteins of ML2. Using conservative annotation, 64 proteins (26%) from N2 and 72 proteins (29%) from ML2 were classified as extracellular or membrane-associated glycoproteins. A selective enrichment of sialoglycoproteins was confirmed. When compared with global proteomic analysis of the same cells, the proportion of identified glycoprotein and cell-surface proteins were on average threefold higher using the selective capture approach. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the vast majority of glycoproteins overexpressed in the metastatic ML2 subline were involved in cell motility, migration, and invasion. Our approach effectively targeted surface sialoglycoproteins and efficiently identified proteins that underlie the metastatic potential of the ML2 cells.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Rear surface effects in high efficiency silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenham, S.R.; Robinson, S.J.; Dai, X.
1994-12-31
Rear surface effects in PERL solar cells can lead not only to degradation in the short circuit current and open circuit voltage, but also fill factor. Three mechanisms capable of changing the effective rear surface recombination velocity with injection level are identified, two associated with oxidized p-type surfaces, and the third with two dimensional effects associated with a rear floating junction. Each of these will degrade the fill factor if the range of junction biases corresponding to the rear surface transition, coincides with the maximum power point. Despite the identified non idealities, PERL cells with rear floating junctions (PERF cells)more » have achieved record open circuit voltages for silicon solar cells, while simultaneously achieving fill factor improvements relative to standard PERL solar cells. Without optimization, a record efficiency of 22% has been demonstrated for a cell with a rear floating junction. The results of both theoretical and experimental studies are provided.« less
Kang, Kyung-Jung; Ko, Seon-Yle; Ryu, Chun-Jeih; Jang, Young-Joo
2017-05-01
Human dental pulp cells are obtained from dental pulp tissue, and have the ability to form dentin and a pulp-like complex. Although adult stem cells have been identified from the primary culture by using specific cell surface markers, the identity of surface markers for the purification of stem cells within the dental pulp population are still unclear. Previously, we had constructed monoclonal antibodies against the undifferentiated cell-specific surface markers of human dental pulp cells (hDPCs) by performing decoy immunization. Among them, a monoclonal antibody against the cell surface antigen of the undifferentiated hDPCs (named UPSA-1) was purified and its heavy and light chain consensus regions were analyzed. The cell surface binding affinity of UPSA-1 mAb on the undifferentiated hDPCs was stronger than that on the differentiated cells. When tunicamycin was applied to hDPSCs during culture, the cell surface binding affinity of the antibody was dramatically decreased, and dentinogenic differentiation was reduced. The purified UPSA-1 antigen band resulting from immunoprecipitation disappeared or shifted down on the SDS-PAGE by deglycosylation. These data suggested that glycosylation on the cell surface might be a marker of an undifferentiated state, and that UPSA-1 mAb might be useful for identifying the carbohydrate moiety on the cell surface of undifferentiated pulp cells. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.
2016-01-01
ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity. PMID:27440904
2012-01-01
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497
Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J
2012-03-02
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.
Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications
Ilin, Yelena; Kraft, Mary L.
2014-01-01
Identifying the matrix properties that permit directing stem cell fate is critical for expanding desired cell lineages ex vivo for disease treatment. Such efforts require knowledge of matrix surface chemistry and the cell responses they elicit. Recent progress in analyzing biomaterial composition and identifying cell phenotype with two label-free chemical imaging techniques, TOF-SIMS and Raman spectroscopy are presented. TOF-SIMS is becoming indispensable for the surface characterization of biomaterial scaffolds. Developments in TOF-SIMS data analysis enable correlating surface chemistry with biological response. Advances in the interpretation of Raman spectra permit identifying the fate decisions of individual, living cells with location specificity. Here we highlight this progress and discuss further improvements that would facilitate efforts to develop artificial scaffolds for tissue regeneration. PMID:25462628
Bao, S; Yu, S; Guo, X; Zhang, F; Sun, Y; Tan, L; Duan, Y; Lu, F; Qiu, X; Ding, C
2015-07-01
To construct and demonstrate a surface display system that could be used to identify mycoplasma adhesion proteins. Using the N-terminal domain of InaZ (InaZN) as the anchoring motif and the enhanced green fluorescent protein (EGFP) as the reporter, the surface display system pET-InaZN-EGFP was constructed. Then, the mgc2 gene which encodes an adhesin and the holB gene which encodes DNA polymerase III subunit delta' (nonadhesin, negative control) of Mycoplasma gallisepticum were cloned into the pET-InaZN-EGFP respectively. The fusion proteins were expressed in Escherichia coli BL21 (DE3). The distribution of the fusion proteins in E. coli cells was determined using SDS-PAGE followed by Western blotting, based on cell fractionation. Escherichia coli cell surface display of the fusion protein was confirmed by immunofluorescence microscopy. The results indicated that the fusion proteins were not only anchored to the outer membrane fraction but also were successfully displayed on the surface of E. coli cells. Adhesion analysis of E. coli harbouring InaZN-EGFP-mgc2 to host cells showed that the MGC2-positive E. coli cells can effectively adhere to the surfaces of DF-1 cells. A surface display system using the InaZN as the anchoring motif and EGFP as the reporter was developed to identify putative adhesins of mycoplasma. Results indicated that adhesion by the cytadhesin-like protein MGC2 of mycoplasma can be reproduced using this surface display system. This is the first construction of surface display system which could be used to identify the adhesion proteins of mycoplasma. The method developed in this study can even be used to select and identify the adhesion proteins of other pathogens. © 2015 The Society for Applied Microbiology.
Sugii, Yuh; Kasai, Tomonari; Ikeda, Masashi; Vaidyanath, Arun; Kumon, Kazuki; Mizutani, Akifumi; Seno, Akimasa; Tokutaka, Heizo; Kudoh, Takayuki; Seno, Masaharu
2016-01-01
To identify cell-specific markers, we designed a DNA microarray platform with oligonucleotide probes for human membrane-anchored proteins. Human glioma cell lines were analyzed using microarray and compared with normal and fetal brain tissues. For the microarray analysis, we employed a spherical self-organizing map, which is a clustering method suitable for the conversion of multidimensional data into two-dimensional data and displays the relationship on a spherical surface. Based on the gene expression profile, the cell surface characteristics were successfully mirrored onto the spherical surface, thereby distinguishing normal brain tissue from the disease model based on the strength of gene expression. The clustered glioma-specific genes were further analyzed by polymerase chain reaction procedure and immunocytochemical staining of glioma cells. Our platform and the following procedure were successfully demonstrated to categorize the genes coding for cell surface proteins that are specific to glioma cells. Our assessment demonstrates that a spherical self-organizing map is a valuable tool for distinguishing cell surface markers and can be employed in marker discovery studies for the treatment of cancer.
Ng, Wy Ching; Liong, Stella; Tate, Michelle D.; Irimura, Tatsuro; Denda-Nagai, Kaori; Brooks, Andrew G.; Londrigan, Sarah L.
2014-01-01
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV. PMID:24257596
SiN sub x passivation of silicon surfaces
NASA Technical Reports Server (NTRS)
Olsen, L. C.
1986-01-01
The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.
Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.
Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E
2015-01-01
Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.
Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions
Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc
2015-01-01
Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species. PMID:26082777
In vitro mesenchymal stem cell response to a CO2 laser modified polymeric material.
Waugh, D G; Hussain, I; Lawrence, J; Smith, G C; Cosgrove, D; Toccaceli, C
2016-10-01
With an ageing world population it is becoming significantly apparent that there is a need to produce implants and platforms to manipulate stem cell growth on a pharmaceutical scale. This is needed to meet the socio-economic demands of many countries worldwide. This paper details one of the first ever studies in to the manipulation of stem cell growth on CO2 laser surface treated nylon 6,6 highlighting its potential as an inexpensive platform to manipulate stem cell growth on a pharmaceutical scale. Through CO2 laser surface treatment discrete changes to the surfaces were made. That is, the surface roughness of the nylon 6,6 was increased by up to 4.3μm, the contact angle was modulated by up to 5° and the surface oxygen content increased by up to 1atom %. Following mesenchymal stem cell growth on the laser treated samples, it was identified that CO2 laser surface treatment gave rise to an enhanced response with an increase in viable cell count of up to 60,000cells/ml when compared to the as-received sample. The effect of surface parameters modified by the CO2 laser surface treatment on the mesenchymal stem cell response is also discussed along with potential trends that could be identified to govern the mesenchymal stem cell response. Copyright © 2016. Published by Elsevier B.V.
Presence of closely spaced protein thiols on the surface of mammalian cells.
Donoghue, N.; Yam, P. T.; Jiang, X. M.; Hogg, P. J.
2000-01-01
It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active. PMID:11206065
Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem
2014-12-31
The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylin, S.B.; Gazdar, A.F.; Minna, J.D.
1982-08-01
Radioiodination (/sup 125/I) and two-dimensional polyacrylamide gel electrophoresis was used to determine that small-(oat) cell lung carcinoma (SCC)-a tumor with neuroedocrine features-possesses a surface protein pattern distinct from the other types of lung cancer cells (squamous, adeno-, and large-cell undifferentiated carcinoma). Twelve distinguishing proteins, 40 to 70 kilodaltons (kDal), characterized four separate lines of SCC; three of these, designated E (60 kDal; pI = 7.3), S (30 kDal; pI = 6.0), and U 57 kDal; pI = 5.6), may be unique SCC gene products and were identified only in (/sup 35/S)methionine labeling of SCC and not in non-SCC or humanmore » fibroblasts. Two lines of adeno-, one of squamous, and one of undifferentiated large-cell lung carcinoma exhibited similar surface protein patterns to one another. Nine distinguishing proteins (40 to 100 kDal) and at least five large proteins (>100 kDal) were unique to these lines. The surface protein phenotypes for SCC and non-SCC were distinct from those for human lymphoblastoid cells and fibroblasts. However, the neuroendocrine features of SCC were further substantiated because 6 of the 12 distinguishing SCC surface proteins, including E and U, were identified on human neuroblastoma cells. The proteins identified should (i) help define differentiation steps for normal and neoplastic bronchial epithelial cells, (ii) prove useful in better classifying lung cancers, and (iii) be instrumental in tracing formation of neuroendocrine cells.« less
Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis.
Christianson, Dawn R; Dobroff, Andrey S; Proneth, Bettina; Zurita, Amado J; Salameh, Ahmad; Dondossola, Eleonora; Makino, Jun; Bologa, Cristian G; Smith, Tracey L; Yao, Virginia J; Calderone, Tiffany L; O'Connell, David J; Oprea, Tudor I; Kataoka, Kazunori; Cahill, Dolores J; Gershenwald, Jeffrey E; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2015-02-24
Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis.
Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A
2015-01-13
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. © 2014 The Authors.
Quantitative comparison of a human cancer cell surface proteome between interphase and mitosis
Özlü, Nurhan; Qureshi, Mohammad H; Toyoda, Yusuke; Renard, Bernhard Y; Mollaoglu, Gürkan; Özkan, Nazlı E; Bulbul, Selda; Poser, Ina; Timm, Wiebke; Hyman, Anthony A; Mitchison, Timothy J; Steen, Judith A
2015-01-01
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface-exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty-eight surface and surface-associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis-selective cell surface localization of protocadherin PCDH7, a member of a family with anti-adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti-mitotic cancer chemotherapy. PMID:25476450
Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M
2009-01-01
The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.
Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.
Sirkis, Daniel W; Bonham, Luke W; Aparicio, Renan E; Geier, Ethan G; Ramos, Eliana Marisa; Wang, Qing; Karydas, Anna; Miller, Zachary A; Miller, Bruce L; Coppola, Giovanni; Yokoyama, Jennifer S
2016-09-02
Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression.
Navarre, William Wiley; Schneewind, Olaf
1999-01-01
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836
USDA-ARS?s Scientific Manuscript database
The Jumonji C-domain containing protein 6 (JMJD6) has had a convoluted history. It was first identified as the phosphatidylserine receptor (PSR) on the cell surface responsible for recognizing phosphatidylserine on the surface of apoptotic cells resulting in their engulfment by phagocytic cells. Sub...
Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng
2017-01-01
Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut. PMID:28281568
Wang, Ran; Jiang, Lun; Zhang, Ming; Zhao, Liang; Hao, Yanling; Guo, Huiyuan; Sang, Yue; Zhang, Hao; Ren, Fazheng
2017-03-10
Lactobacillus salivarius REN, a novel probiotic isolated from Chinese centenarians, can adhere to intestinal epithelial cells and subsequently colonize the host. We show here that the surface-layer protein choline-binding protein A (CbpA) of L. salivarius REN was involved in adherence to the human colorectal adenocarcinoma cell line HT-29. Adhesion of a cbpA deletion mutant was significantly reduced compared with that of wild-type, suggesting that CbpA acts as an adhesin that mediates the interaction between the bacterium and its host. To identify the molecular mechanism of adhesion, we determined the crystal structure of a truncated form of CbpA that is likely involved in binding to its cell-surface receptor. The crystal structure identified CbpA as a peptidase of the M23 family whose members harbor a zinc-dependent catalytic site. Therefore, we propose that CbpA acts as a multifunctional surface protein that cleaves the host extracellular matrix and participates in adherence. Moreover, we identified enolase as the CbpA receptor on the surface of HT-29 cells. The present study reveals a new class of surface-layer proteins as well as the molecular mechanism that may contribute to the ability of L. salivarius REN to colonize the human gut.
NASA Astrophysics Data System (ADS)
Smeekens, Johanna M.; Chen, Weixuan; Wu, Ronghu
2015-04-01
Cell surface N-glycoproteins play extraordinarily important roles in cell-cell communication, cell-matrix interactions, and cellular response to environmental cues. Global analysis is exceptionally challenging because many N-glycoproteins are present at low abundances and effective separation is difficult to achieve. Here, we have developed a novel strategy integrating metabolic labeling, copper-free click chemistry, and mass spectrometry (MS)-based proteomics methods to analyze cell surface N-glycoproteins comprehensively and site-specifically. A sugar analog containing an azido group, N-azidoacetylgalactosamine, was fed to cells to label glycoproteins. Glycoproteins with the functional group on the cell surface were then bound to dibenzocyclooctyne-sulfo-biotin via copper-free click chemistry under physiological conditions. After protein extraction and digestion, glycopeptides with the biotin tag were enriched by NeutrAvidin conjugated beads. Enriched glycopeptides were deglycosylated with peptide- N-glycosidase F in heavy-oxygen water, and in the process of glycan removal, asparagine was converted to aspartic acid and tagged with 18O for MS analysis. With this strategy, 144 unique N-glycopeptides containing 152 N-glycosylation sites were identified in 110 proteins in HEK293T cells. As expected, 95% of identified glycoproteins were membrane proteins, which were highly enriched. Many sites were located on important receptors, transporters, and cluster of differentiation proteins. The experimental results demonstrated that the current method is very effective for the comprehensive and site-specific identification of the cell surface N-glycoproteome and can be extensively applied to other cell surface protein studies.
Microarray analysis of genes associated with cell surface NIS protein levels in breast cancer.
Beyer, Sasha J; Zhang, Xiaoli; Jimenez, Rafael E; Lee, Mei-Ling T; Richardson, Andrea L; Huang, Kun; Jhiang, Sissy M
2011-10-11
Na+/I- symporter (NIS)-mediated iodide uptake allows radioiodine therapy for thyroid cancer. NIS is also expressed in breast tumors, raising potential for radionuclide therapy of breast cancer. However, NIS expression in most breast cancers is low and may not be sufficient for radionuclide therapy. We aimed to identify biomarkers associated with NIS expression such that mechanisms underlying NIS modulation in human breast tumors may be elucidated. Published oligonucleotide microarray data within the National Center for Biotechnology Information Gene Expression Omnibus database were analyzed to identify gene expression tightly correlated with NIS mRNA level among human breast tumors. NIS immunostaining was performed in a tissue microarray composed of 28 human breast tumors which had corresponding oligonucleotide microarray data available for each tumor such that gene expression associated with cell surface NIS protein level could be identified. NIS mRNA levels do not vary among breast tumors or when compared to normal breast tissues when detected by Affymetrix oligonucleotide microarray platforms. Cell surface NIS protein levels are much more variable than their corresponding NIS mRNA levels. Despite a limited number of breast tumors examined, our analysis identified cysteinyl-tRNA synthetase as a biomarker that is highly associated with cell surface NIS protein levels in the ER-positive breast cancer subtype. Further investigation on genes associated with cell surface NIS protein levels within each breast cancer molecular subtype may lead to novel targets for selectively increasing NIS expression/function in a subset of breast cancers patients.
Candida albicans Shaving to Profile Human Serum Proteins on Hyphal Surface
Marín, Elvira; Parra-Giraldo, Claudia M.; Hernández-Haro, Carolina; Hernáez, María L.; Nombela, César; Monteoliva, Lucía; Gil, Concha
2015-01-01
Candida albicans is a human opportunistic fungus and it is responsible for a wide variety of infections, either superficial or systemic. C. albicans is a polymorphic fungus and its ability to switch between yeast and hyphae is essential for its virulence. Once C. albicans obtains access to the human body, the host serum constitutes a complex environment of interaction with C. albicans cell surface in bloodstream. To draw a comprehensive picture of this relevant step in host-pathogen interaction during invasive candidiasis, we have optimized a gel-free shaving proteomic strategy to identify both, human serum proteins coating C. albicans cells and fungi surface proteins simultaneously. This approach was carried out with normal serum (NS) and heat inactivated serum (HIS). We identified 214 human and 372 C. albicans unique proteins. Proteins identified in C. albicans included 147 which were described as located at the cell surface and 52 that were described as immunogenic. Interestingly, among these C. albicans proteins, we identified 23 GPI-anchored proteins, Gpd2 and Pra1, which are involved in complement system evasion and 7 other proteins that are able to attach plasminogen to C. albicans surface (Adh1, Eno1, Fba1, Pgk1, Tdh3, Tef1, and Tsa1). Furthermore, 12 proteins identified at the C. albicans hyphae surface induced with 10% human serum were not detected in other hypha-induced conditions. The most abundant human proteins identified are involved in complement and coagulation pathways. Remarkably, with this strategy, all main proteins belonging to complement cascades were identified on the C. albicans surface. Moreover, we identified immunoglobulins, cytoskeletal proteins, metabolic proteins such as apolipoproteins and others. Additionally, we identified more inhibitors of complement and coagulation pathways, some of them serpin proteins (serine protease inhibitors), in HIS vs. NS. On the other hand, we detected a higher amount of C3 at the C. albicans surface in NS than in HIS, as validated by immunofluorescence. PMID:26696967
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji
2016-06-01
We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.
EMMPRIN Regulates Cytoskeleton Reorganization and Cell Adhesion in Prostate Cancer
Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O.; Toborek, Michal; Kyprianou, Natasha
2011-01-01
Background Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. Methods In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) vs. malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. Results EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Conclusions Our results suggest that EMMPRIN regulates cell adhesion, invasion and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. PMID:21563192
EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.
Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha
2012-01-01
Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.
Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A.; Natesan, Sridaran; Ferrara, Pascual; August, Paul
2014-01-01
Glioblastoma multiform (GBM) remains clinical indication with significant “unmet medical need”. Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells. PMID:25360666
Autelitano, François; Loyaux, Denis; Roudières, Sébastien; Déon, Catherine; Guette, Frédérique; Fabre, Philippe; Ping, Qinggong; Wang, Su; Auvergne, Romane; Badarinarayana, Vasudeo; Smith, Michael; Guillemot, Jean-Claude; Goldman, Steven A; Natesan, Sridaran; Ferrara, Pascual; August, Paul
2014-01-01
Glioblastoma multiform (GBM) remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG) cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR) in combination with label-free quantitative mass spectrometry (LFQ-MS) to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs). We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72%) are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.
Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.
2012-01-01
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487
Standing out from the crowd: How to identify plasma cells.
Tellier, Julie; Nutt, Stephen L
2017-08-01
Being the sole source of antibody, plasmablasts and plasma cells are essential for protective immunity. Due to their relative rarity, heterogeneity and the loss of many canonical B-cell markers, antibody-secreting cells (ASCs) have often been problematic to identify and further characterize. In the mouse, the combination of the expression of CD138 and BLIMP-1, has led to many insights into ASC biology, although this approach requires the use of a GFP reporter strain. In the current issue of the European Journal of Immunology, two independent studies by Wilmore et al. and Pracht et al. provide alternative approaches to identify all murine ASCs using antibodies against the cell surface proteins, Sca-1 and TACI, respectively. Here we will discuss the advantages of these new approaches to identify ASCs in the context of our emerging knowledge of the cell surface phenotype and gene expression program of various ASC subsets in the murine and human systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koch, Kerstin; Bennemann, Michael; Bohn, Holger F; Albach, Dirk C; Barthlott, Wilhelm
2013-09-01
The surface microstructures on ray florets of 62 species were characterized and compared with modern phylogenetic data of species affiliation in Asteraceae to determine sculptural patterns and their occurrence in the tribes of Asteraceae. Their wettability was studied to identify structural-induced droplet adhesion, which can be used for the development of artificial surfaces for water harvesting and passive surface water transport. The wettability was characterized by contact angle (CA) and tilt angle measurements, performed on fresh ray florets and their epoxy resin replica. The CAs on ray florets varied between 104° and 156°, but water droplets did not roll off when surface was tilted at 90°. Elongated cell structures and cuticle folding orientated in the same direction as the cell elongation caused capillary forces, leading to anisotropic wetting, with extension of water droplets along the length axis of epidermis cells. The strongest elongation of the droplets was also supported by a parallel, cell-overlapping cuticle striation. In artificial surfaces made of epoxy replica of ray florets, this effect was enhanced. The distribution of the identified four structural types exhibits a strong phylogenetic signal and allows the inference of an evolutionary trend in the modification of floret epidermal cells.
Surface Expression of Hsp25 and Hsp72 Differentially Regulates Tumor Growth and Metastasis
Bausero, María A.; Page, Diana T.; Osinaga, Eduardo; Asea, Alexzander
2006-01-01
The expression of unique surface structures on tumors that allow for recognition and activation of host immunocompetent cells plays an important role in determining tumor growth and/or metastasis. Recent studies have identified an important role for heat shock proteins (Hsp) in antitumor surveillance; however, the exact role of Hsp expressed on the surface of tumors has not been fully addressed. In this study, we show that 4T1 mammary adenocarcinoma cells sorted for high Hsp25 surface expression (Hsp25high) grow significantly faster than cells sorted for intermediate Hsp25 surface expression (Hsp25intermediate) or wild-type 4T1 cells implanted into the abdominal breast gland of female BALB/c mice (p < 0.05). In addition, histological examination of lung tissues revealed that Hsp25high 4T1 cells metastasized to the lungs more aggressively than either Hsp25intermediate or wild-type 4T1 cells (p < 0.05). Exposure of 4T1 cells to nonlethal heat shock (43°C, 30 min) induced the surface expression of Hsp72 and a concomitant reduction in Hsp25 surface expression. The growth and metastastic potential of Hsp72+ 4T1 cells was significantly less than that of Hsp25high, Hsp25intermediate or wild-type 4T1 cells (p < 0.05). Taken together, these studies identify an important role for expression of Hsp25 and Hsp72 during tumor growth and metastatic spread which might be helpful in the design of antimetastatic therapies. PMID:15627887
Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis.
Bausero, María A; Page, Diana T; Osinaga, Eduardo; Asea, Alexzander
2004-01-01
The expression of unique surface structures on tumors that allow for recognition and activation of host immunocompetent cells plays an important role in determining tumor growth and/or metastasis. Recent studies have identified an important role for heat shock proteins (Hsp) in antitumor surveillance; however, the exact role of Hsp expressed on the surface of tumors has not been fully addressed. In this study, we show that 4T1 mammary adenocarcinoma cells sorted for high Hsp25 surface expression (Hsp25(high)) grow significantly faster than cells sorted for intermediate Hsp25 surface expression (Hsp25(intermediate)) or wild-type 4T1 cells implanted into the abdominal breast gland of female BALB/c mice (p < 0.05). In addition, histological examination of lung tissues revealed that Hsp25(high) 4T1 cells metastasized to the lungs more aggressively than either Hsp25(intermediate) or wild-type 4T1 cells (p < 0.05). Exposure of 4T1 cells to nonlethal heat shock (43 degrees C, 30 min) induced the surface expression of Hsp72 and a concomitant reduction in Hsp25 surface expression. The growth and metastastic potential of Hsp72(+) 4T1 cells was significantly less than that of Hsp25(high), Hsp25(intermediate) or wild-type 4T1 cells (p < 0.05). Taken together, these studies identify an important role for expression of Hsp25 and Hsp72 during tumor growth and metastatic spread which might be helpful in the design of antimetastatic therapies. Copyright 2004 S. Karger AG, Basel.
Kupffer cell/tumor cell interactions and hepatic metastasis in colorectal cancer.
Meterissian, S H; Toth, C A; Steele, G; Thomas, P
1994-06-15
The degree of interaction with Kupffer cells of two moderately well differentiated cell lines, CX-1 and CCl-188 of high metastatic potential (61%) were compared to two poorly differentiated cell lines, MIP-101 and Clone A of low metastatic potential (6%) in the intrasplenic injection model for liver metastasis. MIP-101 and Clone A bound significantly better to mouse Kupffer cells in vitro than either CX-1 or CCL-188. We also identified specific cell surface proteins mediating attachment of colorectal carcinoma cells to murine Kupffer cells. Kupffer cells were radiolabelled and their surface proteins incubated with MIP-101 and CX-1. Two radiolabelled proteins from murine Kupffer cells of 14 and 34 kDa were identified consistently binding to the tumor cells. Binding of both proteins was inhibited by asialofetuin but not by fetuin. This suggests that the major binding proteins between Kupffer cells and colorectal cancer cells are galactose binding lectins.
Tremblay, Tammy-Lynn; Hill, Jennifer J.
2017-01-01
Here we describe a novel crosslinker and its application as a biotin-transfer reagent to identify cell surface receptors of soluble protein ligands on live cells. This crosslinker contains three functional groups: an aldehyde-reactive aminooxy group, a sulfhydryl, and a biotin (ASB). It is readily synthesized via a 3-step addition reaction using standard solid-phase peptide synthesis methods and commercially available intermediates, allowing access to laboratories without specialized synthetic chemistry capabilities. For the biotin-transfer method, ASB is linked to a protein ligand through the sulfhydryl group in a two-step process that allows the introduction of a disulfide bond between the ligand and the crosslinker. Incubation of the labelled ligand with oxidized live cells leads to the formation of crosslinks with aldehyde-containing glycans on the cell surface receptor. Subsequent reduction of the disulfide bond results in biotin transfer from the ligand to the cell surface receptor. Protein biotinylation that is mediated by ligand binding to its receptor is differentiated from background biotinylation events by comparison with a similarly labelled control protein using comparative proteomic mass spectrometry to quantify streptavidin-bound proteins. Using this method, we successfully identified the cell surface receptors of a peptide hormone, a monoclonal antibody, and a single-domain antibody-Fc fusion construct. PMID:28422167
Son, Yeon Sung; Park, Jae Hyun; Kang, Young Kook; Park, Jin-Sung; Choi, Hong Seo; Lim, Ji Young; Lee, Jeoung Eun; Lee, Jung Bok; Ko, Myoung Seok; Kim, Yong-Sam; Ko, Jeong-Heon; Yoon, Hyun Soo; Lee, Kwang-Woong; Seong, Rho Hyun; Moon, Shin Yong; Ryu, Chun Jeih; Hong, Hyo Jeong
2005-01-01
The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.
Ramaraju, Harsha; Miller, Sharon J; Kohn, David H
2017-07-01
Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ 50 , p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cell-surface markers for colon adenoma and adenocarcinoma
Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.
2016-01-01
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861
Cell-surface markers for colon adenoma and adenocarcinoma.
Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L
2016-04-05
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.
Nanoparticles-cell association predicted by protein corona fingerprints
NASA Astrophysics Data System (ADS)
Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.
2016-06-01
In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells. Electronic supplementary information (ESI) available: Table S1. Cell viability (%) and cell association of the different nanoparticles used. Table S2. Total number of identified proteins on the different nanoparticles used. Tables S3-S18. Top 25 most abundant corona proteins identified in the protein corona of nanoparticles NP2-NP16 following 1 hour incubation with HP. Table S19. List of descriptors used. Table S20. Potential targets of protein corona fingerprints with its own interaction score (mentha) and the expression median value in Hela cells. Fig. S1 and S2. Effect of exposure to human plasma on size and zeta potential of NPs. Fig. S3. Predictive modeling of nanoparticle-cell association. See DOI: 10.1039/c6nr03898k
Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin
2015-01-01
ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8+ T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4+ T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. PMID:26468525
Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin
2016-01-01
The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for early lytic cycle antigens. The present work identifies an additional immune evasion protein, BDLF3, that is expressed late in the lytic cycle and impairs CD8(+) T cell recognition by targeting cell surface MHC class I molecules for ubiquitination and proteasome-dependent downregulation. Interestingly, BDLF3 also targets MHC class II molecules to impair CD4(+) T cell recognition. BDLF3 is therefore a rare example of a viral protein that impairs both the MHC class I and class II antigen-presenting pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Passivation of Si solar cells by hetero-epitaxial compound semiconductor coatings
NASA Technical Reports Server (NTRS)
Vernon, S. M.; Spitzer, M. B.; Keavney, C. J.; Haven, V. E.; Sekula, P. A.
1986-01-01
A development status evaluation is made for high efficiency Si solar cells, with emphasis on the suppression of the deleterious effects of surface recombination. ZnS(0.9)Se(0.1) and GaP are identified as candidates for the reduction of surface recombination. Attention is given to methods developed for the deposition of heteroepitaxial compounds designed to block minority carrier transport to the Si solar cell surface without interfering with the majority carrier flow.
Surface glycosaminoglycans mediate adherence between HeLa cells and Lactobacillus salivarius Lv72.
Martín, Rebeca; Martín, Carla; Escobedo, Susana; Suárez, Juan E; Quirós, Luis M
2013-09-17
The adhesion of lactobacilli to the vaginal surface is of paramount importance to develop their probiotic functions. For this reason, the role of HeLa cell surface proteoglycans in the attachment of Lactobacillus salivarius Lv72, a mutualistic strain of vaginal origin, was investigated. Incubation of cultures with a variety of glycosaminoglycans (chondroitin sulfate A and C, heparin and heparan sulfate) resulted in marked binding interference. However, no single glycosaminoglycan was able to completely abolish cell binding, the sum of all having an additive effect that suggests cooperation between them and recognition of specific adhesins on the bacterial surface. In contrast, chondroitin sulfate B enhanced cell to cell attachment, showing the relevance of the stereochemistry of the uronic acid and the sulfation pattern on binding. Elimination of the HeLa surface glycosaminoglycans with lyases also resulted in severe adherence impairment. Advantage was taken of the Lactobacillus-glycosaminoglycans interaction to identify an adhesin from the bacterial surface. This protein, identify as a soluble binding protein of an ABC transporter system (OppA) by MALDI-TOF/(MS), was overproduced in Escherichia coli, purified and shown to interfere with L. salivarius Lv72 adhesion to HeLa cells. These data suggest that glycosaminoglycans play a fundamental role in attachment of mutualistic bacteria to the epithelium that lines the cavities where the normal microbiota thrives, OppA being a bacterial adhesin involved in the process.
Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae
Tacchi, Jessica L.; Raymond, Benjamin B. A.; Haynes, Paul A.; Berry, Iain J.; Widjaja, Michael; Bogema, Daniel R.; Woolley, Lauren K.; Jenkins, Cheryl; Minion, F. Chris; Padula, Matthew P.; Djordjevic, Steven P.
2016-01-01
Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. PMID:26865024
Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics.
Marín, Elvira; Haesaert, Annelies; Padilla, Laura; Adán, Jaume; Hernáez, María L; Monteoliva, Lucía; Gil, Concha
2018-01-01
Gardnerella vaginalis is one of the main etiologic agents of bacterial vaginosis (BV). This infection is responsible for a wide range of public health costs and is associated with several adverse outcomes during pregnancy. Improving our understanding of G. vaginalis protein cell surface will assist in BV diagnosis. This study represents the first proteomic approach that has analyzed the exposed proteins on G. vaginalis cell surface using a shaving approach. The 261 G. vaginalis proteins identified using this approach were analyzed with bioinformatic tools to detect characteristic motifs from surface-exposed proteins, such as signal peptides (36 proteins), lipobox domains (17 proteins), LPXTG motifs (5 proteins) and transmembrane alpha-helices (66 proteins). One third of the identified proteins were found to have at least one typical motif of surface-exposed proteins. Furthermore, the subcellular location was examined using two predictors (PSORT and Gpos-mPLoc). These bioinformatic tools classified 17% of the identified proteins as surface-associated proteins. Interestingly, we identified 13 members of the ATP-binding cassette (ABC) superfamily, which were mainly involved in the translocation of various substrates across membranes. To validate the location of the G. vaginalis surface-exposed proteins, an immunofluorescence assay with antibodies against Escherichia coli GroEL was performed to reveal the extracellular location of the moonlighting GroEL. In addition, monoclonal antibodies (mAb) against G. vaginalis Cna protein were produced and used to validate the location of Cna on the surface of the G. vaginalis . These high affinity anti-Cna mAb represent a useful tool for the study of this pathogenic microorganism and the BV.
Unraveling Gardnerella vaginalis Surface Proteins Using Cell Shaving Proteomics
Marín, Elvira; Haesaert, Annelies; Padilla, Laura; Adán, Jaume; Hernáez, María L.; Monteoliva, Lucía; Gil, Concha
2018-01-01
Gardnerella vaginalis is one of the main etiologic agents of bacterial vaginosis (BV). This infection is responsible for a wide range of public health costs and is associated with several adverse outcomes during pregnancy. Improving our understanding of G. vaginalis protein cell surface will assist in BV diagnosis. This study represents the first proteomic approach that has analyzed the exposed proteins on G. vaginalis cell surface using a shaving approach. The 261 G. vaginalis proteins identified using this approach were analyzed with bioinformatic tools to detect characteristic motifs from surface-exposed proteins, such as signal peptides (36 proteins), lipobox domains (17 proteins), LPXTG motifs (5 proteins) and transmembrane alpha-helices (66 proteins). One third of the identified proteins were found to have at least one typical motif of surface-exposed proteins. Furthermore, the subcellular location was examined using two predictors (PSORT and Gpos-mPLoc). These bioinformatic tools classified 17% of the identified proteins as surface-associated proteins. Interestingly, we identified 13 members of the ATP-binding cassette (ABC) superfamily, which were mainly involved in the translocation of various substrates across membranes. To validate the location of the G. vaginalis surface-exposed proteins, an immunofluorescence assay with antibodies against Escherichia coli GroEL was performed to reveal the extracellular location of the moonlighting GroEL. In addition, monoclonal antibodies (mAb) against G. vaginalis Cna protein were produced and used to validate the location of Cna on the surface of the G. vaginalis. These high affinity anti-Cna mAb represent a useful tool for the study of this pathogenic microorganism and the BV. PMID:29867878
Zhang, Lili; Yu, Yang; Li, Xinhua; Li, Xiaona; Zhang, Huajiang; Zhang, Zhen; Xu, Yunhe
2017-01-01
In the current study, we focused on the mechanism underlying starch flocculation by the sweet potato sour liquid. The traditional microbial techniques and 16S rDNA sequencing revealed that Lactobacillus was dominant flocculating microorganism in sour liquid. In total, 86 bacteria, 20 yeasts, and 10 molds were isolated from the sour liquid and only eight Lactobacillus species exhibited flocculating activity. Lactobacillus paracasei subsp. paracasei L1 strain with a high flocculating activity was isolated and identified, and the mechanism of starch flocculation was examined. L. paracasei subsp. paracasei L1 cells formed chain-like structures on starch granules. Consequently, these cells connected the starch granules to one another, leading to formation of large flocs. The results of various treatments of L1 cells indicated that bacterial surface proteins play a role in flocculation and L1 cells adhered to the surface of starch granules via specific surface proteins. These surface starch-binding proteins were extracted using the guanidine hydrochloride method; 10 proteins were identified by mass spectrometry: three of these proteins were glycolytic enzymes; two were identified as the translation elongation factor Tu; one was a cell wall hydrolase; one was a surface antigen; one was lyzozyme M1; one was a glycoside hydrolase; and one was an uncharacterized proteins. This study will paves the way for future industrial application of the L1 isolate in starch processing and food manufacturing. PMID:28791000
Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155
2010-01-01
Background The usually non-pathogenic soil bacterium Mycobacterium smegmatis is commonly used as a model mycobacterial organism because it is fast growing and shares many features with pathogenic mycobacteria. Proteomic studies of M. smegmatis can shed light on mechanisms of mycobacterial growth, complex lipid metabolism, interactions with the bacterial environment and provide a tractable system for antimycobacterial drug development. The cell wall proteins are particularly interesting in this respect. The aim of this study was to construct a reference protein map for these proteins in M. smegmatis. Results A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis and LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. smegmatis. An enzymatic cell surface shaving method was used to determine the surface-exposed proteins. As a result, a total of 390 cell wall proteins and 63 surface-exposed proteins were identified. Further analysis of the 390 cell wall proteins provided the theoretical molecular mass and pI distributions and determined that 26 proteins are shared with the surface-exposed proteome. Detailed information about functional classification, signal peptides and number of transmembrane domains are given next to discussing the identified transcriptional regulators, transport proteins and the proteins involved in lipid metabolism and cell division. Conclusion In short, a comprehensive profile of the M. smegmatis cell wall subproteome is reported. The current research may help the identification of some valuable vaccine and drug target candidates and provide foundation for the future design of preventive, diagnostic, and therapeutic strategies against mycobacterial diseases. PMID:20412585
Swaminathan Iyer, K; Gaikwad, R M; Woodworth, C D; Volkov, D O; Sokolov, Igor
2012-06-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.
Iyer, K. Swaminathan; Gaikwad, R. M.; Woodworth, C. D.; Volkov, D. O.
2013-01-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p <0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, pre-malignant cells. PMID:22351422
Growth condition-dependent cell surface proteome analysis of Enterococcus faecium.
Sinnige, Jan C; de Been, Mark; Zhou, Miaomiao; Bonten, Marc J M; Willems, Rob J L; Top, Janetta
2015-11-01
The last 30 years Enterococcus faecium has become an important nosocomial pathogen in hospitals worldwide. The aim of this study was to obtain insight in the cell surface proteome of E. faecium when grown in laboratory and clinically relevant conditions. Enterococcus faecium E1162, a clinical blood stream isolate, was grown until mid-log phase in brain heart infusion medium (BHI) with, or without 0.02% bile salts, Tryptic Soy Broth with 1% glucose (TSBg) and urine, and its cell surface was "shaved" using immobilized trypsin. Peptides were identified using MS/MS. Mapping against the translated E1162 whole genome sequence identified 67 proteins that were differentially detected in different conditions. In urine, 14 proteins were significantly more and nine proteins less abundant relative to the other conditions. Growth in BHI-bile and TSBg, revealed four and six proteins, respectively, which were uniquely present in these conditions while two proteins were uniquely present in both conditions. Thus, proteolytic shaving of E. faecium cells identified differentially surface exposed proteins in different growth conditions. These proteins are of special interest as they provide more insight in the adaptive mechanisms and may serve as targets for the development of novel therapeutics against this multi-resistant emerging pathogen. All MS data have been deposited in the ProteomeXchange with identifier PXD002497 (http://proteomecentral.proteomexchange.org/dataset/PXD002497). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uhl, P B; Szober, C M; Amann, B; Alge-Priglinger, C; Ueffing, M; Hauck, S M; Deeg, C A
2014-09-23
Retinal pigment epithelium (RPE) builds the outer blood-retinal barrier of the eye and plays an important role in pathogenesis of the sight threatening disease equine recurrent uveitis (ERU). ERU is a spontaneous autoimmune mediated inflammatory disease characterised by the breakdown of the outer blood-retinal barrier and an influx of autoaggressive T-cells into the inner eye. Therefore, identification of molecular mechanisms contributing to changed function of blood-retinal barrier in ERU is important for the understanding of pathophysiology. Cell surface proteins of RPE collected from healthy horses and horses with ERU were captured by in situ biotinylation and analysed with high resolution mass spectrometry coupled to liquid chromatography (LC-MS/MS) to identify differentially expressed proteins. With label free differential proteomics, a total of 27 differently expressed cell surface proteins in diseased RPE could be detected. Significant down-regulation of three very interesting proteins, synaptotagmin 1, basigin and collectrin was verified and further characterised. We applied an innovative and successful method to detect changes in the plasma cell surface proteome of RPE cells in a spontaneous inflammatory eye disease, serving as a valuable model for human autoimmune uveitis. We were able to identify 27 differentially expressed plasma cell membrane proteins, including synaptotagmin 1, basigin and collectrin, which play important roles in cell adhesion, transport and cell communication. Copyright © 2014 Elsevier B.V. All rights reserved.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2017-12-01
Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Perkins, Lydia A; Fisher, Gregory W; Naganbabu, Matharishwan; Schmidt, Brigitte F; Mun, Frederick; Bruchez, Marcel P
2018-03-05
The most promising F508del-CFTR corrector, VX-809, has been unsuccessful as an effective, stand-alone treatment for CF patients, but the rescue effect in combination with other drugs may confer an acceptable level of therapeutic benefit. Targeting cellular factors that modify trafficking may act to enhance the cell surface density of F508-CFTR with VX-809 correction. Our goal is to identify druggable kinases that enhance F508del-CFTR rescue and stabilization at the cell surface beyond that achievable with the VX-809 corrector alone. To achieve this goal, we implemented a new high-throughput screening paradigm that quickly and quantitatively measures surface density and total protein in the same cells. This allowed for rapid screening for increased surface targeting and proteostatic regulation. The assay utilizes fluorogen-activating-protein (FAP) technology with cell excluded and cell permeant fluorogenic dyes in a quick, wash-free fluorescent plate reader format on live cells to first measure F508del-CFTR expressed on the surface and then the total amount of F508del-CFTR protein present. To screen for kinase targets, we used Dharmacon's ON-TARGET plus SMARTpool siRNA Kinase library (715 target kinases) with and without 10 μM VX-809 treatment in triplicate at 37 °C. We identified several targets that had a significant interaction with VX-809 treatment in enhancing surface density with siRNA knockdown. Select small-molecule inhibitors of the kinase targets demonstrated augmented surface expression with VX-809 treatment.
Sanz, Ricardo L; Ferraro, Gino B; Girouard, Marie-Pier; Fournier, Alyson E
2017-08-11
IgLONs are members of the immunoglobulin superfamily of cell adhesion proteins implicated in the process of neuronal outgrowth, cell adhesion and subdomain target recognition. IgLONs form homophilic and heterophilic complexes on the cell surface that repress or promote growth depending on the neuronal population, the developmental stage and surface repertoire of IgLON family members. In the present study, we identified a metalloproteinase-dependent mechanism necessary to promote growth in embryonic dorsal root ganglion cells (DRGs). Treatment of embryonic DRG neurons with pan-metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-3, or an inhibitor of ADAM Metallopeptidase Domain 10 (ADAM10) reduces outgrowth from DRG neurons indicating that metalloproteinase activity is important for outgrowth. The IgLON family members Neurotrimin (NTM) and Limbic System-Associated Membrane Protein (LSAMP) were identified as ADAM10 substrates that are shed from the cell surface of DRG neurons. Overexpression of LSAMP and NTM suppresses outgrowth from DRG neurons. Furthermore, LSAMP loss of function decreases the outgrowth sensitivity to an ADAM10 inhibitor. Together our findings support a role for ADAM-dependent shedding of cell surface LSAMP in promoting outgrowth from DRG neurons.
The Human Cell Surfaceome of Breast Tumors
da Cunha, Júlia Pinheiro Chagas; Galante, Pedro Alexandre Favoretto; de Souza, Jorge Estefano Santana; Pieprzyk, Martin; Carraro, Dirce Maria; Old, Lloyd J.; Camargo, Anamaria Aranha; de Souza, Sandro José
2013-01-01
Introduction. Cell surface proteins are ideal targets for cancer therapy and diagnosis. We have identified a set of more than 3700 genes that code for transmembrane proteins believed to be at human cell surface. Methods. We used a high-throuput qPCR system for the analysis of 573 cell surface protein-coding genes in 12 primary breast tumors, 8 breast cell lines, and 21 normal human tissues including breast. To better understand the role of these genes in breast tumors, we used a series of bioinformatics strategies to integrates different type, of the datasets, such as KEGG, protein-protein interaction databases, ONCOMINE, and data from, literature. Results. We found that at least 77 genes are overexpressed in breast primary tumors while at least 2 of them have also a restricted expression pattern in normal tissues. We found common signaling pathways that may be regulated in breast tumors through the overexpression of these cell surface protein-coding genes. Furthermore, a comparison was made between the genes found in this report and other genes associated with features clinically relevant for breast tumorigenesis. Conclusions. The expression profiling generated in this study, together with an integrative bioinformatics analysis, allowed us to identify putative targets for breast tumors. PMID:24195083
Holtzinger, Audrey; Streeter, Philip R.; Sarangi, Farida; Hillborn, Scott; Niapour, Maryam; Ogawa, Shinichiro; Keller, Gordon
2015-01-01
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line. PMID:26493401
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.; Bancroft, J.
1994-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.
Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin
2018-02-10
A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.
Baskar, Sivasubramanian; Suschak, Jessica M; Samija, Ivan; Srinivasan, Ramaprasad; Childs, Richard W; Pavletic, Steven Z; Bishop, Michael R; Rader, Christoph
2009-11-12
Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only potentially curative treatment available for patients with B-cell chronic lymphocytic leukemia (B-CLL). Here, we show that post-alloHSCT antibody repertoires can be mined for the discovery of fully human monoclonal antibodies to B-CLL cell-surface antigens. Sera collected from B-CLL patients at defined times after alloHSCT showed selective binding to primary B-CLL cells. Pre-alloHSCT sera, donor sera, and control sera were negative. To identify post-alloHSCT serum antibodies and subsequently B-CLL cell-surface antigens they recognize, we generated a human antibody-binding fragment (Fab) library from post-alloHSCT peripheral blood mononuclear cells and selected it on primary B-CLL cells by phage display. A panel of Fab with B-CLL cell-surface reactivity was strongly enriched. Selection was dominated by highly homologous Fab predicted to bind the same antigen. One Fab was converted to immunoglobulin G1 and analyzed for reactivity with peripheral blood mononuclear cells from B-CLL patients and healthy volunteers. Cell-surface antigen expression was restricted to primary B cells and up-regulated in primary B-CLL cells. Mining post-alloHSCT antibody repertoires offers a novel route to discover fully human monoclonal antibodies and identify antigens of potential therapeutic relevance to B-CLL and possibly other cancers. Trials described herein were registered at www.clinicaltrials.gov as nos. NCT00055744 and NCT00003838.
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells
Xiong, Jimin; Menicanin, Danijela; Marino, Victor
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein “spots” were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population. PMID:27579043
Investigation of the Cell Surface Proteome of Human Periodontal Ligament Stem Cells.
Xiong, Jimin; Menicanin, Danijela; Zilm, Peter S; Marino, Victor; Bartold, P Mark; Gronthos, Stan
2016-01-01
The present study examined the cell surface proteome of human periodontal ligament stem cells (PDLSC) compared to human fibroblasts. Cell surface proteins were prelabelled with CyDye before processing to extract the membrane lysates, which were separated using 2D electrophoresis. Selected differentially expressed protein "spots" were identified using Mass spectrometry. Four proteins were selected for validation: CD73, CD90, Annexin A2, and sphingosine kinase 1 previously associated with mesenchymal stem cells. Flow cytometric analysis found that CD73 and CD90 were highly expressed by human PDLSC and gingival fibroblasts but not by keratinocytes, indicating that these antigens could be used as potential markers for distinguishing between mesenchymal cells and epithelial cell populations. Annexin A2 was also found to be expressed at low copy number on the cell surface of human PDLSC and gingival fibroblasts, while human keratinocytes lacked any cell surface expression of Annexin A2. In contrast, sphingosine kinase 1 expression was detected in all the cell types examined using immunocytochemical analysis. These proteomic studies form the foundation to further define the cell surface protein expression profile of PDLSC in order to better characterise this cell population and help develop novel strategies for the purification of this stem cell population.
Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra
Tortiglione, Claudia; Quarta, Alessandra; Malvindi, Maria Ada; Tino, Angela; Pellegrino, Teresa
2009-01-01
Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism. PMID:19888325
Guz, Nataliia V; Dokukin, Maxim E; Woodworth, Craig D; Cardin, Andrew; Sokolov, Igor
2015-10-01
We used AFM HarmoniX modality to analyse the surface of individual human cervical epithelial cells at three stages of progression to cancer, normal, immortal (pre-malignant) and carcinoma cells. Primary cells from 6 normal strains, 6 cancer, and 6 immortalized lines (derived by plasmid DNA-HPV-16 transfection of cells from 6 healthy individuals) were tested. This cell model allowed for good control of the cell phenotype down to the single cell level, which is impractical to attain in clinical screening tests (ex-vivo). AFM maps of physical (nonspecific) adhesion are collected on fixed dried cells. We show that a surface parameter called fractal dimension can be used to segregate normal from both immortal pre-malignant and malignant cells with sensitivity and specificity of more than 99%. The reported method of analysis can be directly applied to cells collected in liquid cytology screening tests and identified as abnormal with regular optical methods to increase sensitivity. Despite cervical smear screening, sometimes it is very difficult to differentiate cancers cells from pre-malignant cells. By using AFM to analyze the surface properties of human cervical epithelial cells, the authors were able to accurately identify normal from abnormal cells. This method could augment existing protocols to increase diagnostic accuracy. Copyright © 2015. Published by Elsevier Inc.
Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon
2011-10-23
To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.
Smith, R; Lehner, T
1989-09-01
Three monoclonal antibodies (MAb) were prepared against a cell surface antigen which cross-react between Streptococcus mutans (serotypes c, e and f) and Streptococcus sobrinus (serotypes d and g). Two of the MAb also recognise a determinant on the surface of Streptococcus cricetus (serotype a). The common antigen shared between S. mutans and S. sobrinus was demonstrated by Western blotting to be about 200 kD in size. This antigen is shared not only by the cell surfaces of serotypes a, c, d, e, f and g, but also by the major cell surface antigen of S. mutans of 185 kD and another of 150 kD. These MAb identify all but one mutans type of streptococci and can be utilised as analytical reagents.
Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.
2014-01-01
In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666
High-Throughput Lectin Microarray-Based Analysis of Live Cell Surface Glycosylation
Li, Yu; Tao, Sheng-ce; Zhu, Heng; Schneck, Jonathan P.
2011-01-01
Lectins, plant-derived glycan-binding proteins, have long been used to detect glycans on cell surfaces. However, the techniques used to characterize serum or cells have largely been limited to mass spectrometry, blots, flow cytometry, and immunohistochemistry. While these lectin-based approaches are well established and they can discriminate a limited number of sugar isomers by concurrently using a limited number of lectins, they are not amenable for adaptation to a high-throughput platform. Fortunately, given the commercial availability of lectins with a variety of glycan specificities, lectins can be printed on a glass substrate in a microarray format to profile accessible cell-surface glycans. This method is an inviting alternative for analysis of a broad range of glycans in a high-throughput fashion and has been demonstrated to be a feasible method of identifying binding-accessible cell surface glycosylation on living cells. The current unit presents a lectin-based microarray approach for analyzing cell surface glycosylation in a high-throughput fashion. PMID:21400689
Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I
2013-06-13
Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis.
Martinko, Alexander J; Truillet, Charles; Julien, Olivier; Diaz, Juan E; Horlbeck, Max A; Whiteley, Gordon; Blonder, Josip; Weissman, Jonathan S; Bandyopadhyay, Sourav; Evans, Michael J; Wells, James A
2018-01-23
While there have been tremendous efforts to target oncogenic RAS signaling from inside the cell, little effort has focused on the cell-surface. Here, we used quantitative surface proteomics to reveal a signature of proteins that are upregulated on cells transformed with KRAS G12V , and driven by MAPK pathway signaling. We next generated a toolkit of recombinant antibodies to seven of these RAS-induced proteins. We found that five of these proteins are broadly distributed on cancer cell lines harboring RAS mutations. In parallel, a cell-surface CRISPRi screen identified integrin and Wnt signaling proteins as critical to RAS-transformed cells. We show that antibodies targeting CDCP1, a protein common to our proteomics and CRISPRi datasets, can be leveraged to deliver cytotoxic and immunotherapeutic payloads to RAS-transformed cancer cells and report for RAS signaling status in vivo. Taken together, this work presents a technological platform for attacking RAS from outside the cell. © 2018, Martinko et al.
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy†
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin; Lohse, Samuel E.; Lee, Chang-soo; Torelli, Marco D.; Hamers, Robert J.; Murhpy, Catherine J.; Orr, Galya
2015-01-01
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate eficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localization patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells. PMID:24816810
Facile method to stain the bacterial cell surface for super-resolution fluorescence microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunsolus, Ian L.; Hu, Dehong; Mihai, Cosmin
A method to fluorescently stain the surfaces of both Gram-negative and Gram-positive bacterial cells compatible with super-resolution fluorescence microscopy is presented. This method utilizes a commercially-available fluorescent probe to label primary amines at the surface of the cell. We demonstrate efficient staining of two bacterial strains, the Gram-negative Shewanella oneidensis MR-1 and the Gram-positive Bacillus subtilis 168. Using structured illumination microscopy and stochastic optical reconstruction microscopy, which require high quantum yield or specialized dyes, we show that this staining method may be used to resolve the bacterial cell surface with sub-diffraction-limited resolution. We further use this method to identify localizationmore » patterns of nanomaterials, specifically cadmium selenide quantum dots, following interaction with bacterial cells.« less
Surface deformation during an action potential in pearled cells
NASA Astrophysics Data System (ADS)
Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.
2017-11-01
Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.
Engineering a biospecific communication pathway between cells and electrodes
NASA Astrophysics Data System (ADS)
Collier, Joel H.; Mrksich, Milan
2006-02-01
Methods for transducing the cellular activities of mammalian cells into measurable electronic signals are important in many biotechnical applications, including biosensors, cell arrays, and other cell-based devices. This manuscript describes an approach for functionally integrating cellular activities and electrical processes in an underlying substrate. The cells are engineered with a cell-surface chimeric receptor that presents the nonmammalian enzyme cutinase. Action of this cell-surface cutinase on enzyme substrate self-assembled monolayers switches a nonelectroactive hydroxyphenyl ester to an electroactive hydroquinone, providing an electrical activity that can be identified with cyclic voltammetry. In this way, cell-surface enzymatic activity is transduced into electronic signals. The development of strategies to directly interface the activities of cells with materials will be important to enabling a broad class of hybrid microsystems that combine living and nonliving components. biomaterial | extracellular matrix | signal transduction
Screening of Small Molecule Interactor Library by Using In-Cell NMR Spectroscopy (SMILI-NMR)
Xie, Jingjing; Thapa, Rajiv; Reverdatto, Sergey; Burz, David S.; Shekhtman, Alexander
2011-01-01
We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP–FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast. PMID:19422228
Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo
Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.
2015-01-01
Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015
Mechanotransduction through Integrins
NASA Technical Reports Server (NTRS)
Ingber, Donald
2004-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses through cell surface integrin receptors and through their interconnections with the underlying cytoskeleton. Work completed and published in past funding period had provided direct support for this hypothesis. In particular, we demonstrated that application of mechanical stresses to activated integrin receptors (but not inactive integrins or other control transmembrane receptors) resulted in stress-dependent activation of the CAMP signaling pathway leading to gene transcription. We also showed that this form of mechanotransduction requires activation of heterotrimeric G proteins. In this grant, our specific aims included: 1) to characterize the signal processing capabilities of different integrins and other cell surface receptors, 2) to identify heterotrimeric G proteins that mediate CAMP signaling by stresses applied to integrins, 3) to identify molecules that mediate transmembrane mechanochemical coupling between integrins and G proteins, and 4) to use genome-wide gene expression profiling techniques to identify other genes and signaling pathways that are activated by mechanical forces transmitted over specific cell surface receptors. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation.
Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof
2016-06-01
Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).
The cellular prion protein identifies bipotential cardiomyogenic progenitors.
Hidaka, Kyoko; Shirai, Manabu; Lee, Jong-Kook; Wakayama, Takanari; Kodama, Itsuo; Schneider, Michael D; Morisaki, Takayuki
2010-01-08
The paucity of specific surface markers for cardiomyocytes and their progenitors has impeded the development of embryonic or pluripotent stem cell-based transplantation therapy. Identification of relevant surface markers may also enhance our understanding of the mechanisms underlying differentiation. Here, we show that cellular prion protein (PrP) serves as an effective surface marker for isolating nascent cardiomyocytes as well as cardiomyogenic progenitors. Embryonic stem (or embryo-derived) cells were analyzed using flow cytometry to detect surface expression of PrP and intracellular myosin heavy chain (Myhc) proteins. Sorted cells were then analyzed for their differentiation potential. PrP+ cells from beating embryoid bodies (EBs) frequently included nascent Myhc+ cardiomyocytes. Cultured PrP+ cells further differentiated, giving rise to cardiac troponin I+ definitive cardiomyocytes with either an atrial or a ventricular identity. These cells were electrophysiologically functional and able to survive in vivo after transplantation. Combining PrP with a second marker, platelet-derived growth factor receptor (PDGFR)alpha, enabled us to identify an earlier cardiomyogenic population from prebeating EBs, the PrP+PDGFRalpha+ (PRa) cells. The Myhc- PRa cells expressed cardiac transcription factors, such as Nkx2.5, T-box transcription factor 5, and Isl1 (islet LIM homeobox 1), although they were not completely committed. In mouse embryos, PRa cells in cardiac crescent at the 1 to 2 somite stage were Myhc+, whereas they were Myhc- at headfold stages. PRa cells clonally expanded in methlycellulose cultures. Furthermore, single Myhc- PRa cell-derived colonies contained both cardiac and smooth muscle cells. Thus, PrP demarcates a population of bipotential cardiomyogenic progenitor cells that can differentiate into cardiac or smooth muscle cells.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, R. A.; Schuff, N. R.; Bancroft, J.
1993-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Cell-surface marker discovery for lung cancer
Cohen, Allison S.; Khalil, Farah K.; Welsh, Eric A.; Schabath, Matthew B.; Enkemann, Steven A.; Davis, Andrea; Zhou, Jun-Min; Boulware, David C.; Kim, Jongphil; Haura, Eric B.; Morse, David L.
2017-01-01
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients. PMID:29371917
Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis.
Nakayama, Motokazu; Shimatani, Kanami; Ozawa, Tadahiro; Shigemune, Naofumi; Tomiyama, Daisuke; Yui, Koji; Katsuki, Mao; Ikeda, Keisuke; Nonaka, Ai; Miyamoto, Takahisa
2015-01-01
Catechins are a class of polyphenols and have high anti-bacterial activity against various microorganisms. Here, we report the mechanism for antibacterial activity of epigallocatechin gallate (EGCg) against Gram-positive bacteria Bacillus subtilis, which is highly sensitive to EGCg. Transmission electron microscope analysis revealed that deposits containing EGCg were found throughout the cell envelope from the outermost surface to the outer surface of cytoplasmic membrane. Aggregating forms of proteins and EGCg were identified as spots that disappeared or showed markedly decreased intensity after the treatment with EGCg compared to the control by two-dimensional electrophoresis. Among the identified proteins included 4 cell surface proteins, such as oligopeptide ABC transporter binding lipoprotein, glucose phosphotransferase system transporter protein, phosphate ABC transporter substrate-binding protein, and penicillin-binding protein 5. Observations of glucose uptake of cells and cell shape B. subtilis after the treatment with EGCg suggested that EGCg inhibits the major functions of these proteins, leading to growth inhibition of B. subtilis.
Flow cytometry on the stromal-vascular fraction of white adipose tissue.
Brake, Danett K; Smith, C Wayne
2008-01-01
Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow cytometry to analyze cell surface markers on leukocytes. Here, we present a technical approach to identify subsets of leukocytes that differentially express cell surface markers.
Bächle, Maria; Kohal, Ralf J
2004-12-01
Titanium is the standard material for dental and orthopaedical implants. The good biocompatibility has been proven in many experimental and clinical investigations. Different titanium topographies were tested in vitro using different cell culture models. The aim of this systematic review was to evaluate and summarize the medical/dental literature to assess on which kind of titanium surface structure the osteoblast-like osteosarcoma cells MG63 show the best proliferation and differentiation rate, and the best protein synthesis. A systematic search was carried out using different on-line databases (PubMed, Web of Science, Cochrane Library, International Poster Journal), supplemented by handsearch in selected journals and by examination of the bibliographies of the identified articles. Inclusion and exclusion criterias were applied when considering relevant articles. Studies which met the inclusion criteria were included and data extraction was undertaken by one reviewer. The search yielded 348 references. Nine articles referring to nine different studies were relevant to our question. Additionally 8 less relevant articles were identified. It was found that regularly textured surfaces of pure titanium with R(a) values (average roughness) of around 4 mum are well-accepted by MG63 cells. The surfaces and culture conditions vary widely. Therefore it is still difficult to recommend one particular surface. It seems that there are no differences in cell proliferation and differentiation on surfaces treated by blasting and etching. Standardization in fabrication and size of the different test surfaces as well as homogeneity in culture times and plating densities should be aspects for future research.
Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus
Foster, Timothy J.; Geoghegan, Joan A.; Ganesh, Vannakambadi K.; Höök, Magnus
2014-01-01
Staphylococcus aureus is an important opportunistic pathogen and persistently colonizes about 20% of the human population. Its surface is ‘decorated’ with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional analysis has identified four distinct classes of surface proteins, of which microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. aureus in the commensal state and during invasive infections, and targeting them with vaccines could combat S. aureus infections. PMID:24336184
Park, Dayoung; Brune, Kristin A.; Mitra, Anupam; Marusina, Alina I.; Maverakis, Emanual; Lebrilla, Carlito B.
2015-01-01
Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. PMID:26355101
Frias-Lopez, Jorge; Thompson, Anne; Waldbauer, Jacob; Chisholm, Sallie W
2009-02-01
Prochlorococcus and Synechococcus are the two most abundant marine cyanobacteria. They represent a significant fraction of the total primary production of the world oceans and comprise a major fraction of the prey biomass available to phagotrophic protists. Despite relatively rapid growth rates, picocyanobacterial cell densities in open-ocean surface waters remain fairly constant, implying steady mortality due to viral infection and consumption by predators. There have been several studies on grazing by specific protists on Prochlorococcus and Synechococcus in culture, and of cell loss rates due to overall grazing in the field. However, the specific sources of mortality of these primary producers in the wild remain unknown. Here, we use a modification of the RNA stable isotope probing technique (RNA-SIP), which involves adding labelled cells to natural seawater, to identify active predators that are specifically consuming Prochlorococcus and Synechococcus in the surface waters of the Pacific Ocean. Four major groups were identified as having their 18S rRNA highly labelled: Prymnesiophyceae (Haptophyta), Dictyochophyceae (Stramenopiles), Bolidomonas (Stramenopiles) and Dinoflagellata (Alveolata). For the first three of these, the closest relative of the sequences identified was a photosynthetic organism, indicating the presence of mixotrophs among picocyanobacterial predators. We conclude that the use of RNA-SIP is a useful method to identity specific predators for picocyanobacteria in situ, and that the method could possibly be used to identify other bacterial predators important in the microbial food-web.
An AFM-based pit-measuring method for indirect measurements of cell-surface membrane vesicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiaojun; Department of Biotechnology, Nanchang University, Nanchang, Jiangxi 330031; Chen, Yuan
2014-03-28
Highlights: • Air drying induced the transformation of cell-surface membrane vesicles into pits. • An AFM-based pit-measuring method was developed to measure cell-surface vesicles. • Our method detected at least two populations of cell-surface membrane vesicles. - Abstract: Circulating membrane vesicles, which are shed from many cell types, have multiple functions and have been correlated with many diseases. Although circulating membrane vesicles have been extensively characterized, the status of cell-surface membrane vesicles prior to their release is less understood due to the lack of effective measurement methods. Recently, as a powerful, micro- or nano-scale imaging tool, atomic force microscopy (AFM)more » has been applied in measuring circulating membrane vesicles. However, it seems very difficult for AFM to directly image/identify and measure cell-bound membrane vesicles due to the similarity of surface morphology between membrane vesicles and cell surfaces. Therefore, until now no AFM studies on cell-surface membrane vesicles have been reported. In this study, we found that air drying can induce the transformation of most cell-surface membrane vesicles into pits that are more readily detectable by AFM. Based on this, we developed an AFM-based pit-measuring method and, for the first time, used AFM to indirectly measure cell-surface membrane vesicles on cultured endothelial cells. Using this approach, we observed and quantitatively measured at least two populations of cell-surface membrane vesicles, a nanoscale population (<500 nm in diameter peaking at ∼250 nm) and a microscale population (from 500 nm to ∼2 μm peaking at ∼0.8 μm), whereas confocal microscopy only detected the microscale population. The AFM-based pit-measuring method is potentially useful for studying cell-surface membrane vesicles and for investigating the mechanisms of membrane vesicle formation/release.« less
CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer
Weiskopf, Kipp; Jahchan, Nadine S.; Schnorr, Peter J.; Ring, Aaron M.; Maute, Roy L.; Volkmer, Anne K.; Volkmer, Jens-Peter; Liu, Jie; Lim, Jing Shan; Yang, Dian; Seitz, Garrett; Nguyen, Thuyen; Wu, Di; Guerston, Heather; Trapani, Francesca; George, Julie; Poirier, John T.; Gardner, Eric E.; Miles, Linde A.; de Stanchina, Elisa; Lofgren, Shane M.; Vogel, Hannes; Winslow, Monte M.; Dive, Caroline; Thomas, Roman K.; Rudin, Charles M.; van de Rijn, Matt; Majeti, Ravindra; Garcia, K. Christopher; Weissman, Irving L.
2016-01-01
Small-cell lung cancer (SCLC) is a highly aggressive subtype of lung cancer with limited treatment options. CD47 is a cell-surface molecule that promotes immune evasion by engaging signal-regulatory protein alpha (SIRPα), which serves as an inhibitory receptor on macrophages. Here, we found that CD47 is highly expressed on the surface of human SCLC cells; therefore, we investigated CD47-blocking immunotherapies as a potential approach for SCLC treatment. Disruption of the interaction of CD47 with SIRPα using anti-CD47 antibodies induced macrophage-mediated phagocytosis of human SCLC patient cells in culture. In a murine model, administration of CD47-blocking antibodies or targeted inactivation of the Cd47 gene markedly inhibited SCLC tumor growth. Furthermore, using comprehensive antibody arrays, we identified several possible therapeutic targets on the surface of SCLC cells. Antibodies to these targets, including CD56/neural cell adhesion molecule (NCAM), promoted phagocytosis in human SCLC cell lines that was enhanced when combined with CD47-blocking therapies. In light of recent clinical trials for CD47-blocking therapies in cancer treatment, these findings identify disruption of the CD47/SIRPα axis as a potential immunotherapeutic strategy for SCLC. This approach could enable personalized immunotherapeutic regimens in patients with SCLC and other cancers. PMID:27294525
Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne
2014-08-01
In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Oligosaccharide ligands for NKR-P1 protein activate NK cells and cytotoxicity
NASA Astrophysics Data System (ADS)
Bezouška, Karel; Yuen, Chun-Ting; O'Brien, Jacqui; Childs, Robert A.; Chai, Wengang; Lawson, Alexander M.; Drbal, Karel; Fišerová, Anna; Posíšil, Miloslav; Feizi, Ten
1994-11-01
A diversity of high-affinity Oligosaccharide ligands are identified for NKR-P1, a membrane protein on natural killer (NK) cells which contains an extracellular Ca2+-dependent lectin domain. Interactions of such oligosaccharides on the target cell surface with NKR-P1 on the killer cell surface are crucial both for target cell recognition and for delivery of stimulatory or inhibitory signals linked to the NK cytolytic machinery. NK-resistant tumour cells are rendered susceptible by preincubation with liposomes expressing NKR-P1 ligands, suggesting that purging of tumour or virally infected cells in vivo may be a therapeutic possibility.
Solis, Nestor; Cain, Joel A; Cordwell, Stuart J
2016-01-01
Staphylococcus epidermidis is an opportunistic pathogen that is an emerging risk factor in hospitals worldwide and is often difficult to eradicate as virulent strains produce a protective biofilm matrix. We utilized cell shaving proteomics to profile surface-exposed proteins from two fully genome sequenced S. epidermidis strains: the avirulent, non-biofilm forming ATCC12228 and the virulent, strongly adherent biofilm forming ATCC35984 (RP62A). A false positive control strategy was employed to calculate the probabilities of proteins being truly surface-exposed. A total of 78 surface-exposed proteins were identified, of which only 19 proteins were common to ATCC12228 and RP62A, and which thus represents the core surfaceome. S. epidermidis RP62A displayed additional proteins involved in biofilm formation (cell wall-associated Bhp and intercellular adhesion protein IcaB), surface antigenicity, peptidoglycan biosynthesis and antibiotic resistance. We concurrently profiled whole cell proteomes of the two strains using iTRAQ quantitation and LC-MS/MS. A total of 1610 proteins were confidently identified (representing 64% of the theoretical S. epidermidis proteome). One hundred and ninety one proteins were differentially abundant between strains. Proteins associated with RP62A were clustered into functions including Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-mediated defense, sulfate assimilation, antibiotic resistance and biofilm formation. Validation of the sulfate assimilation and cysteine/methionine biosynthesis pathways showed RP62A contained elevated levels (~25% increase) of methionine that are likely linked to biofilm formation. Cell shaving and quantitative proteomics identified proteins associated with a biofilm-forming, virulent strain of S. epidermidis (RP62A). These proteins show RP62A maintains an active CRISPR-mediated defense, as well as heightened antibiotic resistance in comparison to a non-virulent, non-biofilm forming strain. Increased abundances of sulfate assimilation proteins lead to elevated intracellular methionine. Proteins and their exposed peptides identified on the surface of S. epidermidis RP62A may be useful vaccine antigens in clinical settings if administered in at-risk patients prior to surgical implantations. Copyright © 2015 Elsevier B.V. All rights reserved.
Szober, Christoph M; Hauck, Stefanie M; Euler, Kerstin N; Fröhlich, Kristina J H; Alge-Priglinger, Claudia; Ueffing, Marius; Deeg, Cornelia A
2012-10-31
The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses' vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.
Insulin promotes cell migration by regulating PSA-NCAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monzo, Hector J.; Coppieters, Natacha; Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, 92019, Auckland
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cellmore » migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. - Highlights: • Insulin modulates PSA-NCAM turnover through upregulation of p-FAK. • P-FAK modulates αv-integrin/PSA-NCAM clustering. • αv-integrin acts as a carrier for PSA-NCAM endocytosis. • Cell migration is promoted by cell surface PSA. • Insulin promotes PSA-dependent migration in vitro.« less
Yang, Dayun; Lü, Xiaoying; Hong, Ying; Xi, Tingfei; Zhang, Deyuan
2013-07-01
To explore molecular mechanism of mediation of adsorbed proteins to cell adhesion and growth on biomaterials, this study examined endothelial cell adhesion, morphology and viability on bare and titanium nitride (TiN) coated nickel titanium (NiTi) alloys and chitosan film firstly, and then identified the type and amount of serum proteins adsorbed on the three surfaces by proteomic technology. Subsequently, the mediation role of the identified proteins to cell adhesion and growth was investigated with bioinformatics analyses, and further confirmed by a series of cellular and molecular biological experiments. Results showed that the type and amount of adsorbed serum proteins associated with cell adhesion and growth was obviously higher on the alloys than on the chitosan film, and these proteins mediated endothelial cell adhesion and growth on the alloys via four ways. First, proteins such as adiponectin in the adsorbed protein layer bound with cell surface receptors to generate signal transduction, which activated cell surface integrins through increasing intracellular calcium level. Another way, thrombospondin 1 in the adsorbed protein layer promoted TGF-β signaling pathway activation and enhanced integrins expression. The third, RGD sequence containing proteins such as fibronectin 1, vitronectin and thrombospondin 1 in the adsorbed protein layer bound with activated integrins to activate focal adhesion pathway, increased focal adhesion formation and actin cytoskeleton organization and mediated cell adhesion and spreading. In addition, the activated focal adhesion pathway promoted the expression of cell growth related genes and resulted in cell proliferation. The fourth route, coagulation factor II (F2) and fibronectin 1 in the adsorbed protein layer bound with cell surface F2 receptor and integrin, activated regulation of actin cytoskeleton pathway and regulated actin cytoskeleton organization. Copyright © 2013 Elsevier Ltd. All rights reserved.
Serda, Rita E.; Blanco, Elvin; Mack, Aaron; Stafford, Susan J.; Amra, Sarah; Li, Qingpo; van de Ven, Anne L.; Tanaka, Takemi; Torchilin, Vladimir P.; Wiktorowicz, John E.; Ferrari, Mauro
2014-01-01
Mass transport of drug delivery vehicles is guided by particle properties, such as shape, composition and surface chemistry, as well as biomolecules and serum proteins that adsorb to the particle surface. In an attempt to identify serum proteins influencing cellular associations and biodistribution of intravascularly injected particles, we used two dimensional gel electrophoresis and mass spectrometry to identify proteins eluted from the surface of cationic and anionic silicon microparticles. Cationic microparticles displayed a 25-fold greater abundance of Ig light chain variable region, fibrinogen, and complement component 1 compared to their anionic counterparts. The anionic-surface favored equal accumulation of microparticles in the liver and spleen, while cationic-surfaces favored preferential accumulation in the spleen. Immunohistochemistry supported macrophage internalization of both anionic and cationic silicon microparticles in the liver, as well as evidence of association of cationic microparticles with hepatic endothelial cells. Furthermore, scanning electron micrographs supported cellular competition for cationic microparticles by endothelial cells and macrophages. Despite high macrophage content in the lungs and tumor, microparticle uptake by these cells was minimal, supporting differences in the repertoire of surface receptors expressed by tissue-specific macrophages. In summary, particle surface chemistry drives selective binding of serum components impacting cellular interactions and biodistribution. PMID:21303614
Inlay, Matthew A.; Bhattacharya, Deepta; Sahoo, Debashis; Serwold, Thomas; Seita, Jun; Karsunky, Holger; Plevritis, Sylvia K.; Dill, David L.; Weissman, Irving L.
2009-01-01
Common lymphoid progenitors (CLPs) clonally produce both B- and T-cell lineages, but have little myeloid potential in vivo. However, some studies claim that the upstream lymphoid-primed multipotent progenitor (LMPP) is the thymic seeding population, and suggest that CLPs are primarily B-cell-restricted. To identify surface proteins that distinguish functional CLPs from B-cell progenitors, we used a new computational method of Mining Developmentally Regulated Genes (MiDReG). We identified Ly6d, which divides CLPs into two distinct populations: one that retains full in vivo lymphoid potential and produces more thymocytes at early timepoints than LMPP, and another that behaves essentially as a B-cell progenitor. PMID:19833765
Bao, Yong; Fan, Jian-Zhong; Li, Ke; Li, Chuan; Yang, Jun-Feng
2008-06-01
To investigate the effect of infrasound therapy on the proliferation, apoptosis and ultrastructure of human B lymphoma Raji cells. Human B lymphoma Raji cells were exposed to infrasound treatment for 15, 30, 60, 90 and 120 min and cultured subsequently for 24 or 48 h. MTT assay, flow cytometry analysis, and electron microscopy were performed to examine the proliferative status, cell apoptosis and ultrastructural changes of the exposed cells, respectively. MTT assay revealed no significant changes in the proliferation of the cells exposed to infrasound treatment (P>0.05), nor did flow cytometry analysis identified significant variation in the cell apoptosis (P>0.05). Scanning electron microscopy, however, identified shortened or reduced cell processes and microvilli on the surface of the cells with infrasound exposure and a subsequent 24-hour culture, and the cell membrane surface became smooth. Under transmission electron microscope, the cells with infrasound treatment presented with significantly reduced microvilli, and the cell nuclei appeared homogeneous, with cytoplasmic budding and losses after a 48-hour culture. Infrasound less than 90 dB does not obviously affect the proliferation and apoptosis of Raji cells, but may directly cause cell ultrastructural changes such as reduction of the cell processes.
Wu, Zining; Graybill, Todd L; Zeng, Xin; Platchek, Michael; Zhang, Jean; Bodmer, Vera Q; Wisnoski, David D; Deng, Jianghe; Coppo, Frank T; Yao, Gang; Tamburino, Alex; Scavello, Genaro; Franklin, G Joseph; Mataruse, Sibongile; Bedard, Katie L; Ding, Yun; Chai, Jing; Summerfield, Jennifer; Centrella, Paolo A; Messer, Jeffrey A; Pope, Andrew J; Israel, David I
2015-12-14
DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.
Why the dish makes a difference: quantitative comparison of polystyrene culture surfaces.
Zeiger, Adam S; Hinton, Benjamin; Van Vliet, Krystyn J
2013-07-01
There is wide anecdotal recognition that biological cell viability and behavior can vary significantly as a function of the source of commercial tissue culture polystyrene (TCPS) culture vessels to which those cells adhere. However, this marked material dependency is typically resolved by selecting and then consistently using the same manufacturer's product - following protocol - rather than by investigating the material properties that may be responsible for such experimental variation. Here, we quantified several physical properties of TCPS surfaces obtained from a wide range of commercial sources and processing steps, through the use of atomic force microscopy (AFM)-based imaging and analysis, goniometry and protein adsorption quantification. We identify qualitative differences in surface features, as well as quantitative differences in surface roughness and wettability that cannot be attributed solely to differences in surface chemistry. We also find significant differences in cell morphology and proliferation among cells cultured on different TCPS surfaces, and resolve a correlation between nanoscale surface roughness and cell proliferation rate for both cell types considered. Interestingly, AFM images of living adherent cells on these nanotextured surfaces demonstrate direct interactions between cellular protrusions and topographically distinct features. These results illustrate and quantify the significant differences in material surface properties among these ubiquitous materials, allowing us to better understand why the dish can make a difference in biological experiments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
CD40 expression in Wehi-164 cell line
Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad
2010-01-01
CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body’s defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system. PMID:20496113
CD40 expression in Wehi-164 cell line.
Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad
2010-07-01
CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.
Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo
NASA Astrophysics Data System (ADS)
Brodbeck, William G.; Patel, Jasmine; Voskerician, Gabriela; Christenson, Elizabeth; Shive, Matthew S.; Nakayama, Yasuhide; Matsuda, Takehisa; Ziats, Nicholas P.; Anderson, James M.
2002-08-01
An in vivo rat cage implant system was used to identify potential surface chemistries that prevent failure of implanted biomedical devices and prostheses by limiting monocyte adhesion and macrophage fusion into foreign-body giant cells while inducing adherent-macrophage apoptosis. Hydrophobic, hydrophilic, anionic, and cationic surfaces were used for implantation. Analysis of the exudate surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis was increased significantly on anionic and hydrophilic surfaces (46 ± 3.7 and 57 ± 5.0%, respectively) when compared with the polyethylene terephthalate base surface. Additionally, hydrophilic and anionic substrates provided decreased rates of monocyte/macrophage adhesion and fusion. These studies demonstrate that biomaterial-adherent cells undergo material-dependent apoptosis in vivo, rendering potentially harmful macrophages nonfunctional while the surrounding environment of the implant remains unaffected.
Walz, Jenna A; Mace, Charles R
2018-06-05
Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.
2013-01-01
Background Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Results Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. Conclusions The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis. PMID:23758893
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Bastounis, Effie E; Yeh, Yi-Ting; Theriot, Julie A
2018-05-02
Extracellular matrix stiffness (ECM) is one of the many mechanical forces acting on mammalian adherent cells and an important determinant of cellular function. While the effect of ECM stiffness on many aspects of cellular behavior has been previously studied, how ECM stiffness might mediate susceptibility of host cells to infection by bacterial pathogens was hitherto unexplored. To address this open question, we manufactured hydrogels of varying physiologically-relevant stiffness and seeded human microvascular endothelial cells (HMEC-1) on them. We then infected HMEC-1 with the bacterial pathogen Listeria monocytogenes (Lm), and found that adhesion of Lm onto host cells increases monotonically with increasing matrix stiffness, an effect that requires the activity of focal adhesion kinase (FAK). We identified cell surface vimentin as a candidate surface receptor mediating stiffness-dependent adhesion of Lm to HMEC-1 and found that bacterial infection of these host cells is decreased when the amount of surface vimentin is reduced. Our results provide the first evidence that ECM stiffness can mediate the susceptibility of mammalian host cells to infection by a bacterial pathogen.
Isolation and characterization of human CXCR4-positive pancreatic cells.
Koblas, T; Zacharovová, K; Berková, Z; Mindlová, M; Girman, P; Dovolilová, E; Karasová, L; Saudek, F
2007-01-01
The existence of an adult PSC that may be used in the treatment of diabetes is still a matter of scientific debate as conclusive evidence of such a stem cell in the adult pancreas has not yet been presented. The main reason why putative PSC has not yet been identified is the lack of specific markers that may be used to isolate and purify them. In order to increase the list of potential PSC markers we have focused on the human pancreatic cells that express cell surface receptor CXCR4, a marker of stem cells derived from different adult tissues. Here we report that CXCR4-positive pancreatic cells express markers of pancreatic endocrine progenitors (neurogenin-3, nestin) and markers of pluripotent stem cells (Oct-4, Nanog, ABCG2, CD133, CD117). Upon in vitro differentiation, these cells form ILCC and produce key islet hormones including insulin. Based on our results, we assume that CXCR4 marks pancreatic endocrine progenitors and in combination with other cell surface markers may be used in the attempt to identify and isolate PSC.
Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.
Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L
2010-07-29
Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.
Hao, L; Lawrence, J; Phua, Y F; Chian, K S; Lim, G C; Zheng, H Y
2005-04-01
An effective and novel technique for improving the biocompatibility of a biograde 316 LS stainless steel through the application of CO(2) laser treatment to modify the surface properties of the material is described herein. Different surface properties, such as surface roughness, surface oxygen content, and surface energy for CO(2) laser-treated 316 LS stainless steel, untreated, and mechanically roughened samples were analyzed, and their effects on the wettability characteristics of the material were studied. It was found that modification of the wettability characteristics of the 316 LS stainless steel following CO(2) laser treatment was achieved. This improvement was identified as being mainly due to the change in the polar component of the surface energy. One-day cell adhesion tests showed that cells not only adhered and spread better, but also grew faster on the CO(2) laser-treated sample than on either the untreated or mechanically roughened sample. Further, compared with the untreated sample, MTT cell proliferation analysis revealed that the mechanically roughed surface resulted in a slight enhancement, and CO(2) laser treatment brought about a significant increase in cell proliferation. An increase in the wettability of the 316 LS stainless steel was observed to positively correlate with the cell proliferation. (c) 2004 Wiley Periodicals, Inc.
Cuticular Waxes of Arabidopsis thaliana Shoots: Cell-Type-Specific Composition and Biosynthesis
Hegebarth, Daniela; Jetter, Reinhard
2017-01-01
It is generally assumed that all plant epidermis cells are covered with cuticles, and the distinct surface geometries of pavement cells, guard cells, and trichomes imply functional differences and possibly different wax compositions. However, experiments probing cell-type-specific wax compositions and biosynthesis have been lacking until recently. This review summarizes new evidence showing that Arabidopsis trichomes have fewer wax compound classes than pavement cells, and higher amounts of especially long-chain hydrocarbons. The biosynthesis machinery generating this characteristic surface coating is discussed. Interestingly, wax compounds with similar, long hydrocarbon chains had been identified previously in some unrelated species, not all of them bearing trichomes. PMID:28686187
Rana, Aarti; Thakur, Shweta; Bhardwaj, Nupur; Kumar, Devender; Akhter, Yusuf
2016-12-01
For centuries, Mycobacterium leprae, etiological agent of leprosy, has been afflicting mankind regardless of extensive use of live-attenuated vaccines and antibiotics. Surface-associated and secretory proteins (SASPs) are attractive targets against bacteria. We have integrated biological knowledge with computational approaches and present a proteome-wide identification of SASPs. We also performed computational assignment of immunodominant epitopes as coordinates of prospective antigenic candidates in most important class of SASPs, the outer membrane proteins (OMPs). Exploiting the known protein sequence and structural characteristics shared by the SASPs from bacteria, 17 lipoproteins, 11 secretory and 19 novel OMPs (including 4 essential proteins) were identified in M. leprae As OMPs represent the most exposed antigens on the cell surface, their immunoinformatics analysis showed that the identified 19 OMPs harbor T-cell MHC class I epitopes and class II epitopes against HLA-DR alleles (54), while 15 OMPs present potential T-cell class II epitopes against HLA-DQ alleles (6) and 7 OMPs possess T-cell class II epitopes against HLA-DP alleles (5) of humans. Additionally, 11 M. leprae OMPs were found to have B-cell epitopes and these may be considered as prime candidates for the development of new immunotherapeutics against M. leprae. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L; Wu, Hui; Kitten, Todd
2009-11-01
Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified-a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (approximately 2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention.
Hull, S R; Sugarman, E D; Spielman, J; Carraway, K L
1991-07-25
Previous biosynthetic studies of the ascites 13762 rat mammary adenocarcinoma cell surface sialomucin ASGP-1 (ascites sialoglycoprotein-1) showed that it is synthesized initially as a poorly glycosylated immature form, which is converted to a larger premature form (t1/2 30 min) and more slowly to the mature glycoprotein (t1/2 greater than 4 h). In the present study O-glycosylation of ASGP-1 polypeptide is shown to occur in two phases: an early phase complete in less than 30 min, which corresponds to the synthesis of the premature form, and a later phase that continues for hours and corresponds to the synthesis of the mature form. Pulse-chase labeling studies indicate that 95% of the ASGP-1 has moved to the cell surface in 2 h. Since transit to the cell surface is faster than the slow phase of addition of new oligosaccharides, some new oligosaccharides must be added after ASGP-1 has reached the cell surface. Initiation of new oligosaccharides on cell surface ASGP-1 was demonstrated directly using a biotinylation procedure to identify cell surface molecules. Glucosamine labeling of biotinylated ASGP-1 was shown to occur on galactosamine residues, which are linked to the polypeptide, establishing the addition of new oligosaccharides to the cell surface molecules. Finally, resialylation studies indicate that ASGP-1 rapidly recycles through a sialylating compartment. From these results we propose that ASGP-1 reaches the cell surface in an incompletely glycosylated state and that additional oligosaccharides are added to the glycoprotein in a second process involving recycling.
Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz
2014-01-01
In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949
Sialyl-lactotetra, a novel cell surface marker of undifferentiated human pluripotent stem cells.
Barone, Angela; Säljö, Karin; Benktander, John; Blomqvist, Maria; Månsson, Jan-Eric; Johansson, Bengt R; Mölne, Johan; Aspegren, Anders; Björquist, Petter; Breimer, Michael E; Teneberg, Susann
2014-07-04
Cell surface glycoconjugates are used as markers for undifferentiated pluripotent stem cells. Here, antibody binding and mass spectrometry characterization of acid glycosphingolipids isolated from a large number (1 × 10(9) cells) of human embryonic stem cell (hESC) lines allowed identification of several novel acid glycosphingolipids, like the gangliosides sialyl-lactotetraosylceramide and sialyl-globotetraosylceramide, and the sulfated glycosphingolipids sulfatide, sulf-lactosylceramide, and sulf-globopentaosylceramide. A high cell surface expression of sialyl-lactotetra on hESC and human induced pluripotent stem cells (hiPSC) was demonstrated by flow cytometry, immunohistochemistry, and electron microscopy, whereas sulfated glycosphingolipids were only found in intracellular compartments. Immunohistochemistry showed distinct cell surface anti-sialyl-lactotetra staining on all seven hESC lines and three hiPSC lines analyzed, whereas no staining of hESC-derived hepatocyte-like or cardiomyocyte-like cells was obtained. Upon differentiation of hiPSC into hepatocyte-like cells, the sialyl-lactotetra epitope was rapidly down-regulated and not detectable after 14 days. These findings identify sialyl-lactotetra as a promising marker of undifferentiated human pluripotent stem cells. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Adhesions of extracellular surface-layer associated proteins in Lactobacillus M5-L and Q8-L.
Zhang, Yingchun; Xiang, Xinling; Lu, Qianhui; Zhang, Lanwei; Ma, Fang; Wang, Linlin
2016-02-01
Surface-layer associated proteins (SLAP) that envelop Lactobacillus paracasei ssp. paracasei M5-L and Lactobacillus casei Q8-L cell surfaces are involved in the adherence of these strain to the human intestinal cell line HT-29. To further elucidate some of the properties of these proteins, we assessed the yields and expressions of SLAP under different incubation conditions. An efficient and selective extraction of SLAP was obtained when cells of Lactobacillus were treated with 5 M LiCl at 37°C in aerobic conditions. The SLAP of Lactobacillus M5-L and Q8-L in cell extracts were visualized by SDS-PAGE and identified by Western blotting with sulfo-N-hydroxysuccinimide-biotin-labeled HT-29 cells as adhesion proteins. Atomic force microscopy contact imaging revealed that Lactobacillus strains M5-L and Q8-L normally display a smooth, homogeneous surface, whereas the surfaces of M5-L and Q8-L treated with 5 M LiCl were rough and more heterogeneous. Analysis of adhesion forces revealed that the initial adhesion forces of 1.41 and 1.28 nN obtained for normal Lactobacillus M5-L and Q8-L strains, respectively, decreased to 0.70 and 0.48 nN, respectively, following 5 M LiCl treatment. Finally, the dominant 45-kDa protein bands of Lactobacillus Q8-L and Lactobacillus M5-L were identified as elongation factor Tu and surface antigen, respectively, by liquid chromatography-tandem mass spectrometry. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.
Ge, Xiuchun; Kitten, Todd; Munro, Cindy L; Conrad, Daniel H; Xu, Ping
2010-07-26
Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.
Pooled Protein Immunization for Identification of Cell Surface Antigens in Streptococcus sanguinis
Ge, Xiuchun; Kitten, Todd; Munro, Cindy L.; Conrad, Daniel H.; Xu, Ping
2010-01-01
Background Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. Methods and Findings We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. Conclusions The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases. PMID:20668678
Park, Dayoung; Brune, Kristin A; Mitra, Anupam; Marusina, Alina I; Maverakis, Emanual; Lebrilla, Carlito B
2015-11-01
Changes in cell surface glycosylation occur during the development and differentiation of cells and have been widely correlated with the progression of several diseases. Because of their structural diversity and sensitivity to intra- and extracellular conditions, glycans are an indispensable tool for analyzing cellular transformations. Glycans present on the surface of intestinal epithelial cells (IEC) mediate interactions with billions of native microorganisms, which continuously populate the mammalian gut. A distinct feature of IECs is that they differentiate as they migrate upwards from the crypt base to the villus tip. In this study, nano-LC/ESI QTOF MS profiling was used to characterize the changes in glycosylation that correspond to Caco-2 cell differentiation. As Caco-2 cells differentiate to form a brush border membrane, a decrease in high mannose type glycans and a concurrent increase in fucosylated and sialylated complex/hybrid type glycans were observed. At day 21, when cells appear to be completely differentiated, remodeling of the cell surface glycome ceases. Differential expression of glycans during IEC maturation appears to play a key functional role in regulating the membrane-associated hydrolases and contributes to the mucosal surface innate defense mechanisms. Developing methodologies to rapidly identify changes in IEC surface glycans may lead to a rapid screening approach for a variety of disease states affecting the GI tract. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Miller, Michelle M.; Fogle, Jonathan E.; Ross, Peter
2013-01-01
Abstract Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP+TGFb+ Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP+ Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb+ Treg-mediated T cell immune suppression during lentivirus infection. PMID:23373523
Miller, Michelle M; Fogle, Jonathan E; Ross, Peter; Tompkins, Mary B
2013-04-01
Using the feline immunodeficiency virus (FIV) model for AIDS-lentivirus infection, our laboratory has previously demonstrated that T regulatory (Treg) cell-mediated immune T and B cell dysfunction contributes to lentivirus persistence and chronic disease through membrane bound transforming growth factor beta (mTGFb). Studying Treg cells in the context of infection has been problematic as no inducible marker for activated Treg cells had been identified. However, recent reports in human Treg studies have described a novel protein, glycoprotein A repetitions predominant (GARP), as a unique marker of activated human Treg cells that anchors mTGFb. Herein we extend these studies to the feline Treg system, identifying feline GARP and demonstrating that human and feline GARP proteins are homologous in structure, expression pattern, and ability to form a complex with TGFb. We further demonstrate that GARP and TGFb form a complex on the surface of activated Treg cells and that these GARP(+)TGFb(+) Treg cells are highly efficient suppressor cells. Analysis of expression of this Treg activation marker in the FIV-AIDS model reveals an up-regulation of GARP expressing Treg cells during chronic FIV infection. We demonstrate that the GARP(+) Treg cells from FIV-infected cats suppress T helper cells in vivo and that blocking GARP or TGFb eliminates this suppression. These data suggest that GARP is expressed in complex with TGFb on the surface of activated Treg cells and plays an important role in TGFb(+) Treg-mediated T cell immune suppression during lentivirus infection.
Functional and genomic analyses of FOXP3-transduced Jurkat-T cells as regulatory T (Treg)-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Joon-Young; Kim, Han-Jong; Hurt, Elaine M.
2007-10-12
FOXP3, a forkhead transcription factor is essential for the development and function of CD4{sup +}CD25{sup +} regulatory T cells (Tregs). In contrast to conversion of murine naive T cells to Tregs by transduction of Foxp3, it is controversial whether ectopic expression of FOXP3 in human CD4{sup +} T cells is sufficient for acquisition of suppressive activity. Here, we show that retroviral transduction of FOXP3 induces a Treg phenotype in human leukemic CD4{sup +} Jurkat-T cells, evidenced by increased expression of Treg-associated cell surface markers as well as inhibition of cytokine production. Furthermore, FOXP3-transduced Jurkat-T cells suppress the proliferation of humanmore » CD4{sup +}CD25{sup -} T cells. Additionally, DNA microarray analysis identifies Treg-related genes regulated by FOXP3. Our study demonstrates that enforced expression of FOXP3 confers Treg-like properties on Jurkat-T cells, which can be a convenient and efficient Treg-like cell model for further study to identify Treg cell surface markers and target genes regulated by FOXP3.« less
The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.
Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam
2016-12-05
To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.
2015-01-01
Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303
Is sphere assay useful for the identification of cancer initiating cells of the ovary?
Martínez-Serrano, María José; Caballero-Baños, Miguel; Vilella, Ramon; Vidal, Laura; Pahisa, Jaume; Martínez-Roman, Sergio
2015-01-01
Current evidence suggests that the presence of tumor-initiating cells (TICs) in epithelial ovarian cancer (EOC) has a role in chemoresistance and relapse. Surface markers such as CD44(+)/CD24(-), CD117(+), and CD133(+) expression have been reported as potential markers for TICs related to ovarian cancer and tumorigenic cell lines. In this study, we have investigated if spheroid forms are TIC specific or whether they can also be produced by somatic stem cells from healthy tissue in vitro. In addition, we also investigated the specificity of surface markers to identify TICs from papillary serous EOC patients. Cells were obtained from fresh tumors from 10 chemotherapy-naive patients with EOC, and cells from ovarian and tubal epithelium were obtained from 5 healthy menopausal women undergoing surgery for benign pathology and cultured in standard and in selective medium. Cells forming nonadherent spheroids were considered TICs, and the adherent cells were considered as non-TIC-like. Percentages of CD24(+), CD44(+), CD117(+), CD133(+), and vascular endothelial growth factor receptor (VEGF-R)(+) cell surface markers were analyzed by flow cytometry. Four of 10 EOC cell tissues were excluded from the study. Tumor cells cultured in selective medium developed spheroid forms after 1 to 7 weeks in 5 of 6 EOC patients. No spheroid forms were observed in cultures of cells from healthy women. Unlike previously published data, low levels of CD24(+), CD44(+), CD117(+), and VEGF-R(+) expression were observed in spheroid cells, whereas expression of CD133(+) was moderate but higher in adherent cells from papillary serous EOC cells in comparison with adherent cells from controls. Papillary serous EOC contains TICs that form spheroids with low expression of CD44(+), CD24(+), CD117(+) and VEGF-R(+). Further research is required to find specific surface markers to identify papillary serous TICs.
Insulin promotes cell migration by regulating PSA-NCAM.
Monzo, Hector J; Coppieters, Natacha; Park, Thomas I H; Dieriks, Birger V; Faull, Richard L M; Dragunow, Mike; Curtis, Maurice A
2017-06-01
Cellular interactions with the extracellular environment are modulated by cell surface polysialic acid (PSA) carried by the neural cell adhesion molecule (NCAM). PSA-NCAM is involved in cellular processes such as differentiation, plasticity, and migration, and is elevated in Alzheimer's disease as well as in metastatic tumour cells. Our previous work demonstrated that insulin enhances the abundance of cell surface PSA by inhibiting PSA-NCAM endocytosis. In the present study we have identified a mechanism for insulin-dependent inhibition of PSA-NCAM turnover affecting cell migration. Insulin enhanced the phosphorylation of the focal adhesion kinase leading to dissociation of αv-integrin/PSA-NCAM clusters, and promoted cell migration. Our results show that αv-integrin plays a key role in the PSA-NCAM turnover process. αv-integrin knockdown stopped PSA-NCAM from being endocytosed, and αv-integrin/PSA-NCAM clusters co-labelled intracellularly with Rab5, altogether indicating a role for αv-integrin as a carrier for PSA-NCAM during internalisation. Furthermore, inhibition of p-FAK caused dissociation of αv-integrin/PSA-NCAM clusters and counteracted the insulin-induced accumulation of PSA at the cell surface and cell migration was impaired. Our data reveal a functional association between the insulin/p-FAK-dependent regulation of PSA-NCAM turnover and cell migration through the extracellular matrix. Most importantly, they identify a novel mechanism for insulin-stimulated cell migration. Copyright © 2017 Elsevier Inc. All rights reserved.
Nanoparticle Delivery of RNAi Therapeutics for Ocular Vesicant Injury
2014-04-01
nanoparticles to smaller size with higher stability in physiological media, optimized a protocol to surface-coat nucleic acid nanoparticles with hyaluronic acid ...nanoparticle tissue retention and cell uptake by conjugating cell adhesion ligand to nanoparticles and by surface coating of hyaluronic acid to... hyaluronic acid , and retain the stability of the nanoparticles. Identified the conditions using reversible crosslinking density to stabilize siRNA
Gil-Bona, Ana; Amador-García, Ahinara; Gil, Concha; Monteoliva, Lucia
2018-05-30
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery. Copyright © 2017 Elsevier B.V. All rights reserved.
Insight into the exoproteome of the tissue-derived trypomastigote form of Trypanosoma cruzi
NASA Astrophysics Data System (ADS)
Queiroz, Rayner; Ricart, Carlos; Machado, Mara; Bastos, Izabela; Santana, Jaime; Sousa, Marcelo; Roepstorff, Peter; Charneau, Sébastien
2016-11-01
The protozoan parasite Trypanosoma cruzi causes Chagas disease, one of the major neglected infectious diseases. It has the potential to infect any nucleated mammalian cell. The secreted/excreted protein repertoire released by T. cruzi trypomastigotes is crucial in host-pathogen interactions. In this study, mammalian tissue culture-derived trypomastigotes (Y strain) were used to characterize the exoproteome of the infective bloodstream life form. Proteins released into the serum-free culture medium after 3h of incubation were harvested and digested with trypsin. NanoLC-MS/MS analysis resulted in the identification of 540 proteins, the largest set of released proteins identified to date in Trypanosome spp. Bioinformatic analysis predicted most identified proteins as secreted, predominantly by non-classical pathways, and involved in host-cell infection. Some proteins possess predicted GPI-anchor signals, these being mostly trans-sialidases, mucin associated surface proteins and surface glycoproteins. Moreover, we enriched phosphopeptides and glycopeptides from tryptic digests. The majority of identified glycoproteins are trans-sialidases and surface glycoproteins involved in host-parasite interaction. Conversely, most identified phosphoproteins have no Gene Ontology classification. The existence of various proteins related to similar functions in the exoproteome likely reflects this parasite’s enhanced mechanisms for adhesion, invasion and internalization of different host-cell types, and escape from immune defences.
A Cell-surface Phylome for African Trypanosomes
Jackson, Andrew P.; Allison, Harriet C.; Barry, J. David; Field, Mark C.; Hertz-Fowler, Christiane; Berriman, Matthew
2013-01-01
The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome. PMID:23556014
Nikolaienko, Roman M.; Hammel, Michal; Dubreuil, Véronique; ...
2016-08-18
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptormore » cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.« less
Frankel, Matthew B.; Wojcik, Brandon; DeDent, Andrea C.; Missiakas, Dominique M.; Schneewind, Olaf
2012-01-01
Summary The human pathogen Staphyloccocus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harbored transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross walls and in the relative abundance of staphylococci with cross walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. PMID:20923422
VandenBussche, C J; Mulrooney, T J; Frazier, W R; Dakshanamurthy, S; Hurley, C K
2009-03-01
Using flow cytometry, fluorescent microscopy and examination of receptor glycosylation status, we demonstrate that an entire killer cell immunoglobulin-like receptor (KIR) locus (KIR2DS3)--assumed earlier to be surface expressed--appears to have little appreciable surface expression in transfected cells. This phenotype was noted for receptors encoded by three allelic variants including the common KIR2DS3*001 allele. Comparing the surface expression of KIR2DS3 with that of the better-studied KIR2DS1 molecule in two different cell lines, mutational analysis identified multiple polymorphic amino-acid residues that significantly alter the proportion of molecules present on the cell surface. A simultaneous substitution of five residues localized to the leader peptide (residues -18 and -7), second domain (residues 123 and 150) and transmembrane region (residue 234) was required to restore KIR2DS3 to the expression level of KIR2DS1. Corresponding simultaneous substitutions of KIR2DS1 to the KIR2DS3 residues resulted in a dramatically decreased surface expression. Molecular modeling was used to predict how these substitutions contribute to this phenotype. Alterations in receptor surface expression are likely to affect the balance of immune cell signaling impacting the characteristics of the response to pathogens or malignancy.
Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf
2010-10-01
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.
Perchlorates on Mars enhance the bacteriocidal effects of UV light.
Wadsworth, Jennifer; Cockell, Charles S
2017-07-06
Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.
Philippova, Maria; Ivanov, Danila; Joshi, Manjunath B.; Kyriakakis, Emmanouil; Rupp, Katharina; Afonyushkin, Taras; Bochkov, Valery; Erne, Paul; Resink, Therese J.
2008-01-01
There is scant knowledge regarding how cell surface lipid-anchored T-cadherin (T-cad) transmits signals through the plasma membrane to its intracellular targets. This study aimed to identify membrane proteins colocalizing with atypical glycosylphosphatidylinositol (GPI)-anchored T-cad on the surface of endothelial cells and to evaluate their role as signaling adaptors for T-cad. Application of coimmunoprecipitation from endothelial cells expressing c-myc-tagged T-cad and high-performance liquid chromatography revealed putative association of T-cad with the following proteins: glucose-related protein GRP78, GABA-A receptor α1 subunit, integrin β3, and two hypothetical proteins, LOC124245 and FLJ32070. Association of Grp78 and integrin β3 with T-cad on the cell surface was confirmed by surface biotinylation and reciprocal immunoprecipitation and by confocal microscopy. Use of anti-Grp78 blocking antibodies, Grp78 small interfering RNA, and coexpression of constitutively active Akt demonstrated an essential role for surface Grp78 in T-cad-dependent survival signal transduction via Akt in endothelial cells. The findings herein are relevant in the context of both the identification of transmembrane signaling partners for GPI-anchored T-cad as well as the demonstration of a novel mechanism whereby Grp78 can influence endothelial cell survival as a cell surface signaling receptor rather than an intracellular chaperone. PMID:18411300
Gao, Peng; Pinkston, Kenneth L.; Bourgogne, Agathe; Cruz, Melissa R.; Garsin, Danielle A.; Murray, Barbara E.
2013-01-01
The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis. PMID:23974022
Ko, Hyeok-Jin; Park, Eunhye; Song, Joseph; Yang, Taek Ho; Lee, Hee Jong; Kim, Kyoung Heon
2012-01-01
Autotransporters have been employed as the anchoring scaffold for cell surface display by replacing their passenger domains with heterologous proteins to be displayed. We adopted an autotransporter (YfaL) of Escherichia coli for the cell surface display system. The critical regions in YfaL for surface display were identified for the construction of a ligation-independent cloning (LIC)-based display system. The designed system showed no detrimental effect on either the growth of the host cell or overexpressing heterologous proteins on the cell surface. We functionally displayed monomeric red fluorescent protein (mRFP1) as a reporter protein and diverse agarolytic enzymes from Saccharophagus degradans 2-40, including Aga86C and Aga86E, which previously had failed to be functional expressed. The system could display different sizes of proteins ranging from 25.3 to 143 kDa. We also attempted controlled release of the displayed proteins by incorporating a tobacco etch virus protease cleavage site into the C termini of the displayed proteins. The maximum level of the displayed protein was 6.1 × 104 molecules per a single cell, which corresponds to 5.6% of the entire cell surface of actively growing E. coli. PMID:22344647
NASA Astrophysics Data System (ADS)
Lee, Bryan E. J.; Exir, Hourieh; Weck, Arnaud; Grandfield, Kathryn
2018-05-01
Reproducible and controllable methods of modifying titanium surfaces for dental and orthopaedic applications are of interest to prevent poor implant outcomes by improving osseointegration. This study made use of a femtosecond laser to generate laser-induced periodic surface structures with periodicities of 300, 620 and 760 nm on titanium substrates. The reproducible rippled patterns showed consistent submicron scale roughness and relatively hydrophobic surfaces as measured by atomic force microscopy and contact angle, respectively. Transmission electron microscopy and Auger electron spectroscopy identified a thicker oxide layer on ablated surfaces compared to controls. In vitro testing was conducted using osteosarcoma Saos-2 cells. Cell metabolism on the laser-ablated surfaces was comparable to controls and alkaline phosphatase activity was notably increased at late time points for the 620 and 760 nm surfaces compared to controls. Cells showed a more elongated shape on laser-ablated surfaces compared to controls and showed perpendicular alignment to the periodic structures. This work has demonstrated the feasibility of generating submicron features on an implant material with the ability to influence cell response and improve implant outcomes.
Bidlingmaier, Scott; Su, Yang; Liu, Bin
2015-01-01
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Isolation and characterization of mouse innate lymphoid cells.
Halim, Timotheus Y F; Takei, Fumio
2014-08-01
Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.
Lee, John K.; Bangayan, Nathanael J.; Chai, Timothy; Smith, Bryan A.; Pariva, Tiffany E.; Yun, Sangwon; Vashisht, Ajay; Zhang, Qingfu; Park, Jung Wook; Corey, Eva; Huang, Jiaoti; Wohlschlegel, James; Witte, Owen N.
2018-01-01
Prostate cancer is a heterogeneous disease composed of divergent molecular and histologic subtypes, including prostate adenocarcinoma (PrAd) and neuroendocrine prostate cancer (NEPC). While PrAd is the major histology in prostate cancer, NEPC can evolve from PrAd as a mechanism of treatment resistance that involves a transition from an epithelial to a neurosecretory cancer phenotype. Cell surface markers are often associated with specific cell lineages and differentiation states in normal development and cancer. Here, we show that PrAd and NEPC can be broadly discriminated by cell-surface profiles based on the analysis of prostate cancer gene expression datasets. To overcome a dependence on predictions of human cell-surface genes and an assumed correlation between mRNA levels and protein expression, we integrated transcriptomic and cell-surface proteomic data generated from a panel of prostate cancer cell lines to nominate cell-surface markers associated with these cancer subtypes. FXYD3 and CEACAM5 were validated as cell-surface antigens enriched in PrAd and NEPC, respectively. Given the lack of effective treatments for NEPC, CEACAM5 appeared to be a promising target for cell-based immunotherapy. As a proof of concept, engineered chimeric antigen receptor T cells targeting CEACAM5 induced antigen-specific cytotoxicity in NEPC cell lines. Our findings demonstrate that the surfaceomes of PrAd and NEPC reflect unique cancer differentiation states and broadly represent vulnerabilities amenable to therapeutic targeting. PMID:29686080
Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun
2017-02-01
The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.
Garrigues, H Jacques; Rubinchikova, Yelena E; Rose, Timothy M
2014-03-01
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry. Copyright © 2014 Elsevier Inc. All rights reserved.
Wu, Chunxiao; Wang, Shu
2012-01-01
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
O'Sullivan, Timothy E; Sun, Joseph C
2018-01-01
Innate lymphoid cells are a heterogeneous family of tissue-resident and circulating lymphocytes that play an important role in host immunity. Recent studies have profiled the developmental pathways of mature ILCs and have identified ILC progenitors in the bone marrow through the use of transcription factor reporter mice. Here we describe methodology to identify and isolate bone marrow CHILP and ILC2 progenitor (ILC2P) cells based on cell surface marker expression for adoptive transfer into lymphopenic mice to track the fate of developing ILCs.
An Hsp70 peptide initiates NK cell killing of leukemic blasts after stem cell transplantation.
Gross, Catharina; Holler, Ernst; Stangl, Stefan; Dickinson, Anne; Pockley, A Graham; Asea, Alexzander A; Mallappa, Nagaraja; Multhoff, Gabriele
2008-04-01
In contrast to solid tumors, leukemic blasts frequently present both Hsp70 and HLA-E on their cell surface and thereby present activating and inhibitory signals to CD94(+) NK cells. In the first 12 months after stem cell transplantation (SCT) CD94(+) NK cells clearly dominate over CD3(+)/CD16(-)/56(-) T and CD3(+)/CD16(+)/56(+) NK-like T cells. An incubation of post-SCT-derived peripheral blood lymphocytes with the Hsp70 peptide TKD and IL-15 enhances the cell surface density of CD56/CD94 and initiates the cytolytic activity of NK cells against Hsp70/HLA-E double-positive autologous and allogeneic leukemic blasts. Hsp70 was identified as the target structure for TKD-activated NK cells.
Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions.
Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A; Brown, Elizabeth E; Sanderson, Ralph D
2016-01-22
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Fibronectin on the Surface of Myeloma Cell-derived Exosomes Mediates Exosome-Cell Interactions*
Purushothaman, Anurag; Bandari, Shyam Kumar; Liu, Jian; Mobley, James A.; Brown, Elizabeth E.; Sanderson, Ralph D.
2016-01-01
Exosomes regulate cell behavior by binding to and delivering their cargo to target cells; however, the mechanisms mediating exosome-cell interactions are poorly understood. Heparan sulfates on target cell surfaces can act as receptors for exosome uptake, but the ligand for heparan sulfate on exosomes has not been identified. Using exosomes isolated from myeloma cell lines and from myeloma patients, we identify exosomal fibronectin as a key heparan sulfate-binding ligand and mediator of exosome-cell interactions. We discovered that heparan sulfate plays a dual role in exosome-cell interaction; heparan sulfate on exosomes captures fibronectin, and on target cells it acts as a receptor for fibronectin. Removal of heparan sulfate from the exosome surface releases fibronectin and dramatically inhibits exosome-target cell interaction. Antibody specific for the Hep-II heparin-binding domain of fibronectin blocks exosome interaction with tumor cells or with marrow stromal cells. Regarding exosome function, fibronectin-mediated binding of exosomes to myeloma cells activated p38 and pERK signaling and expression of downstream target genes DKK1 and MMP-9, two molecules that promote myeloma progression. Antibody against fibronectin inhibited the ability of myeloma-derived exosomes to stimulate endothelial cell invasion. Heparin or heparin mimetics including Roneparstat, a modified heparin in phase I trials in myeloma patients, significantly inhibited exosome-cell interactions. These studies provide the first evidence that fibronectin binding to heparan sulfate mediates exosome-cell interactions, revealing a fundamental mechanism important for exosome-mediated cross-talk within tumor microenvironments. Moreover, these results imply that therapeutic disruption of fibronectin-heparan sulfate interactions will negatively impact myeloma tumor growth and progression. PMID:26601950
Rudell, Jolene Chang; Borges, Lucia S; Rudell, John B; Beck, Kenneth A; Ferns, Michael J
2014-01-03
The molecular determinants that govern nicotinic acetylcholine receptor (AChR) assembly and trafficking are poorly defined, and those identified operate largely during initial receptor biogenesis in the endoplasmic reticulum. To identify determinants that regulate later trafficking steps, we performed an unbiased screen using chimeric proteins consisting of CD4 fused to the muscle AChR subunit cytoplasmic loops. In C2 mouse muscle cells, we found that CD4-β and δ subunit loops were expressed at very low levels on the cell surface, whereas the other subunit loops were robustly expressed on the plasma membrane. The low surface expression of CD4-β and δ loops was due to their pronounced retention in the Golgi apparatus and also to their rapid internalization from the plasma membrane. Both retention and recovery were mediated by the proximal 25-28 amino acids in each loop and were dependent on an ordered sequence of charged and hydrophobic residues. Indeed, βK353L and δK351L mutations increased surface trafficking of the CD4-subunit loops by >6-fold and also decreased their internalization from the plasma membrane. Similarly, combined βK353L and δK351L mutations increased the surface levels of assembled AChR expressed in HEK cells to 138% of wild-type levels. This was due to increased trafficking to the plasma membrane and not decreased AChR turnover. These findings identify novel Golgi retention signals in the β and δ subunit loops that regulate surface trafficking of assembled AChR and may help prevent surface expression of unassembled subunits. Together, these results define molecular determinants that govern a Golgi-based regulatory step in nicotinic AChR trafficking.
Koh, Ai Leen; Shachaf, Catherine M; Elchuri, Sailaja; Nolan, Garry P; Sinclair, Robert
2008-12-01
We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.
Koh, Ai Leen; Shachaf, Catherine M.; Elchuri, Sailaja; Nolan, Garry P.; Sinclair, Robert
2008-01-01
We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet Scanning Electron Microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron detector (BSE) was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution Transmission Electron Microscope (TEM) images and Scanning Auger Electron Spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens. PMID:18995965
Silberstein, Lev; Goncalves, Kevin A; Kharchenko, Peter V; Turcotte, Raphael; Kfoury, Youmna; Mercier, Francois; Baryawno, Ninib; Severe, Nicolas; Bachand, Jacqueline; Spencer, Joel A; Papazian, Ani; Lee, Dongjun; Chitteti, Brahmananda Reddy; Srour, Edward F; Hoggatt, Jonathan; Tate, Tiffany; Lo Celso, Cristina; Ono, Noriaki; Nutt, Stephen; Heino, Jyrki; Sipilä, Kalle; Shioda, Toshihiro; Osawa, Masatake; Lin, Charles P; Hu, Guo-Fu; Scadden, David T
2016-10-06
Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location. We functionally examined, among the genes that were preferentially expressed in proximal cells, three secreted or cell-surface molecules not previously connected to HSPC biology-the secreted RNase angiogenin, the cytokine IL18, and the adhesion molecule Embigin-and discovered that all of these factors are HSPC quiescence regulators. Therefore, our proximity-based differential single-cell approach reveals molecular heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance the understanding of microenvironmental regulation of stem cell function. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Er; Treiser, Matthew D; Patel, Hiral; Sung, Hak-Joon; Roskov, Kristen E; Kohn, Joachim; Becker, Matthew L; Moghe, Prabhas V
2009-08-01
We have developed a novel approach combining high information and high throughput analysis to characterize cell adhesive responses to biomaterial substrates possessing gradients in surface topography. These gradients were fabricated by subjecting thin film blends of tyrosine-derived polycarbonates, i.e. poly(DTE carbonate) and poly(DTO carbonate) to a gradient temperature annealing protocol. Saos-2 cells engineered with a green fluorescent protein (GFP) reporter for farnesylation (GFP-f) were cultured on the gradient substrates to assess the effects of nanoscale surface topology and roughness that arise during the phase separation process on cell attachment and adhesion strength. The high throughput imaging approach allowed us to rapidly identify the "global" and "high content" structure-property relationships between cell adhesion and biomaterial properties such as polymer chemistry and topography. This study found that cell attachment and spreading increased monotonically with DTE content and were significantly elevated at the position with intermediate regions corresponding to the highest "gradient" of surface roughness, while GFP-f farnesylation intensity descriptors were sensitively altered by surface roughness, even in cells with comparable levels of spreading.
A multichannel nanosensor for instantaneous readout of cancer drug mechanisms
NASA Astrophysics Data System (ADS)
Rana, Subinoy; Le, Ngoc D. B.; Mout, Rubul; Saha, Krishnendu; Tonga, Gulen Yesilbag; Bain, Robert E. S.; Miranda, Oscar R.; Rotello, Caren M.; Rotello, Vincent M.
2015-01-01
Screening methods that use traditional genomic, transcriptional, proteomic and metabonomic signatures to characterize drug mechanisms are known. However, they are time consuming and require specialized equipment. Here, we present a high-throughput multichannel sensor platform that can profile the mechanisms of various chemotherapeutic drugs in minutes. The sensor consists of a gold nanoparticle complexed with three different fluorescent proteins that can sense drug-induced physicochemical changes on cell surfaces. In the presence of cells, fluorescent proteins are rapidly displaced from the gold nanoparticle surface and fluorescence is restored. Fluorescence ‘turn on’ of the fluorescent proteins depends on the drug-induced cell surface changes, generating patterns that identify specific mechanisms of cell death induced by drugs. The nanosensor is generalizable to different cell types and does not require processing steps before analysis, offering an effective way to expedite research in drug discovery, toxicology and cell-based sensing.
NASA Astrophysics Data System (ADS)
George, Michael G.
Characterization of gas diffusion layers (GDLs) for polymer electrolyte membrane (PEM) fuel cells informs modeling studies and the manufacturers of next generation fuel cell materials. Identifying the physical properties related to the primary functions of the modern GDL (thermal, electrical, and mass transport) is necessary for understanding the impact of GDL design choices. X-ray micro-computed tomographic reconstructions of GDLs were studied to isolate GDL surface morphologies. Surface roughness was measured for a wide variety of samples and a sensitivity study highlighted the scale-dependence of surface roughness measurements. Furthermore, a spatially resolved distribution map of polytetrafluoroethylene (PTFE) in the microporous layer (MPL), critical for water management and mass transport, was identified and the existence of PTFE agglomerations was highlighted. Finally, the impact of accelerated degradation on GDL wettability and water transport increases in liquid water accumulation and oxygen mass transport resistance were quantified as a result of accelerated GDL degradation.
Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.
2014-01-01
We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853
Wang, Rui; Wan, Qi; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2008-07-16
Regulatory T (T(reg)) cells control immune activation and maintain tolerance. How T(regs) mediate their suppressive function is unclear. Here we identified a cell surface molecule, called GARP, (or LRRC32), which within T cells is specifically expressed in T(regs) activated through the T cell receptor (TCR). Ectopic expression of GARP in human naïve T (T(N)) cells inhibited their proliferation and cytokine secretion upon TCR activation. Remarkably, GARP over-expression in T(N) cells induced expression of T(reg) master transcription factor Foxp3 and endowed them with a partial suppressive function. The extracellular but not the cytoplasmic region of GARP, was necessary for these functions. Silencing Foxp3 in human T(reg) cells reduced expression of GARP and attenuated their suppressive function. However, GARP function was not affected when Foxp3 was downregulated in GARP-overexpressing cells, while silencing GARP in Foxp3-overexpressing cells reduced their suppressive activity. These findings reveal a novel cell surface molecule-mediated regulatory mechanism, with implications for modulating aberrant immune responses.
Wieland, Eberhard; Shipkova, Maria
2016-04-01
T-cell activation is a characteristic of organ rejection. T cells, located in the draining lymph nodes of the transplant recipient, are faced with non-self-molecules presented by antigen presenting cells and become activated. Activated T cells are characterized by up-regulated surface antigens, such as costimulatory molecules, adhesion molecules, chemokine receptors, and major histocompatibility complex class II molecules. Surface antigen expression can be followed by flow cytometry using monoclonal antibodies in either cell function assays using donor-specific or nonspecific stimulation of isolated cells or whole blood and without stimulation on circulating lymphocytes. Molecules such as CD30 can be proteolytically cleaved off the surface of activated cells in vivo, and the determination of the soluble protein (sCD30) in serum or plasma is performed by immunoassays. As promising biomarkers for rejection and long-term transplant outcome, CD28 (costimulatory receptor for CD80 and CD86), CD154 (CD40 ligand), and sCD30 (tumor necrosis factor receptor superfamily, member 8) have been identified. Whereas cell function assays are time-consuming laboratory-developed tests which are difficult to standardize, commercial assays are frequently available for soluble proteins. Therefore, more data from clinical trials have been published for sCD30 compared with the surface antigens on activated T cells. This short review summarizes the association between selected surface antigens and immunosuppression, and rejection in solid organ transplantation.
Wakayama, Tomohiko; Sai, Yoshimichi; Ito, Akihiko; Kato, Yukio; Kurobo, Miho; Murakami, Yoshinori; Nakashima, Emi; Tsuji, Akira; Kitamura, Yukihiko; Iseki, Shoichi
2007-06-01
The cell adhesion protein immunoglobulin superfamily 4A (IGSF4A) is expressed on the surfaces of spermatogenic cells in the mouse testis. During spermatogenesis, IGSF4A is considered to bind to the surface of Sertoli cells in a heterophilic manner. To identify this unknown partner of IGSF4A, we generated rat monoclonal antibodies against the membrane proteins of mouse Sertoli cells grown in primary culture. Using these monoclonal antibodies, we isolated a clone that immunostained Sertoli cells and reacted with the product of immunoprecipitation of the homogenate of mouse testis with anti-IGSF4A antibody. Subsequently, to identify the Sertoli cell membrane protein that is recognized by this monoclonal antibody, we performed expression cloning of a cDNA library from the mouse testis. As a result, we identified poliovirus receptor (PVR), which is another IGSF-type cell adhesion molecule, as the binding partner of IGSF4A. The antibodies raised against PVR and IGSF4A immunoprecipitated both antigens in the homogenate of mouse testis. Immunoreactivity for PVR was present in Sertoli cells but not in spermatogenic cells at all stages of spermatogenesis. Overexpression of PVR in TM4, a mouse Sertoli cell line, increased more than three-fold its capacity to adhere to Tera-2, which is a human cell line that expresses IGSF4A. These findings suggest that the heterophilic binding of PVR to IGSF4A is responsible, at least in part, for the interaction between Sertoli and spermatogenic cells during mouse spermatogenesis.
HIV envelope glycoprotein imaged at high resolution | Center for Cancer Research
The outer surface of the human immunodeficiency virus (HIV) is surrounded by an envelope studded with spike-shaped glycoproteins called Env that help the deadly virus identify, bind, and infect cells. When unbound, Env exists in a “closed” conformational state. Upon binding with target cells, such as CD4+ T cells, the protein transitions to an “open” configuration. Given that Env is the only viral protein expressed on HIV’s surface, knowing its detailed structure—especially in the unbound state—may be critical for designing antibodies and vaccines against HIV.
Yonemaru, Kayoko; Sakai, Hiroki; Asaoka, Yoshiji; Yanai, Tokuma; Fukushi, Hideto; Watanabe, Ken; Hirai, Katsuya; Masegi, Toshiaki
2004-02-01
Cases of proventricular neoplasm in a Humboldt penguin (Spheniscus humboldti) and a great horned owl (Bubo virginianus) were observed. Microscopically, the neoplastic cells formed branching tubules or acini in both cases. Galactose oxidase-Schiff (GOS) staining revealed that the cytoplasm of the normal surface epithelium and surface mucosubstances of the proventriculus adjacent to the neoplasm were positive in both cases. The neoplastic cells in both cases were also classified as GOS-positive. Therefore, the two proventricular neoplasms in this report were diagnosed as proventricular adenocarcinoma that arose from the proventricular surface epithelium. This study suggests that the mucosubstances, which the neoplastic cells produced, were a useful index for identifying the origin of the neoplastic cells in the birds.
Huang, Fen; Zhang, Hongkang; Wu, Meng; Yang, Huanghe; Kudo, Makoto; Peters, Christian J; Woodruff, Prescott G; Solberg, Owen D; Donne, Matthew L; Huang, Xiaozhu; Sheppard, Dean; Fahy, John V; Wolters, Paul J; Hogan, Brigid L M; Finkbeiner, Walter E; Li, Min; Jan, Yuh-Nung; Jan, Lily Yeh; Rock, Jason R
2012-10-02
Mucous cell hyperplasia and airway smooth muscle (ASM) hyperresponsiveness are hallmark features of inflammatory airway diseases, including asthma. Here, we show that the recently identified calcium-activated chloride channel (CaCC) TMEM16A is expressed in the adult airway surface epithelium and ASM. The epithelial expression is increased in asthmatics, particularly in secretory cells. Based on this and the proposed functions of CaCC, we hypothesized that TMEM16A inhibitors would negatively regulate both epithelial mucin secretion and ASM contraction. We used a high-throughput screen to identify small-molecule blockers of TMEM16A-CaCC channels. We show that inhibition of TMEM16A-CaCC significantly impairs mucus secretion in primary human airway surface epithelial cells. Furthermore, inhibition of TMEM16A-CaCC significantly reduces mouse and human ASM contraction in response to cholinergic agonists. TMEM16A-CaCC blockers, including those identified here, may positively impact multiple causes of asthma symptoms.
Saso, Wakana; Tsukuda, Senko; Ohashi, Hirofumi; Fukano, Kento; Morishita, Ryo; Matsunaga, Satoko; Ohki, Mio; Ryo, Akihide; Park, Sam-Yong; Suzuki, Ryosuke; Aizaki, Hideki; Muramatsu, Masamichi; Sureau, Camille; Wakita, Takaji; Matano, Tetsuro; Watashi, Koichi
2018-06-22
Current anti-hepatitis B virus (HBV) agents have limited effect in curing HBV infection, and thus novel anti-HBV agents with different modes of action are in demand. In this study, we applied AlphaScreen assay to high-throughput screening of small molecules inhibiting the interaction between HBV large surface antigen (LHBs) and the HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP). From the chemical screening, we identified that rapamycin, an immunosuppressant, strongly inhibited the LHBs-NTCP interaction. Rapamycin inhibited hepatocyte infection with HBV without significant cytotoxicity. This activity was due to impaired attachment of the LHBs preS1 domain to cell surface. Pretreatment of target cells with rapamycin remarkably reduced their susceptibility to preS1 attachment, while rapamycin pretreatment to preS1 did not affect its attachment activity, suggesting that rapamycin targets the host side. In support of this, a surface plasmon resonance analysis showed a direct interaction of rapamycin with NTCP. Consistently, rapamycin also prevented hepatitis D virus infection, whose entry into cells is also mediated by NTCP. We also identified two rapamycin derivatives, everolimus and temsirolimus, which possessed higher anti-HBV potencies than rapamycin. Thus, this is the first report for application of AlphaScreen technology that monitors a viral envelope-receptor interaction to identify viral entry inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.
Gadelha, Catarina; Zhang, Wenzhu; Chamberlain, James W; Chait, Brian T; Wickstead, Bill; Field, Mark C
2015-07-01
Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Chrifi, Ihsan; Louzao-Martinez, Laura; Brandt, Maarten; van Dijk, Christian G M; Burgisser, Petra; Zhu, Changbin; Kros, Johan M; Duncker, Dirk J; Cheng, Caroline
2017-06-01
Decrease in VE-cadherin adherens junctions reduces vascular stability, whereas disruption of adherens junctions is a requirement for neovessel sprouting during angiogenesis. Endocytosis plays a key role in regulating junctional strength by altering bioavailability of cell surface proteins, including VE-cadherin. Identification of new mediators of endothelial endocytosis could enhance our understanding of angiogenesis. Here, we assessed the function of CMTM3 (CKLF-like MARVEL transmembrane domain 3), which we have previously identified as highly expressed in Flk1 + endothelial progenitor cells during embryonic development. Using a 3-dimensional coculture of human umbilical vein endothelial cells-GFP (green fluorescent protein) and pericytes-RFP (red fluorescent protein), we demonstrated that siRNA-mediated CMTM3 silencing in human umbilical vein endothelial cells impairs angiogenesis. In vivo CMTM3 inhibition by morpholino injection in developing zebrafish larvae confirmed that CMTM3 expression is required for vascular sprouting. CMTM3 knockdown in human umbilical vein endothelial cells does not affect proliferation or migration. Intracellular staining demonstrated that CMTM3 colocalizes with early endosome markers EEA1 (early endosome marker 1) and Clathrin + vesicles and with cytosolic VE-cadherin in human umbilical vein endothelial cells. Adenovirus-mediated CMTM3 overexpression enhances endothelial endocytosis, shown by an increase in Clathrin + , EEA1 + , Rab11 + , Rab5 + , and Rab7 + vesicles. CMTM3 overexpression enhances, whereas CMTM3 knockdown decreases internalization of cell surface VE-cadherin in vitro. CMTM3 promotes loss of endothelial barrier function in thrombin-induced responses, shown by transendothelial electric resistance measurements in vitro. In this study, we have identified a new regulatory function for CMTM3 in angiogenesis. CMTM3 is involved in VE-cadherin turnover and is a regulator of the cell surface pool of VE-cadherin. Therefore, CMTM3 mediates cell-cell adhesion at adherens junctions and contributes to the control of vascular sprouting. © 2017 American Heart Association, Inc.
García-Bayona, Leonor; Guo, Monica S; Laub, Michael T
2017-03-21
Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common.
NASA Astrophysics Data System (ADS)
Langowski, Bryan Alfred
A micropatterning process creates distinct microscale domains on substrate surfaces that differ from the surfaces' original chemical/physical properties. Numerous micropatterning methods exist, each having relative advantages and disadvantages in terms of cost, ease, reproducibility, and versatility. Polymeric surfaces micropatterned with biomolecules have many applications, but are specifically utilized in tissue engineering as cell scaffolds that attempt to controlled tissue generation in vivo and ex vivo. As the physical and chemical cues presented by micropatterned substrates control resulting cellular behavior, characterization of these cues via surface-sensitive analytical techniques is essential in developing cell scaffolds that mimic complex in vivo physicochemical environments. The initial focus of this thesis is the chemical and physical characterization of plasma-treated, microcontact-printed (muCP) polymeric substrates used to direct nerve cell behavior. Unmodified and oxygen plasma-treated poly(methyl methacrylate) (PMMA) substrates were analyzed by surface sensitive techniques to monitor plasma-induced chemical and physical modifications. Additionally, protein-micropattern homogeneity and size were microscopically evaluated. Lastly, poly(dimethylsiloxane) (PDMS) stamps and contaminated PMMA substrates were characterized by spectroscopic and microscopic methods to identify a contamination source during microcontact printing. The final focus of this thesis is the development of microscale plasma-initiated patterning (muPIP) as a versatile, reproducible micropatterning method. Using muPIP, polymeric substrates were micropatterned with several biologically relevant inks. Polymeric substrates were characterized following muPIP by surface-sensitive techniques to identify the technique's underlying physical and chemical bases. In addition, neural stem cell response to muPIP-generated laminin micropatterns was microscopically and biologically evaluated. Finally, enhanced versatility of muPIP in generating microscale poly-L-lysine gradients was demonstrated.
Kurusu, Mitsuhiko; Cording, Amy; Taniguchi, Misako; Menon, Kaushiki; Suzuki, Emiko; Zinn, Kai
2008-01-01
Summary In Drosophila embryos and larvae, a small number of identified motor neurons innervate body wall muscles in a highly stereotyped pattern. Although genetic screens have identified many proteins that are required for axon guidance and synaptogenesis in this system, little is known about the mechanisms by which muscle fibers are defined as targets for specific motor axons. To identify potential target labels, we screened 410 genes encoding cell-surface and secreted proteins, searching for those whose overexpression on all muscle fibers causes motor axons to make targeting errors. Thirty such genes were identified, and a number of these were members of a large gene family encoding proteins whose extracellular domains contain leucine-rich repeat (LRR) sequences, which are protein interaction modules. By manipulating gene expression in muscle 12, we showed that four LRR proteins participate in the selection of this muscle as the appropriate synaptic target for the RP5 motor neuron. PMID:18817735
Nikolaienko, Roman M; Hammel, Michal; Dubreuil, Véronique; Zalmai, Rana; Hall, David R; Mehzabeen, Nurjahan; Karuppan, Sebastian J; Harroch, Sheila; Stella, Salvatore L; Bouyain, Samuel
2016-10-07
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Zn/gelled 6 M KOH/O 2 zinc-air battery
NASA Astrophysics Data System (ADS)
Mohamad, A. A.
The gel electrolyte for the zinc-air cell was prepared by mixing hydroponics gel with a 6 M potassium hydroxide aqueous solution. The self-discharge of cells was characterized by measuring the open-circuit voltage. The effect of a discharge rate of 50 mA constant current on cell voltage and plateau hour, as well as the voltage-current and current density-power density were measured and analysed. The electrode degradation after discharge cycling was characterized by structural and surface methods. The oxidation of the electrode surface further blocked the utilization of the Zn anode and was identified as a cause for the failure of the cell.
Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities
NASA Astrophysics Data System (ADS)
Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.
2017-12-01
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity.
Hamuro, Junji; Toda, Munetoyo; Asada, Kazuko; Hiraga, Asako; Schlötzer-Schrehardt, Ursula; Montoya, Monty; Sotozono, Chie; Ueno, Morio; Kinoshita, Shigeru
2016-09-01
To identify the subpopulation (SP) among heterogeneous cultured human corneal endothelial cells (cHCECs) devoid of cell-state transition applicable for cell-based therapy. Subpopulation presence in cHCECs was confirmed via surface CD-marker expression level by flow cytometry. CD markers effective for distinguishing distinct SPs were selected by analyzing those on established cHCECs with a small cell area and high cell density. Contrasting features among three typical cHCEC SPs was confirmed by PCR array for extracellular matrix (ECM). Combined analysis of CD markers was performed to identify the SP (effector cells) applicable for therapy. ZO-1 and Na+/K+ ATPase, CD200, and HLA expression were compared among heterogeneous SPs. Flow cytometry analysis identified the effector cell expressing CD166+CD105-CD44-∼+/-CD26-CD24-, but CD200-, and the presence of other SPs with CD166+ CD105-CD44+++ (CD26 and CD24, either + or -) was confirmed. PCR array revealed three distinct ECM expression profiles. Some SPs expressed ZO-1 and Na+/K+ ATPase at comparable levels with effector cells, while only one SP expressed CD200, but not on effector cells. Human leukocyte antigen expression was most reduced in the effector SP. The proportion of effector cells (E-ratio) inversely paralleled donor age and decreased during prolonged culture passages. The presence of Rho-associated protein kinase (ROCK) inhibitor increased the E-ratio in cHCECs. The average area of effector cells was approximately 200∼220 μm2, and the density of cHCECs exceeded 2500 cells/mm2. A specified cultured effector cell population sharing the surface phenotypes with mature HCECs in corneal tissues may serve as an alternative to donor corneas for the treatment of corneal endothelial dysfunction.
Jia, Yan-Jun; Kai, Masahiro; Wada, Ikuo; Sakane, Fumio; Kanoh, Hideo
2003-09-25
Lipid phosphate phosphatases (LPPs) are integral membrane proteins with six transmembrane domains that act as ecto-enzymes dephosphorylating a variety of extracellular lipid phosphates. Using polarized MDCK cells stably expressing human LPP1 and LPP3, we found that LPP1 was located exclusively at the apical surface whereas LPP3 was distributed mostly in the basolateral subdomain. We identified a novel apical sorting signal at the N-terminus of LPP1 composed of F(2)DKTRL(7). In the case of LPP3, a dityrosine motif present in the second cytoplasmic portion was identified as basolateral targeting signal. Our work shows that LPP1 and LPP3 are equipped with distinct sorting signals that cause them to differentially localize to the apical vs. the basolateral subdomain, respectively.
S-layers: principles and applications
Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva-Maria; Pum, Dietmar
2014-01-01
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology. PMID:24483139
Wang, Peng-Yuan; Thissen, Helmut; Kingshott, Peter
2016-11-01
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Son, Aoi; Kato, Noriko; Horibe, Tomohisa; Matsuo, Yoshiyuki; Mochizuki, Michika; Mitsui, Akira; Kawakami, Koji; Nakamura, Hajime; Yodoi, Junji
2009-10-01
Thioredoxin-1 (TRX) is a small (14 kDa) multifunctional protein with the redox-active site Cys-Gly-Pro-Cys. Macrophage migration inhibitory factor (MIF) is a 12 kDa cytokine belonging to the TRX family. Historically, when we purified TRX from the supernatant of ATL-2 cells, a 12 kDa protein was identified along with TRX, which was later proved to be MIF. Here, we show that TRX and MIF form a complex in the cell and the culture supernatant of ATL-2 cells. Using a BIAcore assay, we confirmed that TRX has a specific affinity with MIF. We also found that extracellular MIF was more effectively internalized into the ATL-2 cells expressing TRX on the cell surface, than the Jurkat T cells which do not express surface TRX. Moreover, anti-TRX antibody blocked the MIF internalization, suggesting that the cell surface TRX is involved in MIF internalization into the cells. Furthermore, anti-TRX antibody inhibited MIF-mediated enhancement of TNF-alpha production from macrophage RAW264.7 cells. These results suggest that the cell surface TRX serves as one of the MIF binding molecules or MIF receptor component and inhibits MIF-mediated inflammatory signals.
Crouzet, Marc; Claverol, Stéphane; Lomenech, Anne-Marie; Le Sénéchal, Caroline; Costaglioli, Patricia; Barthe, Christophe; Garbay, Bertrand; Bonneu, Marc
2017-01-01
Biofilms are present in all environments and often result in negative effects due to properties of the biofilm lifestyle and especially antibiotics resistance. Biofilms are associated with chronic infections. Controlling bacterial attachment, the first step of biofilm formation, is crucial for fighting against biofilm and subsequently preventing the persistence of infection. Thus deciphering the underlying molecular mechanisms involved in attachment could allow discovering molecular targets from it would be possible to develop inhibitors against bacterial colonization and potentiate antibiotherapy. To identify the key components and pathways that aid the opportunistic pathogen Pseudomonas aeruginosa in attachment we performed for the first time a proteomic analysis as early as after 20 minutes of incubation using glass wool fibers as a surface. We compared the protein contents of the attached and unattached bacteria. Using mass spectrometry, 3043 proteins were identified. Our results showed that, as of 20 minutes of incubation, using stringent quantification criteria 616 proteins presented a modification of their abundance in the attached cells compared to their unattached counterparts. The attached cells presented an overall reduced gene expression and characteristics of slow-growing cells. The over-accumulation of outer membrane proteins, periplasmic folding proteins and O-antigen chain length regulators was also observed, indicating a profound modification of the cell envelope. Consistently the sigma factor AlgU required for cell envelope homeostasis was highly over-accumulated in attached cells. In addition our data suggested a role of alarmone (p)ppGpp and polyphosphate during the early attachment phase. Furthermore, almost 150 proteins of unknown function were differentially accumulated in the attached cells. Our proteomic analysis revealed the existence of distinctive biological features in attached cells as early as 20 minutes of incubation. Analysis of some mutants demonstrated the interest of this proteomic approach in identifying genes involved in the early phase of adhesion to a surface. PMID:28678862
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prozialeck, W.C.; Niewenhuis, R.J.
1991-03-11
Recent findings from the authors laboratories have shown that Cd{sup 2+} has relatively specific damaging effects on adhering and occluding junctions in the established porcine renal epithelial cell line, LLC-PK{sub 1}. The present studies were undertaken in order to further characterize the junction-perturbing effects of Cd{sup 2+} in polarized monolayers of LLC-PK{sub 1} cells, and to begin to identify the mechanisms underlying these effects. LLC-PK{sub 1} cells were grown to confluency on Millicell HA chambers and exposed to Cd{sup 2+} in polarized monolayers of LLC-PK{sub 1} cells, and to begin to identify the mechanisms underlying these effects. LLC-PK{sub 1} cellsmore » were grown to confluency on Millicell HA chambers an exposed to Cd{sup 2+} by adding CdCl{sub 2} to the solutions on either side of the cell monolayer. The integrity of cell-cell junctions was assessed by monitoring the transepithelial electrical resistance. The results showed that exposure to Cd{sup 2+} caused a pronounced decrease in transepithelial resistance without causing the cells to detach from the Millicell membrane. This decrease in resistance occurred more quickly and was much more pronounced when Cd{sup 2+} was added to the basolateral surface rather than the apical surface. Furthermore, the effects of Cd{sup 2+} were greatly reduced when excess Ca{sup 2+} was present in the medium. These results suggest that Cd{sup 2+} was present in the medium. These results suggest that Cd{sup 2+} may disrupt cell-cell junctions by interacting with Ca{sup 2+} binding sites or Ca{sup 2+} channels that are oriented toward the basolateral cell surface.« less
Developments toward an 18% efficient silicon solar cell
NASA Technical Reports Server (NTRS)
Meulenberg, A., Jr.
1983-01-01
Limitations to increased open-circuit voltage were identified and experimentally verified for 0.1 ohm-cm solar cells with heavily doped emitters. After major reduction in the dark current contribution from the metal-silicon interface of the grid contacts, the surface recombination velocity of the oxide-silicon interface of shallow junction solar cells is the limiting factor. In deep junction solar cells, where the junction field does not aid surface collection, the emitter bulk is the limiting factor. Singly-diffused, shallow junction cells have been fabricated with open circuit voltages in excess of 645 mV. Double-diffusion shallow and deep junctions cells have displayed voltages above 650 mV. MIS solar cells formed on 0.1 ohm-cm substrates have exibited the lowest dark currents produced in the course of the contract work.
Purdy, Amanda K.; Alvarez-Arias, Diana A.; Oshinsky, Jennifer; James, Ashley M.; Serebriiskii, Ilya; Campbell, Kerry S.
2014-01-01
Stable surface expression of human inhibitory killer cell immunoglobulin-like receptors (KIR) is critical for controlling NK cell function and maintaining NK cell tolerance toward normal MHC-I+ cells. Our recent experiments, however, have found that antibody-bound KIR3DL1 (3DL1) readily leaves the cell surface and undergoes endocytosis to early/recycling endosomes and subsequently to late endosomes. We found that 3DL1 internalization is at least partially mediated by an interaction between the μ2 subunit of the AP-2 clathrin adaptor complex and ITIM tyrosine residues in the cytoplasmic domain of 3DL1. Disruption of the 3DL1/μ2 interaction, either by mutation of the ITIM tyrosines in 3DL1 or mutation of μ2, significantly diminished endocytosis and increased surface expression of 3DL1 in human primary NK cells and cell lines. Furthermore, we found that the 3DL1/AP-2 interaction is diminished upon antibody engagement with the receptor, as compared to untreated cells. Thus, we have identified AP-2-mediated endocytosis as a mechanism regulating the surface levels of inhibitory KIR though their ITIM domains. Based upon our results, we propose a model in which non-engaged KIR are internalized by this mechanism, whereas engagement with MHC-I ligand would diminish AP-2 binding, thereby prolonging stable receptor surface expression and promoting inhibitory function. Furthermore, this ITIM-mediated mechanism may similarly regulate the surface expression of other inhibitory immune receptors. PMID:25238755
Han, Jingjia; Qian, Ximei; Wu, Qingling; Jha, Rajneesh; Duan, Jinshuai; Yang, Zhou; Maher, Kevin O.; Nie, Shuming; Xu, Chunhui
2017-01-01
Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 106 cells, a sensitivity (0.0001%) which was ~2,000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5+ and TRA-1-60+ cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications. PMID:27509304
Emergence of an apical epithelial cell surface in vivo
Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B.
2016-01-01
Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological and laser-dissection experiments with theoretical modelling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441
TT, Chung; TR, Webb; LF, Chan; SN, Cooray; LA, Metherell; PJ, King; JP, Chapple; AJL, Clark
2008-01-01
Context: There are at least twenty-four missense, non-conservative mutations found in the ACTH receptor (Melanocortin 2 receptor, MC2R) which have been associated with the autosomal recessive disease Familial Glucocorticoid Deficiency (FGD) type 1. The characterization of these mutations has been hindered by difficulties in establishing a functional heterologous cell transfection system for MC2R. Recently the melanocortin 2 receptor accessory protein (MRAP) was identified as essential for trafficking of MC2R to the cell surface; therefore a functional characterization of MC2R mutations is now possible. Objective: To elucidate the molecular mechanisms responsible for defective MC2R function in FGD. Methods: Stable cell lines expressing human MRAPα were established and transiently transfected with wild-type or mutant MC2R. Functional characterization of mutant MC2R was performed using a cell surface expression assay, a cAMP reporter assay, confocal microscopy and co-immunoprecipitation of MRAPα. Results: Two thirds of all MC2R mutations had a significant reduction in cell surface trafficking even though MRAPα interacted with all mutants. Analysis of those mutant receptors that reached the cell surface indicated that 4/6 failed to signal, following stimulation with ACTH. Conclusion: The majority of MC2R mutations found in FGD fail to function because they fail to traffic to the cell surface. PMID:18840636
Gilbert, Nicole M; Baker, Lorina G; Specht, Charles A; Lodge, Jennifer K
2012-01-01
Cell wall proteins (CWPs) mediate important cellular processes in fungi, including adhesion, invasion, biofilm formation, and flocculation. The current model of fungal cell wall organization includes a major class of CWPs covalently bound to β-1,6-glucan via a remnant of a glycosylphosphatidylinositol (GPI) anchor. This model was established by studies of ascomycetes more than a decade ago, and relatively little work has been done with other fungi, although the presumption has been that proteins identified in the cell wall which contain a predicted GPI anchor are covalently linked to cell wall glucans. The pathogenic basidiomycete Cryptococcus neoformans encodes >50 putatively GPI-anchored proteins, some of which have been identified in the cell wall. One of these proteins is chitin deacetylase 2 (Cda2), an enzyme responsible for converting chitin to chitosan, a cell wall polymer recently established as a virulence factor for C. neoformans infection of mammalian hosts. Using a combination of biochemistry, molecular biology, and genetics, we show that Cda2 is GPI anchored to membranes but noncovalently associated with the cell wall by means independent of both its GPI anchor and β-1,6-glucan. We also show that Cda2 produces chitosan when localized to the plasma membrane, but association with the cell wall is not essential for this process, thereby providing insight into the mechanism of chitosan biosynthesis. These results increase our understanding of the surface of C. neoformans and provide models of cell walls likely applicable to other undercharacterized basidiomycete pathogenic fungi. The surface of a pathogenic microbe is a major interface with its host. In fungi, the outer surface consists of a complex matrix known as the cell wall, which includes polysaccharides, proteins, and other molecules. The mammalian host recognizes many of these surface molecules and mounts appropriate responses to combat the microbial infection. Cryptococcus neoformans is a serious fungal pathogen that kills over 600,000 people annually. It converts most of its chitin, a cell wall polysaccharide, to chitosan, which is necessary for virulence. Chitin deacetylase enzymes have been identified in the cell wall, and our studies were undertaken to understand how the deacetylase is linked to the wall and where it has activity. Our results have implications for the current model of chitosan biosynthesis and further challenge the paradigm of covalent linkages between cell wall proteins and polysaccharides through a lipid modification of the protein.
Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D
NASA Astrophysics Data System (ADS)
Zonca, Michael R., Jr.
Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.
Genomic similarity between gastroesophageal junction and esophageal Barrett's adenocarcinomas
Kuick, Rork; Thomas, Dafydd G.; Nadal, Ernest; Lin, Jules; Chang, Andrew C.; Reddy, Rishindra M.; Orringer, Mark B.; Taylor, Jeremy M. G.; Wang, Thomas D.; Beer, David G.
2016-01-01
The current high mortality rate of esophageal adenocarcinoma (EAC) reflects frequent presentation at an advanced stage. Recent efforts utilizing fluorescent peptides have identified overexpressed cell surface targets for endoscopic detection of early stage Barrett's-derived EAC. Unfortunately, 30% of EAC patients present with gastroesophageal junction adenocarcinomas (GEJAC) and lack premalignant Barrett's metaplasia, limiting this early detection strategy. We compared mRNA profiles from 52 EACs (tubular EAC; tEAC) collected above the gastroesophageal junction with 70 GEJACs, 8 normal esophageal and 5 normal gastric mucosa samples. We also analyzed our previously published whole-exome sequencing data in a large cohort of these tumors. Principal component analysis, hierarchical clustering and survival-based analyses demonstrated that GEJAC and tEAC were highly similar, with only modest differences in expression and mutation profiles. The combined expression cohort allowed identification of 49 genes coding cell surface targets overexpressed in both GEJAC and tEAC. We confirmed that three of these candidates (CDH11, ICAM1 and CLDN3) were overexpressed in tumors when compared to normal esophagus, normal gastric and non-dysplastic Barrett's, and localized to the surface of tumor cells. Molecular profiling of tEAC and GEJAC tumors indicated extensive similarity and related molecular processes. Identified genes that encode cell surface proteins overexpressed in both Barrett's-derived EAC and those that arise without Barrett's metaplasia will allow simultaneous detection strategies. PMID:27363029
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko
Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important rolemore » of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.« less
Fang, Xiao-Qian; Qiao, Haifa; Groveman, Bradley R; Feng, Shuang; Pflueger, Melissa; Xin, Wen-Kuan; Ali, Mohammad K; Lin, Shuang-Xiu; Xu, Jindong; Duclot, Florian; Kabbaj, Mohamed; Wang, Wei; Ding, Xin-Sheng; Santiago-Sim, Teresa; Jiang, Xing-Hong; Salter, Michael W; Yu, Xian-Min
2015-11-19
Constitutive and regulated internalization of cell surface proteins has been extensively investigated. The regulated internalization has been characterized as a principal mechanism for removing cell-surface receptors from the plasma membrane, and signaling to downstream targets of receptors. However, so far it is still not known whether the functional properties of remaining (non-internalized) receptor/channels may be regulated by internalization of the same class of receptor/channels. The N-methyl-D-aspartate receptor (NMDAR) is a principal subtype of glutamate-gated ion channel and plays key roles in neuronal plasticity and memory functions. NMDARs are well-known to undergo two types of regulated internalization - homologous and heterologous, which can be induced by high NMDA/glycine and DHPG, respectively. In the present work, we investigated effects of regulated NMDAR internalization on the activity of residual cell-surface NMDARs and neuronal functions. In electrophysiological experiments we discovered that the regulated internalization of NMDARs not only reduced the number of cell surface NMDARs but also caused an inhibition of the activity of remaining (non-internalized) surface NMDARs. In biochemical experiments we identified that this functional inhibition of remaining surface NMDARs was mediated by increased serine phosphorylation of surface NMDARs, resulting from the activation of protein kinase D1 (PKD1). Knockdown of PKD1 did not affect NMDAR internalization but prevented the phosphorylation and inhibition of remaining surface NMDARs and NMDAR-mediated synaptic functions. These data demonstrate a novel concept that regulated internalization of cell surface NMDARs not only reduces the number of NMDARs on the cell surface but also causes an inhibition of the activity of remaining surface NMDARs through intracellular signaling pathway(s). Furthermore, modulating the activity of remaining surface receptors may be an effective approach for treating receptor internalization-induced changes in neuronal functions of the CNS.
Pfistershammer, Katharina; Lawitschka, Anita; Klauser, Christoph; Leitner, Judith; Weigl, Roman; Heemskerk, Mirjam H M; Pickl, Winfried F; Majdic, Otto; Böhmig, Georg A; Fischer, Gottfried F; Greinix, Hildegard T; Steinberger, Peter
2009-09-10
In hematopoietic stem cell transplant (HSCT) recipients, the recognition of polymorphic antigens by the donor-derived immune system is an important mechanism underlying both graft-versus-host disease and graft-versus-leukemia (GVL) effect. Here we show that a subset of HSCT recipients (13.9%, n = 108) have antibodies directed to surface molecules of dendritic cells. We have used one such serum in conjunction with retroviral expression cloning to identify the highly polymorphic surface molecule immunoglobulin-like transcript 5 (ILT5) as one of the targets of dendritic cell-reactive antibodies. ILT5 reactive antibodies were found in 5.4% of HSCT patients but not in solid organ transplantation recipients, patients with collagen diseases, multiparous women, or polytransfused or healthy persons. We show that ILT5-specific antibodies can mediate killing of ILT5-bearing cells and furthermore demonstrate ILT5 expression in some leukemic cells, indicating that it might be a target for GVL effects. Thus, our results represent the first description of potent allogeneic antibody responses to a non-major histocompatibility complex cell surface molecule in hematopoietic stem cell transplanted patients and warrant further studies to elucidate the role of antibodies to polymorphic cell surface molecules in GVL and graft-versus-host responses.
Adenovirus receptors and their implications in gene delivery
Sharma, Anurag; Li, Xiaoxin; Bangari, Dinesh S.; Mittal, Suresh K.
2010-01-01
Adenoviruses (Ads) have gained popularity as gene delivery vectors for therapeutic and prophylactic applications. Ad entry into host cells involves specific interactions between cell surface receptors and viral capsid proteins. Several cell surface molecules have been identified as receptors for Ad attachment and entry. Tissue tropism of Ad vectors is greatly influenced by their receptor usage. A variety of strategies have been investigated to modify Ad vector tropism by manipulating the receptor-interacting moieties. Many such strategies are aimed at targeting and/or detargeting of Ad vectors. In this review, we discuss the various cell surface molecules that are implicated as receptors for virus attachment and internalization. Special emphasis is given to Ad types that are utilized as gene delivery vectors. Various strategies to modify Ad tropism using the knowledge of Ad receptors are also discussed. PMID:19647886
Castro, Felipe D; Sedman, Jacqueline; Ismail, Ashraf A; Asadishad, Bahareh; Tufenkji, Nathalie
2010-06-01
The effects of dissolved oxygen tension during bacterial growth and acclimation on the cell surface properties and biochemical composition of the bacterial pathogens Escherichia coli O157:H7 and Yersinia enterocolitica are characterized. Three experimental techniques are used in an effort to understand the influence of bacterial growth and acclimation conditions on cell surface charge and the composition of the bacterial cell: (i) electrophoretic mobility measurements; (ii) potentiometric titration; and (iii) ATR-FTIR spectroscopy. Potentiometric titration data analyzed using chemical speciation software are related to measured electrophoretic mobilities at the pH of interest. Titration of bacterial cells is used to identify the major proton-active functional groups and the overall concentration of these cell surface ligands at the cell membrane. Analysis of titration data shows notable differences between strains and conditions, confirming the appropriateness of this tool for an overall charge characterization. ATR-FTIR spectroscopy of whole cells is used to further characterize the bacterial biochemical composition and macromolecular structures that might be involved in the development of the net surficial charge of the organisms examined. The evaluation of the integrated intensities of HPO(2)(-) and carbohydrate absorption bands in the IR spectra reveals clear differences between growth protocols. Taken together, the three techniques seem to indicate that the dissolved oxygen tension during cell growth or acclimation can noticeably influence the expression of cell surface molecules and the measurable cell surface charge, though in a strain-dependent fashion.
Tropea, Margaret M.; Harper, Bonnie J. A.; Graninger, Grace M.; Phillips, Terry M.; Ferreyra, Gabriela; Mostowski, Howard S.; Danner, Robert L.; Suffredini, Anthony F.; Solomon, Michael A.
2016-01-01
Summary Accurately detecting circulating endothelial cells (CECs) is important since their enumeration has been proposed as a biomarker to measure injury to the vascular endothelium. However, there is no single methodology for determining CECs in blood, making comparison across studies difficult. Many methods for detecting CECs rely on characteristic cell surface markers and cell viability indicators, but lack secondary validation. Here, a CEC population in healthy adult human subjects was identified by flow cytometry as CD45−, CD34dim that is comparable to a previously described CD45−, CD31bright population. In addition, nuclear staining with 7-aminoactinomycin D (7-AAD) was employed as a standard technique to exclude dead cells. Unexpectedly, the CD45−, CD34dim, 7-AAD− CECs lacked surface detectable CD146, a commonly used marker of CECs. Furthermore, light microscopy revealed this cell population to be composed primarily of large cells without a clearly defined nucleus. Nevertheless, immunostains still demonstrated the presence of the lectin Ulex europaeus and van Willebrand factor. Ultramicro analytical immunochemistry assays for the endothelial cell proteins CD31, CD34, CD62E, CD105, CD141, CD144 and vWF indicated these cells possess an endothelial phenotype. However, only a small amount of RNA, which was mostly degraded, could be isolated from these cells. Thus the majority of CECs in healthy individuals as defined by CD45−, CD34dim, and 7-AAD− have shed their CD146 surface marker and are senescent cells without an identifiable nucleus and lacking RNA of sufficient quantity and quality for transcriptomal analysis. This study highlights the importance of secondary validation of CEC identification. PMID:25057108
Tan, Li; Showalter, Allan M.; Egelund, Jack; Hernandez-Sanchez, Arianna; Doblin, Monika S.; Bacic, Antony
2012-01-01
Arabinogalactan-proteins (AGPs) are complex glycoconjugates that are commonly found at the cell surface and in secretions of plants. Their location and diversity of structures have made them attractive targets as modulators of plant development but definitive proof of their direct role(s) in biological processes remains elusive. Here we overview the current state of knowledge on AGPs, identify key challenges impeding progress in the field and propose approaches using modern bioinformatic, (bio)chemical, cell biological, molecular and genetic techniques that could be applied to redress these gaps in our knowledge. PMID:22754559
Naito, Hisamichi; Kidoya, Hiroyasu; Sakimoto, Susumu; Wakabayashi, Taku; Takakura, Nobuyuki
2012-01-01
Vasculogenesis, the in-situ assembly of angioblast or endothelial progenitor cells (EPCs), may persist into adult life, contributing to new blood vessel formation. However, EPCs are scattered throughout newly developed blood vessels and cannot be solely responsible for vascularization. Here, we identify an endothelial progenitor/stem-like population located at the inner surface of preexisting blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This population is dormant in the steady state but possesses colony-forming ability, produces large numbers of endothelial cells (ECs) and when transplanted into ischaemic lesions, restores blood flow completely and reconstitutes de-novo long-term surviving blood vessels. Moreover, although surface markers of this population are very similar to conventional ECs, and they reside in the capillary endothelium sub-population, the gene expression profile is completely different. Our results suggest that this heterogeneity of stem-like ECs will lead to the identification of new targets for vascular regeneration therapy. PMID:22179698
Tumas, D B; Brassfield, A L; Travenor, A S; Hines, M T; Davis, W C; McGuire, T C
1994-12-01
Murine monoclonal antibodies, HB88A, B29A and DH59B separately identify the CD2 T lymphocyte molecule, a unique pan-B lymphocyte surface marker and a pan-granulocyte/monocyte surface molecule, respectively, in the horse. Specificity was shown by two-color immunofluorescent flow cytometry and immunofluorescent microscopy. MAb HB88A reacted with a 52 kDa pan-T lymphocyte molecule present on 75% +/- 7 of peripheral blood lymphocytes (PBL) (n = 15 horses). It also reacted with lymphocytes restricted to T lymphocyte dependent areas of lymph node and spleen. Specificity of mAb HB88A to CD2 was demonstrated by its reactivity to COS7 cells which expressed a transfected 1.5 kb equine lymphocyte c-DNA clone having 77.5% overall sequence homology with human CD2 c-DNA. MAb B29A reacted with a pan-B lymphocyte specific cell surface complex, 143, 72, 50, 40, 27 and 14.5 kDa, present on 19% +/- 7 of PBL (n = 15 horses). This complex has not been described in the horse or other species. MAb DH59B reacted with a 96 kDa pan-granulocyte/monocyte specific surface protein and identified macrophages and Kupffer cells in equine tissue sections. Together these mAbs can be used to identify and quantitate the major constituents of equine leukocytes.
Matsuo, Yosuke; Miyoshi, Yukihiro; Okada, Sanae; Satoh, Eiichi
2012-01-01
A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion.
NASA Astrophysics Data System (ADS)
Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David
2013-01-01
Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.
Dhez, Anne-Chloé; Benedetti, Elisabetta; Antonosante, Andrea; Panella, Gloria; Ranieri, Brigida; Florio, Tiziana M; Cristiano, Loredana; Angelucci, Francesco; Giansanti, Francesco; Di Leandro, Luana; d'Angelo, Michele; Melone, Marina; De Cola, Antonella; Federici, Luca; Galzio, Renato; Cascone, Ilaria; Raineri, Fabio; Cimini, Annamaria; Courty, José; Giordano, Antonio; Ippoliti, Rodolfo
2018-05-01
Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID 50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Ki-Hwan; Cho, Jun-Sik; Choi, Doo-Jin; Koh, Seok-Keun
2001-04-01
Polystyrene (PS) Petri-dishes were modified by an ion-assisted reaction (IAR) to improve wettability and to supply a suitable surface for cell culturing. Low energy Ar + ions with 1000 eV were irradiated on the surface of PS in oxygen gas environment. Water contact angles of PS were not reduced much by ion irradiation without oxygen gas and had a value of 40°. In the case of ion irradiation with flowing oxygen gas, however, the water contact angles were dropped significantly from 73° to 19°. X-ray photoelectron spectroscopy analysis showed that the hydrophilic groups were formed on the surface of PS by a chemical reaction between unstable chains induced by ion irradiation and the oxygen gas. Newly formed hydrophilic groups were identified as -(C-O)-, -(CO)- and -(CO)-O- bonds. The influence of the surface modification on growth of the rat pheochromocytoma (PC12) cells was investigated. The IAR-treated PS surfaces showed enhanced attachment and growth in PC12 cell culture test.
Dedobbeleer, Olivier; Stockis, Julie; van der Woning, Bas; Coulie, Pierre G; Lucas, Sophie
2017-07-15
Production of active TGF-β is regulated at a posttranslational level and implies release of the mature cytokine dimer from the inactive, latent TGF-β precursor. There are several cell-type specific mechanisms of TGF-β activation. We identified a new mechanism operating on the surface of human regulatory T cells and involving membrane protein GARP, which binds latent TGF-β1. The paracrine activity of regulatory T cell-derived TGF-β1 contributes to immunosuppression and can be inhibited with anti-GARP Abs. Whether other immune cell types use surface GARP to activate latent TGF-β1 was not known. We show in this study that stimulated, human B lymphocytes produce active TGF-β1 from surface GARP/latent TGF-β1 complexes with isotype switching to IgA production. Copyright © 2017 by The American Association of Immunologists, Inc.
NASA Astrophysics Data System (ADS)
Talukder, Muhammad A.; Menyuk, Curtis R.; Kostov, Yordan
2017-02-01
Distinguishing between intact cells, dead but still whole cells, and cell debris is an important but difficult task in life sciences. The most common way to identify dead cells is using a cell-impermeant DNA binding dye, such as propidium iodide. A healthy living cell has an intact cell membrane and will act as a barrier to the dye so that it cannot enter the cell. A dead cell has a compromised cell membrane, and it will allow the dye into the cell to bind to the DNA and become fluorescent. The dead cells therefore will be positive and the live cells will be negative. The dead cells later deteriorate quickly into debris. Different pieces of debris from a single cell can be incorrectly identified as separate dead cells. Although a flow cytometer can quickly perform numerous quantitative, sensitive measurements on each individual cell to determine the viability of cells within a large, heterogeneous population, it is bulky, expensive, and only large hospitals and laboratories can afford them. In this work, we show that the distance-dependent coupling of fluorophore light to surface plasmon coupled emission (SPCE) from fluorescently-labeled cells can be used to distinguish whole cells from cell debris. Once the fluorescent labels are excited by a laser, the fluorescently-labeled whole cells create two distinct intensity rings in the far-field, in contrast to fluorescently-labeled cell debris, which only creates one ring. The distinct far-field patterns can be captured by camera and used to distinguish between whole cells and cell debris.
Xuan, X; Maeda, K; Mikami, T; Otsuka, H
1996-12-01
The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.
Zhang, Yu; Yang, Mo; Park, Ji-Ho; Singelyn, Jennifer; Ma, Huiqing; Sailor, Michael J; Ruoslahti, Erkki; Ozkan, Mihrimah; Ozkan, Cengiz
2009-09-01
Surface-charge measurements of mammalian cells in terms of Zeta potential are demonstrated as a useful biological characteristic in identifying cellular interactions with specific nanomaterials. A theoretical model of the changes in Zeta potential of cells after incubation with nanoparticles is established to predict the possible patterns of Zeta-potential change to reveal the binding and internalization effects. The experimental results show a distinct pattern of Zeta-potential change that allows the discrimination of human normal breast epithelial cells (MCF-10A) from human cancer breast epithelial cells (MCF-7) when the cells are incubated with dextran coated iron oxide nanoparticles that contain tumor-homing F3 peptides, where the tumor-homing F3 peptide specifically bound to nucleolin receptors that are overexpressed in cancer breast cells.
Secreted CLCA1 modulates TMEM16A to activate Ca(2+)-dependent chloride currents in human cells.
Sala-Rabanal, Monica; Yurtsever, Zeynep; Nichols, Colin G; Brett, Tom J
2015-03-17
Calcium-activated chloride channel regulator 1 (CLCA1) activates calcium-dependent chloride currents; neither the target, nor mechanism, is known. We demonstrate that secreted CLCA1 activates calcium-dependent chloride currents in HEK293T cells in a paracrine fashion, and endogenous TMEM16A/Anoctamin1 conducts the currents. Exposure to exogenous CLCA1 increases cell surface levels of TMEM16A and cellular binding experiments indicate CLCA1 engages TMEM16A on the surface of these cells. Altogether, our data suggest that CLCA1 stabilizes TMEM16A on the cell surface, thus increasing surface expression, which results in increased calcium-dependent chloride currents. Our results identify the first Cl(-) channel target of the CLCA family of proteins and establish CLCA1 as the first secreted direct modifier of TMEM16A activity, delineating a unique mechanism to increase currents. These results suggest cooperative roles for CLCA and TMEM16 proteins in influencing the physiology of multiple tissues, and the pathology of multiple diseases, including asthma, COPD, cystic fibrosis, and certain cancers.
Heller, Danielle M; Tavag, Mrinalini; Hochschild, Ann
2017-09-01
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.
Heller, Danielle M.; Tavag, Mrinalini
2017-01-01
The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PMID:28931012
Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display
Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna
2013-01-01
Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310
Boensch, C; Huang, S S; Connolly, D T; Huang, J S
1999-04-09
The cell surface retention sequence (CRS) binding protein-1 (CRSBP-1) is a newly identified membrane glycoprotein which is hypothesized to be responsible for cell surface retention of the oncogene v-sis and c-sis gene products and other secretory proteins containing CRSs. In simian sarcoma virus-transformed NIH 3T3 cells (SSV-NIH 3T3 cells), a fraction of CRSBP-1 was demonstrated at the cell surface and underwent internalization/recycling as revealed by cell surface 125I labeling and its resistance/sensitivity to trypsin digestion. However, the majority of CRSBP-1 was localized in intracellular compartments as evidenced by the resistance of most of the 35S-metabolically labeled CRSBP-1 to trypsin digestion, and by indirect immunofluorescent staining. CRSBP-1 appeared to form complexes with proteolytically processed forms (generated at and/or after the trans-Golgi network) of the v-sis gene product and with a approximately 140-kDa proteolytically cleaved form of the platelet-derived growth factor (PDGF) beta-type receptor, as demonstrated by metabolic labeling and co-immunoprecipitation. CRSBP-1, like the v-sis gene product and PDGF beta-type receptor, underwent rapid turnover which was blocked in the presence of 100 microM suramin. In normal and other transformed NIH 3T3 cells, CRSBP-1 was relatively stable and did not undergo rapid turnover and internalization/recycling at the cell surface. These results suggest that in SSV-NIH 3T3 cells, CRSBP-1 interacts with and forms ternary and binary complexes with the newly synthesized v-sis gene product and PDGF beta-type receptor at the trans-Golgi network and that the stable binary (CRSBP-1.v-sis gene product) complex is transported to the cell surface where it presents the v-sis gene product to unoccupied PDGF beta-type receptors during internalization/recycling.
Zhou, Angela X; Kozhaya, Lina; Fujii, Hodaka; Unutmaz, Derya
2013-05-15
The role of surface-bound TGF-β on regulatory T cells (Tregs) and the mechanisms that mediate its functions are not well defined. We recently identified a cell-surface molecule called Glycoprotein A Repetitions Predominant (GARP), which is expressed specifically on activated Tregs and was found to bind latent TGF-β and mediate a portion of Treg suppressive activity in vitro. In this article, we address the role of GARP in regulating Treg and conventional T cell development and immune suppression in vivo using a transgenic mouse expressing GARP on all T cells. We found that, despite forced expression of GARP on all T cells, stimulation through the TCR was required for efficient localization of GARP to the cell surface. In addition, IL-2 signals enhanced GARP cell surface expression specifically on Tregs. GARP-transgenic CD4(+) T cells and Tregs, especially those expressing higher levels of GARP, were significantly reduced in the periphery. Mature Tregs, but not conventional CD4(+) T cells, were also reduced in the thymus. CD4(+) T cell reduction was more pronounced within the effector/memory subset, especially as the mouse aged. In addition, GARP-overexpressing CD4(+) T cells stimulated through the TCR displayed reduced proliferative capacity, which was restored by inhibiting TGF-β signaling. Furthermore, inhibiting TGF-β signals greatly enhanced surface expression of GARP on Tregs and blocked the induction of Foxp3 in activated CD4(+) T cells overexpressing GARP. These findings suggest a role for GARP in natural and induced Treg development through activation of bound latent TGF-β and signaling, which negatively regulates GARP expression on Tregs.
Internal-short-mitigating current collector for lithium-ion battery
NASA Astrophysics Data System (ADS)
Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu
2017-05-01
Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.
Kim, Min-Sik
2016-01-01
Malaria transmission begins when an infected mosquito delivers Plasmodium sporozoites into the skin. The sporozoite subsequently enters the circulation and infects the liver by preferentially traversing Kupffer cells, a macrophage-like component of the liver sinusoidal lining. By screening a phage display library, we previously identified a peptide designated P39 that binds to CD68 on the surface of Kupffer cells and blocks sporozoite traversal. In this study, we show that the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the sporozoite surface and that GAPDH directly interacts with CD68 on the Kupffer cell surface. Importantly, an anti-P39 antibody significantly inhibits sporozoite liver invasion without cross-reacting with mammalian GAPDH. Therefore, Plasmodium-specific GAPDH epitopes may provide novel antigens for the development of a prehepatic vaccine. PMID:27551151
Cha, Sung-Jae; Kim, Min-Sik; Pandey, Akhilesh; Jacobs-Lorena, Marcelo
2016-09-19
Malaria transmission begins when an infected mosquito delivers Plasmodium sporozoites into the skin. The sporozoite subsequently enters the circulation and infects the liver by preferentially traversing Kupffer cells, a macrophage-like component of the liver sinusoidal lining. By screening a phage display library, we previously identified a peptide designated P39 that binds to CD68 on the surface of Kupffer cells and blocks sporozoite traversal. In this study, we show that the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the sporozoite surface and that GAPDH directly interacts with CD68 on the Kupffer cell surface. Importantly, an anti-P39 antibody significantly inhibits sporozoite liver invasion without cross-reacting with mammalian GAPDH. Therefore, Plasmodium-specific GAPDH epitopes may provide novel antigens for the development of a prehepatic vaccine. © 2016 Cha et al.
Invariant Chain Complexes and Clusters as Platforms for MIF Signaling
Lindner, Robert
2017-01-01
Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking. PMID:28208600
Ruvoletto, M G; Tono, N; Carollo, D; Vilei, T; Trentin, L; Muraca, M; Marino, M; Gatta, A; Fassina, G; Pontisso, P
2004-03-01
A variant of the serpin squamous cell carcinoma antigen (SCCA) has been identified as a hepatitis B virus binding protein and high expression of SCCA has recently been found in hepatocarcinoma. Since HBV is involved in liver carcinogenesis, experiments were carried out to examine the effect of HBV preS1 envelope protein on SCCA expression. Surface and intracellular staining for SCCA was assessed by FACS analysis. Preincubation of HepG2 cells and primary human hepatocytes with preS1 protein or with preS1(21-47) tetrameric peptide significantly increased the surface expression of SCCA, without modification of its overall cellular burden, suggesting a surface redistribution of the serpin. An increase in HBV binding and internalization was observed after pre-incubation of the cells with preS1 preparations, compared to cells preincubated with medium alone. Pretreatment of cells with DMSO, while not influencing SCCA basal expression, was responsible for an increase in the efficiency of HBV internalization and this effect was additive to that obtained after incubation with preS1 preparations. In conclusion, the HBV preS1(21-47) sequence is able to induce overexpression of SCCA at the cell surface facilitating virus internalization, while the increased efficiency of HBV entry following DMSO addition is not mediated by SCCA.
Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R
2017-12-01
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.
Osseointegrated dental implants produced via microwave processing
NASA Astrophysics Data System (ADS)
Kutty, Muralithran G.
This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.
Functions of ocular surface mucins in health and disease
Mantelli, Flavio; Argüeso, Pablo
2009-01-01
Purpose of review The purpose of the present review is to describe new concepts on the role of mucins in the protection of corneal and conjunctival epithelia and to identify alterations of mucins in ocular surface diseases. Recent findings New evidence indicates that gel-forming and cell surface-associated mucins contribute differently to the protection of the ocular surface against allergens, pathogens, extracellular molecules, abrasive stress, and drying. Summary Mucins are high molecular weight glycoproteins characterized by their extensive O-glycosylation. Major mucins expressed by the ocular surface epithelia include cell surface-associated mucins MUC1, -4 and -16, and the gel-forming mucin MUC5AC. Recent advances using functional assays have allowed the examination of their roles in the protection of corneal and conjunctival epithelia. Alterations in mucin and mucin O-glycan biosynthesis in ocular surface disorders, including allergy, non-autoimmune dry eye, autoimmune dry eye, and infection, are presented. PMID:18769205
On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazil, J.; Feingold, G.; Wang, Hailong
2014-01-02
The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.« less
Bacteria as living patchy colloids: Phenotypic heterogeneity in surface adhesion
Hermes, Michiel; Schwarz-Linek, Jana; Poon, Wilson C. K.
2018-01-01
Understanding and controlling the surface adhesion of pathogenic bacteria is of urgent biomedical importance. However, many aspects of this process remain unclear (for example, microscopic details of the initial adhesion and possible variations between individual cells). Using a new high-throughput method, we identify and follow many single cells within a clonal population of Escherichia coli near a glass surface. We find strong phenotypic heterogeneities: A fraction of the cells remain in the free (planktonic) state, whereas others adhere with an adhesion strength that itself exhibits phenotypic heterogeneity. We explain our observations using a patchy colloid model; cells bind with localized, adhesive patches, and the strength of adhesion is determined by the number of patches: Nonadherers have no patches, weak adherers bind with a single patch only, and strong adherers bind via a single or multiple patches. We discuss possible implications of our results for controlling bacterial adhesion in biomedical and other applications. PMID:29719861
Jaeschke, Holger; Mueller, Sandra; Eszlinger, Markus; Paschke, Ralf
2010-12-01
Constitutively activating mutations (CAMs) of the TSHR are the major cause for nonautoimmune hyperthyroidism. Re-examination of constitutive activity previously determined in CHO cell lines recently demonstrated the caveats for the in vitro determination of constitutive TSHR activity, which leads to false positive conclusions regarding the molecular origin of hyperthyroidism or hot thyroid carcinomas. Mutations L677V and T620I identified in hot thyroid carcinomas were previously characterized in CHO and in 3T3-Vill cell lines, respectively, stably expressing the mutant without determination of TSHR expression. F666L identified in a patient with hot thyroid nodules, I691F in a family with nonautoimmune hyperthyroidism and F631I identified in a hot thyroid carcinoma were not characterized for their in vitro function. Therefore, we decided to (re)evaluate the in vitro function of these five TSHR variants by determination of cell surface expression, and intracellular cAMP and inositol phosphate levels and performed additionally linear regression analyses to determine basal activity independently from the mutant's cell surface expression in COS-7 and HEK(GT) cells. Only one (F631I) of the five investigated TSHR variants displayed constitutive activity for G(α) s signalling and showed correlation with the clinical phenotype. The previous false classification of T620I and L677V as CAMs is most likely related to the fact that both mutations were characterized in cell lines stably expressing the mutated receptor construct without assessing the respective receptor number per cell. Other molecular aetiologies for the nonautoimmune hyperthyroidism and/or hot thyroid carcinomas in these three patients and one family should be elucidated. © 2010 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprague, E.R.; Wang, C.; Baker, D.
Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-{angstrom} CgE structure. A 5-{angstrom} gE-gI/Fc crystal structure, which was independently verified bymore » a theoretical prediction method, reveals that CgE binds Fc at the C{sub H}2-C{sub H}3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response.« less
García-Bayona, Leonor; Guo, Monica S; Laub, Michael T
2017-01-01
Most bacteria are in fierce competition with other species for limited nutrients. Some bacteria can kill nearby cells by secreting bacteriocins, a diverse group of proteinaceous antimicrobials. However, bacteriocins are typically freely diffusible, and so of little value to planktonic cells in aqueous environments. Here, we identify an atypical two-protein bacteriocin in the α-proteobacterium Caulobacter crescentus that is retained on the surface of producer cells where it mediates cell contact-dependent killing. The bacteriocin-like proteins CdzC and CdzD harbor glycine-zipper motifs, often found in amyloids, and CdzC forms large, insoluble aggregates on the surface of producer cells. These aggregates can drive contact-dependent killing of other organisms, or Caulobacter cells not producing the CdzI immunity protein. The Cdz system uses a type I secretion system and is unrelated to previously described contact-dependent inhibition systems. However, Cdz-like systems are found in many bacteria, suggesting that this form of contact-dependent inhibition is common. DOI: http://dx.doi.org/10.7554/eLife.24869.001 PMID:28323618
Surface vimentin is critical for the cell entry of SARS-CoV.
Yu, Yvonne Ting-Chun; Chien, Ssu-Chia; Chen, I-Yin; Lai, Chia-Tsen; Tsay, Yeou-Guang; Chang, Shin C; Chang, Ming-Fu
2016-01-22
Severe acute respiratory syndrome coronavirus (SARS-CoV) caused a global panic due to its high morbidity and mortality during 2002 and 2003. Soon after the deadly disease outbreak, the angiotensin-converting enzyme 2 (ACE2) was identified as a functional cellular receptor in vitro and in vivo for SARS-CoV spike protein. However, ACE2 solely is not sufficient to allow host cells to become susceptible to SARS-CoV infection, and other host factors may be involved in SARS-CoV spike protein-ACE2 complex. A host intracellular filamentous cytoskeletal protein vimentin was identified by immunoprecipitation and LC-MS/MS analysis following chemical cross-linking on Vero E6 cells that were pre-incubated with the SARS-CoV spike protein. Moreover, flow cytometry data demonstrated an increase of the cell surface vimentin level by 16.5 % after SARS-CoV permissive Vero E6 cells were treated with SARS-CoV virus-like particles (VLPs). A direct interaction between SARS-CoV spike protein and host surface vimentin was further confirmed by far-Western blotting. In addition, antibody neutralization assay and shRNA knockdown experiments indicated a vital role of vimentin in cell binding and uptake of SARS-CoV VLPs and the viral spike protein. A direct interaction between vimentin and SARS-CoV spike protein during viral entry was observed. Vimentin is a putative anti-viral drug target for preventing/reducing the susceptibility to SARS-CoV infection.
Raut, Mahendra P.; Karunakaran, Esther; Mukherjee, Joy; Biggs, Catherine A.; Wright, Phillip C.
2015-01-01
Although Fibrobacter succinogenes S85 is one of the most proficient cellulose degrading bacteria among all mesophilic organisms in the rumen of herbivores, the molecular mechanism behind cellulose degradation by this bacterium is not fully elucidated. Previous studies have indicated that cell surface proteins might play a role in adhesion to and subsequent degradation of cellulose in this bacterium. It has also been suggested that cellulose degradation machinery on the surface may be selectively expressed in response to the presence of cellulose. Based on the genome sequence, several models of cellulose degradation have been suggested. The aim of this study is to evaluate the role of the cell envelope proteins in adhesion to cellulose and to gain a better understanding of the subsequent cellulose degradation mechanism in this bacterium. Comparative analysis of the surface (exposed outer membrane) chemistry of the cells grown in glucose, acid-swollen cellulose and microcrystalline cellulose using physico-chemical characterisation techniques such as electrophoretic mobility analysis, microbial adhesion to hydrocarbons assay and Fourier transform infra-red spectroscopy, suggest that adhesion to cellulose is a consequence of an increase in protein display and a concomitant reduction in the cell surface polysaccharides in the presence of cellulose. In order to gain further understanding of the molecular mechanism of cellulose degradation in this bacterium, the cell envelope-associated proteins were enriched using affinity purification and identified by tandem mass spectrometry. In total, 185 cell envelope-associated proteins were confidently identified. Of these, 25 proteins are predicted to be involved in cellulose adhesion and degradation, and 43 proteins are involved in solute transport and energy generation. Our results supports the model that cellulose degradation in F. succinogenes occurs at the outer membrane with active transport of cellodextrins across for further metabolism of cellodextrins to glucose in the periplasmic space and inner cytoplasmic membrane. PMID:26492413
Akin, C; Kirshenbaum, A S; Semere, T; Worobec, A S; Scott, L M; Metcalfe, D D
2000-02-01
The Asp816Val c-kit activating mutation is detectable in the peripheral blood cells of some patients with mastocytosis and in lesional skin biopsies obtained from adult patients with urticaria pigmentosa. These observations led to the conclusion that this mutation is present in mast cells and mast cell precursors that express c-kit. However, the distribution of the Asp816Val mutation among hematopoietic lineages is unknown. To determine the distribution of the Asp816Val mutation among hematopoietic lineages and to explore its relationship to clinical disease, we examined cells bearing differentiation markers for myelomonocytic cells as well as T and B lymphocytes, in both peripheral blood and bone marrow obtained from patients with mastocytosis. The presence of Asp816Val c-kit mutation in cells magnetically sorted from peripheral blood or bone marrow according to surface differentiation markers was studied by reverse transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) analysis. The surface expression of c-kit was determined by flow cytometry. The mutation was detectable by RT-PCR in at least one cell lineage in the bone marrow in 7 of 7 patients examined and in the peripheral blood of 11 of 11 adult patients with urticaria pigmentosa and indolent disease. The mutation was identified most frequently in B cells and myeloid cells. Flow cytometric analysis demonstrated that the differentiated cells expressing mutated c-kit were negative for surface KIT. These results are consistent with the conclusion that the c-kit Asp816Val mutation occurs in an early progenitor cell and is carried by myelomonocytic cells, T cells, and B cells in addition to mast cells. However, unlike mast cells, these myelomonocytic cells, T cells, and B cells do not concomitantly express surface c-kit and thus may be less susceptible to the effects of this mutation.
Rab11 in Recycling Endosomes Regulates the Sorting and Basolateral Transport of E-CadherinV⃞
Lock, John G.; Stow, Jennifer L.
2005-01-01
E-cadherin plays an essential role in cell polarity and cell-cell adhesion; however, the pathway for delivery of E-cadherin to the basolateral membrane of epithelial cells has not been fully characterized. We first traced the post-Golgi, exocytic transport of GFP-tagged E-cadherin (Ecad-GFP) in unpolarized cells. In live cells, Ecad-GFP was found to exit the Golgi complex in pleiomorphic tubulovesicular carriers, which, instead of moving directly to the cell surface, most frequently fused with an intermediate compartment, subsequently identified as a Rab11-positive recycling endosome. In MDCK cells, basolateral targeting of E-cadherin relies on a dileucine motif. Both E-cadherin and a targeting mutant, ΔS1-E-cadherin, colocalized with Rab11 and fused with the recycling endosome before diverging to basolateral or apical membranes, respectively. In polarized and unpolarized cells, coexpression of Rab11 mutants disrupted the cell surface delivery of E-cadherin and caused its mistargeting to the apical membrane, whereas apical ΔS1-E-cadherin was unaffected. We thus demonstrate a novel pathway for Rab11 dependent, dileucine-mediated, μ1B-independent sorting and basolateral trafficking, exemplified by E-cadherin. The recycling endosome is identified as an intermediate compartment for the post-Golgi trafficking and exocytosis of E-cadherin, with a potentially important role in establishing and maintaining cadherin-based adhesion. PMID:15689490
Han, Jingjia; Qian, Ximei; Wu, Qingling; Jha, Rajneesh; Duan, Jinshuai; Yang, Zhou; Maher, Kevin O; Nie, Shuming; Xu, Chunhui
2016-10-01
Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 10(6) cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5(+) and TRA-1-60(+) cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso
2012-12-01
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.
Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L
2013-04-16
Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
NASA Astrophysics Data System (ADS)
Riquelme, Bibiana D.; Dumas, Dominique; Valverde de Rasia, Juana; Rasia, Rodolfo J.; Stoltz, Jean Francois
2003-10-01
We report the adhesion of human erythrocyte membranes mediated by monoclonal antibodies anti-glycophorin. The distribution of the linked antibodies on membrane was identified with selective fluorescence labels. To analyze the antibody distribution on interfacial region between two cells agglutinated and on its surface, three types of fluorescence marked strategy were evaluated. The 3D images were obtained in a CellScan and Confocal Laser Scanning Microscopy CLSM. We considered the FRET signal to characterize the agglutination of Red Blood Cells (RBC) by specific monoclonal antibodies (anti-glycophorin A or B). The fluorescence labeling demonstrated that distribution of antibody on erythrocyte membranes is not homogeneous. The fluorescence intensity on contact region in the agglutinated is bigger than the intensity on exterior surface. Tentatively, we interpreted these intensity differences in terms of the mobility of antibody linked to the glycocalix on cell surface. Such mobility has a large consequence in the morphology of cellular agglutinated.
Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J
2012-12-01
The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.
Nisar, Shaista P; Lordkipanidzé, Marie; Jones, Matthew L; Dawood, Ban; Murden, Sherina; Cunningham, Margaret R; Mumford, Andrew D; Wilde, Jonathan T; Watson, Steve P; Mundell, Stuart J; Lowe, Gillian C
2014-05-05
A small number of thromboxane receptor variants have been described in patients with a bleeding history that result in platelet dysfunction. We have identified a patient with a history of significant bleeding, who expresses a novel heterozygous thromboxane receptor variant that predicts an asparagine to serine substitution (N42S). This asparagine is conserved across all class A GPCRs, suggesting a vital role for receptor structure and function.We investigated the functional consequences of the TP receptor heterozygous N42S substitution by performing platelet function studies on platelet-rich plasma taken from the patient and healthy controls. We investigated the N42S mutation by expressing the wild-type (WT) and mutant receptor in human embryonic kidney (HEK) cells. Aggregation studies showed an ablation of arachidonic acid responses in the patient, whilst there was right-ward shift of the U46619 concentration response curve (CRC). Thromboxane generation was unaffected. Calcium mobilisation studies in cells lines showed a rightward shift of the U46619 CRC in N42S-expressing cells compared to WT. Radioligand binding studies revealed a reduction in BMax in platelets taken from the patient and in N42S-expressing cells, whilst cell studies confirmed poor surface expression. We have identified a novel thromboxane receptor variant, N42S, which results in platelet dysfunction due to reduced surface expression. It is associated with a significant bleeding history in the patient in whom it was identified. This is the first description of a naturally occurring variant that results in the substitution of this highly conserved residue and confirms the importance of this residue for correct GPCR function.
Static charge outside chamber induces dielectric breakdown of solid-state nanopore membranes
NASA Astrophysics Data System (ADS)
Matsui, Kazuma; Goto, Yusuke; Yanagi, Itaru; Yanagawa, Yoshimitsu; Ishige, Yu; Takeda, Ken-ichi
2018-04-01
Reducing device capacitance is effective for decreasing current noise observed in a solid-state nanopore-based DNA sequencer. On the other hand, we have recently found that voltage stress causes pinhole-like defects in such low-capacitance devices. The origin of voltage stress, however, has not been determined. In this research, we identified that a dominant origin is static charge on the outer surface of a flow cell. Even though the outer surface was not in direct contact with electrolytes in the flow cell, the charge induces high voltage stress on a membrane according to the capacitance coupling ratio of the flow cell to the membrane.
Christian, H C; Flower, R J; Morris, J F; Buckingham, J C
1999-09-01
Lipocortin 1 (LC1, also called annexin 1), a Ca2(+)- and phospholipid-binding protein, is an important mediator of glucocorticoid action in the anterior pituitary gland. Previous studies based on immunoprecipitation and Western blot analysis suggest that LC1 is found intracellularly both in the cytoplasm and in association with membranes and also on the cell surface where it attaches to the membrane by a Ca2(+)-dependent mechanism. However, as yet it is unclear which anterior pituitary cell types express the protein. Accordingly, we have developed a method based on a combination of fluorescence activated cell (FAC) analysis/sorting and electron microscopy to detect and quantify intracellular LC1 in rat anterior pituitary cells and to identify the cell types in which it is expressed. In addition, we have measured cell surface LC1 and examined the influence of glucocorticoids on the cellular disposition of the protein. Anterior pituitary cells were dispersed with collagenase. For experiments measuring intracellular LC1, three cell fixation/permeabilisation methods were examined initially, i.e. (1) Zamboni's fluid (30 min) and Triton-X-100 (0.12%, 1 or 12 h); (2) paraformaldehyde (2%, 1 h) and Triton-X-100 (0.2%, 10 min); and (3) paraformaldehyde (0.2%, 15 min) and saponin (0.1%, 5 min). The protocol using paraformaldehyde/Triton-X-100 provided optimal preservation of cell ultrastructure and of LC1 immunoreactivity (ir-LC1) while also effectively permeabilising the cells; it was therefore used in subsequent studies. Using an anti-LC1 monoclonal antibody as a probe, 82+/-5% of the secretory cells in the heterogeneous anterior pituitary cell preparation were shown by FAC analysis to display specific fluorescence for intracellular ir-LC1. Morphological analysis and immunogold-histochemistry of cells separated by FAC sorting identified corticotrophs, lactotrophs, somatotrophs and gonadotrophs in the population displaying LC1 immunofluorescence. LC1 was also detected on the surface of anterior pituitary cells by FACS analysis. Incubation of anterior pituitary cells with dexamethasone or corticosterone (0.1 and 1.0 microM) prior to fixation and analysis produced a significant, concentration-dependent decrease in intracellular ir-LC1 and a concomitant increase in the amount of ir-LC1 detected on the surface of the cells; the effects of the two steroids were indistinguishable quantitatively. In conclusion, we report a novel method which permits (1) the detection and semi-quantitative measurement of intracellular and surface LC1 in anterior pituitary cells; and (2) the identification of the cell types in which the protein is found.
Shimoni, Moria; Herschhorn, Alon; Britan-Rosich, Yelena; Kotler, Moshe; Benhar, Itai
2013-01-01
Abstract Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest. PMID:23941674
Enhancing the Breadth and Efficacy of Therapeutic Vaccines for Breast Cancer
2015-10-01
including antigens preferentially expressed by breast cancer stem cells. We will identify both MHC-I- and MHC-II- restricted antigens driving both CD8...even two of them were exclusively targeted by T cells in chronic lymphocytic leukemia ( CLL ) patients (3). This analysis demonstrated both that...lymphocytic leukemia ( CLL ) 7 positive CLLs (23%) 3 Table 1. Immunogenic peptides that have been eluted from the cell surface of breast carcinoma cells
Qi, Yong; Xiong, Xiaolu; Wang, Xile; Duan, Changsong; Jia, Yinjun; Jiao, Jun; Gong, Wenping; Wen, Bohai
2013-01-01
Background Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis. Methods R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA). Results Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever. Conclusions Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease. PMID:23894656
CD4 mimetics sensitize HIV-1-infected cells to ADCC.
Richard, Jonathan; Veillette, Maxime; Brassard, Nathalie; Iyer, Shilpa S; Roger, Michel; Martin, Loïc; Pazgier, Marzena; Schön, Arne; Freire, Ernesto; Routy, Jean-Pierre; Smith, Amos B; Park, Jongwoo; Jones, David M; Courter, Joel R; Melillo, Bruno N; Kaufmann, Daniel E; Hahn, Beatrice H; Permar, Sallie R; Haynes, Barton F; Madani, Navid; Sodroski, Joseph G; Finzi, Andrés
2015-05-19
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection.
CD4 mimetics sensitize HIV-1-infected cells to ADCC
Richard, Jonathan; Veillette, Maxime; Brassard, Nathalie; Iyer, Shilpa S.; Roger, Michel; Martin, Loïc; Pazgier, Marzena; Schön, Arne; Freire, Ernesto; Routy, Jean-Pierre; Smith, Amos B.; Park, Jongwoo; Jones, David M.; Courter, Joel R.; Melillo, Bruno N.; Kaufmann, Daniel E.; Hahn, Beatrice H.; Permar, Sallie R.; Haynes, Barton F.; Madani, Navid; Sodroski, Joseph G.; Finzi, Andrés
2015-01-01
HIV-1-infected cells presenting envelope glycoproteins (Env) in the CD4-bound conformation on their surface are preferentially targeted by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 has evolved a sophisticated mechanism to avoid exposure of ADCC-mediating Env epitopes by down-regulating CD4 and by limiting the overall amount of Env at the cell surface. Here we report that small-molecule CD4-mimetic compounds induce the CD4-bound conformation of Env, and thereby sensitize cells infected with primary HIV-1 isolates to ADCC mediated by antibodies present in sera, cervicovaginal lavages, and breast milk from HIV-1-infected individuals. Importantly, we identified one CD4 mimetic with the capacity to sensitize endogenously infected ex vivo-amplified primary CD4 T cells to ADCC killing mediated by autologous sera and effector cells. Thus, CD4 mimetics hold the promise of therapeutic utility in preventing and controlling HIV-1 infection. PMID:25941367
Proteomic Definitions of Mesenchymal Stem Cells
Maurer, Martin H.
2011-01-01
Mesenchymal stem cells (MSCs) are pluripotent cells isolated from the bone marrow and various other organs. They are able to proliferate and self-renew, as well as to give rise to progeny of at least the osteogenic, chondrogenic, and adipogenic lineages. Despite this functional definition, MSCs can also be defined by their expression of a distinct set of cell surface markers. In the current paper, studies investigating the proteome of human MSCs are reviewed with the aim to identify common protein markers of MSCs. The proteomic analysis of MSCs revealed a distinct set of proteins representing the basic molecular inventory, including proteins for (i) cell surface markers, (ii) the responsiveness to growth factors, (iii) the reuse of developmental signaling cascades in adult stem cells, (iv) the interaction with molecules of the extracellular matrix, (v) the expression of genes regulating transcription and translation, (vi) the control of the cell number, and (vii) the protection against cellular stress. PMID:21437194
Malara, Natalia; Coluccio, Maria Laura; Limongi, Tania; Asande, Monica; Trunzo, Valentina; Cojoc, Gheorghe; Raso, Cinzia; Candeloro, Patrizio; Perozziello, Gerardo; Raimondo, Raffaella; De Vitis, Stefania; Roveda, Laura; Renne, Maria; Prati, Ubaldo; Mollace, Vincenzo; Di Fabrizio, Enzo
2014-11-12
Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell-free circulating DNA constitutes the biggest obstacle in the development of DNA methylation-based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood-based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio-functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5-methylcytosine CTC-subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA-surface), result respectively on about 83% and 60%. FA-surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5-methylcytosine CTC-subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
TMEM2: A missing link in hyaluronan catabolism identified?
Yamaguchi, Yu; Yamamoto, Hayato; Tobisawa, Yuki; Irie, Fumitoshi
2018-03-27
Hyaluronan (HA) is a glycosaminoglycan (GAG) composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. HA is an extremely long, unbranched polymer, which often exceeds 10 6 Da and sometimes reaches 10 7 Da. A feature that epitomizes HA is its rapid turnover; one-third of the total body HA is turned over daily. The current model of HA catabolism postulates that high-molecular weight HA in the extracellular space is first cleaved into smaller fragments by a hyaluronidase(s) that resides at the cell surface, followed by internalization of fragments and their degradation into monosaccharides in lysosomes. Over the last decade, considerable research has shown that the HYAL family of hyaluronidases plays significant roles in HA catabolism. Nonetheless, the identity of a hyaluronidase responsible for the initial step of HA cleavage on the cell surface remains elusive, as biochemical and enzymological properties of HYAL proteins are not entirely consistent with those expected of cell surface hyaluronidases. Recent identification of transmembrane 2 (TMEM2) as a cell surface protein that possesses potent hyaluronidase activity suggests that it may be the "missing" cell surface hyaluronidase, and that novel models of HA catabolism should include this protein. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
MATSUO, Yosuke; MIYOSHI, Yukihiro; OKADA, Sanae; SATOH, Eiichi
2012-01-01
A surface protein of Lactobacillus reuteri, mucus adhesion-promoting protein (MapA), is considered to be an adhesion factor. MapA is expressed in L. reuteri strains and adheres to piglet gastric mucus, collagen type I, and human intestinal epithelial cells such as Caco-2. The aim of this study was to identify molecules that mediate the attachment of MapA from L. reuteri to the intestinal epithelial cell surface by investigating the adhesion of MapA to receptor-like molecules on Caco-2 cells. MapA-binding receptor-like molecules were detected in Caco-2 cell lysates by 2D-PAGE. Two proteins, annexin A13 (ANXA13) and paralemmin (PALM), were identified by MALDI TOF-MS. The results of a pull-down assay showed that MapA bound directly to ANXA13 and PALM. Fluorescence microscopy studies confirmed that MapA binding to ANXA13 and PALM was colocalized on the Caco-2 cell membrane. To evaluate whether ANXA13 and PALM are important for MapA adhesion, ANXA13 and PALM knockdown cell lines were established. The adhesion of MapA to the abovementioned cell lines was reduced compared with that to wild-type Caco-2 cells. These knockdown experiments established the importance of these receptor-like molecules in MapA adhesion. PMID:24936355
The DC-SIGN-CD56 interaction inhibits the anti-dendritic cell cytotoxicity of CD56 expressing cells.
Nabatov, Alexey A; Raginov, Ivan S
2015-01-01
This study aimed to clarify interactions of the pattern-recognition receptor DC-SIGN with cells from the HIV-infected peripheral blood lymphocyte cultures. Cells from control and HIV-infected peripheral blood lymphocyte cultures were tested for the surface expression of DC-SIGN ligands. The DC-SIGN ligand expressing cells were analyzed for the role of DC-SIGN-ligand interaction in their functionality. In the vast majority of experiments HIV-infected lymphocytes did not express detectable DC-SIGN ligands on their cell surfaces. In contrast, non-infected cells, carrying NK-specific marker CD56, expressed cell surface DC-SIGN ligands. The weakly polysialylated CD56 was identified as a novel DC-SIGN ligand. The treatment of DC-SIGN expressing dendritic cells with anti-DC-SIGN antibodies increased the anti-dendritic cell cytotoxicity of CD56(pos) cells. The treatment of CD56(pos) cells with a peptide, blocking the weakly polysialylated CD56-specifc trans-homophilic interactions, inhibited their anti-dendritic cells cytotoxicity. The interaction between DC-SIGN and CD56 inhibits homotypic intercellular interactions of CD56(pos) cells and protects DC-SIGN expressing dendritic cells against CD56(pos) cell-mediated cytotoxicity. This finding can have an impact on the development of approaches to HIV infection and cancer therapy as well as in transplantation medicine.
Detection of honeycomb cell walls from measurement data based on Harris corner detection algorithm
NASA Astrophysics Data System (ADS)
Qin, Yan; Dong, Zhigang; Kang, Renke; Yang, Jie; Ayinde, Babajide O.
2018-06-01
A honeycomb core is a discontinuous material with a thin-wall structure—a characteristic that makes accurate surface measurement difficult. This paper presents a cell wall detection method based on the Harris corner detection algorithm using laser measurement data. The vertexes of honeycomb cores are recognized with two different methods: one method is the reduction of data density, and the other is the optimization of the threshold of the Harris corner detection algorithm. Each cell wall is then identified in accordance with the neighboring relationships of its vertexes. Experiments were carried out for different types and surface shapes of honeycomb cores, where the proposed method was proved effective in dealing with noise due to burrs and/or deformation of cell walls.
HIV envelope glycoprotein imaged at high resolution | Center for Cancer Research
The outer surface of the human immunodeficiency virus (HIV) is surrounded by an envelope studded with spike-shaped glycoproteins called Env that help the deadly virus identify, bind, and infect cells. When unbound, Env exists in a “closed” conformational state. Upon binding with target cells, such as CD4+ T cells, the protein transitions to an “open” configuration. Given that
A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex.
Reillo, Isabel; de Juan Romero, Camino; García-Cabezas, Miguel Ángel; Borrell, Víctor
2011-07-01
The cerebral cortex of large mammals undergoes massive surface area expansion and folding during development. Specific mechanisms to orchestrate the growth of the cortex in surface area rather than in thickness are likely to exist, but they have not been identified. Analyzing multiple species, we have identified a specialized type of progenitor cell that is exclusive to mammals with a folded cerebral cortex, which we named intermediate radial glia cell (IRGC). IRGCs express Pax6 but not Tbr2, have a radial fiber contacting the pial surface but not the ventricular surface, and are found in both the inner subventricular zone and outer subventricular zone (OSVZ). We find that IRGCs are massively generated in the OSVZ, thus augmenting the numbers of radial fibers. Fanning out of this expanding radial fiber scaffold promotes the tangential dispersion of radially migrating neurons, allowing for the growth in surface area of the cortical sheet. Accordingly, the tangential expansion of particular cortical regions was preceded by high proliferation in the underlying OSVZ, whereas the experimental reduction of IRGCs impaired the tangential dispersion of neurons and resulted in a smaller cortical surface. Thus, the generation of IRGCs plays a key role in the tangential expansion of the mammalian cerebral cortex.
Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion
Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma
2012-01-01
A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry. PMID:22328521
Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.
Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma
2012-04-15
A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.
Surface biofunctionalization of β-TCP blocks using aptamer 74 for bone tissue engineering.
Ardjomandi, N; Huth, J; Stamov, D R; Henrich, A; Klein, C; Wendel, H-P; Reinert, S; Alexander, D
2016-10-01
Successful bone regeneration following oral and maxillofacial surgeries depends on efficient functionalization strategies that allow the recruitment of osteogenic progenitor cells at the tissue/implant interface. We have previously identified aptamer 74, which exhibited a binding affinity for osteogenically induced jaw periosteal cells (JPCs). In the present study, this aptamer was used for the surface biofunctionalization of β-tricalcium phosphate (β-TCP) blocks. Atomic force microscopy (AFM) measurements showed increased binding activity of aptamer 74 towards osteogenically induced JPCs compared to untreated controls. The immobilization efficiency of aptamer 74 was analyzed using the QuantiFluor ssDNA assay for 2D surfaces and by amino acid analysis for 3D β-TCP constructs. Following the successful immobilization of aptamer 74 in 2D culture wells and on 3D constructs, in vitro assays showed no significant differences in cell proliferation compared to unmodified surfaces. Interestingly, JPC mineralization was significantly higher on the 2D surfaces and higher cell adhesion was detected on the 3D constructs with immobilized aptamer. Herein, we report an established, biocompatible β-TCP matrix with surface immobilization of aptamer 74, which enhances properties such as cell adhesion on 3D constructs and mineralization on 2D surfaces. Further studies need to be performed to improve the immobilization efficiency and to develop a suitable approach for JPC mineralization growing within 3D β-TCP constructs. Copyright © 2016 Elsevier B.V. All rights reserved.
Cell reintegration: Stray epithelial cells make their way home.
Wilson, Tyler J; Bergstralh, Dan T
2017-06-01
Ongoing work shows that misplaced epithelial cells have the capacity to reintegrate back into tissue layers. This movement appears to underlie tissue stability and may also control aspects of tissue structure. A recent study reveals that cell reintegration in at least one tissue, the Drosophila follicular epithelium, is based on adhesion molecules that line lateral cell surfaces. In this article we will review these observations, discuss their implications for epithelial tissue development and maintenance, and identify future directions for study. © 2017 WILEY Periodicals, Inc.
Peptide ligands targeting integrin alpha3beta1 in non-small cell lung cancer.
Lau, Derick; Guo, Linlang; Liu, Ruiwu; Marik, Jan; Lam, Kit
2006-06-01
Lung cancer is one of the most common cancers and is the leading cause of cancer death. We wish to identify peptide ligands for unique cell surface receptors of non-small lung cancer with the hope of developing these ligands as diagnostic and therapeutic agents. Using the method of 'one-bead one-peptide' combinatorial chemistry, a library of random cyclic octapeptides was synthesized on polystyrene beads. This library was used to screen for peptides that promoted attachment of lung adenocarcinoma cells employing a 'cell-growth-on-bead' assay. Consensus peptide sequences of cNGXGXXc were identified. These peptides promoted cell adhesion by targeting integrin alpha3beta1 over-expressed in non-small lung cancer cells. These peptide beads can be applied to capture cancer cells in malignant pleural fluid for purpose of diagnosis of lung cancer.
InterProSurf: a web server for predicting interacting sites on protein surfaces
Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner
2009-01-01
Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856
Colon-Moran, Winston; Argaw, Takele; Wilson, Carolyn A
2017-07-01
Porcine endogenous retrovirus-A (PERV-A), a gammaretrovirus, infects human cells in vitro, thus raising the potential risk of cross-species transmission in xenotransplantation. Two members of the solute carrier family 52 (SLC52A1 and SLC52A2) are PERV-A receptors. Site-directed mutagenesis of the cDNA encoding SLC52A1 identified that only one of two putative glycosylation signals is occupied by glycans. In addition, we showed that glycosylation of SLC52A1 is not necessary for PERV-A receptor function. We also identified that at a minimum, three cysteine residues are sufficient for SLC52A1 cell surface expression. Mutation of cysteine at position 365 and either of the two cysteine residues in the C-terminal tail at positions 442 or 446 reduced SLC52A1 surface expression and PERV-A infection suggesting that these residues may contribute to overall structural stability and receptor function. Understanding interactions between PERV-A and its cellular receptor may provide novel strategies to prevent zoonotic infection in the setting of xenotransplantation. Published by Elsevier Inc.
Microbial Surface Colonization and Biofilm Development in Marine Environments
2015-01-01
SUMMARY Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. PMID:26700108
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Dang, Hongyue; Lovell, Charles R
2016-03-01
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Faust, James J.; Christenson, Wayne; Doudrick, Kyle; Ros, Robert
2017-01-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMβ2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. PMID:28340410
AN MHC class I immune evasion gene of Marek's disease virus
USDA-ARS?s Scientific Manuscript database
Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...
Survey on aging on electrodes and electrocatalysts in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Stonehart, P.; Hochmuth, J.
1981-01-01
The processes which contribute to the decay in performance of electrodes used in phosphoric acid fuel cell systems are discussed. Loss of catalytic surface area, corrosion of the carbon support, electrode structure degradation, electrolyte degradation, and impurities in the reactant streams are identified as the major areas for concern.
Kaneko, Jun; Narita-Yamada, Sachiko; Wakabayashi, Yukari; Kamio, Yoshiyuki
2009-07-01
The temperate phage phiSLT of Staphylococcus aureus carries genes for Panton-Valentine leukocidin. Here, we identify ORF636, a constituent of the phage tail tip structure, as a recognition/adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of S. aureus. ORF636 bound specifically to S. aureus; it did not bind to any other staphylococcal species or to several gram-positive bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minami, Yukiko; Department of Surgery and Clinical Oncology, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Osaka; Ikeda, Wataru
2007-01-26
Normal cells show contact inhibition of cell movement and proliferation, but this is lost following transformation. We found that Necl-5, originally identified as a poliovirus receptor and up-regulated in many cancer cells, enhances growth factor-induced cell movement and proliferation. We showed that when cells contact other cells, Necl-5 interacts in trans with nectin-3 and is removed by endocytosis from the cell surface, resulting in a reduction of cell movement and proliferation. We show here that up-regulation of the gene encoding Necl-5 by the oncogene V12-Ki-Ras causes enhanced cell movement and proliferation. Upon cell-cell contact, de novo synthesis of Necl-5 exceedsmore » the rate of Necl-5 endocytosis, eventually resulting in a net increase in the amount of Necl-5 at the cell surface. In addition, expression of the gene encoding nectin-3 is markedly reduced in transformed cells. Thus, up-regulation of Necl-5 following transformation contributes to the loss of contact inhibition in transformed cells.« less
Regulation of STIM1 and SOCE by the ubiquitin-proteasome system (UPS).
Keil, Jeffrey M; Shen, Zhouxin; Briggs, Steven P; Patrick, Gentry N
2010-10-18
The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca(2+) entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3's), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca(2+) homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function.
Horiguchi, Kotaro; Syaidah, Rahimi; Fujiwara, Ken; Tsukada, Takehiro; Ramadhani, Dini; Jindatip, Depicha; Kikuchi, Motoshi; Yashiro, Takashi
2013-09-01
In the anterior pituitary gland, folliculo-stellate cells and five types of hormone-producing cells are surrounded by an extracellular matrix (ECM) essential for these cells to perform their respective roles. Syndecans-type I transmembrane cell-surface heparan sulfate proteoglycans act as major ECM coreceptors via their respective heparan sulfate chains and efficiently transduce intracellular signals through the convergent action of their transmembrane and cytoplasmic domains. The syndecans comprise four family members in vertebrates: syndecan-1, -2, -3 and -4. However, whether syndecans are produced in the pituitary gland or whether they have a role as a coreceptor is not known. We therefore used (1) reverse transcription plus the polymerase chain reaction to analyze the expression of syndecan genes and (2) immunohistochemical techniques to identify the cells that produce the syndecans in the anterior pituitary gland of adult rat. Syndecan-2 mRNA expression was clearly detected in the corticotropes of the anterior pituitary gland. Moreover, the expression of syndecan-2 in the developing pituitary gland had a distinct temporospatial pattern. To identify the cells expressing syndecan-2 in the developing pituitary gland, we used double-immunohistochemistry for syndecan-2 and the cell markers E-cadherin (immature cells) and Ki-67 (proliferating cells). Some E-cadherin- and Ki-67-immunopositive cells expressed syndecan-2. Therefore, syndecan-2 expression occurs in developmentally regulated patterns and syndecan-2 probably has different roles in adult and developing anterior pituitary glands.
Calvio, Cinzia; Celandroni, Francesco; Ghelardi, Emilia; Amati, Giuseppe; Salvetti, Sara; Ceciliani, Fabrizio; Galizzi, Alessandro; Senesi, Sonia
2005-08-01
The number and disposition of flagella harbored by eubacteria are regulated by a specific trait successfully maintained over generations. The genes governing the number of flagella in Bacillus subtilis have never been identified, although the ifm locus has long been recognized to influence the motility phenotype of this microorganism. The characterization of a spontaneous ifm mutant of B. subtilis, displaying diverse degrees of cell flagellation in both liquid and solid media, raised the question of how the ifm locus governs the number and assembly of functional flagella. The major finding of this investigation is the characterization of a newly identified dicistronic operon, named swrA, that controls both swimming motility and swarming differentiation in B. subtilis. Functional analysis of the swrA operon allowed swrAA (previously named swrA [D. B. Kearns, F. Chu, R. Rudner, and R. Losick, Mol. Microbiol. 52:357-369, 2004]) to be the first gene identified in B. subtilis that controls the number of flagella in liquid environments and the assembly of flagella in response to cell contact with solid surfaces. Evidence is given that the second gene of the operon, swrAB, is essential for enabling the surface-adhering cells to undergo swarming differentiation. Preliminary data point to a molecular interaction between the two gene products.
Stevenson, G.; Rehman, S.; Draper, E.; Hernández‐Nava, E.; Hunt, J.
2016-01-01
ABSTRACT In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast‐like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in‐growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre‐clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586–1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:26702609
Longo, Francesca; Motta, Sara; Mauri, Pierluigi; Landini, Paolo; Rossi, Elio
2016-11-25
In the bacterium Escherichia coli, some intermediates of the sulfate assimilation and cysteine biosynthesis pathway can act as signal molecules and modulate gene expression. In addition to sensing and utilization of sulphur sources, these signaling mechanisms also impact more global cell processes, such as resistance to antimicrobial agents and biofilm formation. In a recent work, we have shown that inactivation of the cysH gene, encoding phosphoadenosine-phosphosulfate (PAPS) reductase, and the consequent increase in intracellular PAPS concentration, strongly affect production of several cell surface-associated structures, enhancing surface adhesion and cell aggregation. In order to identify the molecular mechanism relaying intracellular PAPS concentration to regulation of cell surface-associated structures, we looked for mutations able to suppress the effects of cysH inactivation. We found that mutations in the adenylate cyclase-encoding cyaA gene abolished the effects of PAPS accumulation; consistent with this result, cyclic AMP (cAMP)-dependent gene expression appears to be increased in the cysH mutant. Experiments aimed at the direct identification of proteins interacting with either CysC or CysH, i.e. the PAPS-related proteins APS kinase and PAPS reductase, allowed us to identify several regulators, namely, CspC, CspE, HNS and HupA. Protein-protein interaction between HupA and CysH was confirmed by a bacterial two hybrid system, and inactivation of the hupA gene enhanced the effects of the cysH mutation in terms of production of cell surface-associated factors. Our results indicate that PAPS can modulate different regulatory systems, providing evidence that this molecule acts as a global signal molecule in E. coli. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cell-cell recognition and social networking in bacteria
Troselj, Vera; Cao, Pengbo; Wall, Daniel
2018-01-01
SUMMARY The ability to recognize self and to recognize partnering cells allows microorganisms to build social networks that perform functions beyond the capabilities of the individual. In bacteria, recognition typically involves genetic determinants that provide cell surface receptors or diffusible signaling chemicals to identify proximal cells at the molecular level that can participate in cooperative processes. Social networks also rely on discriminating mechanisms to exclude competing cells from joining and exploiting their groups. In addition to their appropriate genotypes, cell-cell recognition also requires compatible phenotypes, which vary according to environmental cues or exposures as well as stochastic processes that leads to heterogeneity and potential disharmony in the population. Understanding how bacteria identify their social partners and how they synchronize their behaviors to conduct multicellular functions is an expanding field of research. Here we review recent progress in the field and contrast the various strategies used in recognition and behavioral networking. PMID:29194914
1984-04-01
weights using the following phage DNA markers : lambda, T2 and T7. The number of alkaline labile sites (breaks due to apurinic sites and phosphotriesters...exhibit cell invasiveness in chick embryo skin, human malignancy specific cell- surface antigenic determinants (19), and produce tumors in pre...they eluted from the column, were identified by co-chromatographed markers , (Chart 2). When randomly proliferating cells were treated with either 1,1-DMH
Lin, Liang-Tzung; Richardson, Christopher D.
2016-01-01
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles “blind” to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces. PMID:27657109
Lin, Liang-Tzung; Richardson, Christopher D
2016-09-20
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles "blind" to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces.
Status and Perspectives of Ion Track Electronics for Advanced Biosensing
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.
New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.
Vargas García, Cynthia E.; Petrova, Mariya; Claes, Ingmar J. J.; De Boeck, Ilke; Verhoeven, Tine L. A.; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M.; Vanderleyden, Jos
2015-01-01
Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613
Wang, Bo; Lee, Chang-Han; Johnson, Erik L; Kluwe, Christien A; Cunningham, Josephine C; Tanno, Hidetaka; Crooks, Richard M; Georgiou, George; Ellington, Andrew D
2016-01-01
Ricin is a toxin that could potentially be used as a bioweapon. We identified anti-ricin A chain antibodies by sequencing the antibody repertoire from immunized mice and by selecting high affinity antibodies using yeast surface display. These methods led to the isolation of multiple antibodies with high (sub-nanomolar) affinity. Interestingly, the antibodies identified by the 2 independent approaches are from the same clonal lineages, indicating for the first time that yeast surface display can identify native antibodies. The new antibodies represent well-characterized reagents for biodefense diagnostics and therapeutics development.
McIlhinney, R A; Molnár, E
1996-04-01
To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahram, Mamoun; Strittmatter, Eric F.; Monroe, Matthew E.
The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation in an effort to develop a fundamental understanding of the bystander response. CHO cells were chosen for this study because they have been widely used for radiation studies and since they havemore » been reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and FTICR-mass spectrometry analysis. Since the hamster genome has not been sequenced, mass spectrometry data was searched against the mouse and human proteins databases. Nearly 150 proteins that were identified by tandem mass spectrometry were confirmed by FTICR. When both types of mass spectrometry data were evaluated with a new confidence scoring tool, which is based on discriminant analyses, about 500 protein were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface, hence were likely shed. However, estimates of quantitative changes, based on two independent mass spectrometry approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using mass spectrometry in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.« less
An MHC class I immune evasion gene of Marek׳s disease virus.
Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A
2015-01-15
Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.
Matsumoto, Yosuke; Nagoshi, Hisao; Yoshida, Mihoko; Kato, Seiichi; Kuroda, Junya; Shimura, Kazuho; Kaneko, Hiroto; Horiike, Shigeo; Nakamura, Shigeo; Taniwaki, Masafumi
2017-11-01
Objective It has been postulated that the normal counterpart of angioimmunoblastic T-cell lymphoma (AITL) is the follicular helper T-cell (TFH). Recent immunological studies have identified several transcription factors responsible for T-cell differentiation. The master regulators associated with T-cell, helper T-cell (Th), and TFH differentiation are reportedly BCL11B, Th-POK, and BCL6, respectively. We explored the postulated normal counterpart of AITL with respect to the expression of the master regulators of T-cell differentiation. Methods We performed an immunohistochemical analysis in 15 AITL patients to determine the expression of the master regulators and several surface markers associated with T-cell differentiation. Results BCL11B was detected in 10 patients (67%), and the surface marker of T-cells (CD3) was detected in all patients. Only 2 patients (13%) expressed the marker of naïve T-cells (CD45RA), but all patients expressed the marker of effector T-cells (CD45RO). Nine patients expressed Th-POK (60%), and 7 (47%) expressed a set of surface antigens of Th (CD4-positive and CD8-negative). In addition, BCL6 and the surface markers of TFH (CXCL13, PD-1, and SAP) were detected in 11 (73%), 8 (53%), 14 (93%), and all patients, respectively. Th-POK-positive/BCL6-negative patients showed a significantly shorter overall survival (OS) than the other patients (median OS: 33.0 months vs. 74.0 months, p=0.020; log-rank test). Conclusion Many of the AITL patients analyzed in this study expressed the master regulators of T-cell differentiation. The clarification of the diagnostic significance and pathophysiology based on the expression of these master regulators in AITL is expected in the future.
Fibrinogen Motif Discriminates Platelet and Cell Capture in Peptide-Modified Gold Micropore Arrays.
Adamson, Kellie; Spain, Elaine; Prendergast, Una; Moran, Niamh; Forster, Robert J; Keyes, Tia E
2018-01-16
Human blood platelets and SK-N-AS neuroblastoma cancer-cell capture at spontaneously adsorbed monolayers of fibrinogen-binding motifs, GRGDS (generic integrin adhesion), HHLGGAKQAGDV (exclusive to platelet integrin α IIb β 3 ), or octanethiol (adhesion inhibitor) at planar gold and ordered 1.6 μm diameter spherical cap gold cavity arrays were compared. In all cases, arginine/glycine/aspartic acid (RGD) promoted capture, whereas alkanethiol monolayers inhibited adhesion. Conversely only platelets adhered to alanine/glycine/aspartic acid (AGD)-modified surfaces, indicating that the AGD motif is recognized preferentially by the platelet-specific integrin, α IIb β 3 . Microstructuring of the surface effectively eliminated nonspecific platelet/cell adsorption and dramatically enhanced capture compared to RGD/AGD-modified planar surfaces. In all cases, adhesion was reversible. Platelets and cells underwent morphological change on capture, the extent of which depended on the topography of the underlying substrate. This work demonstrates that both the nature of the modified interface and its underlying topography influence the capture of cancer cells and platelets. These insights may be useful in developing cell-based cancer diagnostics as well as in identifying strategies for the disruption of platelet cloaks around circulating tumor cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, Burkhard; Mikesch, Jan-Hendrik; Simon, Ronald
2005-04-01
By differential-display-PCR a subclone of the SK-BR-3 cell line with high in vitro transendothelial invasiveness was identified to express increased levels of a new alternative splice variant of decay-accelerating factor (DAF). DAF seems to play an important role in some malignant tumours since on the one hand the expression of complement inhibitors on the surface of tumour cells prevents the accumulation of complement factors and in consequence cell lysis. On the other hand, DAF has been identified as a ligand for the CD97 surface receptor which induces cell migration. Immunofluorescence procedures, Western blot analyses, and cDNA clone sequencing were employedmore » to confirm the expression of DAF restricted to invasive tumour cells. Using a radioactive RNA-in situ hybridisation on freshly frozen tissue microarrays and RT-PCR on native tumour tissue, the expression of alternative spliced DAF mRNA was demonstrated in invasive breast cancer. Due to the fact that it could thereby not be detected in normal mammary tissues, it has to be confirmed in larger studies that the DAF splice variant might be a specific tumour marker for invasive breast cancer.« less
Hartley, Ashley N.; Tarleton, Rick L.
2015-01-01
Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065
NASA Astrophysics Data System (ADS)
Altunbek, Mine; Kelestemur, Seda; Culha, Mustafa
2015-12-01
Surface-enhanced Raman scattering (SERS) continues to strive to gather molecular level information from dynamic biological systems. It is our ongoing effort to utilize the technique for understanding of the biomolecular processes in living systems such as eukaryotic and prokaryotic cells. In this study, the technique is investigated to identify cell death mechanisms in 2D and 3D in vitro cell culture models, which is a very important process in tissue engineering and pharmaceutical applications. Second, in situ biofilm formation monitoring is investigated to understand how microorganisms respond to the environmental stimuli, which inferred information can be used to interfere with biofilm formation and fight against their pathogenic activity.
Retriever, a multiprotein complex for retromer-independent endosomal cargo recycling
McNally, Kerrie E.; Faulkner, Rebecca; Steinberg, Florian; Gallon, Matthew; Ghai, Rajesh; Pim, David; Langton, Paul; Pearson, Neil; Danson, Chris M.; Nägele, Heike; Morris, Lindsey M; Singla, Arnika; Overlee, Brittany L; Heesom, Kate J.; Sessions, Richard; Banks, Lawrence; Collins, Brett M; Berger, Imre; Billadeau, Daniel D.; Burstein, Ezra; Cullen, Peter J.
2018-01-01
Following endocytosis and entry into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are alternatively retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multi-protein complex which orchestrates cargo retrieval and recycling and importantly, is biochemically and functionally distinct to the established retromer pathway. Composed of a heterotrimer of DSCR3, C16orf62 and VPS29, and bearing striking similarity with retromer, we have called this complex ‘retriever’. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to the CCC and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1-integrin. Through quantitative proteomic analysis we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, which require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major new endosomal retrieval and recycling pathway. PMID:28892079
Approaches to improve angiogenesis in tissue-engineered skin.
Sahota, Parbinder S; Burn, J Lance; Brown, Nicola J; MacNeil, Sheila
2004-01-01
A problem with tissue-engineered skin is clinical failure due to delays in vascularization. The aim of this study was to explore a number of simple strategies to improve angiogenesis/vascularization using a tissue-engineered model of skin to which small vessel human dermal microvascular endothelial cells were added. For the majority of these studies, a modified Guirguis chamber was used, which allowed the investigation of several variables within the same experiment using the same human dermis; cell type, angiogenic growth factors, the influence of keratinocytes and fibroblasts, mechanical penetration of the human dermis, the site of endothelial cell addition, and the influence of hypoxia were all examined. A qualitative scoring system was used to assess the impact of these factors on the penetration of endothelial cells throughout the dermis. Similar results were achieved using freshly isolated small vessel human dermal microvascular endothelial cells or an endothelial cell line and a minimum cell seeding density was identified. Cell penetration was not influenced by the addition of angiogenic growth factors (vascular endothelial growth factor and basic fibroblast growth factor); similarly, including epidermal keratinocytes or dermal fibroblasts did not encourage endothelial cell entry, and neither did mechanical introduction of holes throughout the dermis. Two factors were identified that significantly enhanced endothelial cell penetration into the dermis: hypoxia and the site of endothelial cell addition. Endothelial cells added from the papillary surface entered into the dermis much more effectively than when cells were added to the reticular surface of the dermis. We conclude that this model is valuable in improving our understanding of how to enhance vascularization of tissue-engineered grafts.
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. Approximately 600 DBPs, less than half of the total organic carbon in drinking water have been identified. We are developing an in vitro system to i...
Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of colorectal cancer. Approximately 600 DBPs, less that half of the total organic carbon in drinking water, have been identified of which 50 unregulated DBPs have received the ...
Euler, Kerstin N; Hauck, Stefanie M; Ueffing, Marius; Deeg, Cornelia A
2013-01-23
Bovine neonatal pancytopenia (BNP) is a disease syndrome in newborn calves of up to four weeks of age, first observed in southern Germany in 2006. By now, cases have been reported in several countries around the globe. Many affected calves die within days due to multiple haemorrhages, thrombocytopenia, leukocytopenia and bone marrow depletion. A certain vaccine directed against Bovine Virus Diarrhoea Virus (BVDV) was recently shown to be associated with BNP pathogenesis. Immunized cows develop alloantibodies that are transferred to newborn calves via colostrum intake. In order to further elucidate BNP pathogenesis, the purpose of this study was to characterize and compare the protein composition of the associated vaccine to another vaccine directed against BVDV not related to BNP and the cell surface proteome of MDBK (Madin-Darby Bovine Kidney) cells, the cell line used for production of the associated vaccine. By SDS-PAGE and mass spectrometry, we were able to detect several coagulation-related and immune modulatory proteins, as well as cellular and serum derived molecules being shared between the associated vaccine and MDBK cells. Furthermore, the number of proteins identified in the BNP related vaccine was almost as high as the number of surface proteins detected on MDBK cells and exceeded the amount of proteins identified in the non-BNP related vaccine over 3.5 fold. The great amount of shared cellular and serum derived proteins confirm that the BNP associated vaccine contained many molecules originating from MDBK cells and vaccine production. The respective vaccine was not purified enough to prevent the development of alloantibodies. To narrow down possible candidate proteins, those most likely to represent a trigger for BNP pathogenesis are presented in this study, giving a fundament for further analysis in future research.
Getting to the Outer Leaflet: Physiology of Phosphatidylserine Exposure at the Plasma Membrane.
Bevers, Edouard M; Williamson, Patrick L
2016-04-01
Phosphatidylserine (PS) is a major component of membrane bilayers whose change in distribution between inner and outer leaflets is an important physiological signal. Normally, members of the type IV P-type ATPases spend metabolic energy to create an asymmetric distribution of phospholipids between the two leaflets, with PS confined to the cytoplasmic membrane leaflet. On occasion, membrane enzymes, known as scramblases, are activated to facilitate transbilayer migration of lipids, including PS. Recently, two proteins required for such randomization have been identified: TMEM16F, a scramblase regulated by elevated intracellular Ca(2+), and XKR8, a caspase-sensitive protein required for PS exposure in apoptotic cells. Once exposed at the cell surface, PS regulates biochemical reactions involved in blood coagulation, and bone mineralization, and also regulates a variety of cell-cell interactions. Exposed on the surface of apoptotic cells, PS controls their recognition and engulfment by other cells. This process is exploited by parasites to invade their host, and in specialized form is used to maintain photoreceptors in the eye and modify synaptic connections in the brain. This review discusses what is known about the mechanism of PS exposure at the surface of the plasma membrane of cells, how actors in the extracellular milieu sense surface exposed PS, and how this recognition is translated to downstream consequences of PS exposure. Copyright © 2016 the American Physiological Society.
Vaz, Candida; Tanavde, Vivek; Lakshmipathy, Uma
2014-01-01
Induced pluripotent stem cells (iPSCs) are promising tools for disease research and cell therapy. One of the critical steps in establishing iPSC lines is the early identification of fully reprogrammed colonies among unreprogrammed fibroblasts and partially reprogrammed intermediates. Currently, colony morphology and pluripotent stem cell surface markers are used to identify iPSC colonies. Through additional clonal characterization, we show that these tools fail to distinguish partially reprogrammed intermediates from fully reprogrammed iPSCs. Thus, they can lead to the selection of suboptimal clones for expansion. A subsequent global transcriptome analysis revealed that the cell adhesion protein CD44 is a marker that differentiates between partially and fully reprogrammed cells. Immunohistochemistry and flow cytometry confirmed that CD44 is highly expressed in the human parental fibroblasts used for the reprogramming experiments. It is gradually lost throughout the reprogramming process and is absent in fully established iPSCs. When used in conjunction with pluripotent cell markers, CD44 staining results in the clear identification of fully reprogrammed cells. This combination of positive and negative surface markers allows for easier and more accurate iPSC detection and selection, thus reducing the effort spent on suboptimal iPSC clones. PMID:24416407
Singh, Anju; Lester, Chantel; Drapp, Rebecca; Hu, Dorothy Z; Glimcher, Laurie H; Jones, Dallas
2015-02-01
Cell-based bone regeneration strategies offer promise for traumatic bone injuries, congenital defects, non-union fractures and other skeletal pathologies. Postnatal bone remodeling and fracture healing provide evidence that an osteochondroprogenitor cell is present in adult life that can differentiate to remodel or repair the fractured bone. However, cell-based skeletal repair in the clinic is still in its infancy, mostly due to poor characterization of progenitor cells and lack of knowledge about their in vivo behavior. Here, we took a combined approach of high-throughput screening, flow-based cell sorting and in vivo transplantation to isolate markers that identify osteochondroprogenitor cells. We show that the presence of tetraspanin CD9 enriches for osteochondroprogenitors within CD105(+) mesenchymal cells and that these cells readily form bone upon transplantation. In addition, we have used Thy1.2 and the ectonucleotidase CD73 to identify subsets within the CD9(+) population that lead to endochondral or intramembranous-like bone formation. Utilization of this unique cell surface phenotype to enrich for osteochondroprogenitor cells will allow for further characterization of the molecular mechanisms that regulate their osteogenic properties. © 2015. Published by The Company of Biologists Ltd.
Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously
Tracking of cells with a compact microscope imaging system with intelligent controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2007-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
NASA Astrophysics Data System (ADS)
Feng, Juan; Soper, Steven A.; McCarley, Robin L.; Murphy, Michael C.
2004-07-01
Bio-Micro Electro Mechanical System (Bio-MEMS) technology was applied to the problem of early breast cancer detection and diagnosis. A micro-device is being developed to identify and specifically collect tumor cells of low abundance (1 tumor cell among 107 normal blood cells) from circulating whole blood. By immobilizing anti-EpCAM (Epithelial Cell Adhesion Molecule) antibodies on polymer micro-channel walls by chemically modifying the surface of the PMMA, breast cancer cells from the MCF-7 cell line, which over-express EpCAM, were selected from a sample volume by the strong binding affinity between the antibody and antigen. To validate the capture of the breast cancer cells, three fluorochrome markers, each identified by a separate color, were used to reliably identify the cancer cells. The cancer cells were defined by DAPI+ (blue), CD45- and the FITC-cell membrane linker+ (green). White blood cells, which may interfere in the detection of the cancer cells, were identified by DAPI+ (blue), CD45+ (red), and the FITC-cell membrane linker+ (green). EpCAM/anti-EpCAM binding models from the literature were used to estimate an optimal velocity, 2mm/sec, for maximizing the number of cells binding and the critical binding force. At higher velocities, shear forces (> 0.48 dyne) will break existing bonds and prevent the formation of new ones. This detection micro-device can be assembled with other lab-on-a-chip components for follow-up gene and protein analysis.
Taylor, Ruth R.; Lovett, Michael; Jagger, Daniel J.
2017-01-01
Behavioural anomalies suggesting an inner ear disorder were observed in a colony of transgenic mice. Affected animals were profoundly deaf. Severe hair bundle defects were identified in all outer and inner hair cells (OHC, IHC) in the cochlea and in hair cells of vestibular macular organs, but hair cells in cristae were essentially unaffected. Evidence suggested the disorder was likely due to gene disruption by a randomly inserted transgene construct. Whole-genome sequencing identified interruption of the SorCS2 (Sortilin-related VPS-10 domain containing protein) locus. Real-time-qPCR demonstrated disrupted expression of SorCS2 RNA in cochlear tissue from affected mice and this was confirmed by SorCS2 immuno-labelling. In all affected hair cells, stereocilia were shorter than normal, but abnormalities of bundle morphology and organisation differed between hair cell types. Bundles on OHC were grossly misshapen with significantly fewer stereocilia than normal. However, stereocilia were organised in rows of increasing height. Bundles on IHC contained significantly more stereocilia than normal with some longer stereocilia towards the centre, or with minimal height differentials. In early postnatal mice, kinocilia (primary cilia) of IHC and of OHC were initially located towards the lateral edge of the hair cell surface but often became surrounded by stereocilia as bundle shape and apical surface contour changed. In macular organs the kinocilium was positioned in the centre of the cell surface throughout maturation. There was disruption of the signalling pathway controlling intrinsic hair cell apical asymmetry. LGN and Gαi3 were largely absent, and atypical Protein Kinase C (aPKC) lost its asymmetric distribution. The results suggest that SorCS2 plays a role upstream of the intrinsic polarity pathway and that there are differences between hair cell types in the deployment of the machinery that generates a precisely organised hair bundle. PMID:28346477
FRET and BRET-based biosensors in live cell compound screens.
Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin
2014-01-01
Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.
Dialing Up an Embryo: Are Olfactory Receptors Digits in a Developmental Code?
ERIC Educational Resources Information Center
Travis, John
1998-01-01
Scientist William J. Dreyer has hypothesized that the cell surface proteins in the nose that detect odors also help assemble embryos. These olfactory receptors and related proteins act as identifiers, much like the last few digits of a telephone number, that help cells to find their intended neighbors in a developing embryo. Discusses the research…
Mycobacterial biofilms: a greasy way to hold it together.
Zambrano, María Mercedes; Kolter, Roberto
2005-12-02
Microorganisms growing on surfaces can form biofilms under certain conditions. In this issue of Cell, Ojha et al. (2005) investigate biofilm formation in mycobacteria. They identify new cell-wall components that are required for the formation of architecturally complex mature biofilms in these bacteria and the surprising involvement of a chaperone protein in this process.
Rostoker, Ran; Ben-Shmuel, Sarit; Rashed, Rola; Shen Orr, Zila; LeRoith, Derek
2016-05-14
The pro-tumorigenic effects of the insulin-like growth factor receptor (IGF1R) are well described. IGF1R promotes cancer cell survival and proliferation and prevents apoptosis, and, additionally it was shown that IGF1R levels are significantly elevated in most common human malignancies including breast cancer. However, results from phase 3 clinical trials in unselected patients demonstrated lack of efficacy for anti-IGF1R therapy. These findings suggest that predictive biomarkers are greatly warranted in order to identify patients that will benefit from anti-IGF1R therapeutic strategies. Using the delivery of shRNA vectors into the Mvt1 cell line, we tested the role of the IGF1R in the development of mammary tumors. Based on CD24 cell surface expression, control and IGF1R-knockdown (IGF1R-KD) cells were FACS sorted into CD24(-) and CD24(+) subsets and further characterized in vitro. The tumorigenic capacity of each was determined following orthotopic inoculation into the mammary fat pad of female mice. Tumor cells were FACS characterized upon sacrifice to determine IGF1R effect on the plasticity of this cell's phenotype. Metastatic capacity of the cells was assessed using the tail vein assay. In this study we demonstrate that downregulation of the IGF1R specifically in cancer cells expressing CD24 on the cell surface membrane affect both their morphology (from mesenchymal-like into epithelial-like morphology) and phenotype in vitro. Moreover, we demonstrate that IGF1R-KD abolished both CD24(+) cells capacity to form mammary tumors and lung metastatic lesions. We found in both cells and tumors a marked upregulation in CTFG and a significant reduction of SLP1 expression in the CD24(+)/IGF1R-KD; tumor-suppressor and tumor-promoting genes respectively. Moreover, we demonstrate here that the IGF1R is essential for the maintenance of stem/progenitor-like cancer cells and we further demonstrate that IGF1R-KD induces in vivo differentiation of the CD24(+) cells toward the CD24(-) phenotype. This further supports the antitumorigenic effects of IGF1R-KD, as we recently published that these differentiated cells demonstrate significantly lower tumorigenic capacity compared with their CD24(+) counterparts. Taken together these findings suggest that CD24 cell surface expression may serve as a valuable biomarker in order to identify mammary tumors that will positively respond to targeted IGF1R therapies.
Smith, T Jarrod; Font, Maria E; Kelly, Carolyn M; Sondermann, Holger; O'Toole, George A
2018-02-05
LapA of Pseudomonas fluorescens Pf0-1 belongs to a diverse family of cell surface associated bacterial adhesins that are secreted via the type-1 secretion system (T1SS). We previously reported that the periplasmic protease LapG cleaves the N-terminus of LapA at a canonical dialanine motif to release the adhesin from the cell surface under conditions unfavorable to biofilm formation, thus decreasing biofilm formation. Here, we characterize LapA as the first type 1 secreted substrate that does not follow the "one-step" rule of T1SS. Rather, a novel N-terminal element, called the retention module (RM), localizes LapA at the cell surface as a secretion intermediate. Our genetic, biochemical, and molecular modeling analysis support a model wherein LapA is tethered to the cell surface through its T1SS outer membrane TolC-like pore, LapE, until LapG cleaves LapA in the periplasm. We further demonstrate this unusual retention strategy is likely conserved among LapA-like proteins, and reveals a new subclass of T1SS ABC transporters involved in transporting this group of surface-associated, LapA-like adhesins. These studies demonstrate a novel cell surface retention strategy used throughout the Proteobacteria and highlight a previously unappreciated flexibility of function for T1SS. Importance. Bacteria have evolved multiple secretion strategies to interact with their environment. For many bacteria, the secretion of cell surface associated adhesins is key for initiating contact with a preferred substratum to facilitate biofilm formation. Our work demonstrates that P. fluorescens uses a previously unrecognized secretion strategy to retain the giant adhesin LapA at its cell surface. Further, we identify likely LapA-like adhesins in various pathogenic and commensal Proteobacteria and provide phylogenetic evidence that these adhesins are secreted by a new subclass of T1SS ABC transporters. Copyright © 2018 American Society for Microbiology.
Radiation combined with thermal injury induces immature myeloid cells.
Mendoza, April Elizabeth; Neely, Crystal Judith; Charles, Anthony G; Kartchner, Laurel Briane; Brickey, Willie June; Khoury, Amal Lina; Sempowski, Gregory D; Ting, Jenny P Y; Cairns, Bruce A; Maile, Robert
2012-11-01
The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sublethal ionization radiation exposure combined with a full-thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a full-thickness contact burn of 20% total body surface area or sham procedure followed by a single whole-body dose of 5-Gy radiation. Serum, spleen, and peripheral lymph nodes were harvested at 3 and 14 days after injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated proinflammatory and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but were significantly elevated after burn alone and RCI at 14 days after injury. In contrast to the T-cell-suppressive nature of myeloid-derived suppressor cells found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in interferon γ and a decrease in interleukin 10. This is consistent with previous work in burn injury indicating that a myeloid-derived suppressor cell-like population increases innate immunity. Radiation combined injury results in the increase in distinct populations of Gr-1CD11b cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host.
Russell, Katie C.; Tucker, H. Alan; Bunnell, Bruce A.; Andreeff, Michael; Schober, Wendy; Gaynor, Andrew S.; Strickler, Karen L.; Lin, Shuwen; Lacey, Michelle R.
2013-01-01
Cellular heterogeneity of mesenchymal stem cells (MSCs) impedes their use in regenerative medicine. The objective of this research is to identify potential biomarkers for the enrichment of progenitors from heterogeneous MSC cultures. To this end, the present study examines variation in expression of neuron-glial antigen 2 (NG2) and melanoma cell adhesion molecule (CD146) on the surface of MSCs derived from human bone marrow in response to culture conditions and among cell populations. Multipotent cells isolated from heterogeneous MSC cultures exhibit a greater than three-fold increase in surface expression for NG2 and greater than two-fold increase for CD146 as compared with parental and lineage-committed MSCs. For both antigens, surface expression is downregulated by greater than or equal to six-fold when MSCs become confluent. During serial passage, maximum surface expression of NG2 and CD146 is associated with minimum doubling time. Upregulation of NG2 and CD146 during loss of adipogenic potential at early passage suggests some limits to their utility as potency markers. A potential relationship between proliferation and antigen expression was explored by sorting heterogeneous MSCs into rapidly and slowly dividing groups. Fluorescence-activated cell sorting revealed that rapidly dividing MSCs display lower scatter and 50% higher NG2 surface expression than slowly dividing cells, but CD146 expression is comparable in both groups. Heterogeneous MSCs were sorted based on scatter properties and surface expression of NG2 and CD146 into high (HI) and low (LO) groups. ScLONG2HI and ScLONG2HICD146HI MSCs have the highest proliferative potential of the sorted groups, with colony-forming efficiencies that are 1.5–2.2 times the value for the parental controls. The ScLO gate enriches for rapidly dividing cells. Addition of the NG2HI gate increases cell survival to 1.5 times the parental control. Further addition of the CD146HI gate does not significantly improve cell division or survival. The combination of low scatter and high NG2 surface expression is a promising selection criterion to enrich a proliferative phenotype from heterogeneous MSCs during ex vivo expansion, with potentially numerous applications. PMID:23611563
Fast Modulation of μ-Opioid Receptor (MOR) Recycling Is Mediated by Receptor Agonists*
Roman-Vendrell, Cristina; Yu, Y. Joy; Yudowski, Guillermo Ariel
2012-01-01
The μ-opioid receptor (MOR) is a member of the G protein-coupled receptor family and the main target of endogenous opioid neuropeptides and morphine. Upon activation by ligands, MORs are rapidly internalized via clathrin-coated pits in heterologous cells and dissociated striatal neurons. After initial endocytosis, resensitized receptors recycle back to the cell surface by vesicular delivery for subsequent cycles of activation. MOR trafficking has been linked to opioid tolerance after acute exposure to agonist, but it is also involved in the resensitization process. Several studies describe the regulation and mechanism of MOR endocytosis, but little is known about the recycling of resensitized receptors to the cell surface. To study this process, we induced internalization of MOR with [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and morphine and imaged in real time single vesicles recycling receptors to the cell surface. We determined single vesicle recycling kinetics and the number of receptors contained in them. Then we demonstrated that rapid vesicular delivery of recycling MORs to the cell surface was mediated by the actin-microtubule cytoskeleton. Recycling was also dependent on Rab4, Rab11, and the Ca2+-sensitive motor protein myosin Vb. Finally, we showed that recycling is acutely modulated by the presence of agonists and the levels of cAMP. Our work identifies a novel trafficking mechanism that increases the number of cell surface MORs during acute agonist exposure, effectively reducing the development of opioid tolerance. PMID:22378794
Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K
2016-09-01
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.
Manz, Judith; Rodríguez, Elke; ElSharawy, Abdou; Oesau, Eva-Maria; Petersen, Britt-Sabina; Baurecht, Hansjörg; Mayr, Gabriele; Weber, Susanne; Harder, Jürgen; Reischl, Eva; Schwarz, Agatha; Novak, Natalija; Franke, Andre; Weidinger, Stephan
2016-12-01
Gene-mapping studies have consistently identified a susceptibility locus for atopic dermatitis and other inflammatory diseases on chromosome band 11q13.5, with the strongest association observed for a common variant located in an intergenic region between the two annotated genes C11orf30 and LRRC32. Using a targeted resequencing approach we identified low-frequency and rare missense mutations within the LRRC32 gene encoding the protein GARP, a receptor on activated regulatory T cells that binds latent transforming growth factor-β. Subsequent association testing in more than 2,000 atopic dermatitis patients and 2,000 control subjects showed a significant excess of these LRRC32 variants in individuals with atopic dermatitis. Structural protein modeling and bioinformatic analysis predicted a disruption of protein transport upon these variants, and overexpression assays in CD4 + CD25 - T cells showed a significant reduction in surface expression of the mutated protein. Consistently, flow cytometric (FACS) analyses of different T-cell subtypes obtained from atopic dermatitis patients showed a significantly reduced surface expression of GARP and a reduced conversion of CD4 + CD25 - T cells into regulatory T cells, along with lower expression of latency-associated protein upon stimulation in carriers of the LRRC32 A407T variant. These results link inherited disturbances of transforming growth factor-β signaling with atopic dermatitis risk. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Monteiro, Ricardo; Chafsey, Ingrid; Leroy, Sabine; Chambon, Christophe; Hébraud, Michel; Livrelli, Valérie; Pizza, Mariagrazia; Pezzicoli, Alfredo; Desvaux, Mickaël
2018-06-15
Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.
In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics.
Ramya, T N C; Weerapana, Eranthie; Liao, Lujian; Zeng, Ying; Tateno, Hiroaki; Liao, Liang; Yates, John R; Cravatt, Benjamin F; Paulson, James C
2010-06-01
CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAcalpha2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometry-based quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell.
Jouanguy, E; Lamhamedi-Cherradi, S; Altare, F; Fondanèche, M C; Tuerlinckx, D; Blanche, S; Emile, J F; Gaillard, J L; Schreiber, R; Levin, M; Fischer, A; Hivroz, C; Casanova, J L
1997-01-01
Complete interferon-gamma receptor 1 (IFNgammaR1) deficiency has been identified previously as a cause of fatal bacillus Calmette-Guérin (BCG) infection with lepromatoid granulomas, and of disseminated nontuberculous mycobacterial (NTM) infection in children who had not been inoculated with BCG. We report here a kindred with partial IFNgammaR1 deficiency: one child afflicted by disseminated BCG infection with tuberculoid granulomas, and a sibling, who had not been inoculated previously with BCG, with clinical tuberculosis. Both responded to antimicrobials and are currently well without prophylactic therapy. Impaired response to IFN-gamma was documented in B cells by signal transducer and activator of transcription 1 nuclear translocation, in fibroblasts by cell surface HLA class II induction, and in monocytes by cell surface CD64 induction and TNF-alpha secretion. Whereas cells from healthy children responded to even low IFN-gamma concentrations (10 IU/ml), and cells from a child with complete IFNgammaR1 deficiency did not respond to even high IFN-gamma concentrations (10,000 IU/ml), cells from the two siblings did not respond to low or intermediate concentrations, yet responded to high IFN-gamma concentrations. A homozygous missense IFNgR1 mutation was identified, and its pathogenic role was ascertained by molecular complementation. Thus, whereas complete IFNgammaR1 deficiency in previously identified kindreds caused fatal lepromatoid BCG infection and disseminated NTM infection, partial IFNgammaR1 deficiency in this kindred caused curable tuberculoid BCG infection and clinical tuberculosis. PMID:9389728
Ibsen, Stuart; Shi, Guixin; Schutt, Carolyn; Shi, Linda; Suico, Kyle-David; Benchimol, Michael; Serra, Viviana; Simberg, Dmitri; Berns, Michael; Esener, Sadik
2014-01-01
Lipid monolayer coated microbubbles are currently being developed to identify vascular regions that express certain surface proteins as part of the new technique of ultrasound molecular imaging. The microbubbles are functionalized with targeting ligands which bind to the desired cells holding the microbubbles in place as the remaining unbound microbubbles are eliminated from circulation. Subsequent scanning with ultrasound can detect the highly reflectant microbubbles that are left behind. The ultrasound scanning and detection process results in the destruction of the microbubble, creating lipid fragments from the monolayer. Here we demonstrate that microbubbles targeted to 4T1 murine breast cancer cells and human umbilical cord endothelial cells leave behind adhered fragments of the lipid monolayer after exposure to ultrasound with peak negative pressures of 0.18 and 0.8 MPa. Most of the observed fragments were large enough to be resistant to receptor mediated endocytosis. The fragments were not observed to incorporate into the lipid membrane of the cell over a period of 96 min. They were not observed to break into smaller pieces or significantly change shape but they were observed to undergo translation and rotation across the cell surface as the cells migrated over the substrate. These large fragments will apparently remain on the surface of the targeted cells for significant periods of time and need to be considered for their potential effects on blood flow through the microcapillaries and potential for immune system recognition. PMID:25059435
Release of Membrane-associated Mucins from Ocular Surface Epithelia
Blalock, Timothy D.; Spurr-Michaud, Sandra J.; Tisdale, Ann S.; Gipson, Ilene K.
2008-01-01
Purpose Three membrane-associated mucins (MAMs)—MUC1, MUC4 and MUC16—are expressed at the ocular surface epithelium. Soluble forms of MAMs are detected in human tears, but the mechanisms of their release from the apical cells are unknown. The purpose of this study was to identify physiologic agents that induce ocular surface MAM release. Methods An immortalized human corneal-limbal epithelial cell line (HCLE) expressing the same MAMs as native tissue was used. An antibody specific to MUC16’s cytoplasmic tail was developed to confirm that only the extracellular domain is released into the tear fluid or culture media. Effects of agents that have been shown to be present in tears or are implicated in release/shedding of MAMs in other epithelia (neutrophil elastase, tumor necrosis factor (TNF), TNF-α-converting enzyme, and matrix metalloproteinases-7 and –9) were assessed on HCLE cells. HCLE cell surface proteins were biotinylated to measure efficiency of induced MAM release and surface restoration. Effects of induced release on surface barrier function were measured by rose bengal dye penetrance. Results MUC16 in tears and in HCLE-conditioned medium lacked the cytoplasmic tail. TNF induced release of MUC1, MUC4, and MUC16 from the HCLE surface. Matrix metalloproteinase-7 and neutrophil elastase induced release of MUC16 but not MUC1 or MUC4. Neutrophil elastase removed 68% of MUC16—78% of which was restored to the HCLE cell surface 24 hours after release. Neutrophil elastase-treated HCLE cells showed significantly reduced rose bengal dye exclusion. Conclusions Results suggest that extracellular domains of MUC1, 4, and 16 can be released from the ocular surface by agents present in tears. Neutrophil elastase and TNF present in higher amounts in dry eye patients’ tears may cause MAM release—allowing rose bengal staining. PMID:18436821
Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus.
Kalos, M; Zissler, J
1990-01-01
The prokaryote Myxococcus xanthus is a model for cell interactions important in multicellular behavior. We used the transposon TnphoA to specifically identify genes for cell-surface factors involved in cell interactions. From a library of 10,700 insertions of TnphoA, we isolated 36 that produced alkaline phosphatase activity. Three TnphoA insertions tagged cell motility genes, called cgl, which control the adventurous movement of cells. The products of the tagged cgl genes could function in trans upon other cells and were localized primarily in the cell envelope and extracellular space, consistent with TnphoA tagging genes for extracellular factors controlling motility. Images PMID:2172982
Owen, Peter; Salton, Milton R. J.
1977-01-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions. Images PMID:144722
Owen, P; Salton, M R
1977-12-01
Crossed immunoelectrophoresis of Triton X-100-solubilized plasma membranes of Micrococcus lysodeikticus established the presence of 27 discrete antigens. Individual antigens were identified as membrane components possessing enzyme activity by zymogram staining procedures and by reactivity of certain antigens with a selection of four lectins in the crossed-immunoelectrophoresis (immunoaffinoelectrophoresis) system. Absorption experiments with intact, stable protoplasts and isolated membranes established the asymmetric nature of the M. lysodeikticus plasma membranes. Of the 14 antigens with determinants accessible solely on the cytoplasmic face of the membrane, four possessed individual dehydrogenase activities, and a fifth was identifiable as a component possessing adenosine triphosphatase (EC 3.6.1.3) activity. Evidence from absorption studies with isolated membranes suggested that antigens such as the adenosine triphosphatase complex were more readily accessible to reaction with antibodies than was succinate dehydrogenase (EC 1.3.99.1), for example. Twelve antigens were located on the protoplast surface as determined by antibody absorption, and the succinylated lipomannan was identified as a major antigen. At least five other antigens possessed sugar residues that interacted with concanavalin A. With the antisera generated to isolated membranes, there was no evidence suggesting that any of these antigens was not detectable on either surface of the plasma membrane. From absorption experiments with washed, whole cells of M. lysodeikticus, it was concluded that the immunogens on the protoplast surface were also detectable on the surface of the intact cell. However, some of the components such as the succinylated lipomannan appeared to be exposed to a greater extent than others. The cytoplasmic fraction from M. lysodeikticus was used as an antigen source to generate antibodies, and 97 immunoprecipitates were resolvable by crossed immunoelectrophoresis. In the cytoplasm-anticytoplasm reference immunoelectrophoresis pattern of precipitates, three of the immunoprecipitates unique to the cytoplasmic fraction were identifiable by zymogram staining procedures as catalase (EC 1.11.1.6), isocitrate dehydrogenase (EC 1.1.1.42), and polynucleotide phosphorylase (EC 2.3.7.8). The identification of membrane and cytoplasmic antigens (including the above-mentioned enzymes) provides a sensitive analytical system for monitoring cross-contamination and antigen distribution in cellular fractions.
Goljanek-Whysall, Katarzyna; Tridimas, Andreas; McCormick, Rachel; Russell, Nicki-Jayne; Sloman, Melissa; Sorani, Alan; Fraser, William D; Hannan, Fadil M
2018-01-01
Adults presenting with sporadic hypophosphatemia and elevations in circulating fibroblast growth factor-23 (FGF23) concentrations are usually investigated for an acquired disorder of FGF23 excess such as tumor induced osteomalacia (TIO). However, in some cases the underlying tumor is not detected, and such patients may harbor other causes of FGF23 excess. Indeed, coding-region and 3'UTR mutations of phosphate-regulating neutral endopeptidase (PHEX), which encodes a cell-surface protein that regulates circulating FGF23 concentrations, can lead to alterations in phosphate homeostasis, which are not detected until adulthood. Here, we report an adult female who presented with hypophosphatemic osteomalacia and raised serum FGF23 concentrations. The patient and her parents, who were her only first-degree relatives, had no history of rickets. The patient was thus suspected of having TIO. However, no tumor had been identified following extensive localization studies. Mutational analysis of the PHEX coding-region and 3'UTR was undertaken, and this revealed the patient to be heterozygous for a novel germline PHEX mutation (c.2158G>T; p.Ala720Ser). In vitro studies involving the expression of WT and mutant PHEX proteins in HEK293 cells demonstrated the Ala720Ser mutation to impair trafficking of PHEX, with ~20% of the mutant protein being expressed at the cell surface, compared to ~80% cell surface expression for WT PHEX (p<0.05). Thus, our studies have identified a pathogenic PHEX mutation in a sporadic case of adult-onset hypophosphatemic osteomalacia, and these findings highlight a role for PHEX gene analysis in some cases of suspected TIO, particularly when no tumor has been identified. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, R.P.; Vielmetter, J.; Dreyer, W.J.
1996-08-01
The neuronal cell adhesion molecule Bravo/Nr-CAM is a cell surface protein of the immunoglobulin (Ig) superfamily and is closely related to the L1/NgCAM and neurofascin molecules, all of which contain six immunoglobulin domains, five fibronectin repeats, a transmembrane region, and an intracellular domain. Chicken Bravo/Nr-CAM has been shown to interact with other cell surface molecules of the Ig superfamily and has been implicated in specific pathfinding roles of axonal growth cones in the developing nervous system. We now report the characterization of cDNA clones encoding the human Bravo/Nr-CAM protein, which, like its chicken homolog, is composed of six V-like Igmore » domains and five fibronectin type III repeats. The human Bravo/Nr-CAM homolog also contains a transmembrane and intracellular domain, both of which are 100% conserved at the amino acid level compared to its chicken homolog. Overall, the human Bravo/Nr-CAM homolog is 82% identical to the chicken Bravo/Nr-CAM amino acid sequence. Independent cDNAs encoding four different isoforms were also identified, all of which contain alternatively spliced variants around the fifth fibronectin type III repeat, including one isoform that had been previously identified for chicken Bravo/Nr-CAM. Northern blot analysis reveals one mRNA species of approximately 7.0 kb in adult human brain tissue. Fluorescence in situ hybridization maps the gene for human Bravo/Nr-CAM to human chromosome 7q31.1-q31.2. This chromosomal locus has been previously identified as containing a tumore suppressor candidate gene commonly deleted in certain human cancer tissues. 38 refs., 5 figs.« less
The state of proteome profiling in the fungal genus Aspergillus.
Kim, Yonghyun; Nandakumar, M P; Marten, Mark R
2008-03-01
Aspergilli are an important genus of filamentous fungi that contribute to a multibillion dollar industry. Since many fungal genome sequencing were recently completed, it would be advantageous to profile their proteome to better understand the fungal cell factory. Here, we review proteomic data generated for the Aspergilli in recent years. Thus far, a combined total of 28 cell surface, 102 secreted and 139 intracellular proteins have been identified based on 10 different studies on Aspergillus proteomics. A summary proteome map highlighting identified proteins in major metabolic pathway is presented.
Ueda, Erica; Feng, Wenqian; Levkin, Pavel A
2016-10-01
High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
GARP is regulated by miRNAs and controls latent TGF-β1 production by human regulatory T cells.
Gauthy, Emilie; Cuende, Julia; Stockis, Julie; Huygens, Caroline; Lethé, Bernard; Collet, Jean-François; Bommer, Guido; Coulie, Pierre G; Lucas, Sophie
2013-01-01
GARP is a transmembrane protein present on stimulated human regulatory T lymphocytes (Tregs), but not on other T lymphocytes (Th cells). It presents the latent form of TGF-β1 on the Treg surface. We report here that GARP favors the cleavage of the pro-TGF-β1 precursor and increases the amount of secreted latent TGF-β1. Stimulated Tregs, which naturally express GARP, and Th cells transfected with GARP secrete a previously unknown form of latent TGF-β1 that is disulfide-linked to GARP. These GARP/TGF-β1 complexes are possibly shed from the T cell surface. Secretion of GARP/TGF-β1 complexes was not observed with transfected 293 cells and may thus be restricted to the T cell lineage. We conclude that in stimulated human Tregs, GARP not only displays latent TGF-β1 at the cell surface, but also increases its secretion by forming soluble disulfide-linked complexes. Moreover, we identified six microRNAs (miRNAs) that are expressed at lower levels in Treg than in Th clones and that target a short region of the GARP 3' UTR. In transfected Th cells, the presence of this region decreased GARP levels, cleavage of pro-TGF-β1, and secretion of latent TGF-β1.
Mao, Hsiaoyin C.; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana
2010-01-01
Human CD56bright natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-γ (IFN-γ) production, but little cytotoxicity. CD56dim NK cells have high KIR expression, produce little IFN-γ, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56bright to a CD56dim phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94highCD56dim NK cells express CD62L, CD2, and KIR at levels between CD56bright and CD94lowCD56dim NK cells. CD94highCD56dim NK cells produce less monokine-induced IFN-γ than CD56bright NK cells but much more than CD94lowCD56dim NK cells because of differential interleukin-12–mediated STAT4 phosphorylation. CD94highCD56dim NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56bright NK cells but lower than CD94lowCD56dim NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56dim NK cells identifies a functional and likely developmental intermediary between CD56bright and CD94lowCD56dim NK cells. This supports the notion that, in vivo, human CD56bright NK cells progress through a continuum of differentiation that ends with a CD94lowCD56dim phenotype. PMID:19897577
Yu, Jianhua; Mao, Hsiaoyin C; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana; Caligiuri, Michael A
2010-01-14
Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.
Stevenson, G; Rehman, S; Draper, E; Hernández-Nava, E; Hunt, J; Haycock, J W
2016-07-01
In this study, we report on a group of complementary human osteoblast in vitro test methods for the preclinical evaluation of 3D porous titanium surfaces. The surfaces were prepared by additive manufacturing (electron beam melting [EBM]) and plasma spraying, allowing the creation of complex lattice surface geometries. Physical properties of the surfaces were characterized by SEM and profilometry and 3D in vitro cell culture using human osteoblasts. Primary human osteoblast cells were found to elicit greater differences between titanium sample surfaces than an MG63 osteoblast-like cell line, particularly in terms of cell survival. Surface morphology was associated with higher osteoblast metabolic activity and mineralization on rougher titanium plasma spray coated surfaces than smoother surfaces. Differences in osteoblast survival and metabolic activity on titanium lattice structures were also found, despite analogous surface morphology at the cellular level. 3D confocal microscopy identified osteoblast organization within complex titanium surface geometries, adhesion, spreading, and alignment to the biomaterial strut geometries. Mineralized nodule formation throughout the lattice structures was also observed, and indicative of early markers of bone in-growth on such materials. Testing methods such as those presented are not traditionally considered by medical device manufacturers, but we suggest have value as an increasingly vital tool in efficiently translating pre-clinical studies, especially in balance with current regulatory practice, commercial demands, the 3Rs, and the relative merits of in vitro and in vivo studies. Biotechnol. Bioeng. 2016;113: 1586-1599. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Rissetto, K C; Rindt, H; Selting, K A; Villamil, J A; Henry, C J; Reinero, C R
2010-05-15
T regulatory cells (Tregs) are a unique subset of T helper cells that serve to modify/inhibit effector cells of the immune system and thus are essential to prevent autoimmunity. Overzealous Treg activity may contribute to impaired immune responses to cancer. Tregs can be phenotypically identified by proteins expressed on the cell surface (CD4 and CD25) and inside the cell (forkhead box3 (FoxP3)), although in dogs, no anti-canine CD25 antibody exists. We hypothesized that a mouse anti-human CD25 antibody definitively recognizes the canine protein and can be used to identify Tregs in dogs. We describe cloning and transfection of the canine CD25 gene into human HeLa cells with subsequent expression of the canine protein on the cell surface detected using an anti-human CD25 antibody in a flow cytometric assay. Validation of this antibody was used to identify CD4+CD25+FoxP3+ Tregs in 39 healthy dogs and 16 dogs with osteosarcoma (OSA). Results were expressed in five different ways and showed significantly fewer %CD4+CD25+ T lymphocytes expressing FoxP3 in blood of older dogs (>/=7 years) compared with the other two age groups (<2 and 2-6 years) (p<0.001) and fewer %CD4+CD25+FoxP3+ Tregs in the tumor draining lymph nodes of OSA patients compared to the unrelated lymph node (p=0.049). However, there was no significant difference in % Tregs in the peripheral blood or lymph nodes between the control dogs and those with OSA. While the CD25 antibody can be successfully used in a flow cytometric assay to identify Tregs, this study does not support clinical utility of phenotypic recognition of Tregs in dogs with OSA. Copyright 2010 Elsevier B.V. All rights reserved.
Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E
2018-01-01
G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors at the cell surface. Copyright © 2017 Elsevier Inc. All rights reserved.
Morphological and functional characteristics of human gingival junctional epithelium.
Jiang, Qian; Yu, Youcheng; Ruan, Hong; Luo, Yin; Guo, Xuehua
2014-04-03
This study aims to observe the morphological characteristics and identify the function characteristics of junctional epithelium (JE) tissues and cultured JE cells. Paraffin sections of human molar or premolar on the gingival buccolingual side were prepared from 6 subjects. HE staining and image analysis were performed to measure and compare the morphological difference among JE, oral gingival epithelium (OGE) and sulcular epithelium (SE). Immunohistochemistry was applied to detect the expression pattern of cytokeratin 5/6, 7, 8/18, 10/13, 16, 17, 19, and 20 in JE, OGE and SE. On the other hand, primary human JE and OGE cells were cultured in vitro. Cell identify was confirmed by histology and immunohistochemistry. In a co-culture model, TEM was used to observe the attachment formation between JE cells and tooth surface. Human JE was a unique tissue which was different from SE and OGE in morphology. Similarly, morphology of JE cells was also particular compared with OGE cells cultured in vitro. In addition, JE cells had a longer incubation period than OGE cells. Different expression of several CKs illustrated JE was in a characteristic of low differentiation and high regeneration. After being co-cultured for 14 d, multiple cell layers, basement membrane-like and hemidesmosome-like structures were appeared at the junction of JE cell membrane and tooth surface. JE is a specially stratified epithelium with low differentiation and high regeneration ability in gingival tissue both in vivo and in vitro. In co-culture model, human JE cells can form basement membrane-like and hemidesmosome-like structures in about 2 weeks.
Identification of fungi isolated from banana rachis and characterization of their surface activity.
Méndez-Castillo, L; Prieto-Correa, E; Jiménez-Junca, C
2017-03-01
Filamentous fungi are an unexplored source for the production of biosurfactants, but over a decade one of the most surface active molecules called hydrophobins was discovered. There are few techniques to determine the surface activity of fungi without any kind of manipulation that can affect the final results. In this work, we identified 33 strains of filamentous fungi isolated from banana rachis which may have potential in producing biosurfactants. Further, the production of surface active compounds by the strains was measured by two techniques. First, the surface tension of supernatants was evaluated in liquid cultures of the strains. We found that three strains belonging to the genus Fusarium, Penicillium and Trichoderma showed activity in the reduction of surface tension, which indicate a putative production of biosurfactants. Second, we measured the contact angle between the drop of water and the solid culture of strains to determine the surface activity of cells, classifying the strains as hydrophilic or hydrophobic. These techniques can be used as a quantitative measurement of the surface activity of fungi without cell manipulation. Biosurfactants are an alternative to petrochemical derivatives, and filamentous fungi are a promising source of these molecules. This work identified 33 strains of filamentous fungi in agroindustrial wastes. This is important because these results open the opportunity of finding new biosurfactants (hydrophobins) with unique properties. We propose the evaluation of surface tension in the supernatant as a quantitative screening to determine the production of biosurfactants from the strains of fungi. © 2017 The Society for Applied Microbiology.
Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.
Borrell, Víctor; Marín, Oscar
2006-10-01
Cajal-Retzius cells are critical in the development of the cerebral cortex, but little is known about the mechanisms controlling their development. Three focal sources of Cajal-Retzius cells have been identified in mice-the cortical hem, the ventral pallium and the septum-from where they migrate tangentially to populate the cortical surface. Using a variety of tissue culture assays and in vivo manipulations, we demonstrate that the tangential migration of cortical hem-derived Cajal-Retzius cells is controlled by the meninges. We show that the meningeal membranes are a necessary and sufficient substrate for the tangential migration of Cajal-Retzius cells. We also show that the chemokine CXCL12 secreted by the meninges enhances the dispersion of Cajal-Retzius cells along the cortical surface, while retaining them within the marginal zone in a CXCR4-dependent manner. Thus, the meningeal membranes are fundamental in the development of Cajal-Retzius cells and, hence, in the normal development of the cerebral cortex.
Fucosylation and protein glycosylation create functional receptors for cholera toxin
Wands, Amberlyn M; Fujita, Akiko; McCombs, Janet E; Cervin, Jakob; Dedic, Benjamin; Rodriguez, Andrea C; Nischan, Nicole; Bond, Michelle R; Mettlen, Marcel; Trudgian, David C; Lemoff, Andrew; Quiding-Järbrink, Marianne; Gustavsson, Bengt; Steentoft, Catharina; Clausen, Henrik; Mirzaei, Hamid; Teneberg, Susann; Yrlid, Ulf; Kohler, Jennifer J
2015-01-01
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI: http://dx.doi.org/10.7554/eLife.09545.001 PMID:26512888
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.
Kaneko, Jun; Narita-Yamada, Sachiko; Wakabayashi, Yukari; Kamio, Yoshiyuki
2009-01-01
The temperate phage φSLT of Staphylococcus aureus carries genes for Panton-Valentine leukocidin. Here, we identify ORF636, a constituent of the phage tail tip structure, as a recognition/adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of S. aureus. ORF636 bound specifically to S. aureus; it did not bind to any other staphylococcal species or to several gram-positive bacteria. PMID:19429614
Faust, James J; Christenson, Wayne; Doudrick, Kyle; Ros, Robert; Ugarova, Tatiana P
2017-06-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, α M β 2 ) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kadonosono, Tetsuya; Yabe, Etsuri; Furuta, Tadaomi; Yamano, Akihiro; Tsubaki, Takuya; Sekine, Takuya; Kuchimaru, Takahiro; Sakurai, Minoru; Kizaka-Kondoh, Shinae
2014-01-01
Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131–L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides. PMID:25084350
Iodide handling by the thyroid epithelial cell.
Nilsson, M
2001-01-01
Iodination of thyroglobulin, the key event in the synthesis of thyroid hormone, is an extracellular process that takes place inside the thyroid follicles at the apical membrane surface that faces the follicular lumen. The supply of iodide involves two steps of TSH-regulated transport, basolateral uptake and apical efflux, that imprint the polarized phenotype of the thyroid cell. Iodide uptake is generated by the sodium/iodide symporter present in the basolateral plasma membrane. A candidate for the apical iodide-permeating mechanism is pendrin, a chloride/iodide transporting protein recently identified in the apical membrane. In physiological conditions, transepithelial iodide transport occurs without intracellular iodination, despite the presence of large amounts of thyroglobulin and thyroperoxidase inside the cells. The reason is that hydrogen peroxide, serving as electron acceptor in iodide-protein binding and normally produced at the apical cell surface, is rapidly degraded by cytosolic glutathione peroxidase once it enters the cells. Iodinated thyroglobulin in the lumen stores not only thyroid hormone but iodine incorporated in iodotyrosine residues as well. After endocytic uptake and degradation of thyroglobulin, intracellular deiodination provides a mechanism for recycling of iodide to participate in the synthesis of new thyroid hormone at the apical cell surface.
Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells
Tze, Lina E; Schram, Brian R; Lam, Kong-Peng; Hogquist, Kristin A; Hippen, Keli L; Liu, Jiabin; Shinton, Susan A; Otipoby, Kevin L; Rodine, Peter R; Vegoe, Amanda L; Kraus, Manfred; Hardy, Richard R; Schlissel, Mark S; Rajewsky, Klaus
2005-01-01
In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms. PMID:15752064
Besançon-Watelet, C; De March, A K; Renoult, E; Kessler, M; Béné, M C; Faure, G C; Sarda, M N
2000-02-15
Cytomegalovirus (CMV) infection or reactivation is a frequent complication of renal transplantation. Diagnosis of these conditions relies on the detection of circulating antigen, or of specific IgM and/or IgG, which develop over several weeks. Evocative clinical features may be detected earlier, but lack specificity. Rapid and early changes in the partition of lymphocyte subsets could be an additional indication of pending CMV infection. A systematic follow-up of peripheral B lymphocytes identified immunophenotypically by the determination of surface immunoglobulins (sIg), performed in 97 kidney transplant recipients, allowed to identify transient increases apparently predictive of CMV primo-infection or reactivation over the next 3 months. To better define the nature of these B cells, an extended investigation was performed for 14 prospective patients. In addition to surface Ig, membrane CD19, HLA-DR, and CD80 expression were explored. The cytoplasmic presence of mu, kappa, and lambda chains was also examined. B cell function was investigated using the ELISPOT technique, which allows an enumeration of the populations of IgG, IgA, and IgM secreting B cells. Retrospective analysis of the clinical outcome of the cohort of 97 patients evidenced that early transient increases in B cell levels were significantly (P<0.0001) associated with CMV infection. The same trend was noted in the smaller series of patients who benefited from a more extensive investigation of B cells, 10 of whom presented clinical or biological signs of CMV infection. Mature B cells, expressing surface Ig, CD19, DR, and CD80 are those presenting transient increases. No significant variation of preB (cmu+/kappalambda-) or activated (spot-forming) cells was evidenced in these patients. Individual examination of each patient's immune reconstitution profile allows to detect transient peaks of mature B cell during the initial immunosuppressive therapy, that appear to be predictive of oncoming CMV infection or reactivation.
NASA Astrophysics Data System (ADS)
Castelain, Mickaël; Pignon, Frédéric; Piau, Jean-Michel; Magnin, Albert; Mercier-Bonin, Muriel; Schmitz, Philippe
2007-10-01
In agroindustry, the hygiene of solid surfaces is of primary importance in order to ensure that products are safe for consumers. To improve safety, one of the major ways consists in identifying and understanding the mechanisms of microbial cell adhesion to nonporous solid surfaces or filtration membranes. In this paper we investigate the adhesion of the yeast cell Saccharomyces cerevisiae (about 5μm in diameter) to a model solid surface, using well-defined hydrophilic glass substrates. An optical tweezer device developed by Piau [J. Non-Newtonian Fluid Mech. 144, 1 (2007)] was applied to yeast cells in contact with well-characterized glass surfaces. Two planes of observation were used to obtain quantitative measurements of removal forces and to characterize the corresponding mechanisms at a micrometer length scale. The results highlight various adhesion mechanisms, depending on the ionic strength, contact time, and type of yeast. The study has allowed to show a considerable increase of adhering cells with the ionic strength and has provided a quantitative measurement of the detachment forces of cultured yeast cells. Force levels are found to grow with ionic strength and differences in mobility are highlighted. The results clearly underline that a microrheological approach is essential for analyzing the adhesion mechanisms of biological systems at the relevant local scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Yeong-Shyung; Bonnett, Jeff F.; Stevenson, Jeffry W.
The ceramic contact material at the cathode side has been identified as the weakest mechanical link in solid oxide fuel cells, due to poor sintering at low stack fabrication temperatures. In this work, a novel approach of mechanical interlocking with an engineered surface was proposed to strengthen LSM-type contacts. The engineered cathode surface was made by depositing large LSM20 granules onto a wet cathode print, followed by sintering. Granules of three sizes were tested (mesh #35, #60, and #100). Small coupons of anode-supported YSZ electrolyte with LSM cathode were joined at 850 and 950oC for 2h with LSM contact usingmore » either the engineered surface or plain surfaces. The results of contact strength measurements showed about 14 times increase with engineered surface compared to plain surfaces. Validation with a 2”x2” LSM-based cell in a generic stack fixture showed good thermal cycle stability with minimal change in ohmic impedance over ten cycles.« less
Shiheido, Hirokazu; Kitagori, Koji; Sasaki, Chiyomi; Kobayashi, Shio; Aoyama, Takane; Urata, Kozue; Oku, Takuma; Hirayama, Yoshitaka; Yoshitomi, Hiroyuki; Hikida, Masaki; Yoshifuji, Hajime; Mimori, Tsuneyo; Watanabe, Takeshi; Shimizu, Jun
2014-06-01
BEN domain-containing protein 3 (BEND3) has no transmembrane region, is localized in the cytoplasm, and is involved in chromatin function and transcription. We here identified a novel subpopulation of human T cells that expressed BEND3 on their cell surface (BEND3(+) T cells). BEND3(+) T cells consisted of approximately 3% of T cells in the peripheral blood, were present in both CD4(+) and CD8(+) T cells, and were also observed in cord blood. The stimulation of BEND3(+) T cells through the TCR/CD3 complex led to the production of various kinds of cytokines; however, the levels of IL-6 and IL-8 produced by BEND3(+) T cells were higher than those by BEND3(-) T cells. The proportion of BEND3(+) T cells was also increased in some patients with inflammatory diseases. Taken together, these results indicate that BEND3(+) T cells are a new subpopulation of T cells in terms of their cytokine profile. Further analyses on BEND3(+) T cells may be of importance and useful in understanding human T cell immunology.
Shiheido, Hirokazu; Kitagori, Koji; Sasaki, Chiyomi; Kobayashi, Shio; Aoyama, Takane; Urata, Kozue; Oku, Takuma; Hirayama, Yoshitaka; Yoshitomi, Hiroyuki; Hikida, Masaki; Yoshifuji, Hajime; Mimori, Tsuneyo; Watanabe, Takeshi; Shimizu, Jun
2014-01-01
BEN domain-containing protein 3 (BEND3) has no transmembrane region, is localized in the cytoplasm, and is involved in chromatin function and transcription. We here identified a novel subpopulation of human T cells that expressed BEND3 on their cell surface (BEND3+ T cells). BEND3+ T cells consisted of approximately 3% of T cells in the peripheral blood, were present in both CD4+ and CD8+ T cells, and were also observed in cord blood. The stimulation of BEND3+ T cells through the TCR/CD3 complex led to the production of various kinds of cytokines; however, the levels of IL-6 and IL-8 produced by BEND3+ T cells were higher than those by BEND3− T cells. The proportion of BEND3+ T cells was also increased in some patients with inflammatory diseases. Taken together, these results indicate that BEND3+ T cells are a new subpopulation of T cells in terms of their cytokine profile. Further analyses on BEND3+ T cells may be of importance and useful in understanding human T cell immunology. PMID:25400923
Optimizing Micromixer Surfaces To Deter Biofouling.
Waters, James T; Liu, Ya; Li, Like; Balazs, Anna C
2018-03-07
Using computational modeling, we show that the dynamic interplay between a flowing fluid and the appropriately designed surface relief pattern can inhibit the fouling of the substrate. We specifically focus on surfaces that are decorated with three-dimensional (3D) chevron or sawtooth "micromixer" patterns and model the fouling agents (e.g., cells) as spherical microcapsules. The interaction between the imposed shear flow and the chevrons on the surface generates 3D vortices in the system. We pinpoint a range of shear rates where the forces from these vortices can rupture the bonds between the two mobile microcapsules near the surface. Notably, the patterned surface offers fewer points of attachment than a flat substrate, and the shear flows readily transport the separated capsules away from the layer. We contrast the performance of surfaces that encompass rectangular posts, chevrons, and asymmetric sawtooth patterns and thereby identify the geometric factors that cause the sawtooth structure to be most effective at disrupting the bonding between the capsules. By breaking up nascent clusters of contaminant cells, these 3D relief patterns can play a vital role in disrupting the biofouling of surfaces immersed in flowing fluids.
Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.
2015-01-01
ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543
Moffat, Laura L.; Robinson, Ryan E.; Bakoulis, Anastasia; Clark, Scott G.
2014-01-01
Wnts control a wide range of essential developmental processes, including cell fate specification, axon guidance and anteroposterior neuronal polarization. We identified a conserved transmembrane RING finger protein, PLR-1, that governs the response to Wnts by lowering cell-surface levels of the Frizzled family of Wnt receptors in Caenorhabditis elegans. Loss of PLR-1 activity in the neuron AVG causes its anteroposterior polarity to be symmetric or reversed because signaling by the Wnts CWN-1 and CWN-2 are inappropriately activated, whereas ectopic PLR-1 expression blocks Wnt signaling and target gene expression. Frizzleds are enriched at the cell surface; however, when PLR-1 and Frizzled are co-expressed, Frizzled is not detected at the surface but instead is colocalized with PLR-1 in endosomes. The Frizzled cysteine-rich domain (CRD) and invariant second intracellular loop lysine are crucial for PLR-1 downregulation. The PLR-1 RING finger and protease-associated (PA) domain are essential for activity. In a Frizzled-dependent manner, PLR-1 reduces surface levels of the Wnt receptors CAM-1/Ror and LIN-18/Ryk. PLR-1 is a homolog of the mammalian transmembrane E3 ubiquitin ligases RNF43 and ZNRF3, which control Frizzled surface levels in an R-spondin-sensitive manner. We propose that PLR-1 downregulates Wnt receptor surface levels via lysine ubiquitylation of Frizzled to coordinate spatial and temporal responses to Wnts during neuronal development. PMID:24401370
Expansion of divergent SEA domains in cell surface proteins and nucleoporin 54.
Pei, Jimin; Grishin, Nick V
2017-03-01
SEA (sea urchin sperm protein, enterokinase, agrin) domains, many of which possess autoproteolysis activity, have been found in a number of cell surface and secreted proteins. Despite high sequence divergence, SEA domains were also proposed to be present in dystroglycan based on a conserved autoproteolysis motif and receptor-type protein phosphatase IA-2 based on structural similarity. The presence of a SEA domain adjacent to the transmembrane segment appears to be a recurring theme in quite a number of type I transmembrane proteins on the cell surface, such as MUC1, dystroglycan, IA-2, and Notch receptors. By comparative sequence and structural analyses, we identified dystroglycan-like proteins with SEA domains in Capsaspora owczarzaki of the Filasterea group, one of the closest single-cell relatives of metazoans. We also detected novel and divergent SEA domains in a variety of cell surface proteins such as EpCAM, α/ε-sarcoglycan, PTPRR, collectrin/Tmem27, amnionless, CD34, KIAA0319, fibrocystin-like protein, and a number of cadherins. While these proteins are mostly from metazoans or their single cell relatives such as choanoflagellates and Filasterea, fibrocystin-like proteins with SEA domains were found in several other eukaryotic lineages including green algae, Alveolata, Euglenozoa, and Haptophyta, suggesting an ancient evolutionary origin. In addition, the intracellular protein Nucleoporin 54 (Nup54) acquired a divergent SEA domain in choanoflagellates and metazoans. © 2016 The Protein Society.
Activation of Cell Surface Bound 20S Proteasome Inhibits Vascular Cell Growth and Arteriogenesis
Ito, Wulf D.; Lund, Natalie; Zhang, Ziyang; Buck, Friedrich; Lellek, Heinrich; Horst, Andrea; Machens, Hans-Günther; Schunkert, Heribert; Schaper, Wolfgang; Meinertz, Thomas
2015-01-01
Arteriogenesis is an inflammatory process associated with rapid cellular changes involving vascular resident endothelial progenitor cells (VR-EPCs). Extracellular cell surface bound 20S proteasome has been implicated to play an important role in inflammatory processes. In our search for antigens initially regulated during collateral growth mAb CTA 157-2 was generated against membrane fractions of growing collateral vessels. CTA 157-2 stained endothelium of growing collateral vessels and the cell surface of VR-EPCs. CTA 157-2 bound a protein complex (760 kDa) that was identified as 26 kDa α7 and 21 kDa β3 subunit of 20S proteasome in mass spectrometry. Furthermore we demonstrated specific staining of 20S proteasome after immunoprecipitation of VR-EPC membrane extract with CTA 157-2 sepharose beads. Functionally, CTA 157-2 enhanced concentration dependently AMC (7-amino-4-methylcoumarin) cleavage from LLVY (N-Succinyl-Leu-Leu-Val-Tyr) by recombinant 20S proteasome as well as proteasomal activity in VR-EPC extracts. Proliferation of VR-EPCs (BrdU incorporation) was reduced by CTA 157-2. Infusion of the antibody into the collateral circulation reduced number of collateral arteries, collateral proliferation, and collateral conductance in vivo. In conclusion our results indicate that extracellular cell surface bound 20S proteasome influences VR-EPC function in vitro and collateral growth in vivo. PMID:26146628
Identification and isolation of adult liver stem/progenitor cells.
Tanaka, Minoru; Miyajima, Atsushi
2012-01-01
Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.
Yokoyama, S
2000-12-15
Most mammalian somatic cells are unable to catabolize cholesterol and therefore need to export it in order to maintain sterol homeostasis. This mechanism may also function to reduce excessively accumulated cholesterol, which would thereby contribute to prevention or cure of the initial stage of atherosclerotic vascular lesion. High-density lipoprotein (HDL) has been believed to play a main role in this reaction based on epidemiological evidence and in vitro experimental data. At least two independent mechanisms are identified for this reaction. One is non-specific diffusion-mediated cholesterol 'efflux' from cell surface. Cholesterol molecules desorbed from cells can be trapped by various extracellular acceptors including various lipoproteins and albumin, and extracellular cholesterol esterification mainly on HDL may provide a driving force for the net removal of cell cholesterol by maintaining a cholesterol gradient between lipoprotein surface and cell membrane. The other is apolipoprotein-mediated process to generate new HDL by removing cellular phospholipid and cholesterol. The reaction is initiated by the interaction of lipid-free or lipid-poor helical apolipoproteins with cellular surface resulting in assembly of HDL particles with cellular phospholipid and incorporation of cellular cholesterol into the HDL being formed. Thus, HDL has dual functions as an active cholesterol acceptor in the diffusion-mediated pathway and as an apolipoprotein carrier for the HDL assembly reaction. The impairment of the apolipoprotein-mediated reaction was found in Tangier disease and other familial HDL deficiencies to strongly suggest that this is a main mechanism to produce plasma HDL. The causative mutations for this defect was identified in ATP binding cassette transporter protein A1, as a significant step for further understanding of the reaction and cholesterol homeostasis.
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A.; Cousins, Asaph B.; Edwards, Gerald E.
2013-01-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thickleaf), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (Smes), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO2 diffusion (gm), stomatal conductance to gas diffusion (gs), and the gm/gs ratio. While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (Smes) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thickleaf and transpiration rate and a significant positive association between Thickleaf and leaf transpiration efficiency. Interestingly, high gm together with high gm/gs and a low Smes/gm ratio (M resistance to CO2 diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance. PMID:23669746
Giuliani, Rita; Koteyeva, Nuria; Voznesenskaya, Elena; Evans, Marc A; Cousins, Asaph B; Edwards, Gerald E
2013-07-01
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 accessions (representatives of 17 species and eight genomes). Hypotheses of associations within, and between, structure, photosynthesis, and transpiration were tested. Two main clusters of positively interrelated leaf traits were identified: in the first cluster were structural features, leaf thickness (Thick(leaf)), mesophyll (M) cell surface area exposed to intercellular air space per unit of leaf surface area (S(mes)), and M cell size; a second group included functional traits, net photosynthetic rate, transpiration rate, M conductance to CO(2) diffusion (g(m)), stomatal conductance to gas diffusion (g(s)), and the g(m)/g(s) ratio.While net photosynthetic rate was positively correlated with gm, neither was significantly linked with any individual structural traits. The results suggest that changes in gm depend on covariations of multiple leaf (S(mes)) and M cell (including cell wall thickness) structural traits. There was an inverse relationship between Thick(leaf) and transpiration rate and a significant positive association between Thick(leaf) and leaf transpiration efficiency. Interestingly, high g(m) together with high g(m)/g(s) and a low S(mes)/g(m) ratio (M resistance to CO(2) diffusion per unit of cell surface area exposed to intercellular air space) appear to be ideal for supporting leaf photosynthesis while preserving water; in addition, thick M cell walls may be beneficial for plant drought tolerance.
Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu
2010-12-01
Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.
NASA Astrophysics Data System (ADS)
Wang, Lin; Huang, Feijuan; Wu, Zhengzhi; Ma, Rui
2017-04-01
The biocompatibility of the Sprague Dawley (SD) rat osteoblasts, which were cultured on the surfaces of nano-hydroxyapatite/polyetheretherketone (n-HA/PEEK) composites were investigated in this work. The osteoblasts of 24- hour old SD rats were cultured and identified by modified enzymatic digestion in vitro. The morphology and proliferation of cells were observed in CCK-8 regent staining, inverted microscopes, and by scanning electron microscopy (SEM) respectively. The results show that n-HA/PEEK composites have good biocompatibility with SD osteoblasts and that they can promote the growth of the cells that were cultured on the surfaces of the composites. The content of HA in n- HA/PEEK composites plays an important role in cell proliferation.
Bochkov, Yury A; Watters, Kelly; Ashraf, Shamaila; Griggs, Theodor F; Devries, Mark K; Jackson, Daniel J; Palmenberg, Ann C; Gern, James E
2015-04-28
Members of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication. A coding single nucleotide polymorphism (rs6967330, C529Y) was previously linked to greater cell-surface expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared with wild-type CDHR3, cells transfected with the CDHR3-Y529 variant had about 10-fold increases in RV-C binding and progeny yields. We developed a transduced HeLa cell line (HeLa-E8) stably expressing CDHR3-Y529 that supports RV-C propagation in vitro. Modeling of CDHR3 structure identified potential binding sites that could impact the virus surface in regions that are highly conserved among all RV-C types. Our findings identify that the asthma susceptibility gene product CDHR3 mediates RV-C entry into host cells, and suggest that rs6967330 mutation could be a risk factor for RV-C wheezing illnesses.
The search for new antigenic targets in myasthenia gravis.
Cossins, Judith; Belaya, Katsiaryna; Zoltowska, Katarzyna; Koneczny, Inga; Maxwell, Susan; Jacobson, Leslie; Leite, Maria Isabel; Waters, Patrick; Vincent, Angela; Beeson, David
2012-12-01
Around 80% of myasthenia gravis patients have antibodies against the acetylcholine receptor, and 0-60% of the remaining patients have antibodies against the muscle-specific tyrosine kinase, MuSK. Another recently identified antigen is low-density lipoprotein receptor-related protein 4 (Lrp4). To improve the existing assays and widen the search for new antigenic targets, we have employed cell-based assays in which candidate target proteins are expressed on the cell surface of transfected cells and probed with patient sera. These assays, combined with use of myotube cultures to explore the effects of the antibodies, enable us to begin to identify new antigenic targets and test antibody pathogenicity in vitro. © 2012 New York Academy of Sciences.
Pavement cells and the topology puzzle.
Carter, Ross; Sánchez-Corrales, Yara E; Hartley, Matthew; Grieneisen, Verônica A; Marée, Athanasius F M
2017-12-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. © 2017. Published by The Company of Biologists Ltd.
Isolation of Human Colon Stem Cells Using Surface Expression of PTK7.
Jung, Peter; Sommer, Christian; Barriga, Francisco M; Buczacki, Simon J; Hernando-Momblona, Xavier; Sevillano, Marta; Duran-Frigola, Miquel; Aloy, Patrick; Selbach, Matthias; Winton, Douglas J; Batlle, Eduard
2015-12-08
Insertion of reporter cassettes into the Lgr5 locus has enabled the characterization of mouse intestinal stem cells (ISCs). However, low cell surface abundance of LGR5 protein and lack of high-affinity anti-LGR5 antibodies represent a roadblock to efficiently isolate human colonic stem cells (hCoSCs). We set out to identify stem cell markers that would allow for purification of hCoSCs. In an unbiased approach, membrane-enriched protein fractions derived from in vitro human colonic organoids were analyzed by quantitative mass spectrometry. Protein tyrosine pseudokinase PTK7 specified a cell population within human colonic organoids characterized by highest self-renewal and re-seeding capacity. Antibodies recognizing the extracellular domain of PTK7 allowed us to isolate and expand hCoSCs directly from patient-derived mucosa samples. Human PTK7+ cells display features of canonical Lgr5+ ISCs and include a fraction of cells that undergo differentiation toward enteroendocrine lineage that resemble crypt label retaining cells (LRCs). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Label-free screening of niche-to-niche variation in satellite stem cells using functionalized pores
NASA Astrophysics Data System (ADS)
Chapman, Matthew R.; Balakrishnan, Karthik; Conboy, Michael J.; Mohanty, Swomitra; Jabart, Eric; Huang, Haiyan; Hack, James; Conboy, Irina M.; Sohn, Lydia L.
2012-02-01
Combinations of surface markers are currently used to identify muscle satellite cells. Using pores functionalized with specific antibodies and measuring the transit time of cells passing through these pores, we discovered remarkable heterogeneity in the expression of these markers in muscle (satellite) stem cells that reside in different single myofibers. Microniche-specific variation in stem cells of the same organ has not been previously described, as bulk analysis does not discriminate between separate myofibers or even separate hind-leg muscle groups. We found a significant population of Sca-1+ satellite cells that form myotubes, thereby demonstrating the myogenic potential of Sca-1+ cells, which are currently excluded in bulk sorting. Finally, using our label-free pore screening technique, we have been able to quantify directly surface expression of Notch1 without activation of the Notch pathway. We show for the first time Notch1-expression heterogeneity in unactivated satellite cells. The discovery of fiber-to-fiber variations prompts new research into the reasons for such diversity in muscle stem cells.
Pavement cells and the topology puzzle
2017-01-01
D'Arcy Thompson emphasised the importance of surface tension as a potential driving force in establishing cell shape and topology within tissues. Leaf epidermal pavement cells grow into jigsaw-piece shapes, highly deviating from such classical forms. We investigate the topology of developing Arabidopsis leaves composed solely of pavement cells. Image analysis of around 50,000 cells reveals a clear and unique topological signature, deviating from previously studied epidermal tissues. This topological distribution is established early during leaf development, already before the typical pavement cell shapes emerge, with topological homeostasis maintained throughout growth and unaltered between division and maturation zones. Simulating graph models, we identify a heuristic cellular division rule that reproduces the observed topology. Our parsimonious model predicts how and when cells effectively place their division plane with respect to their neighbours. We verify the predicted dynamics through in vivo tracking of 800 mitotic events, and conclude that the distinct topology is not a direct consequence of the jigsaw piece-like shape of the cells, but rather owes itself to a strongly life history-driven process, with limited impact from cell-surface mechanics. PMID:29084800
Gaikwad, Ravi M.; Dokukin, Maxim E.; Iyer, K. Swaminathan; Woodworth, Craig D.; Volkov, Dmytro O.; Sokolov, Igor
2012-01-01
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical interaction between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. PMID:21305062
Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio
2005-03-01
Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.
Tsukaguchi, H; Matsubara, H; Taketani, S; Mori, Y; Seido, T; Inada, M
1995-01-01
Nephrogenic diabetes insipidus (NDI) is most often an X-linked disorder in which urine is not concentrated due to renal resistance to arginine vasopressin. We recently identified four vasopressin type 2 receptor gene mutations in unrelated X-linked NDI families, including R143P, delta V278, R202C, and 804insG. All these mutations reduced ligand binding activity to < 10% of the normal without affecting mRNA accumulation. To elucidate whether the receptors are expressed on the cell surface, we analyzed biosynthesis and localization of tagged or untagged receptors stably expressed in Chinese hamster ovary (CHO) cells, using two antibodies directed against distinct termini. Whole-cell and surface labeling studies revealed that the R202C clone had both surface-localized (50-55 kD) and intracellular proteins (40 and 75 kD), similar to the wild-type AVPR2 clone, whereas the R143P and delta V278 clones lacked the surface receptors, despite relatively increased intracellular components. The 804insG mutant cell produced no proteins despite an adequate mRNA level. Immunofluorescence staining confirmed that the R202C mutant reaches the cell surface, whereas the R143P and delta V278 mutants are retained within the cytoplasmic compartment. Thus, R202C, R143P/delta V278, and 804insG result in three distinct phenotypes, that is, a simple binding impairment at the cell surface, blocked intracellular transport, and ineffective biosynthesis or/and accelerated degradation of the receptor, respectively, and therefore are responsible for NDI. This phenotypic classification will help understanding of molecular pathophysiology of this disorder. Images PMID:7560098
Wang, Shunyou; Tran, Linh M.; Goldstein, Andrew S.; Lawson, Devon; Chen, Donghui; Li, Yunfeng; Guo, Changyong; Zhang, Baohui; Fazli, Ladan; Gleave, Martin; Witte, Owen N.; Garraway, Isla P.; Wu, Hong
2012-01-01
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics. PMID:22880034
Imaging of blood antigen distribution on blood cells by thermal lens microscopy
NASA Astrophysics Data System (ADS)
Kimura, Hiroko; Sekiguchi, Kazuya; Nagao, Fumiko; Mukaida, Masahiro; Kitamori, Takehiko; Sawada, Tsuguo
2000-05-01
Blood group antigens on a cell were measured by a new microscopic method, i.e. thermal lens microscopy which involves spectrometry using a laser-induced thermal-lens effect. The blood group antigen was immunologically stained using antibody labeled with colloidal gold. Human leukocyte antigens (HLA) on lymphocytes and mononuclear leukocytes were observed by the thermal lens microscope, and Lewis blood group antigens on erythrocytes and polymorphonuclear leukocytes were also observed. The antigen distribution on each cell-surface was imaged using this technique. In spite of convex surface of living cells, colloidal gold was correctly quantified by adjusting the deviation of the focal point of the probe laser by the phase of the signal. In the measurement of leukocyte antigens, antigens of HLA-A, -B, -C loci on the lymphocytes were identified and quantitated by using a single cell. The image of HLA-A, -B, -C antigen distribution on a mononuclear leukocyte was obtained. In the measurement of erythrocyte antigens, a small quantity of Lewis antigens was detected on the cord erythrocytes. Localized small quantities of membrane antigens are better quantitated without extraction or cytolysis. Our thermal lens microscope is a powerful and highly sensitive analytical tool for detecting and quantitating localized antigens in single cells and/or cell-surface-associated molecules.
Kushwaha, Ambuj K; Apolis, Liana; Ito, Daisuke; Desai, Sanjay A
2018-05-03
Malaria parasites export many proteins into their host erythrocytes and increase membrane permeability to diverse solutes. Although most solutes use a broad-selectivity channel known as the plasmodial surface anion channel, increased Ca ++ uptake is mediated by a distinct, poorly characterised mechanism that appears to be essential for the intracellular parasite. Here, we examined infected cell Ca ++ uptake with a kinetic fluorescence assay and the virulent human pathogen, Plasmodium falciparum. Cell surface labelling with N-hydroxysulfosuccinimide esters revealed differing effects on transport into infected and uninfected cells, indicating that Ca ++ uptake at the infected cell surface is mediated by new or altered proteins at the host membrane. Conditional knockdown of PTEX, a translocon for export of parasite proteins into the host cell, significantly reduced infected cell Ca ++ permeability, suggesting involvement of parasite-encoded proteins trafficked to the host membrane. A high-throughput chemical screen identified the first Ca ++ transport inhibitors active against Plasmodium-infected cells. These novel chemical scaffolds inhibit both uptake and parasite growth; improved in vitro potency at reduced free [Ca ++ ] is consistent with parasite killing specifically via action on one or more Ca ++ transporters. These inhibitors should provide mechanistic insights into malaria parasite Ca ++ transport and may be starting points for new antimalarial drugs. © 2018 John Wiley & Sons Ltd.
Mckeown, Lynn; Burnham, Matthew P; Hodson, Charlotte; Jones, Owen T
2008-10-31
The dynamic expression of voltage-gated potassium channels (Kvs) at the cell surface is a fundamental factor controlling membrane excitability. In exploring possible mechanisms controlling Kv surface expression, we identified a region in the extracellular linker between the first and second of the six (S1-S6) transmembrane-spanning domains of the Kv1.4 channel, which we hypothesized to be critical for its biogenesis. Using immunofluorescence microscopy, flow cytometry, patch clamp electrophysiology, and mutagenesis, we identified a single threonine residue at position 330 within the Kv1.4 S1-S2 linker that is absolutely required for cell surface expression. Mutation of Thr-330 to an alanine, aspartate, or lysine prevented surface expression. However, surface expression occurred upon co-expression of mutant and wild type Kv1.4 subunits or mutation of Thr-330 to a serine. Mutation of the corresponding residue (Thr-211) in Kv3.1 to alanine also caused intracellular retention, suggesting that the conserved threonine plays a generalized role in surface expression. In support of this idea, sequence comparisons showed conservation of the critical threonine in all Kv families and in organisms across the evolutionary spectrum. Based upon the Kv1.2 crystal structure, further mutagenesis, and the partial restoration of surface expression in an electrostatic T330K bridging mutant, we suggest that Thr-330 hydrogen bonds to equally conserved outer pore residues, which may include a glutamate at position 502 that is also critical for surface expression. We propose that Thr-330 serves to interlock the voltage-sensing and gating domains of adjacent monomers, thereby yielding a structure competent for the surface expression of functional tetramers.
2007-03-26
Adjuvant adsorption; Toxin . Introduction Ricin, a highly potent toxin derived from the castor bean, ills human cells by depurinating a specific...moieties n the cell surface. Antibodies elicited against either the ricin (RTA) or B-chain can neutralize the toxin, although anti- Abbreviations: RTA...human B- cell epitope for RTA has been identified by astelletti et al. [6] from cancer patients treated with a ricin- onjugate immunotoxin, and lies
Turner, Lauren Senty; Kanamoto, Taisei; Unoki, Takeshi; Munro, Cindy L.; Wu, Hui; Kitten, Todd
2009-01-01
Streptococcus sanguinis is a member of the viridans group of streptococci and a leading cause of the life-threatening endovascular disease infective endocarditis. Initial contact with the cardiac infection site is likely mediated by S. sanguinis surface proteins. In an attempt to identify the proteins required for this crucial step in pathogenesis, we searched for surface-exposed, cell wall-anchored proteins encoded by S. sanguinis and then used a targeted signature-tagged mutagenesis (STM) approach to evaluate their contributions to virulence. Thirty-three predicted cell wall-anchored proteins were identified—a number much larger than those found in related species. The requirement of each cell wall-anchored protein for infective endocarditis was assessed in the rabbit model. It was found that no single cell wall-anchored protein was essential for the development of early infective endocarditis. STM screening was also employed for the evaluation of three predicted sortase transpeptidase enzymes, which mediate the cell surface presentation of cell wall-anchored proteins. The sortase A mutant exhibited a modest (∼2-fold) reduction in competitiveness, while the other two sortase mutants were indistinguishable from the parental strain. The combined results suggest that while cell wall-anchored proteins may play a role in S. sanguinis infective endocarditis, strategies designed to interfere with individual cell wall-anchored proteins or sortases would not be effective for disease prevention. PMID:19703977
The effects of nanophase ceramic materials on select functions of human mesenchymal stem cells
NASA Astrophysics Data System (ADS)
Dulgar-Tulloch, Aaron Joseph
2005-11-01
Modification of the chemistry and surface topography of nanophase ceramics can provide biomaterial formulations capable of directing the functions of adherent cells. This effect relies on the type, amount, and conformation of adsorbed proteins that mediate the adhesion of mesenchymally-descended lineages. The mechanisms driving this response are not yet well-understood and have not been investigated for human mesenchymal stem cells (HMSCs), a progenitor-lineage critical to orthopaedic biomaterials. The present study addressed these needs by examining the in vitro adhesion, proliferation, and osteogenic differentiation of HMSCs as a function of substrate chemistry and grain size, with particular attention to the protein-mediated mechanisms of cell adhesion. Alumina, titania, and hydroxyapatite substrates were prepared with 1500, 200, 50, and 24 (alumina only) nm grain sizes, and characterized with respect to surface properties, porosity, composition, and phase. Adhesion of HMSCs was dependent upon both chemistry and grain size. Specifically, adhesion on alumina and hydroxyapatite was reduced on 50 and 24 (alumina only) nm surfaces, as compared to 1500 and 200 nm surfaces, while adhesion on titania substrates was independent of grain size. Investigation into the protein-mediated mechanisms of this response identified vitronectin as the dominant adhesive protein, demonstrated random protein distribution across the substrate surface without aggregation or segregation, and confirmed the importance of the type, amount, and conformation of adsorbed proteins in cell adhesion. Minimal cell proliferation was observed on 50 and 24 (alumina only) nm substrates of any chemistry. Furthermore, cell proliferation was up-regulated on 200 nm substrates after 7 days of culture. Osteogenic differentiation was not detected on 50 nm substrates throughout the 28 day culture period. In contrast, osteogenic differentiation was strongly enhanced on 200 nm substrates, occurring approximately 7 days earlier and in greater magnitude than that observed on 1500 nm substrates. In summary, the current study elucidated the chemical and topographical cues necessary to optimize the vitronectin-mediated adhesion, proliferation, and differentiation of human mesenchymal stem cells on ceramic surfaces. These results expand the understanding of surface-mediated cell functions and provide information pertinent to the design of next-generation orthopaedic and tissue engineering biomaterials.
Interleukin 18 function requires both interleukin 18 receptor and Na-Cl co-transporter
Wang, Jing; Sun, Chongxiu; Gerdes, Norbert; Liu, Conglin; Liao, Mengyang; Liu, Jian; Shi, Michael A.; He, Aina; Zhou, Yi; Sukhova, Galina K.; Chen, Huimei; Cheng, Xianwu; Kuzuya, Masafumi; Murohara, Toyoaki; Zhang, Jie; Cheng, Xiang; Jiang, Mengmeng; Shull, Gary E.; Rogers, Shaunessy; Yang, Chao-Ling; Ke, Qiang; Jelen, Sabina; Bindels, René; Ellison, David H.; Jarolim, Petr; Libby, Peter; Shi, Guo-Ping
2015-01-01
Interleukin-18 (IL18) participates in atherogenesis through several putative mechanisms1,2. Interruption of IL18 action reduces atherosclerosis in mice3,4. This study shows that the absence of IL18 receptor (IL18r) does not affect atherosclerosis in apolipoprotein E-deficient (Apoe−/−) mice, nor does it affect IL18 cell surface binding or signaling. IL18 antibody-mediated immunoprecipitation identified an interaction between IL18 and Na-Cl co-transporter (NCC), a 12-transmembrane-domain ion transporter protein preferentially expressed in the kidney5. Yet, we find NCC expression and colocalization with IL18r in atherosclerotic lesions and both molecules form a complex. IL18 also binds to the cell surface and induces cell signaling and down-stream cytokine expression in NCC-transfected COS-7 cells that do not express IL18r. In Apoe−/− mice, combined deficiency of IL18r and NCC, but not single deficiency, protects mice from atherosclerosis. Peritoneal macrophages from Apoe−/− mice or those lacking IL18r or NCC respond to IL18 binding or IL18 induction of cell signaling and cytokine and chemokine production, but those with combined deficiency of IL18r and NCC do not. This study identifies NCC as an IL18-binding protein that coordinates with IL18r in cell signaling, inflammatory molecule expression, and experimental atherogenesis. PMID:26099046
Barr, S; Hill, E; Bayat, A
2010-04-26
Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue-derived fibroblasts react and align to these surfaces. Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue-derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response.
Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole
2018-01-01
Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Gong, Wenping; Xiong, Xiaolu; Qi, Yong; Jiao, Jun; Duan, Changsong; Wen, Bohai
2014-01-01
Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, is the most pathogenic member among Rickettsia spp. Surface-exposed proteins (SEPs) of R. rickettsii may play important roles in its pathogenesis or immunity. In this study, R. rickettsii organisms were surface-labeled with sulfo-NHS-SS-biotin and the labeled proteins were affinity-purified with streptavidin. The isolated proteins were separated by two-dimensional electrophoresis, and 10 proteins were identified among 23 protein spots by electrospray ionization tandem mass spectrometry. Five (OmpA, OmpB, GroEL, GroES, and a DNA-binding protein) of the 10 proteins were previously characterized as surface proteins of R. rickettsii. Another 5 proteins (Adr1, Adr2, OmpW, Porin_4, and TolC) were first recognized as SEPs of R. rickettsii herein. The genes encoding the 5 novel SEPs were expressed in Escherichia coli cells, resulting in 5 recombinant SEPs (rSEPs), which were used to immunize mice. After challenge with viable R. rickettsii cells, the rickettsial load in the spleen, liver, or lung of mice immunized with rAdr2 and in the lungs of mice immunized with other rSEPs excluding rTolC was significantly lower than in mice that were mock-immunized with PBS. The in vitro neutralization test revealed that sera from mice immunized with rAdr1, rAdr2, or rOmpW reduced R. rickettsii adherence to and invasion of vascular endothelial cells. The immuno-electron microscopic assay clearly showed that the novel SEPs were located in the outer and/or inner membrane of R. rickettsii. Altogether, the 5 novel SEPs identified herein might be involved in the interaction of R. rickettsii with vascular endothelial cells, and all of them except TolC were protective antigens. PMID:24950252
Farrag, Hala Abdallah; A-Karam El-Din, Alzahraa; Mohamed El-Sayed, Zeinab Galal; Abdel-Latifissa, Soheir; Kamal, Mona Mohamed
2015-06-01
Technological advances such as long-term indwelling catheters have created milieu in which infections are a major complication. Thus it is essential to be able to recognize, diagnose, and treat infections occurring in immunocompromised patients. Adherence assay and quantitation of biofilms was performed by a spectrophotometric method, hydrophobicity was evaluated by adhesion to p-xylene. The minimum inhibitory concentration (MIC) of Nystatin was carried out by a well dilution method. Out of 100 bladder cancer patients, 23 pathogenic yeast isolates were identified. The samples were taken from urinary catheters and urine collected from their attached drainage bags. Pathogenic yeast identified were species of Candida, Cryptococcus, Saccharomyces, Blastoschizomyces, Trichosporn, Hansenula, Prototheca and Rhodotorula. With the exception of Rhodotorula minuta, the yeast were sensitive to the antimycotic agent (Nystatin) used before and after in vitro gamma irradiation at 24.41 Gy as measured by a disc diffusion method. All tested yeast strains were slime producers and showed positive adherence reactions. There were considerable differences in adherence measurements after irradiation. An increase in adherence measurement values (using a spectrophotometric method) after irradiation were detected in four strains whereas eight other strains showed a reduction in their adherence reaction. The cell surface hydrophobicity (CSH) was evaluated by adhesion to p-xylene. Candida tropicalis showed a hydrophobic reaction with an increase in the cell surface hydrophobicity after irradiation. Scanning electron microscopy of irradiated C. tropicalis showed marked abnormalities in cell shape and size with significant reduction in adherence ability at the MIC level of Nystatin (4 μg/ml). More basic research at the level of pathogenesis and catheter substance is needed to design novel strategies to prevent fungal adherence and to inhibit biofilm formation.
Site Directed Nucleation and Growth of Ceramic Films on Metallic Surfaces
2009-04-30
the ultimate goal being the cell-free, nanocrystalline assembly of adaptive bioceramic material systems. The ability to control or determine the...applications/technology developments for this research include adaptive materials, wear-resistant coatings, and optical coatings and gratings, and many...by Checa et al., which identified lipid bound vesicles that form the surface membrane of gastropod nacre.19 Folia formation was observed by
Nucleolin: acharan sulfate–binding protein on the surface of cancer cells
Joo, Eun Ji; ten Dam, Gerdy B.; van Kuppevelt, Toin H.; Toida, Toshihiko; Linhardt, Robert J.; Kim, Yeong Shik
2005-01-01
Glycosaminoglycans (GAGs) are complex polysaccharides that participate in the regulation of physiological processes through the interactions with a wide variety of proteins. Acharan sulfate (AS), isolated from the giant African snail Achatina fulica, primarily consists of the repeating disaccharide structure α-D-N-acetylglucosaminyl (1→4) 2-sulfoiduronic acid. Exogenous AS was injected subcutaneously near the tumor tissue in C57BL/6 mice that had been implanted with Lewis lung carcinoma cells (LLCs). The location of AS in the tumor was assessed by staining of sectioned tissues with alcian blue and periodic acid–Schiff (PAS) reagent. In vitro assays indicated binding of cells to 50 μg/ml AS (or heparin) after a 5-h incubation. Immunofluorescence assays, using anti-AS antibody, detected AS at the cell surface. The outer-surface of LLCs were next biotinylated to identify the AS-binding proteins. Biotinylated cells were lysed, and the lysates were fractionated on the AS affinity column using a stepwise salt gradient (0, 0.1, 0.3, 0.5, 0.7, 1.0, and 2.0 M). The fractions were analyzed by SDS–PAGE with silver staining and western blotting. We focused on the proteins with high affinity for AS (eluting at 1 M NaCl) and detected only two bands by western blotting. ESI Q-TOF MS analysis of one of these bands, molecular weight ~110 kDa, showed it to be nucleolin. A phosphorylated form of nucleolin on the surface of cells acts as a cell surface receptor for a variety of ligands, including growth factors (i.e., basic fibroblast growth factor) and chemokines (i.e., midkine). These results show that nucleolin is one of several AS-binding proteins and suggest that AS might demonstrate its tumor growth inhibitory activity by binding the nucleolin receptor protein on the surface of cancer cells. PMID:15329357
Huber, Sandra; Theiler, Romina; de Quervain, Daniel; Wiens, Olga; Karangenc, Tulin; Heussler, Volker; Dobbelaere, Dirk
2017-01-01
ABSTRACT Theileria is an apicomplexan parasite whose presence within the cytoplasm of a leukocyte induces cellular transformation and causes uncontrolled proliferation and clonal expansion of the infected cell. The intracellular schizont utilizes the host cell’s own mitotic machinery to ensure its distribution to both daughter cells by associating closely with microtubules (MTs) and incorporating itself within the central spindle. We show that CLASP1, an MT-stabilizing protein that plays important roles in regulating kinetochore-MT attachment and central spindle positioning, is sequestered at the Theileria annulata schizont surface. We used live-cell imaging and immunofluorescence in combination with MT depolymerization assays to demonstrate that CLASP1 binds to the schizont surface in an MT-independent manner throughout the cell cycle and that the recruitment of the related CLASP2 protein to the schizont is MT dependent. By transfecting Theileria-infected cells with a panel of truncation mutants, we found that the kinetochore-binding domain of CLASP1 is necessary and sufficient for parasite localization, revealing that CLASP1 interaction with the parasite occurs independently of EB1. We overexpressed the MT-binding domain of CLASP1 in parasitized cells. This exhibited a dominant negative effect on host MT stability and led to altered parasite size and morphology, emphasizing the importance of proper MT dynamics for Theileria partitioning during host cell division. Using coimmunoprecipitation, we demonstrate that CLASP1 interacts, directly or indirectly, with the schizont membrane protein p104, and we describe for the first time TA03615, a Theileria protein which localizes to the parasite surface, where it has the potential to participate in parasite-host interactions. IMPORTANCE T. annulata, the only eukaryote known to be capable of transforming another eukaryote, is a widespread parasite of veterinary importance that puts 250 million cattle at risk worldwide and limits livestock development for some of the poorest people in the world. Crucial to the pathology of Theileria is its ability to interact with host microtubules and the mitotic spindle of the infected cell. This study builds on our previous work in investigating the host and parasite molecules involved in mediating this interaction. Because it is not possible to genetically manipulate Theileria schizonts, identifying protein interaction partners is critical to understanding the function of parasite proteins. By identifying two Theileria surface proteins that are involved in the interaction between CLASP1 and the parasite, we provide important insights into the molecular basis of Theileria persistence within a dividing cell. PMID:28861517
Stabilization of exosome-targeting peptides via engineered glycosylation.
Hung, Michelle E; Leonard, Joshua N
2015-03-27
Exosomes are secreted extracellular vesicles that mediate intercellular transfer of cellular contents and are attractive vehicles for therapeutic delivery of bimolecular cargo such as nucleic acids, proteins, and even drugs. Efficient exosome-mediated delivery in vivo requires targeting vesicles for uptake by specific recipient cells. Although exosomes have been successfully targeted to several cellular receptors by displaying peptides on the surface of the exosomes, identifying effective exosome-targeting peptides for other receptors has proven challenging. Furthermore, the biophysical rules governing targeting peptide success remain poorly understood. To evaluate one factor potentially limiting exosome delivery, we investigated whether peptides displayed on the exosome surface are degraded during exosome biogenesis, for example by endosomal proteases. Indeed, peptides fused to the N terminus of exosome-associated transmembrane protein Lamp2b were cleaved in samples derived from both cells and exosomes. To suppress peptide loss, we engineered targeting peptide-Lamp2b fusion proteins to include a glycosylation motif at various positions. Introduction of this glycosylation motif both protected the peptide from degradation and led to an increase in overall Lamp2b fusion protein expression in both cells and exosomes. Moreover, glycosylation-stabilized peptides enhanced targeted delivery of exosomes to neuroblastoma cells, demonstrating that such glycosylation does not ablate peptide-target interactions. Thus, we have identified a strategy for achieving robust display of targeting peptides on the surface of exosomes, which should facilitate the evaluation and development of new exosome-based therapeutics. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H
2015-01-01
Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin-independent endocytosis, likely with the help of a cellular surface protein. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Shigeki; Kulkarni, Ashok B., E-mail: ak40m@nih.gov
2010-07-30
Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understandingmore » of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.« less
Hussain, Muzaffar; Haggar, Axana; Heilmann, Christine; Peters, Georg; Flock, Jan-Ingmar; Herrmann, Mathias
2002-06-01
To initiate invasive infection, Staphylococcus aureus must adhere to host substrates, such as the extracellular matrix or eukaryotic cells, by virtue of different surface proteins (adhesins). Recently, we identified a 60-kDa cell-secreted extracellular adherence protein (Eap) of S. aureus strain Newman with broad-spectrum binding characteristics (M. Palma, A. Haggar, and J. I. Flock, J. Bacteriol. 181:2840-2845, 1999), and we have molecularly confirmed Eap to be an analogue of the previously identified major histocompatibility complex class II analog protein (Map) (M. Hussain, K. Becker, C. von Eiff, G. Peter, and M. Herrmann, Clin. Diagn. Lab. Immunol. 8:1281-1286, 2001). Previous analyses of the Eap/Map function performed with purified protein did not allow dissection of its precise role in the complex situation of the staphylococcal whole cell presenting several secreted and wall-bound adhesins. Therefore, the role of Eap was investigated by constructing a stable eap::ermB deletion in strain Newman and by complementation of the mutant. Patterns of extracted cell surface proteins analyzed both by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Western ligand assays with various adhesive matrix molecules clearly confirmed the absence of Eap in the mutant. However, binding and adhesion tests using whole staphylococcal cells demonstrated that both the parent and mutant strains bound equally well to fibronectin- and fibrinogen-coated surfaces, possibly due to their recognition by other staphylococcal adhesins. Furthermore, Eap mediated staphylococcal agglutination of both wild-type and mutant cells. In contrast, the mutant adhered to a significantly lesser extent to cultured fibroblasts (P < 0.001) than did the wild type, while adherence was restorable upon complementation. Furthermore, adherence to both epithelial cells (P < 0.05) and fibroblasts (not significant) could be blocked with antibodies against Eap, whereas preimmune serum was not active. In conclusion, Eap may contribute to pathogenicity by promoting adhesion of whole staphylococcal cells to complex eukaryotic substrates.
Jonas, Steven J; Stieg, Adam Z; Richardson, Wade; Guo, Shuling; Powers, David N; Wohlschlegel, James; Dunn, Bruce
2015-02-05
This Letter examines the physical and chemical changes that occur at the interface of methyl-terminated alkanethiol self-assembled monolayers (SAMs) after exposure to cell culture media used to derive embryoid bodies (EBs) from pluripotent stem cells. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy analysis of the SAMs indicates that protein components within the EB cell culture medium preferentially adsorb at the hydrophobic interface. In addition, we examined the adsorption process using surface plasmon resonance and atomic force microscopy. These studies identify the formation of a porous, mat-like adsorbed protein film with an approximate thickness of 2.5 nm. Captive bubble contact angle analysis reveals a shift toward superhydrophilic wetting behavior at the cell culture interface due to adsorption of these proteins. These results show how EBs are able to remain in suspension when derived on hydrophobic materials, which carries implications for the rational design of suspension culture interfaces for lineage specific stem-cell differentiation.
Mazzatti, Dawn J; Pawelec, Graham; Longdin, Robin; Powell, Jonathan R; Forsey, Rosalyn J
2007-06-05
The adaptive immune response requires waves of T-cell clonal expansion on contact with pathogen and elimination after clearance of the source of antigen. However, lifelong persistent infections with common viruses cause chronic antigenic stimulation which takes its toll on adaptive immunity in late life. Chronic antigenic stress results in deregulation of the T-cell response and accumulation of anergic cells. Longitudinal studies of the elderly show that this impacts on survival. Identifying the nature of the defects in chronically-stimulated T-cells and protein bio-markers of these dysfunctional cells would help to understand age-associated compromised T-cell function (immunosenescence) and facilitate the development of targeted intervention strategies.The purpose of this work was to use surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) to analyse proteins associated with T-cell senescence in order to identify potential bio-markers. Clonal populations of T-cells isolated from elderly octogenarian and centenarian donors were grown in vitro until senescence, and early passage and late passage (pre-senescent) cells were analysed using SELDI-TOF-MS ProteinChip arrays. Discriminant analysis identified several protein or peptide peaks in the region of 14.5-16.5 kDa that were associated with T-cell clone senescence. Human profilin-1, a ubiquitous protein associated with actin remodelling and cellular motility was unambiguously identified. Altered expression of profilin-1 in senescent T-cell clones was confirmed by Western blot analysis. Due to the proposed roles of profilin-1 in cellular survival, cytoskeleton remodelling, motility, and proliferation, it is hypothesised that differential expression of profilin-1 in ageing may contribute directly to immunosenescence.
Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel; Riester, Scott M; Garces, Catalina Galeano; Paradise, Christopher R; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee-Jeong Im; Larson, A Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B; van Wijnen, Andre J
2016-08-11
Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria. Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple System Atrophy: Clinicaltrials.gov NCT02315027 . Registered October 31, 2014. Efficacy and Safety of Adult Human Mesenchymal Stem Cells to Treat Steroid Refractory Acute Graft Versus Host Disease. Clinicaltrials.gov NCT00366145 . Registered August 17, 2006. A Dose-escalation Safety Trial for Intrathecal Autologous Mesenchymal Stem Cell Therapy in Amyotrophic Lateral Sclerosis. Clinicaltrials.gov NCT01609283 . Registered May 18, 2012.
NASA Astrophysics Data System (ADS)
Lee, Sang-Min; Lee, Ho; Kim, Jin-Ho; Lee, Paul S.; Lee, Jai-Young
2001-04-01
For the purpose of developing a Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out. After careful alloy design of ZrMn2-based hydrogen storage alloys through varying their stoichiometry by means of substituting or adding alloying elements, the Zr0.9Ti0.1(Mn0.7V0.5Ni1.4)0.92 with high capacity (392 mAh/g at the 0.25C) and improved performance (comparable to that of commercialized AB5 type alloy) was developed. Another endeavor was made to improve the poor activation property and the low rate capability of the developed Zr-based Laves phase alloy for commercialization. The combination method of hot-immersion and slow-charging was introduced. It was found that electrode activation was greatly improved after hot immersion at 80°C for 12h followed by charging at 0.05C. The effects of this method are discussed in comparison with other activation methods. The combination method was successfully applied to the formation process of 80 Ah Ni/MH cells. A series of systematic investigations has been rendered to analyze the inner cell pressure characteristics of a sealed type Ni-MH battery. It was found that the increase of inner cell pressure in the sealed type Ni/MH battery of the above-mentioned Zr-Ti-Mn-V-Ni alloy was mainly due to the accumulation of oxygen gas during charge/discharge cycling. The fact identified that the surface catalytic activity was affected more dominantly by the oxygen recombination reaction than the reaction surface area was also identified. In order to improve the surface catalytic activity of a Zr-Ti-Mn-V-Ni alloy, which is closely related to the inner pressure behavior in a sealed cell, the electrode was fabricated by mixing the alloy with Cu powder and a filamentary type of Ni and replacing 75% of the carbon black with them; thus, the inner cell pressure rarely increases with cycles due to the active gas recombination reaction. Measurements of the surface area of the electrode and the surface catalytic activity showed that the surface catalytic activity for the oxygen recombination reaction was greatly improved by the addition of Cu powder and the filamentary type of Ni. Finally, we have collaborated with Hyundai Motors Company on fabrication of the 80Ah cells for Electric Vehicles and evaluated the cell performance.
NASA Astrophysics Data System (ADS)
Yanes, Rolando Eduardo
Mesoporous silica nanoparticles (MSNs) are attractive drug delivery vehicle candidates due to their biocompatibility, stability, high surface area and efficient cellular uptake. In this dissertation, I discuss three aspects of MSNs' cellular behavior. First, MSNs are targeted to primary and metastatic cancer cell lines, then their exocytosis from cancer cells is studied, and finally they are used to recover intracellular proteins. Targeting of MSNs to primary cancer cells is achieved by conjugating transferrin on the surface of the mesoporous framework, which resulted in enhancement of nanoparticle uptake and drug delivery efficacy in cells that overexpress the transferrin receptor. Similarly, RGD peptides are used to target metastatic cancer cell lines that over-express integrin alphanubeta3. A circular RGD peptide is bound to the surface of MSNs and the endocytosis and cell killing efficacy of camptothecin loaded nanoparticles is significantly improved in cells that express the target receptor. Besides targeting, I studied the ultimate fate of phosphonate coated mesoporous silica nanoparticles inside cells. I discovered that the nanoparticles are exocytosed from cells through lysosomal exocytosis. The nanoparticles are exocytosed in intact form and the time that they remain inside the cells is affected by the surface properties of the nanoparticles and the type of cells. Cells that have a high rate of lysosomal exocytosis excrete the nanoparticles rapidly, which makes them more resistant to drug loaded nanoparticles because the amount of drug that is released inside the cell is limited. When the exocytosis of MSNs is inhibited, the cell killing efficacy of nanoparticles loaded with camptothecin is enhanced. The discovery that MSNs are exocytosed by cells led to a study to determine if proteins could be recovered from the exocytosed nanoparticles. The procedure to isolate exocytosed zinc-doped iron core MSNs and identify the proteins bound to them was developed. This serves as a foundation to use MSNs as protein harvesting tools and investigate protein expression in cancer cells.
Leung, Hau Wan; Moerkamp, Asja T; Padmanabhan, Jayanthi; Ng, Sze-Wai; Goumans, Marie-José; Choo, Andre
2015-05-01
Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fong-Ngern, Kedsarin; Sueksakit, Kanyarat; Thongboonkerd, Visith
2016-07-01
Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical membrane of MDCK cells. However, their functional role as potential crystal receptors had not been validated. The present study aimed to address the potential role of heat shock protein 90 (HSP90) as a COM crystal receptor. The apical membrane was isolated from polarized MDCK cells by the peeling method and recovered proteins were incubated with COM crystals. Western blot analysis confirmed the presence of HSP90 in the apical membrane and the crystal-bound fraction. Immunofluorescence staining without permeabilization and laser-scanning confocal microscopy confirmed the surface HSP90 expression on the apical membrane of the intact cells. Crystal adhesion assay showed that blocking surface HSP90 by specific anti-HSP90 antibody and knockdown of HSP90 by small interfering RNA (siRNA) dramatically reduced crystal binding on the apical surface of MDCK cells (by approximately 1/2 and 2/3, respectively). Additionally, crystal internalization assay revealed the presence of HSP90 on the membrane of endocytic vesicle containing the internalized COM crystal. Moreover, pretreatment of MDCK cells with anti-HSP90 antibody significantly reduced crystal internalization (by approximately 1/3). Taken together, our data indicate that HSP90 serves as a potential receptor for COM crystals on the apical membrane of renal tubular epithelial cells and is involved in endocytosis/internalization of the crystals into the cells.
Wang, Da-Zhi; Dong, Hong-Po; Li, Cheng; Xie, Zhang-Xian; Lin, Lin; Hong, Hua-Sheng
2011-01-01
The cell wall is an important subcellular component of dinoflagellate cells with regard to various aspects of cell surface-associated ecophysiology, but the full range of cell wall proteins (CWPs) and their functions remain to be elucidated. This study identified and characterized CWPs of a toxic dinoflagellate, Alexandrium catenella, using a combination of 2D fluorescence difference gel electrophoresis (DIGE) and MALDI TOF-TOF mass spectrometry approaches. Using sequential extraction and temperature shock methods, sequentially extracted CWPs and protoplast proteins, respectively, were separated from A. catenella. From the comparison between sequentially extracted CWPs labeled with Cy3 and protoplast proteins labeled with Cy5, 120 CWPs were confidently identified in the 2D DIGE gel. These proteins gave positive identification of protein orthologues in the protein database using de novo sequence analysis and homology-based search. The majority of the prominent CWPs identified were hypothetical or putative proteins with unknown function or no annotation, while cell wall modification enzymes, cell wall structural proteins, transporter/binding proteins, and signaling and defense proteins were tentatively identified in agreement with the expected role of the extracellular matrix in cell physiology. This work represents the first attempt to investigate dinoflagellate CWPs and provides a potential tool for future comprehensive characterization of dinoflagellate CWPs and elucidation of their physiological functions. PMID:21904561
van de Kooij, Bert; Verbrugge, Inge; de Vries, Evert; Gijsen, Merel; Montserrat, Veronica; Maas, Chiel; Neefjes, Jacques; Borst, Jannie
2013-01-01
The eleven members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family are relatively unexplored. Upon exogenous (over)expression, a number of these ligases can affect the trafficking of membrane molecules. However, only for MARCH-1 endogenous functions have been demonstrated. For the other endogenous MARCH proteins, no functions or substrates are known. We report here that TRAIL-R1 is a physiological substrate of the endogenous MARCH-8 ligase. Human TRAIL-R1 and R2 play a role in immunosurveillance and are targets for cancer therapy, because they selectively induce apoptosis in tumor cells. We demonstrate that TRAIL-R1 is down-regulated from the cell surface, with great preference over TRAIL-R2, by exogenous expression of MARCH ligases that are implicated in endosomal trafficking, such as MARCH-1 and -8. MARCH-8 attenuated TRAIL-R1 cell surface expression and apoptosis signaling by virtue of its ligase activity. This suggested that ubiquitination of TRAIL-R1 was instrumental in its down-regulation by MARCH-8. Indeed, in cells with endogenous MARCH expression, TRAIL-R1 was ubiquitinated at steady-state, with the conserved membrane-proximal lysine 273 as one of the potential acceptor sites. This residue was also essential for the interaction of TRAIL-R1 with MARCH-1 and MARCH-8 and its down-regulation by these ligases. Gene silencing identified MARCH-8 as the endogenous ligase that ubiquitinates TRAIL-R1 and attenuates its cell surface expression. These findings reveal that endogenous MARCH-8 regulates the steady-state cell surface expression of TRAIL-R1. PMID:23300075
Heim, Kyle P.; Sullan, Ruby May A.; Crowley, Paula J.; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F.; Brady, L. Jeannine
2015-01-01
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. PMID:25666624
Heim, Kyle P; Sullan, Ruby May A; Crowley, Paula J; El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Tang, Wenxing; Besingi, Richard; Dufrene, Yves F; Brady, L Jeannine
2015-04-03
P1 (antigen I/II) is a sucrose-independent adhesin of Streptococcus mutans whose functional architecture on the cell surface is not fully understood. S. mutans cells subjected to mechanical extraction were significantly diminished in adherence to immobilized salivary agglutinin but remained immunoreactive and were readily aggregated by fluid-phase salivary agglutinin. Bacterial adherence was restored by incubation of postextracted cells with P1 fragments that contain each of the two known adhesive domains. In contrast to untreated cells, glutaraldehyde-treated bacteria gained reactivity with anti-C-terminal monoclonal antibodies (mAbs), whereas epitopes recognized by mAbs against other portions of the molecule were masked. Surface plasmon resonance experiments demonstrated the ability of apical and C-terminal fragments of P1 to interact. Binding of several different anti-P1 mAbs to unfixed cells triggered release of a C-terminal fragment from the bacterial surface, suggesting a novel mechanism of action of certain adherence-inhibiting antibodies. We also used atomic force microscopy-based single molecule force spectroscopy with tips bearing various mAbs to elucidate the spatial organization and orientation of P1 on living bacteria. The similar rupture lengths detected using mAbs against the head and C-terminal regions, which are widely separated in the tertiary structure, suggest a higher order architecture in which these domains are in close proximity on the cell surface. Taken together, our results suggest a supramolecular organization in which additional P1 polypeptides, including the C-terminal segment originally identified as antigen II, associate with covalently attached P1 to form the functional adhesive layer. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Ayubianmarkazi, Nader; Karimi, Mohammadreza; Koohkan, Shima; Sanasa, Armand; Foroutan, Tahereh
2015-11-01
Bacterial biofilms have been identified as the primary etiological factor for the development and progression of peri-implantitis. Lasers have been shown to remove bacterial plaque from titanium surfaces effectively and can restore its biocompatibility without damaging these surfaces. Therefore, the aim of this study was to evaluate the responses (i.e., the cell viability and morphology) of human osteoblast-like SaOs-2 cells to sandblasted, large grit, and acid-etched (SLA) titanium surfaces irradiated by CO2 lasers at two different power outputs. A total of 24 SLA disks were randomly radiated by CO2 lasers at either 6 W (group 1, 12 disks) or 8 W (group 2, 12 disks). Non-irradiated disks were used as a control group (four disks). The cell viability rates of the SaOs-2 cells in the control and study groups (6 and 8 W) were 0.33 ± 0.00, 0.24 ± 0.11, and 0.2372 ± 0.09, respectively (P < 0.6). Cells with cytoplasmic extensions and spreading morphology were most prominent in the control group (141.00 ± 29.00), while in the study groups (6 and 8 W), the number of cells with such morphology was 60.40 ± 26.00 and 35.20 ± 5.40, respectively (P < 0.005). Within the limits of this study, it may be concluded that the use of CO2 lasers with the aforementioned setting parameters could not be recommended for decontamination of SLA titanium surfaces.
siRNA Screen Identifies Trafficking Host Factors that Modulate Alphavirus Infection
Radoshitzky, Sheli R.; Pegoraro, Gianluca; Chī, Xiǎolì; Dǒng, Lián; Chiang, Chih-Yuan; Jozwick, Lucas; Clester, Jeremiah C.; Cooper, Christopher L.; Courier, Duane; Langan, David P.; Underwood, Knashka; Kuehl, Kathleen A.; Sun, Mei G.; Caì, Yíngyún; Yú, Shuǐqìng; Burk, Robin; Zamani, Rouzbeh; Kota, Krishna; Kuhn, Jens H.; Bavari, Sina
2016-01-01
Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1–PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling. PMID:27031835
Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions
Kim, Christina; Kendall, Matthew R.; Miller, Matthew A.; Long, Courtney L.; Larson, Preston R.; Humphrey, Mary Beth; Madden, Andrew S.; Tas, A. Cuneyt
2012-01-01
Commercially pure titanium plates/coupons and pure titanium powders were soaked for 24 h in 5 M NaOH and 5 M KOH solutions, under identical conditions, over the temperature range of 37° to 90°C. Wettability of the surfaces of alkali-treated cpTi coupons were studied by using contact angle goniometry. cpTi coupons soaked in 5 M NaOH or 5 M KOH solutions were found to have hydrophilic surfaces. Hydrous alkali titanate nanofibers and nanotubes were identified with SEM/EDXS and grazing incidence XRD. Surface areas of Ti powders increased >50–220 times, depending on the treatment, when soaked in the above solutions. A solution was developed to coat amorphous calcium phosphate, instead of hydroxyapatite, on Ti coupon surfaces. In vitro cell culture tests were performed with osteoblast-like cells on the alkali-treated samples. PMID:23565038
Proteomic analysis identifies a novel function for galectin-3 in the cell entry of parvovirus.
Garcin, Pierre; Cohen, Sarah; Terpstra, Sanne; Kelly, Isabelle; Foster, Leonard J; Panté, Nelly
2013-02-21
Cellular factors associated with the parvovirus minute virus of mice (MVM) during infection are thought to play important roles in the MVM life cycle but only a few of these have been identified. Here we used a proteomic-based approach in order to identify host-binding partners of MVM. Using purified MVM as bait for immunoprecipitation assays, a total of 150 proteins were identified in MVM immunoprecipitates by quantitative liquid chromatography-tandem mass spectrometry. Galectin-3 was one of six proteins showing a statistically significant enrichment across replicates. Small interfering RNA depletion studies revealed an important role for galectin-3 in MVM endocytosis and infectivity in LA9 mouse fibroblast cells. Galectin-3-depleted cells were less susceptible to MVM infection than control cells and showed a significant reduction of MVM cellular uptake, but not of MVM binding to the cell surface. Our results indicate an important role for galectin-3 in the cellular uptake of MVM. We propose that galectin-3 facilitates the access of MVM to its receptor(s) at the plasma membrane and in this way promotes MVM endocytosis. Copyright © 2012 Elsevier B.V. All rights reserved.
NanoTopoChip: High-throughput nanotopographical cell instruction.
Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan
2017-10-15
Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Development and use of culture systems to modulate specific cell responses
NASA Astrophysics Data System (ADS)
Martin, Yves
Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-28
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
NASA Astrophysics Data System (ADS)
Bedeaux, Dick; Kjelstrup, Signe; Öttinger, Hans Christian
2014-09-01
We show how the Butler-Volmer and Nernst equations, as well as Peltier effects, are contained in the general equation for nonequilibrium reversible and irreversible coupling, GENERIC, with a unique definition of the overpotential. Linear flux-force relations are used to describe the transport in the homogeneous parts of the electrochemical system. For the electrode interface, we choose nonlinear flux-force relationships. We give the general thermodynamic basis for an example cell with oxygen electrodes and electrolyte from the solid oxide fuel cell. In the example cell, there are two activated chemical steps coupled also to thermal driving forces at the surface. The equilibrium exchange current density obtains contributions from both rate-limiting steps. The measured overpotential is identified at constant temperature and stationary states, in terms of the difference in electrochemical potential of products and reactants. Away from these conditions, new terms appear. The accompanying energy flux out of the surface, as well as the heat generation at the surface are formulated, adding to the general thermodynamic basis.
Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces
Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven
2005-01-01
Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent state of hESCs because binding percentages and binding localization of these lectins are similar to those of SSEA-4. Non-binding lectins, DBA and LTL, may identify differentiated cell types; however, we did not find these lectins to bind to pluripotent SSEA-4 positive hESCs. This work represents a fundamental base to systematically classify pluripotent hESCs, and in future studies these lectins may be used to distinguish differentiated hESC types based on glycan presentation that accompanies differentiation. PMID:16033656
Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.
Pflugfelder, S C; Liu, Z; Monroy, D; Li, D Q; Carvajal, M E; Price-Schiavi, S A; Idris, N; Solomon, A; Perez, A; Carraway, K L
2000-05-01
To evaluate human ocular surface epithelium and tear fluid for the presence of sialomucin complex (MUC4), a high-molecular-weight heterodimeric glycoprotein composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis assays were used to identify sialomucin complex RNA in ocular surface epithelia. Immunoprecipitation and immunoblot analysis were used to identify immunoreactive species in human tears and in the corneal and conjunctival epithelia using antibodies specific for carbohydrate and peptide epitopes on the sialomucin complex subunits. Immunofluorescence staining was used to detect sialomucin complex in frozen sections and impression cytology specimens of human cornea and conjunctival epithelia. ASGP-1- and ASGP-2-specific sequences were amplified from RNA extracted from both conjunctival and corneal epithelial biopsies by RT-PCR. Sialomucin complex transcripts were also detected in these tissues by Northern blot analysis, with a greater level of RNA detected in the peripheral than the central corneal epithelium. Sialomucin complex was immunoprecipitated from tear fluid samples and both corneal and conjunctival epithelia and detected by immunoblot analysis with specific anti-ASGP-1 and anti-ASGP-2 antibodies. The ASGP-1 peptide antibody HA-1 stained the full thickness of the corneal and conjunctival epithelia. In contrast, antibody 15H10, which reacts against a carbohydrate epitope on ASGP-1, stained only the superficial epithelial layers of these tissues. No staining was observed in the conjunctival goblet cells. Sialomucin complex was originally identified in rat mammary adenocarcinoma cells and has recently been shown to be produced by the ocular surface epithelia of rats. Furthermore, it has been identified as the rat homologue of human MUC4 mucin. The present studies show that it is expressed in the stratified epithelium covering the surface of the human eye and is present in human tear fluid. Expression of a carbohydrate-dependent epitope on the mucin subunit (ASGP-1) of sialomucin complex occurs in a differentiation-dependent fashion. Sialomucin complex joins MUC1 as another membrane mucin produced by the human ocular surface epithelia but is also found in the tear fluid, presumably in a soluble form, as found on the rat ocular surface.
Yang, Na; Ding, Yanping; Zhang, Yinlong; Wang, Bin; Zhao, Xiao; Cheng, Keman; Huang, Yixin; Taleb, Mohammad; Zhao, Jing; Dong, Wen-Fei; Zhang, Lirong; Nie, Guangjun
2018-06-15
Multiple cell plasma membranes have been utilized for surface functionalization of synthetic nanomaterials and construction of biomimetic drug delivery systems for cancer treatment. The natural characters and facile isolation of original cells facilitate the biomedical applications of plasma membranes in functionalizing nanocarriers. Human umbilical cord-derived mesenchymal stem cells (MSC) have been identified to show tropism towards malignant lesions and have great advantages in ease of acquisition, low immunogenicity, and high proliferative ability. Here we developed a poly(lactic-co-glycolic acid) (PLGA) nanoparticle with a layer of plasma membrane from umbilical cord MSC coating on the surface for tumor-targeted delivery of chemotherapy. Functionalization of MSC plasma membrane significantly enhanced the cellular uptake efficiency of PLGA nanoparticles, the tumor cell killing efficacy of PLGA-encapsulated doxorubicin, and most importantly the tumor-targeting and accumulation of the nanoparticles. As a result, this MSC-mimicking nanoformulation led to remarkable tumor growth inhibition and induced obvious apoptosis within tumor lesions. This study for the first time demonstrated the great potential of umbilical cord MSC plasma membranes in functionalizing nanocarriers with inherent tumor-homing features, and the high feasibility of such biomimetic nanoformulations in cancer therapy.
Zamay, Anna S; Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Berezovski, Maxim V
2017-01-01
Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .
Ragas, Aude; Roussel, Lucie; Puzo, Germain; Rivière, Michel
2007-02-23
Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional domains.
Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3
Wang, Yun; Huang, Jingsong; Sumpter, Bobby G.; ...
2014-12-19
Organic/inorganic hybrid perovskite materials are highly attractive for dye-sensitized solar cells as demonstrated by their rapid advances in energy conversion efficiency. In this work, the structures, energetics, and electronic properties for a range of stoichiometric surfaces of the orthorhombic perovskite CH3NH3PbI3 are theoretically studied using density functional theory. Various possible spatially and constitutionally isomeric surfaces are considered by diversifying the spatial orientations and connectivities of surface Pb-I bonds. The comparison of the surface energies for the most stable configurations identified for various surfaces shows that the stabilities of stoichiometric surfaces are mainly dictated by the coordination numbers of surface atoms,more » which are directly correlated with the numbers of broken bonds. Additionally, Coulombic interactions between I anions and organic countercations on the surface also contribute to the stabilization. Electronic properties are compared between the most stable (100) surface and the bulk phase, showing generally similar features except for the lifted band degeneracy and the enhanced bandgap energy for the surface. These studies on the stoichiometric surfaces serve as the first step toward gaining a fundamental understanding of the interfacial properties in the current structural design of perovskite based solar cells, in order to achieve further breakthroughs in solar conversion efficiencies.« less
Involvement of vesicle coat material in casein secretion and surface regeneration
1976-01-01
The ultrastructure of the apical zone of lactating rat mammary epithelial cells was studied with emphasis on vesicle coat structures. Typical 40-60 nm ID "coated vesicles" were abundant, frequently associated with the internal filamentous plasma membrane coat or in direct continuity with secretory vesicles (SV) or plasma membrane proper. Bristle coats partially or totally covered membranes of secretory vesicles identified by their casein micelle content. This coat survived SV isolation. Exocytotic fusion of SV membranes and release of the casein micelles was observed. Frequently, regularly arranged bristle coat structures were identified in those regions of the plasma membrane that were involved in exocytotic processes. Both coated and uncoated surfaces of the casein-containing vesicles, as well as typical "coated vesicles", were frequently associated with microtubules and/or microfilaments. We suggest that coat materials of vesicles are related or identical to components of the internal coat of the surface membrane and that new plasma membrane and associated internal coat is produced concomitantly by fusion and integration of bristle coat moieties. Postexocytotic association of secreted casein micelles with the cell surface, mediated by finely filamentous extensions, provided a marker for the integrated vesicle membrane. An arrangement of SV with the inner surface of the plasma membrane is described which is characterized by regularly spaced, heabily stained membrane to membrane cross-bridges (pre-exocytotic attachment plaques). Such membrane-interconnecting elements may represent a form of coat structure important to recognition and interaction of membrane surfaces. PMID:1254641
Human Neural Cell-Based Biosensor
2010-04-26
SNAP25 (SNAP25), GluR1 (GRIA1) glutamate receptor , ionotropic , AMPA1, Nav1.2 (SCN2A), Nav1.6 (SCN8A), CaV 2.1 (CACNA1A), HERG (KCNH2), and KCC2...transitions to mesenchymal progenitor cells." Tissue Eng Part A 15(8): 1897-907. Haltiwanger, R. S. and P. Stanley (2002). "Modulation of receptor ...cytometry studies previously conducted by the Stice lab identified ciliary neurotrophic factor receptor alpha (CNTFRα) as a novel cell surface marker to
Schwenk, Robert; Banania, Glenna; Epstein, Judy; Kim, Yohan; Peters, Bjoern; Belmonte, Maria; Ganeshan, Harini; Huang, Jun; Reyes, Sharina; Stryhn, Anette; Ockenhouse, Christian F; Buus, Soren; Richie, Thomas L; Sedegah, Martha
2013-10-29
Malaria is responsible for up to a 600,000 deaths per year; conveying an urgent need for the development of a malaria vaccine. Studies with whole sporozoite vaccines in mice and non-human primates have shown that sporozoite-induced CD8+ T cells targeting liver stage antigens can mediate sterile protection. There is a need for a direct method to identify and phenotype malaria vaccine-induced CD8+ T cells in humans. Fluorochrome-labelled tetramers consisting of appropriate MHC class I molecules in complex with predicted binding peptides derived from Plasmodium falciparum AMA-1 were used to label ex vivo AMA-1 epitope specific CD8+ T cells from research subjects responding strongly to immunization with the NMRC-M3V-Ad-PfCA (adenovirus-vectored) malaria vaccine. The identification of these CD8+ T cells on the basis of their expression of early activation markers was also investigated. Analyses by flow cytometry demonstrated that two of the six tetramers tested: TLDEMRHFY: HLA-A*01:01 and NEVVVKEEY: HLA-B*18:01, labelled tetramer-specific CD8+ T cells from two HLA-A*01:01 volunteers and one HLA-B*18:01 volunteer, respectively. By contrast, post-immune CD8+ T cells from all six of the immunized volunteers exhibited enhanced expression of the CD38 and HLA-DRhi early activation markers. For the three volunteers with positive tetramer staining, the early activation phenotype positive cells included essentially all of the tetramer positive, malaria epitope- specific CD8+ T cells suggesting that the early activation phenotype could identify all malaria vaccine-induced CD8+ T cells without prior knowledge of their exact epitope specificity. The results demonstrated that class I tetramers can identify ex vivo malaria vaccine antigen-specific CD8+ T cells and could therefore be used to determine their frequency, cell surface phenotype and transcription factor usage. The results also demonstrated that vaccine antigen-specific CD8+ T cells could be identified by activation markers without prior knowledge of their antigen-specificity, using a subunit vaccine for proof-of-concept. Whether, whole parasite or adjuvanted protein vaccines will also induce {CD38 and HLA-DRhi}+ CD8+ T cell populations reflective of the antigen-specific response will the subject of future investigations.
Development, differentiation and diversity of innate lymphoid cells
Diefenbach, Andreas; Colonna, Marco; Koyasu, Shigeo
2014-01-01
Recent years have witnessed the discovery of an unprecedented complexity in innate lymphocyte lineages, now collectively referred to as innate lymphoid cells (ILC). ILC are preferentially located at barrier surfaces and are important for protection against pathogens and for the maintenance of organ homeostasis. Inappropriate activation of ILC has been linked to the pathogenesis of inflammatory and autoimmune disorders. Recent evidence suggests that ILC can be grouped into two separate lineages, cytotoxic ILC represented by conventional natural killer (cNK) cells and cytokine-producing helper-like ILC (i.e., ILC1, ILC2, ILC3). We will focus here on current work in humans and mice that has identified core transcriptional circuitry required for the commitment of lymphoid progenitors to the ILC lineage. The striking similarities in transcriptional control of ILC and T cell lineages reveal important insights into the evolution of transcriptional programs required to protect multicellular organisms against infections and to fortify barrier surfaces. PMID:25238093
Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls
NASA Technical Reports Server (NTRS)
McDowell, Mark (Inventor)
2006-01-01
A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.
Sahraei, Nasim; Forberich, Karen; Venkataraj, Selvaraj; Aberle, Armin G; Peters, Marius
2014-01-13
Light scattering at randomly textured interfaces is essential to improve the absorption of thin-film silicon solar cells. Aluminium-induced texture (AIT) glass provides suitable scattering for amorphous silicon (a-Si:H) solar cells. The scattering properties of textured surfaces are usually characterised by two properties: the angularly resolved intensity distribution and the haze. However, we find that the commonly used haze equations cannot accurately describe the experimentally observed spectral dependence of the haze of AIT glass. This is particularly the case for surface morphologies with a large rms roughness and small lateral feature sizes. In this paper we present an improved method for haze calculation, based on the power spectral density (PSD) function of the randomly textured surface. To better reproduce the measured haze characteristics, we suggest two improvements: i) inclusion of the average lateral feature size of the textured surface into the haze calculation, and ii) considering the opening angle of the haze measurement. We show that with these two improvements an accurate prediction of the haze of AIT glass is possible. Furthermore, we use the new equation to define optimum morphology parameters for AIT glass to be used for a-Si:H solar cell applications. The autocorrelation length is identified as the critical parameter. For the investigated a-Si:H solar cells, the optimum autocorrelation length is shown to be 320 nm.
Vidak, Marko; Jovcevska, Ivana; Samec, Neja; Zottel, Alja; Liovic, Mirjana; Rozman, Damjana; Dzeroski, Saso; Juvan, Peter; Komel, Radovan
2018-05-04
Glioblastoma (GB) is the most aggressive brain malignancy. Although some potential glioblastoma biomarkers have already been identified, there is a lack of cell membrane-bound biomarkers capable of distinguishing brain tissue from glioblastoma and/or glioblastoma stem cells (GSC), which are responsible for the rapid post-operative tumor reoccurrence. In order to find new GB/GSC marker candidates that would be cell surface proteins (CSP), we have performed meta-analysis of genome-scale mRNA expression data from three data repositories (GEO, ArrayExpress and GLIOMASdb). The search yielded ten appropriate datasets, and three (GSE4290/GDS1962, GSE23806/GDS3885, and GLIOMASdb) were used for selection of new GB/GSC marker candidates, while the other seven (GSE4412/GDS1975, GSE4412/GDS1976, E-GEOD-52009, E-GEOD-68848, E-GEOD-16011, E-GEOD-4536, and E-GEOD-74571) were used for bioinformatic validation. The selection identified four new CSP-encoding candidate genes— CD276 , FREM2 , SPRY1 , and SLC47A1 —and the bioinformatic validation confirmed these findings. A review of the literature revealed that CD276 is not a novel candidate, while SLC47A1 had lower validation test scores than the other new candidates and was therefore not considered for experimental validation. This validation revealed that the expression of FREM2—but not SPRY1—is higher in glioblastoma cell lines when compared to non-malignant astrocytes. In addition, FREM2 gene and protein expression levels are higher in GB stem-like cell lines than in conventional glioblastoma cell lines. FREM2 is thus proposed as a novel GB biomarker and a putative biomarker of glioblastoma stem cells. Both FREM2 and SPRY1 are expressed on the surface of the GB cells, while SPRY1 alone was found overexpressed in the cytosol of non-malignant astrocytes.
Louropoulou, Anna; Slot, Dagmar E; Van der Weijden, Fridus
2015-07-01
The objective of this systematic review was to evaluate the effect of mechanical instruments on the biocompatibility of titanium dental implant surfaces. MEDLINE, Cochrane-CENTRAL and EMBASE databases were searched up to December 2013, to identify controlled studies on the ability of cells to adhere and colonize non-contaminated and contaminated, smooth and rough, titanium surfaces after instrumentation with different mechanical instruments. A comprehensive search identified 1893 unique potential papers. Eleven studies met the inclusion criteria and were selected for this review. All studies were in vitro studies. Most studies used titanium discs, strips and cylinders. The air abrasive was the treatment mostly evaluated. The available studies had a high heterogeneity which precluded any statistical analysis of the data. Therefore, the conclusions are not based on quantitative data. Instrumentation seems to have a selective influence on the attachment of different cells. In the presence of contamination, plastic curettes, metal curettes, rotating titanium brushes and an ultrasonic scaling system with a carbon tip and polishing fluid seem to fail to restore the biocompatibility of rough titanium surfaces. The air-powder abrasive system with sodium bicarbonate powder does not seem to affect the fibroblast-titanium surface interaction after treatment of smooth or rough surfaces, even in the presence of contamination. The available data suggest that treatment with an air-powder abrasive system with sodium bicarbonate powder does not seem to adversely affect the biocompatibility of titanium dental implant surfaces. However, the clinical impact of these findings requires further clarification. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
What We Have Learned from Animal Models of Dry Eye
Stern, Michael E.; Pflugfelder, Stephen C.
2017-01-01
Animal models have proved valuable to investigate the pathogenesis of dry eye disease, identify therapeutic targets and the efficacy of candidate therapeutics for dry eye. Pharmacological inhibition of the lacrimal functional unit and exposure of the mouse eye to desiccating stress was found to activate innate immune pathways, promote dendritic cell maturation and initiate an adaptive T cell response to ocular surface antigens. Disease relevant mediators and pathways have been identified through use of genetically altered mice, specific inhibitors and adoptive transfer of desiccating stress primed CD4+ T cells to naïve recipients. Findings from mouse models have elucidated the mechanism of action of cyclosporine A and the rationale for developing lifitegrast, the two currently approved therapeutics in the US. PMID:28282318
2016-01-01
Purpose The increasing demand for esthetically pleasing results has contributed to the use of ceramics for dental implant abutments. The aim of this study was to compare the biological response of epithelial tissue cultivated on lithium disilicate (LS2) and zirconium oxide (ZrO2) ceramics. Understanding the relevant physicochemical and mechanical properties of these ceramics will help identify the optimal material for facilitating gingival wound closure. Methods Both biomaterials were prepared with 2 different surface treatments: raw and polished. Their physicochemical characteristics were analyzed by contact angle measurements, scanning white-light interferometry, and scanning electron microscopy. An organotypic culture was then performed using a chicken epithelium model to simulate peri-implant soft tissue. We measured the contact angle, hydrophobicity, and roughness of the materials as well as the tissue behavior at their surfaces (cell migration and cell adhesion). Results The best cell migration was observed on ZrO2 ceramic. Cell adhesion was also drastically lower on the polished ZrO2 ceramic than on both the raw and polished LS2. Evaluating various surface topographies of LS2 showed that increasing surface roughness improved cell adhesion, leading to an increase of up to 13%. Conclusions Our results demonstrate that a biomaterial, here LS2, can be modified using simple surface changes in order to finely modulate soft tissue adhesion. Strong adhesion at the abutment associated with weak migration assists in gingival wound healing. On the same material, polishing can reduce cell adhesion without drastically modifying cell migration. A comparison of LS2 and ZrO2 ceramic showed that LS2 was more conducive to creating varying tissue reactions. Our results can help dental surgeons to choose, especially for esthetic implant abutments, the most appropriate biomaterial as well as the most appropriate surface treatment to use in accordance with specific clinical dental applications. PMID:28050314
Ladhani, Omar; Sánchez-Martinez, Cristina; Orgaz, Jose L; Jimenez, Benilde; Volpert, Olga V
2011-01-01
Metastatic melanoma cells are highly adaptable to their in vivo microenvironment and can switch between protease-dependent mesenchymal and protease-independent amoeboid invasion to facilitate metastasis. Such adaptability can be visualized in vitro, when cells are cultured in conditions that recapitulate three-dimensional microenvironments. Using thick collagen layers in cell culture and in vivo extravasation assays, we found that pigment epithelium-derived factor (PEDF) suppressed lung extravasation of aggressive melanoma by coordinated regulation of cell shape and proteolysis. In cells grown on a thick collagen bed, PEDF overexpression and exogenous PEDF blocked the rapidly invasive, rounded morphology, and promoted an elongated, mesenchymal-like phenotype associated with reduced invasion. These changes in cell shape depended on decreased RhoA and increased Rac1 activation and were mediated by the up-regulation of Rac1-GEF, DOCK3 and down-regulation of Rac1-GAP, ARHGAP22. Surprisingly, we found that PEDF overexpression also blocked the trafficking of membrane-tethered, MT1-MMP to the cell surface through RhoA inhibition and Rac1 activation. In vivo, knockdown of Rac1 and DOCK3 or overexpression of MT1-MMP was sufficient to reverse the inhibitory effect of PEDF on extravasation. Using functional studies, we demonstrated that PEDF suppressed the rounded morphology and MT1-MMP surface localization through its antiangiongenic, 34-mer epitope and the recently identified PEDF receptor candidate, PNPLA2. Our findings unveil the coordinated regulation of cell shape and proteolysis and identify an unknown mechanism for PEDF's antimetastatic activity. PMID:21750657
Ladhani, Omar; Sánchez-Martinez, Cristina; Orgaz, Jose L; Jimenez, Benilde; Volpert, Olga V
2011-07-01
Metastatic melanoma cells are highly adaptable to their in vivo microenvironment and can switch between protease-dependent mesenchymal and protease-independent amoeboid invasion to facilitate metastasis. Such adaptability can be visualized in vitro, when cells are cultured in conditions that recapitulate three-dimensional microenvironments. Using thick collagen layers in cell culture and in vivo extravasation assays, we found that pigment epithelium-derived factor (PEDF) suppressed lung extravasation of aggressive melanoma by coordinated regulation of cell shape and proteolysis. In cells grown on a thick collagen bed, PEDF overexpression and exogenous PEDF blocked the rapidly invasive, rounded morphology, and promoted an elongated, mesenchymal-like phenotype associated with reduced invasion. These changes in cell shape depended on decreased RhoA and increased Rac1 activation and were mediated by the up-regulation of Rac1-GEF, DOCK3 and down-regulation of Rac1-GAP, ARHGAP22. Surprisingly, we found that PEDF overexpression also blocked the trafficking of membrane-tethered, MT1-MMP to the cell surface through RhoA inhibition and Rac1 activation. In vivo, knockdown of Rac1 and DOCK3 or overexpression of MT1-MMP was sufficient to reverse the inhibitory effect of PEDF on extravasation. Using functional studies, we demonstrated that PEDF suppressed the rounded morphology and MT1-MMP surface localization through its antiangiongenic, 34-mer epitope and the recently identified PEDF receptor candidate, PNPLA2. Our findings unveil the coordinated regulation of cell shape and proteolysis and identify an unknown mechanism for PEDF's antimetastatic activity.
Fornero, Christy; Suo, Bangxia; Zahde, Mais; Juveland, Katelyn; Kirik, Viktor
2017-11-01
Glassy Hair 1 (GLH1) gene that promotes papillae formation on trichome cell walls was identified as a subunit of the transcriptional mediator complex MED25. The MED25 gene is shown to be expressed in trichomes. The expression of the trichome development marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) is not affected in the glh1 mutant. Presented data suggest that Arabidopsis MED25 mediator component is likely involved in the transcription of genes promoting papillae deposition in trichomes. The plant cell wall plays an important role in communication, defense, organization and support. The importance of each of these functions varies by cell type. Specialized cells, such as Arabidopsis trichomes, exhibit distinct cell wall characteristics including papillae. To better understand the molecular processes important for papillae deposition on the cell wall surface, we identified the GLASSY HAIR 1 (GLH1) gene, which is necessary for papillae formation. We found that a splice-site mutation in the component of the transcriptional mediator complex MED25 gene is responsible for the near papillae-less phenotype of the glh1 mutant. The MED25 gene is expressed in trichomes. Reporters for trichome developmental marker genes GLABRA2 (GL2) and Ethylene Receptor2 (ETR2) were not affected in the glh1 mutant. Collectively, the presented results show that MED25 is necessary for papillae formation on the cell wall surface of leaf trichomes and suggest that the Arabidopsis MED25 mediator component is likely involved in the transcription of a subset of genes that promote papillae deposition in trichomes.
Varghese, Leila N; Zhang, Jian-Guo; Young, Samuel N; Willson, Tracy A; Alexander, Warren S; Nicola, Nicos A; Babon, Jeffrey J; Murphy, James M
2014-02-01
Activation of the cell surface receptor, c-Mpl, by the cytokine, thrombopoietin (TPO), underpins megakaryocyte and platelet production in mammals. In humans, mutations in c-Mpl have been identified as the molecular basis of Congenital Amegakaryocytic Thrombocytopenia (CAMT). Here, we show that CAMT-associated mutations in c-Mpl principally lead to defective receptor presentation on the cell surface. In contrast, one CAMT mutant c-Mpl, F104S, was expressed on the cell surface, but showed defective TPO binding and receptor activation. Using mutational analyses, we examined which residues adjacent to F104 within the membrane-distal cytokine receptor homology module (CRM) of c-Mpl comprise the TPO-binding epitope, revealing residues within the predicted Domain 1 E-F and A-B loops and Domain 2 F'-G' loop as key TPO-binding determinants. These studies underscore the importance of the c-Mpl membrane-distal CRM to TPO-binding and suggest that mutations within this CRM that perturb TPO binding could give rise to CAMT.
Park, Dayoung; Arabyan, Narine; Williams, Cynthia C.; Song, Ting; Mitra, Anupam; Weimer, Bart C.; Lebrilla, Carlito B.
2016-01-01
Although gut host-pathogen interactions are glycan-mediated processes, few details are known about the participating structures. Here we employ high-resolution mass spectrometric profiling to comprehensively identify and quantitatively measure the exact modifications of native intestinal epithelial cell surface N-glycans induced by S. typhimurium infection. Sixty minutes postinfection, select sialylated structures showed decreases in terms of total number and abundances. To assess the effect of cell surface mannosylation, we selectively rerouted glycan expression on the host using the alpha-mannosidase inhibitor, kifunensine, toward overexpression of high mannose. Under these conditions, internalization of S. typhimurium significantly increased, demonstrating that bacteria show preference for particular structures. Finally, we developed a novel assay to measure membrane glycoprotein turnover rates, which revealed that glycan modifications occur by bacterial enzyme activity rather than by host-derived restructuring strategies. This study is the first to provide precise structural information on how host N-glycans are altered to support S. typhimurium invasion. PMID:27754876
Regulation of Eosinophil Recruitment and Activation by Galectins in Allergic Asthma.
Rao, Savita P; Ge, Xiao Na; Sriramarao, P
2017-01-01
Eosinophils are differentiated granulocytes that are recruited from the bone marrow to sites of inflammation via the vascular system. Allergic asthma is characterized by the presence of large numbers of eosinophils in the lungs and airways. Due to their capacity to rapidly release inflammatory mediators such as cytokines, chemokines, growth factors, and cytotoxic granule proteins upon stimulation, eosinophils play a critical role in pro-inflammatory processes in allergen-exposed lungs. Identifying key players and understanding the molecular mechanisms directing eosinophil trafficking and recruitment to inflamed airways is a key to developing therapeutic strategies to limit their influx. Recent studies have brought to light the important role of glycans and glycan binding proteins in regulating recruitment of eosinophils. In addition to the role of previously identified eosinophil- and endothelial-expressed adhesion molecules in mediating eosinophil trafficking and recruitment to the inflamed airways, studies have also indicated a role for galectins (galectin-3) in this process. Galectins are mammalian lectins expressed by various cell types including eosinophils. Intracellularly, they can regulate biological processes such as cell motility. Extracellularly, galectins interact with β-galactosides in cell surface-expressed glycans to regulate cellular responses like production of inflammatory mediators, cell adhesion, migration, and apoptosis. Eosinophils express galectins intracellularly or on the cell surface where they interact with cell surface glycoconjugate receptors. Depending on the type (galectin-1, -3, etc.) and location (extracellular or intracellular, endogenous or exogenously delivered), galectins differentially regulate eosinophil recruitment, activation, and apoptosis and thus exert a pro- or anti-inflammatory outcome. Here, we have reviewed information pertaining to galectins (galectin-1, -3 -9, and -10) that are expressed by eosinophils themselves and/or other cells that play a role in eosinophil recruitment and function in the context of allergic asthma and their potential use as disease biomarkers or therapeutic targets for immunomodulation.
Slack, Jonathan M W
2018-05-15
The historical roots of the stem cell concept are traced with respect to its usage in embryology and in hematology. The modern consensus definition of stem cells, comprising both pluripotent stem cells in culture and tissue-specific stem cells in vivo, is explained and explored. Methods for identifying stem cells are discussed with respect to cell surface markers, telomerase, label retention and transplantability, and properties of the stem cell niche are explored. The CreER method for identifying stem cells in vivo is explained, as is evidence in favor of a stochastic rather than an obligate asymmetric form of cell division. In conclusion, it is found that stem cells do not possess any unique and specific molecular markers; and stem cell behavior depends on the environment of the cell as well as the stem cell's intrinsic qualities. Furthermore, the stochastic mode of division implies that stem cell behavior is a property of a cell population not of an individual cell. In this sense, stem cells do not exist in isolation but only as a part of multicellular system. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Methods and Principles Adult Stem Cells, Tissue Renewal, and Regeneration > Environmental Control of Stem Cells. © 2018 Wiley Periodicals, Inc.
Li, Wei; Wang, Hai-Qing; He, Run-Zhen; Li, Yan-Wei; Su, You-Lu; Li, An-Xing
2016-08-01
Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel vaccine against piscine S. agalactiae. Copyright © 2016 Elsevier Ltd. All rights reserved.
Engineering nanoscale surface features to sustain microparticle rolling in flow.
Kalasin, Surachate; Santore, Maria M
2015-05-26
Nanoscopic features of channel walls are often engineered to facilitate microfluidic transport, for instance when surface charge enables electro-osmosis or when grooves drive mixing. The dynamic or rolling adhesion of flowing microparticles on a channel wall holds potential to accomplish particle sorting or to selectively transfer reactive species or signals between the wall and flowing particles. Inspired by cell rolling under the direction of adhesion molecules called selectins, we present an engineered platform in which the rolling of flowing microparticles is sustained through the incorporation of entirely synthetic, discrete, nanoscale, attractive features into the nonadhesive (electrostatically repulsive) surface of a flow channel. Focusing on one example or type of nanoscale feature and probing the impact of broad systematic variations in surface feature loading and processing parameters, this study demonstrates how relatively flat, weakly adhesive nanoscale features, positioned with average spacings on the order of tens of nanometers, can produce sustained microparticle rolling. We further demonstrate how the rolling velocity and travel distance depend on flow and surface design. We identify classes of related surfaces that fail to support rolling and present a state space that identifies combinations of surface and processing variables corresponding to transitions between rolling, free particle motion, and arrest. Finally we identify combinations of parameters (surface length scales, particle size, flow rates) where particles can be manipulated with size-selectivity.
Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.
2013-01-22
We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1more » surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.« less
Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro
2012-01-01
CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.
Li, Cunxi; Hao, Mingming; Cao, Zheng; Ding, Wei; Graves-Deal, Ramona; Hu, Jianyong; Piston, David W.
2007-01-01
Transforming growth factor-α (TGF-α) is the major autocrine EGF receptor ligand in vivo. In polarized epithelial cells, proTGF-α is synthesized and then delivered to the basolateral cell surface. We previously reported that Naked2 interacts with basolateral sorting determinants in the cytoplasmic tail of a Golgi-processed form of TGF-α and that TGF-α is not detected at the basolateral surface of Madin-Darby canine kidney (MDCK) cells expressing myristoylation-deficient (G2A) Naked2. By high-resolution microscopy, we now show that wild-type, but not G2A, Naked2-associated vesicles fuse at the plasma membrane. We further demonstrate that Naked2-associated vesicles are delivered to the lower lateral membrane of polarized MDCK cells independent of μ1B adaptin. We identify a basolateral targeting segment within Naked2; residues 1-173 redirect NHERF-1 from the apical cytoplasm to the basolateral membrane, and internal deletion of residues 37-104 results in apical mislocalization of Naked2 and TGF-α. Short hairpin RNA knockdown of Naked2 leads to a dramatic reduction in the 16-kDa cell surface isoform of TGF-α and increased cytosolic TGF-α immunoreactivity. We propose that Naked2 acts as a cargo recognition and targeting (CaRT) protein to ensure proper delivery, tethering, and fusion of TGF-α–containing vesicles to a distinct region at the basolateral surface of polarized epithelial cells. PMID:17553928
Zarkoob, Hadi; Taube, Joseph H.; Singh, Sheila K.; Mani, Sendurai A.; Kohandel, Mohammad
2013-01-01
In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that genes in this signature have significant overlap with genes differentially expressed in all known GBM subtypes. However, the overlap between genes up regulated in the mesenchymal subtype of GBM and in the EMT signature was more significant than other GBM subtypes. Second, we provide evidence that there is a negative correlation between the genetic signature of EMT and that of CD133 cell surface protein, a putative marker for neural stem cells. Third, we study the correlation between GBM molecular subtypes and the genetic signature of CD133 cell surface protein. We demonstrate that the mesenchymal and neural subtypes of GBM have the strongest correlations with the CD133 genetic signature. While the mesenchymal subtype of GBM displays similarity with the signatures of both EMT and CD133, it also exhibits some differences with each of these signatures that are partly due to the fact that the signatures of EMT and CD133 are inversely related to each other. Taken together these data shed light on the role of the mesenchymal transition and neural stem cells, and their mutual interaction, in molecular subtypes of glioblastoma multiforme. PMID:23734191
Kim, Hwa-Young; Baek, Song; Han, Na Rae; Lee, Eunsong; Park, Choon-Keun; Lee, Seung Tae
2018-05-29
In vitro expansion of undifferentiated porcine primed embryonic stem (ES) cells is facilitated by use of non-cellular niches that mimic three-dimensional (3D) microenvironments enclosing an inner cell mass of porcine blastocysts. Therefore, we investigated the integrin heterodimers on the surface of undifferentiated porcine primed ES cells for the purpose of developing a non-cellular niche to support in vitro maintenance of the self-renewal ability of porcine primed ES cells. Immunocytochemistry and a fluorescence immunoassay were performed to assess integrin α and β subunit levels, and attachment and antibody inhibition assays were used to evaluate the function of integrin heterodimers. The integrin α 3 , α 5 , α 6 , α 9 , α V , and β 1 subunits, but not the α 1 , α 2 , α 4 , α 7 , and α 8 subunits, were identified on the surface of undifferentiated porcine primed ES cells. Subsequently, significant increase of their adhesion to fibronectin, tenascin C and vitronectin were observed and functional blocking of integrin heterodimer α 5 β 1 , α 9 β 1 , or α V β 1 showed significantly inhibited adhesion to fibronectin, tenascin C, or vitronectin. No integrin α 6 β 1 heterodimer?mediated adhesion to laminin was detected. These results demonstrate that active α 5 β 1 , α 9 β 1 , and α V β 1 integrin heterodimers are present on the surface of undifferentiated porcine primed ES cells, together with inactive integrin α 3 (presumed) and α 6 subunits. This article is protected by copyright. All rights reserved.
Cibiel, Agnes; Nguyen Quang, Nam; Gombert, Karine; Thézé, Benoit; Garofalakis, Anikitos; Ducongé, Frédéric
2014-01-01
Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application. PMID:24489826
Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David
2016-01-01
The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.
NASA Astrophysics Data System (ADS)
Chen, Tianyu; Nam, Yoon-Ho; Wang, Xinke; Han, Peng; Sun, Wenfeng; Feng, Shengfei; Ye, Jiasheng; Song, Jae-Won; Lee, Jung-Ho; Zhang, Chao; Zhang, Yan
2018-01-01
We present femtosecond optical pump-terahertz probe studies on the ultrafast dynamical processes of photo-generated charge carriers in silicon photovoltaic cells with various nanostructured surfaces and doping densities. The pump-probe measurements provide direct insight on the lifetime of photo-generated carriers, frequency-dependent complex dielectric response along with photoconductivity of silicon photovoltaic cells excited by optical pump pulses. A lifetime of photo-generated carriers of tens of nanosecond is identified from the time-dependent pump-induced attenuation of the terahertz transmission. In addition, we find a large value of the imaginary part of the dielectric function and of the real part of the photoconductivity in silicon photovoltaic cells with micron length nanowires. We attribute these findings to the result of defect-enhanced electron-photon interactions. Moreover, doping densities of phosphorous impurities in silicon photovoltaic cells are also quantified using the Drude-Smith model with our measured frequency-dependent complex photoconductivities.
Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum
2017-07-01
The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.
Silva, Carlos A M; Danelishvili, Lia; McNamara, Michael; Berredo-Pinho, Márcia; Bildfell, Robert; Biet, Franck; Rodrigues, Luciana S; Oliveira, Albanita V; Bermudez, Luiz E; Pessolani, Maria C V
2013-07-01
This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.
[Specification of cell destiny in early Caenorhabditis elegans embryo].
Schierenberg, E
1997-02-01
Embryogenesis of the nematode Caenorhabditis elegans has been described completely on a cell-by-cell basis and found to be essentially invariant. With this knowledge in hands, micromanipulated embryos and mutants have been analyzed for cell lineage defects and the distribution of specific gene products. The results challenge the classical view of cell-autonomous development in nematodes and indicate that the early embryo of C. elegans is a highly dynamic system. A network of inductive events between neighboring cells is being revealed, which is necessary to assign different developmental programs to blastomeres. In those cases where molecules involved in these cell-cell interactions have been identified, homologies to cell surface receptors, ligands and transcription factors found in other systems have become obvious.
Barr, S.; Hill, E.; Bayat, A.
2010-01-01
Introduction and Aims: Silicone biocompatibility is dictated by cell-surface interaction and its understanding is important in the field of implantation. The role of surface topography and its associated cellular morphology needs investigation to identify qualities that enhance silicone surface biocompatability. This study aims to create well-defined silicone topographies and examine how breast tissue–derived fibroblasts react and align to these surfaces. Methods: Photolithographic microelectronic techniques were modified to produce naturally inspired topographies in silicone, which were cultured with breast tissue–derived human fibroblasts. Using light, immunofluorescent and atomic force microscopy, the cytoskeletal reaction of fibroblasts to these silicone surfaces was investigated. Results: Numerous, well-defined micron-sized pillars, pores, grooves, and ridges were manufactured and characterized in medical grade silicone. Inimitable immunofluorescent microscopy represented in our high magnification images of vinculin, vimentin, and the actin cytoskeleton highlights the differences in fibroblast adhesion between fabricated silicone surfaces. These unique figures illustrate that fibroblast adhesion and the reactions these cells have to silicone can be manipulated to enhance biointegration between the implant and the breast tissue. An alteration of fibroblast phenotype was also observed, exhibiting the propensity of these surfaces to induce categorical remodeling of fibroblasts. Conclusions: This unique study shows that fibroblast reactions to silicone topographies can be tailored to induce physiological changes in cells. This paves the way for further research necessary to develop more biocompatible constructs capable of eliminating capsular contracture by subverting the foreign body response. PMID:20458346
Insect Optic Glomeruli-Exploration of a Universal Circuit for Sensorimotor Processing
2010-02-03
laboratory of the small palisade output neurons from the lobula of Drosophila melanogaster, using in vivo targeting of green fluorescent protein...animals that reveal cohorts of lobula outputs to identified optic glomeruli. Using infrared illumination and optics, the cell bodies of such clones...surface of one of these neurons. Once contiguity between the neuron and electrolyte of the electrode has been established, the cell is recorded
Thomas, Peter
2011-01-01
In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified. PMID:22154643
Leone, Dario Armando; Peschel, Andrea; Brown, Markus; Schachner, Helga; Ball, Miriam J; Gyuraszova, Marianna; Salzer-Muhar, Ulrike; Fukuda, Minoru; Vizzardelli, Caterina; Bohle, Barbara; Rees, Andrew J; Kain, Renate
2017-07-15
The lysosome-associated membrane protein (LAMP) family includes the dendritic cell endocytic receptors DC-LAMP and CD68, as well as LAMP-1 and LAMP-2. In this study we identify LAMP-1 (CD107a) and LAMP-2 (CD107b) on the surface of human monocyte-derived dendritic cells (MoDC) and show only LAMP-2 is internalized after ligation by specific Abs, including H4B4, and traffics rapidly but transiently to the MHC class II loading compartment, as does Ag conjugated to H4B4. However, pulsing MoDC with conjugates of primary (keyhole limpet hemocyanin; KLH) and recall (Bet v 1) Ags (H4B4*KLH and H4B4*Bet v 1) induced significantly less CD4 cell proliferation than pulsing with native Ag or Ag conjugated to control mAb (ISO*KLH and ISO*Bet v 1). In H4B4*KLH-pulsed MoDC, the duration of KLH residence in MHC class II loading compartments was significantly reduced, as were surface HLA-DR and DR-bound KLH-derived peptides. Paradoxically, MoDC pulsed with H4B4*KLH, but not the other KLH preparations, induced robust proliferation of CD4 cells separated from them by a transwell membrane, indicating factors in the supernatant were responsible. Furthermore, extracellular vesicles from supernatants of H4B4*KLH-pulsed MoDC contained significantly more HLA-DR and KLH than those purified from control MoDC, and KLH was concentrated specifically in exosomes that were a uniquely effective source of Ag in standard T cell proliferation assays. In summary, we identify LAMP-2 as an endocytic receptor on human MoDC that routes cargo into unusual Ag processing pathways, which reduces surface expression of Ag-derived peptides while selectively enriching Ag within immunogenic exosomes. This novel pathway has implications for the initiation of immune responses both locally and at distant sites. Copyright © 2017 by The American Association of Immunologists, Inc.
Power System Trade Studies for the Lunar Surface Access Module
NASA Technical Reports Server (NTRS)
Kohout, Lisa, L.
2008-01-01
A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.
Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting; Paulson, Robert F
2015-03-12
Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. © 2015 by The American Society of Hematology.
Vergallo, C; Fonseca, T; Pizzi, G; Dini, L
2010-08-01
The maintenance of a healthy corneal epithelium under both normal and wound healing conditions is achieved by a population of stem cells (SCs) located in the basal epithelium at the corneoscleral limbus. In the light of the development of strategies for reconstruction of the ocular surface in patients with limbal stem cell deficiency, a major challenge in corneal SCs biology remains the ability to identify stem cells in situ and in vitro. To date, not so much markers exist for the identification of different phenotypes. CESCs (corneal epithelial stem cells) isolated from limbal biopsies were maintained in primary culture for 14 days and stained with Hoechst and a panel of FITC-conjugated lectins. All lectins, with the exception of Lycopersicon esculentum, labelled CESCs irrespective of the degree of differentiation. Lycopersicon esculentum, that binds N-acetylglucosamine oligomers, labelled intensely only the surface of TACs (single corneal epithelial stem cells better than colonial cells). These results suggest that Lycopersicon esculentum lectin is a useful and easy-to-use marker for the in vitro identification of TACs (transient amplifying cells) in cultures of isolated CESCs. Copyright 2010. Published by Elsevier Ltd.
Gaikwad, Ravi M; Dokukin, Maxim E; Iyer, K Swaminathan; Woodworth, Craig D; Volkov, Dmytro O; Sokolov, Igor
2011-04-07
Here we describe a non-traditional method to identify cancerous human cervical epithelial cells in a culture dish based on physical adhesion between silica beads and cells. It is a simple optical fluorescence-based technique which detects the relative difference in the amount of fluorescent silica beads physically adherent to surfaces of cancerous and normal cervical cells. The method utilizes the centripetal force gradient that occurs in a rotating culture dish. Due to the variation in the balance between adhesion and centripetal forces, cancerous and normal cells demonstrate clearly distinctive distributions of the fluorescent particles adherent to the cell surface over the culture dish. The method demonstrates higher adhesion of silica particles to normal cells compared to cancerous cells. The difference in adhesion was initially observed by atomic force microscopy (AFM). The AFM data were used to design the parameters of the rotational dish experiment. The optical method that we describe is much faster and technically simpler than AFM. This work provides proof of the concept that physical interactions can be used to accurately discriminate normal and cancer cells. © The Royal Society of Chemistry 2011
Cao, Pengbo; Wall, Daniel
2017-04-04
The ability to recognize close kin confers survival benefits on single-celled microbes that live in complex and changing environments. Microbial kinship detection relies on perceptible cues that reflect relatedness between individuals, although the mechanisms underlying recognition in natural populations remain poorly understood. In myxobacteria, cells identify related individuals through a polymorphic cell surface receptor, TraA. Recognition of compatible receptors leads to outer membrane exchange among clonemates and fitness consequences. Here, we investigated how a single receptor creates a diversity in recognition across myxobacterial populations. We first show that TraA requires its partner protein TraB to function in cell-cell adhesion. Recognition is shown to be traA allele-specific, where polymorphisms within TraA dictate binding selectivity. We reveal the malleability of TraA recognition, and seemingly minor changes to its variable region reprogram recognition outcomes. Strikingly, we identify a single residue (A/P205) as a molecular switch for TraA recognition. Substitutions at this position change the specificity of a diverse panel of environmental TraA receptors. In addition, we engineered a receptor with unique specificity by simply creating an A205P substitution, suggesting that modest changes in TraA can lead to diversification of new recognition groups in nature. We hypothesize that the malleable property of TraA has allowed it to evolve and create social barriers between myxobacterial populations and in turn avoid adverse interactions with relatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruel, Nancy; Zago, Anna; Spear, Patricia G.
2006-03-01
Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutantmore » forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Back, J.; Malchiodi, E; Cho, S
2009-01-01
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less
NASA Astrophysics Data System (ADS)
Mitchell, A. C.; Geesey, G. G.
2006-12-01
Current understanding of bacterial respiration by dissimilatory iron (Fe) reduction is based primarily on studies of closed systems using soluble Fe(III). However, natural environments likely to support Fe reduction are typically open systems and contain Fe(III) primarily in the form of crystalline (hydr)oxides. Mechanisms by which electrons are transported between bacteria and mineral terminal electron acceptors (TEAs) under open system conditions are still poorly understood. However, a number of cytochromes have been identified as potentially playing a critical role in the electron transport system of some Fe reducing bacteria. Experiments were performed using (i) omcA, (ii) mtrC, or (iii) omcA and mtrC cytochrome deficient mutants of the Fe-reducing bacteria, Shewanella oneidensis MR-1, in transparent-window flow- reactors containing hematite as the only TEA. These were operated under defined hydrodynamic and anaerobic conditions. Cells expressed green fluorescent protein (gfp), allowing real time measurement of cells at the mineral surface by epifluorescence microscopy. Cytochromes which play a critical role in the anaerobic growth of S. Oneidensis by Fe reduction under open system natural-flow conditions could then be identified. Differences in the accumulation, maximum density, detachment and total production of surface-associated cells growing on hematite surfaces were apparent between the mutants, and between the mutants and the wild-type. Mutants deficient in cytochromes grew to a lower max density by up to 2 orders of magnitude than the wild-type, and exhibited no reduced Fe in the reactor effluent or at the surface of the hematite at the conclusion of the experiment, as revealed by X-Ray photoelectron spectroscopy (XPS). Therefore omcA and / or mtrC cytochromes appear critical for electron shuttling and anaerobic growth of S. Oneidensis on hematite under natural-flow conditions.
Enterovirus 71 Uses Cell Surface Heparan Sulfate Glycosaminoglycan as an Attachment Receptor
Tan, Chee Wah; Poh, Chit Laa; Sam, I-Ching
2013-01-01
Enterovirus 71 (EV-71) infections are usually associated with mild hand, foot, and mouth disease in young children but have been reported to cause severe neurological complications with high mortality rates. To date, four EV-71 receptors have been identified, but inhibition of these receptors by antagonists did not completely abolish EV-71 infection, implying that there is an as yet undiscovered receptor(s). Since EV-71 has a wide range of tissue tropisms, we hypothesize that EV-71 infections may be facilitated by using receptors that are widely expressed in all cell types, such as heparan sulfate. In this study, heparin, polysulfated dextran sulfate, and suramin were found to significantly prevent EV-71 infection. Heparin inhibited infection by all the EV-71 strains tested, including those with a single-passage history. Neutralization of the cell surface anionic charge by polycationic poly-d-lysine and blockage of heparan sulfate by an anti-heparan sulfate peptide also inhibited EV-71 infection. Interference with heparan sulfate biosynthesis either by sodium chlorate treatment or through transient knockdown of N-deacetylase/N-sulfotransferase-1 and exostosin-1 expression reduced EV-71 infection in RD cells. Enzymatic removal of cell surface heparan sulfate by heparinase I/II/III inhibited EV-71 infection. Furthermore, the level of EV-71 attachment to CHO cell lines that are variably deficient in cell surface glycosaminoglycans was significantly lower than that to wild-type CHO cells. Direct binding of EV-71 particles to heparin-Sepharose columns under physiological salt conditions was demonstrated. We conclude that EV-71 infection requires initial binding to heparan sulfate as an attachment receptor. PMID:23097443
Mechanisms of CDC-42 activation during contact-induced cell polarization.
Chan, Emily; Nance, Jeremy
2013-04-01
Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure-function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts.
Mechanisms of CDC-42 activation during contact-induced cell polarization
Chan, Emily; Nance, Jeremy
2013-01-01
Summary Polarization of early embryos provides a foundation to execute essential patterning and morphogenetic events. In Caenorhabditis elegans, cell contacts polarize early embryos along their radial axis by excluding the cortical polarity protein PAR-6 from sites of cell contact, thereby restricting PAR-6 to contact-free cell surfaces. Radial polarization requires the cortically enriched Rho GTPase CDC-42, which in its active form recruits PAR-6 through direct binding. The Rho GTPase activating protein (RhoGAP) PAC-1, which localizes specifically to cell contacts, triggers radial polarization by inactivating CDC-42 at these sites. The mechanisms responsible for activating CDC-42 at contact-free surfaces are unknown. Here, in an overexpression screen of Rho guanine nucleotide exchange factors (RhoGEFs), which can activate Rho GTPases, we identify CGEF-1 and ECT-2 as RhoGEFs that act through CDC-42 to recruit PAR-6 to the cortex. We show that ECT-2 and CGEF-1 localize to the cell surface and that removing their activity causes a reduction in levels of cortical PAR-6. Through a structure–function analysis, we show that the tandem DH-PH domains of CGEF-1 and ECT-2 are sufficient for GEF activity, but that regions outside of these domains target each protein to the cell surface. Finally, we provide evidence suggesting that the N-terminal region of ECT-2 may direct its in vivo preference for CDC-42 over another known target, the Rho GTPase RHO-1. We propose that radial polarization results from a competition between RhoGEFs, which activate CDC-42 throughout the cortex, and the RhoGAP PAC-1, which inactivates CDC-42 at cell contacts. PMID:23424200
Liao, Chien Huang; Wang, Ya-Hui; Chang, Wei-Wei; Yang, Bei-Chia; Wu, Tsai-Jung; Liu, Wei-Li; Yu, Alice L; Yu, John
2018-06-11
Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional, novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs prior to differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.
Ng, Wy Ching; Londrigan, Sarah L; Nasr, Najla; Cunningham, Anthony L; Turville, Stuart; Brooks, Andrew G; Reading, Patrick C
2016-01-01
It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Na Pombejra, Sarisa; Salemi, Michelle; Phinney, Brett S.; Gelli, Angie
2017-01-01
Eukaryotic pathogens display multiple mechanisms for breaching the blood-brain barrier (BBB) and invading the central nervous system (CNS). Of the fungal spp., that cause disease in mammals, only some cross brain microvascular endothelial cells which constitute the BBB, and invade the brain. Cryptococcus neoformans, the leading cause of fungal meningoencephalitis, crosses the BBB directly by transcytosis or by co-opting monocytes. We previously determined that Mpr1, a secreted fungal metalloprotease, facilitates association of fungal cells to brain microvascular endothelial cells and we confirmed that the sole expression of CnMPR1 endowed S. cerevisiae with an ability to cross the BBB. Here, the gain of function conferred onto S. cerevisiae by CnMPR1 (i.e., Sc
Na Pombejra, Sarisa; Salemi, Michelle; Phinney, Brett S; Gelli, Angie
2017-01-01
Eukaryotic pathogens display multiple mechanisms for breaching the blood-brain barrier (BBB) and invading the central nervous system (CNS). Of the fungal spp., that cause disease in mammals, only some cross brain microvascular endothelial cells which constitute the BBB, and invade the brain. Cryptococcus neoformans , the leading cause of fungal meningoencephalitis, crosses the BBB directly by transcytosis or by co-opting monocytes. We previously determined that Mpr1, a secreted fungal metalloprotease, facilitates association of fungal cells to brain microvascular endothelial cells and we confirmed that the sole expression of Cn MPR1 endowed S. cerevisiae with an ability to cross the BBB. Here, the gain of function conferred onto S. cerevisiae by Cn MPR1 (i.e., Sc
Imamura, N; Tanaka, R; Kajihara, H; Kuramoto, A
1988-11-01
In this study, pretreatment peripheral and/or bone marrow blasts from 12 patients with acute unclassifiable leukemia (AUL) expressing the myeloid-related cell-surface antigen (CD 11) were isolated for further analysis. Despite a lack of myeloperoxidase (MPO) activity, 1 patient's blasts contained cytoplasmic Auer rods. The circulating blasts from another patient expressed MPO while maintaining the same surface phenotype during 20 months of clinical follow-up. In addition, the blasts from 3 cases demonstrated both myelomonocytic and monocyte-specific surface antigens, whereas the remaining 9 cases completely lacked any monocyte-specific antigen detectable by monoclonal antibodies, Mo2, My4 and Leu M3 (CD 14). The first case eventually was diagnosed as acute myelomonocytic leukemia and the second as acute myelogenous leukemia by means of immunophenotypic analysis using flow cytometry (FACS IV). In addition, the presence of MPO protein was identified in the cytoplasm of blast cells from 5 patients with AUL by means of a cytoplasmic immunofluorescence test using a monoclonal antibody (MA1). Our study indicates that non-T, non-B AUL expressing OKM1 (CD 11) antigens include acute leukemias which are unequivocally identifiable as being of either myeloid or myelomonocytic origin. However, further investigations, including immunophenotypic and cytoplasmic analysis, ultrastructural cytochemistry and gene analysis with molecular probes (tests applicable to normal myeloid cells), are necessary in order to determine the actual origin of blasts and to recognize the differentiation stages of the various types of leukemic cells from patients with undifferentiated forms of leukemia.
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species
Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Aleixo, José Antonio G.
2016-01-01
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus. PMID:27489951
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species.
Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Conceição, Fabricio Rochedo; Hust, Michael; Mendonça, Karla Sequeira; Moreira, Ângela Nunes; França, Rodrigo Correa; da Silva, Wladimir Padilha; Bhunia, Arun K; Aleixo, José Antonio G
2016-01-01
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Wykes, Michelle N; Beattie, Lynette; MacPherson, Gordon G; Hart, Derek N
2004-01-01
CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b− DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs. PMID:15500618
Wykes, Michelle N; Beattie, Lynette; Macpherson, Gordon G; Hart, Derek N
2004-11-01
CD38 is a cell surface molecule with ADP-ribosyl cyclase activity, which is predominantly expressed on lymphoid and myeloid cells. CD38 has a significant role in B-cell function as some anti-CD38 antibodies can deliver potent growth and differentiation signals, but the ligand that delivers this signal in mice is unknown. We used a chimeric protein of mouse CD38 and human immunogobulin G (IgG) (CD38-Ig) to identify a novel ligand for murine CD38 (CD38L) on networks of follicular dendritic cells (FDCs) as well as dendritic cells (DCs) in the spleen. Flow-cytometry found that all DC subsets expressed cytoplasmic CD38L but only fresh ex vivo CD11c+ CD11b- DCs had cell surface CD38L. Anti-CD38 antibody blocked the binding of CD38-Ig to CD38L, confirming the specificity of detection. CD38-Ig immuno-precipitated ligands of 66 and 130 kDa. Functional studies found that CD38-Ig along with anti-CD40 and anti-major histocompatibility complex (MHC) class II antibody provided maturation signals to DCs in vitro. When CD38-Ig was administered in vivo with antigen, IgG2a responses were significantly reduced, suggesting that B and T cells expressing CD38 may modulate the isotype of antibodies produced through interaction with CD38L on DCs. CD38-Ig also expanded FDC networks when administered in vivo. In conclusion, this study has identified a novel ligand for CD38 which has a role in functional interactions between lymphocytes and DCs or FDCs.
Stinemetz, Emily K; Gao, Peng; Pinkston, Kenneth L; Montealegre, Maria Camila; Murray, Barbara E; Harvey, Barrett R
2017-01-01
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation.
Pinkston, Kenneth L.; Montealegre, Maria Camila; Murray, Barbara E.
2017-01-01
AtlA is the major peptidoglycan hydrolase of Enterococcus faecalis involved in cell division and cellular autolysis. The secreted zinc metalloprotease, gelatinase (GelE), has been identified as an important regulator of cellular function through post-translational modification of protein substrates. AtlA is a known target of GelE, and their interplay has been proposed to regulate AtlA function. To study the protease-mediated post-translational modification of AtlA, monoclonal antibodies were developed as research tools. Flow cytometry and Western blot analysis suggests that in the presence of GelE, surface-bound AtlA exists primarily as a N-terminally truncated form whereas in the absence of GelE, the N-terminal domain of AtlA is retained. We identified the primary GelE cleavage site occurring near the transition between the T/E rich Domain I and catalytic region, Domain II via N-terminal sequencing. Truncation of AtlA had no effect on the peptidoglycan hydrolysis activity of AtlA. However, we observed that N-terminal cleavage was required for efficient AtlA-mediated cell division while unprocessed AtlA was unable to resolve dividing cells into individual units. Furthermore, we observed that the processed AtlA has the propensity to localize to the cell septum on wild-type cells whereas unprocessed AtlA in the ΔgelE strain were dispersed over the cell surface. Combined, these results suggest that AtlA septum localization and subsequent cell separation can be modulated by a single GelE-mediated N-terminal cleavage event, providing new insights into the post-translation modification of AtlA and the mechanisms governing chaining and cell separation. PMID:29049345
Recombination imaging of III-V solar cells
NASA Technical Reports Server (NTRS)
Virshup, G. F.
1987-01-01
An imaging technique based on the radiative recombination of minority carriers in forward-biased solar cells has been developed for characterization of III-V solar cells. When used in mapping whole wafers, it has helped identify three independent loss mechanisms (broken grid lines, shorting defects, and direct-to-indirect bandgap transitions), all of which resulted in lower efficiencies. The imaging has also led to improvements in processing techniques to reduce the occurrence of broken gridlines as well as surface defects. The ability to visualize current mechanisms in solar cells is an intuitive tool which is powerful in its simplicity.
Hager, Natalie A; Krasowski, Collin J; Mackie, Timothy D; Kolb, Alexander R; Needham, Patrick G; Augustine, Andrew A; Dempsey, Alison; Szent-Gyorgyi, Christopher; Bruchez, Marcel P; Bain, Daniel J; Kwiatkowski, Adam V; O'Donnell, Allyson F; Brodsky, Jeffrey L
2018-05-21
Protein composition at the plasma membrane is tightly regulated, with rapid protein internalization and selective targeting to the cell surface occurring in response to environmental changes. For example, ion channels are dynamically relocalized to or from the plasma membrane in response to physiological alterations, allowing cells and organisms to maintain osmotic and salt homeostasis. To identify additional factors that regulate the selective trafficking of a specific ion channel, we used a yeast model for a mammalian potassium channel, the K+ inwardly rectifying channel Kir2.1. Kir2.1 maintains potassium homeostasis in heart muscle cells, and Kir2.1 defects lead to human disease. By examining the ability of Kir2.1 to rescue the growth of yeast cells lacking endogenous potassium channels, we discovered that specific α-arrestins regulate Kir2.1 localization. Specifically, we found that the Ldb19/Art1, Aly1/Art6, and Aly2/Art3 α-arrestin adaptor proteins promote Kir2.1 trafficking to the cell surface, increase Kir2.1 activity at the plasma membrane, and raise intracellular potassium levels. To better quantify the intracellular and cell-surface populations of Kir2.1, we created fluorescence-activating protein fusions and for the first time used this technique to measure the cell-surface residency of a plasma membrane protein in yeast. Our experiments revealed that two α-arrestin effectors also control Kir2.1 localization. In particular, both the Rsp5 ubiquitin ligase and the protein phosphatase calcineurin facilitated the α-arrestin-mediated trafficking of Kir2.1. Together, our findings implicate α-arrestins in regulating an additional class of plasma membrane proteins and establish a new tool for dissecting the trafficking itinerary of any membrane protein in yeast. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F.; Rudel, Thomas
2015-01-01
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance. PMID:25906164
Subbarayal, Prema; Karunakaran, Karthika; Winkler, Ann-Cathrin; Rother, Marion; Gonzalez, Erik; Meyer, Thomas F; Rudel, Thomas
2015-04-01
The obligate intracellular bacterium Chlamydia trachomatis invades into host cells to replicate inside a membrane-bound vacuole called inclusion. Multiple different host proteins are recruited to the inclusion and are functionally modulated to support chlamydial development. Invaded and replicating Chlamydia induces a long-lasting activation of the PI3 kinase signaling pathway that is required for efficient replication. We identified the cell surface tyrosine kinase EphrinA2 receptor (EphA2) as a chlamydial adherence and invasion receptor that induces PI3 kinase (PI3K) activation, promoting chlamydial replication. Interfering with binding of C. trachomatis serovar L2 (Ctr) to EphA2, downregulation of EphA2 expression or inhibition of EphA2 activity significantly reduced Ctr infection. Ctr interacts with and activates EphA2 on the cell surface resulting in Ctr and receptor internalization. During chlamydial replication, EphA2 remains active accumulating around the inclusion and interacts with the p85 regulatory subunit of PI3K to support the activation of the PI3K/Akt signaling pathway that is required for normal chlamydial development. Overexpression of full length EphA2, but not the mutant form lacking the intracellular cytoplasmic domain, enhanced PI3K activation and Ctr infection. Despite the depletion of EphA2 from the cell surface, Ctr infection induces upregulation of EphA2 through the activation of the ERK pathway, which keeps the infected cell in an apoptosis-resistant state. The significance of EphA2 as an entry and intracellular signaling receptor was also observed with the urogenital C. trachomatis-serovar D. Our findings provide the first evidence for a host cell surface receptor that is exploited for invasion as well as for receptor-mediated intracellular signaling to facilitate chlamydial replication. In addition, the engagement of a cell surface receptor at the inclusion membrane is a new mechanism by which Chlamydia subverts the host cell and induces apoptosis resistance.
Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2005-01-01
Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748
Lymphocyte subpopulations of intestinal mucosa in inflammatory bowel disease.
Eade, O E; Andre-Ukena, S S; Moulton, C; MacPherson, B; Beeken, W L
1980-01-01
Lymphocyte subpopulations in peripheral blood (PBL) and intestinal mucosa (IML) of 10 patients with inflammatory bowel disease (IBD) were compared with those of 11 non-IBD controls. PBL were separated on Ficoll/hypaque gradients, and IML were isolated by incubation in dithiothreitol, EDTA, and collagenase. These methods yielded cells of good viability and with intact HLA A and B-antigens. T-cells, identified by neuraminidase-treated sheep RBC rosettes and non-specific esterase staining, comprised approximately 91% of the IML from normal mucosa of all groups. B-cells, identified by erythrocyte-antibody-complement rosettes and surface immunoglobulins, were only 7% of these IML populations. Cell yields were two-fold or more greater from abnormal IBD mucosa, with T-cells ranging from 55 to 95% and B-cells from 2 to 36%. The percentage of Fc receptor bearing cells was low in all specimens. By these methods, T-lymphocytes predominated in intestinal mucosa of both IBD and non-IBD patients, but there is marked increase in the percentage of B-cells isolated from abnormal mucosa in IBD. Images Fig. 1 Fig. 2 Fig. 3 Fig. 11 PMID:6968706
Immunity to Intracellular Salmonella Depends on Surface-associated Antigens
Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk
2012-01-01
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937
Lin, Yi-Chieh; Chen, Bing-Mae; Lu, Wei-Cheng; Su, Chien-I; Prijovich, Zeljko M.; Chung, Wen-Chuan; Wu, Pei-Yu; Chen, Kai-Chuan; Lee, I-Chiao; Juan, Ting-Yi; Roffler, Steve R.
2013-01-01
Membrane-tethered proteins (mammalian surface display) are increasingly being used for novel therapeutic and biotechnology applications. Maximizing surface expression of chimeric proteins on mammalian cells is important for these applications. We show that the cytoplasmic domain from the B7-1 antigen, a commonly used element for mammalian surface display, can enhance the intracellular transport and surface display of chimeric proteins in a Sar1 and Rab1 dependent fashion. However, mutational, alanine scanning and deletion analysis demonstrate the absence of linear ER export motifs in the B7 cytoplasmic domain. Rather, efficient intracellular transport correlated with the presence of predicted secondary structure in the cytoplasmic tail. Examination of the cytoplasmic domains of 984 human and 782 mouse type I transmembrane proteins revealed that many previously identified ER export motifs are rarely found in the cytoplasmic tail of type I transmembrane proteins. Our results suggest that efficient intracellular transport of B7 chimeric proteins is associated with the structure rather than to the presence of a linear ER export motif in the cytoplasmic tail, and indicate that short (less than ~ 10-20 amino acids) and unstructured cytoplasmic tails should be avoided to express high levels of chimeric proteins on mammalian cells. PMID:24073236
2013-01-01
Background HIV-1 Nef is a viral accessory protein critical for AIDS progression. Nef lacks intrinsic catalytic activity and binds multiple host cell signaling proteins, including Hck and other Src-family tyrosine kinases. Nef binding induces constitutive Hck activation that may contribute to HIV pathogenesis by promoting viral infectivity, replication and downregulation of cell-surface MHC-I molecules. In this study, we developed a yeast-based phenotypic screen to identify small molecules that inhibit the Nef-Hck complex. Results Nef-Hck interaction was faithfully reconstituted in yeast cells, resulting in kinase activation and growth arrest. Yeast cells expressing the Nef-Hck complex were used to screen a library of small heterocyclic compounds for their ability to rescue growth inhibition. The screen identified a dihydrobenzo-1,4-dioxin-substituted analog of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) as a potent inhibitor of Nef-dependent HIV-1 replication and MHC-I downregulation in T-cells. Docking studies predicted direct binding of DQBS to Nef which was confirmed in differential scanning fluorimetry assays with recombinant purified Nef protein. DQBS also potently inhibited the replication of HIV-1 NL4-3 chimeras expressing Nef alleles representative of all M-group HIV-1 clades. Conclusions Our findings demonstrate the utility of a yeast-based growth reversion assay for the identification of small molecule Nef antagonists. Inhibitors of Nef function discovered with this assay, such as DQBS, may complement the activity of current antiretroviral therapies by enabling immune recognition of HIV-infected cells through the rescue of cell surface MHC-I. PMID:24229420
Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T. T.; McCurdy, David W.
2018-01-01
Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans-differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018, as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs. PMID:29599795
Wu, Yuzhou; Hou, Jiexi; Yu, Fen; Nguyen, Suong T T; McCurdy, David W
2018-01-01
Transfer cells (TCs) play important roles in facilitating enhanced rates of nutrient transport at key apoplasmic/symplasmic junctions along the nutrient acquisition and transport pathways in plants. TCs achieve this capacity by developing elaborate wall ingrowth networks which serve to increase plasma membrane surface area thus increasing the cell's surface area-to-volume ratio to achieve increased flux of nutrients across the plasma membrane. Phloem parenchyma (PP) cells of Arabidopsis leaf veins trans -differentiate to become PP TCs which likely function in a two-step phloem loading mechanism by facilitating unloading of photoassimilates into the apoplasm for subsequent energy-dependent uptake into the sieve element/companion cell (SE/CC) complex. We are using PP TCs in Arabidopsis as a genetic model to identify transcription factors involved in coordinating deposition of the wall ingrowth network. Confocal imaging of pseudo-Schiff propidium iodide-stained tissue revealed different profiles of temporal development of wall ingrowth deposition across maturing cotyledons and juvenile leaves, and a basipetal gradient of deposition across mature adult leaves. RNA-Seq analysis was undertaken to identify differentially expressed genes common to these three different profiles of wall ingrowth deposition. This analysis identified 68 transcription factors up-regulated two-fold or more in at least two of the three experimental comparisons, with six of these transcription factors belonging to Clade III of the NAC-domain family. Phenotypic analysis of these NAC genes using insertional mutants revealed significant reductions in levels of wall ingrowth deposition, particularly in a double mutant of NAC056 and NAC018 , as well as compromised sucrose-dependent root growth, indicating impaired capacity for phloem loading. Collectively, these results support the proposition that Clade III members of the NAC-domain family in Arabidopsis play important roles in regulating wall ingrowth deposition in PP TCs.
[The role of endothelial cells and endothelial precursor cells in angiogenesis].
Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz
2006-01-01
Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.
Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.
2005-01-01
Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Ku??tzing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L-1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method. ?? Springer 2005.
Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.
2005-01-01
Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Kützing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L−1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method.
Altered gene expression in conjunctival squamous cell carcinoma.
Mahale, Alka; Alkatan, Hind; Alwadani, Saeed; Othman, Maha; Suarez, Maria J; Price, Antoinette; Al-Hussain, Hailah; Jastaneiah, Sabah; Yu, Wayne; Maktabi, Azza; Deepak, Edward P; Eberhart, Charles G; Asnaghi, Laura
2016-05-01
Conjunctival squamous cell carcinoma is a malignancy of the ocular surface. The molecular drivers responsible for the development and progression of this disease are not well understood. We therefore compared the transcriptional profiles of eight snap-frozen conjunctival squamous cell carcinomas and one in situ lesion with normal conjunctival specimens in order to identify diagnostic markers or therapeutic targets. RNA was analyzed using oligonucleotide microarrays, and a wide range of transcripts with altered expression identified, including many dysregulated in carcinomas arising at other sites. Among the upregulated genes, we observed more than 30-fold induction of the matrix metalloproteinases, MMP-9 and MMP-11, as well as a prominent increase in the mRNA level of a calcium-binding protein important for the intracellular calcium signaling, S100A2, which was induced over 20-fold in the tumor cohort. Clusterin was the most downregulated gene, with an approximately 180-fold reduction in the mRNA expression. These alterations were all confirmed by qPCR in the samples used for initial microarray analysis. In addition, immunohistochemical analysis confirmed the overexpression of MMP-11 and S100A2, as well as reductions in clusterin, in several independent in situ carcinomas of conjunctiva. These data identify a number of alterations, including upregulation of MMP-9, MMP-11, and S100A2, as well as downregulation of clusterin, associated with epithelial tumorigenesis in the ocular surface.
NASA Astrophysics Data System (ADS)
Cybulskis, Viktor J.; Harris, James W.; Zvinevich, Yury; Ribeiro, Fabio H.; Gounder, Rajamani
2016-10-01
A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10-2-103 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).
Biosynthesis of plant cell wall polysaccharides.
Gibeaut, D M; Carpita, N C
1994-09-01
The cell wall is the principal structural element of plant form. Cellulose, long crystals of several dozen glucan chains, forms the microfibrillar foundation of plant cell walls and is synthesized at the plasma membrane. Except for callose, all other noncellulosic components are secreted to the cell surface and form a porous matrix assembled around the cellulose microfibrils. These diverse noncellulosic polysaccharides and proteins are made in the endomembrane system. Many questions about the biosynthesis and modification within the Golgi apparatus and integration of cell components at the cell surface remain unanswered. The lability of synthetic complexes upon isolation is one reason for slow progress. However, with new methods of membrane isolation and analysis of products in vitro, recent advances have been made in purifying active synthases from plasma membrane and Golgi apparatus. Likely synthase polypeptides have been identified by affinity-labeling techniques, but we are just beginning to understand the unique features of the coordinated assembly of complex polysaccharides. Nevertheless, such progress renews hope that the first gene of a synthase for a wall polysaccharide from higher plants is within our grasp.
Cybulskis, Viktor J; Harris, James W; Zvinevich, Yury; Ribeiro, Fabio H; Gounder, Rajamani
2016-10-01
A design is presented for a versatile transmission infrared cell that can interface with an external vacuum manifold to undergo in situ gas treatments and receive controlled doses of various adsorbates and probe molecules, allowing characterization of heterogeneous catalyst surfaces in order to identify and quantify active sites and adsorbed surface species. Critical design characteristics include customized temperature control for operation between cryogenic and elevated temperatures (100-1000 K) and modified Cajon fittings for operation over a wide pressure range (10 -2 -10 3 Torr) that eliminates the complications introduced when using sealants or flanges to secure cell windows. The customized, hand-tightened Cajon fittings simplify operation of the cell compared to previously reported designs, because they allow for rapid cell assembly and disassembly and, in turn, replacement of catalyst samples. In order to validate the performance of the cell, transmission infrared spectroscopic experiments are reported to characterize the Brønsted and Lewis acid sites present in H-beta and H-mordenite zeolites using cryogenic adsorption of CO (<150 K).
Vincent, Maxence S.; Canestrari, Mickaël J.; Leone, Philippe; Stathopulos, Julien; Ize, Bérengère; Zoued, Abdelrahim; Cambillau, Christian; Kellenberger, Christine; Roussel, Alain
2017-01-01
The transport of proteins at the cell surface of Bacteroidetes depends on a secretory apparatus known as type IX secretion system (T9SS). This machine is responsible for the cell surface exposition of various proteins, such as adhesins, required for gliding motility in Flavobacterium, S-layer components in Tannerella forsythia, and tooth tissue-degrading enzymes in the oral pathogen Porphyromonas gingivalis. Although a number of subunits of the T9SS have been identified, we lack details on the architecture of this secretion apparatus. Here we provide evidence that five of the genes encoding the core complex of the T9SS are co-transcribed and that the gene products are distributed in the cell envelope. Protein-protein interaction studies then revealed that these proteins oligomerize and interact through a dense network of contacts. PMID:28057754
Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew
2018-06-01
The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.
Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N
2017-12-01
We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.
Al-Mayhani, M. Talal F.; Grenfell, Richard; Narita, Masashi; Piccirillo, Sara; Kenney-Herbert, Emma; Fawcett, James W.; Collins, V. Peter; Ichimura, Koichi; Watts, Colin
2011-01-01
Glioblastoma multiforme (GBM) is the most common type of primary brain tumor and a highly malignant and heterogeneous cancer. Current conventional therapies fail to eradicate or curb GBM cell growth. Hence, exploring the cellular and molecular basis of GBM cell growth is vital to develop novel therapeutic approaches. Neuroglia (NG)-2 is a transmembrane proteoglycan expressed by NG2+ progenitors and is strongly linked to cell proliferation in the normal brain. By using NG2 as a biomarker we identify a GBM cell population (GBM NG2+ cells) with robust proliferative, clonogenic, and tumorigenic capacity. We show that a significant proportion (mean 83%) of cells proliferating in the tumor mass express NG2 and that over 50% of GBM NG2+ cells are proliferating. Compared with the GBM NG2− cells from the same tumor, the GBM of NG2+ cells overexpress genes associated with aggressive tumorigenicity, including overexpression of Mitosis and Cell Cycling Module genes (e.g., MELK, CDC, MCM, E2F), which have been previously shown to correlate with poor survival in GBM. We also show that the coexpression pattern of NG2 with other glial progenitor markers in GBM does not recapitulate that described in the normal brain. The expression of NG2 by such an aggressive and actively cycling GBM population combined with its location on the cell surface identifies this cell population as a potential therapeutic target in a subset of patients with GBM. PMID:21798846
Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging
Yan, Jing; Sharo, Andrew G.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.
2016-01-01
Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA. Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592
Plasma needle: treatment of living cells and tissues
NASA Astrophysics Data System (ADS)
Stoffels, Eva
2003-10-01
Non-thermal plasmas are capable of refined treatment of heat sensitive surfaces. Recently, many non-thermal sources working under atmospheric pressure have been constructed. Their main applications are various surface treatments: cleaning, etching, changing the wettability/adhesion, and bacterial decontamination. A new research at the Eindhoven University of Technology focuses on in vivo treatment by means of a novel non-thermal plasma source (the plasma needle). At present, a fundamental study has been undertaken to identify all possible responses of living objects exposed to the plasma. Plasma treatment does not lead to cell death (necrosis), which is a cause of inflammation. On the contrary, we observe various sophisticated reactions of mammalian cells, e.g. cell detachment (loss of cell contact) and programmed cell death (apoptosis). Moreover, under certain conditions the plasma is capable of killing bacteria, while eukaryotic cells remain unharmed. These findings may result in development of new techniques, like bacterial sterilization of infected (living) tissues or removal of cells without inflammatory response, and on a longer time scale to new methods in the health care. Possible applications include treatment of skin ailments, aiding wound healing and sterilization of dental cavities.
Structure and Biological Roles of Mucin-type O-glycans at the Ocular Surface
Guzman-Aranguez, Ana; Argüeso, Pablo
2010-01-01
Mucins are major components in mucus secretions and apical cell membranes on wet-surfaced epithelia. Structurally, they are characterized by the presence of tandem repeat domains containing heavily O-glycosylated serine and threonine residues. O-glycans contribute to maintaining the highly extended and rigid structure of mucins, conferring to them specific physical and biological properties essential for their protective functions. At the ocular surface epithelia, mucin-type O-glycan chains are short and predominantly sialylated, perhaps reflecting specific requirements of the ocular surface. Traditionally, secreted mucins and their O-glycans in the tear film have been involved in the clearance of debris and pathogens from the surface of the eye. New evidence, however, shows that O-glycans on the cell-surface glycocalyx have additional biological roles in the protection of corneal and conjunctival epithelia, such as preventing bacterial adhesion, promoting boundary lubrication, and maintaining the epithelial barrier function through their interaction with galectin-3. Abnormalities in mucin-type O-glycosylation have been identified in many disorders where the stability of the ocular surface is compromised. This review summarizes recent advances in understanding the structure, biosynthesis, and function of mucin-type O-glycans at the ocular surface and their alteration in ocular surface disease. PMID:20105403
Wang, Sen; Zhao, Dong; Bai, Xinfeng; Zhang, Weican
2016-01-01
ABSTRACT Cytophaga hutchinsonii is a Gram-negative bacterium that can efficiently degrade crystalline cellulose by a unique mechanism different from the free cellulase or cellulosome strategy. In this study, chu_3220, encoding the hypothetical protein CHU_3220 (205 kDa), was identified by insertional mutation and gene deletion as the first gene essential for degradation of the crystalline region but not the amorphous region of cellulose by C. hutchinsonii. A chu_3220 deletion mutant was defective in the degradation of crystalline cellulose and increased the degree of crystallinity of Avicel PH101 but could still degrade amorphous cellulose completely. CHU_3220 was found to be located on the outer surface of the outer membrane and could bind to cellulose. It contains 15 PbH1 domains and a C-terminal domain (CHU_C) that was proved to be critical for the localization of CHU_3220 on the cell surface and the function of CHU_3220 in crystalline cellulose degradation. Moreover, the degradation of crystalline cellulose was intact-cell dependent and inhibited by NaN3. Further study showed that chu_3220 was induced by cellulose and that the endoglucanase activity on the cell surface was significantly reduced without chu_3220. Real-time PCR revealed that the transcription of most genes encoding endoglucanases located on the cell surface was decreased in the chu_3220 deletion mutant, indicating that chu_3220 might also play a role in the regulation of the expression of some endoglucanases. IMPORTANCE Cytophaga hutchinsonii could efficiently degrade crystalline cellulose with a unique mechanism without cellulosomes and free cellulases. It lacks proteins that are thought to play important roles in disruption of the crystalline region of cellulose, including exoglucanases, lytic polysaccharide monooxygenases, expansins, expansin-like proteins, or swollenins, and most of its endoglucanases lack carbohydrate binding modules. The mechanism of the degradation of crystalline cellulose is still unknown. In this study, chu_3220 was identified as the first gene essential for the degradation of the crystalline region but not the amorphous region of cellulose. CHU_3220 is a high-molecular-weight protein located on the outer surface of the outer membrane and could bind to cellulose. We proposed that CHU_3220 might be an essential component of a protein complex on the cell surface in charge of the decrystallization of crystalline cellulose. The degradation of crystalline cellulose by C. hutchinsonii was not only dependent on intact cells but also required the energy supplied by the cells. This was obviously different from other known cellulose depolymerization system. Our study has shed more light on the novel strategy of crystalline cellulose degradation by C. hutchinsonii. PMID:27742681
Menezes, Maira Maria; Nobre, Leonardo Thiago Duarte Barreto; Rossi, Gustavo Rodrigues; Almeida-Lima, Jailma; Melo-Silveira, Raniere Fagundes; Franco, Celia Regina Cavichiolo; Trindade, Edvaldo Silva; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira
2018-05-01
A low-molecular-weight (LMW) heterofucan (designated fucan B) was obtained from the brown seaweed, Spatoglossum schröederi, and its activity as an inhibitor of capillary-like tube formation by endothelial cells (ECs) was analyzed. Chemical, infrared and electrophoretic analyses confirmed the identity of fucan B. In contrast to other LMW fucans, fucan B (0.012-0.1 mg/mL) inhibited ECs capillary-like tube formation in a concentration-dependent manner. In addition, fucan B (0.01-0.05 mg/mL) did not affect ECs proliferation. Fucan B also inhibited ECs migration on a fibronectin-coated surface, but not on laminin- or collagen-coated surfaces. Biotinylated fucan B was used as a probe to identify its localization. Confocal microscopy experiments revealed that biotinylated fucan did not bind to the cell surface, but rather only to fibronectin. Our findings suggest that fucan B inhibits ECs capillary-like tube formation and migration by binding directly to fibronectin and blocking fibronectin sites recognized by cell surface ligands. However, further studies are needed to evaluate the in vivo effects of fucan B. Copyright © 2018 Elsevier B.V. All rights reserved.
NHE8 plays important roles in gastric mucosal protection
Xu, Hua; Li, Jing; Chen, Huacong; Wang, Chunhui
2013-01-01
Sodium/hydrogen exchanger (NHE) 8 is an apically expressed membrane protein in the intestinal epithelial cells. It plays important roles in sodium absorption and bicarbonate secretion in the intestine. Although NHE8 mRNA has been detected in the stomach, the precise location and physiological role of NHE8 in the gastric glands remain unclear. In the current study, we successfully detected the expression of NHE8 in the glandular region of the stomach by Western blotting and located NHE8 protein at the apical membrane in the surface mucous cells by a confocal microscopic method. We also identified the expression of downregulated-in-adenoma (DRA) in the surface mucous cells in the stomach. Using NHE8−/− mice, we found that NHE8 plays little or no role in basal gastric acid production, yet NHE8−/− mice have reduced gastric mucosal surface pH and higher incidence of developing gastric ulcer. DRA expression was reduced significantly in the stomach in NHE8−/− mice. The propensity for gastric ulcer, reduced mucosal surface pH, and low DRA expression suggest that NHE8 is indirectly involved in gastric bicarbonate secretion and gastric mucosal protection. PMID:23220221
Harris, Janelle L; Dave, Keyur; Gorman, Jeffrey; Khanna, Kum Kum
2018-06-01
5T4 is a transmembrane glycoprotein with limited expression in normal adult tissues and expression in some solid tumours. It is unclear whether 5T4 is preferentially expressed by stem or differentiated cell types. Modes of 5T4 regulation are unknown despite its ongoing development as a cancer immunotherapy target. Our aims were to clarify the differentiation status of 5T4 expressing cells in breast cancer and to understand the mechanism underlying 5T4 membrane presentation. We analysed 5T4 expression in breast cancer cell populations by flow cytometery and found that 5T4 is highly expressed on differentiated cells, where it localizes to focal adhesions. Using immunoprecipitation and mass spectrometry, we identified interactions between 5T4 and the membrane trafficking proteins Rab11, Rab18 and ARF6. Mechanistically we found that Rab11 and Rab18 have oppositional roles in controlling expression and surface presentation of 5T4. 5T4 depletion stabilizes Rab11 protein expression with a consequent stimulation transferrin surface labelling, indicating that 5T4 represses endocytic activity. Successful immunotherapeutic targeting of 5T4 requires surface presentation and different immunotherapy strategies require surface presentation versus endocytosis. While breast cancer cells with high 5T4 surface expression and rapid cell surface turnover would be susceptible to antibody-drug conjugates that rely on intracellular release, 5T4 positive cells with lower expression or lower turnover may still be responsive to T-cell mediated approaches. We find that endocytosis of 5T4 is strongly Rab11 dependent and as such Rab11 activity could affect the success or failure of 5T4-targetted immunotherapy, particularly for antibody-drug conjugate approaches. In fact, 5T4 itself represses Rab11 expression. This newly uncovered relationship between Rab11 and 5T4 suggests that breast tumours with high 5T4 expression may not have efficient endocytic uptake of 5T4-targetted immunotherapeutics. This should be considered when selecting amongst the different types of immunotherapies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Leukemia-associated antigens in man.
Brown, G; Capellaro, D; Greaves, M
1975-12-01
Rabbit antisera raised against acute lymphoblastic leukemia (ALL) cells were used to distinguish ALL from other leukemias, to identify rare leukemia cells in the bone marrow of patients in remission, and to define human leukemia-associated antigens. Antibody binding was studied with the use of immunofluorescence reagents and the analytic capacity of the Fluorescence Activated Cell Sorter-1 (FACS-1). The results indicated that most non-T-cell ALL have three leukemia-associated antigens on their surface which are absent from normal lymphoid cells: 1) an antigen shared with myelocytes, myeloblastic leukemia cells, and fetal liver (hematopoietic) cells; 2) an antigen shared with a subset of intermediate normoblasts in normal bone marrow and fetal liver; and 3) an antigen found thus far only on non-T-cell ALL and in some acute undifferentiated leukemias, which we therefore regard as a strong candidate for a leukemia-specific antigen. These antigens are absent from a subgroup of ALL patients in which the lymphoblasta express T-cell surface markers. Preliminary studies on the bone marrow samples of patients in remission indicated that rare leukemia cells were present in some samples. The implications of these findings with respect to the heterogeneity and cell origin(s) of ALL, its diagnosis, and its potential monitoring during treatment were discussed.