Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H
2016-03-01
Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Identification of tissue-specific cell death using methylation patterns of circulating DNA
Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval
2016-01-01
Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.
2010-01-01
Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855
Bolisetty, Mohan; Kursawe, Romy; Sun, Lili; Sivakamasundari, V.; Kycia, Ina
2017-01-01
Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets. Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular components of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures. Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral metabolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated between T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for comprehensive understanding of islet biology and diabetes pathogenesis. PMID:27864352
Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M
2015-06-05
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. Copyright © 2015 Gorrepati et al.
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps.
Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K; Ernst, Jason; Kellis, Manolis; Hardison, Ross C; Myers, Richard M; Wold, Barbara J
2013-12-01
We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity.
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps
Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K.; Ernst, Jason; Kellis, Manolis; Hardison, Ross C.; Myers, Richard M.; Wold, Barbara J.
2013-01-01
We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity. PMID:24170599
Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq.
Sebé-Pedrós, Arnau; Saudemont, Baptiste; Chomsky, Elad; Plessier, Flora; Mailhé, Marie-Pierre; Renno, Justine; Loe-Mie, Yann; Lifshitz, Aviezer; Mukamel, Zohar; Schmutz, Sandrine; Novault, Sophie; Steinmetz, Patrick R H; Spitz, François; Tanay, Amos; Marlow, Heather
2018-05-31
The emergence and diversification of cell types is a leading factor in animal evolution. So far, systematic characterization of the gene regulatory programs associated with cell type specificity was limited to few cell types and few species. Here, we perform whole-organism single-cell transcriptomics to map adult and larval cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal with complex tissue-level body-plan organization. We uncover eight broad cell classes in Nematostella, including neurons, cnidocytes, and digestive cells. Each class comprises different subtypes defined by the expression of multiple specific markers. In particular, we characterize a surprisingly diverse repertoire of neurons, which comparative analysis suggests are the result of lineage-specific diversification. By integrating transcription factor expression, chromatin profiling, and sequence motif analysis, we identify the regulatory codes that underlie Nematostella cell-specific expression. Our study reveals cnidarian cell type complexity and provides insights into the evolution of animal cell-specific genomic regulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes.
Henry, Rachel A; Kendall, Peggy L; Thomas, James W
2012-08-01
Eliminating autoantigen-specific B cells is an attractive alternative to global B-cell depletion for autoimmune disease treatment. To identify the potential for targeting a key autoimmune B-cell specificity in type 1 diabetes, insulin-binding B cells were tracked within a polyclonal repertoire using heavy chain B-cell receptor (BCR) transgenic (VH125Tg) mice. Insulin-specific B cells are rare in the periphery of nonautoimmune VH125Tg/C57BL/6 mice and WT/NOD autoimmune mice, whereas they clearly populate 1% of mature B-cell subsets in VH125Tg/NOD mice. Autoantigen upregulates CD86 in anti-insulin B cells, suggesting they are competent to interact with T cells. Endogenous insulin occupies anti-insulin BCR beginning with antigen commitment in bone marrow parenchyma, as identified by a second anti-insulin monoclonal antibody. Administration of this monoclonal antibody selectively eliminates insulin-reactive B cells in vivo and prevents disease in WT/NOD mice. Unexpectedly, developing B cells are less amenable to depletion, despite increased BCR sensitivity. These findings exemplify how a critical type 1 diabetes B-cell specificity escapes immune tolerance checkpoints. Disease liability is corrected by eliminating this B-cell specificity, providing proof of concept for a novel therapeutic approach for autoimmune disease.
Peters, Linda M.; Belyantseva, Inna A.; Lagziel, Ayala; Battey, James F.; Friedman, Thomas B.; Morell, Robert J.
2007-01-01
Specialization in cell function and morphology is influenced by the differential expression of mRNAs, many of which are expressed at low abundance and restricted to certain cell types. Detecting such transcripts in cDNA libraries may require sequencing millions of clones. Massively parallel signature sequencing (MPSS) is well-suited for identifying transcripts that are expressed in discrete cell types and in low abundance. We have made MPSS libraries from microdissections of three inner ear tissues. By comparing these MPSS libraries to those of 87 other tissues included in the Mouse Reference Transcriptome (MRT) online resource, we have identified genes that are highly enriched in, or specific to, the inner ear. We show by RT-PCR and in situ hybridization that signatures unique to the inner ear libraries identify transcripts with highly specific cell-type localizations. These transcripts serve to illustrate the utility of a resource that is available to the research community. Utilization of these resources will increase the number of known transcription units and expand our knowledge of the tissue-specific regulation of the transcriptome. PMID:17049805
Capurro, Alberto; Bodea, Liviu-Gabriel; Schaefer, Patrick; Luthi-Carter, Ruth; Perreau, Victoria M.
2015-01-01
The characterization of molecular changes in diseased tissues gives insight into pathophysiological mechanisms and is important for therapeutic development. Genome-wide gene expression analysis has proven valuable for identifying biological processes in neurodegenerative diseases using post mortem human brain tissue and numerous datasets are publically available. However, many studies utilize heterogeneous tissue samples consisting of multiple cell types, all of which contribute to global gene expression values, confounding biological interpretation of the data. In particular, changes in numbers of neuronal and glial cells occurring in neurodegeneration confound transcriptomic analyses, particularly in human brain tissues where sample availability and controls are limited. To identify cell specific gene expression changes in neurodegenerative disease, we have applied our recently published computational deconvolution method, population specific expression analysis (PSEA). PSEA estimates cell-type-specific expression values using reference expression measures, which in the case of brain tissue comprises mRNAs with cell-type-specific expression in neurons, astrocytes, oligodendrocytes and microglia. As an exercise in PSEA implementation and hypothesis development regarding neurodegenerative diseases, we applied PSEA to Parkinson's and Huntington's disease (PD, HD) datasets. Genes identified as differentially expressed in substantia nigra pars compacta neurons by PSEA were validated using external laser capture microdissection data. Network analysis and Annotation Clustering (DAVID) identified molecular processes implicated by differential gene expression in specific cell types. The results of these analyses provided new insights into the implementation of PSEA in brain tissues and additional refinement of molecular signatures in human HD and PD. PMID:25620908
Cornish, Alex J; Filippis, Ioannis; David, Alessia; Sternberg, Michael J E
2015-09-01
Each cell type found within the human body performs a diverse and unique set of functions, the disruption of which can lead to disease. However, there currently exists no systematic mapping between cell types and the diseases they can cause. In this study, we integrate protein-protein interaction data with high-quality cell-type-specific gene expression data from the FANTOM5 project to build the largest collection of cell-type-specific interactomes created to date. We develop a novel method, called gene set compactness (GSC), that contrasts the relative positions of disease-associated genes across 73 cell-type-specific interactomes to map genes associated with 196 diseases to the cell types they affect. We conduct text-mining of the PubMed database to produce an independent resource of disease-associated cell types, which we use to validate our method. The GSC method successfully identifies known disease-cell-type associations, as well as highlighting associations that warrant further study. This includes mast cells and multiple sclerosis, a cell population currently being targeted in a multiple sclerosis phase 2 clinical trial. Furthermore, we build a cell-type-based diseasome using the cell types identified as manifesting each disease, offering insight into diseases linked through etiology. The data set produced in this study represents the first large-scale mapping of diseases to the cell types in which they are manifested and will therefore be useful in the study of disease systems. Overall, we demonstrate that our approach links disease-associated genes to the phenotypes they produce, a key goal within systems medicine.
β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
McLaren, James E.; Dolton, Garry; Matthews, Katherine K.; Gostick, Emma; Kronenberg-Versteeg, Deborah; Eichmann, Martin; Knight, Robin R.; Heck, Susanne; Powrie, Jake; Bingley, Polly J.; Dayan, Colin M.; Miles, John J.; Sewell, Andrew K.
2015-01-01
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I (pHLAI) tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent onset type 1 diabetes and healthy controls. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy controls, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor (TCR) repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes. PMID:25249579
White, Nicole; Benton, Miles; Kennedy, Daniel; Fox, Andrew; Griffiths, Lyn; Lea, Rodney; Mengersen, Kerrie
2017-01-01
Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.
The protein expression landscape of the Arabidopsis root
Petricka, Jalean J.; Schauer, Monica A.; Megraw, Molly; Breakfield, Natalie W.; Thompson, J. Will; Georgiev, Stoyan; Soderblom, Erik J.; Ohler, Uwe; Moseley, Martin Arthur; Grossniklaus, Ueli; Benfey, Philip N.
2012-01-01
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein–protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development. PMID:22447775
Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C
2017-11-10
Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.
Chae, Minho; Danko, Charles G; Kraus, W Lee
2015-07-16
Global run-on coupled with deep sequencing (GRO-seq) provides extensive information on the location and function of coding and non-coding transcripts, including primary microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and enhancer RNAs (eRNAs), as well as yet undiscovered classes of transcripts. However, few computational tools tailored toward this new type of sequencing data are available, limiting the applicability of GRO-seq data for identifying novel transcription units. Here, we present groHMM, a computational tool in R, which defines the boundaries of transcription units de novo using a two state hidden-Markov model (HMM). A systematic comparison of the performance between groHMM and two existing peak-calling methods tuned to identify broad regions (SICER and HOMER) favorably supports our approach on existing GRO-seq data from MCF-7 breast cancer cells. To demonstrate the broader utility of our approach, we have used groHMM to annotate a diverse array of transcription units (i.e., primary transcripts) from four GRO-seq data sets derived from cells representing a variety of different human tissue types, including non-transformed cells (cardiomyocytes and lung fibroblasts) and transformed cells (LNCaP and MCF-7 cancer cells), as well as non-mammalian cells (from flies and worms). As an example of the utility of groHMM and its application to questions about the transcriptome, we show how groHMM can be used to analyze cell type-specific enhancers as defined by newly annotated enhancer transcripts. Our results show that groHMM can reveal new insights into cell type-specific transcription by identifying novel transcription units, and serve as a complete and useful tool for evaluating functional genomic elements in cells.
Thiel, William H.; Bair, Thomas; Peek, Andrew S.; Liu, Xiuying; Dassie, Justin; Stockdale, Katie R.; Behlke, Mark A.; Miller, Francis J.; Giangrande, Paloma H.
2012-01-01
Background The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with high-throughput sequencing (HTS) and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers. Methodology/Principal Findings We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs). Several rounds of positive (VSMCs) and negative (endothelial cells; ECs) selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1) metrics of selection enrichment; and (2) pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs. Conclusions and Significance We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies. PMID:22962591
Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P
2014-12-01
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.
Toker, Lilah; Rocco, Brad; Sibille, Etienne
2017-01-01
Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single-cell RNA-sequencing (RNA-seq) studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets (MGSs) in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at www.neuroexpresso.org. PMID:29204516
Jiao, Jing; Ishikawa, Tomo-O; Dumlao, Darren S; Norris, Paul C; Magyar, Clara E; Mikulec, Carol; Catapang, Art; Dennis, Edward A; Fischer, Susan M; Herschman, Harvey R
2014-11-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX-2) plays a critical role in DMBA/TPA-induced skin tumor induction. Although many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell type-specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared with littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2-expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell type-specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biologic responses. Cox-2 gene deletion demonstrates that intrinsic COX-2 expression in initiated keratinocytes is a principal driver of skin carcinogenesis; lipidomic analysis identifies likely prostanoid effectors. ©2014 American Association for Cancer Research.
Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A; Wu, Jia Qian
2015-12-01
Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results via the interactive genome browser at our laboratory website that is freely accessible to the research community. This is the first lncRNA expression database of collective populations of glia, vascular cells, and neurons. We anticipate that these studies will advance the knowledge of this major class of non-coding genes and their potential roles in neurological development and diseases.
Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula
2016-01-01
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133
Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo
2011-01-01
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518
Jiao, Jing; Ishikawa, Tomo-o; Dumlao, Darren S.; Norris, Paul C.; Magyar, Clara E.; Mikulec, Carol; Catapang, Art; Dennis, Edward A.; Fischer, Susan M.; Herschman, Harvey R.
2014-01-01
Pharmacologic and global gene deletion studies demonstrate that cyclooxygenase-2 (PTGS2/COX2) plays a critical role in DMBA/TPA-induced skin tumor induction. While many cell types in the tumor microenvironment express COX-2, the cell types in which COX-2 expression is required for tumor promotion are not clearly established. Here, cell-type specific Cox-2 gene deletion reveals a vital role for skin epithelial cell COX-2 expression in DMBA/TPA tumor induction. In contrast, myeloid Cox-2 gene deletion has no effect on DMBA/TPA tumorigenesis. The infrequent, small tumors that develop on mice with an epithelial cell-specific Cox-2 gene deletion have decreased proliferation and increased cell differentiation properties. Blood vessel density is reduced in tumors with an epithelial cell-specific Cox-2 gene deletion, compared to littermate control tumors, suggesting a reciprocal relationship in tumor progression between COX-2 expressing tumor epithelial cells and microenvironment endothelial cells. Lipidomics analysis of skin and tumors from DMBA/TPA-treated mice suggests that the prostaglandins PGE2 and PGF2α are likely candidates for the epithelial cell COX-2-dependent eicosanoids that mediate tumor progression. This study both illustrates the value of cell-type specific gene deletions in understanding the cellular roles of signal-generating pathways in complex microenvironments and emphasizes the benefit of a systems-based lipidomic analysis approach to identify candidate lipid mediators of biological responses. PMID:25063587
Cell-specific Labeling Enzymes for Analysis of Cell–Cell Communication in Continuous Co-culture*
Tape, Christopher J.; Norrie, Ida C.; Worboys, Jonathan D.; Lim, Lindsay; Lauffenburger, Douglas A.; Jørgensen, Claus
2014-01-01
We report the orthologous screening, engineering, and optimization of amino acid conversion enzymes for cell-specific proteomic labeling. Intracellular endoplasmic-reticulum-anchored Mycobacterium tuberculosis diaminopimelate decarboxylase (DDCM.tub-KDEL) confers cell-specific meso-2,6-diaminopimelate-dependent proliferation to multiple eukaryotic cell types. Optimized lysine racemase (LyrM37-KDEL) supports D-lysine specific proliferation and efficient cell-specific isotopic labeling. When ectopically expressed in discrete cell types, these enzymes confer 90% cell-specific isotopic labeling efficiency after 10 days of co-culture. Moreover, DDCM.tub-KDEL and LyrM37-KDEL facilitate equally high cell-specific labeling fidelity without daily media exchange. Consequently, the reported novel enzyme pairing can be used to study cell-specific signaling in uninterrupted, continuous co-cultures. Demonstrating the importance of increased labeling stability for addressing novel biological questions, we compare the cell-specific phosphoproteome of fibroblasts in direct co-culture with epithelial tumor cells in both interrupted (daily media exchange) and continuous (no media exchange) co-cultures. This analysis identified multiple cell-specific phosphorylation sites specifically regulated in the continuous co-culture. Given their applicability to multiple cell types, continuous co-culture labeling fidelity, and suitability for long-term cell–cell phospho-signaling experiments, we propose DDCM.tub-KDEL and LyrM37-KDEL as excellent enzymes for cell-specific labeling with amino acid precursors. PMID:24820872
Carmona, Santiago J; Teichmann, Sarah A; Ferreira, Lauren; Macaulay, Iain C; Stubbington, Michael J T; Cvejic, Ana; Gfeller, David
2017-03-01
The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans -membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell-specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans -membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. © 2017 Carmona et al.; Published by Cold Spring Harbor Laboratory Press.
Constellation Pharmacology: A new paradigm for drug discovery
Schmidt, Eric W.; Olivera, Baldomero M.
2015-01-01
Constellation Pharmacology is a cell-based high-content phenotypic-screening platform that utilizes subtype-selective pharmacological agents to elucidate the cell-specific combinations (“constellations”) of key signaling proteins that define specific cell types. Heterogeneous populations of native cells, in which the different individual cell types have been identified and characterized, are the foundation for this screening platform. Constellation Pharmacology is useful for screening small molecules or for deconvoluting complex mixtures of biologically-active natural products. This platform has been used to purify natural products and discover their molecular mechanisms. In the on-going development of Constellation Pharmacology, there is a positive-feedback loop between the pharmacological characterization of cell types and screening for new drug candidates. As Constellation Pharmacology is used to discover compounds with novel targeting-selectivity profiles, those new compounds then further help to elucidate the constellations of specific cell types, thereby increasing the content of this high-content platform. PMID:25562646
Gorrepati, Lakshmi; Krause, Michael W.; Chen, Weiping; Brodigan, Thomas M.; Correa-Mendez, Margarita; Eisenmann, David M.
2015-01-01
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type–specific "mRNA tagging" to enrich for VPC and seam cell–specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type–specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. PMID:26048561
Ferreira, Lauren; Macaulay, Iain C.; Stubbington, Michael J.T.
2017-01-01
The immune system of vertebrate species consists of many different cell types that have distinct functional roles and are subject to different evolutionary pressures. Here, we first analyzed conservation of genes specific for all major immune cell types in human and mouse. Our results revealed higher gene turnover and faster evolution of trans-membrane proteins in NK cells compared with other immune cell types, and especially T cells, but similar conservation of nuclear and cytoplasmic protein coding genes. To validate these findings in a distant vertebrate species, we used single-cell RNA sequencing of lck:GFP cells in zebrafish and obtained the first transcriptome of specific immune cell types in a nonmammalian species. Unsupervised clustering and single-cell TCR locus reconstruction identified three cell populations, T cells, a novel type of NK-like cells, and a smaller population of myeloid-like cells. Differential expression analysis uncovered new immune-cell–specific genes, including novel immunoglobulin-like receptors, and neofunctionalization of recently duplicated paralogs. Evolutionary analyses confirmed the higher gene turnover of trans-membrane proteins in NK cells compared with T cells in fish species, suggesting that this is a general property of immune cell types across all vertebrates. PMID:28087841
Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens
2009-11-01
The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.
Ng, Wy Ching; Liong, Stella; Tate, Michelle D.; Irimura, Tatsuro; Denda-Nagai, Kaori; Brooks, Andrew G.; Londrigan, Sarah L.
2014-01-01
Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV. PMID:24257596
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.
Li, Wei Vivian; Razaee, Zahra S; Li, Jingyi Jessica
2016-01-11
The dynamics of epigenomic marks in their relevant chromatin states regulate distinct gene expression patterns, biological functions and phenotypic variations in biological processes. The availability of high-throughput epigenomic data generated by next-generation sequencing technologies allows a data-driven approach to evaluate the similarities and differences of diverse tissue and cell types in terms of epigenomic features. While ChromImpute has allowed for the imputation of large-scale epigenomic information to yield more robust data to capture meaningful relationships between biological samples, widely used methods such as hierarchical clustering and correlation analysis cannot adequately utilize epigenomic data to accurately reveal the distinction and grouping of different tissue and cell types. We utilize a three-step testing procedure-ANOVA, t test and overlap test to identify tissue/cell-type- associated enhancers and promoters and to calculate a newly defined Epigenomic Overlap Measure (EPOM). EPOM results in a clear correspondence map of biological samples from different tissue and cell types through comparison of epigenomic marks evaluated in their relevant chromatin states. Correspondence maps by EPOM show strong capability in distinguishing and grouping different tissue and cell types and reveal biologically meaningful similarities between Heart and Muscle, Blood & T-cell and HSC & B-cell, Brain and Neurosphere, etc. The gene ontology enrichment analysis both supports and explains the discoveries made by EPOM and suggests that the associated enhancers and promoters demonstrate distinguishable functions across tissue and cell types. Moreover, the tissue/cell-type-associated enhancers and promoters show enrichment in the disease-related SNPs that are also associated with the corresponding tissue or cell types. This agreement suggests the potential of identifying causal genetic variants relevant to cell-type-specific diseases from our identified associated enhancers and promoters. The proposed EPOM measure demonstrates superior capability in grouping and finding a clear correspondence map of biological samples from different tissue and cell types. The identified associated enhancers and promoters provide a comprehensive catalog to study distinct biological processes and disease variants in different tissue and cell types. Our results also find that the associated promoters exhibit more cell-type-specific functions than the associated enhancers do, suggesting that the non-associated promoters have more housekeeping functions than the non-associated enhancers.
Libbrecht, Maxwell W.; Ay, Ferhat; Hoffman, Michael M.; Gilbert, David M.; Bilmes, Jeffrey A.; Noble, William Stafford
2015-01-01
The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term “specific expression domains.” We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data. PMID:25677182
Libbrecht, Maxwell W; Ay, Ferhat; Hoffman, Michael M; Gilbert, David M; Bilmes, Jeffrey A; Noble, William Stafford
2015-04-01
The genomic neighborhood of a gene influences its activity, a behavior that is attributable in part to domain-scale regulation. Previous genomic studies have identified many types of regulatory domains. However, due to the difficulty of integrating genomics data sets, the relationships among these domain types are poorly understood. Semi-automated genome annotation (SAGA) algorithms facilitate human interpretation of heterogeneous collections of genomics data by simultaneously partitioning the human genome and assigning labels to the resulting genomic segments. However, existing SAGA methods cannot integrate inherently pairwise chromatin conformation data. We developed a new computational method, called graph-based regularization (GBR), for expressing a pairwise prior that encourages certain pairs of genomic loci to receive the same label in a genome annotation. We used GBR to exploit chromatin conformation information during genome annotation by encouraging positions that are close in 3D to occupy the same type of domain. Using this approach, we produced a model of chromatin domains in eight human cell types, thereby revealing the relationships among known domain types. Through this model, we identified clusters of tightly regulated genes expressed in only a small number of cell types, which we term "specific expression domains." We found that domain boundaries marked by promoters and CTCF motifs are consistent between cell types even when domain activity changes. Finally, we showed that GBR can be used to transfer information from well-studied cell types to less well-characterized cell types during genome annotation, making it possible to produce high-quality annotations of the hundreds of cell types with limited available data. © 2015 Libbrecht et al.; Published by Cold Spring Harbor Laboratory Press.
Whole transcriptome profiling of taste bud cells.
Sukumaran, Sunil K; Lewandowski, Brian C; Qin, Yumei; Kotha, Ramana; Bachmanov, Alexander A; Margolskee, Robert F
2017-08-08
Analysis of single-cell RNA-Seq data can provide insights into the specific functions of individual cell types that compose complex tissues. Here, we examined gene expression in two distinct subpopulations of mouse taste cells: Tas1r3-expressing type II cells and physiologically identified type III cells. Our RNA-Seq libraries met high quality control standards and accurately captured differential expression of marker genes for type II (e.g. the Tas1r genes, Plcb2, Trpm5) and type III (e.g. Pkd2l1, Ncam, Snap25) taste cells. Bioinformatics analysis showed that genes regulating responses to stimuli were up-regulated in type II cells, while pathways related to neuronal function were up-regulated in type III cells. We also identified highly expressed genes and pathways associated with chemotaxis and axon guidance, providing new insights into the mechanisms underlying integration of new taste cells into the taste bud. We validated our results by immunohistochemically confirming expression of selected genes encoding synaptic (Cplx2 and Pclo) and semaphorin signalling pathway (Crmp2, PlexinB1, Fes and Sema4a) components. The approach described here could provide a comprehensive map of gene expression for all taste cell subpopulations and will be particularly relevant for cell types in taste buds and other tissues that can be identified only by physiological methods.
2013-01-01
Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445
Dong, Xiaomin; Chen, Kenian; Cuevas-Diaz Duran, Raquel; You, Yanan; Sloan, Steven A.; Zhang, Ye; Zong, Shan; Cao, Qilin; Barres, Ben A.; Wu, Jia Qian
2015-01-01
Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results via the interactive genome browser at our laboratory website that is freely accessible to the research community. This is the first lncRNA expression database of collective populations of glia, vascular cells, and neurons. We anticipate that these studies will advance the knowledge of this major class of non-coding genes and their potential roles in neurological development and diseases. PMID:26683846
Ilin, Yelena; Choi, Ji Sun; Harley, Brendan A C; Kraft, Mary L
2015-11-17
A major challenge for expanding specific types of hematopoietic cells ex vivo for the treatment of blood cell pathologies is identifying the combinations of cellular and matrix cues that direct hematopoietic stem cells (HSC) to self-renew or differentiate into cell populations ex vivo. Microscale screening platforms enable minimizing the number of rare HSCs required to screen the effects of numerous cues on HSC fate decisions. These platforms create a strong demand for label-free methods that accurately identify the fate decisions of individual hematopoietic cells at specific locations on the platform. We demonstrate the capacity to identify discrete cells along the HSC differentiation hierarchy via multivariate analysis of Raman spectra. Notably, cell state identification is accurate for individual cells and independent of the biophysical properties of the functionalized polyacrylamide gels upon which these cells are cultured. We report partial least-squares discriminant analysis (PLS-DA) models of single cell Raman spectra enable identifying four dissimilar hematopoietic cell populations across the HSC lineage specification. Successful discrimination was obtained for a population enriched for long-term repopulating HSCs (LT-HSCs) versus their more differentiated progeny, including closely related short-term repopulating HSCs (ST-HSCs) and fully differentiated lymphoid (B cells) and myeloid (granulocytes) cells. The lineage-specific differentiation states of cells from these four subpopulations were accurately identified independent of the stiffness of the underlying biomaterial substrate, indicating subtle spectral variations that discriminated these populations were not masked by features from the culture substrate. This approach enables identifying the lineage-specific differentiation stages of hematopoietic cells on biomaterial substrates of differing composition and may facilitate correlating hematopoietic cell fate decisions with the extrinsic cues that elicited them.
An atlas of active enhancers across human cell types and tissues
NASA Astrophysics Data System (ADS)
Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin
2014-03-01
Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
NASA Astrophysics Data System (ADS)
Ashok, Praveen C.; Praveen, Bavishna B.; Campbell, Elaine C.; Dholakia, Kishan; Powis, Simon J.
2014-03-01
Leucocytes in the blood of mammals form a powerful protective system against a wide range of dangerous pathogens. There are several types of immune cells that has specific role in the whole immune system. The number and type of immune cells alter in the disease state and identifying the type of immune cell provides information about a person's state of health. There are several immune cell subsets that are essentially morphologically identical and require external labeling to enable discrimination. Here we demonstrate the feasibility of using Wavelength Modulated Raman Spectroscopy (WMRS) with suitable machine learning algorithms as a label-free method to distinguish between different closely lying immune cell subset. Principal Component Analysis (PCA) was performed on WMRS data from single cells, obtained using confocal Raman microscopy for feature reduction, followed by Support Vector Machine (SVM) for binary discrimination of various cell subset, which yielded an accuracy >85%. The method was successful in discriminating between untouched and unfixed purified populations of CD4+CD3+ and CD8+CD3+ T lymphocyte subsets, and CD56+CD3- natural killer cells with a high degree of specificity. It was also proved sensitive enough to identify unique Raman signatures that allow clear discrimination between dendritic cell subsets, comprising CD303+CD45+ plasmacytoid and CD1c+CD141+ myeloid dendritic cells. The results of this study clearly show that WMRS is highly sensitive and can distinguish between cell types that are morphologically identical.
Epigenetic regulation of normal human mammary cell type-specific miRNAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrba, Lukas; Garbe, James C.; Stampfer, Martha R.
2011-08-26
Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linkedmore » to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.« less
Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.
2009-01-01
Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893
Joshi, Anagha
2014-12-30
Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been identified recently as cell type specific enhancers regulating developmentally essential genes in many species such as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains to be explored and can bring new biological insights. We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy), combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type. We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function. Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under control of SetDB1 and not DNMT for silencing. Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under SetDB1 control for silencing.
Garg, Abhishek D.; De Ruysscher, Dirk; Agostinis, Patrizia
2016-01-01
ABSTRACT The emerging role of the cancer cell-immune cell interface in shaping tumorigenesis/anticancer immunotherapy has increased the need to identify prognostic biomarkers. Henceforth, our primary aim was to identify the immunogenic cell death (ICD)-derived metagene signatures in breast, lung and ovarian cancer that associate with improved patient survival. To this end, we analyzed the prognostic impact of differential gene-expression of 33 pre-clinically-validated ICD-parameters through a large-scale meta-analysis involving 3,983 patients (‘discovery’ dataset) across lung (1,432), breast (1,115) and ovarian (1,436) malignancies. The main results were also substantiated in ‘validation’ datasets consisting of 818 patients of same cancer-types (i.e. 285 breast/274 lung/259 ovarian). The ICD-associated parameters exhibited a highly-clustered and largely cancer type-specific prognostic impact. Interestingly, we delineated ICD-derived consensus-metagene signatures that exhibited a positive prognostic impact that was either cancer type-independent or specific. Importantly, most of these ICD-derived consensus-metagenes (acted as attractor-metagenes and thereby) ‘attracted’ highly co-expressing sets of genes or convergent-metagenes. These convergent-metagenes also exhibited positive prognostic impact in respective cancer types. Remarkably, we found that the cancer type-independent consensus-metagene acted as an ‘attractor’ for cancer-specific convergent-metagenes. This reaffirms that the immunological prognostic landscape of cancer tends to segregate between cancer-independent and cancer-type specific gene signatures. Moreover, this prognostic landscape was largely dominated by the classical T cell activity/infiltration/function-related biomarkers. Interestingly, each cancer type tended to associate with biomarkers representing a specific T cell activity or function rather than pan-T cell biomarkers. Thus, our analysis confirms that ICD can serve as a platform for discovery of novel prognostic metagenes. PMID:27057433
Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2016-05-01
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. © 2016 Kumar et al.; Published by Cold Spring Harbor Laboratory Press.
Kumar, Vibhor; Rayan, Nirmala Arul; Muratani, Masafumi; Lim, Stefan; Elanggovan, Bavani; Xin, Lixia; Lu, Tess; Makhija, Harshyaa; Poschmann, Jeremie; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam
2016-01-01
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation. PMID:26957309
Metabolic profiling of Arabidopsis thaliana epidermal cells
Ebert, Berit; Zöller, Daniela; Erban, Alexander; Fehrle, Ines; Hartmann, Jürgen; Niehl, Annette; Kopka, Joachim; Fisahn, Joachim
2010-01-01
Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo. PMID:20150518
Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex
Allen, William E.; Kauvar, Isaac V.; Chen, Michael Z.; Richman, Ethan B.; Yang, Samuel J.; Chan, Ken; Gradinaru, Viviana; Deverman, Benjamin E.; Luo, Liqun; Deisseroth, Karl
2017-01-01
SUMMARY The successful planning and execution of adaptive behaviors in mammals may require long-range coordination of neural networks throughout cerebral cortex. The neuronal implementation of signals that could orchestrate cortex-wide activity remains unclear. Here, we develop and apply methods for cortex-wide Ca2+ imaging in mice performing decision-making behavior and identify a global cortical representation of task engagement encoded in the activity dynamics of both single cells and superficial neuropil distributed across the majority of dorsal cortex. The activity of multiple molecularly defined cell types was found to reflect this representation with type-specific dynamics. Focal optogenetic inhibition tiled across cortex revealed a crucial role for frontal cortex in triggering this cortex-wide phenomenon; local inhibition of this region blocked both the cortex-wide response to task-initiating cues and the voluntary behavior. These findings reveal cell-type-specific processes in cortex for globally representing goal-directed behavior and identify a major cortical node that gates the global broadcast of task-related information. PMID:28521139
An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.
Horman, Shane R; To, Jeremy; Orth, Anthony P
2013-12-01
There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.
Cuticular Waxes of Arabidopsis thaliana Shoots: Cell-Type-Specific Composition and Biosynthesis
Hegebarth, Daniela; Jetter, Reinhard
2017-01-01
It is generally assumed that all plant epidermis cells are covered with cuticles, and the distinct surface geometries of pavement cells, guard cells, and trichomes imply functional differences and possibly different wax compositions. However, experiments probing cell-type-specific wax compositions and biosynthesis have been lacking until recently. This review summarizes new evidence showing that Arabidopsis trichomes have fewer wax compound classes than pavement cells, and higher amounts of especially long-chain hydrocarbons. The biosynthesis machinery generating this characteristic surface coating is discussed. Interestingly, wax compounds with similar, long hydrocarbon chains had been identified previously in some unrelated species, not all of them bearing trichomes. PMID:28686187
Endo, Kei; Hayashi, Karin; Saito, Hirohide
2016-02-23
The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.
Human neuronal changes in brain edema and increased intracranial pressure.
Faragó, Nóra; Kocsis, Ágnes Katalin; Braskó, Csilla; Lovas, Sándor; Rózsa, Márton; Baka, Judith; Kovács, Balázs; Mikite, Katalin; Szemenyei, Viktor; Molnár, Gábor; Ozsvár, Attila; Oláh, Gáspár; Piszár, Ildikó; Zvara, Ágnes; Patócs, Attila; Barzó, Pál; Puskás, László G; Tamás, Gábor
2016-08-04
Functional and molecular changes associated with pathophysiological conditions are relatively easily detected based on tissue samples collected from patients. Population specific cellular responses to disease might remain undiscovered in samples taken from organs formed by a multitude of cell types. This is particularly apparent in the human cerebral cortex composed of a yet undefined number of neuron types with a potentially different involvement in disease processes. We combined cellular electrophysiology, anatomy and single cell digital PCR in human neurons identified in situ for the first time to assess mRNA expression and corresponding functional changes in response to edema and increased intracranial pressure. In single pyramidal cells, mRNA copy numbers of AQP1, AQP3, HMOX1, KCNN4, SCN3B and SOD2 increased, while CACNA1B, CRH decreased in edema. In addition, single pyramidal cells increased the copy number of AQP1, HTR5A and KCNS1 mRNAs in response to increased intracranial pressure. In contrast to pyramidal cells, AQP1, HMOX1and KCNN4 remained unchanged in single cell digital PCR performed on fast spiking cells in edema. Corroborating single cell digital PCR results, pharmacological and immunohistochemical results also suggested the presence of KCNN4 encoding the α-subunit of KCa3.1 channels in edema on pyramidal cells, but not on interneurons. We measured the frequency of spontaneous EPSPs on pyramidal cells in both pathophysiological conditions and on fast spiking interneurons in edema and found a significant decrease in each case, which was accompanied by an increase in input resistances on both cell types and by a drop in dendritic spine density on pyramidal cells consistent with a loss of excitatory synapses. Our results identify anatomical and/or physiological changes in human pyramidal and fast spiking cells in edema and increased intracranial pressure revealing cell type specific quantitative changes in gene expression. Some of the edema/increased intracranial pressure modulated and single human pyramidal cell verified gene products identified here might be considered as novel pharmacological targets in cell type specific neuroprotection.
Goué, Nadia; Lesage-Descauses, Marie-Claude; Mellerowicz, Ewa J; Magel, Elisabeth; Label, Philippe; Sundberg, Björn
2008-01-01
The vascular cambium is the meristem in trees that produce wood. This meristem consists of two types of neighbouring initials: fusiform cambial cells (FCCs), which give rise to the axial cell system (i.e. fibres and vessel elements), and ray cambial cells (RCCs), which give rise to rays. There is little molecular information on the mechanisms whereby the differing characteristics of these neighbouring cells are maintained. A microgenomic approach was adopted in which the transcriptomes of FCCs and RCCs dissected out from the cambial meristem of poplar (Populus trichocarpa x Populus deltoïdes var. Boelare) were analysed, and a transcriptional database for these two cell types established. Photosynthesis genes were overrepresented in RCCs, providing molecular support for the presence of photosynthetic systems in rays. Genes that putatively encode transporters (vesicle, lipid and metal ion transporters and aquaporins) in RCCs were also identified. In addition, many cell wall-related genes showed cell type-specific expression patterns. Notably, genes involved in pectin metabolism and xyloglucan metabolism were overrepresented in RCCs and FCCs, respectively. The results demonstrate the use of microgenomics to reveal differences in biological processes in neighbouring meristematic cells, and to identify key genes involved in these processes.
Investigating Evolutionary Conservation of Dendritic Cell Subset Identity and Functions
Vu Manh, Thien-Phong; Bertho, Nicolas; Hosmalin, Anne; Schwartz-Cornil, Isabelle; Dalod, Marc
2015-01-01
Dendritic cells (DCs) were initially defined as mononuclear phagocytes with a dendritic morphology and an exquisite efficiency for naïve T-cell activation. DC encompass several subsets initially identified by their expression of specific cell surface molecules and later shown to excel in distinct functions and to develop under the instruction of different transcription factors or cytokines. Very few cell surface molecules are expressed in a specific manner on any immune cell type. Hence, to identify cell types, the sole use of a small number of cell surface markers in classical flow cytometry can be deceiving. Moreover, the markers currently used to define mononuclear phagocyte subsets vary depending on the tissue and animal species studied and even between laboratories. This has led to confusion in the definition of DC subset identity and in their attribution of specific functions. There is a strong need to identify a rigorous and consensus way to define mononuclear phagocyte subsets, with precise guidelines potentially applicable throughout tissues and species. We will discuss the advantages, drawbacks, and complementarities of different methodologies: cell surface phenotyping, ontogeny, functional characterization, and molecular profiling. We will advocate that gene expression profiling is a very rigorous, largely unbiased and accessible method to define the identity of mononuclear phagocyte subsets, which strengthens and refines surface phenotyping. It is uniquely powerful to yield new, experimentally testable, hypotheses on the ontogeny or functions of mononuclear phagocyte subsets, their molecular regulation, and their evolutionary conservation. We propose defining cell populations based on a combination of cell surface phenotyping, expression analysis of hallmark genes, and robust functional assays, in order to reach a consensus and integrate faster the huge but scattered knowledge accumulated by different laboratories on different cell types, organs, and species. PMID:26082777
Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M
2010-12-22
A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.
Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell–Specific Genes
Sunohara, Mitsuhiro; Pouldar, Tiffany M.; Wang, Hongjun; Liu, Yixin; Rieger, Megan E.; Tran, Evelyn; Flodby, Per; Siegmund, Kimberly D.; Crandall, Edward D.; Laird-Offringa, Ite A.
2017-01-01
Diseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to the pathogenesis of these diseases. The distal lung alveolar epithelium is composed of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. Although cell type–specific markers, most prominently surfactant protein C, have allowed detailed lineage tracing studies of AT2 cell differentiation and the cells’ roles in disease, studies of AT1 cells have been hampered by a lack of genes with expression unique to AT1 cells. In this study, we performed genome-wide expression profiling of multiple rat organs together with purified rat AT2, AT1, and in vitro differentiated AT1-like cells, resulting in the identification of 54 candidate AT1 cell markers. Cross-referencing with genes up-regulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as highly specific to AT1 cells. RNA sequencing (RNAseq) confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells and is not expressed in bronchial epithelial cells, whereas reverse transcription–polymerase chain reaction confirmed that it is not expressed in endothelial cells. Using GRAMD2 as a new AT1 cell–specific gene will enhance AT1 cell isolation, the investigation of alveolar epithelial cell differentiation potential, and the contribution of AT1 cells to distal lung diseases. PMID:27749084
Collin, E C; Kilcoyne, M; White, S J; Grad, S; Alini, M; Joshi, L; Pandit, A S
2016-03-11
In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity.
Discovering cell types in flow cytometry data with random matrix theory
NASA Astrophysics Data System (ADS)
Shen, Yang; Nussenblatt, Robert; Losert, Wolfgang
Flow cytometry is a widely used experimental technique in immunology research. During the experiments, peripheral blood mononuclear cells (PBMC) from a single patient, labeled with multiple fluorescent stains that bind to different proteins, are illuminated by a laser. The intensity of each stain on a single cell is recorded and reflects the amount of protein expressed by that cell. The data analysis focuses on identifying specific cell types related to a disease. Different cell types can be identified by the type and amount of protein they express. To date, this has most often been done manually by labelling a protein as expressed or not while ignoring the amount of expression. Using a cross correlation matrix of stain intensities, which contains both information on the proteins expressed and their amount, has been largely ignored by researchers as it suffers from measurement noise. Here we present an algorithm to identify cell types in flow cytometry data which uses random matrix theory (RMT) to reduce noise in a cross correlation matrix. We demonstrate our method using a published flow cytometry data set. Compared with previous analysis techniques, we were able to rediscover relevant cell types in an automatic way. Department of Physics, University of Maryland, College Park, MD 20742.
New lessons learned from disease modeling with induced Pluripotent Stem Cells
Onder, Tamer T.; Daley, George Q.
2012-01-01
Cellular reprogramming and generation of induced pluripotent stem cells (iPSCs) from adult cell types has enabled the creation of patient-specific stem cells for use in disease modeling. To date, many iPSC lines have been generated from a variety of disorders, which have then been differentiated into disease-relevant cell types. When a disease-specific phenotype is detectable in such differentiated cells, the reprogramming technology provides a new opportunity to identify aberrant disease-associated pathways and drugs that can block them. Here, we highlight recent progress as well as limitations in the use of iPSCs to recapitulate disease phenotypes and to screen for therapeutics in vitro. PMID:22749051
Sandh, Gustaf; Ramström, Margareta; Stensjö, Karin
2014-12-04
In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology.
Sack, Laura Magill; Davoli, Teresa; Li, Mamie Z; Li, Yuyang; Xu, Qikai; Naxerova, Kamila; Wooten, Eric C; Bernardi, Ronald J; Martin, Timothy D; Chen, Ting; Leng, Yumei; Liang, Anthony C; Scorsone, Kathleen A; Westbrook, Thomas F; Wong, Kwok-Kin; Elledge, Stephen J
2018-04-05
Genomics has provided a detailed structural description of the cancer genome. Identifying oncogenic drivers that work primarily through dosage changes is a current challenge. Unrestrained proliferation is a critical hallmark of cancer. We constructed modular, barcoded libraries of human open reading frames (ORFs) and performed screens for proliferation regulators in multiple cell types. Approximately 10% of genes regulate proliferation, with most performing in an unexpectedly highly tissue-specific manner. Proliferation drivers in a given cell type showed specific enrichment in somatic copy number changes (SCNAs) from cognate tumors and helped predict aneuploidy patterns in those tumors, implying that tissue-type-specific genetic network architectures underlie SCNA and driver selection in different cancers. In vivo screening confirmed these results. We report a substantial contribution to the catalog of SCNA-associated cancer drivers, identifying 147 amplified and 107 deleted genes as potential drivers, and derive insights about the genetic network architecture of aneuploidy in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.
Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel
2015-12-15
Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
2014-01-01
Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci. PMID:24885462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Bettina W.M.; Onuska, Jaya M.; Niewiesk, Stefan
2005-06-20
Respiratory syncytial virus (RSV) is a major cause of lower airway disease in infants and children. Immunity to RSV is not long lasting, resulting in re-occurring infections throughout life. Effective long-lived immunity results when central-memory T cells that proliferate vigorously and secrete IL-2 are present. In contrast, effector-memory T cells that mainly produce IFN-{gamma}, facilitate virus clearance but are not long lived. To identify the type of memory response induced after RSV-A (Long) infection, we characterized the kinetics of the antigen-specific immune response and identified the types of cytokines induced. RSV-specific lymphocytic proliferation following primary and secondary infection was similar,more » and in both cases responses waned within a short period of time. In addition, mRNA for IFN-{gamma} but not IL-2 was induced in RSV-specific CD4{sup +} T cells. This supports the idea that the presence of effector-memory rather than central-memory T cells contributes to the ineffectiveness of the immune response to RSV.« less
Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M
2010-02-26
Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.
Genomics of Mature and Immature Olfactory Sensory Neurons
Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.
2014-01-01
The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456
A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays
Zuckerman, Neta S.; Noam, Yair; Goldsmith, Andrea J.; Lee, Peter P.
2013-01-01
Gene expression analysis is generally performed on heterogeneous tissue samples consisting of multiple cell types. Current methods developed to separate heterogeneous gene expression rely on prior knowledge of the cell-type composition and/or signatures - these are not available in most public datasets. We present a novel method to identify the cell-type composition, signatures and proportions per sample without need for a-priori information. The method was successfully tested on controlled and semi-controlled datasets and performed as accurately as current methods that do require additional information. As such, this method enables the analysis of cell-type specific gene expression using existing large pools of publically available microarray datasets. PMID:23990767
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.; Bancroft, J.
1994-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Automated cell-type classification in intact tissues by single-cell molecular profiling
2018-01-01
A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research. PMID:29319504
Zechmann, Bernd; Liou, Liang-Chun; Koffler, Barbara E; Horvat, Lucija; Tomašić, Ana; Fulgosi, Hrvoje; Zhang, Zhaojie
2011-01-01
Glutathione is an important antioxidant in most prokaryotes and eukaryotes. It detoxifies reactive oxygen species and is also involved in the modulation of gene expression, in redox signaling, and in the regulation of enzymatic activities. In this study, the subcellular distribution of glutathione was studied in Saccharomyces cerevisiae by quantitative immunoelectron microscopy. Highest glutathione contents were detected in mitochondria and subsequently in the cytosol, nuclei, cell walls, and vacuoles. The induction of oxidative stress by hydrogen peroxide (H2O2) led to changes in glutathione-specific labeling. Three cell types were identified. Cell types I and II contained more glutathione than control cells. Cell type II differed from cell type I in showing a decrease in glutathione-specific labeling solely in mitochondria. Cell type III contained much less glutathione contents than the control and showed the strongest decrease in mitochondria, suggesting that high and stable levels of glutathione in mitochondria are important for the protection and survival of the cells during oxidative stress. Additionally, large amounts of glutathione were relocated and stored in vacuoles in cell type III, suggesting the importance of the sequestration of glutathione in vacuoles under oxidative stress. PMID:22093747
Holtzinger, Audrey; Streeter, Philip R.; Sarangi, Farida; Hillborn, Scott; Niapour, Maryam; Ogawa, Shinichiro; Keller, Gordon
2015-01-01
The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line. PMID:26493401
Toward the human cellular microRNAome.
McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K
2017-10-01
MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.
Unique volatolomic signatures of TP53 and KRAS in lung cells
Davies, M P A; Barash, O; Jeries, R; Peled, N; Ilouze, M; Hyde, R; Marcus, M W; Field, J K; Haick, H
2014-01-01
Background: Volatile organic compounds (VOCs) are potential biomarkers for cancer detection in breath, but it is unclear if they reflect specific mutations. To test this, we have compared human bronchial epithelial cell (HBEC) cell lines carrying the KRASV12 mutation, knockdown of TP53 or both with parental HBEC cells. Methods: VOC from headspace above cultured cells were collected by passive sampling and analysed by thermal desorption gas chromatography mass spectrometry (TD-GC–MS) or sensor array with discriminant factor analysis (DFA). Results: In TD-GC–MS analysis, individual compounds had limited ability to discriminate between cell lines, but by applying DFA analysis combinations of 20 VOCs successfully discriminated between all cell types (accuracies 80–100%, with leave-one-out cross validation). Sensor array detection DFA demonstrated the ability to discriminate samples based on their cell type for all comparisons with accuracies varying between 77% and 93%. Conclusions: Our results demonstrate that minimal genetic changes in bronchial airway cells lead to detectable differences in levels of specific VOCs identified by TD-GC–MS or of patterns of VOCs identified by sensor array output. From the clinical aspect, these results suggest the possibility of breath analysis for detection of minimal genetic changes for earlier diagnosis or for genetic typing of lung cancers. PMID:25051409
Labelling and targeted ablation of specific bipolar cell types in the zebrafish retina
2009-01-01
Background Development of a functional retina depends on regulated differentiation of several types of neurons and generation of a highly complex network between the different types of neurons. In addition, each type of retinal neuron includes several distinct morphological types. Very little is known about the mechanisms responsible for generating this diversity of retinal neurons, which may also display specific patterns of regional distribution. Results In a screen in zebrafish, using a trapping vector carrying an engineered yeast Gal4 transcription activator and a UAS:eGFP reporter cassette, we have identified two transgenic lines of zebrafish co-expressing eGFP and Gal4 in specific subsets of retinal bipolar cells. The eGFP-labelling facilitated analysis of axon terminals within the inner plexiform layer of the adult retina and showed that the fluorescent bipolar cells correspond to previously defined morphological types. Strong regional restriction of eGFP-positive bipolar cells to the central part of the retina surrounding the optic nerve was observed in adult zebrafish. Furthermore, we achieved specific ablation of the labelled bipolar cells in 5 days old larvae, using a bacterial nitroreductase gene under Gal4-UAS control in combination with the prodrug metronidazole. Following prodrug treatment, nitroreductase expressing bipolar cells were efficiently ablated without affecting surrounding retina architecture, and recovery occurred within a few days due to increased generation of new bipolar cells. Conclusion This report shows that enhancer trapping can be applied to label distinct morphological types of bipolar cells in the zebrafish retina. The genetic labelling of these cells yielded co-expression of a modified Gal4 transcription activator and the fluorescent marker eGFP. Our work also demonstrates the potential utility of the Gal4-UAS system for induction of other transgenes, including a bacterial nitroreductase fusion gene, which can facilitate analysis of bipolar cell differentiation and how the retina recovers from specific ablation of these cells. PMID:19712466
Differential Sox10 Genomic Occupancy in Myelinating Glia
Lopez-Anido, Camila; Sun, Guannan; Koenning, Matthias; Srinivasan, Rajini; Hung, Holly A.; Emery, Ben; Keles, Sunduz; Svaren, John
2015-01-01
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells, and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. PMID:25974668
Rijlaarsdam, Martin A.; Tax, David M. J.; Gillis, Ad J. M.; Dorssers, Lambert C. J.; Koestler, Devin C.; de Ridder, Jeroen; Looijenga, Leendert H. J.
2015-01-01
The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809). PMID:25859847
Guo, Bing; Greenwood, Paul L; Cafe, Linda M; Zhou, Guanghong; Zhang, Wangang; Dalrymple, Brian P
2015-03-13
This study aimed to identify markers for muscle growth rate and the different cellular contributors to cattle muscle and to link the muscle growth rate markers to specific cell types. The expression of two groups of genes in the longissimus muscle (LM) of 48 Brahman steers of similar age, significantly enriched for "cell cycle" and "ECM (extracellular matrix) organization" Gene Ontology (GO) terms was correlated with average daily gain/kg liveweight (ADG/kg) of the animals. However, expression of the same genes was only partly related to growth rate across a time course of postnatal LM development in two cattle genotypes, Piedmontese x Hereford (high muscling) and Wagyu x Hereford (high marbling). The deposition of intramuscular fat (IMF) altered the relationship between the expression of these genes and growth rate. K-means clustering across the development time course with a large set of genes (5,596) with similar expression profiles to the ECM genes was undertaken. The locations in the clusters of published markers of different cell types in muscle were identified and used to link clusters of genes to the cell type most likely to be expressing them. Overall correspondence between published cell type expression of markers and predicted major cell types of expression in cattle LM was high. However, some exceptions were identified: expression of SOX8 previously attributed to muscle satellite cells was correlated with angiogenesis. Analysis of the clusters and cell types suggested that the "cell cycle" and "ECM" signals were from the fibro/adipogenic lineage. Significant contributions to these signals from the muscle satellite cells, angiogenic cells and adipocytes themselves were not as strongly supported. Based on the clusters and cell type markers, sets of five genes predicted to be representative of fibro/adipogenic precursors (FAPs) and endothelial cells, and/or ECM remodelling and angiogenesis were identified. Gene sets and gene markers for the analysis of many of the major processes/cell populations contributing to muscle composition and growth have been proposed, enabling a consistent interpretation of gene expression datasets from cattle LM. The same gene sets are likely to be applicable in other cattle muscles and in other species.
BIM determines the number of merocytic dendritic cells, a cell type that breaks immune tolerance.
Audiger, Cindy; Lesage, Sylvie
2018-05-13
In contrast to conventional dendritic cells (cDC), when merocytic dendritic cells (mcDC) present antigens derived from apoptotic bodies, T-cell anergy is reversed rather than induced, a process that promotes autoimmunity. Interestingly, mcDC are present in higher proportion in type 1 diabetes-prone NOD mice than in autoimmune-resistant B6 and BALB/c mice, and the Insulin-dependent diabetes (Idd)13 locus is linked to mcDC proportion. Therefore, mcDC are notably associated with susceptibility to autoimmune diabetes. To identify which gene determines the proportion and absolute number of mcDC, we undertook a candidate gene approach by selecting relevant candidates within the Idd13 locus. We find that neither β2m nor Sirpa appear to influence the proportion of mcDC. Instead, we show that Bim effectively modulates mcDC number in a hematopoietic-intrinsic manner. We also demonstrate that Bim-deficiency does not impact other cDC subsets and appears to play a specific role in determining the proportion and absolute number of mcDC by promoting their survival. Together, these data demonstrate that Bim specifically modulates the number of mcDC. Identifying factors that facilitate apoptosis of mcDC by increasing BIM activity in a cell type-specific manner may help prevent autoimmunity. © 2018 Australasian Society for Immunology Inc.
Yersinia pestis targets neutrophils via complement receptor 3
Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.
2015-01-01
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083
Yazawa, Ryosuke; Takeuchi, Yutaka; Morita, Tetsuro; Ishida, Masashi; Yoshizaki, Goro
2013-10-01
We developed a spermatogonial transplantation technique to produce donor-derived gametes in surrogate fish. Our ultimate aim is to establish surrogate broodstock that can produce bluefin tuna. We previously determined that only type A spermatogonia (ASG) could colonize recipient gonads in salmonids. Therefore, it is necessary to develop a precise molecular marker that can distinguish ASG in order to develop efficient spermatogonial transplantation methods. In this study, the Pacific bluefin tuna (Thunnus orientalis) dead end (BFTdnd) gene was identified as a specific marker for ASG. In situ hybridization and RT-PCR analysis with various types of spermatogenic cell populations captured by laser microdissection revealed that localization of BFTdnd mRNA was restricted to ASG, and not detected in other differentiated spermatogenic cells. In order to determine if BFTdnd can be used as a molecular marker to identify germ cells with high transplantability, transplantation of dissociated testicular cells isolated from juvenile, immature, and mature Pacific bluefin tuna, which have different proportions of dnd-positive ASG, were performed using chub mackerel as the surrogate recipient species. Colonization of transplanted donor germ cells was only successful with testicular cells from immature Pacific Bluefin tuna, which contained higher proportions of dnd-positive ASG than juvenile and mature fish. Thus, BFTdnd is a useful tool for identifying highly transplantable ASG for spermatogonial transplantation. © 2013 Wiley Periodicals, Inc.
SEA: a super-enhancer archive.
Wei, Yanjun; Zhang, Shumei; Shang, Shipeng; Zhang, Bin; Li, Song; Wang, Xinyu; Wang, Fang; Su, Jianzhong; Wu, Qiong; Liu, Hongbo; Zhang, Yan
2016-01-04
Super-enhancers are large clusters of transcriptional enhancers regarded as having essential roles in driving the expression of genes that control cell identity during development and tumorigenesis. The construction of a genome-wide super-enhancer database is urgently needed to better understand super-enhancer-directed gene expression regulation for a given biology process. Here, we present a specifically designed web-accessible database, Super-Enhancer Archive (SEA, http://sea.edbc.org). SEA focuses on integrating super-enhancers in multiple species and annotating their potential roles in the regulation of cell identity gene expression. The current release of SEA incorporates 83 996 super-enhancers computationally or experimentally identified in 134 cell types/tissues/diseases, including human (75 439, three of which were experimentally identified), mouse (5879, five of which were experimentally identified), Drosophila melanogaster (1774) and Caenorhabditis elegans (904). To facilitate data extraction, SEA supports multiple search options, including species, genome location, gene name, cell type/tissue and super-enhancer name. The response provides detailed (epi)genetic information, incorporating cell type specificity, nearby genes, transcriptional factor binding sites, CRISPR/Cas9 target sites, evolutionary conservation, SNPs, H3K27ac, DNA methylation, gene expression and TF ChIP-seq data. Moreover, analytical tools and a genome browser were developed for users to explore super-enhancers and their roles in defining cell identity and disease processes in depth. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Cell type-specific localization of Ephs pairing with ephrin-B2 in the rat postnatal pituitary gland.
Yoshida, Saishu; Kato, Takako; Kanno, Naoko; Nishimura, Naoto; Nishihara, Hiroto; Horiguchi, Kotaro; Kato, Yukio
2017-10-01
Sox2-expressing stem/progenitor cells in the anterior lobe of the pituitary gland form two types of micro-environments (niches): the marginal cell layer and dense cell clusters in the parenchyma. In relation to the mechanism of regulation of niches, juxtacrine signaling via ephrin and its receptor Eph is known to play important roles in various niches. The ephrin and Eph families are divided into two subclasses to create ephrin/Eph signaling in co-operation with confined partners. Recently, we reported that ephrin-B2 localizes specifically to both pituitary niches. However, the Ephs interacting with ephrin-B2 in these pituitary niches have not yet been identified. Therefore, the present study aims to identify the Ephs interacting with ephrin-B2 and the cells that produce them in the rat pituitary gland. In situ hybridization and immunohistochemistry demonstrated cell type-specific localization of candidate interacting partners for ephrin-B2, including EphA4 in cells located in the posterior lobe, EphB1 in gonadotropes, EphB2 in corticotropes, EphB3 in stem/progenitor cells and EphB4 in endothelial cells in the adult pituitary gland. In particular, double-immunohistochemistry showed cis-interactions between EphB3 and ephrin-B2 in the apical cell membranes of stem/progenitor cell niches throughout life and trans-interactions between EphB2 produced by corticotropes and ephrin-B2 located in the basolateral cell membranes of stem/progenitor cells in the early postnatal pituitary gland. These data indicate that ephrin-B2 plays a role in pituitary stem/progenitor cell niches by selective interaction with EphB3 in cis and EphB2 in trans.
Huang, Lei; Owen, Jonas K.; Xie, Anna; Navarro, Antonia; Monsivais, Diana; Coon V, John S.; Kim, J. Julie; Dai, Yang; Bulun, Serdar E.
2012-01-01
Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and breast cancer. PMID:22272226
Radiation-Induced Cytogenetic Damage as a Predictor of Cancer Risk for Protons and Fe Ions
NASA Technical Reports Server (NTRS)
Williams, Jerry R.
1999-01-01
We have successfully completed the series of experiments planned for year 1 and the first part of year 2 measuring the induction of chromosome aberrations induced in multiple cell types by three model space radiations: Fe-ions, protons and photons. Most of these data have now been compiled and a significant part subjected to detailed data analyses, although continuing data analysis is an important part of our current and future efforts. These analyses are directed toward defining the patterns of chromosomal damage induction by the three radiations and the extent to which such patterns are dependent on the type of cell irradiated. Our studies show significant differences, both quantitatively and qualitatively, between response of different cell types to these radiations however there is an overall pattern that characterizes each type of radiation in most cell lines. Thus our data identifies general dose-response patterns for each radiation for induction of multiple types of chromosomal aberrations but also identifies significant differences in response between some cell types. Specifically, we observe significant resistance for induction of aberrations in rat mammary epithelial cells when they are irradiated in vivo and assayed in vitro. Further, we have observed some remarkable differences in susceptibility to certain radiation-induced aberrations in cells whose genome has been modulated for two cancer- relevant genes, TP53 and CDKNIA. This data, if confirmed, may represent the first evidence of gene-specific differences in cellular metabolism of damage induced by densely-ionizing radiation that confers substantial sensitivity to protons compared to photons.
Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo
Li, Wenyan; Shen, Jun
2016-01-01
Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172
Attentional modulation of cell-class specific gamma-band synchronization in awake monkey area V4
Vinck, Martin; Womelsdorf, Thilo; Buffalo, Elizabeth A.; Desimone, Robert; Fries, Pascal
2013-01-01
Summary Selective visual attention is subserved by selective neuronal synchronization, entailing precise orchestration among excitatory and inhibitory cells. We tentatively identified these as broad (BS) and narrow spiking (NS) cells and analyzed their synchronization to the local field potential in two macaque monkeys performing a selective visual attention task. Across cells, gamma phases scattered widely but were unaffected by stimulation or attention. During stimulation, NS cells lagged BS cells on average by ~60° and gamma synchronized twice as strongly. Attention enhanced and reduced the gamma locking of strongly and weakly activated cells, respectively. During a pre-stimulus attentional cue period, BS cells showed weak gamma synchronization, while NS cells gamma synchronized as strongly as with visual stimulation. These analyses reveal the cell-type specific dynamics of the gamma cycle in macaque visual cortex and suggest that attention affects neurons differentially depending on cell type and activation level. PMID:24267656
Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes
Michels, Aaron W.; Landry, Laurie G.; McDaniel, Kristen A.; Yu, Liping; Campbell-Thompson, Martha; Kwok, William W.; Jones, Kenneth L.; Gottlieb, Peter A.; Kappler, John W.; Tang, Qizhi; Roep, Bart O.; Atkinson, Mark A.; Mathews, Clayton E.
2017-01-01
Type 1 diabetes results from chronic autoimmune destruction of insulin-producing β-cells within pancreatic islets. Although insulin is a critical self-antigen in animal models of autoimmune diabetes, due to extremely limited access to pancreas samples, little is known about human antigenic targets for islet-infiltrating T cells. Here we show that proinsulin peptides are targeted by islet-infiltrating T cells from patients with type 1 diabetes. We identified hundreds of T cells from inflamed pancreatic islets of three young organ donors with type 1 diabetes with a short disease duration with high-risk HLA genes using a direct T-cell receptor (TCR) sequencing approach without long-term cell culture. Among 85 selected CD4 TCRs tested for reactivity to preproinsulin peptides presented by diabetes-susceptible HLA-DQ and HLA-DR molecules, one T cell recognized C-peptide amino acids 19–35, and two clones from separate donors responded to insulin B-chain amino acids 9–23 (B:9–23), which are known to be a critical self-antigen–driving disease progress in animal models of autoimmune diabetes. These B:9–23–specific T cells from islets responded to whole proinsulin and islets, whereas previously identified B:9–23 responsive clones from peripheral blood did not, highlighting the importance of proinsulin-specific T cells in the islet microenvironment. PMID:27920090
[Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].
Maroto Rey, José Pablo; Cillán Narvaez, Elena
2013-06-01
There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.
Teramoto, Machiko; Kudome-Takamatsu, Tomomi; Nishimura, Osamu; An, Yang; Kashima, Makoto; Shibata, Norito; Agata, Kiyokazu
2016-09-01
Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X-ray-sensitive and proliferative stem cells. In addition to neoblasts, another type of X-ray-sensitive cells was newly identified by recent research. Thus, planarian's X-ray-sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined "neoblasts". Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X-ray-sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments. © 2016 Japanese Society of Developmental Biologists.
NASA Astrophysics Data System (ADS)
Akaogi, Kotaro; Okabe, Yukie; Sato, Junji; Nagashima, Yoji; Yasumitsu, Hidetaro; Sugahara, Kazuyuki; Miyazaki, Kaoru
1996-08-01
Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.
Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.
2016-01-01
ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity. PMID:27440904
Genetic address book for retinal cell types.
Siegert, Sandra; Scherf, Brigitte Gross; Del Punta, Karina; Didkovsky, Nick; Heintz, Nathaniel; Roska, Botond
2009-09-01
The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type-specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project. Among others, we identified mouse lines in which the inhibitory cell types of the night vision and directional selective circuit were selectively labeled. We quantified the stratification patterns to predict potential synaptic connectivity between marked cells of different lines and found that some of the lines enabled targeted recordings and imaging of cell types from developing or mature retinal circuits. Our results suggest the potential use of a stratification-based screening approach for characterizing neuronal circuitry in other layered brain structures, such as the neocortex.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, R. A.; Schuff, N. R.; Bancroft, J.
1993-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Feng, Xuesong; Naz, Faiza; Juan, Aster H; Dell'Orso, Stefania; Sartorelli, Vittorio
2018-04-19
Immunofluorescence is an effective method that helps to identify different cell types on tissue sections. In order to study the desired cell population, antibodies for specific cell markers are applied on tissue sections. In adult skeletal muscle, satellite cells (SCs) are stem cells that contribute to muscle repair and regeneration. Therefore, it is important to visualize and trace the satellite cell population under different physiological conditions. In resting skeletal muscle, SCs reside between the basal lamina and myofiber plasma membrane. A commonly used marker for identifying SCs on the myofibers or in cell culture is the paired box protein Pax7. In this article, an optimized Pax7 immunofluorescence protocol on skeletal muscle sections is presented that minimizes non-specific staining and background. Another antibody that recognizes a protein (laminin) of the basal lamina was also added to help identify SCs. Similar protocols can also be used to perform double or triple labeling with Pax7 and antibodies for additional proteins of interest.
Dasa, Siva Sai Krishna; Kelly, Kimberly A.
2016-01-01
Next-generation sequencing has enhanced the phage display process, allowing for the quantification of millions of sequences resulting from the biopanning process. In response, many valuable analysis programs focused on specificity and finding targeted motifs or consensus sequences were developed. For targeted drug delivery and molecular imaging, it is also necessary to find peptides that are selective—targeting only the cell type or tissue of interest. We present a new analysis strategy and accompanying software, PHage Analysis for Selective Targeted PEPtides (PHASTpep), which identifies highly specific and selective peptides. Using this process, we discovered and validated, both in vitro and in vivo in mice, two sequences (HTTIPKV and APPIMSV) targeted to pancreatic cancer-associated fibroblasts that escaped identification using previously existing software. Our selectivity analysis makes it possible to discover peptides that target a specific cell type and avoid other cell types, enhancing clinical translatability by circumventing complications with systemic use. PMID:27186887
Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H
2016-09-01
This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.
NASA Astrophysics Data System (ADS)
Terazono, Hideyuki; Kim, Hyonchol; Nomura, Fumimasa; Yasuda, Kenji
2016-06-01
We developed a microprocessing-assisted technique to select single-strand DNA aptamers that bind to unknown targets on the cell surface by modifying the conventional systematic evolution of ligands by exponential enrichment (cell-SELEX). Our technique involves 1) the specific selection of target-cell-surface-bound aptamers without leakage of intracellular components by trypsinization and 2) cloning of aptamers by microprocessing-assisted picking of single cells using magnetic beads. After cell-SELEX, the enriched aptamers were conjugated with magnetic beads. The aptamer-magnetic beads conjugates attached to target cells were collected individually by microassisted procedures using microneedles under a microscope. After that, the sequences of the collected magnetic-bead-bound aptamers were identified. As a result, a specific aptamer for the surface of target cells, e.g., human umbilical vein endothelial cells (HUVECs), was chosen and its specificity was examined using other cell types, e.g., HeLa cells. The results indicate that this microprocessing-assisted cell-SELEX method for identifying aptamers is applicable in biological research and clinical diagnostics.
Wang, Jason F; Park, Andrew J; Rendini, Tina; Levis, William R
2017-12-01
Lawrence transfer factor (TF) is defined as dialyzable leukocyte extract (DLE) that can transfer antigen-specific cell-mediated immunity from a person testing positive for the antigen in a delayed type hypersensitivity skin test manner to a person negative for the same antigen. A recent article by Myles et al1 has identified a DLE isolated from an established CD8+ T cell line capable of transferring antigen-specific immunity. The DLE contains a portion of the beta chain of the T cell receptor and additional nucleotide and protein factors that are being subjected to further modern biochemical analysis. After months of study that included interviews of TF physician-scientists, we conclude that an antigen-specific TF exists for most, if not all, antigens. By working from a CD8+ T cell line with modern biochemical technology, it should be possible to identify and patent products capable of treating infectious diseases, antigen-responsive cancers, and autoimmune disorders.
A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties
Garritano, Sonia; Gigoni, Arianna; Costa, Delfina; Malatesta, Paolo; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2012-01-01
We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III. PMID:23109855
A novel collection of snRNA-like promoters with tissue-specific transcription properties.
Garritano, Sonia; Gigoni, Arianna; Costa, Delfina; Malatesta, Paolo; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2012-01-01
We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.
Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.
2014-01-01
Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377
Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C
1989-01-01
The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122
Gilroy, Kathryn L; Terry, Anne; Naseer, Asif; de Ridder, Jeroen; Allahyar, Amin; Wang, Weiwei; Carpenter, Eric; Mason, Andrew; Wong, Gane K-S; Cameron, Ewan R; Kilbey, Anna; Neil, James C
2016-01-01
Retroviruses have been foundational in cancer research since early studies identified proto-oncogenes as targets for insertional mutagenesis. Integration of murine gamma-retroviruses into the host genome favours promoters and enhancers and entails interaction of viral integrase with host BET/bromodomain factors. We report that this integration pattern is conserved in feline leukaemia virus (FeLV), a gamma-retrovirus that infects many human cell types. Analysis of FeLV insertion sites in the MCF-7 mammary carcinoma cell line revealed strong bias towards active chromatin marks with no evidence of significant post-integration growth selection. The most prominent FeLV integration targets had little overlap with the most abundantly expressed transcripts, but were strongly enriched for annotated cancer genes. A meta-analysis based on several gamma-retrovirus integration profiling (GRIP) studies in human cells (CD34+, K562, HepG2) revealed a similar cancer gene bias but also remarkable cell-type specificity, with prominent exceptions including a universal integration hotspot at the long non-coding RNA MALAT1. Comparison of GRIP targets with databases of super-enhancers from the same cell lines showed that these have only limited overlap and that GRIP provides unique insights into the upstream drivers of cell growth. These observations elucidate the oncogenic potency of the gamma-retroviruses and support the wider application of GRIP to identify the genes and growth regulatory circuits that drive distinct cancer types.
Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi
2015-08-01
Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.
Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond
2016-01-01
Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119
Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent
2016-01-01
Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936
Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter
2010-01-01
Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925
Systematic Genetic Screen for Transcriptional Regulators of the Candida albicans White-Opaque Switch
Lohse, Matthew B.; Ene, Iuliana V.; Craik, Veronica B.; Hernday, Aaron D.; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J.; Johnson, Alexander D.
2016-01-01
The human fungal pathogen Candida albicans can reversibly switch between two cell types named “white” and “opaque,” each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white–opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white–opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white–opaque switching to cellular physiology. PMID:27280690
Rana, Subinoy; Elci, S Gokhan; Mout, Rubul; Singla, Arvind K; Yazdani, Mahdieh; Bender, Markus; Bajaj, Avinash; Saha, Krishnendu; Bunz, Uwe H F; Jirik, Frank R; Rotello, Vincent M
2016-04-06
Supramolecular complexes of a family of positively charged conjugated polymers (CPs) and green fluorescent protein (GFP) create a fluorescence resonance energy transfer (FRET)-based ratiometric biosensor array. Selective multivalent interactions of the CPs with mammalian cell surfaces caused differential change in FRET signals, providing a fingerprint signature for each cell type. The resulting fluorescence signatures allowed the identification of 16 different cell types and discrimination between healthy, cancerous, and metastatic cells, with the same genetic background. While the CP-GFP sensor array completely differentiated between the cell types, only partial classification was achieved for the CPs alone, validating the effectiveness of the ratiometric sensor. The utility of the biosensor was further demonstrated in the detection of blinded unknown samples, where 121 of 128 samples were correctly identified. Notably, this selectivity-based sensor stratified diverse cell types in minutes, using only 2000 cells, without requiring specific biomarkers or cell labeling.
Zhao, Dejian; Lin, Mingyan; Pedrosa, Erika; Lachman, Herbert M; Zheng, Deyou
2017-11-10
Monoallelic expression of autosomal genes has been implicated in human psychiatric disorders. However, there is a paucity of allelic expression studies in human brain cells at the single cell and genome wide levels. In this report, we reanalyzed a previously published single-cell RNA-seq dataset from several postmortem human brains and observed pervasive monoallelic expression in individual cells, largely in a random manner. Examining single nucleotide variants with a predicted functional disruption, we found that the "damaged" alleles were overall expressed in fewer brain cells than their counterparts, and at a lower level in cells where their expression was detected. We also identified many brain cell type-specific monoallelically expressed genes. Interestingly, many of these cell type-specific monoallelically expressed genes were enriched for functions important for those brain cell types. In addition, function analysis showed that genes displaying monoallelic expression and correlated expression across neuronal cells from different individual brains were implicated in the regulation of synaptic function. Our findings suggest that monoallelic gene expression is prevalent in human brain cells, which may play a role in generating cellular identity and neuronal diversity and thus increasing the complexity and diversity of brain cell functions.
The Evolution of Human Cells in Terms of Protein Innovation
Sardar, Adam J.; Oates, Matt E.; Fang, Hai; Forrest, Alistair R.R.; Kawaji, Hideya; Gough, Julian; Rackham, Owen J.L.
2014-01-01
Humans are composed of hundreds of cell types. As the genomic DNA of each somatic cell is identical, cell type is determined by what is expressed and when. Until recently, little has been reported about the determinants of human cell identity, particularly from the joint perspective of gene evolution and expression. Here, we chart the evolutionary past of all documented human cell types via the collective histories of proteins, the principal product of gene expression. FANTOM5 data provide cell-type–specific digital expression of human protein-coding genes and the SUPERFAMILY resource is used to provide protein domain annotation. The evolutionary epoch in which each protein was created is inferred by comparison with domain annotation of all other completely sequenced genomes. Studying the distribution across epochs of genes expressed in each cell type reveals insights into human cellular evolution in terms of protein innovation. For each cell type, its history of protein innovation is charted based on the genes it expresses. Combining the histories of all cell types enables us to create a timeline of cell evolution. This timeline identifies the possibility that our common ancestor Coelomata (cavity-forming animals) provided the innovation required for the innate immune system, whereas cells which now form the brain of human have followed a trajectory of continually accumulating novel proteins since Opisthokonta (boundary of animals and fungi). We conclude that exaptation of existing domain architectures into new contexts is the dominant source of cell-type–specific domain architectures. PMID:24692656
GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee
2010-01-01
Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482
Identification of the cortical neurons that mediate antidepressant responses
Schmidt, Eric F.; Warner-Schmidt, Jennifer; Otopalik, Benjamin G.; Pickett, Sarah B.; Greengard, Paul; Heintz, Nathaniel
2012-01-01
Summary Our understanding of current treatments for depression, and the development of more specific therapies, is limited by the complexity of the circuits controlling mood and the distributed actions of antidepressants. Although the therapeutic efficacy of SSRIs is correlated with increases in cortical activity, the cell types crucial for their action remain unknown. Here we employ bacTRAP translational profiling to show that layer 5 corticostriatal pyramidal cells expressing p11 (S100a10) are strongly and specifically responsive to chronic antidepressant treatment. This response requires p11 and includes the specific induction of Htr4 expression. Cortex-specific deletion of p11 abolishes behavioral responses to SSRI’s, but does not lead to increased depression-like behaviors. Our data identify corticostriatal projection neurons as critical for the response to antidepressants, and suggest that the regulation of serotonergic tone in this single cell type plays a pivotal role in antidepressant therapy. PMID:22632977
Aging and differentiation in yeast populations: elders with different properties and functions.
Palková, Zdena; Wilkinson, Derek; Váchová, Libuše
2014-02-01
Over the past decade, it has become evident that similarly to cells forming metazoan tissues, yeast cells have the ability to differentiate and form specialized cell types. Examples of yeast cellular differentiation have been identified both in yeast liquid cultures and within multicellular structures occupying solid surfaces. Most current knowledge on different cell types comes from studies of the spatiotemporal internal architecture of colonies developing on various media. With a few exceptions, yeast cell differentiation often concerns nongrowing, stationary-phase cells and leads to the formation of cell subpopulations differing in stress resistance, cell metabolism, respiration, ROS production, and others. These differences can affect longevity of particular subpopulations. In contrast to liquid cultures, where various cell types are dispersed within stationary-phase populations, cellular differentiation depends on the specific position of particular cells within multicellular colonies. Differentiated colonies, thus, resemble primitive multicellular organisms, in which the gradients of certain compounds and the position of cells within the structure affect cellular differentiation. In this review, we summarize and compare the properties of diverse types of differentiated chronologically aging yeast cells that have been identified in colonies growing on different media, as well as of those found in liquid cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells.
Guo, J; Wang, Q; Wai, D; Zhang, Q Z; Shi, S H; Le, A D; Shi, S T; Yen, S L-K
2015-04-01
This study tested whether or not gene expression in human marrow stromal fibroblast (MSF) cells depends on light wavelength and energy density. Primary cultures of isolated human bone marrow stem cells (hBMSC) were exposed to visible red (VR, 633 nm) and infrared (IR, 830 nm) radiation wavelengths from a light emitting diode (LED) over a range of energy densities (0.5, 1.0, 1.5, and 2.0 Joules/cm2) Cultured cells were assayed for cell proliferation, osteogenic potential, adipogenesis, mRNA and protein content. mRNA was analyzed by microarray and compared among different wavelengths and energy densities. Mesenchymal and epithelial cell responses were compared to determine whether responses were cell type specific. Protein array analysis was used to further analyze key pathways identified by microarrays. Different wavelengths and energy densities produced unique sets of genes identified by microarray analysis. Pathway analysis pointed to TGF-beta 1 in the visible red and Akt 1 in the infrared wavelengths as key pathways to study. TGF-beta protein arrays suggested switching from canonical to non-canonical TGF-beta pathways with increases to longer IR wavelengths. Microarrays suggest RANKL and MMP 10 followed IR energy density dose-response curves. Epithelial and mesenchymal cells respond differently to stimulation by light suggesting cell type-specific response is possible. These studies demonstrate differential gene expression with different wavelengths, energy densities and cell types. These differences in gene expression have the potential to be exploited for therapeutic purposes and can help explain contradictory results in the literature when wavelengths, energy densities and cell types differ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Single-cell sequencing in stem cell biology.
Wen, Lu; Tang, Fuchou
2016-04-15
Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.
Cell-specific STORM superresolution imaging reveals nanoscale organization of cannabinoid signaling
Szabó, Szilárd I.; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G.; Henstridge, Christopher M.; Balla, Gyula Y.; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István
2014-01-01
A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell-type-, and subcellular compartment-specific manner. We therefore developed a novel approach combining cell-specific physiological and anatomical characterization with superresolution imaging, and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically-projecting GABAergic interneurons possess increased CB1 receptor number, active-zone complexity, and receptor/effector ratio compared to dendritically-projecting interneurons, in agreement with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ9-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked dramatic CB1-downregulation in a dose-dependent manner. Full receptor recovery required several weeks after cessation of Δ9-tetrahydrocannabinol treatment. These findings demonstrate that cell-type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits, and identify novel molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction. PMID:25485758
Pindyurin, Alexey V
2017-01-01
A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.
Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D
2016-10-05
Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.
Li, Xin; Sandh, Gustaf; Nenninger, Anja; Muro-Pastor, Alicia M; Stensjö, Karin
2015-03-01
In cyanobacteria, DNA-binding proteins from starved cells (Dps) play an important role in the cellular response to oxidative and nutritional stresses. In this study, we have characterized the cell-type specificity and the promoter regions of two orthologous dps genes, Npun_R5799 in Nostoc punctiforme and alr3808 in Anabaena sp. PCC 7120. A transcriptional start site (TSS), identical in location to the previously identified proximal TSS of alr3808, was identified for Npun_R5799 under both combined nitrogen supplemented and N2-fixing growth conditions. However, only alr3808 was also transcribed from a second distal TSS. Sequence homologies suggest that the promoter region containing the distal TSS is not conserved upstream of orthologous genes among heterocyst-forming cyanobacteria. The analysis of promoter GFP-reporter strains showed a different role in governing cell-type specificity between the proximal and distal promoter of alr3808. We here confirmed the heterocyst specificity of the distal promoter of alr3808 and described a very early induction of its expression during proheterocyst differentiation. In contrast, the complete promoters of both genes were active in all cells. Even though Npun_R5799 and alr3808 are orthologs, the regulation of their respective expression differs, indicating distinctions in the function of these cyanobacterial Dps proteins depending on the strain and cell type. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Akeda, Yukihiro; Kodama, Toshio; Saito, Kazunobu; Iida, Tetsuya; Oishi, Kazunori; Honda, Takeshi
2011-11-01
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V. parahaemolyticus. 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Tsakalidou, E.; Anastasiou, R.; Vandenberghe, I.; van Beeumen, J.; Kalantzopoulos, G.
1999-01-01
Lactobacillus delbrueckii subsp. lactis ACA-DC 178, which was isolated from Greek Kasseri cheese, produces a cell-wall-bound proteinase. The proteinase was removed from the cell envelope by washing the cells with a Ca2+-free buffer. The crude proteinase extract shows its highest activity at pH 6.0 and 40°C. It is inhibited by phenylmethylsulfonyl fluoride, showing that the enzyme is a serine-type proteinase. Considering the substrate specificity, the enzyme is similar to the lactococcal PI-type proteinases, since it hydrolyzes β-casein mainly and α- and κ-caseins to a much lesser extent. The cell-wall-bound proteinase from L. delbrueckii subsp. lactis ACA-DC 178 liberates four main peptides from β-casein, which have been identified. PMID:10223997
Prickett, Sara R; Voskamp, Astrid L; Dacumos-Hill, April; Symons, Karen; Rolland, Jennifer M; O'Hehir, Robyn E
2011-03-01
Peanut allergy is a life-threatening condition; there is currently no cure. Although whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions, and even fatalities, in peanut allergy. This study aimed to identify short, T-cell epitope-based peptides that target allergen-specific CD4(+) T cells but do not bind IgE as candidates for safe peanut-specific immunotherapy. Multiple CD4(+) T-cell lines specific for the major peanut allergen Ara h 2 were generated from PBMCs of 16 HLA-diverse subjects with peanut allergy by using 5,6-carboxyfluorescein diacetate succinimidylester-based methodology. Proliferation and ELISPOT assays were used to identify dominant epitopes recognized by T-cell lines and to confirm recognition by peripheral blood T cells of epitope-based peptides modified for therapeutic production. HLA restriction of core epitope recognition was investigated by using anti-HLA blocking antibodies and HLA genotyping. Serum-IgE peptide-binding was assessed by dot-blot. Five dominant CD4(+) T-cell epitopes were identified in Ara h 2. In combination, these were presented by HLA-DR, HLA-DP, and HLA-DQ molecules and recognized by T cells from all 16 subjects. Three short peptide variants containing these T-cell epitopes were designed with cysteine-to-serine substitutions to facilitate stability and therapeutic production. Variant peptides showed HLA-binding degeneracy, did not bind peanut-specific serum IgE, and could directly target T(H)2-type T cells in peripheral blood of subjects with allergy. Short CD4(+) T-cell epitope-based Ara h 2 peptides were identified as novel candidates for a T-cell-targeted peanut-specific immunotherapy for an HLA-diverse population. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Ethical challenges for using human cells in clinical cell therapy.
Hermerén, Göran
2012-01-01
In this chapter, different challenges for using human cells in clinical cell therapy are identified and discussed. Several types of challenges are defined and described, with particular attention to the relation between ethical and scientific challenges. Some challenges are cell and disease specific: they are raised by research on special types of cells with certain methods in order to pave the way for cell therapies of particular diseases. But since scientific work is carried out in a societal and value-loaded context, the relations between scientific, ethical, and regulatory challenges are complex. Three theses are first discussed: there is not one fixed list of ethical challenges, some challenges are disease and cell type specific; there are challenges at all stages of the translation from bench to bedside, and the challenges are related to the various stages of translation. Moreover, experimental and ethical research needs to be integrated. Finally, a fourth thesis is suggested: if a constructive and well-argued position is desired, it is necessary to be specific not only about the scientific details but also about the value premises. Everybody is for justice, integrity, and respect for persons. But what precisely does this mean when it is applied to the choices scientists and regulators have to face in their daily work? Copyright © 2012 Elsevier B.V. All rights reserved.
Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma
Chen, Zhiguo; Liu, Chiachi; Patel, Amish J.; Liao, Chung-Ping; Wang, Yong; Le, Lu Q.
2014-01-01
Summary Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell-type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43+ PLP+ precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline model of neurofibroma for preclinical drug screening to identify effective therapies. The identity of tumor cell-of-origin and facility for isolation and expansion provides fertile ground for continued analysis to define intrinsic and extrinsic factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients. PMID:25446898
Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L
2017-05-01
Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.
Vanhollebeke, Benoit; Stone, Oliver A; Bostaille, Naguissa; Cho, Chris; Zhou, Yulian; Maquet, Emilie; Gauquier, Anne; Cabochette, Pauline; Fukuhara, Shigetomo; Mochizuki, Naoki; Nathans, Jeremy; Stainier, Didier YR
2015-01-01
Despite the critical role of endothelial Wnt/β-catenin signaling during central nervous system (CNS) vascularization, how endothelial cells sense and respond to specific Wnt ligands and what aspects of the multistep process of intra-cerebral blood vessel morphogenesis are controlled by these angiogenic signals remain poorly understood. We addressed these questions at single-cell resolution in zebrafish embryos. We identify the GPI-anchored MMP inhibitor Reck and the adhesion GPCR Gpr124 as integral components of a Wnt7a/Wnt7b-specific signaling complex required for brain angiogenesis and dorsal root ganglia neurogenesis. We further show that this atypical Wnt/β-catenin signaling pathway selectively controls endothelial tip cell function and hence, that mosaic restoration of single wild-type tip cells in Wnt/β-catenin-deficient perineural vessels is sufficient to initiate the formation of CNS vessels. Our results identify molecular determinants of ligand specificity of Wnt/β-catenin signaling and provide evidence for organ-specific control of vascular invasion through tight modulation of tip cell function. DOI: http://dx.doi.org/10.7554/eLife.06489.001 PMID:26051822
Zhang, Hao; Liao, Lan; Kuang, Shao-Qing; Xu, Jianming
2003-04-01
Transcriptional activities of nuclear receptors are modulated by coactivators and corepressors. The amplified in breast cancer-3 protein (AIB3, also known as ASC-2, RAP250, PRIP, TRBP, and NCR) is a newly identified nuclear receptor coactivator that is amplified and overexpressed in breast cancers. This study aims to investigate the spatial expression of AIB3 mRNA and protein in various murine tissues. Quantitative measurements revealed that the concentrations of AIB3 mRNA differ substantially in different tissues in a descending order from the following: testis, brain, thymus, white fat, pituitary, ovary, adrenal gland, lung, uterus, kidney, heart, skeletal muscle, liver, and virgin mammary gland. The AIB3 mRNA level in the testis is 165-fold higher than that in the virgin mammary gland. Specific antiserum was generated and used to map the distribution of AIB3 protein by immunohistochemistry. Although AIB3 protein was detected in many tissues, the AIB3 immunoreactivities varied significantly from cell type to cell type. High levels of AIB3 immunoreactivity were observed in hormone target cells including the testicular Sertoli cells, follicular granulosa cells, and epithelial cells of the prostate, uterus, mammary gland, and kidney tubules. Medium and low levels of AIB3 immunoreactivities were also detected in a variety of other cell types. These results demonstrate that AIB3 mRNA and protein are preferentially expressed in specific cell types, suggesting that AIB3 may support the function of nuclear receptors in a cell type-specific manner.
Mapping the physical network of cellular interactions.
Boisset, Jean-Charles; Vivié, Judith; Grün, Dominic; Muraro, Mauro J; Lyubimova, Anna; van Oudenaarden, Alexander
2018-05-21
A cell's function is influenced by the environment, or niche, in which it resides. Studies of niches usually require assumptions about the cell types present, which impedes the discovery of new cell types or interactions. Here we describe ProximID, an approach for building a cellular network based on physical cell interaction and single-cell mRNA sequencing, and show that it can be used to discover new preferential cellular interactions without prior knowledge of component cell types. ProximID found specific interactions between megakaryocytes and mature neutrophils and between plasma cells and myeloblasts and/or promyelocytes (precursors of neutrophils) in mouse bone marrow, and it identified a Tac1 + enteroendocrine cell-Lgr5 + stem cell interaction in small intestine crypts. This strategy can be used to discover new niches or preferential interactions in a variety of organs.
Type 1 diabetes vaccine candidates promote human Foxp3+Treg induction in humanized mice
Serr, Isabelle; Fürst, Rainer W.; Achenbach, Peter; Scherm, Martin G.; Gökmen, Füsun; Haupt, Florian; Sedlmeier, Eva-Maria; Knopff, Annette; Shultz, Leonard; Willis, Richard A.; Ziegler, Anette-Gabriele; Daniel, Carolin
2016-01-01
Immune tolerance is executed partly by Foxp3+regulatory T (Treg) cells, which suppress autoreactive T cells. In autoimmune type 1 diabetes (T1D) impaired tolerance promotes destruction of insulin-producing β-cells. The development of autoantigen-specific vaccination strategies for Foxp3+Treg-induction and prevention of islet autoimmunity in patients is still in its infancy. Here, using human haematopoietic stem cell-engrafted NSG-HLA-DQ8 transgenic mice, we provide direct evidence for human autoantigen-specific Foxp3+Treg-induction in vivo. We identify HLA-DQ8-restricted insulin-specific CD4+T cells and demonstrate efficient human insulin-specific Foxp3+Treg-induction upon subimmunogenic vaccination with strong agonistic insulin mimetopes in vivo. Induced human Tregs are stable, show increased expression of Treg signature genes such as Foxp3, CTLA4, IL-2Rα and TIGIT and can efficiently suppress effector T cells. Such Foxp3+Treg-induction does not trigger any effector T cells. These T1D vaccine candidates could therefore represent an expedient improvement in the challenge to induce human Foxp3+Tregs and to develop novel precision medicines for prevention of islet autoimmunity in children at risk of T1D. PMID:26975663
Koch, P J; Goldschmidt, M D; Walsh, M J; Zimbelmann, R; Schmelz, M; Franke, W W
1991-05-01
Desmosomes are cell-type-specific intercellular junctions found in epithelium, myocardium and certain other tissues. They consist of assemblies of molecules involved in the adhesion of specific cell types and in the anchorage of cell-type-specific cytoskeletal elements, the intermediate-size filaments, to the plasma membrane. To explore the individual desmosomal components and their functions we have isolated DNA clones encoding the desmosomal glycoprotein, desmocollin, using antibodies and a cDNA expression library from bovine muzzle epithelium. The cDNA-deduced amino-acid sequence of desmocollin (presently we cannot decide to which of the two desmocollins, DC I or DC II, this clone relates) defines a polypeptide with a calculated molecular weight of 85,000, with a single candidate sequence of 24 amino acids sufficiently long for a transmembrane arrangement, and an extracellular aminoterminal portion of 561 amino acid residues, compared to a cytoplasmic part of only 176 amino acids. Amino acid sequence comparisons have revealed that desmocollin is highly homologous to members of the cadherin family of cell adhesion molecules, including the previously sequenced desmoglein, another desmosome-specific cadherin. Using riboprobes derived from cDNAs for Northern-blot analyses, we have identified an mRNA of approximately 6 kb in stratified epithelia such as muzzle epithelium and tongue mucosa but not in two epithelial cell culture lines containing desmosomes and desmoplakins. The difference may indicate drastic differences in mRNA concentration or the existence of cell-type-specific desmocollin subforms. The molecular topology of desmocollin(s) is discussed in relation to possible functions of the individual molecular domains.
Unique cell-type-specific patterns of DNA methylation in the root meristem.
Kawakatsu, Taiji; Stuart, Tim; Valdes, Manuel; Breakfield, Natalie; Schmitz, Robert J; Nery, Joseph R; Urich, Mark A; Han, Xinwei; Lister, Ryan; Benfey, Philip N; Ecker, Joseph R
2016-04-29
DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.
Tumors of the endocrine/neuroendocrine system: an overview.
Erlandson, R A; Nesland, J M
1994-01-01
For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.
Proteomic profiling of the human T-cell nucleolus.
Jarboui, Mohamed Ali; Wynne, Kieran; Elia, Giuliano; Hall, William W; Gautier, Virginie W
2011-12-01
The nucleolus, site of ribosome biogenesis, is a dynamic subnuclear organelle involved in diverse cellular functions. The size, number and organisation of nucleoli are cell-specific and while it remains to be established, the nucleolar protein composition would be expected to reflect lineage-specific transcriptional regulation of rDNA genes and have cell-type functional components. Here, we describe the first characterisation of the human T-cell nucleolar proteome. Using the Jurkat T-cell line and a reproducible organellar proteomic approach, we identified 872 nucleolar proteins. In addition to ribosome biogenesis and RNA processing networks, network modeling and topological analysis of nucleolar proteome revealed distinct macromolecular complexes known to orchestrate chromatin structure and to contribute to the regulation of gene expression, replication, recombination and repair, and chromosome segregation. Furthermore, among our dataset, we identified proteins known to functionally participate in T-cell biology, including RUNX1, ILF3, ILF2, STAT3, LSH, TCF-1, SATB1, CTCF, HMGB3, BCLAF1, FX4L1, ZAP70, TIAM1, RAC2, THEMIS, LCP1, RPL22, TOPK, RETN, IFI-16, MCT-1, ISG15, and 14-3-3τ, which support cell-specific composition of the Jurkat nucleolus. Subsequently, the nucleolar localisation of RUNX1, ILF3, STAT3, ZAP70 and RAC2 was further validated by Western Blot analysis and immunofluorescence microscopy. Overall, our T-cell nucleolar proteome dataset not only further expands the existing repertoire of the human nucleolar proteome but support a cell type-specific composition of the nucleolus in T cell and highlights the potential roles of the nucleoli in lymphocyte biology. Copyright © 2011 Elsevier Ltd. All rights reserved.
Glass, Leslie L; Calero-Nieto, Fernando J; Jawaid, Wajid; Larraufie, Pierre; Kay, Richard G; Göttgens, Berthold; Reimann, Frank; Gribble, Fiona M
2017-10-01
To identify sub-populations of intestinal preproglucagon-expressing (PPG) cells producing Glucagon-like Peptide-1, and their associated expression profiles of sensory receptors, thereby enabling the discovery of therapeutic strategies that target these cell populations for the treatment of diabetes and obesity. We performed single cell RNA sequencing of PPG-cells purified by flow cytometry from the upper small intestine of 3 GLU-Venus mice. Cells from 2 mice were sequenced at low depth, and from the third mouse at high depth. High quality sequencing data from 234 PPG-cells were used to identify clusters by tSNE analysis. qPCR was performed to compare the longitudinal and crypt/villus locations of cluster-specific genes. Immunofluorescence and mass spectrometry were used to confirm protein expression. PPG-cells formed 3 major clusters: a group with typical characteristics of classical L-cells, including high expression of Gcg and Pyy (comprising 51% of all PPG-cells); a cell type overlapping with Gip-expressing K-cells (14%); and a unique cluster expressing Tph1 and Pzp that was predominantly located in proximal small intestine villi and co-produced 5-HT (35%). Expression of G-protein coupled receptors differed between clusters, suggesting the cell types are differentially regulated and would be differentially targetable. Our findings support the emerging concept that many enteroendocrine cell populations are highly overlapping, with individual cells producing a range of peptides previously assigned to distinct cell types. Different receptor expression profiles across the clusters highlight potential drug targets to increase gut hormone secretion for the treatment of diabetes and obesity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.
Eaten alive: novel insights into autophagy from multicellular model systems.
Zhang, Hong; Baehrecke, Eric H
2015-07-01
Autophagy delivers cytoplasmic material to lysosomes for degradation. First identified in yeast, the core genes that control this process are conserved in higher organisms. Studies of mammalian cell cultures have expanded our understanding of the core autophagy pathway, but cannot reveal the unique animal-specific mechanisms for the regulation and function of autophagy. Multicellular organisms have different types of cells that possess distinct composition, morphology, and organization of intracellular organelles. In addition, the autophagic machinery integrates signals from other cells and environmental conditions to maintain cell, tissue and organism homeostasis. Here, we highlight how studies of autophagy in flies and worms have identified novel core autophagy genes and mechanisms, and provided insight into the context-specific regulation and function of autophagy. Copyright © 2015 Elsevier Ltd. All rights reserved.
GIANT 2.0: genome-scale integrated analysis of gene networks in tissues.
Wong, Aaron K; Krishnan, Arjun; Troyanskaya, Olga G
2018-05-25
GIANT2 (Genome-wide Integrated Analysis of gene Networks in Tissues) is an interactive web server that enables biomedical researchers to analyze their proteins and pathways of interest and generate hypotheses in the context of genome-scale functional maps of human tissues. The precise actions of genes are frequently dependent on their tissue context, yet direct assay of tissue-specific protein function and interactions remains infeasible in many normal human tissues and cell-types. With GIANT2, researchers can explore predicted tissue-specific functional roles of genes and reveal changes in those roles across tissues, all through interactive multi-network visualizations and analyses. Additionally, the NetWAS approach available through the server uses tissue-specific/cell-type networks predicted by GIANT2 to re-prioritize statistical associations from GWAS studies and identify disease-associated genes. GIANT2 predicts tissue-specific interactions by integrating diverse functional genomics data from now over 61 400 experiments for 283 diverse tissues and cell-types. GIANT2 does not require any registration or installation and is freely available for use at http://giant-v2.princeton.edu.
Keogh, M C; Chen, D; Schmitt, J F; Dennehy, U; Kakkar, V V; Lemoine, N R
1999-04-01
The facility to direct tissue-specific expression of therapeutic gene constructs is desirable for many gene therapy applications. We describe the creation of a muscle-selective expression vector which supports transcription in vascular smooth muscle, cardiac muscle and skeletal muscle, while it is essentially silent in other cell types such as endothelial cells, hepatocytes and fibroblasts. Specific transcriptional regulatory elements have been identified in the human vascular smooth muscle cell (VSMC) alpha-actin gene, and used to create an expression vector which directs the expression of genes in cis to muscle cells. The vector contains an enhancer element we have identified in the 5' flanking region of the human VSMC alpha-actin gene involved in mediating VSMC expression. Heterologous pairing experiments have shown that the enhancer does not interact with the basal transcription complex recruited at the minimal SV40 early promoter. Such a vector has direct application in the modulation of VSMC proliferation associated with intimal hyperplasia/restenosis.
Cell biology of mesangial cells: the third cell that maintains the glomerular capillary.
Kurihara, Hidetake; Sakai, Tatsuo
2017-03-01
The renal glomerulus consists of glomerular endothelial cells, podocytes, and mesangial cells, which cooperate with each other for glomerular filtration. We have produced monoclonal antibodies against glomerular cells in order to identify different types of glomerular cells. Among these antibodies, the E30 clone specifically recognizes the Thy1.1 molecule expressed on mesangial cells. An injection of this antibody into rats resulted in mesangial cell-specific injury within 15 min, and induced mesangial proliferative glomerulonephritis in a reproducible manner. We examined the role of mesangial cells in glomerular function using several experimental tools, including an E30-induced nephritis model, mesangial cell culture, and the deletion of specific genes. Herein, we describe the characterization of E30-induced nephritis, formation of the glomerular capillary network, mesangial matrix turnover, and intercellular signaling between glomerular cells. New molecules that are involved in a wide variety of mesangial cell functions are also introduced.
Digilio, Laura; Yap, Chan Choo; Winckler, Bettina
2015-01-01
The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilton, Susan C.; Karin, Norman J.; Tolic, Ana
2014-08-01
The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and highmore » (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.« less
The murine SP-C promoter directs type II cell-specific expression in transgenic mice.
Glasser, Stephan W; Eszterhas, Susan K; Detmer, Emily A; Maxfield, Melissa D; Korfhagen, Thomas R
2005-04-01
Genomic DNA from the mouse pulmonary surfactant protein C (SP-C) gene was analyzed in transgenic mice to identify DNA essential for alveolar type II cell-specific expression. SP-C promoter constructs extending either 13 or 4.8 kb upstream of the transcription start site directed lung-specific expression of the bacterial chloramphenicol acetyl transferase (CAT) reporter gene. In situ hybridization analysis demonstrated alveolar cell-specific expression in the lungs of adult transgenic mice, and the pattern of 4.8 SP-C-CAT expression during development paralleled that of the endogenous SP-C gene. With the use of deletion constructs, lung-specific, low-level CAT activity was detected in tissue assays of SP-C-CAT transgenic mice retaining 318 bp of the promoter. In transient and stable cell transfection experiments, the 4.8-kb SP-C promoter was 90-fold more active as a stably integrated gene. These findings indicate that 1) the 4.8-kb SP-C promoter is sufficient to direct cell-specific and developmental expression, 2) an enhancer essential for lung-specific expression maps to the proximal 318-bp promoter, and 3) the activity of the 4.8-kb SP-C promoter construct is highly dependent on its chromatin environment.
Liljeqvist, Jan-Ake; Trybala, Edward; Hoebeke, Johan; Svennerholm, Bo; Bergström, Tomas
2002-01-01
Glycoprotein G-2 (gG-2) of herpes simplex virus type 2 (HSV-2) is cleaved to a secreted amino-terminal portion (sgG-2) and to a cell-associated carboxy-terminal portion which is further O-glycosylated to constitute the mature gG-2 (mgG-2). In contrast to mgG-2, which is known to elicit a type-specific antibody response in the human host, information on the immunogenic properties of sgG-2 is lacking. Here the sgG-2 protein was purified on a heparin column and used for production of monoclonal antibodies (mAbs). Four anti-sgG-2 mAbs were mapped using a Pepscan technique and identified linear epitopes which localized to the carboxy-terminal part of the protein. One additional anti-sgG-2 mAb, recognizing a non-linear epitope, was reactive to three discrete peptide stretches where the most carboxy-terminally located stretch was constituted by the amino acids (320)RRAL(323). Although sgG-2 is rapidly secreted into the cell-culture medium after infection, the anti-sgG-2 mAbs identified substantial amounts of sgG-2 in the cytoplasm of HSV-2-infected cells. All of the anti-sgG-2 mAbs were HSV-2 specific showing no cross-reactivity to HSV-1 antigen or to HSV-1-infected cells. Similarly, sera from 50 HSV-2 isolation positive patients were all reactive to sgG-2 in an enzyme immunoassay whilst no reactivity was seen in 25 sera from HSV-1 isolation positive patients or in 25 serum samples from HSV-negative patients suggesting that sgG-2 is a novel antigen potentially suitable for type-discriminating serodiagnosis.
Tamai, Yotaro; Hasegawa, Atsuhiko; Takamori, Ayako; Sasada, Amane; Tanosaki, Ryuji; Choi, Ilseung; Utsunomiya, Atae; Maeda, Yasuhiro; Yamano, Yoshihisa; Eto, Tetsuya; Koh, Ki-Ryang; Nakamae, Hirohisa; Suehiro, Youko; Kato, Koji; Takemoto, Shigeki; Okamura, Jun; Uike, Naokuni; Kannagi, Mari
2013-04-15
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment for adult T cell leukemia/lymphoma (ATL) caused by human T cell leukemia virus type 1 (HTLV-1). We previously reported that Tax-specific CD8(+) cytotoxic T lymphocyte (CTL) contributed to graft-versus-ATL effects in ATL patients after allo-HSCT. However, the role of HTLV-1-specific CD4(+) T cells in the effects remains unclear. In this study, we showed that Tax-specific CD4(+) as well as CD8(+) T cell responses were induced in some ATL patients following allo-HSCT. To further analyze HTLV-1-specific CD4(+) T cell responses, we identified a novel HLA-DRB1*0101-restricted epitope, Tax155-167, recognized by HTLV-1-specific CD4(+) Th1-like cells, a major population of HTLV-1-specific CD4(+) T cell line, which was established from an ATL patient at 180 d after allo-HSCT from an unrelated seronegative donor by in vitro stimulation with HTLV-1-infected cells from the same patient. Costimulation of PBMCs with both the identified epitope (Tax155-167) and known CTL epitope peptides markedly enhanced the expansion of Tax-specific CD8(+) T cells in PBMCs compared with stimulation with CTL epitope peptide alone in all three HLA-DRB1*0101(+) patients post-allo-HSCT tested. In addition, direct detection using newly generated HLA-DRB1*0101/Tax155-167 tetramers revealed that Tax155-167-specific CD4(+) T cells were present in all HTLV-1-infected individuals tested, regardless of HSCT. These results suggest that Tax155-167 may be the dominant epitope recognized by HTLV-1-specific CD4(+) T cells in HLA-DRB1*0101(+)-infected individuals and that Tax-specific CD4(+) T cells may augment the graft-versus-Tax effects via efficient induction of Tax-specific CD8(+) T cell responses.
Gladka, Monika M; Molenaar, Bas; de Ruiter, Hesther; van der Elst, Stefan; Tsui, Hoyee; Versteeg, Danielle; Lacraz, Grègory P A; Huibers, Manon M H; van Oudenaarden, Alexander; van Rooij, Eva
2018-01-31
Background -Genome-wide transcriptome analysis has greatly advanced our understanding of the regulatory networks underlying basic cardiac biology and mechanisms driving disease. However, so far, the resolution of studying gene expression patterns in the adult heart has been limited to the level of extracts from whole tissues. The use of tissue homogenates inherently causes the loss of any information on cellular origin or cell type-specific changes in gene expression. Recent developments in RNA amplification strategies provide a unique opportunity to use small amounts of input RNA for genome-wide sequencing of single cells. Methods -Here, we present a method to obtain high quality RNA from digested cardiac tissue from adult mice for automated single-cell sequencing of both the healthy and diseased heart. Results -After optimization, we were able to perform single-cell sequencing on adult cardiac tissue under both homeostatic conditions and after ischemic injury. Clustering analysis based on differential gene expression unveiled known and novel markers of all main cardiac cell types. Based on differential gene expression we were also able to identify multiple subpopulations within a certain cell type. Furthermore, applying single-cell sequencing on both the healthy and the injured heart indicated the presence of disease-specific cell subpopulations. As such, we identified cytoskeleton associated protein 4 ( Ckap4 ) as a novel marker for activated fibroblasts that positively correlates with known myofibroblast markers in both mouse and human cardiac tissue. Ckap4 inhibition in activated fibroblasts treated with TGFβ triggered a greater increase in the expression of genes related to activated fibroblasts compared to control, suggesting a role of Ckap4 in modulating fibroblast activation in the injured heart. Conclusions -Single-cell sequencing on both the healthy and diseased adult heart allows us to study transcriptomic differences between cardiac cells, as well as cell type-specific changes in gene expression during cardiac disease. This new approach provides a wealth of novel insights into molecular changes that underlie the cellular processes relevant for cardiac biology and pathophysiology. Applying this technology could lead to the discovery of new therapeutic targets relevant for heart disease.
Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.
Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders
2016-10-01
The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.
Bedke, Tanja; Iannitti, Rossana G; De Luca, Antonella; Giovannini, Gloria; Fallarino, Francesca; Berges, Carsten; Latgé, Jean-Paul; Einsele, Hermann; Romani, Luigina; Topp, Max S
2014-01-01
Unlike induced Foxp3+ regulatory T cells (Foxp3+ iTreg) that have been shown to play an essential role in the development of protective immunity to the ubiquitous mold Aspergillus fumigatus, type-(1)-regulatory T cells (Tr1) cells have, thus far, not been implicated in this process. Here, we evaluated the role of Tr1 cells specific for an epitope derived from the cell wall glucanase Crf-1 of A. fumigatus (Crf-1/p41) in antifungal immunity. We identified Crf-1/p41-specific latent-associated peptide+ Tr1 cells in healthy humans and mice after vaccination with Crf-1/p41+zymosan. These cells produced high amounts of interleukin (IL)-10 and suppressed the expansion of antigen-specific T cells in vitro and in vivo. In mice, in vivo differentiation of Tr1 cells was dependent on the presence of the aryl hydrocarbon receptor, c-Maf and IL-27. Moreover, in comparison to Tr1 cells, Foxp3+ iTreg that recognize the same epitope were induced in an interferon gamma-type inflammatory environment and more potently suppressed innate immune cell activities. Overall, our data show that Tr1 cells are involved in the maintenance of antifungal immune homeostasis, and most likely play a distinct, yet complementary, role compared with Foxp3+ iTreg. PMID:24820384
Won, Hong-Hee; Natarajan, Pradeep; Dobbyn, Amanda; Jordan, Daniel M.; Roussos, Panos; Lage, Kasper; Raychaudhuri, Soumya
2015-01-01
Large genome-wide association studies (GWAS) have identified many genetic loci associated with risk for myocardial infarction (MI) and coronary artery disease (CAD). Concurrently, efforts such as the National Institutes of Health (NIH) Roadmap Epigenomics Project and the Encyclopedia of DNA Elements (ENCODE) Consortium have provided unprecedented data on functional elements of the human genome. In the present study, we systematically investigate the biological link between genetic variants associated with this complex disease and their impacts on gene function. First, we examined the heritability of MI/CAD according to genomic compartments. We observed that single nucleotide polymorphisms (SNPs) residing within nearby regulatory regions show significant polygenicity and contribute between 59–71% of the heritability for MI/CAD. Second, we showed that the polygenicity and heritability explained by these SNPs are enriched in histone modification marks in specific cell types. Third, we found that a statistically higher number of 45 MI/CAD-associated SNPs that have been identified from large-scale GWAS studies reside within certain functional elements of the genome, particularly in active enhancer and promoter regions. Finally, we observed significant heterogeneity of this signal across cell types, with strong signals observed within adipose nuclei, as well as brain and spleen cell types. These results suggest that the genetic etiology of MI/CAD is largely explained by tissue-specific regulatory perturbation within the human genome. PMID:26509271
Zhu, Ying; Clair, Geremy; Chrisler, William; Shen, Yufeng; Zhao, Rui; Shukla, Anil; Moore, Ronald; Misra, Ravi; Pryhuber, Gloria; Smith, Richard; Ansong, Charles; Kelly, Ryan T
2018-05-24
We report on the quantitative proteomic analysis of single mammalian cells. Fluorescence-activated cell sorting was employed to deposit cells into a newly developed nanodroplet sample processing chip, after which samples were analysed by ultrasensitive nanoLC-MS. An average of ~670 protein groups were confidently identified from single HeLa cells, which is a far greater level of proteome coverage for single cells than has been previously reported. We demonstrate that the single cell proteomics platform can be used to differentiate cell types from enzyme-dissociated human lung primary cells and identify specific protein markers for epithelial and mesenchymal cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lohse, Matthew B; Ene, Iuliana V; Craik, Veronica B; Hernday, Aaron D; Mancera, Eugenio; Morschhäuser, Joachim; Bennett, Richard J; Johnson, Alexander D
2016-08-01
The human fungal pathogen Candida albicans can reversibly switch between two cell types named "white" and "opaque," each of which is stable through many cell divisions. These two cell types differ in their ability to mate, their metabolic preferences and their interactions with the mammalian innate immune system. A highly interconnected network of eight transcriptional regulators has been shown to control switching between these two cell types. To identify additional regulators of the switch, we systematically and quantitatively measured white-opaque switching rates of 196 strains, each deleted for a specific transcriptional regulator. We identified 19 new regulators with at least a 10-fold effect on switching rates and an additional 14 new regulators with more subtle effects. To investigate how these regulators affect switching rates, we examined several criteria, including the binding of the eight known regulators of switching to the control region of each new regulatory gene, differential expression of the newly found genes between cell types, and the growth rate of each mutant strain. This study highlights the complexity of the transcriptional network that regulates the white-opaque switch and the extent to which switching is linked to a variety of metabolic processes, including respiration and carbon utilization. In addition to revealing specific insights, the information reported here provides a foundation to understand the highly complex coupling of white-opaque switching to cellular physiology. Copyright © 2016 by the Genetics Society of America.
Barnert, R H; Zeichhardt, H; Habermehl, K O
1992-02-01
Glycoproteins in the range 50 and 23/25 kDa were identified as poliovirus specific binding sites on HeLa cells with the monoclonal antibody mAb 122. mAb 122 is characterized by its partial inhibiting effect on poliovirus reproduction and adsorption when prebound to HeLa cells. The binding sites are endocytosed in native cells and specific for poliovirus as mAb 122 did not interfere with the adsorption of human rhinovirus type 14 (HRV 14). The poliovirus binding sites are present also on nonprimate so called nonsusceptible cells, e.g., mouse L-cells, as could be shown with sensitive ELISA based binding assays and performance of binding studies with fixed cells at 37 degrees.
A Molecular Census of Arcuate Hypothalamus and Median Eminence Cell Types
Campbell, John N.; Macosko, Evan Z.; Fenselau, Henning; Pers, Tune H.; Lyubetskaya, Anna; Tenen, Danielle; Goldman, Melissa; Verstegen, Anne M.J.; Resch, Jon M.; McCarroll, Steven A.; Rosen, Evan D.; Lowell, Bradford B.; Tsai, Linus
2017-01-01
The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility, and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a novel leptin-sensing neuronal population, multiple AgRP and POMC subtypes, and an orexigenic somatostatin neuronal population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinctly responsive subtypes of AgRP and POMC neurons. Finally, integrating our data with human GWAS data implicates two previously unknown neuronal subtypes in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred. PMID:28166221
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.
Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D
2008-06-15
Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.
Type II NKT Cells in Inflammation, Autoimmunity, Microbial Immunity, and Cancer
Marrero, Idania; Ware, Randle; Kumar, Vipin
2015-01-01
Natural killer T cells (NKT) recognize self and microbial lipid antigens presented by non-polymorphic CD1d molecules. Two major NKT cell subsets, type I and II, express different types of antigen receptors (TCR) with distinct mode of CD1d/lipid recognition. Though type II NKT cells are less frequent in mice and difficult to study, they are predominant in human. One of the major subsets of type II NKT cells reactive to the self-glycolipid sulfatide is the best characterized and has been shown to induce a dominant immune regulatory mechanism that controls inflammation in autoimmunity and in anti-cancer immunity. Recently, type II NKT cells reactive to other self-glycolipids and phospholipids have been identified suggesting both promiscuous and specific TCR recognition in microbial immunity as well. Since the CD1d pathway is highly conserved, a detailed understanding of the biology and function of type II NKT cells as well as their interplay with type I NKT cells or other innate and adaptive T cells will have major implications for potential novel interventions in inflammatory and autoimmune diseases, microbial immunity, and cancer. PMID:26136748
Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan
2014-01-01
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565
Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan
2014-08-01
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.
Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner.
Stahlhut, Steen G; Struve, Carsten; Krogfelt, Karen A
2012-03-01
The ability of bacterial pathogens to express different fimbrial adhesins plays a significant role in virulence. Thus, specific detection of fimbrial expression is an important task in virulence characterization and epidemiological studies. Most clinical Klebsiella pneumoniae isolates express type 1 and type 3 fimbriae, which are characterized by mediation of mannose-sensitive agglutination of yeast cells and agglutination of tannic acid-treated ox red blood cells (RBCs), respectively. It has been observed that K. pneumoniae isolates agglutinate yeast cells and commercially available sheep RBCs in a mannose-resistant manner. Thus, this study was initiated to identify the adhesin involved. Screening of a mutant library surprisingly revealed that the mannose-resistant agglutination of yeast and sheep RBCs was mediated by type 3 fimbriae. Specific detection of type 1 fimbriae expression in K. pneumoniae was feasible only by the use of guinea pig RBCs. This was further verified by the use of isogenic fimbriae mutants and by cloning and expressing K. pneumoniae fimbrial gene clusters in Escherichia coli. Yeast agglutination assays are commonly used to detect type 1 fimbriae expression but should not be used for bacterial species able to express type 3 fimbriae. For these species, the use of guinea pig blood for specific type 1 fimbriae detection is essential. The use of commercially available sheep RBCs or yeast is an easy alternative to traditional methods to detect type 3 fimbriae expression. Easy and specific detection of expression of type 1 and type 3 fimbriae is essential in the continuous characterization of these important adhesive virulence factors present in members of the Enterobacteriaceae.
Ramaraju, Harsha; Miller, Sharon J; Kohn, David H
2017-07-01
Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ 50 , p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wild-type cells rescue genotypically Math1-null hair cells in the inner ears of chimeric mice.
Du, Xiaoping; Jensen, Patricia; Goldowitz, Daniel; Hamre, Kristin M
2007-05-15
The transcription factor Math1 has been shown to be critical in the formation of hair cells (HCs) in the inner ear. However, the influence of environmental factors in HC specification suggests that cell extrinsic factors are also crucial to their development. To test whether extrinsic factors impact development of Math1-null (Math1(beta-Gal/beta-Gal)) HCs, we examined neonatal (postnatal ages P0-P4.5) Math1-null chimeric mice in which genotypically mutant and wild-type cells intermingle to form the inner ear. We provide the first direct evidence that Math1-null HCs are able to be generated and survive in the conducive chimeric environment. beta-Galactosidase expression was used to identify genetically mutant cells while cells were phenotypically defined as HCs by morphological characteristics notably the expression of HC-specific markers. Genotypically mutant HCs were found in all sensory epithelia of the inner ear at all ages examined. Comparable results were obtained irrespective of the wild-type component of the chimeric mice. Thus, genotypically mutant cells retain the competence to differentiate into HCs. The implication is that the lack of the Math1 gene in HC precursors can be overcome by environmental influences, such as cell-cell interactions with wild-type cells, to ultimately result in the formation of HCs.
NASA Technical Reports Server (NTRS)
Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.
1999-01-01
We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.
MELK expression correlates with tumor mitotic activity but is not required for cancer growth
Smith, Joan C; Palladino, Ann C
2018-01-01
The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies. PMID:29417930
Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng
2017-01-01
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502
HPASubC: A suite of tools for user subclassification of human protein atlas tissue images.
Cornish, Toby C; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K
2015-01-01
The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology.
HPASubC: A suite of tools for user subclassification of human protein atlas tissue images
Cornish, Toby C.; Chakravarti, Aravinda; Kapoor, Ashish; Halushka, Marc K.
2015-01-01
Background: The human protein atlas (HPA) is a powerful proteomic tool for visualizing the distribution of protein expression across most human tissues and many common malignancies. The HPA includes immunohistochemically-stained images from tissue microarrays (TMAs) that cover 48 tissue types and 20 common malignancies. The TMA data are used to provide expression information at the tissue, cellular, and occasionally, subcellular level. The HPA also provides subcellular data from confocal immunofluorescence data on three cell lines. Despite the availability of localization data, many unique patterns of cellular and subcellular expression are not documented. Materials and Methods: To get at this more granular data, we have developed a suite of Python scripts, HPASubC, to aid in subcellular, and cell-type specific classification of HPA images. This method allows the user to download and optimize specific HPA TMA images for review. Then, using a playstation-style video game controller, a trained observer can rapidly step through 10's of 1000's of images to identify patterns of interest. Results: We have successfully used this method to identify 703 endothelial cell (EC) and/or smooth muscle cell (SMCs) specific proteins discovered within 49,200 heart TMA images. This list will assist us in subdividing cardiac gene or protein array data into expression by one of the predominant cell types of the myocardium: Myocytes, SMCs or ECs. Conclusions: The opportunity to further characterize unique staining patterns across a range of human tissues and malignancies will accelerate our understanding of disease processes and point to novel markers for tissue evaluation in surgical pathology. PMID:26167380
Major, Sylvia M; Nishizuka, Satoshi; Morita, Daisaku; Rowland, Rick; Sunshine, Margot; Shankavaram, Uma; Washburn, Frank; Asin, Daniel; Kouros-Mehr, Hosein; Kane, David; Weinstein, John N
2006-04-06
Monoclonal antibodies are used extensively throughout the biomedical sciences for detection of antigens, either in vitro or in vivo. We, for example, have used them for quantitation of proteins on "reverse-phase" protein lysate arrays. For those studies, we quality-controlled > 600 available monoclonal antibodies and also needed to develop precise information on the genes that encode their antigens. Translation among the various protein and gene identifier types proved non-trivial because of one-to-many and many-to-one relationships. To organize the antibody, protein, and gene information, we initially developed a relational database in Filemaker for our own use. When it became apparent that the information would be useful to many other researchers faced with the need to choose or characterize antibodies, we developed it further as AbMiner, a fully relational web-based database under MySQL, programmed in Java. AbMiner is a user-friendly, web-based relational database of information on > 600 commercially available antibodies that we validated by Western blot for protein microarray studies. It includes many types of information on the antibody, the immunogen, the vendor, the antigen, and the antigen's gene. Multiple gene and protein identifier types provide links to corresponding entries in a variety of other public databases, including resources for phosphorylation-specific antibodies. AbMiner also includes our quality-control data against a pool of 60 diverse cancer cell types (the NCI-60) and also protein expression levels for the NCI-60 cells measured using our high-density "reverse-phase" protein lysate microarrays for a selection of the listed antibodies. Some other available database resources give information on antibody specificity for one or a couple of cell types. In contrast, the data in AbMiner indicate specificity with respect to the antigens in a pool of 60 diverse cell types from nine different tissues of origin. AbMiner is a relational database that provides extensive information from our own laboratory and other sources on more than 600 available antibodies and the genes that encode the antibodies' antigens. The data will be made freely available at http://discover.nci.nih.gov/abminer.
Mokshina, Natalia; Gorshkova, Tatyana; Deyholos, Michael K
2014-01-01
Plant chitinases (EC 3.2.1.14) and chitinase-like (CTL) proteins have diverse functions including cell wall biosynthesis and disease resistance. We analyzed the expression of 34 chitinase and chitinase-like genes of flax (collectively referred to as LusCTLs), belonging to glycoside hydrolase family 19 (GH19). Analysis of the transcript expression patterns of LusCTLs in the stem and other tissues identified three transcripts (LusCTL19, LusCTL20, LusCTL21) that were highly enriched in developing bast fibers, which form cellulose-rich gelatinous-type cell walls. The same three genes had low relative expression in tissues with primary cell walls and in xylem, which forms a xylan type of secondary cell wall. Phylogenetic analysis of the LusCTLs identified a flax-specific sub-group that was not represented in any of other genomes queried. To provide further context for the gene expression analysis, we also conducted phylogenetic and expression analysis of the cellulose synthase (CESA) family genes of flax, and found that expression of secondary wall-type LusCESAs (LusCESA4, LusCESA7 and LusCESA8) was correlated with the expression of two LusCTLs (LusCTL1, LusCTL2) that were the most highly enriched in xylem. The expression of LusCTL19, LusCTL20, and LusCTL21 was not correlated with that of any CESA subgroup. These results defined a distinct type of CTLs that may have novel functions specific to the development of the gelatinous (G-type) cellulosic walls.
The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements
Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A.; Nizar, Krystal; Yaseen, Mohammad A.; Hagler, Donald J.; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A.; Silva, Gabriel A.; Masliah, Eliezer; Vinogradov, Sergei; Buxton, Richard B.; Einevoll, Gaute T.; Boas, David A.; Dale, Anders M.; Devor, Anna
2016-01-01
The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed ‘bottom-up’ forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the ‘ground truth’ for the development of new tools for tackling the inverse problem—estimation of neuronal activity from multimodal non-invasive imaging data. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574309
Identification of siRNA delivery enhancers by a chemical library screen.
Gilleron, Jerome; Paramasivam, Prasath; Zeigerer, Anja; Querbes, William; Marsico, Giovanni; Andree, Cordula; Seifert, Sarah; Amaya, Pablo; Stöter, Martin; Koteliansky, Victor; Waldmann, Herbert; Fitzgerald, Kevin; Kalaidzidis, Yannis; Akinc, Akin; Maier, Martin A; Manoharan, Muthiah; Bickle, Marc; Zerial, Marino
2015-09-18
Most delivery systems for small interfering RNA therapeutics depend on endocytosis and release from endo-lysosomal compartments. One approach to improve delivery is to identify small molecules enhancing these steps. It is unclear to what extent such enhancers can be universally applied to different delivery systems and cell types. Here, we performed a compound library screen on two well-established siRNA delivery systems, lipid nanoparticles and cholesterol conjugated-siRNAs. We identified fifty-one enhancers improving gene silencing 2-5 fold. Strikingly, most enhancers displayed specificity for one delivery system only. By a combination of quantitative fluorescence and electron microscopy we found that the enhancers substantially differed in their mechanism of action, increasing either endocytic uptake or release of siRNAs from endosomes. Furthermore, they acted either on the delivery system itself or the cell, by modulating the endocytic system via distinct mechanisms. Interestingly, several compounds displayed activity on different cell types. As proof of principle, we showed that one compound enhanced siRNA delivery in primary endothelial cells in vitro and in the endocardium in the mouse heart. This study suggests that a pharmacological approach can improve the delivery of siRNAs in a system-specific fashion, by exploiting distinct mechanisms and acting upon multiple cell types. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Rivière, Guillaume; Lienhard, Daniel; Andrieu, Thomas; Vieau, Didier; Frey, Brigitte M; Frey, Felix J
2011-04-01
Somatic angiotensin-converting enzyme (sACE) is crucial in cardiovascular homeostasis and displays a tissue-specific profile. Epigenetic patterns modulate genes expression and their alterations were implied in pathologies including hypertension. However, the influence of DNA methylation and chromatin condensation state on the expression of sACE is unknown. We examined whether such epigenetic mechanisms could participate in the control of sACE expression in vitro and in vivo. We identified two CpG islands in the human ace-1 gene 3 kb proximal promoter region. Their methylation abolished the luciferase activity of ace-1 promoter/reporter constructs transfected into human liver (HepG2), colon (HT29), microvascular endothelial (HMEC-1) and lung (SUT) cell lines (p < 0.001). Bisulphite sequencing revealed a cell-type specific basal methylation pattern of the ace-1 gene -1,466/+25 region. As assessed by RT-qPCR, inhibition of DNA methylation by 5-aza-2'-deoxycytidine and/or of histone deacetylation by trichostatin A highly stimulated sACE mRNA expression cell-type specifically (p < 0.001 vs. vehicle treated cells). In the rat, in vivo 5-aza-cytidine injections demethylated the ace-1 promoter and increased sACE mRNA expression in the lungs and liver (p = 0.05), but not in the kidney. In conclusion, the expression level of somatic ACE is modulated by CpG-methylation and histone deacetylases inhibition. The basal methylation pattern of the promoter of the ace-1 gene is cell-type specific and correlates to sACE transcription. DNMT inhibition is associated with altered methylation of the ace-1 promoter and a cell-type and tissue-specific increase of sACE mRNA levels. This study indicates a strong influence of epigenetic mechanisms on sACE expression.
Yamawaki, Kazuo; Inuo, Chisato; Nomura, Takayasu; Tanaka, Kenichi; Nakajima, Yoichi; Kondo, Yasuto; Yoshikawa, Tetsushi; Urisu, Atsuo; Tsuge, Ikuya
2015-12-01
Allergen-specific T-helper type 2 (TH2) cells play an important role in the development of allergic inflammation; however, investigations of the properties of allergen-specific T cells have been challenging in humans. Despite clear evidence that forkhead box p3 (Foxp3) is expressed in conventional effector T cells, its function has remained unknown. To characterize allergen-specific TH2 cells in milk allergy, with particular focus on the expression of Foxp3. Twenty-one children with milk allergy and 11 children without milk allergy were studied. Peripheral blood mononuclear cells from subjects were stimulated with milk allergen for 6 hours and analyzed using multicolor flow cytometry to identify CD154(+) allergen-specific T-helper cells. Simultaneously, the expression of intracellular cytokines and Foxp3 was analyzed. The milk allergy group had significantly larger numbers of milk allergen-specific interleukin (IL)-4- and IL-5-producing CD4(+) T cells than the control group. Subjects in the milk allergy group had significantly more CD154(+)CD4(+) IL-10-producing cells and CD154(+)Foxp3(+)CD4(+) cells than those in the control group. In addition, the number of milk allergen-specific CD154(+)Foxp3(+)CD4(+) cells strongly correlated with that of CD154(+)IL4(+)CD4(+) cells. Bcl-2 expression in CD154(+)IL-4(+)Foxp3(+) T-helper cells was significantly lower compared with that in total CD4 cells. Increased numbers of IL-4-producing allergen-specific T-helper cells were found in patients with milk allergy. In addition, Foxp3 was coexpressed with IL-4 in allergen-specific TH2 cells from patients. This coexpression was associated with lower Bcl-2 levels and could contribute to the phenotype and function of TH2 cells. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Dudok, Barna; Barna, László; Ledri, Marco; Szabó, Szilárd I; Szabadits, Eszter; Pintér, Balázs; Woodhams, Stephen G; Henstridge, Christopher M; Balla, Gyula Y; Nyilas, Rita; Varga, Csaba; Lee, Sang-Hun; Matolcsi, Máté; Cervenak, Judit; Kacskovics, Imre; Watanabe, Masahiko; Sagheddu, Claudia; Melis, Miriam; Pistis, Marco; Soltesz, Ivan; Katona, István
2015-01-01
A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yupeng; Gorkin, David U.; Dickel, Diane E.
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; ...
2017-02-13
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulator y element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared withmore » existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types.« less
Characterization of human breast cancer tissues by infrared imaging.
Verdonck, M; Denayer, A; Delvaux, B; Garaud, S; De Wind, R; Desmedt, C; Sotiriou, C; Willard-Gallo, K; Goormaghtigh, E
2016-01-21
Fourier Transform InfraRed (FTIR) spectroscopy coupled to microscopy (IR imaging) has shown unique advantages in detecting morphological and molecular pathologic alterations in biological tissues. The aim of this study was to evaluate the potential of IR imaging as a diagnostic tool to identify characteristics of breast epithelial cells and the stroma. In this study a total of 19 breast tissue samples were obtained from 13 patients. For 6 of the patients, we also obtained Non-Adjacent Non-Tumor tissue samples. Infrared images were recorded on the main cell/tissue types identified in all breast tissue samples. Unsupervised Principal Component Analyses and supervised Partial Least Square Discriminant Analyses (PLS-DA) were used to discriminate spectra. Leave-one-out cross-validation was used to evaluate the performance of PLS-DA models. Our results show that IR imaging coupled with PLS-DA can efficiently identify the main cell types present in FFPE breast tissue sections, i.e. epithelial cells, lymphocytes, connective tissue, vascular tissue and erythrocytes. A second PLS-DA model could distinguish normal and tumor breast epithelial cells in the breast tissue sections. A patient-specific model reached particularly high sensitivity, specificity and MCC rates. Finally, we showed that the stroma located close or at distance from the tumor exhibits distinct spectral characteristics. In conclusion FTIR imaging combined with computational algorithms could be an accurate, rapid and objective tool to identify/quantify breast epithelial cells and differentiate tumor from normal breast tissue as well as normal from tumor-associated stroma, paving the way to the establishment of a potential complementary tool to ensure safe tumor margins.
Sun, Yi; Zhang, Wei; Chen, Yunqin; Ma, Qin; Wei, Jia; Liu, Qi
2016-02-23
Clinical responses to anti-cancer therapies often only benefit a defined subset of patients. Predicting the best treatment strategy hinges on our ability to effectively translate genomic data into actionable information on drug responses. To achieve this goal, we compiled a comprehensive collection of baseline cancer genome data and drug response information derived from a large panel of cancer cell lines. This data set was applied to identify the signature genes relevant to drug sensitivity and their resistance by integrating CNVs and the gene expression of cell lines with in vitro drug responses. We presented an efficient in-silico pipeline for integrating heterogeneous cell line data sources with the simultaneous modeling of drug response values across all the drugs and cell lines. Potential signature genes correlated with drug response (sensitive or resistant) in different cancer types were identified. Using signature genes, our collaborative filtering-based drug response prediction model outperformed the 44 algorithms submitted to the DREAM competition on breast cancer cells. The functions of the identified drug response related signature genes were carefully analyzed at the pathway level and the synthetic lethality level. Furthermore, we validated these signature genes by applying them to the classification of the different subtypes of the TCGA tumor samples, and further uncovered their in vivo implications using clinical patient data. Our work may have promise in translating genomic data into customized marker genes relevant to the response of specific drugs for a specific cancer type of individual patients.
Functional Dissection of Sugar Signals Affecting Gene Expression in Arabidopsis thaliana
Kunz, Sabine; Pesquet, Edouard; Kleczkowski, Leszek A.
2014-01-01
Background Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. Methodology/Principal Findings To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. Using functional genomics we have identified 290 sugar responsive genes, responding rapidly (within 1 h) and specifically to low concentration (1 mM) of glucose, fructose and/or sucrose. For selected genes, the true nature of the signaling sugar molecules and sites of sugar perception were further clarified using non-metabolizable sugar analogues. Using both transgenic and wild-type A. thaliana seedlings, it was shown that the expression of selected sugar-responsive genes was not restricted to a specific tissue or cell type and responded to photoperiod-related changes in sugar availability. This suggested that sugar-responsiveness of genes identified in the cell culture system was not biased toward heterotrophic background and resembled that in whole plants. Conclusions Altogether, our research strategy, using a combination of cell culture and whole plants, has provided an unequivocal evidence for the identity of sugar-responsive genes and the identity of the sugar signaling molecules, independently from their inter-conversions or use for energy metabolism. PMID:24950222
Alikhan, Mir; Song, Joo Y; Sohani, Aliyah R; Moroch, Julien; Plonquet, Anne; Duffield, Amy S; Borowitz, Michael J; Jiang, Liuyan; Bueso-Ramos, Carlos; Inamdar, Kedar; Menon, Madhu P; Gurbuxani, Sandeep; Chan, Ernest; Smith, Sonali M; Nicolae, Alina; Jaffe, Elaine S; Gaulard, Philippe; Venkataraman, Girish
2016-10-01
Nodal follicular helper T-cell-derived lymphoproliferations (specifically the less common peripheral T-cell lymphomas of follicular type) exhibit a spectrum of histologic features that may mimic reactive hyperplasia or Hodgkin lymphoma. Even though angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma of follicular type share a common biologic origin from follicular helper T-cells and their morphology has been well characterized, flow cytometry of peripheral T-cell lymphomas of follicular type has not been widely discussed as a tool for identifying this reactive hyperplasia/Hodgkin lymphoma mimic. We identified 10 peripheral T-cell lymphomas of follicular type with available flow cytometry data from five different institutions, including two cases with peripheral blood evaluation. For comparison, we examined flow cytometry data for 8 classical Hodgkin lymphomas (including 1 lymphocyte-rich classical Hodgkin lymphoma), 15 nodular lymphocyte predominant Hodgkin lymphomas, 15 angioimmunoblastic T-cell lymphomas, and 26 reactive nodes. Lymph node histology and flow cytometry data were reviewed, specifically for the presence of a CD3(-/dim)CD4(+) aberrant T-cell population (described in angioimmunoblastic T-cell lymphomas), besides other T-cell aberrancies. Nine of 10 (90%) peripheral T-cell lymphomas of follicular type showed a CD3(-/dim)CD4(+) T-cell population constituting 29.3% (range 7.9-62%) of all lymphocytes. Five of 10 (50%) had nodular lymphocyte predominant Hodgkin lymphoma or lymphocyte-rich classical Hodgkin lymphoma-like morphology with scattered Hodgkin-like cells that expressed CD20, CD30, CD15, and MUM1. Three cases had a nodular growth pattern and three others exhibited a perifollicular growth pattern without Hodgkin-like cells. Epstein-Barr virus was positive in 1 of 10 cases (10%). PCR analysis showed clonal T-cell receptor gamma gene rearrangement in all 10 peripheral T-cell lymphomas of follicular type. By flow cytometry, 11 of 15 (73.3%) angioimmunoblastic T-cell lymphomas showed the CD3(-/dim)CD4(+) population (mean: 19.5%, range: 3-71.8%). Using a threshold of 3% for CD3(-/dim)CD4(+) T cells, all 15 nodular lymphocyte predominant Hodgkin lymphoma controls and 8 classical Hodgkin lymphomas were negative (Mann-Whitney P=0.01, F-PTCL vs Hodgkin lymphomas), as were 25 of 26 reactive lymph nodes. The high frequency of CD3(-/dim)CD4(+) aberrant T cells is similar in angioimmunoblastic T-cell lymphomas and peripheral T-cell lymphomas of follicular type, and is a useful feature in distinguishing peripheral T-cell lymphomas of follicular type from morphologic mimics such as reactive hyperplasia or Hodgkin lymphoma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, Gary W., E-mail: gary.cline@yale.edu; Zhao, Xiaojian; Jakowski, Amy B.
2011-09-02
Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity tomore » islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution characteristics suggest several GPCRs as potential targets for PET imaging of pancreatic BCM.« less
Chen, Yantian; Bloemen, Veerle; Impens, Saartje; Moesen, Maarten; Luyten, Frank P; Schrooten, Jan
2011-12-01
Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant.
Effects of IL8 and immune cells on the regulation of luteal progesterone secretion
USDA-ARS?s Scientific Manuscript database
Recent studies suggest that chemokines may mediate the luteolytic action of PGF2a (PGF). Our objective was to identify chemokines induced by PGF in vivo and to determine the effects of IL8 on specific luteal cell types in vitro. Midcycle cows were injected with saline or PGF, ovaries were removed ...
Crocker, Amanda; Guan, Xiao-Juan; Murphy, Coleen T; Murthy, Mala
2016-05-17
Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Macho-Fernandez, Elodie; Brigl, Manfred
2015-01-01
Natural killer T (NKT) cells comprise a family of specialized T cells that recognize lipid antigens presented by CD1d. Based on their T cell receptor (TCR) usage and antigen specificities, CD1d-restricted NKT cells have been divided into two main subsets: type I NKT cells that use a canonical invariant TCR α-chain and recognize α-galactosylceramide (α-GalCer), and type II NKT cells that use a more diverse αβ TCR repertoire and do not recognize α-GalCer. In addition, α-GalCer-reactive NKT cells that use non-canonical αβ TCRs and CD1d-restricted T cells that use γδ or δ/αβ TCRs have recently been identified, revealing further diversity among CD1d-restricted T cells. Importantly, in addition to their distinct antigen specificities, functional differences are beginning to emerge between the different members of the CD1d-restricted T cell family. In this review, while using type I NKT cells as comparison, we will focus on type II NKT cells and the other non-invariant CD1d-restricted T cell subsets, and discuss our current understanding of the antigens they recognize, the formation of stimulatory CD1d/antigen complexes, the modes of TCR-mediated antigen recognition, and the mechanisms and consequences of their activation that underlie their function in antimicrobial responses, anti-tumor immunity, and autoimmunity. PMID:26284062
Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides.
Salomon, Dor; Guo, Yirui; Kinch, Lisa N; Grishin, Nick V; Gardner, Kevin H; Orth, Kim
2013-01-01
Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.
Stem cells in the Drosophila digestive system.
Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X
2013-01-01
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates
Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A.; Yu, Shuai; Hans, Michael; Geahlen, Robert L.; Tao, W. Andy
2012-01-01
Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900
Induction of specific neuron types by overexpression of single transcription factors.
Teratani-Ota, Yusuke; Yamamizu, Kohei; Piao, Yulan; Sharova, Lioudmila; Amano, Misa; Yu, Hong; Schlessinger, David; Ko, Minoru S H; Sharov, Alexei A
2016-10-01
Specific neuronal types derived from embryonic stem cells (ESCs) can facilitate mechanistic studies and potentially aid in regenerative medicine. Existing induction methods, however, mostly rely on the effects of the combined action of multiple added growth factors, which generally tend to result in mixed populations of neurons. Here, we report that overexpression of specific transcription factors (TFs) in ESCs can rather guide the differentiation of ESCs towards specific neuron lineages. Analysis of data on gene expression changes 2 d after induction of each of 185 TFs implicated candidate TFs for further ESC differentiation studies. Induction of 23 TFs (out of 49 TFs tested) for 6 d facilitated neural differentiation of ESCs as inferred from increased proportion of cells with neural progenitor marker PSA-NCAM. We identified early activation of the Notch signaling pathway as a common feature of most potent inducers of neural differentiation. The majority of neuron-like cells generated by induction of Ascl1, Smad7, Nr2f1, Dlx2, Dlx4, Nr2f2, Barhl2, and Lhx1 were GABA-positive and expressed other markers of GABAergic neurons. In the same way, we identified Lmx1a and Nr4a2 as inducers for neurons bearing dopaminergic markers and Isl1, Fezf2, and St18 for cholinergic motor neurons. A time-course experiment with induction of Ascl1 showed early upregulation of most neural-specific messenger RNA (mRNA) and microRNAs (miRNAs). Sets of Ascl1-induced mRNAs and miRNAs were enriched in Ascl1 targets. In further studies, enrichment of cells obtained with the induction of Ascl1, Smad7, and Nr2f1 using microbeads resulted in essentially pure population of neuron-like cells with expression profiles similar to neural tissues and expressed markers of GABAergic neurons. In summary, this study indicates that induction of transcription factors is a promising approach to generate cultures that show the transcription profiles characteristic of specific neural cell types.
Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting
2016-04-07
DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.
Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.
Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu
2017-08-01
Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.
Multicolor microRNA FISH effectively differentiates tumor types
Renwick, Neil; Cekan, Pavol; Masry, Paul A.; McGeary, Sean E.; Miller, Jason B.; Hafner, Markus; Li, Zhen; Mihailovic, Aleksandra; Morozov, Pavel; Brown, Miguel; Gogakos, Tasos; Mobin, Mehrpouya B.; Snorrason, Einar L.; Feilotter, Harriet E.; Zhang, Xiao; Perlis, Clifford S.; Wu, Hong; Suárez-Fariñas, Mayte; Feng, Huichen; Shuda, Masahiro; Moore, Patrick S.; Tron, Victor A.; Chang, Yuan; Tuschl, Thomas
2013-01-01
MicroRNAs (miRNAs) are excellent tumor biomarkers because of their cell-type specificity and abundance. However, many miRNA detection methods, such as real-time PCR, obliterate valuable visuospatial information in tissue samples. To enable miRNA visualization in formalin-fixed paraffin-embedded (FFPE) tissues, we developed multicolor miRNA FISH. As a proof of concept, we used this method to differentiate two skin tumors, basal cell carcinoma (BCC) and Merkel cell carcinoma (MCC), with overlapping histologic features but distinct cellular origins. Using sequencing-based miRNA profiling and discriminant analysis, we identified the tumor-specific miRNAs miR-205 and miR-375 in BCC and MCC, respectively. We addressed three major shortcomings in miRNA FISH, identifying optimal conditions for miRNA fixation and ribosomal RNA (rRNA) retention using model compounds and high-pressure liquid chromatography (HPLC) analyses, enhancing signal amplification and detection by increasing probe-hapten linker lengths, and improving probe specificity using shortened probes with minimal rRNA sequence complementarity. We validated our method on 4 BCC and 12 MCC tumors. Amplified miR-205 and miR-375 signals were normalized against directly detectable reference rRNA signals. Tumors were classified using predefined cutoff values, and all were correctly identified in blinded analysis. Our study establishes a reliable miRNA FISH technique for parallel visualization of differentially expressed miRNAs in FFPE tumor tissues. PMID:23728175
Digital Single-Cell Analysis of Plant Organ Development Using 3DCellAtlas[OPEN
Montenegro-Johnson, Thomas D.; Stamm, Petra; Strauss, Soeren; Topham, Alexander T.; Tsagris, Michail; Wood, Andrew T.A.; Smith, Richard S.; Bassel, George W.
2015-01-01
Diverse molecular networks underlying plant growth and development are rapidly being uncovered. Integrating these data into the spatial and temporal context of dynamic organ growth remains a technical challenge. We developed 3DCellAtlas, an integrative computational pipeline that semiautomatically identifies cell types and quantifies both 3D cellular anisotropy and reporter abundance at single-cell resolution across whole plant organs. Cell identification is no less than 97.8% accurate and does not require transgenic lineage markers or reference atlases. Cell positions within organs are defined using an internal indexing system generating cellular level organ atlases where data from multiple samples can be integrated. Using this approach, we quantified the organ-wide cell-type-specific 3D cellular anisotropy driving Arabidopsis thaliana hypocotyl elongation. The impact ethylene has on hypocotyl 3D cell anisotropy identified the preferential growth of endodermis in response to this hormone. The spatiotemporal dynamics of the endogenous DELLA protein RGA, expansin gene EXPA3, and cell expansion was quantified within distinct cell types of Arabidopsis roots. A significant regulatory relationship between RGA, EXPA3, and growth was present in the epidermis and endodermis. The use of single-cell analyses of plant development enables the dynamics of diverse regulatory networks to be integrated with 3D organ growth. PMID:25901089
Yasuda, Hiroyuki; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B.; Kobayashi, Susumu S.; Betsuyaku, Tomoko; Soejima, Kenzo
2015-01-01
EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations. PMID:26515464
System-wide identification of wild-type SUMO-2 conjugation sites
Hendriks, Ivo A.; D'Souza, Rochelle C.; Chang, Jer-Gung; Mann, Matthias; Vertegaal, Alfred C. O.
2015-01-01
SUMOylation is a reversible post-translational modification (PTM) regulating all nuclear processes. Identification of SUMOylation sites by mass spectrometry (MS) has been hampered by bulky tryptic fragments, which thus far necessitated the use of mutated SUMO. Here we present a SUMO-specific protease-based methodology which circumvents this problem, dubbed Protease-Reliant Identification of SUMO Modification (PRISM). PRISM allows for detection of SUMOylated proteins as well as identification of specific sites of SUMOylation while using wild-type SUMO. The method is generic and could be widely applied to study lysine PTMs. We employ PRISM in combination with high-resolution MS to identify SUMOylation sites from HeLa cells under standard growth conditions and in response to heat shock. We identified 751 wild-type SUMOylation sites on endogenous proteins, including 200 dynamic SUMO sites in response to heat shock. Thus, we have developed a method capable of quantitatively studying wild-type mammalian SUMO at the site-specific and system-wide level. PMID:26073453
New strategies for allergen T cell epitope identification: going beyond IgE
Schulten, Véronique; Peters, Bjoern; Sette, Alessandro
2014-01-01
Background Type I allergy and allergic asthma are common diseases in the developed world associated with IgE antibodies and Th2 cell reactivity. To date, the only causative treatment for allergic disease is specific immunotherapy (SIT). Method Here, we review recent works from our laboratory focused on identifying human T cell epitopes associated with allergic disease and their potential use as biomarkers or therapeutic targets for SIT. In previous studies, we have mapped T cell epitopes associated with the major ten Timothy grass (Tg) allergens, defined on the basis of human IgE reactivity by ELISPOT. Results Interestingly, in about 33% of allergic donors no T cell epitopes from overlapping peptides spanning the entire sequences of these allergens were identified, despite vigorous T cell responses to the Tg extract. Using a bioinformatics-proteomic approach, we identified a set of 93 novel Tg proteins, many of which were found to elicit IL-5 production in T cells from allergic donors despite lacking IgE reactivity. Next, we assessed T cell responses to the novel Tg proteins in donors who had been treated with subcutaneous specific immunotherapy (SCIT). A subset of these proteins showed a strong reduction of IL-5 responses in donors who had received SCIT compared to allergic donors, which correlated with patient's self-reported improvement of allergic symptoms. Conclusion A bioinformatics-proteomic approach has successfully identified additional Tg-derived T cell targets independent of IgE reactivity. This method can be applied to other allergies potentially leading to the discovery of promising therapeutic targets for allergen-specific immunotherapy. PMID:25402674
Cell Type-specific Intrinsic Perithreshold Oscillations in Hippocampal GABAergic Interneurons.
Kang, Young-Jin; Lewis, Hannah Elisabeth Smashey; Young, Mason William; Govindaiah, Gubbi; Greenfield, Lazar John; Garcia-Rill, Edgar; Lee, Sang-Hun
2018-04-15
The hippocampus plays a critical role in learning, memory, and spatial processing through coordinated network activity including theta and gamma oscillations. Recent evidence suggests that hippocampal subregions (e.g., CA1) can generate these oscillations at the network level, at least in part, through GABAergic interneurons. However, it is unclear whether specific GABAergic interneurons generate intrinsic theta and/or gamma oscillations at the single-cell level. Since major types of CA1 interneurons (i.e., parvalbumin-positive basket cells (PVBCs), cannabinoid type 1 receptor-positive basket cells (CB 1 BCs), Schaffer collateral-associated cells (SCAs), neurogliaform cells and ivy cells) are thought to play key roles in network theta and gamma oscillations in the hippocampus, we tested the hypothesis that these cells generate intrinsic perithreshold oscillations at the single-cell level. We performed whole-cell patch-clamp recordings from GABAergic interneurons in the CA1 region of the mouse hippocampus in the presence of synaptic blockers to identify intrinsic perithreshold membrane potential oscillations. The majority of PVBCs (83%), but not the other interneuron subtypes, produced intrinsic perithreshold gamma oscillations if the membrane potential remained above -45 mV. In contrast, CB 1 BCs, SCAs, neurogliaform cells, ivy cells, and the remaining PVBCs (17%) produced intrinsic theta, but not gamma, oscillations. These oscillations were prevented by blockers of persistent sodium current. These data demonstrate that the major types of hippocampal interneurons produce distinct frequency bands of intrinsic perithreshold membrane oscillations. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Type 2 Innate Lymphoid Cells: Friends or Foes—Role in Airway Allergic Inflammation and Asthma
Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba
2012-01-01
Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 “immune franchise.” Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma. PMID:23209480
Type 2 innate lymphoid cells: friends or foes-role in airway allergic inflammation and asthma.
Pishdadian, Abbas; Varasteh, Abdol-Reza; Sankian, Mojtaba
2012-01-01
Innate-like lymphocytes (ILLs) and innate lymphoid cells (ILCs) are two newly characterized families of lymphocytes with limited and no rearranged antigen receptors, respectively. These soldiers provide a first line of defense against foreign insults by triggering a prompt innate immune response and bridging the gap of innate and adaptive immunity. Type 2 innate lymphoid cells (ILCs2) are newly identified members of the ILC family that play a key role in type 2 immune responses by prompt production of type 2 cytokines (especially IL-5 and IL-13) in response to antigen-induced IL-25/33 and by recruiting type 2 "immune franchise." Regarding the two different roles of type 2 cytokines, helminth expulsion and type 2-related diseases, here we review the latest advances in ILC2 biology and examine the pivotal role of resident ILCs2 in allergen-specific airway inflammation and asthma.
NASA Astrophysics Data System (ADS)
Pfiffner, S. M.; Nissen, S.; Liu, X.; Chourey, K.; Vishnivetskaya, T. A.; Hettich, R.; Loeffler, F.
2014-12-01
Anaeromyxobacter dehalogenans is a metabolically versatile Deltaproteobacterium and conserves energy from the reduction of various electron acceptors, including insoluble MnO2 and ferric oxides/oxyhydroxides (FeOOH). The goal of this study was to identify c-type cytochromes involved in electron transfer to MnO2. The characterization of deletion mutants has revealed a number of c-type cytochromes involved in electron transfer to solid metal oxides in Shewanella spp. and Geobacter spp; however, a genetic system for Anaeromyxobacter is not available. The A. dehalogenans str. 2CP-C genome encodes 68 putative c-type cytochromes, which all lack functional assignments. To identify c-type cytochromes involved in electron transfer to solid MnO2, protein expression profiles of A. dehalogenans str. 2CP-C cells grown with acetate as electron donor and MnO2, ferric citrate, FeOOH, nitrate or fumarate as electron acceptors were compared. Whole cell proteomes were analyzed after trypsin proteolysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Distinct c-type cytochrome expression patterns were observed with cells grown with different electron acceptors. A. dehalogenans str. 2CP-C grown with MnO2 expressed 25 out of the 68 c-type cytochromes encoded on the genome. The c-type cytochrome Adeh_1278 was only expressed in strain 2CP-C grown with MnO2. Reverse transcription PCR confirmed that the Adeh_1278 gene was transcribed in MnO2-grown cells but not in cells grown with other terminal electron acceptors. The expression of the Adeh_1278 gene correlated with Mn(IV) reduction activity. Adeh_1278 has three heme binding motifs and is predicted to be located in the periplasm. The identification of Adeh_1278 as a protein uniquely expressed when MnO2 serves as electron acceptor suggests its utility as a biomarker for MnO2 reduction. This example demonstrates the value of the LC-MS/MS approach for identifying specific proteins of interest and making functional assignments to proteins, including c-type cytochromes that have not been characterized. The distinctive expression of c-type cytochromes in response to growth with different terminal electron acceptors offers opportunities for functional (i.e., activity) in situ monitoring using metaproteomics or transcript-targeted approaches.
Immunomodulatory Nature and Site Specific Affinity of Mesenchymal Stem Cells: a Hope in Cell Therapy
Lotfinegad, Parisa; Shamsasenjan, karim; Movassaghpour, Aliakbar; Majidi, Jafar; Baradaran, Behzad
2014-01-01
Immunosuppressive ability of mesenchymal stem cells (MSCs), their differentiation properties to various specialized tissue types, ease of in vitro and in vivo expansion and specific migration capacity, make them to be tested in different clinical trials for the treatment of various diseases. The immunomodulatory effects of MSCs are less identified which probably has high clinically significance. The clinical trials based on primary research will cause better understanding the ability of MSCs in immunomodulatory applications and site specific migration in the optimization of therapy. So, this review focus on MSCs functional role in modulating immune responses, their ability in homing to tumor, their potency as delivery vehicle and their medical importance. PMID:24409403
Jang, Jiho; Yoo, Jeong-Eun; Lee, Jeong-Ah; Lee, Dongjin R; Kim, Ji Young; Huh, Yong Jun; Kim, Dae-Sung; Park, Chul-Yong; Hwang, Dong-Youn; Kim, Han-Soo; Kang, Hoon-Chul; Kim, Dong-Wook
2012-03-31
The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.
Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong
2017-11-01
Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Orban, Tihamer; Farkas, Klara; Jalahej, Heyam; Kis, Janos; Treszl, Andras; Falk, Ben; Reijonen, Helena; Wolfsdorf, Joseph; Ricker, Alyne; Matthews, Jeffrey B.; Tchao, Nadio; Sayre, Peter; Bianchine, Pete
2009-01-01
There is a growing body of evidence to suggest that the autoimmunity observed in type 1 diabetes mellitus (T1DM) is the result of an imbalance between autoaggressive and regulatory cell subsets. Therapeutics that supplement or enhance the existing regulatory subset are therefore a much sought after goal in this indication. Here, we report the results of a double blind, placebo controlled, phase I clinical trial of a novel antigen-specific therapeutic in 12 subjects with recently diagnosed T1DM. Our primary objective was to test its safety. The study drug, human insulin B-chain in incomplete Freund’s adjuvant (IFA) was administered as a single intramuscular injection, with subjects followed for 2 years. All subjects completed therapy and all follow-up visits. The therapy was generally safe and well-tolerated. Mixed meal stimulated C-peptide responses, measured every 6 months, showed no statistical differences between arms. All patients vaccinated with the autoantigen, but none who received placebo, developed robust insulin-specific humoral and T cell responses. Up to two years following the single injection, in peripheral blood from subjects in the experimental arm, but not the control arm, insulin B-chain-specific CD4+ T cells could be isolated and cloned that showed phenotypic and functional characteristics of regulatory T cells. The induction of a lasting, robust immune response generating autoantigen-specific regulatory T cells provides strong justification for further testing of this therapy in type 1 diabetes. (clinicaltrials.gov identifier NCT00057499). PMID:19931408
2012-01-01
Background Although the peptidyl-prolyl isomerase, cyclophilin-A (peptidyl-prolyl isomerase, PPIA), has been studied for decades in the context of its intracellular functions, its extracellular roles as a major contributor to both inflammation and multiple cancers have more recently emerged. A wide range of activities have been ascribed to extracellular PPIA that include induction of cytokine and matrix metalloproteinase (MMP) secretion, which potentially underlie its roles in inflammation and tumorigenesis. However, there have been conflicting reports as to which particular signaling events are under extracellular PPIA regulation, which may be due to either cell-dependent responses and/or the use of commercial preparations recently shown to be highly impure. Methods We have produced and validated the purity of recombinant PPIA in order to subject it to a comparative analysis between different cell types. Specifically, we have used a combination of multiple methods such as luciferase reporter screens, translocation assays, phosphorylation assays, and nuclear magnetic resonance to compare extracellular PPIA activities in several different cell lines that included epithelial and monocytic cells. Results Our findings have revealed that extracellular PPIA activity is cell type-dependent and that PPIA signals via multiple cellular receptors beyond the single transmembrane receptor previously identified, Extracellular Matrix MetalloPRoteinase Inducer (EMMPRIN). Finally, while our studies provide important insight into the cell-specific responses, they also indicate that there are consistent responses such as nuclear factor kappa B (NFκB) signaling induced in all cell lines tested. Conclusions We conclude that although extracellular PPIA activates several common pathways, it also targets different receptors in different cell types, resulting in a complex, integrated signaling network that is cell type-specific. PMID:22631225
Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates
NASA Astrophysics Data System (ADS)
Parra-Belky, Karlett
2002-11-01
A biochemistry laboratory was designed for an undergraduate course to help students better understand the link between molecular engineering and biochemistry. Students identified unknown yeast strains with high specificity using SDS-PAGE and Western blot analysis of whole cell lysates. This problem-solving exercise is a common application of biochemistry in biotechnology research. Three different strains were used: a wild-type and two mutants for the proton pump vacuolar ATPase (V-ATPase). V-ATPases are multisubunit enzymes and the mutants used were deletion mutants; each lacked one structural gene of the complex. After three, three-hour labs, mutant strains were easily identified by the students and distinguished from wild-type cells analyzing the pattern of SDS-PAGE distribution of proteins. Identifying different subunits of one multimeric protein allowed for discussion of the structure and function of this metabolic enzyme, which captured the interest of the students. The experiment can be adapted to other multimeric protein complexes and shows improvement of the described methodology over previous reports, perhaps because the problem and its solution are representative of the type of techniques currently used in research labs.
Danilova, Ludmila; Anagnostou, Valsamo; Caushi, Justina X; Sidhom, John-William; Guo, Haidan; Chan, Hok Yee; Suri, Prerna; Tam, Ada J; Zhang, Jiajia; El Asmar, Margueritta; Marrone, Kristen A; Naidoo, Jarushka; Brahmer, Julie R; Forde, Patrick M; Baras, Alexander S; Cope, Leslie; Velculescu, Victor E; Pardoll, Drew; Housseau, Franck; Smith, Kellie N
2018-06-12
Mutation-associated neoantigens (MANAs) are a target of antitumor T-cell immunity. Sensitive, simple, and standardized assays are needed to assess the repertoire of functional MANA-specific T cells in oncology. Assays analyzing in vitro cytokine production such as ELISpot and intracellular cytokine staining (ICS) have been useful but have limited sensitivity in assessing tumor-specific T-cell responses and do not analyze antigen-specific T-cell repertoires. The FEST (Functional Expansion of Specific T cells) assay described herein integrates TCR sequencing of short-term, peptide-stimulated cultures with a bioinformatic platform to identify antigen-specific clonotypic amplifications. This assay can be adapted for all types of antigens, including mutation associated neoantigens (MANAs) via tumor exome-guided prediction of MANAs. Following in vitro identification by the MANAFEST assay, the MANA-specific CDR3 sequence can be used as a molecular barcode to detect and monitor the dynamics of these clonotypes in blood, tumor, and normal tissue of patients receiving immunotherapy. MANAFEST is compatible with high-throughput routine clinical and lab practices. Copyright ©2018, American Association for Cancer Research.
Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans.
Sharifi-Sanjani, Maryam; Oyster, Nicholas M; Tichy, Elisia D; Bedi, Kenneth C; Harel, Ofer; Margulies, Kenneth B; Mourkioti, Foteini
2017-09-07
Telomere defects are thought to play a role in cardiomyopathies, but the specific cell type affected by the disease in human hearts is not yet identified. The aim of this study was to systematically evaluate the cell type specificity of telomere shortening in patients with heart failure in relation to their cardiac disease, age, and sex. We studied cardiac tissues from patients with heart failure by utilizing telomere quantitative fluorescence in situ hybridization, a highly sensitive method with single-cell resolution. In this study, total of 63 human left ventricular samples, including 37 diseased and 26 nonfailing donor hearts, were stained for telomeres in combination with cardiomyocyte- or α-smooth muscle cell-specific markers, cardiac troponin T, and smooth muscle actin, respectively, and assessed for telomere length. Patients with heart failure demonstrate shorter cardiomyocyte telomeres compared with nonfailing donors, which is specific only to cardiomyocytes within diseased human hearts and is associated with cardiomyocyte DNA damage. Our data further reveal that hypertrophic hearts with reduced ejection fraction exhibit the shortest telomeres. In contrast to other reported cell types, no difference in cardiomyocyte telomere length is evident with age. However, under the disease state, telomere attrition manifests in both young and older patients with cardiac hypertrophy. Finally, we demonstrate that cardiomyocyte-telomere length is better sustained in women than men under diseased conditions. This study provides the first evidence of cardiomyocyte-specific telomere shortening in heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Transcriptional diversity during lineage commitment of human blood progenitors.
Chen, Lu; Kostadima, Myrto; Martens, Joost H A; Canu, Giovanni; Garcia, Sara P; Turro, Ernest; Downes, Kate; Macaulay, Iain C; Bielczyk-Maczynska, Ewa; Coe, Sophia; Farrow, Samantha; Poudel, Pawan; Burden, Frances; Jansen, Sjoert B G; Astle, William J; Attwood, Antony; Bariana, Tadbir; de Bono, Bernard; Breschi, Alessandra; Chambers, John C; Consortium, Bridge; Choudry, Fizzah A; Clarke, Laura; Coupland, Paul; van der Ent, Martijn; Erber, Wendy N; Jansen, Joop H; Favier, Rémi; Fenech, Matthew E; Foad, Nicola; Freson, Kathleen; van Geet, Chris; Gomez, Keith; Guigo, Roderic; Hampshire, Daniel; Kelly, Anne M; Kerstens, Hindrik H D; Kooner, Jaspal S; Laffan, Michael; Lentaigne, Claire; Labalette, Charlotte; Martin, Tiphaine; Meacham, Stuart; Mumford, Andrew; Nürnberg, Sylvia; Palumbo, Emilio; van der Reijden, Bert A; Richardson, David; Sammut, Stephen J; Slodkowicz, Greg; Tamuri, Asif U; Vasquez, Louella; Voss, Katrin; Watt, Stephen; Westbury, Sarah; Flicek, Paul; Loos, Remco; Goldman, Nick; Bertone, Paul; Read, Randy J; Richardson, Sylvia; Cvejic, Ana; Soranzo, Nicole; Ouwehand, Willem H; Stunnenberg, Hendrik G; Frontini, Mattia; Rendon, Augusto
2014-09-26
Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type-specific expression changes: 6711 genes and 10,724 transcripts, enriched in non-protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation-the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine. Copyright © 2014, American Association for the Advancement of Science.
Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R
2011-08-01
Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.
Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.
2012-01-01
Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559
Implications of HLA-allele associations for the study of type IV drug hypersensitivity reactions.
Sullivan, A; Watkinson, J; Waddington, J; Park, B K; Naisbitt, D J
2018-03-01
Type IV drug hypersensitivity remains an important clinical problem and an obstacle to the development of new drugs. Several forms of drug hypersensitivity are associated with expression of specific HLA alleles. Furthermore, drug-specific T-lymphocytes have been isolated from patients with reactions. Despite this, controversy remains as to how drugs interact with immune receptors to stimulate a T-cell response. Areas covered: This article reviews the pathways of T-cell activation by drugs and how the ever increasing number of associations between expression of HLA alleles and susceptibility to hypersensitivity is impacting on our research effort to understanding this form of iatrogenic disease. Expert opinion: For a drug to activate a T-cell, a complex is formed between HLA molecules, an HLA binding peptide, the drug and the T-cell receptor. T-cell responses can involve drugs and stable or reactive metabolites bound covalently or non-covalently to any component of this complex. Recent research has linked the HLA associations to the disease through the characterization of drug-specific T-cell responses restricted to specific alleles. However, there is now a need to identify the additional genetic or environment factors that determine susceptibility and use our increased knowledge to develop predictive immunogenicity tests that offer benefit to Pharma developing new drugs.
Functional integrative levels in the human interactome recapitulate organ organization.
Souiai, Ouissem; Becker, Emmanuelle; Prieto, Carlos; Benkahla, Alia; De las Rivas, Javier; Brun, Christine
2011-01-01
Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This 'Largest Common Interactome Network' represents a 'functional interactome core'. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization.
Raj, Cholappadi V. Sundar; Church, Robert L.; Klobutcher, Lawrence A.; Ruddle, Frank H.
1977-01-01
Somatic cell hybrids between mouse and human cell lines have been used to identify the specific chromosome that governs the synthesis of type I procollagen. Fourteen hybrid clones and subclones were derived independently from crosses between mouse parents [LM (thymidine kinase-negative) or A9 (hypoxanthine phosphoribosyltransferase-negative)] and human cells (human diploid lung fibroblasts WI-38 or diploid skin fibroblasts GM5, GM17, and GM9). The cultures were labeled with [3H]proline in modified Eagle's medium without serum. Radioactive procollagens were purified from the medium by the method of Church et al. [(1974) J. Mol. Biol. 86, 785-799]. DEAE-cellulose chromatography was used to separate collagen and type I and type III procollagen. Human type I procollagen was assayed by double immunodiffusion analysis with type I procollagen antibodies prepared by immunizing rabbits with purified human type I procollagen. These analyses combined with karyology and isozyme analyses of each hybrid line have produced evidence for the assignment of the gene for human type I procollagen to chromosome 17. A human microcell-mouse hybrid cell line containing only human chromosome 17 was positive for human type I procollagen, lending further support to the assignment of the human type I procollagen gene to chromosome 17. Finally, by using a hybrid line containing only the long arm of human chromosome 17 translocated onto a mouse chromosome, the type I procollagen gene can be assigned more specifically to the long arm of chromosome 17. Images PMID:412188
Linnemann, Amelia K; Krawetz, Stephen A
2009-05-01
DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14-18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment.
Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru
2014-01-01
CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978
Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru
2014-12-01
CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jacobson, Lee S.; Lima, Heriberto; Goldberg, Michael F.; Gocheva, Vasilena; Tsiperson, Vladislav; Sutterwala, Fayyaz S.; Joyce, Johanna A.; Gapp, Bianca V.; Blomen, Vincent A.; Chandran, Kartik; Brummelkamp, Thijn R.; Diaz-Griffero, Felipe; Brojatsch, Jürgen
2013-01-01
Immunologic adjuvants are critical components of vaccines, but it remains unclear how prototypical adjuvants enhance the adaptive immune response. Recent studies have shown that necrotic cells could trigger an immune response. Although most adjuvants have been shown to be cytotoxic, this activity has traditionally been considered a side effect. We set out to test the role of adjuvant-mediated cell death in immunity and found that alum, the most commonly used adjuvant worldwide, triggers a novel form of cell death in myeloid leukocytes characterized by cathepsin-dependent lysosome-disruption. We demonstrated that direct lysosome-permeabilization with a soluble peptide, Leu-Leu-OMe, mimics the alum-like form of necrotic cell death in terms of cathepsin dependence and cell-type specificity. Using a combination of a haploid genetic screen and cathepsin-deficient cells, we identified specific cathepsins that control lysosome-mediated necrosis. We identified cathepsin C as critical for Leu-Leu-OMe-induced cell death, whereas cathepsins B and S were required for alum-mediated necrosis. Consistent with a role of necrotic cell death in adjuvant effects, Leu-Leu-OMe replicated an alum-like immune response in vivo, characterized by dendritic cell activation, granulocyte recruitment, and production of Th2-associated antibodies. Strikingly, cathepsin C deficiency not only blocked Leu-Leu-OMe-mediated necrosis but also impaired Leu-Leu-OMe-enhanced immunity. Together our findings suggest that necrotic cell death is a powerful mediator of a Th2-associated immune response. PMID:23297415
Pugia, Michael; Magbanua, Mark Jesus M; Park, John W
2017-01-01
Isolation by size using a filter membrane offers an antigen-independent method for capturing rare cells present in blood of cancer patients. Multiple cell types, including circulating tumor cells (CTCs), captured on the filter membrane can be simultaneously identified via immunocytochemistry (ICC) analysis of specific cellular biomarkers. Here, we describe an automated microfluidic filtration method combined with a liquid handling system for sequential ICC assays to detect and enumerate non-hematologic rare cells in blood.
Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis
2018-01-01
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non–cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types. PMID:29768404
Kimura, Azuma; Toyoda, Taro; Nishi, Yohei; Nasu, Makoto; Ohta, Akira; Osafune, Kenji
2017-10-01
While pancreatic islet transplantation achieves insulin independence in type 1 diabetes (T1D) patients, its widespread application is limited by donor tissue scarcity. Pancreatic progenitor cells (PPCs) give rise to all cell types in the pancreas during development. PPCs derived from human pluripotent stem cells have been shown to differentiate into functional β cells both in vitro and in vivo, and to reverse hyperglycemia, at least in mice. Therefore, PPCs have great potential to serve as an alternative cell source for cell therapy, and the identification of compounds that facilitate PPC proliferation could provide stable and large-scale pancreatic cell preparation systems in clinical settings. Here, we developed and performed cell-based screens to identify small molecules that induce the proliferation of hiPSC-derived PDX1-expressing PPCs. The screening identified AT7867, which promoted PPC proliferation approximately five-fold within six days through the maintenance of a high Ki67 + cell ratio. The induced proliferation by AT7867 does not result in DNA damage, as revealed by pHH2AX staining, and is observed specifically in PPCs but not other cell types. The established platform utilizing small molecules for PPC proliferation may contribute to the development of cell therapy for T1D using a regenerative medicine approach. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Biochemistry of epidermal stem cells.
Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace
2013-02-01
The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Kapprell, H P; Owaribe, K; Franke, W W
1988-05-01
Desmosomes are intercellular adhering junctions characterized by a special structure and certain obligatory constituent proteins such as the cytoplasmic protein, desmoglein. Desmosomal fractions from bovine muzzle epidermis contain, in addition, a major polypeptide of Mr approximately 75,000 ("band 6 protein") which differs from all other desmosomal proteins so far identified by its positive charge (isoelectric at pH approximately 8.5 in the denatured state) and its avidity to bind certain type I cytokeratins under stringent conditions. We purified this protein from bovine muzzle epidermis and raised antibodies to it. Using affinity-purified antibodies, we identified a protein of identical SDS-PAGE mobility and isoelectric pH in all epithelia of higher complexity, including representatives of stratified, complex (pseudostratified) and transitional epithelia as well as benign and malignant human tumors derived from such epithelia. Immunolocalization studies revealed the location of this protein along cell boundaries in stratified and complex epithelia, often resolved into punctate arrays. In some epithelia it seemed to be restricted to certain cell types and layers; in rat cornea, for example, it was only detected in upper strata. Electron microscopic immunolocalization showed that this protein is a component of the desmosomal plaque. However, it was not found in the desmosomes of all simple epithelia examined, in the tumors and cultured cells derived thereof, in myocardiac and Purkinje fiber cells, in arachnoideal cells and meningiomas, and in dendritic reticulum cells of lymphoid tissue, i.e., all cells containing typical desmosomes. The protein was also absent in all nondesmosomal adhering junctions. From these results we conclude that this basic protein is not an obligatory desmosomal plaque constituent but an accessory component specific to the desmosomes of certain kinds of epithelial cells with stratified tissue architecture. This suggests that the Mr 75,000 basic protein does not serve general desmosomal functions but rather cell type-specific ones and that the composition of the desmosomal plaque can be different in different cell types. The possible diagnostic value of this protein as a marker in cell typing is discussed.
Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells.
Rostovskaya, Maria; Bredenkamp, Nicholas; Smith, Austin
2015-10-19
Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification. © 2015 The Authors.
Tremblay, Kimberly D; Zaret, Kenneth S
2005-04-01
The location and movement of mammalian gut tissue progenitors, prior to the expression of tissue-specific genes, has been unknown, but this knowledge is essential to identify transitions that lead to cell type specification. To address this, we used vital dyes to label exposed anterior endoderm cells of early somite stage mouse embryos, cultured the embryos into the tissue bud phase of development, and determined the tissue fate of the dye labeled cells. This approach was performed at three embryonic stages that are prior to, or coincident with, foregut tissue patterning (1-3 somites, 4-6 somites, and 7-10 somites). Short-term labeling experiments tracked the movement of tissue progenitor cells during foregut closure. Surprisingly, we found that two distinct types of endoderm-progenitor cells, lateral and medial, arising from three spatially separated embryonic domains, converge to generate the epithelial cells of the liver bud. Whereas the lateral endoderm-progenitors give rise to descendants that are constrained in tissue fate and position along the anterior-posterior axis of the gut, the medial gut endoderm-progenitors give rise to descendants that stream along the anterior-posterior axis at the ventral midline and contribute to multiple gut tissues. The fate map reveals extensive morphogenetic movement of progenitors prior to tissue specification, it permits a detailed analysis of endoderm tissue patterning, and it illustrates that diverse progenitor domains can give rise to individual tissue cell types.
Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A.
Carcea, Ioana; Ma'ayan, Avi; Mesias, Roxana; Sepulveda, Bryan; Salton, Stephen R; Benson, Deanna L
2010-11-10
Cortical efferents growing in the same environment diverge early in development. The expression of particular transcription factors dictates the trajectories taken, presumably by regulating responsiveness to guidance cues via cellular mechanisms that are not yet known. Here, we show that cortical neurons that are dissociated and grown in culture maintain their cell type-specific identities defined by the expression of transcription factors. Using this model system, we sought to identify and characterize mechanisms that are recruited to produce cell type-specific responses to Semaphorin 3A (Sema3A), a guidance cue that would be presented similarly to cortical axons in vivo. Axons from presumptive corticofugal neurons lacking the transcription factor Satb2 and expressing Ctip2 or Tbr1 respond far more robustly to Sema3A than those from presumptive callosal neurons expressing Satb2. Both populations of axons express similar levels of Sema3A receptors (neuropilin-1, cell adhesion molecule L1, and plexinA4), but significantly, axons from neurons lacking Satb2 internalize more Sema3A, and they do so via a raft-mediated endocytic pathway. We used an in silico approach to identify the endocytosis effector flotillin-1 as a Sema3A signaling candidate. We tested the contributions of flotillin-1 to Sema3A endocytosis and signaling, and show that raft-mediated Sema3A endocytosis is defined by and depends on the recruitment of flotillin-1, which mediates LIM domain kinase activation and regulates axon responsiveness to Sema3A in presumptive corticofugal axons.
Crow, Megan; Paul, Anirban; Ballouz, Sara; Huang, Z Josh; Gillis, Jesse
2018-02-28
Single-cell RNA-sequencing (scRNA-seq) technology provides a new avenue to discover and characterize cell types; however, the experiment-specific technical biases and analytic variability inherent to current pipelines may undermine its replicability. Meta-analysis is further hampered by the use of ad hoc naming conventions. Here we demonstrate our replication framework, MetaNeighbor, that quantifies the degree to which cell types replicate across datasets, and enables rapid identification of clusters with high similarity. We first measure the replicability of neuronal identity, comparing results across eight technically and biologically diverse datasets to define best practices for more complex assessments. We then apply this to novel interneuron subtypes, finding that 24/45 subtypes have evidence of replication, which enables the identification of robust candidate marker genes. Across tasks we find that large sets of variably expressed genes can identify replicable cell types with high accuracy, suggesting a general route forward for large-scale evaluation of scRNA-seq data.
Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.
Lund, A W; Stegemann, J P; Plopper, G E
2009-01-01
The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.
Rhee, Catherine; Lee, Bum-Kyu; Beck, Samuel; Anjum, Azeen; Cook, Kendra R.; Popowski, Melissa
2014-01-01
Despite their origin from the inner cell mass, embryonic stem (ES) cells undergo differentiation to the trophectoderm (TE) lineage by repression of the ES cell master regulator Oct4 or activation of the TE master regulator Caudal-type homeobox 2 (Cdx2). In contrast to the in-depth studies of ES cell self-renewal and pluripotency, few TE-specific regulators have been identified, thereby limiting our understanding of mechanisms underlying the first cell fate decision. Here we show that up-regulation and nuclear entry of AT-rich interactive domain 3a (Arid3a) drives TE-like transcriptional programs in ES cells, maintains trophoblast stem (TS) cell self-renewal, and promotes further trophoblastic differentiation both upstream and independent of Cdx2. Accordingly, Arid3a−/− mouse post-implantation placental development is severely impaired, resulting in early embryonic death. We provide evidence that Arid3a directly activates TE-specific and trophoblast lineage-specific genes while directly repressing pluripotency genes via differential regulation of epigenetic acetylation or deacetylation. Our results identify Arid3a as a critical regulator of TE and placental development through execution of the commitment and differentiation phases of the first cell fate decision. PMID:25319825
Biochemistry of epidermal stem cells☆
Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace
2014-01-01
Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019
Topologically associating domains are stable units of replication-timing regulation.
Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M
2014-11-20
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Weber, A J; Stanford, L R
1994-05-15
It has long been known that a number of functionally different types of ganglion cells exist in the cat retina, and that each responds differently to visual stimulation. To determine whether the characteristic response properties of different retinal ganglion cell types might reflect differences in the number and distribution of their bipolar and amacrine cell inputs, we compared the percentages and distributions of the synaptic inputs from bipolar and amacrine cells to the entire dendritic arbors of physiologically characterized retinal X- and Y-cells. Sixty-two percent of the synaptic input to the Y-cell was from amacrine cell terminals, while the X-cells received approximately equal amounts of input from amacrine and bipolar cells. We found no significant difference in the distributions of bipolar or amacrine cell inputs to X- and Y-cells, or ON-center and OFF-center cells, either as a function of dendritic branch order or distance from the origin of the dendritic arbor. While, on the basis of these data, we cannot exclude the possibility that the difference in the proportion of bipolar and amacrine cell input contributes to the functional differences between X- and Y-cells, the magnitude of this difference, and the similarity in the distributions of the input from the two afferent cell types, suggest that mechanisms other than a simple predominance of input from amacrine or bipolar cells underlie the differences in their response properties. More likely, perhaps, is that the specific response features of X- and Y-cells originate in differences in the visual responses of the bipolar and amacrine cells that provide their input, or in the complex synaptic arrangements found among amacrine and bipolar cell terminals and the dendrites of specific types of retinal ganglion cells.
Cell Kinetic and Histomorphometric Analysis of Microgravitational Osteopenia: PARE.03B
NASA Technical Reports Server (NTRS)
Roberts, W. Eugene; Garetto, Lawrence P.
1998-01-01
Previous methods of identifying cells undergoing DNA synthesis (S-phase) utilized 3H-thymidine (3HT) autoradiography. 5-Bromo-2'-deoxyuridine (BrdU) immunohistochemistry is a nonradioactive alternative method. This experiment compared the two methods using the nuclear volume model for osteoblast histogenesis in two different embedding media. Twenty Sprague-Dawley rats were used, with half receiving 3HT (1 micro-Ci/g) and the other half BrdU (50 micro-g/g). Condyles were embedded (one side in paraffin, the other in plastic) and S-phase nuclei were identified using either autoradiography or immunohistochemistry. The fractional distribution of preosteoblast cell types and the percentage of labeled cells (within each cell fraction and label index) were calculated and expressed as mean +/- standard error. Chi-Square analysis showed only a minor difference in the fractional distribution of cell types. However, there were,significant differences (p less than 0.05) by ANOVA, in the nuclear labeling of specific cell types. With the exception of the less-differentiated A+A' cells, more BrdU label was consistently detected in paraffin than in plastic-embedded sections. In general, more nuclei were labeled with 3H-thymidine than with BrdU in both types of embedding media (Fig 2.). Labeling index data (labeled cells/total cells sampled x 100) indicated that BrdU in paraffin, but not plastic gave the same results as 3HT in either embedding method. Thus, we conclude that the two labeling methods do not yield the same results.
Rodrigo, Miguel A Merlos; Strmiska, Vladislav; Horackova, Eva; Buchtelova, Hana; Michalek, Petr; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Heger, Zbynek
2018-02-01
Sarcosine is a widely discussed oncometabolite of prostate cells. Although several reports described connections between sarcosine and various phenotypic changes of prostate cancer (PCa) cells, there is still a lack of insights on the complex phenomena of its effects on gene expression patterns, particularly in non-malignant and non-metastatic cells. To shed more light on this phenomenon, we performed parallel microarray profiling of RNA isolated from non-malignant (PNT1A), malignant (22Rv1), and metastatic (PC-3) prostate cell lines treated with sarcosine. Microarray results were experimentally verified using semi-quantitative-RT-PCR, clonogenic assay, through testing of the susceptibility of cells pre-incubated with sarcosine to anticancer agents with different modes of actions (inhibitors of topoisomerase II, DNA cross-linking agent, antimicrotubule agent and inhibitor of histone deacetylases) and by evaluation of activation of executioner caspases 3/7. We identified that irrespective of the cell type, sarcosine stimulates up-regulation of distinct sets of genes involved in cell cycle and mitosis, while down-regulates expression of genes driving apoptosis. Moreover, it was found that in all cell types, sarcosine had pronounced stimulatory effects on clonogenicity. Except of an inhibitor of histone deacetylase valproic acid, efficiency of all agents was significantly (P < 0.05) decreased in sarcosine pre-incubated cells. Our comparative study brings evidence that sarcosine affects not only metastatic PCa cells, but also their malignant and non-malignant counterparts and induces very similar changes in cells behavior, but via distinct cell-type specific targets. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup
2010-03-01
Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.
BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS
Johnstone, Scott; Isakson, Brant; Locke, Darren
2010-01-01
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brechenmacher, Laurent; Nguyen, Tran H.; Hixson, Kim K.
Root hairs are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean root hair cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean root hairs using an accurate mass and time tag approach, establishing the most comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome database using different proteases.more » Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to root hair formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and RAB proteins). Interestingly, some of these proteins appear to be specifically expressed in root hairs and constitute very good candidates for further studies to elucidate unique features of this single cell model.« less
Genetic neuroscience of mammalian learning and memory.
Tonegawa, Susumu; Nakazawa, Kazu; Wilson, Matthew A
2003-01-01
Our primary research interest is to understand the molecular and cellular mechanisms on neuronal circuitry underlying the acquisition, consolidation and retrieval of hippocampus-dependent memory in rodents. We study these problems by producing genetically engineered (i.e. spatially targeted and/or temporally restricted) mice and analysing these mice by multifaceted methods including molecular and cellular biology, in vitro and in vivo physiology and behavioural studies. We attempt to identify deficits at each of the multiple levels of complexity in specific brain areas or cell types and deduce those deficits that underlie specific learning or memory. We will review our recent studies on the acquisition, consolidation and recall of memories that have been conducted with mouse strains in which genetic manipulations were targeted to specific types of cells in the hippocampus or forebrain of young adult mice. PMID:12740125
Schijf, Marcel A; Lukens, Michael V; Kruijsen, Debby; van Uden, Nathalie O P; Garssen, Johan; Coenjaerts, Frank E J; Van't Land, Belinda; van Bleek, Grada M
2013-01-01
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14(+) myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease.
Schijf, Marcel A.; Lukens, Michael V.; Kruijsen, Debby; van Uden, Nathalie O. P.; Garssen, Johan; Coenjaerts, Frank E. J.; van’t Land, Belinda; van Bleek, Grada M.
2013-01-01
Innate immune responses elicited upon virus exposure are crucial for the effective eradication of viruses, the onset of adaptive immune responses and for establishing proper immune memory. Respiratory syncytial virus (RSV) is responsible for a high disease burden in neonates and immune compromised individuals, causing severe lower respiratory tract infections. During primary infections exuberant innate immune responses may contribute to disease severity. Furthermore, immune memory is often insufficient to protect during RSV re-exposure, which results in frequent symptomatic reinfections. Therefore, identifying the cell types and pattern recognition receptors (PRRs) involved in RSV-specific innate immune responses is necessary to understand incomplete immunity against RSV. We investigated the innate cellular response triggered upon infection of epithelial cells and peripheral blood mononuclear cells. We show that CD14+ myeloid cells and epithelial cells are the major source of IL-8 and inflammatory cytokines, IL-6 and TNF-α, when exposed to live RSV Three routes of RSV-induced IFN-α production can be distinguished that depend on the cross-talk of different cell types and the presence or absence of virus specific antibodies, whereby pDC are the ultimate source of IFN-α. RSV-specific antibodies facilitate direct TLR7 access into endosomal compartments, while in the absence of antibodies, infection of monocytes or epithelial cells is necessary to provide an early source of type I interferons, required to engage the IFN-α,β receptor (IFNAR)-mediated pathway of IFN-α production by pDC. However, at high pDC density infection with RSV causes IFN-α production without the need for a second party cell. Our study shows that cellular context and immune status are factors affecting innate immune responses to RSV. These issues should therefore be addressed during the process of vaccine development and other interventions for RSV disease. PMID:24303065
WONOEP appraisal: new genetic approaches to study epilepsy
Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.
2014-01-01
Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non-coding RNAs involved in modifying gene expression following seizures. In addition, genetically-based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient iPS cells and genetically-modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Significance Genetics has considerably changed the field of epilepsy research and is paving the way for better diagnosis and therapies for patients with epilepsy. PMID:24965021
Prevalence and risk factors for mast cell tumours in dogs in England.
Shoop, Stephanie Jw; Marlow, Stephanie; Church, David B; English, Kate; McGreevy, Paul D; Stell, Anneliese J; Thomson, Peter C; O'Neill, Dan G; Brodbelt, David C
2015-01-01
Mast cell tumour (MCT) appears to be a frequent tumour type in dogs, though there is little published in relation to its frequency in dogs in the UK. The current study aimed to investigate prevalence and risk factors for MCTs in dogs attending English primary-care veterinary practices. Electronic patient records from practices participating in the VetCompass animal surveillance project between July 2007 and June 2013 were searched for MCT diagnosis. Various search terms and standard diagnostic terms (VeNom codes) identified records containing MCT diagnoses, which were evaluated against clinical criteria for inclusion to the study. MCT prevalence for the entire dataset and specific breed types were calculated. Descriptive statistics characterised MCT cases and multivariable logistic regression methods evaluated risk factors for association with MCT (P < 0.05). Within a population of 168,636 dogs, 453 had MCT, yielding a prevalence of 0.27% (95% confidence interval (CI) 0.24% - 0.29%). The highest breed type specific prevalences were for the Boxer at 1.95% (95% CI 1.40% - 2.51%), Golden Retriever at 1.39% (0.98% - 1.81%) and Weimaraner at 0.85% (95% CI 0.17% to 1.53%). Age, insurance status, neuter status, weight and breed type were associated with MCT diagnosis. Of dogs of specific breed type, the Boxer, Pug and Staffordshire Bull Terrier showed greater odds of MCT diagnosis compared with crossbred dogs. Conversely, the German Shepherd Dog, Border Collie, West Highland White Terrier, Springer Spaniel and Cocker Spaniel had reduced odds of MCT diagnosis compared with crossbred dogs. No association was found between MCT diagnosis and sex. This study highlights a clinically significant prevalence of MCT and identifies specific breed types with predisposition to MCT, potentially aiding veterinarian awareness and facilitating diagnosis.
Ligand-targeted theranostic nanomedicines against cancer
Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.; ...
2016-01-06
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. As a result, the modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.« less
Ligand-targeted theranostic nanomedicines against cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Virginia J.; D'Angelo, Sara; Butler, Kimberly S.
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20 years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentiallymore » overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. As a result, the modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy.« less
Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
Smith, Rebecca A; Schuetz, Mathias; Karlen, Steven D; Bird, David; Tokunaga, Naohito; Sato, Yasushi; Mansfield, Shawn D; Ralph, John; Samuels, A Lacey
2017-06-01
Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis ( Arabidopsis thaliana ) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important. © 2017 American Society of Plant Biologists. All Rights Reserved.
Azzi, Salah; Blaise, Annick; Steunou, Virginie; Harbison, Madeleine D; Salem, Jennifer; Brioude, Frédéric; Rossignol, Sylvie; Habib, Walid Abi; Thibaud, Nathalie; Neves, Cristina Das; Jule, Marilyne Le; Brachet, Cécile; Heinrichs, Claudine; Bouc, Yves Le; Netchine, Irène
2014-10-01
Russell-Silver Syndrome (RSS) is a prenatal and postnatal growth retardation syndrome caused mainly by 11p15 ICR1 hypomethylation. Clinical presentation is heterogeneous in RSS patients with 11p15 ICR1 hypomethylation. We previously identified a subset of RSS patients with 11p15 ICR1 and multilocus hypomethylation. Here, we examine the relationships between IGF2 expression, 11p15 ICR1 methylation, and multilocus imprinting defects in various cell types from 39 RSS patients with 11p15 ICR1 hypomethylation in leukocyte DNA. 11p15 ICR1 hypomethylation was more pronounced in leukocytes than in buccal mucosa cells. Skin fibroblast IGF2 expression was correlated with the degree of ICR1 hypomethylation. Different tissue-specific multilocus methylation defects coexisted in 38% of cases, with some loci hypomethylated and others hypermethylated within the same cell type in some cases. Our new results suggest that tissue-specific epigenotypes may lead to clinical heterogeneity in RSS. © 2014 WILEY PERIODICALS, INC.
Jambusaria, Ankit; Klomp, Jeff; Hong, Zhigang; Rafii, Shahin; Dai, Yang; Malik, Asrar B; Rehman, Jalees
2018-06-07
The heterogeneity of cells across tissue types represents a major challenge for studying biological mechanisms as well as for therapeutic targeting of distinct tissues. Computational prediction of tissue-specific gene regulatory networks may provide important insights into the mechanisms underlying the cellular heterogeneity of cells in distinct organs and tissues. Using three pathway analysis techniques, gene set enrichment analysis (GSEA), parametric analysis of gene set enrichment (PGSEA), alongside our novel model (HeteroPath), which assesses heterogeneously upregulated and downregulated genes within the context of pathways, we generated distinct tissue-specific gene regulatory networks. We analyzed gene expression data derived from freshly isolated heart, brain, and lung endothelial cells and populations of neurons in the hippocampus, cingulate cortex, and amygdala. In both datasets, we found that HeteroPath segregated the distinct cellular populations by identifying regulatory pathways that were not identified by GSEA or PGSEA. Using simulated datasets, HeteroPath demonstrated robustness that was comparable to what was seen using existing gene set enrichment methods. Furthermore, we generated tissue-specific gene regulatory networks involved in vascular heterogeneity and neuronal heterogeneity by performing motif enrichment of the heterogeneous genes identified by HeteroPath and linking the enriched motifs to regulatory transcription factors in the ENCODE database. HeteroPath assesses contextual bidirectional gene expression within pathways and thus allows for transcriptomic assessment of cellular heterogeneity. Unraveling tissue-specific heterogeneity of gene expression can lead to a better understanding of the molecular underpinnings of tissue-specific phenotypes.
Utz, U; Banks, D; Jacobson, S; Biddison, W E
1996-02-01
Human T-cell leukemia virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive neurological disease characterized by marked degeneration of the spinal cord and the presence of antibodies against HTLV-1. Patients with HAM/TSP, but not asymptomatic carriers, show very high precursor frequencies of HTLV-1-specific CD8+ T cells in peripheral blood and cerebrospinal fluid, suggestive of a role of these T cells in the pathogenesis of the disease. In HLA-A2+ HAM/TSP patients, HTLV-1-specific T cells were demonstrated to be directed predominantly against one HTLV-1 epitope, namely, Tax11-19. In the present study, we analyzed HLA-A2-restricted HTLV-1 Tax11-19-specific cytotoxic T cells from three patients with HAM/TSP. An analysis of the T-cell receptor (TCR) repertoire of these cells revealed an absence of restricted variable (V) region usage. Different combinations of TCR V alpha and V beta genes were utilized between, but also within, the individual patients for the recognition of Tax11-19. Sequence analysis of the TCR showed evidence for an oligoclonal expansion of few founder T cells in each patient. Apparent structural motifs were identified for the CDR3 regions of the TCR beta chains. One T-cell clone could be detected within the same patient over a period of 3 years. We suggest that these in vivo clonally expanded T cells might play a role in the pathogenesis of HAM/TSP and provide information on HTLV-1-specific TCR which may elucidate the nature of the T cells that infiltrate the central nervous system in HAM/TSP patients.
Pehserl, Anna-Maria; Ress, Anna Lena; Stanzer, Stefanie; Resel, Margit; Karbiener, Michael; Stadelmeyer, Elke; Stiegelbauer, Verena; Gerger, Armin; Mayr, Christian; Scheideler, Marcel; Hutterer, Georg C.; Bauernhofer, Thomas; Kiesslich, Tobias; Pichler, Martin
2016-01-01
MicroRNAs (miRNAs) are master regulators of drug resistance and have been previously proposed as potential biomarkers for the prediction of therapeutic response in colorectal cancer (CRC). Sorafenib, a multi-kinase inhibitor which has been approved for the treatment of liver, renal and thyroid cancer, is currently being studied as a monotherapy in selected molecular subtypes or in combination with other drugs in metastatic CRC. In this study, we explored sorafenib-induced cellular effects in Kirsten rat sarcoma viral oncogene homolog olog (KRAS) wild-type and KRAS-mutated CRC cell lines (Caco-2 and HRT-18), and finally profiled expression changes of specific miRNAs within the miRNome (>1000 human miRNAs) after exposure to sorafenib. Overall, sorafenib induced a time- and dose-dependent growth-inhibitory effect through S-phase cell cycle arrest in KRAS wild-type and KRAS-mutated CRC cells. In HRT-18 cells, two human miRNAs (hsa-miR-597 and hsa-miR-720) and two small RNAs (SNORD 13 and hsa-miR-3182) were identified as specifically sorafenib-induced. In Caco-2 cells, nine human miRNAs (hsa-miR-3142, hsa-miR-20a, hsa-miR-4301, hsa-miR-1290, hsa-miR-4286, hsa-miR-3182, hsa-miR-3142, hsa-miR-1246 and hsa-miR-720) were identified to be differentially regulated post sorafenib treatment. In conclusion, we confirmed sorafenib as a potential anti-neoplastic treatment strategy for CRC cells by demonstrating a growth-inhibitory and cell cycle–arresting effect of this drug. Changes in the miRNome indicate that some specific miRNAs might be relevant as indicators for sorafenib response, drug resistance and potential targets for combinatorial miRNA-based drug strategies. PMID:27916938
Tarbell, Kristin V; Egen, Jackson G
2018-02-02
The generation and regulation of innate immune signals are key determinants of autoimmune pathogenesis. Emerging evidence suggests that parallel processes operating in the setting of solid tumors can similarly determine the balance between tolerance and immunity and ultimately the effectiveness of the antitumor immune response. In both contexts, self-specific responses start with innate immune cell activation that leads to the initial break in self-tolerance, which can be followed by immune response amplification and maturation through innate-adaptive crosstalk, and finally immune-mediated tissue/tumor destruction that can further potentiate inflammation. Of particular importance for these processes is type I IFN, which is induced in response to endogenous ligands, such as self-nucleic acids, and acts on myeloid cells to promote the expansion of autoreactive or tumor-specific T cells and their influx into the target tissue. Evidence from the study of human disease pathophysiology and genetics and mouse models of disease has revealed an extensive and complex network of negative regulatory pathways that has evolved to restrain type I IFN production and activity. Here, we review the overlapping features of self- and tumor-specific immune responses, including the central role that regulators of the type I IFN response and innate immune cell activation play in maintaining tolerance, and discuss how a better understanding of the pathophysiology of autoimmunity can help to identify new approaches to promote immune-mediated tumor destruction. ©2018 Society for Leukocyte Biology.
Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad
2012-01-01
Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466
Hegedűs, Csaba; Lakatos, Petra; Kiss-Szikszai, Attila; Patonay, Tamás; Gergely, Szabolcs; Gregus, Andrea; Bai, Péter; Haskó, György; Szabó, Éva; Virág, László
2013-06-01
Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.
2015-01-01
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C
2015-10-29
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.
Human embryonic stem cells express a unique set of microRNAs.
Suh, Mi-Ra; Lee, Yoontae; Kim, Jung Yeon; Kim, Soo-Kyoung; Moon, Sung-Hwan; Lee, Ji Yeon; Cha, Kwang-Yul; Chung, Hyung Min; Yoon, Hyun Soo; Moon, Shin Yong; Kim, V Narry; Kim, Kye-Seong
2004-06-15
Human embryonic stem (hES) cells are pluripotent cell lines established from the explanted inner cell mass of human blastocysts. Despite their importance for human embryology and regenerative medicine, studies on hES cells, unlike those on mouse ES (mES) cells, have been hampered by difficulties in culture and by scant knowledge concerning the regulatory mechanism. Recent evidence from plants and animals indicates small RNAs of approximately 22 nucleotides (nt), collectively named microRNAs, play important roles in developmental regulation. Here we describe 36 miRNAs (from 32 stem-loops) identified by cDNA cloning in hES cells. Importantly, most of the newly cloned miRNAs are specifically expressed in hES cells and downregulated during development into embryoid bodies (EBs), while miRNAs previously reported from other human cell types are poorly expressed in hES cells. We further show that some of the ES-specific miRNA genes are highly related to each other, organized as clusters, and transcribed as polycistronic primary transcripts. These miRNA gene families have murine homologues that have similar genomic organizations and expression patterns, suggesting that they may operate key regulatory networks conserved in mammalian pluripotent stem cells. The newly identified hES-specific miRNAs may also serve as molecular markers for the early embryonic stage and for undifferentiated hES cells.
Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.
Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro
2015-04-01
Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. Copyright© Ferrata Storti Foundation.
Vannucchi, A M; Rotunno, G; Bartalucci, N; Raugei, G; Carrai, V; Balliu, M; Mannarelli, C; Pacilli, A; Calabresi, L; Fjerza, R; Pieri, L; Bosi, A; Manfredini, R; Guglielmelli, P
2014-01-01
Mutations in the gene calreticulin (CALR) occur in the majority of JAK2- and MPL-unmutated patients with essential thrombocythemia (ET) and primary myelofibrosis (PMF); identifying CALR mutations contributes to the diagnostic pathway of ET and PMF. CALR mutations are heterogeneous spanning over the exon 9, but all result in a novel common protein C terminus. We developed a polyclonal antibody against a 17-amino-acid peptide derived from mutated calreticulin that was used for immunostaining of bone marrow biopsies. We show that this antibody specifically recognized patients harboring different types of CALR mutation with no staining in healthy controls and JAK2- or MPL-mutated ET and PMF. The labeling was mostly localized in megakaryocytes, whereas myeloid and erythroid cells showed faint staining, suggesting a preferential expression of calreticulin in megakaryocytes. Megakaryocytic-restricted expression of calreticulin was also demonstrated using an antibody against wild-type calreticulin and by measuring the levels of calreticulin RNA by gene expression analysis. Immunostaining using an antibody specific for mutated calreticulin may become a rapid, simple and cost-effective method for identifying CALR-mutated patients complementing molecular analysis; furthermore, the labeling pattern supports the preferential expansion of megakaryocytic cell lineage as a result of CALR mutation in an immature hematopoietic stem cell. PMID:24618731
[The mechanism of root hair development and molecular regulation in plants].
Wang, Yue-Ping; Li, Ying-Hui; Guan, Rong-Xia; Liu, Zhang-Xiong; Chen, Xiong-Ting; Chang, Ru-Zhen; Qiu, Li-Juan
2007-04-01
The formation of the root epidermis in Arabidopsis thaliana provides a simple model to study mechanisms underlying patterning in plants. Root hair increases the root surface area and effectively increases the root diameter, so root hair is thought to aid plants in nutrient uptake, anchorage and microbe interactions. The determination of root hair development has two types, lateral inhibition with feedback and position-dependent pattern of cell differentiation. The initiation and development of root hair in Arabidopsis provide a simple and efficacious model for the study of cell fate determination in plants. Molecular genetic studies identify a suite of putative transcription factors which regulate the epidermal cell pattern. The homeodomain protein GLABRA2 (GL2), R2R3 MYB-type transcription factor WEREWOLF (WER) and WD-repeat protein TRANSPARENTT TESTA GLABRA (TTG) are required for specification of non-hair cell type. The CAPRICE (CPC) and TRYPTICHON (TRY) are involved in specifying the hair cell fate.
Genetic changes associated with testicular cancer susceptibility.
Pyle, Louise C; Nathanson, Katherine L
2016-10-01
Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Stem Cell Models: A Guide to Understand and Mitigate Aging?
Brunauer, Regina; Alavez, Silvestre; Kennedy, Brian K
2017-01-01
Aging is studied either on a systemic level using life span and health span of animal models, or on the cellular level using replicative life span of yeast or mammalian cells. While useful in identifying general and conserved pathways of aging, both approaches provide only limited information about cell-type specific causes and mechanisms of aging. Stem cells are the regenerative units of multicellular life, and stem cell aging might be a major cause for organismal aging. Using the examples of hematopoietic stem cell aging and human pluripotent stem cell models, we propose that stem cell models of aging are valuable for studying tissue-specific causes and mechanisms of aging and can provide unique insights into the mammalian aging process that may be inaccessible in simple model organisms. © 2016 S. Karger AG, Basel.
Hamada, S; Slade, H D
1976-07-01
The type-specific antigen of Streptococcus mutans strain MT703, serotype e, has been chromatographically purified and characterized. Two chromatographic fractions were obtained from saline extracts which reacted with both anti-MT703 whole-cell serum and Lancefield group E serum. The major fraction (eI) was identified as a polysaccharide composed of 37% glucose, 56% rhamnose, 5% protein, and 0.3% phosphorus, whereas the minor fraction (eII) contained 66% protein in addition to 10% glucose and 17% rhamnose. The immunological specificity of these antigens was found to be the same by immunodiffusion in agar gel. Another fraction with a negative charge (eIII) reacted with polyglycerophosphate antisera from Streptococcus mutans and Streptococcus pyogenes. For comparison, the MT703 antigen in a hot trichloroacetic acid extract (eA) and the group E antigen from a saline extract of cells of strain K129 (EI) were similarly purified by anionic ion-exchange chromatography. Although the ratio of glucose and rhamnose in eA was 1:0.9 and in eI and eII approximately 1:1.5, reactions of identity were obtained in gel diffusion against specific anti-e serum. This difference in ratio is probably a result of the extraction procedures. Both the type e and group E antisera were reactive with both eI and EI antigens. The adsorption of group E antiserum with MT703 cells removed all E antibody, whereas type e-specific antibody remained after adsorption with K129 cells. These results suggest that eI antigen possesses both e and E specificities, whereas EI possesses E only. These findings were supported by the quantitative precipitin test and immunodiffusion and/or immunoelectrophoretic patterns in agar gel. Methyl-beta-D-glucopyranoside markedly inhibited the precipitin reaction in both type e and group E sera. However, a significantly stronger inhibition by cellobiose of type e serum than of group E serum indicates that a beta-linked glucose-glucose dimer is the predominant antigenic determinant of the e specificity. The presence of both e and E specificities on a single polysaccharide molecule was demonstrated by the use of purified e antigen released from a specific e-anti-e complex. This antigen reacted with a group E-specific serum as well as a type e-specific serum. An examination of five S. mutans type e strains showed the presence of group E specificity also, whereas the I, II, and IV serotypes of group E streptococci only possessed the group E specificity.
Peters, James E.; Lyons, Paul A.; Lee, James C.; Richard, Arianne C.; Fortune, Mary D.; Newcombe, Paul J.; Richardson, Sylvia; Smith, Kenneth G. C.
2016-01-01
Genome-wide association studies (GWAS) have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs) is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91), anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46) and healthy controls (n = 43), revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases. PMID:27015630
Kinome-wide Decoding of Network-Attacking Mutations Rewiring Cancer Signaling
Creixell, Pau; Schoof, Erwin M.; Simpson, Craig D.; Longden, James; Miller, Chad J.; Lou, Hua Jane; Perryman, Lara; Cox, Thomas R.; Zivanovic, Nevena; Palmeri, Antonio; Wesolowska-Andersen, Agata; Helmer-Citterich, Manuela; Ferkinghoff-Borg, Jesper; Itamochi, Hiroaki; Bodenmiller, Bernd; Erler, Janine T.; Turk, Benjamin E.; Linding, Rune
2015-01-01
Summary Cancer cells acquire pathological phenotypes through accumulation of mutations that perturb signaling networks. However, global analysis of these events is currently limited. Here, we identify six types of network-attacking mutations (NAMs), including changes in kinase and SH2 modulation, network rewiring, and the genesis and extinction of phosphorylation sites. We developed a computational platform (ReKINect) to identify NAMs and systematically interpreted the exomes and quantitative (phospho-)proteomes of five ovarian cancer cell lines and the global cancer genome repository. We identified and experimentally validated several NAMs, including PKCγ M501I and PKD1 D665N, which encode specificity switches analogous to the appearance of kinases de novo within the kinome. We discover mutant molecular logic gates, a drift toward phospho-threonine signaling, weakening of phosphorylation motifs, and kinase-inactivating hotspots in cancer. Our method pinpoints functional NAMs, scales with the complexity of cancer genomes and cell signaling, and may enhance our capability to therapeutically target tumor-specific networks. PMID:26388441
Ferroptosis and Cell Death Analysis by Flow Cytometry.
Chen, Daishi; Eyupoglu, Ilker Y; Savaskan, Nicolai
2017-01-01
Cell death and its recently discovered regulated form ferroptosis are characterized by distinct morphological, electrophysiological, and pharmacological features. In particular ferroptosis can be induced by experimental compounds and clinical drugs (i.e., erastin, sulfasalazine, sorafenib, and artesunate) in various cell types and cancer cells. Pharmacologically, this cell death process can be inhibited by iron chelators and lipid peroxidation inhibitors. Relevance of this specific cell death form has been found in different pathological conditions such as cancer, neurotoxicity, neurodegeneration, and ischemia. Distinguishing cell viability and cell death is essential for experimental and clinical applications and a key component in flow cytometry experiments. Dead cells can compromise the integrity of the data by nonspecific binding of antibodies and dyes. Therefore it is essential that dead cells are robustly and reproducibly identified and characterized by means of cytometry application. Here we describe a procedure to detect and quantify cell death and its specific form ferroptosis based on standard flow cytometry techniques.
Eberle, R; Russell, R G; Rouse, B T
1981-01-01
In this communication, we examine the specificity of anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL). Serological studies of the two related HSV serotypes (HSV-1 and HSV-2) have revealed both type-specific and cross-reactive antigenic determinants in the viral envelope and on the surface of infected cells. By analysis of cytotoxicity of CTL, generated in vitro by restimulation of splenocytes from mice primed with one or the other HSV serotype, the recognition of both type-specific and cross-reactive determinants on infected target cells by anti-HSV CTL was detectable. Thus, effector cells generated by priming and restimulating with the same virus recognized both type-specific and cross-reactive determinants on target cells infected with the homologous virus, but only cross-reactive determinants on target cells infected with the heterologous HSV serotype. CTL generated by restimulation with the heterologous virus were capable of recognizing only the cross-reactive determinants on either HSV-1- or HSV-2-infected target cells. These results indicate that two subpopulations of CTL exist in a population of anti-HSV immune spleen cells--those which recognize type-specific determinants and those specific for cross-reactive antigenic determinants present on the surface of HSV infected cells. The type-specific subset of anti-HSV CTL was shown to recognize the gC glycoprotein of HSV-1 infected target cells. In addition to the gC glycoprotein, at least one other type-specific surface antigen was also recognized by anti-HSV CTL in addition to the cross-reactive determinants recognized by anti-HSV CTL. PMID:6277790
Improved regulatory element prediction based on tissue-specific local epigenomic signatures
He, Yupeng; Gorkin, David U.; Dickel, Diane E.; Nery, Joseph R.; Castanon, Rosa G.; Lee, Ah Young; Shen, Yin; Visel, Axel; Pennacchio, Len A.; Ren, Bing; Ecker, Joseph R.
2017-01-01
Accurate enhancer identification is critical for understanding the spatiotemporal transcriptional regulation during development as well as the functional impact of disease-related noncoding genetic variants. Computational methods have been developed to predict the genomic locations of active enhancers based on histone modifications, but the accuracy and resolution of these methods remain limited. Here, we present an algorithm, regulatory element prediction based on tissue-specific local epigenetic marks (REPTILE), which integrates histone modification and whole-genome cytosine DNA methylation profiles to identify the precise location of enhancers. We tested the ability of REPTILE to identify enhancers previously validated in reporter assays. Compared with existing methods, REPTILE shows consistently superior performance across diverse cell and tissue types, and the enhancer locations are significantly more refined. We show that, by incorporating base-resolution methylation data, REPTILE greatly improves upon current methods for annotation of enhancers across a variety of cell and tissue types. REPTILE is available at https://github.com/yupenghe/REPTILE/. PMID:28193886
Cernea, Simona; Herold, Kevan C
2010-02-01
The way in which anti-CD3 monoclonal antibodies (mAbs) modify human immune responses in type 1 diabetes (T1DM) is not known. We prepared a panel of Class I HLA-A2.1 tetramers with peptides from diabetes-associated antigens and studied the frequency and phenotype of the cells in patients with T1DM and blood donors and in patients treated with anti-CD3 mAb (Teplizumab). More patients with T1DM showed positive staining for at least 1 tetramer using frozen and fresh samples (p<0.05). Three months following treatment with anti-CD3 mAb, the proportion of GAD65- and InsB-peptide reactive CD8+ T cells increased (p<0.05). The phenotype of these cells was modulated from naïve to effector memoryRA+. We concludethat Class I MHC tetramers can identify antigen specific CD8+ T cells in patients with T1DM. The frequency of certain specificities increases after treatment with anti-CD3 mAb. Their modulated phenotype may have functional consequences for their pathogenicity. Copyright 2009 Elsevier Inc. All rights reserved.
Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus.
García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina; Lopez, Daniel
2017-09-12
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus , which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureus teichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.
Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus
García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina
2017-01-01
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. PMID:28893374
In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.
Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica
2018-01-01
microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.
Verhelst, Stefanie; Poppe, Willy A J; Bogers, Johannes J; Depuydt, Christophe E
2017-03-01
This retrospective study examined whether human papillomavirus (HPV) type-specific viral load changes measured in two or three serial cervical smears are predictive for the natural evolution of HPV infections and correlate with histological grades of cervical intraepithelial neoplasia (CIN), allowing triage of HPV-positive women. A cervical histology database was used to select consecutive women with biopsy-proven CIN in 2012 who had at least two liquid-based cytology samples before the diagnosis of CIN. Before performing cytology, 18 different quantitative PCRs allowed HPV type-specific viral load measurement. Changes in HPV-specific load between measurements were assessed by linear regression, with calculation of coefficient of determination (R) and slope. All infections could be classified into one of five categories: (i) clonal progressing process (R≥0.85; positive slope), (ii) simultaneously occurring clonal progressive and transient infection, (iii) clonal regressing process (R≥0.85; negative slope), (iv) serial transient infection with latency [R<0.85; slopes (two points) between 0.0010 and -0.0010 HPV copies/cell/day], and (v) transient productive infection (R<0.85; slope: ±0.0099 HPV copies/cell/day). Three hundred and seven women with CIN were included; 124 had single-type infections and 183 had multiple HPV types. Only with three consecutive measurements could a clonal process be identified in all CIN3 cases. We could clearly demonstrate clonal regressing lesions with a persistent linear decrease in viral load (R≥0.85; -0.003 HPV copies/cell/day) in all CIN categories. Type-specific viral load increase/decrease in three consecutive measurements enabled classification of CIN lesions in clonal HPV-driven transformation (progression/regression) and nonclonal virion-productive (serial transient/transient) processes.
Limitations of Commercializing Fuel Cell Technologies
NASA Astrophysics Data System (ADS)
Nordin, Normayati
2010-06-01
Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.
Ou, Yvonne; Jo, Rebecca E; Ullian, Erik M; Wong, Rachel O L; Della Santina, Luca
2016-08-31
Key issues concerning ganglion cell type-specific loss and synaptic changes in animal models of experimental glaucoma remain highly debated. Importantly, changes in the structure and function of various RGC types that occur early, within 14 d after acute, transient intraocular pressure elevation, have not been previously assessed. Using biolistic transfection of individual RGCs and multielectrode array recordings to measure light responses in mice, we examined the effects of laser-induced ocular hypertension on the structure and function of a subset of RGCs. Among the α-like RGCs studied, αOFF-transient RGCs exhibited higher rates of cell death, with corresponding reductions in dendritic area, dendritic complexity, and synapse density. Functionally, OFF-transient RGCs displayed decreases in spontaneous activity and receptive field size. In contrast, neither αOFF-sustained nor αON-sustained RGCs displayed decreases in light responses, although they did exhibit a decrease in excitatory postsynaptic sites, suggesting that synapse loss may be one of the earliest signs of degeneration. Interestingly, presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer, corroborating the hypothesis that RGCs with dendrites stratifying in the OFF sublamina may be damaged early. Indeed, OFF arbors of ON-OFF RGCs lose complexity more rapidly than ON arbors. Our results reveal type-specific differences in RGC responses to injury with a selective vulnerability of αOFF-transient RGCs, and furthermore, an increased susceptibility of synapses in the OFF sublamina. The selective vulnerability of specific RGC types offers new avenues for the design of more sensitive functional tests and targeted neuroprotection. Conflicting reports regarding the selective vulnerability of specific retinal ganglion cell (RGC) types in glaucoma exist. We examine, for the first time, the effects of transient intraocular pressure elevation on the structure and function of various RGC types. Among the α-like RGCs studied, αOFF-transient RGCs are the most vulnerable to transient transient intraocular pressure elevation as measured by rates of cell death, morphologic alterations in dendrites and synapses, and physiological dysfunction. Specifically, we found that presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer. Our results suggest selective vulnerability both of specific types of RGCs and of specific inner plexiform layer sublaminae, opening new avenues for identifying novel diagnostic and treatment targets in glaucoma. Copyright © 2016 the authors 0270-6474/16/369240-13$15.00/0.
Yu, Xiao; Cai, Baowei; Wang, Mingjun; Tan, Peng; Ding, Xilai; Wu, Jian; Li, Jian; Li, Qingtian; Liu, Pinghua; Xing, Changsheng; Wang, Helen Y; Su, Xin-Zhuan; Wang, Rong-Fu
2016-11-15
Type I interferon (IFN) is critical for controlling pathogen infection; however, its regulatory mechanisms in plasmacytoid cells (pDCs) still remain unclear. Here, we have shown that nucleic acid sensors cGAS-, STING-, MDA5-, MAVS-, or transcription factor IRF3-deficient mice produced high amounts of type I IFN-α and IFN-β (IFN-α/β) in the serum and were resistant to lethal plasmodium yoelii YM infection. Robust IFN-α/β production was abolished when gene encoding nucleic acid sensor TLR7, signaling adaptor MyD88, or transcription factor IRF7 was ablated or pDCs were depleted. Further, we identified SOCS1 as a key negative regulator to inhibit MyD88-dependent type I IFN signaling in pDCs. Finally, we have demonstrated that pDCs, cDCs, and macrophages were required for generating IFN-α/β-induced subsequent protective immunity. Thus, our findings have identified a critical regulatory mechanism of type I IFN signaling in pDCs and stage-specific function of immune cells in generating potent immunity against lethal YM infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Huang, Dandan; Yi, Xianfu; Zhang, Shijie; Zheng, Zhanye; Wang, Panwen; Xuan, Chenghao; Sham, Pak Chung; Wang, Junwen; Li, Mulin Jun
2018-05-16
Genome-wide association studies have generated over thousands of susceptibility loci for many human complex traits, and yet for most of these associations the true causal variants remain unknown. Tissue/cell type-specific prediction and prioritization of non-coding regulatory variants will facilitate the identification of causal variants and underlying pathogenic mechanisms for particular complex diseases and traits. By leveraging recent large-scale functional genomics/epigenomics data, we develop an intuitive web server, GWAS4D (http://mulinlab.tmu.edu.cn/gwas4d or http://mulinlab.org/gwas4d), that systematically evaluates GWAS signals and identifies context-specific regulatory variants. The updated web server includes six major features: (i) updates the regulatory variant prioritization method with our new algorithm; (ii) incorporates 127 tissue/cell type-specific epigenomes data; (iii) integrates motifs of 1480 transcriptional regulators from 13 public resources; (iv) uniformly processes Hi-C data and generates significant interactions at 5 kb resolution across 60 tissues/cell types; (v) adds comprehensive non-coding variant functional annotations; (vi) equips a highly interactive visualization function for SNP-target interaction. Using a GWAS fine-mapped set for 161 coronary artery disease risk loci, we demonstrate that GWAS4D is able to efficiently prioritize disease-causal regulatory variants.
Discovery and characterization of inhibitors of human palmitoyl acyltransferases.
Ducker, Charles E; Griffel, Lindsay K; Smith, Ryan A; Keller, Staci N; Zhuang, Yan; Xia, Zuping; Diller, John D; Smith, Charles D
2006-07-01
The covalent attachment of palmitate to specific proteins by the action of palmitoyl acyltransferases (PAT) plays critical roles in the biological activities of several oncoproteins. Two PAT activities are expressed by human cells: type 1 PATs that modify the farnesyl-dependent palmitoylation motif found in H- and N-Ras, and type 2 PATs that modify the myristoyl-dependent palmitoylation motif found in the Src family of tyrosine kinases. We have previously shown that the type 1 PAT HIP14 causes cellular transformation. In the current study, we show that mRNA encoding HIP14 is up-regulated in a number of types of human tumors. To assess the potential of HIP14 and other PATs as targets for new anticancer drugs, we developed three cell-based assays suitable for high-throughput screening to identify inhibitors of these enzymes. Using these screens, five chemotypes, with activity toward either type 1 or type 2 PAT activity, were identified. The activity of the hits were confirmed using assays that quantify the in vitro inhibition of PAT activity, as well as a cell-based assay that determines the abilities of the compounds to prevent the localization of palmitoylated green fluorescent proteins to the plasma membrane. Representative compounds from each chemotype showed broad antiproliferative activity toward a panel of human tumor cell lines and inhibited the growth of tumors in vivo. Together, these data show that PATs, and HIP14 in particular, are interesting new targets for anticancer compounds, and that small molecules with such activity can be identified by high-throughput screening.
Discovery and characterization of inhibitors of human palmitoyl acyltransferases
Ducker, Charles E.; Griffel, Lindsay K.; Smith, Ryan A.; Keller, Staci N.; Zhuang, Yan; Xia, Zuping; Diller, John D.; Smith, Charles D.
2010-01-01
The covalent attachment of palmitate to specific proteins by the action of palmitoyl acyltransferases (PAT) plays critical roles in the biological activities of several oncoproteins. Two PAT activities are expressed by human cells: type 1 PATs that modify the farnesyl-dependent palmitoylation motif found in H- and N-Ras, and type 2 PATs that modify the myristoyl-dependent palmitoylation motif found in the Src family of tyrosine kinases. We have previously shown that the type 1 PAT HIP14 causes cellular transformation. In the current study, we show that mRNA encoding HIP14 is up-regulated in a number of types of human tumors. To assess the potential of HIP14 and other PATs as targets for new anticancer drugs, we developed three cell-based assays suitable for high-throughput screening to identify inhibitors of these enzymes. Using these screens, five chemotypes, with activity toward either type 1 or type 2 PAT activity, were identified. The activity of the hits were confirmed using assays that quantify the in vitro inhibition of PAT activity, as well as a cell-based assay that determines the abilities of the compounds to prevent the localization of palmitoylated green fluorescent proteins to the plasma membrane. Representative compounds from each chemotype showed broad antiproliferative activity toward a panel of human tumor cell lines and inhibited the growth of tumors in vivo. Together, these data show that PATs, and HIP14 in particular, are interesting new targets for anticancer compounds, and that small molecules with such activity can be identified by high-throughput screening. PMID:16891450
Xu, Jingting; Hu, Hong; Dai, Yang
The identification of enhancers is a challenging task. Various types of epigenetic information including histone modification have been utilized in the construction of enhancer prediction models based on a diverse panel of machine learning schemes. However, DNA methylation profiles generated from the whole genome bisulfite sequencing (WGBS) have not been fully explored for their potential in enhancer prediction despite the fact that low methylated regions (LMRs) have been implied to be distal active regulatory regions. In this work, we propose a prediction framework, LMethyR-SVM, using LMRs identified from cell-type-specific WGBS DNA methylation profiles and a weighted support vector machine learning framework. In LMethyR-SVM, the set of cell-type-specific LMRs is further divided into three sets: reliable positive, like positive and likely negative, according to their resemblance to a small set of experimentally validated enhancers in the VISTA database based on an estimated non-parametric density distribution. Then, the prediction model is obtained by solving a weighted support vector machine. We demonstrate the performance of LMethyR-SVM by using the WGBS DNA methylation profiles derived from the human embryonic stem cell type (H1) and the fetal lung fibroblast cell type (IMR90). The predicted enhancers are highly conserved with a reasonable validation rate based on a set of commonly used positive markers including transcription factors, p300 binding and DNase-I hypersensitive sites. In addition, we show evidence that the large fraction of the LMethyR-SVM predicted enhancers are not predicted by ChromHMM in H1 cell type and they are more enriched for the FANTOM5 enhancers. Our work suggests that low methylated regions detected from the WGBS data are useful as complementary resources to histone modification marks in developing models for the prediction of cell-type-specific enhancers.
Hrdlickova, Barbara; Kumar, Vinod; Kanduri, Kartiek; Zhernakova, Daria V; Tripathi, Subhash; Karjalainen, Juha; Lund, Riikka J; Li, Yang; Ullah, Ubaid; Modderman, Rutger; Abdulahad, Wayel; Lähdesmäki, Harri; Franke, Lude; Lahesmaa, Riitta; Wijmenga, Cisca; Withoff, Sebo
2014-01-01
Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways.
Takahara, Hiroyuki; Dolf, Andreas; Endl, Elmar; O'Connell, Richard
2009-08-01
Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.
Ruiz-Riol, Marta; Llano, Anuska; Ibarrondo, Javier; Zamarreño, Jennifer; Yusim, Karina; Bach, Vanessa; Mothe, Beatriz; Perez-Alvarez, Susana; Fernandez, Marco A.; Requena, Gerard; Meulbroek, Michael; Pujol, Ferran; Leon, Agathe; Cobarsi, Patricia; Korber, Bette T.; Clotet, Bonaventura; Ganoza, Carmela; Sanchez, Jorge; Coll, Josep; Brander, Christian
2015-01-01
The characterization of host immune responses to human immunodeficiency virus (HIV) in HIV controllers and individuals with high exposure but seronegativity to HIV (HESN) is needed to guide the development of effective preventive and therapeutic vaccine candidates. However, several technical hurdles severely limit the definition of an effective virus-specific T-cell response. By using a toggle-peptide approach, which takes HIV sequence diversity into account, and a novel, boosted cytokine staining/flow cytometry strategy, we here describe new patterns of T-cell responses to HIV that would be missed by standard assays. Importantly, this approach also allows detection of broad and strong virus-specific T-cell responses in HESN individuals that are characterized by a T-helper type 1 cytokine–like effector profile and produce cytokines that have been associated with potential control of HIV infection, including interleukin 10, interleukin 13, and interleukin 22. These results establish a novel approach to improve the current understanding of HIV-specific T-cell immunity and identify cellular immune responses and individual cytokines as potential markers of relative HIV resistance. As such, the findings also help develop similar strategies for more-comprehensive assessments of host immune responses to other human infections and immune-mediated disorders. PMID:25249264
McLaughlin, Kerry A; Gulati, Kavita; Richardson, Carolyn C; Morgan, Diana; Bodansky, H Jonathan; Feltbower, Richard G; Christie, Michael R
2014-11-01
Autoantibodies to IA-2 in type 1 diabetes are associated with HLA-DR4, suggesting influences of HLA-DR4-restricted T cells on IA-2-specific B cell responses. The aim of this study was to investigate possible T-B cell collaboration by determining whether autoantibodies to IA-2 epitopes are associated with T cell responses to IA-2 peptides presented by DR4. T cells secreting the cytokines IFN-γ and IL-10 in response to seven peptides known to elicit T cell responses in type 1 diabetes were quantified by cytokine ELISPOT in HLA-typed patients characterized for Abs to IA-2 epitopes. T cell responses were detected to all peptides tested, but only IL-10 responses to 841-860 and 853-872 peptides were associated with DR4. Phenotyping by RT-PCR of FACS-sorted CD45RO(hi) T cells secreting IL-10 in response to these two peptides indicated that these expressed GATA-3 or T-bet, but not FOXP3, consistent with these being Th2 or Th1 memory T cells rather than of regulatory phenotype. T cell responses to the same two peptides were also associated with specific Abs: those to 841-860 peptide with Abs to juxtamembrane epitopes, which appear early in prediabetes, and those to peptide 853-872 with Abs to an epitope located in the 831-862 central region of the IA-2 tyrosine phosphatase domain. Abs to juxtamembrane and central region constructs were both DR4 associated. This study identifies a region of focus for B and T cell responses to IA-2 in HLA-DR4 diabetic patients that may explain HLA associations of IA-2 autoantibodies, and this region may provide a target for future immune intervention to prevent disease. Copyright © 2014 by The American Association of Immunologists, Inc.
Savinov, Alexei Y; Rozanov, Dmitri V; Golubkov, Vladislav S; Wong, F Susan; Strongin, Alex Y
2005-07-29
We have discovered that clinically tested inhibitors of matrix metalloproteinases can control the functional activity of T cell membrane type-1 matrix metalloproteinase (MT1-MMP) and the onset of disease in a rodent model of type 1 diabetes in non-obese diabetic mice. We determined that MT1-MMP proteolysis of the T cell surface CD44 adhesion receptor affects the homing of T cells into the pancreas. We also determined that both the induction of the intrinsic T cell MT1-MMP activity and the shedding of cellular CD44 follow the adhesion of insulin-specific, CD8-positive, Kd-restricted T cells to the matrix. Conversely, inhibition of these events by AG3340 (a potent hydroxamate inhibitor that was widely used in clinical trials in cancer patents) impedes the transmigration of diabetogenic T cells into the pancreas and protects non-obese diabetic mice from diabetes onset. Overall, our studies have divulged a previously unknown function of MT1-MMP and identified a promising novel drug target in type I diabetes.
Coleman, Jonathan R I; Bryois, Julien; Gaspar, Héléna A; Jansen, Philip R; Savage, Jeanne E; Skene, Nathan; Plomin, Robert; Muñoz-Manchado, Ana B; Linnarsson, Sten; Crawford, Greg; Hjerling-Leffler, Jens; Sullivan, Patrick F; Posthuma, Danielle; Breen, Gerome
2018-03-08
Variance in IQ is associated with a wide range of health outcomes, and 1% of the population are affected by intellectual disability. Despite a century of research, the fundamental neural underpinnings of intelligence remain unclear. We integrate results from genome-wide association studies (GWAS) of intelligence with brain tissue and single cell gene expression data to identify tissues and cell types associated with intelligence. GWAS data for IQ (N = 78,308) were meta-analyzed with a study comparing 1247 individuals with mean IQ ~170 to 8185 controls. Genes associated with intelligence implicate pyramidal neurons of the somatosensory cortex and CA1 region of the hippocampus, and midbrain embryonic GABAergic neurons. Tissue-specific analyses find the most significant enrichment for frontal cortex brain expressed genes. These results suggest specific neuronal cell types and genes may be involved in intelligence and provide new hypotheses for neuroscience experiments using model systems.
Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response.
Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia
2013-12-25
Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8(+) T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8(+) T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses.
High-Grade Urothelial Carcinoma on Urine Cytology Resembling Umbrella Cells.
Renshaw, Andrew A; Gould, Edwin W
2018-01-01
High-grade urothelial carcinoma (UC) cells have many appearances on urine cytology, but according to The Paris System, they can be easily distinguished from umbrella cells. We aimed to define the incidence and appearance of high-grade UC cells that resemble umbrella cells in Cytospin preparations on urine cytology. Cytospin preparations from 331 cases with biopsy follow-up (230 benign/low-grade and 101 malignant [22 carcinoma in situ, 52 papillary, 19 invasive UC, 8 other] cases) were reviewed. A total of 18 cases with malignant cells resembling umbrella cells were identified (17.8% of the malignant cases) and were the only type of malignant cell in 3% of the cases. Two patterns were identified. Tumor cells were either identifiable by at least 20 abnormal cells which were large, had abundant cytoplasm but an elevated nuclear-to-cytoplasmic ratio, and markedly enlarged, round-to-elongated nucleoli, or else rare cells with abundant cytoplasm but obviously malignant nuclei. Cells without nucleoli or obviously malignant nuclei were not specific. Malignant cells resembling umbrella cells can be seen in up to 17% of urine cytology specimens. © 2017 S. Karger AG, Basel.
Identification and characterization of mouse otic sensory lineage genes
Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan
2015-01-01
Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475
Immunolocalization and Distribution of Rubella Antigen in Fatal Congenital Rubella Syndrome
Lazar, Mihaela; Perelygina, Ludmila; Martines, Roosecelis; Greer, Patricia; Paddock, Christopher D.; Peltecu, Gheorghe; Lupulescu, Emilia; Icenogle, Joseph; Zaki, Sherif R.
2015-01-01
Background An estimated 100,000 cases of congenital rubella syndrome (CRS) occur worldwide each year. The reported mortality rate for infants with CRS is up to 33%. The cellular mechanisms responsible for the multiple congenital defects in CRS are presently unknown. Here we identify cell types positive for rubella virus (RV) in CRS infants. Methods Cells and organs involved in RV replication were identified in paraffin-embedded autopsy tissues from three fatal case-patients by histopathologic examination and immunohistochemical (IHC) staining using a rabbit polyclonal RV antibody. Normal rabbit antisera and RV antisera preabsorbed with highly purified RV served as negative controls. Results RV antigen was found in interstitial fibroblasts in the heart, adventitial fibroblasts of large blood vessels, alveolar macrophages, progenitor cells of the outer granular layer of the brain, and in capillary endothelium and basal plate in the placenta. The antibody specificity was verified by IHC staining of multiple tissue sections from other infectious disease cases. RV infection of each cell type is consistent with abnormalities which have been identified in patients with CRS, in the heart, large blood vessels, and brain. Antigen distribution was consistent with inflammatory response to vascular injury and systemic spread of RV. Conclusions The identification of RV positive cell types in CRS is important to better understand the pathology and pathogenesis of CRS. PMID:26870820
Gao, Zhiguang; Mao, Chai-An; Pan, Ping; Mu, Xiuqian; Klein, William H
2014-11-01
The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis. © 2014 Wiley Periodicals, Inc.
Linnemann, Amelia K.; Krawetz, Stephen A.
2009-01-01
DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14–18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment. PMID:19276204
Ubiquitin Linkage-Specific Affimers Reveal Insights into K6-Linked Ubiquitin Signaling.
Michel, Martin A; Swatek, Kirby N; Hospenthal, Manuela K; Komander, David
2017-10-05
Several ubiquitin chain types have remained unstudied, mainly because tools and techniques to detect these posttranslational modifications are scarce. Linkage-specific antibodies have shaped our understanding of the roles and dynamics of polyubiquitin signals but are available for only five out of eight linkage types. We here characterize K6- and K33-linkage-specific "affimer" reagents as high-affinity ubiquitin interactors. Crystal structures of affimers bound to their cognate chain types reveal mechanisms of specificity and a K11 cross-reactivity in the K33 affimer. Structure-guided improvements yield superior affinity reagents suitable for western blotting, confocal fluorescence microscopy and pull-down applications. This allowed us to identify RNF144A and RNF144B as E3 ligases that assemble K6-, K11-, and K48-linked polyubiquitin in vitro. A protocol to enrich K6-ubiquitinated proteins from cells identifies HUWE1 as a main E3 ligase for this chain type, and we show that mitofusin-2 is modified with K6-linked polyubiquitin in a HUWE1-dependent manner. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Functional Integrative Levels in the Human Interactome Recapitulate Organ Organization
Prieto, Carlos; Benkahla, Alia; De Las Rivas, Javier; Brun, Christine
2011-01-01
Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This ‘Largest Common Interactome Network’ represents a ‘functional interactome core’. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization. PMID:21799769
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Yu, Hui; Cui, Xiaoyu; Zhang, Jue; Xie, Joe X; Banerjee, Moumita; Pierre, Sandrine V; Xie, Zijian
2018-02-01
Of the four Na-K-ATPase α-isoforms, the ubiquitous α1 Na-K-ATPase possesses both ion transport and Src-dependent signaling functions. Mechanistically, we have identified two putative pairs of domain interactions between α1 Na-K-ATPase and Src that are critical for α1 signaling function. Our subsequent report that α2 Na-K-ATPase lacks these putative Src-binding sites and fails to carry on Src-dependent signaling further supported our proposed model of direct interaction between α1 Na-K-ATPase and Src but fell short of providing evidence for a causative role. This hypothesis was specifically tested here by introducing key residues of the two putative Src-interacting domains present on α1 but not α2 sequence into the α2 polypeptide, generating stable cell lines expressing this mutant, and comparing its signaling properties to those of α2-expressing cells. The mutant α2 was fully functional as a Na-K-ATPase. In contrast to wild-type α2, the mutant gained α1-like signaling function, capable of Src interaction and regulation. Consistently, the expression of mutant α2 redistributed Src into caveolin-1-enriched fractions and allowed ouabain to activate Src-mediated signaling cascades, unlike wild-type α2 cells. Finally, mutant α2 cells exhibited a growth phenotype similar to that of the α1 cells and proliferated much faster than wild-type α2 cells. These findings reveal the structural requirements for the Na-K-ATPase to function as a Src-dependent receptor and provide strong evidence of isoform-specific Src interaction involving the identified key amino acids. The sequences surrounding the putative Src-binding sites in α2 are highly conserved across species, suggesting that the lack of Src binding may play a physiologically important and isoform-specific role.
Chen, I-Ping
2014-01-01
More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs) can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs) to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts. PMID:25621177
Targetable vulnerabilities in T- and NK-cell lymphomas identified through preclinical models.
Ng, Samuel Y; Yoshida, Noriaki; Christie, Amanda L; Ghandi, Mahmoud; Dharia, Neekesh V; Dempster, Joshua; Murakami, Mark; Shigemori, Kay; Morrow, Sara N; Van Scoyk, Alexandria; Cordero, Nicolas A; Stevenson, Kristen E; Puligandla, Maneka; Haas, Brian; Lo, Christopher; Meyers, Robin; Gao, Galen; Cherniack, Andrew; Louissaint, Abner; Nardi, Valentina; Thorner, Aaron R; Long, Henry; Qiu, Xintao; Morgan, Elizabeth A; Dorfman, David M; Fiore, Danilo; Jang, Julie; Epstein, Alan L; Dogan, Ahmet; Zhang, Yanming; Horwitz, Steven M; Jacobsen, Eric D; Santiago, Solimar; Ren, Jian-Guo; Guerlavais, Vincent; Annis, D Allen; Aivado, Manuel; Saleh, Mansoor N; Mehta, Amitkumar; Tsherniak, Aviad; Root, David; Vazquez, Francisca; Hahn, William C; Inghirami, Giorgio; Aster, Jon C; Weinstock, David M; Koch, Raphael
2018-05-22
T- and NK-cell lymphomas (TCL) are a heterogenous group of lymphoid malignancies with poor prognosis. In contrast to B-cell and myeloid malignancies, there are few preclinical models of TCLs, which has hampered the development of effective therapeutics. Here we establish and characterize preclinical models of TCL. We identify multiple vulnerabilities that are targetable with currently available agents (e.g., inhibitors of JAK2 or IKZF1) and demonstrate proof-of-principle for biomarker-driven therapies using patient-derived xenografts (PDXs). We show that MDM2 and MDMX are targetable vulnerabilities within TP53-wild-type TCLs. ALRN-6924, a stapled peptide that blocks interactions between p53 and both MDM2 and MDMX has potent in vitro activity and superior in vivo activity across 8 different PDX models compared to the standard-of-care agent romidepsin. ALRN-6924 induced a complete remission in a patient with TP53-wild-type angioimmunoblastic T-cell lymphoma, demonstrating the potential for rapid translation of discoveries from subtype-specific preclinical models.
A transcription factor collective defines the HSN serotonergic neuron regulatory landscape
Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter
2018-01-01
Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. PMID:29553368
Cell Specific eQTL Analysis without Sorting Cells
Esko, Tõnu; Peters, Marjolein J.; Schurmann, Claudia; Schramm, Katharina; Kettunen, Johannes; Yaghootkar, Hanieh; Fairfax, Benjamin P.; Andiappan, Anand Kumar; Li, Yang; Fu, Jingyuan; Karjalainen, Juha; Platteel, Mathieu; Visschedijk, Marijn; Weersma, Rinse K.; Kasela, Silva; Milani, Lili; Tserel, Liina; Peterson, Pärt; Reinmaa, Eva; Hofman, Albert; Uitterlinden, André G.; Rivadeneira, Fernando; Homuth, Georg; Petersmann, Astrid; Lorbeer, Roberto; Prokisch, Holger; Meitinger, Thomas; Herder, Christian; Roden, Michael; Grallert, Harald; Ripatti, Samuli; Perola, Markus; Wood, Andrew R.; Melzer, David; Ferrucci, Luigi; Singleton, Andrew B.; Hernandez, Dena G.; Knight, Julian C.; Melchiotti, Rossella; Lee, Bernett; Poidinger, Michael; Zolezzi, Francesca; Larbi, Anis; Wang, De Yun; van den Berg, Leonard H.; Veldink, Jan H.; Rotzschke, Olaf; Makino, Seiko; Salomaa, Veikko; Strauch, Konstantin; Völker, Uwe; van Meurs, Joyce B. J.; Metspalu, Andres; Wijmenga, Cisca; Jansen, Ritsert C.; Franke, Lude
2015-01-01
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohn’s disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus. PMID:25955312
Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.
2012-01-01
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487
Kato, Mihoko; Sternberg, Paul W
2009-12-01
Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67.
Seco-Rovira, V; Beltrán-Frutos, E; Ferrer, C; Sánchez-Huertas, M M; Madrid, J F; Saez, F J; Pastor, L M
2013-12-01
Lectins have been widely used to study the pattern of cellular glycoconjugates in numerous species. In the process of cellular apoptosis, it has been observed that changes occur in the membrane sugar sequences of these apoptotic cells. The aim of our work was to identify which lectins, out of an extensive battery of the same (PNA, SBA, HPA, LTA, Con-A, UEA-I, WGA, DBA, MAA, GNA, AAA, SNA), show affinity for germinal cells in apoptosis, at what stage of cell death they do so and in which germinal cell types they can be detected. For this, we studied testis sections during testicular regression in Syrian hamster (Mesocricetus auratus) subjected to short photoperiod. Several lectins showed an affinity for the glycoconjugate residues of germ cells in apoptosis: Gal β1,3-GalNAcα1, α-d-mannose, N-acetylgalactosamine and l-fucose. Furthermore, lectin specificity was observed for some specific germinal cells and in certain stages of apoptosis. It was also observed that one of these lectins (PNA) showed affinity for Sertoli cells undergoing apoptosis. Therefore, we conclude that the use of lectin histochemistry could be a very useful tool for studying apoptosis in the seminiferous epithelium because of the specificity shown towards germinal cells in pathological or experimentally induced epithelial depletion models. © 2013 Blackwell Verlag GmbH.
Unique and shared inflammatory profiles of human brain endothelia and pericytes.
Smyth, Leon C D; Rustenhoven, Justin; Park, Thomas I-H; Schweder, Patrick; Jansson, Deidre; Heppner, Peter A; O'Carroll, Simon J; Mee, Edward W; Faull, Richard L M; Curtis, Maurice; Dragunow, Mike
2018-05-11
Pericytes and endothelial cells are critical cellular components of the blood-brain barrier (BBB) and play an important role in neuroinflammation. To date, the majority of inflammation-related studies in endothelia and pericytes have been carried out using immortalised cell lines or non-human-derived cells. Whether these are representative of primary human cells is unclear and systematic comparisons of the inflammatory responses of primary human brain-derived pericytes and endothelia has yet to be performed. To study the effects of neuroinflammation at the BBB, primary brain endothelial cells and pericytes were isolated from human biopsy tissue. Culture purity was examined using qPCR and immunocytochemistry. Electrical cell-substrate impedance sensing (ECIS) was used to determine the barrier properties of endothelial and pericyte cultures. Using immunocytochemistry, cytometric bead array, and ECIS, we compared the responses of endothelia and pericytes to a panel of inflammatory stimuli (IL-1β, TNFα, LPS, IFN-γ, TGF-β 1 , IL-6, and IL-4). Secretome analysis was performed to identify unique secretions of endothelia and pericytes in response to IL-1β. Endothelial cells were pure, moderately proliferative, retained the expression of BBB-related junctional proteins and transporters, and generated robust TEER. Both endothelia and pericytes have the same pattern of transcription factor activation in response to inflammatory stimuli but respond differently at the secretion level. Secretome analysis confirmed that endothelia and pericytes have overlapping but distinct secretome profiles in response to IL-1β. We identified several cell-type specific responses, including G-CSF and GM-CSF (endothelial-specific), and IGFBP2 and IGFBP3 (pericyte-specific). Finally, we demonstrated that direct addition of IL-1β, TNFα, LPS, and IL-4 contributed to the loss of endothelial barrier integrity in vitro. Here, we identify important cell-type differences in the inflammatory response of brain pericytes and endothelia and provide, for the first time, a comprehensive profile of the secretions of primary human brain endothelia and pericytes which has implications for understanding how inflammation affects the cerebrovasculature.
Tsukamoto, Yoshihiko; Omi, Naoko
2017-01-01
We confirmed the classification of 15 morphological types of mouse bipolar cells by serial section transmission electron microscopy and characterized each type by identifying chemical synapses and gap junctions at axon terminals. Although whether the previous type 5 cells consist of two or three types was uncertain, they are here clustered into three types based on the vertical distribution of axonal ribbons. Next, while two groups of rod bipolar (RB) cells, RB1, and RB2, were previously proposed, we clarify that a half of RB1 cells have the intermediate characteristics, suggesting that these two groups comprise a single RB type. After validation of bipolar cell types, we examined their relationship with amacrine cells then particularly with AII amacrine cells. We found a strong correlation between the number of amacrine cell synaptic contacts and the number of bipolar cell axonal ribbons. Formation of bipolar cell output at each ribbon synapse may be effectively regulated by a few nearby inhibitory inputs of amacrine cells which are chosen from among many amacrine cell types. We also found that almost all types of ON cone bipolar cells frequently have a minor group of midway ribbons along the axon passing through the OFF sublamina as well as a major group of terminal ribbons in the ON sublamina. AII amacrine cells are connected to five of six OFF bipolar cell types via conventional chemical synapses and seven of eight ON (cone) bipolar cell types via electrical synapses (gap junctions). However, the number of synapses is dependent on bipolar cell types. Type 2 cells have 69% of the total number of OFF bipolar chemical synaptic contacts with AII amacrine cells and type 6 cells have 46% of the total area of ON bipolar gap junctions with AII amacrine cells. Both type 2 and 6 cells gain the greatest access to AII amacrine cell signals also share those signals with other types of bipolar cells via networked gap junctions. These findings imply that the most sensitive scotopic signal may be conveyed to the center by ganglion cells that have the most numerous synapses with type 2 and 6 cells. PMID:29114208
Muller, Marie; Guillaud-Bataille, Marine; Salleron, Julia; Genestie, Catherine; Deveaux, Sophie; Slama, Abdelhamid; de Paillerets, Brigitte Bressac; Richard, Stéphane; Benusiglio, Patrick R; Ferlicot, Sophie
2018-02-06
Hereditary leiomyomatosis and renal cell carcinoma syndrome is characterized by an increased risk of agressive renal cell carcinoma, often of type 2 papillary histology, and is caused by FH germline mutations. A prominent eosinophilic macronucleolus with a perinucleolar clear halo is distinctive of hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cell carcinoma according to the 2012 ISUP and 2016 WHO kidney tumor classification. From an immunohistochemistry perspective, tumors are often FH-negative and S-(2-succino)-cysteine (2SC) positive. We performed a pathology review of 24 renal tumors in 23 FH mutation carriers, and compared them to 12 type 2 papillary renal cell carcinomas from FH wild-type patients. Prominent eosinophilic nucleoli with perinucleolar halos were present in almost all FH-deficient renal cell carcinomas (23/24). Unexpectedly, they were also present in 58% of type 2 papillary renal cell carcinomas from wild-type patients. Renal cell carcinoma in mutation carriers displayed a complex architecture with multiple patterns, typically papillary, tubulopapillary, and tubulocystic, but also sarcomatoid and rhabdoid. Such pattern diversity was not seen in non-carriers. FH/2SC immunohistochemistry was informative as all hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinomas were either FH- or 2SC+. For FH and 2SC immunohistochemistries taken separately, sensitivity of negative anti-FH immunohistochemistry was 87.5% and specificity was 100%. For positive anti-2SC immunohistochemistry, sensitivity, and specificity were 91.7% and 91.7%, respectively. All FH wild-type renal cell carcinoma were FH-positive, and all but one were 2SC-negative. In conclusion, multiplicity of architectural patterns, rhabdoid/sarcomatoid components and combined FH/2SC staining, but not prominent eosinophilic nucleoli with perinucleolar halos, differentiate hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinoma from type 2 papillary renal cell carcinoma with efficient FH gene. Our findings are crucial in identifying who should be referred to Cancer Genetics clinics for genetic counseling and testing.
Proteomic Approach for Diagnostic Applications in Head and Neck Cancer — EDRN Public Portal
To evaluate the test characteristics of a panel of biomarkers for identifying patients with early stage head and neck squamous cell carcinoma (HNSCC). The primary endpoints are sensitivity, specificity and accuracy of the marker panel. This study of the test characteristics of a modeling strategy for diagnosing HNSCC uses a case-control design, with several types of cases and several types of controls.
Entropy of Leukemia on Multidimensional Morphological and Molecular Landscapes
NASA Astrophysics Data System (ADS)
Vilar, Jose M. G.
2014-04-01
Leukemia epitomizes the class of highly complex diseases that new technologies aim to tackle by using large sets of single-cell-level information. Achieving such a goal depends critically not only on experimental techniques but also on approaches to interpret the data. A most pressing issue is to identify the salient quantitative features of the disease from the resulting massive amounts of information. Here, I show that the entropies of cell-population distributions on specific multidimensional molecular and morphological landscapes provide a set of measures for the precise characterization of normal and pathological states, such as those corresponding to healthy individuals and acute myeloid leukemia (AML) patients. I provide a systematic procedure to identify the specific landscapes and illustrate how, applied to cell samples from peripheral blood and bone marrow aspirates, this characterization accurately diagnoses AML from just flow cytometry data. The methodology can generally be applied to other types of cell populations and establishes a straightforward link between the traditional statistical thermodynamics methodology and biomedical applications.
Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer
2010-01-01
Background Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA) deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93%) patients with exon 21 EGFR mutations (all with L858R) but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients. PMID:21167064
van Munster, Jolanda M.; Nitsche, Benjamin M.; Akeroyd, Michiel; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.; Ram, Arthur F. J.
2015-01-01
Background The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. Results In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. Conclusion The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification, which contributes to understanding cell wall remodeling mechanisms during development. PMID:25629352
The meaning of PIWI proteins in cancer development.
Litwin, Monika; Szczepańska-Buda, Anna; Piotrowska, Aleksandra; Dzięgiel, Piotr; Witkiewicz, Wojciech
2017-05-01
Cancer is a histologically and genetically heterogeneous population of tumor cells that exhibits distinct molecular profiles determined by epigenetic alterations. P-element-induced wimpy testis (PIWI) proteins in complex with PIWI-interacting RNA (piRNA) have been previously demonstrated to be involved in epigenetic regulation in germline cells. Recently, reactivation of PIWI expression, primarily PIWI-like protein 1 and 2, through aberrant DNA methylation resulting in genomic silencing has been identified in various types of tumors. It has been suggested that the PIWI-piRNA complex contributes to cancer development and progression by promoting a stem-like state of cancer cells, or cancer stem cells (CSCs). It has been identified that CSCs represent the cells that have undergone epithelial-mesenchymal transition (EMT) and acquired metastatic capacities. However, the molecular association between the EMT process and the stem-cell state remains unclear. Further extensive characterization of CSCs in individual types of tumors is required to identify specific markers for the heterogeneous population of CSCs and therefore selectively target CSCs. Previous studies indicate a reciprocal regulation between PIWI proteins and a complex signaling network linking markers characterized for CSCs and transcription factors involved in EMT. In the present review, studies of PIWI function are summarized, and the potential involvement of PIWI proteins in cancer development and progression is discussed.
The meaning of PIWI proteins in cancer development
Litwin, Monika; Szczepańska-Buda, Anna; Piotrowska, Aleksandra; Dzięgiel, Piotr; Witkiewicz, Wojciech
2017-01-01
Cancer is a histologically and genetically heterogeneous population of tumor cells that exhibits distinct molecular profiles determined by epigenetic alterations. P-element-induced wimpy testis (PIWI) proteins in complex with PIWI-interacting RNA (piRNA) have been previously demonstrated to be involved in epigenetic regulation in germline cells. Recently, reactivation of PIWI expression, primarily PIWI-like protein 1 and 2, through aberrant DNA methylation resulting in genomic silencing has been identified in various types of tumors. It has been suggested that the PIWI-piRNA complex contributes to cancer development and progression by promoting a stem-like state of cancer cells, or cancer stem cells (CSCs). It has been identified that CSCs represent the cells that have undergone epithelial-mesenchymal transition (EMT) and acquired metastatic capacities. However, the molecular association between the EMT process and the stem-cell state remains unclear. Further extensive characterization of CSCs in individual types of tumors is required to identify specific markers for the heterogeneous population of CSCs and therefore selectively target CSCs. Previous studies indicate a reciprocal regulation between PIWI proteins and a complex signaling network linking markers characterized for CSCs and transcription factors involved in EMT. In the present review, studies of PIWI function are summarized, and the potential involvement of PIWI proteins in cancer development and progression is discussed. PMID:28529570
Genome organization and long-range regulation of gene expression by enhancers
Smallwood, Andrea; Ren, Bing
2014-01-01
It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. PMID:23465541
d-LSD-induced c-Fos expression occurs in a population of oligodendrocytes in rat prefrontal cortex.
Reissig, Chad J; Rabin, Richard A; Winter, Jerrold C; Dlugos, Cynthia A
2008-03-31
Induction of mRNA or protein for immediate-early genes, such as c-fos, is used to identify brain areas, specific cell types, and neuronal circuits that become activated in response to various stimuli including psychoactive drugs. The objective of the present study was to identify the cell types in the prefrontal cortex in which lysergic acid diethylamide (d-LSD) induces c-Fos expression. Systemic administration of d-LSD resulted in a dose-dependent increase in c-Fos immunoreactivity. Although c-Fos-positive cells were found in all cortical layers, they were most numerous in layers III, IV, and V. d-LSD-induced c-Fos immunoreactivity was found in cells co-labeled with anti-neuron-specific enolase or anti-oligodendrocyte Oligo1. The Oligo1-labeled cells had small, round bodies and nuclear diameters characteristic of oligodendrocytes. Studies using confocal microscopy confirmed colocalization of c-Fos-labeled nuclei in NeuN-labeled neurons. Astrocytes and microglia labeled with glial fibrillary acidic protein antibody and OX-42 antibody, respectively, did not display LSD-induced c-Fos expression. Pyramidal neurons labeled with anti-neurofilament antibody also did not show induction of c-Fos immunoreactivity after systemic d-LSD administration. The present study demonstrates that d-LSD induced expression of c-Fos in the prefrontal cortex occurs in subpopulations of neurons and in oligodendrocytes, but not in pyramidal neurons, astrocytes, and microglia.
Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg
2017-11-01
Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
NASA Astrophysics Data System (ADS)
Bhargava, Maneesh
Rationale: In rodent model systems, the sequential changes in lung morphology resulting from hyperoxic injury are well characterized, and are similar to changes in human acute respiratory distress syndrome (ARDS). In the injured lung, alveolar type two (AT2) epithelial cells play a critical role restoring the normal alveolar structure. Thus characterizing the changes in AT2 cells will provide insights into the mechanisms underpinning the recovery from lung injury. Methods: We applied an unbiased systems level proteomics approach to elucidate molecular mechanisms contributing to lung repair in a rat hyperoxic lung injury model. AT2 cells were isolated from rat lungs at predetermined intervals during hyperoxic injury and recovery. Protein expression profiles were determined by using iTRAQRTM with tandem mass spectrometry. Results: Of 959 distinct proteins identified, 183 significantly changed in abundance during the injury-recovery cycle. Gene Ontology enrichment analysis identified cell cycle, cell differentiation, cell metabolism, ion homeostasis, programmed cell death, ubiquitination, and cell migration to be significantly enriched by these proteins. Gene Set Enrichment Analysis of data acquired during lung repair revealed differential expression of gene sets that control multicellular organismal development, systems development, organ development, and chemical homeostasis. More detailed analysis identified activity in two regulatory pathways, JNK and miR 374. A Short Time-series Expression Miner (STEM) algorithm identified protein clusters with coherent changes during injury and repair. Conclusion: Coherent changes occur in the AT2 cell proteome in response to hyperoxic stress. These findings offer guidance regarding the specific molecular mechanisms governing repair of the injured lung.
Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.
2012-01-01
SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603
Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy.
Venalis, Paulius; Lundberg, Ingrid E
2014-03-01
PM and DM are characterized clinically by weakness and low endurance of skeletal muscle. Other organs are frequently involved, suggesting that idiopathic inflammatory myopathies (IIMs) are systemic inflammatory diseases. Involvement of immune mechanisms in IIMs is supported by the presence of T cells, macrophages and dendritic cells in muscle tissue, by the presence of autoantibodies and by HLA-DR being a strong genetic risk factor. T cells may have direct and indirect toxic effects on muscle fibres, causing muscle fibre necrosis and muscle weakness, but the target of the immune reaction is not known. A newly identified T cell subset, CD28(null) T cells, may have cytotoxic effects in the CD4(+) and CD8(+) T cell phenotype. These cells are apoptosis resistant and may contribute to treatment resistance. Several myositis-specific autoantibodies have been identified, but they are all directed against ubiquitously expressed autoantigens and the specificity of the T cell reactivity is not known. These autoantibodies are associated with distinct clinical phenotypes and some with distinct molecular pathways; e.g. sera from patients with anti-Jo-1 autoantibodies may activate the type I IFN system and these sera also contain high levels of B cell activating factor compared with other IIM subsets. The characterization of patients into subgroups based on autoantibody profiles seems to be a promising way to learn more about the specificities of the immune reactions. Careful phenotyping of infiltrating immune cells in muscle tissue before and after specific therapies and relating the molecular findings to clinical outcome measures may be another way to improve knowledge on specific immune mechanism in IIMs. Such information will be important for the development of new therapies.
Ai, X; Butts, B; Vora, K; Li, W; Tache-Talmadge, C; Fridman, A; Mehmet, H
2011-01-01
Apoptosis research has been significantly aided by the generation of antibodies against caspase-cleaved peptide neo-epitopes. However, most of these antibodies recognize the N-terminal fragment and are specific for the protein in question. The aim of this project was to create antibodies, which could identify caspase-cleaved proteins without a priori knowledge of the cleavage sites or even the proteins themselves. We hypothesized that many caspase-cleavage products might have a common antigenic shape, given that they must all fit into the same active site of caspases. Rabbits were immunized with the eight most prevalent exposed C-terminal tetrapeptide sequences following caspase cleavage. After purification of the antibodies we demonstrated (1) their specificity for exposed C-terminal (but not internal) peptides, (2) their ability to detect known caspase-cleaved proteins from apoptotic cell lysates or supernatants from apoptotic cell culture and (3) their ability to detect a caspase-cleaved protein whose tetrapeptide sequence differs from the eight tetrapeptides used to generate the antibodies. These antibodies have the potential to identify novel neo-epitopes produced by caspase cleavage and so can be used to identify pathway-specific caspase cleavage events in a specific cell type. Additionally this methodology may be applied to generate antibodies against products of other proteases, which have a well-defined and non-promiscuous cleavage activity. PMID:21881607
Lizio, Marina; Ishizu, Yuri; Itoh, Masayoshi; Lassmann, Timo; Hasegawa, Akira; Kubosaki, Atsutaka; Severin, Jessica; Kawaji, Hideya; Nakamura, Yukio; Suzuki, Harukazu; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.
2015-01-01
Mammals are composed of hundreds of different cell types with specialized functions. Each of these cellular phenotypes are controlled by different combinations of transcription factors. Using a human non islet cell insulinoma cell line (TC-YIK) which expresses insulin and the majority of known pancreatic beta cell specific genes as an example, we describe a general approach to identify key cell-type-specific transcription factors (TFs) and their direct and indirect targets. By ranking all human TFs by their level of enriched expression in TC-YIK relative to a broad collection of samples (FANTOM5), we confirmed known key regulators of pancreatic function and development. Systematic siRNA mediated perturbation of these TFs followed by qRT-PCR revealed their interconnections with NEUROD1 at the top of the regulation hierarchy and its depletion drastically reducing insulin levels. For 15 of the TF knock-downs (KD), we then used Cap Analysis of Gene Expression (CAGE) to identify thousands of their targets genome-wide (KD-CAGE). The data confirm NEUROD1 as a key positive regulator in the transcriptional regulatory network (TRN), and ISL1, and PROX1 as antagonists. As a complimentary approach we used ChIP-seq on four of these factors to identify NEUROD1, LMX1A, PAX6, and RFX6 binding sites in the human genome. Examining the overlap between genes perturbed in the KD-CAGE experiments and genes with a ChIP-seq peak within 50 kb of their promoter, we identified direct transcriptional targets of these TFs. Integration of KD-CAGE and ChIP-seq data shows that both NEUROD1 and LMX1A work as the main transcriptional activators. In the core TRN (i.e., TF-TF only), NEUROD1 directly transcriptionally activates the pancreatic TFs HSF4, INSM1, MLXIPL, MYT1, NKX6-3, ONECUT2, PAX4, PROX1, RFX6, ST18, DACH1, and SHOX2, while LMX1A directly transcriptionally activates DACH1, SHOX2, PAX6, and PDX1. Analysis of these complementary datasets suggests the need for caution in interpreting ChIP-seq datasets. (1) A large fraction of binding sites are at distal enhancer sites and cannot be directly associated to their targets, without chromatin conformation data. (2) Many peaks may be non-functional: even when there is a peak at a promoter, the expression of the gene may not be affected in the matching perturbation experiment. PMID:26635867
From functional architecture to functional connectomics.
Reid, R Clay
2012-07-26
"Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques. Copyright © 2012 Elsevier Inc. All rights reserved.
Veazey, Ronald S.; Tham, Irene C.; Mansfield, Keith G.; DeMaria, MaryAnn; Forand, Amy E.; Shvetz, Daniel E.; Chalifoux, Laura V.; Sehgal, Prabhat K.; Lackner, Andrew A.
2000-01-01
It has recently been shown that rapid and profound CD4+ T-cell depletion occurs almost exclusively within the intestinal tract of simian immunodeficiency virus (SIV)-infected macaques within days of infection. Here we demonstrate (by three- and four-color flow cytometry) that this depletion is specific to a definable subset of CD4+ T cells, namely, those having both a highly and/or acutely activated (CD69+ CD38+ HLA-DR+) and memory (CD45RA− Leu8−) phenotype. Moreover, we demonstrate that this subset of helper T cells is found primarily within the intestinal lamina propria. Viral tropism for this particular cell type (which has been previously suggested by various studies in vitro) could explain why profound CD4+ T-cell depletion occurs in the intestine and not in peripheral lymphoid tissues in early SIV infection. Furthermore, we demonstrate that an acute loss of this specific subset of activated memory CD4+ T cells may also be detected in peripheral blood and lymph nodes in early SIV infection. However, since this particular cell type is present in such small numbers in circulation, its loss does not significantly affect total CD4+ T cell counts. This finding suggests that SIV and, presumably, human immunodeficiency virus specifically infect, replicate in, and eliminate definable subsets of CD4+ T cells in vivo. PMID:10590091
Identification and isolation of adult liver stem/progenitor cells.
Tanaka, Minoru; Miyajima, Atsushi
2012-01-01
Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.
Park, Sung-Hyun; Chen, Wen-Chi; Durmus, Nedim; Bleck, Bertram; Reibman, Joan; Riemekasten, Gabriela; Grunig, Gabriele
2015-01-01
Air pollution is known to exacerbate chronic inflammatory conditions of the lungs including pulmonary hypertension, cardiovascular diseases and autoimmune diseases. Directly pathogenic antibodies bind pro-inflammatory cell receptors and cause or exacerbate inflammation. In contrast, anti-inflammatory antibody isotypes (e.g. mouse immunoglobulin G1, IgG1) bind inhibitory cell receptors and can inhibit inflammation. Our previous studies showed that co-exposure to antigen and urban ambient particulate matter (PM2.5) induced severe pulmonary arterial thickening and increased right ventricular systolic pressures in mice via T-cell produced cytokines, Interleukin (IL)-13 and IL-17A. The aim of the current study was to understand how B cell and antibody responses integrate into this T cell cytokine network for the pulmonary hypertension phenotype. Special focus was on antigen-specific IgG1 that is the predominant antibody in the experimental response to antigen and urban ambient PM2.5. Wild type and B cell-deficient mice were primed with antigen and then challenged with antigen and urban particulate matter and injected with antibodies as appropriate. Our data surprisingly showed that B cells were necessary for the development of increased right ventricular pressures and molecular changes in the right heart in response to sensitization and intranasal challenge with antigen and PM2.5. Further, our studies showed that both, the increase in right ventricular systolic pressure and right ventricular molecular changes were restored by reconstituting the B cell KO mice with antigen specific IgG1. In addition, our studies identified a critical, non-redundant role of B cells for the IL-17A-directed inflammation in response to exposure with antigen and PM2.5, which was not corrected with antigen-specific IgG1. In contrast, IL-13-directed inflammatory markers, as well as severe pulmonary arterial remodeling induced by challenge with antigen and PM2.5 were similar in B cell-deficient and wild type mice. Our studies have identified B cells and antigen specific IgG1 as potential therapeutic targets for pulmonary hypertension associated with immune dysfunction and environmental exposures. PMID:26079807
Dubois, Laurence; Bataillé, Laetitia; Painset, Anaïs; Le Gras, Stéphanie; Jost, Bernard; Crozatier, Michèle; Vincent, Alain
2015-01-01
Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles. PMID:26204530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg, S.L.
1988-01-01
Two populations of fimbriae, which differ both in antigenicity and biological activity, have been identified on Actinomyces viscosus T14V cells. Although A. naeslundii serotype 1 isolates possess only one of these fimbrial populations (type 2 fimbriae), there was functional evidence to suggest that A. naeslundii serotype 3 strain N16 had both types of fimbriae. The purpose of this study was to characterize the fimbriae of A. naeslundii N16 immunologically by using both monoclonal and polyclonal antibodies. Three monoclonal antibodies (MAbs) to N16 were produced; all three bound to N16 fimbriae as determined by immunoelectron microscopy. In a solid-phase radioimmunoassay MAbmore » 3B5.A1 reacted with 100% of the A. naeslundii serotype 3 isolates tested, but it did not react with any heterologous isolates. Type 1 and type 2 fimbriae were detected in Lancefield extracts of N16 cells by crossed immunoelectrophoresis (XIEP) using rabbit antiserum against N16 whole cells. When {sup 125}I-MAb 3B5.A1 was also incorporated into the gel, autoradiography indicated that MAb 3B5.A1 was specific for type 2 fimbriae. The N16 type 2 fimbriae were purified by gel filtration and immunoaffinity chromatography on a MAb 3B5.A1 column. Fimbriae-specific polyclonal and monoclonal antibodies were used in various immunological assays to determine that (a) N16 type 1 fimbriae are not related antigenically to type 2 fimbriae, (b) each type of fimbriae has epitopes that are present on the corresponding fimbriae of certain heterologous strains, and (c) MAb 3B5.A1 recognizes a serotype-specific epitope residing on the type 2 fimbriae of A. naeslundii serotype 3 strains.« less
Tsukamoto, Yoshihiko; Omi, Naoko
2016-01-01
To date, 12 macaque bipolar cell types have been described. This list includes all morphology types first outlined by Polyak (1941) using the Golgi method in the primate retina and subsequently identified by other researchers using electron microscopy (EM) combined with the Golgi method, serial section transmission EM (SSTEM), and immunohistochemical imaging. We used SSTEM for the rod-dense perifoveal area of macaque retina, reconfirmed ON (cone) bipolar cells to be classified as invaginating midget bipolar (IMB), diffuse bipolar (DB)4, DB5, DB6, giant bipolar (GB), and blue bipolar (BB) types, and clarified their type-specific connectivity. DB4 cells made reciprocal synapses with a kind of ON-OFF lateral amacrine cell, similar to OFF DB2 cells. GB cells contacted rods and cones, similar to OFF DB3b cells. Retinal circuits formed by GB and DB3b cells are thought to substantiate the psychophysical finding of fast rod signals in mesopic vision. DB6 cell output synapses were directed to ON midget ganglion (MG) cells at 70% of ribbon contacts, similar to OFF DB1 cells that directed 60% of ribbon contacts to OFF MG cells. IMB cells contacted medium- or long-wavelength sensitive (M/L-) cones but not short-wavelength sensitive (S-) cones, while BB cells contacted S-cones but not M/L-cones. However, IMB and BB dendrites had similar morphological architectures, and a BB cell contacting a single S-cone resembled an IMB cell. Thus, both IMB and BB may be the ON bipolar counterparts of the OFF flat midget bipolar (FMB) type, likewise DB4 of DB2, DB5 of DB3a, DB6 of DB1, and GB of DB3b OFF bipolar type. The ON DB plus GB, and OFF DB cells predominantly contacted M/L-cones and their outputs were directed mainly to parasol ganglion (PG) cells but also moderately to MG cells. BB cells directed S-cone-driven outputs almost exclusively to small bistratified ganglion (SBG) cells. Some FMB cells predominantly contacted S-cones and their outputs were directed to OFF MG cells. Thus, two-step synaptic connections largely narrowed down the S-cone component to SBG and some OFF MG cells. The other OFF MG cells, ON MG cells, and ON and OFF PG cells constructed M/L-cone dominant pathways. PMID:27833534
Bell, Charlotte R; MacHugh, Niall D; Connelley, Timothy K; Degnan, Kathryn; Morrison, W Ivan
2015-07-09
Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by haematopoietic depletion, mediated by ingestion of alloantibodies in colostrum. It has been linked epidemiologically to vaccination of the dams of affected calves with a particular vaccine (Pregsure) containing a novel adjuvant. Evidence suggests that BNP-alloantibodies are directed against MHC I molecules, induced by contaminant bovine cellular material from Madin-Darby Bovine Kidney (MDBK) cells used in the vaccine's production. We aimed to investigate the specificity of BNP-alloantibody for bovine MHC I alleles, particularly those expressed by MDBK cells, and whether depletion of particular cell types is due to differential MHC I expression levels. A complement-mediated cytotoxicity assay was used to assess functional serum alloantibody titres in BNP-dams, Pregsure-vaccinated dams with healthy calves, cows vaccinated with an alternative product and unvaccinated controls. Alloantibody specificity was investigated using transfected mouse lines expressing the individual MHC I alleles identified from MDBK cells and MHC I-defined bovine leukocyte lines. All BNP-dams and 50% of Pregsure-vaccinated cows were shown to have MDBK-MHC I specific alloantibodies, which cross-reacted to varying degrees with other MHC I genotypes. MHC I expression levels on different blood cell types, assessed by flow cytometry, were found to correlate with levels of alloantibody-mediated damage in vitro and in vivo. Alloantibody-killed bone marrow cells were shown to express higher levels of MHC I than undamaged cells. The results provide evidence that MHC I-specific alloantibodies play a dominant role in the pathogenesis of BNP. Haematopoietic depletion was shown to be dependent on the titre and specificity of alloantibody produced by individual cows and the density of surface MHC I expression by different cell types. Collectively, the results support the hypothesis that MHC I molecules originating from MDBK cells used in vaccine production, coupled with a powerful adjuvant, are responsible for the generation of pathogenic alloantibodies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Identification of transcript regulatory patterns in cell differentiation.
Gusnanto, Arief; Gosling, John Paul; Pope, Christopher
2017-10-15
Studying transcript regulatory patterns in cell differentiation is critical in understanding its complex nature of the formation and function of different cell types. This is done usually by measuring gene expression at different stages of the cell differentiation. However, if the gene expression data available are only from the mature cells, we have some challenges in identifying transcript regulatory patterns that govern the cell differentiation. We propose to exploit the information of the lineage of cell differentiation in terms of correlation structure between cell types. We assume that two different cell types that are close in the lineage will exhibit many common genes that are co-expressed relative to those that are far in the lineage. Current analysis methods tend to ignore this correlation by testing for differential expression assuming some sort of independence between cell types. We employ a Bayesian approach to estimate the posterior distribution of the mean of expression in each cell type, by taking into account the cell formation path in the lineage. This enables us to infer genes that are specific in each cell type, indicating the genes are involved in directing the cell differentiation to that particular cell type. We illustrate the method using gene expression data from a study of haematopoiesis. R codes to perform the analysis are available in http://www1.maths.leeds.ac.uk/∼arief/R/CellDiff/. a.gusnanto@leeds.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Philippe, Claude; Vargas-Landin, Dulce B; Doucet, Aurélien J; van Essen, Dominic; Vera-Otarola, Jorge; Kuciak, Monika; Corbin, Antoine; Nigumann, Pilvi; Cristofari, Gaël
2016-01-01
LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants. DOI: http://dx.doi.org/10.7554/eLife.13926.001 PMID:27016617
Agui, T; Yamada, T; Legros, G; Nakajima, T; Clark, M; Peschel, C; Matsumoto, K
1992-05-01
Atrial natriuretic peptide (ANP) receptors were identified on both murine bone marrow-derived stromal cell lines A-3 and ALC and primary cultured cells using [125I]ANP binding assays and Northern blot analyses. The binding of [125I] ANP to the stromal cells was rapid, saturable, and of high affinity. The dissociation constants between ANP and its receptors on these cells showed no difference among cell types, while maximal binding capacity values were different among cell types. Competitive inhibition of [125I]ANP binding with C-atrial natriuretic factor, specific for ANP clearance receptor (ANPR-C), revealed that most of [125I]ANP-binding sites corresponded to ANPR-C. Northern blotting data corroborated that bone marrow-derived stromal cells expressed ANPR-C. However, in ALC cells, ANP biological receptors (either ANPR-A or ANPR-B), the mol wt of which is approximately 130K, were detected, and cGMP was accumulated after stimulation with ANP. On the other hand, in another stromal cell clone, A-3 cells, the expression of biological receptor was not detected in the affinity cross-linking and competitive inhibition experiments using [125I]ANP. However, A-3 cells accumulated cGMP by responding to ANPR-B-specific ligand, C-type natriuretic peptide. These results suggest that ALC cells equally express ANPR-A and ANPR-B, while A-3 cells express ANPR-B dominantly. Although the physiological roles of these receptors in the bone marrow is still not resolved, ANP is expected to play a role in the regulation of stromal cell functions in bone marrow.
Bidlingmaier, Scott; Su, Yang; Liu, Bin
2015-01-01
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis.
Dondossola, Eleonora; Rangel, Roberto; Guzman-Rojas, Liliana; Barbu, Elena M; Hosoya, Hitomi; St John, Lisa S; Molldrem, Jeffrey J; Corti, Angelo; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2013-12-17
Angiogenesis is fundamental to tumorigenesis and an attractive target for therapeutic intervention against cancer. We have recently demonstrated that CD13 (aminopeptidase N) expressed by nonmalignant host cells of unspecified types regulate tumor blood vessel development. Here, we compare CD13 wild-type and null bone marrow-transplanted tumor-bearing mice to show that host CD13(+) bone marrow-derived cells promote cancer progression via their effect on angiogenesis. Furthermore, we have identified CD11b(+)CD13(+) myeloid cells as the immune subpopulation directly regulating tumor blood vessel development. Finally, we show that these cells are specifically localized within the tumor microenvironment and produce proangiogenic soluble factors. Thus, CD11b(+)CD13(+) myeloid cells constitute a population of bone marrow-derived cells that promote tumor progression and metastasis and are potential candidates for the development of targeted antiangiogenic drugs.
Iskar, Murat; Zeller, Georg; Blattmann, Peter; Campillos, Monica; Kuhn, Michael; Kaminska, Katarzyna H; Runz, Heiko; Gavin, Anne-Claude; Pepperkok, Rainer; van Noort, Vera; Bork, Peer
2013-01-01
In pharmacology, it is crucial to understand the complex biological responses that drugs elicit in the human organism and how well they can be inferred from model organisms. We therefore identified a large set of drug-induced transcriptional modules from genome-wide microarray data of drug-treated human cell lines and rat liver, and first characterized their conservation. Over 70% of these modules were common for multiple cell lines and 15% were conserved between the human in vitro and the rat in vivo system. We then illustrate the utility of conserved and cell-type-specific drug-induced modules by predicting and experimentally validating (i) gene functions, e.g., 10 novel regulators of cellular cholesterol homeostasis and (ii) new mechanisms of action for existing drugs, thereby providing a starting point for drug repositioning, e.g., novel cell cycle inhibitors and new modulators of α-adrenergic receptor, peroxisome proliferator-activated receptor and estrogen receptor. Taken together, the identified modules reveal the conservation of transcriptional responses towards drugs across cell types and organisms, and improve our understanding of both the molecular basis of drug action and human biology. PMID:23632384
Tokunaga, Masahito; Uto, Hirofumi; Takeuchi, Shogo; Nakano, Nobuaki; Kubota, Ayumu; Tokunaga, Mayumi; Takatsuka, Yoshifusa; Seto, Masao; Ido, Akio; Utsunomiya, Atae
2017-01-01
To explore pre-transplantation prognostic factors for adult T-cell leukemia-lymphoma (ATL), we retrospectively analyzed allogeneic hematopoietic stem cell transplantation (allo-HSCT) in 70 patients at our institute (63 acute type and seven lymphoma type patients). Forty-five patients died after HSCT and the three-year overall survival (OS) rate was 35.2%. By univariate analysis, the adverse prognostic factors for OS were performance status ≥2, hematopoietic cell transplantation-specific comorbidity index (HCT-CI) score ≥3, European Group for Blood and Marrow Transplantation (EBMT) risk score ≥5, HSCT from an HLA-mismatched donor, serum soluble interleukin-2 receptor (sIL-2R) level ≥10,000 U/mL, lymphocyte count ≥4000/μL, and hemoglobin <9 g/dL at the time of HSCT. EBMT risk score and sIL-2R were identified as significant adverse prognostic factors using multivariate analysis. This analysis clearly demonstrates for the first time that HCT-CI and EBMT risk scores are reliable prognostic factors for ATL patients receiving allo-HSCT.
Cell type-specific long-range connections of basal forebrain circuit.
Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang
2016-09-19
The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.
Construction and analysis of a modular model of caspase activation in apoptosis
Harrington, Heather A; Ho, Kenneth L; Ghosh, Samik; Tung, KC
2008-01-01
Background A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins. Results A model of caspase activation is constructed and analyzed. The apoptosis signaling network is simplified through modularization methodologies and equilibrium abstractions for three functional modules. The mathematical model is composed of a system of ordinary differential equations which is numerically solved. Multiple linear regression analysis investigates the role of each module and reduced models are constructed to identify key contributions of the extrinsic and intrinsic pathways in triggering apoptosis for different cell lines. Conclusion Through linear regression techniques, we identified the feedbacks, dissociation of complexes, and negative regulators as the key components in apoptosis. The analysis and reduced models for our model formulation reveal that the chosen cell lines predominately exhibit strong extrinsic caspase, typical of type I cell, behavior. Furthermore, under the simplified model framework, the selected cells lines exhibit different modes by which caspase activation may occur. Finally the proposed modularized model of apoptosis may generalize behavior for additional cells and tissues, specifically identifying and predicting components responsible for the transition from type I to type II cell behavior. PMID:19077196
Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William
2016-08-16
Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.
Stock, R J; Zaino, R; Bundy, B N; Askin, F B; Woodward, J; Fetter, B; Paulson, J A; DiSaia, P J; Stehman, F B
1994-04-01
The subjects of this study are 445 patients with advanced cervical cancer treated by standardized radiation therapy. Upon entry into one of two Gynecologic Oncology Group (GOG) protocols, original pathologic diagnoses and histologic tumor descriptions for each patient were compared with separate evaluations made by a consensus opinion of two GOG pathologists. A review diagnosis using grade, cell type, and the Stendahl scoring system was then made by the first author (R.J.S.) without knowledge of the prior diagnoses. Of the original pathologists' diagnoses, 21% did not include grade or cell type. There was little agreement among the different pathologists as to the use of either specific grade or cell type. Histologic grade, irrespective of the pathologists making the diagnosis, had no correlation to prognosis. The Reagan and Wentz large-cell keratinizing (LCK) cell type, when applied by the author to tumors with any form of squamous keratinization present, identified a group of patients with a poorer prognosis, although not independently of other prognostic factors. The Stendahl scoring system identified a number of patients with both a poorer and better prognosis. This was statistically significant and independent of other risk factors. A major limitation, however, was the number of patients evaluable because of inadequate biopsy material in 23.6% of the study group.
Initial blood storage experiment
NASA Technical Reports Server (NTRS)
Surgenor, Douglas MACN.
1988-01-01
The design of the Initial Blood Storage Experiment (IBSE) was based upon a carefully controlled comparison between identical sets of human blood cell suspensions - red cells, white cell, and platelets - one set of which was transported aboard the Columbia on a 6 day 11 hour mission, and the other held on the ground. Both sets were carried inside stainless steel dewars within specially fabricated flight hardware. Individual bags of cell suspensions were randomly assigned with respect to ground vs orbit status, dewar chamber, and specific location within the dewar. To foster optimal preservation, each cell type was held under specific optimal conditions of pH, ionic strength, solute concentration, gas tension, and temperature. An added variable in this initial experiment was provided by the use of three different polymer/plasticizer formulations for the sealed bags which held the blood cells. At termination of the experiment, aliquots of the suspensions, identified only by code, were distributed to be assayed. Assays were selected to constitute a broad survey of cellular properties and thereby maximize the chances of detection of gravitational effects. A total of 74 different outcome measurements were reported for statistical analysis. When the measurements were completed, the results were entered into the IBSE data base, at which time the data were matched with the original blood bag numbers to determine their status with respect to polymer/plasticizer type, orbit status (orbit or ground), and storage position within the experimental hardware. The data were studied by analysis of variance. Initially, type of bag and orbital status were main factors; later more detailed analyses were made on specific issues such as position in the hardware and specific plastic. If the analysis of variance indicated a statistical significance at the 5 percent level the corresponding p-value was reported.
Single cell transcriptome profiling of developing chick retinal cells.
Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M
2017-08-15
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.
Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function
Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.
2014-01-01
Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508
Ban, Kiwon; Wile, Brian; Kim, Sangsung; Park, Hun-Jun; Byun, Jaemin; Cho, Kyu-Won; Saafir, Talib; Song, Ming-Ke; Yu, Shan Ping; Wagner, Mary; Bao, Gang; Yoon, Young-Sup
2013-10-22
Although methods for generating cardiomyocytes from pluripotent stem cells have been reported, current methods produce heterogeneous mixtures of cardiomyocytes and noncardiomyocyte cells. Here, we report an entirely novel system in which pluripotent stem cell-derived cardiomyocytes are purified by cardiomyocyte-specific molecular beacons (MBs). MBs are nanoscale probes that emit a fluorescence signal when hybridized to target mRNAs. Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among 5 MBs, an MB that targeted myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 cardiomyocytes, a mouse cardiomyocyte cell line, but <3% of 4 noncardiomyocyte cell types in flow cytometry analysis, which indicates that MHC1-MB is specific for identifying cardiomyocytes. We delivered MHC1-MB into cardiomyogenically differentiated pluripotent stem cells through nucleofection. The detection rate of cardiomyocytes was similar to the percentages of cardiac troponin T- or cardiac troponin I-positive cardiomyocytes, which supports the specificity of MBs. Finally, MHC1-MB-positive cells were sorted by fluorescence-activated cell sorter from mouse and human pluripotent stem cell differentiating cultures, and ≈97% cells expressed cardiac troponin T or cardiac troponin I as determined by flow cytometry. These MB-based sorted cells maintained their cardiomyocyte characteristics, which was verified by spontaneous beating, electrophysiological studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified cardiomyocytes improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. We developed a novel cardiomyocyte selection system that allows production of highly purified cardiomyocytes. These purified cardiomyocytes and this system can be valuable for cell therapy and drug discovery.
Identification of an immunogenic protein of Actinobacillus seminis that is present in microvesicles
2006-01-01
Abstract Actinobacillus seminis is a gram-negative bacterium of the Pasteurellaceae family that is involved in ovine epididymitis. Looking for a protein specific to this species, we determined the protein profile of subcellular fractions of A. seminis (American Type Culture Collection number 15768): proteins from the outer membrane (OMPs), inner membrane (IMPs), and cytoplasm (CPs). These profiles provide the first data, to our knowledge, regarding subcellular fractions of A. seminis. In the OMP fraction, we identified a protein with a molecular mass of 75 kDa that proved to be immunogenic and apparently specific for A. seminis. This conclusion was based on the reaction of hyperimmune serum of rabbits inoculated with whole cells of A. seminis that was tested against sonicated complete cells of reference strains and field isolates of Brucella ovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. No protein of these bacteria cross-reacted with the 75-kDa protein of A. seminis. Furthermore, when each type of hyperimmune serum was tested against the sonicated cells and each of the subcellular fractions of A. seminis, it did not recognize the A. seminis 75-kDa protein. We also isolated and identified this protein in microvesicles released to the culture supernatant. The results suggest that the 75-kDa protein could be used to establish a diagnostic test specific for ovine epididymitis caused by A. seminis. PMID:16548331
Li, Li; Wang, Wei; Pan, Hong; Ma, Ge; Shi, Xinyi; Xie, Hui; Liu, Xiaoan; Ding, Qiang; Zhou, Wenbin; Wang, Shui
2017-01-31
Minimally invasive therapies, such as microwave ablation (MWA), are widely used for the treatment of solid tumors. Previous studies suggest that MWA is feasible for the treatment of small breast cancer, and thermal ablation may induce adaptive antitumor immunity. However, the induced immune responses are mostly weak, and the immunomodulation effects of MWA in breast cancer are unclear. Immunostimulant OK-432 can induce tumor-specific T-cell responses and may augment the immunity induced by MWA. We treated 4T1 breast cancer bearing BALB/c mice with MWA, OK-432, MWA plus OK-432, or left without treatment. Survival time was evaluated with the Kaplan-Meyer method comparing survival curves by log-rank test. On day 25 after ablation, surviving mice received tumor rechallenge, and the rechallenged tumor volumes were calculated every 5 days. Immunohistochemistry and flow cytometry were used to evaluate the T-cell immune responses in ablated tissues and spleens. The tumor-specific immunity was assessed by enzyme-linked immunospot assays. Besides, the cytokine patterns were identified from enzyme-linked immunosorbent assay. Microwave ablation plus OK-432 resulted in longer survival than single treatment and protect most surviving mice from tumor rechallenge. Both local and systemic T-cell responses were induced by MWA and were further enhanced by subsequent administration of OK-432. Moreover, the combination of MWA and OK-432 induced stronger tumor-specific immune responses than MWA alone. In addition, OK-432 and MWA synergistically promoted the production of Th1-type but not Th2-type cytokines, and polarized T-cell responses to Th1-dominant state. The T-cell immune responses were activated by MWA in breast cancer. Furthermore, the combination of MWA and OK-432 induced Th1-type response and elicited specific antitumor immunity.
Gehrmann, Thies; Pelkmans, Jordi F; Ohm, Robin A; Vos, Aurin M; Sonnenberg, Anton S M; Baars, Johan J P; Wösten, Han A B; Reinders, Marcel J T; Abeel, Thomas
2018-04-24
Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation. Copyright © 2018 the Author(s). Published by PNAS.
Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples
NASA Astrophysics Data System (ADS)
Kearney, Padraig; Traynor, Damien; Bonnier, Franck; Lyng, Fiona M.; O'Leary, John J.; Martin, Cara M.
2017-10-01
It is widely accepted that cervical screening has significantly reduced the incidence of cervical cancer worldwide. The primary screening test for cervical cancer is the Papanicolaou (Pap) test, which has extremely variable specificity and sensitivity. There is an unmet clinical need for methods to aid clinicians in the early detection of cervical precancer. Raman spectroscopy is a label-free objective method that can provide a biochemical fingerprint of a given sample. Compared with studies on infrared spectroscopy, relatively few Raman spectroscopy studies have been carried out to date on cervical cytology. The aim of this study was to define the Raman spectral signatures of cervical exfoliated cells present in liquid-based cytology Pap test specimens and to compare the signature of high-grade dysplastic cells to each of the normal cell types. Raman spectra were recorded from single exfoliated cells and subjected to multivariate statistical analysis. The study demonstrated that Raman spectroscopy can identify biochemical signatures associated with the most common cell types seen in liquid-based cytology samples; superficial, intermediate, and parabasal cells. In addition, biochemical changes associated with high-grade dysplasia could be identified suggesting that Raman spectroscopy could be used to aid current cervical screening tests.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P
2016-05-31
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.
2016-01-01
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916
TRAV7-2*02 Expressing CD8⁺ T Cells Are Responsible for Palladium Allergy.
Takeda, Yuri; Suto, Yoshiko; Ito, Koyu; Hashimoto, Wataru; Nishiya, Tadashi; Ueda, Kyosuke; Narushima, Takayuki; Takahashi, Tetsu; Ogasawara, Kouetsu
2017-05-31
While metallic biomaterials have led to an improvement in the quality of life, metal allergies, especially to palladium (Pd), has caused a recent increase in allergic patients. Metal allergy is known to be a T cell-mediated delayed-type hypersensitivity (DTH); however, the pathogenic T cell subsets and the specific T cell receptor (TCR) have not been identified. Therefore, we attempted to identify the pathogenic T cells responsible for Pd allergy. We found that activating CD8⁺ T cells significantly increased and that the TRAV (TCRα variable) 7-2*02 chain skewed in Pd allergic mice. Furthermore, adoptive transfer experiments revealed that in vitro-cultured Pd-stimulated antigen presenting cells (APCs) function as memory APCs with recipient mice developing Pd allergy and that the frequency of TRAV7-2*02 increases the same as conventional Pd allergic mice. In contrast, neither proliferation of CD8⁺ T cells nor increasing of TRAV7-2*02 was observed in major histocompatibility complex I (MHC I)-deficient Pd-APCs transferred to mice. Taken together, we revealed that TRAV7-2*02-expressing CD8⁺ T cells are the pathogenic T cells for the development of Pd allergy. We also identified the CDR3 consensus motif of pathogenic TCRs as CAAXSGSWQLIF in TRAV7-2*02/TRAJ (TCRα junction)22*01 positive cells. These results suggest that the specific TCRs represent novel targets for the development of diagnostics and treatments for metal allergy.
TRAV7-2*02 Expressing CD8+ T Cells Are Responsible for Palladium Allergy
Takeda, Yuri; Suto, Yoshiko; Ito, Koyu; Hashimoto, Wataru; Nishiya, Tadashi; Ueda, Kyosuke; Narushima, Takayuki; Takahashi, Tetsu; Ogasawara, Kouetsu
2017-01-01
While metallic biomaterials have led to an improvement in the quality of life, metal allergies, especially to palladium (Pd), has caused a recent increase in allergic patients. Metal allergy is known to be a T cell-mediated delayed-type hypersensitivity (DTH); however, the pathogenic T cell subsets and the specific T cell receptor (TCR) have not been identified. Therefore, we attempted to identify the pathogenic T cells responsible for Pd allergy. We found that activating CD8+ T cells significantly increased and that the TRAV (TCRα variable) 7-2*02 chain skewed in Pd allergic mice. Furthermore, adoptive transfer experiments revealed that in vitro-cultured Pd-stimulated antigen presenting cells (APCs) function as memory APCs with recipient mice developing Pd allergy and that the frequency of TRAV7-2*02 increases the same as conventional Pd allergic mice. In contrast, neither proliferation of CD8+ T cells nor increasing of TRAV7-2*02 was observed in major histocompatibility complex I (MHC I)-deficient Pd-APCs transferred to mice. Taken together, we revealed that TRAV7-2*02-expressing CD8+ T cells are the pathogenic T cells for the development of Pd allergy. We also identified the CDR3 consensus motif of pathogenic TCRs as CAAXSGSWQLIF in TRAV7-2*02/TRAJ (TCRα junction)22*01 positive cells. These results suggest that the specific TCRs represent novel targets for the development of diagnostics and treatments for metal allergy. PMID:28561797
Haining, Elizabeth J.; Yang, Jing; Bailey, Rebecca L.; Khan, Kabir; Collier, Richard; Tsai, Schickwann; Watson, Steve P.; Frampton, Jon; Garcia, Paloma; Tomlinson, Michael G.
2012-01-01
A disintegrin and metalloprotease 10 (ADAM10) is a ubiquitous transmembrane metalloprotease that cleaves the extracellular regions from over 40 different transmembrane target proteins, including Notch and amyloid precursor protein. ADAM10 is essential for embryonic development and is also important in inflammation, cancer, and Alzheimer disease. However, ADAM10 regulation remains poorly understood. ADAM10 is compartmentalized into membrane microdomains formed by tetraspanins, which are a superfamily of 33 transmembrane proteins in humans that regulate clustering and trafficking of certain other transmembrane “partner” proteins. This is achieved by specific tetraspanin-partner interactions, but it is not clear which tetraspanins specifically interact with ADAM10. The aims of this study were to identify which tetraspanins interact with ADAM10 and how they regulate this metalloprotease. Co-immunoprecipitation identified specific ADAM10 interactions with Tspan5, Tspan10, Tspan14, Tspan15, Tspan17, and Tspan33/Penumbra. These are members of the largely unstudied TspanC8 subgroup of tetraspanins, all six of which promoted ADAM10 maturation. Different cell types express distinct repertoires of TspanC8 tetraspanins. Human umbilical vein endothelial cells express relatively high levels of Tspan14, the knockdown of which reduced ADAM10 surface expression and activity. Mouse erythrocytes express predominantly Tspan33, and ADAM10 expression was substantially reduced in the absence of this tetraspanin. In contrast, ADAM10 expression was normal on Tspan33-deficient mouse platelets in which Tspan14 is the major TspanC8 tetraspanin. These results define TspanC8 tetraspanins as essential regulators of ADAM10 maturation and trafficking to the cell surface. This finding has therapeutic implications because focusing on specific TspanC8-ADAM10 complexes may allow cell type- and/or substrate-specific ADAM10 targeting. PMID:23035126
Evidence for apoptosis in human atherogenesis and in a rat vascular injury model.
Han, D. K.; Haudenschild, C. C.; Hong, M. K.; Tinkle, B. T.; Leon, M. B.; Liau, G.
1995-01-01
Apoptosis is a physiological cell death process important for normal development and involved in many pathological conditions. In atherosclerosis, pathological accumulation of cells in the intima has been attributed to the migration and proliferation of smooth muscle cells, macrophages, and lymphocytes. In this report, we explored the possibility that apoptosis may also contribute to the pathogenesis of this disease. We examined 35 human atherosclerotic lesion samples and identified a substantial number of cells undergoing apoptosis in 25 of the samples. Furthermore, in a rat vascular injury model, apoptotic cells were specifically identified in the neointima. The presence of apoptotic cells was demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, nuclear staining with propidium iodide, and electron microscopy. Immunostaining with cell-type-specific markers and subsequent terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling analysis on the same sample revealed that the majority of the apoptotic cells were modulated smooth muscle cells as well as macrophages. These results indicate that apoptosis occurs in cells of the injured blood vessel as well as the advanced atherosclerotic lesion and that physiological cell death may have an important role in determining the course of atherogenesis. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:7639326
Transcription factor Etv5 is essential for the maintenance of alveolar type II cells.
Zhang, Zhen; Newton, Kim; Kummerfeld, Sarah K; Webster, Joshua; Kirkpatrick, Donald S; Phu, Lilian; Eastham-Anderson, Jeffrey; Liu, Jinfeng; Lee, Wyne P; Wu, Jiansheng; Li, Hong; Junttila, Melissa R; Dixit, Vishva M
2017-04-11
Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of Etv5 from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, Etv5 deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4 COP1/DET1 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.
Firnhaber, Christopher; Hammarlund, Marc
2013-11-01
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.
Characterizing SH2 Domain Specificity and Network Interactions Using SPOT Peptide Arrays.
Liu, Bernard A
2017-01-01
Src Homology 2 (SH2) domains are protein interaction modules that recognize and bind tyrosine phosphorylated ligands. Their ability to distinguish binding to over thousands of potential phosphotyrosine (pTyr) ligands within the cell is critical for the fidelity of receptor tyrosine kinase (RTK) signaling. Within humans there are over a hundred SH2 domains with more than several thousand potential ligands across many cell types and cell states. Therefore, defining the specificity of individual SH2 domains is critical for predicting and identifying their physiological ligands. Here, in this chapter, I describe the broad use of SPOT peptide arrays for examining SH2 domain specificity. An orientated peptide array library (OPAL) approach can uncover both favorable and non-favorable residues, thus providing an in-depth analysis to SH2 specificity. Moreover, I discuss the application of SPOT arrays for paneling SH2 ligand binding with physiological peptides.
Potting, Christoph; Crochemore, Christophe; Moretti, Francesca; Nigsch, Florian; Schmidt, Isabel; Manneville, Carole; Carbone, Walter; Knehr, Judith; DeJesus, Rowena; Lindeman, Alicia; Maher, Rob; Russ, Carsten; McAllister, Gregory; Reece-Hoyes, John S; Hoffman, Gregory R; Roma, Guglielmo; Müller, Matthias; Sailer, Andreas W; Helliwell, Stephen B
2018-01-09
PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type. Copyright © 2018 the Author(s). Published by PNAS.
Immunoaffinity Enrichment and Mass Spectrometry Analysis of Protein Methylation
Guo, Ailan; Gu, Hongbo; Zhou, Jing; Mulhern, Daniel; Wang, Yi; Lee, Kimberly A.; Yang, Vicky; Aguiar, Mike; Kornhauser, Jon; Jia, Xiaoying; Ren, Jianmin; Beausoleil, Sean A.; Silva, Jeffrey C.; Vemulapalli, Vidyasiri; Bedford, Mark T.; Comb, Michael J.
2014-01-01
Protein methylation is a common posttranslational modification that mostly occurs on arginine and lysine residues. Arginine methylation has been reported to regulate RNA processing, gene transcription, DNA damage repair, protein translocation, and signal transduction. Lysine methylation is best known to regulate histone function and is involved in epigenetic regulation of gene transcription. To better study protein methylation, we have developed highly specific antibodies against monomethyl arginine; asymmetric dimethyl arginine; and monomethyl, dimethyl, and trimethyl lysine motifs. These antibodies were used to perform immunoaffinity purification of methyl peptides followed by LC-MS/MS analysis to identify and quantify arginine and lysine methylation sites in several model studies. Overall, we identified over 1000 arginine methylation sites in human cell line and mouse tissues, and ∼160 lysine methylation sites in human cell line HCT116. The number of methylation sites identified in this study exceeds those found in the literature to date. Detailed analysis of arginine-methylated proteins observed in mouse brain compared with those found in mouse embryo shows a tissue-specific distribution of arginine methylation, and extends the types of proteins that are known to be arginine methylated to include many new protein types. Many arginine-methylated proteins that we identified from the brain, including receptors, ion channels, transporters, and vesicle proteins, are involved in synaptic transmission, whereas the most abundant methylated proteins identified from mouse embryo are transcriptional regulators and RNA processing proteins. PMID:24129315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.
2008-09-03
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}).more » Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.« less
Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J
2013-05-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.
Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA
Fox, Rebecca M.; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J.
2013-01-01
FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously. PMID:23578928
Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.
Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G
2011-12-23
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.
Genre, Andrea; Ortu, Giuseppe; Bertoldo, Chiara; Martino, Elena; Bonfante, Paola
2009-01-01
During arbuscular mycorrhizal (AM) colonization, a focal accumulation of organelles occurs in root epidermal cells, prior to fungal penetration, beneath adhering hyphopodia. This is followed by the appearance of the prepenetration apparatus (PPA), a transcellular column of cytoplasm connected to the nucleus and rich in cytoskeleton and secretory endomembranes. This apparatus appears to be responsible for the construction of an apoplastic compartment that confines the fungus within the cell lumen. To identify AM-specific elements within the PPA response, we challenged root cultures of Medicago truncatula, expressing a green fluorescent protein tag for the endoplasmic reticulum, with an AM symbiont, a necrotrophic pathogen, a hemibiotrophic pathogen, a noncompatible endomycorrhizal fungus, or abiotic physical stimuli. Parallel experiments were made on a M. truncatula nonsymbiotic mutant (doesn't make infections, dmi3-1). The results have highlighted a correlation between physical stimulation of the cell surface and nuclear repositioning. Cytoplasmic aggregation was only induced by contact with compatible fungi, whereas PPA appearance was specifically triggered by the AM fungus. The dmi3-1 mutant did not develop cytoplasmic aggregation or PPA and underwent cell death upon physical stimulation. The up-regulation of an expansin-like gene, already identified as an early marker of AM fungal contact, was triggered in wild-type roots by all the fungi tested. Such observations identify responses that are specific to mycorrhizal interactions and extend the role of the DMI3 protein, a calcium/calmodulin-dependent kinase, from symbiotic to pathogenic interactions. PMID:19151131
Biophotonic markers of malignancy: Discriminating cancers using wavelength-specific biophotons.
Murugan, Nirosha J; Rouleau, Nicolas; Karbowski, Lukasz M; Persinger, Michael A
2018-03-01
Early detection is a critically important factor when successfully diagnosing and treating cancer. Whereas contemporary molecular techniques are capable of identifying biomarkers associated with cancer, surgical interventions are required to biopsy tissue. The common imaging alternative, positron-emission tomography (PET), involves the use of nuclear material which poses some risks. Novel, non-invasive techniques to assess the degree to which tissues express malignant properties are now needed. Recent developments in biophoton research have made it possible to discriminate cancerous cells from normal cells both in vitro and in vivo. The current study expands upon a growing body of literature where we classified and characterized malignant and non-malignant cell types according to their biophotonic activity. Using wavelength-exclusion filters, we demonstrate that ratios between infrared and ultraviolet photon emissions differentiate cancer and non-cancer cell types. Further, we identified photon sources associated with three filters (420-nm, 620-nm., and 950-nm) which classified cancer and non-cancer cell types. The temporal increases in biophoton emission within these wavelength bandwidths is shown to be coupled with intrisitic biomolecular events using Cosic's resonant recognition model. Together, the findings suggest that the use of wavelength-exclusion filters in biophotonic measurement can be employed to detect cancer in vitro.
Sarkar, Mrinal K.; Liang, Yun; Xing, Xianying; Gudjonsson, Johann E.
2016-01-01
Transcriptome studies of psoriasis have identified robust changes in mRNA expression through large-scale analysis of patient cohorts. These studies, however, have analyzed all mRNA changes in aggregate, without distinguishing between disease-specific and non-specific differentially expressed genes (DEGs). In this study, RNA-seq meta-analysis was used to identify (1) psoriasis-specific DEGs altered in few diseases besides psoriasis and (2) non-specific DEGs similarly altered in many other skin conditions. We show that few cutaneous DEGs are psoriasis-specific and that the two DEG classes differ in their cell type and cytokine associations. Psoriasis-specific DEGs are expressed by keratinocytes and induced by IL-17A, whereas non-specific DEGs are expressed by inflammatory cells and induced by IFN-gamma and TNF. PBMC-derived DEGs were more psoriasis-specific than cutaneous DEGs. Nonetheless, PBMC DEGs associated with MHC class I and NK cells were commonly downregulated in psoriasis and other autoimmune diseases (e.g., multiple sclerosis, sarcoidosis and juvenile rheumatoid arthritis). These findings demonstrate “cross-disease” transcriptomics as an approach to gain insights into the cutaneous and non-cutaneous psoriasis transcriptomes. This highlighted unique contributions of IL-17A to the cytokine network and uncovered a blood-based gene signature that links psoriasis to other diseases of autoimmunity. PMID:27206706
Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette
2015-01-01
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308
Wong, Emily S W; Sanderson, Claire E; Deakin, Janine E; Whittington, Camilla M; Papenfuss, Anthony T; Belov, Katherine
2009-08-01
Natural killer (NK) cell receptors belong to two unrelated, but functionally analogous gene families: the immunoglobulin superfamily, situated in the leukocyte receptor complex (LRC) and the C-type lectin superfamily, located in the natural killer complex (NKC). Here, we describe the largest NK receptor gene expansion seen to date. We identified 213 putative C-type lectin NK receptor homologs in the genome of the platypus. Many have arisen as the result of a lineage-specific expansion. Orthologs of OLR1, CD69, KLRE, CLEC12B, and CLEC16p genes were also identified. The NKC is split into at least two regions of the genome: 34 genes map to chromosome 7, two map to a small autosome, and the remainder are unanchored in the current genome assembly. No NK receptor genes from the LRC were identified. The massive C-type lectin expansion and lack of Ig-domain-containing NK receptors represents the most extreme polarization of NK receptors found to date. We have used this new data from platypus to trace the possible evolutionary history of the NK receptor clusters.
C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia
Yamasaki, Sho; Matsumoto, Makoto; Takeuchi, Osamu; Matsuzawa, Tetsuhiro; Ishikawa, Eri; Sakuma, Machie; Tateno, Hiroaki; Uno, Jun; Hirabayashi, Jun; Mikami, Yuzuru; Takeda, Kiyoshi; Akira, Shizuo; Saito, Takashi
2009-01-01
Mincle (also called as Clec4e and Clecsf9) is a C-type lectin receptor expressed in activated phagocytes. Recently, we have demonstrated that Mincle is an FcRγ-associated activating receptor that senses damaged cells. To search an exogenous ligand(s), we screened pathogenic fungi using cell line expressing Mincle, FcRγ, and NFAT-GFP reporter. We found that Mincle specifically recognizes the Malassezia species among 50 different fungal species tested. Malassezia is a pathogenic fungus that causes skin diseases, such as tinea versicolor and atopic dermatitis, and fatal sepsis. However, the specific receptor on host cells has not been identified. Mutation of the putative mannose-binding motif within C-type lectin domain of Mincle abrogated Malassezia recognition. Analyses of glycoconjugate microarray revealed that Mincle selectively binds to α-mannose but not mannan. Thus, Mincle may recognize specific geometry of α-mannosyl residues on Malassezia species and use this to distinguish them from other fungi. Malassezia activated macrophages to produce inflammatory cytokines/chemokines. To elucidate the physiological function of Mincle, Mincle-deficient mice were established. Malassezia-induced cytokine/chemokine production by macrophages from Mincle−/− mice was significantly impaired. In vivo inflammatory responses against Malassezia was also impaired in Mincle−/− mice. These results indicate that Mincle is the first specific receptor for Malassezia species to be reported and plays a crucial role in immune responses to this fungus. PMID:19171887
Cell-Type-Specific Optogenetics in Monkeys.
Namboodiri, Vijay Mohan K; Stuber, Garret D
2016-09-08
The recent advent of technologies enabling cell-type-specific recording and manipulation of neuronal activity spurred tremendous progress in neuroscience. However, they have been largely limited to mice, which lack the richness in behavior of primates. Stauffer et al. now present a generalizable method for achieving cell-type specificity in monkeys. Copyright © 2016 Elsevier Inc. All rights reserved.
Kozhevnikova, E N; Leshchenko, A E; Pindyurin, A V
2018-05-01
At the level of DNA organization into chromatin, there are mechanisms that define gene expression profiles in specialized cell types. Genes within chromatin regions that are located at the nuclear periphery are generally expressed at lower levels; however, the nature of this phenomenon remains unclear. These parts of chromatin interact with nuclear lamina proteins like Lamin B1 and, therefore, can be identified in a given cell type by chromatin profiling of these proteins. In this study, we created and tested a Dam Identification (DamID) system induced by Cre recombinase using Lamin B1 and mouse embryonic fibroblasts. This inducible system will help to generate genome-wide profiles of chromatin proteins in given cell types and tissues with no need to dissect tissues from organs or separate cells from tissues, which is achieved by using specific regulatory DNA elements and due to the high sensitivity of the method.
Desai, Tanvi J; Toombs, Jason E; Minna, John D; Brekken, Rolf A; Udugamasooriya, Damith Gomika
2016-05-24
Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents.
Munding, Johanna B; Adai, Alex T; Maghnouj, Abdelouahid; Urbanik, Aleksandra; Zöllner, Hannah; Liffers, Sven T; Chromik, Ansgar M; Uhl, Waldemar; Szafranska-Schwarzbach, Anna E; Tannapfel, Andrea; Hahn, Stephan A
2012-07-15
Pancreatic ductal adenocarcinoma (PDAC) is known for its poor prognosis resulting from being diagnosed at an advanced stage. Accurate early diagnosis and new therapeutic modalities are therefore urgently needed. MicroRNAs (miRNAs), considered a new class of biomarkers and therapeutic targets, may be able to fulfill those needs. Combining tissue microdissection with global miRNA array analyses, cell type-specific miRNA expression profiles were generated for normal pancreatic ductal cells, acinar cells, PDAC cells derived from xenografts and also from macrodissected chronic pancreatitis (CP) tissues. We identified 78 miRNAs differentially expressed between ND and PDAC cells providing new insights into the miRNA-driven pathophysiological mechanisms involved in PDAC development. Having filtered miRNAs which are upregulated in the three pairwise comparisons of PDAC vs. ND, PDAC vs. AZ and PDAC vs. CP, we identified 15 miRNA biomarker candidates including miR-135b. Using relative qRT-PCR to measure miR-135b normalized to miR-24 in 75 FFPE specimens (42 PDAC and 33 CP) covering a broad range of tumor content, we discriminated CP from PDAC with a sensitivity and specificity of 92.9% [95% CI=(80.5, 98.5)] and 93.4% [95% CI=(79.8, 99.3)], respectively. Furthermore, the area under the curve (AUC) value reached of 0.97 was accompanied by positive and negative predictive values of 95% and 91%, respectively. In conclusion, we report pancreatic cell-specific global miRNA profiles, which offer new candidate miRNAs to be exploited for functional studies in PDAC. Furthermore, we provide evidence that miRNAs are well-suited analytes for development of sensitive and specific aid-in-diagnosis tests for PDAC. Copyright © 2011 UICC.
Ligand-targeted theranostic nanomedicines against cancer.
Yao, Virginia J; D'Angelo, Sara; Butler, Kimberly S; Theron, Christophe; Smith, Tracey L; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Dobroff, Andrey S; Brinker, C Jeffrey; Bradbury, Andrew R M; Arap, Wadih; Pasqualini, Renata
2016-10-28
Nanomedicines have significant potential for cancer treatment. Although the majority of nanomedicines currently tested in clinical trials utilize simple, biocompatible liposome-based nanocarriers, their widespread use is limited by non-specificity and low target site concentration and thus, do not provide a substantial clinical advantage over conventional, systemic chemotherapy. In the past 20years, we have identified specific receptors expressed on the surfaces of tumor endothelial and perivascular cells, tumor cells, the extracellular matrix and stromal cells using combinatorial peptide libraries displayed on bacteriophage. These studies corroborate the notion that unique receptor proteins such as IL-11Rα, GRP78, EphA5, among others, are differentially overexpressed in tumors and present opportunities to deliver tumor-specific therapeutic drugs. By using peptides that bind to tumor-specific cell-surface receptors, therapeutic agents such as apoptotic peptides, suicide genes, imaging dyes or chemotherapeutics can be precisely and systemically delivered to reduce tumor growth in vivo, without harming healthy cells. Given the clinical applicability of peptide-based therapeutics, targeted delivery of nanocarriers loaded with therapeutic cargos seems plausible. We propose a modular design of a functionalized protocell in which a tumor-targeting moiety, such as a peptide or recombinant human antibody single chain variable fragment (scFv), is conjugated to a lipid bilayer surrounding a silica-based nanocarrier core containing a protected therapeutic cargo. The functionalized protocell can be tailored to a specific cancer subtype and treatment regimen by exchanging the tumor-targeting moiety and/or therapeutic cargo or used in combination to create unique, theranostic agents. In this review, we summarize the identification of tumor-specific receptors through combinatorial phage display technology and the use of antibody display selection to identify recombinant human scFvs against these tumor-specific receptors. We compare the characteristics of different types of simple and complex nanocarriers, and discuss potential types of therapeutic cargos and conjugation strategies. The modular design of functionalized protocells may improve the efficacy and safety of nanomedicines for future cancer therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Expression of C-terminal deleted p53 isoforms in neuroblastoma
Goldschneider, David; Horvilleur, Emilie; Plassa, Louis-François; Guillaud-Bataille, Marine; Million, Karine; Wittmer-Dupret, Evelyne; Danglot, Gisèle; de Thé, Hughes; Bénard, Jean; May, Evelyne; Douc-Rasy, Sétha
2006-01-01
The tumor suppressor gene, p53, is rarely mutated in neuroblastomas (NB) at the time of diagnosis, but its dysfunction could result from a nonfunctional conformation or cytoplasmic sequestration of the wild-type p53 protein. However, p53 mutation, when it occurs, is found in NB tumors with drug resistance acquired over the course of chemotherapy. As yet, no study has been devoted to the function of the specific p53 mutants identified in NB cells. This study includes characterization and functional analysis of p53 expressed in eight cell lines: three wild-type cell lines and five cell lines harboring mutations. We identified two transcription-inactive p53 variants truncated in the C-terminus, one of which corresponded to the p53β isoform recently identified in normal tissue by Bourdon et al. [J. C. Bourdon, K. Fernandes, F. Murray-Zmijewski, G. Liu, A. Diot, D. P. Xirodimas, M. K. Saville and D. P. Lane (2005) Genes Dev., 19, 2122–2137]. Our results show, for the first time, that the p53β isoform is the only p53 species to be endogenously expressed in the human NB cell line SK-N-AS, suggesting that the C-terminus truncated p53 isoforms may play an important role in NB tumor development. PMID:17028100
Lee, Jee-Boong
2016-08-01
Due to the increasing prevalence and number of life-threatening cases, food allergy has emerged as a major health concern. The classic immune response seen during food allergy is allergen-specific IgE sensitization and hypersensitivity reactions to foods occur in the effector phase with often severe and deleterious outcomes. Recent research has advanced understanding of the immunological mechanisms occurring during the effector phase of allergic reactions to ingested food. Therefore, this review will not only cover the mucosal immune system of the gastrointestinal tract and the immunological mechanisms underlying IgE-mediated food allergy, but will also introduce cells recently identified to have a role in the hypersensitivity reaction to food allergens. These include IL-9 producing mucosal mast cells (MMC9s) and type 2 innate lymphoid cells (ILC2s). The involvement of these cell types in potentiating the type 2 immune response and developing the anaphylactic response to food allergens will be discussed. In addition, it has become apparent that there is a collaboration between these cells that contributes to an individual's susceptibility to IgE-mediated food allergy.
Cell Kinetic and Histomorphometric Analysis of Microgravitational Osteopenia: PARE.03B
NASA Technical Reports Server (NTRS)
Roberts, W. Eugene; Garetto, Lawrence P.
1998-01-01
Previous methods of identifying cells undergoing DNA synthesis (S-phase) utilized H-3 thymidine (3HT) autoradiography. 5-Bromo-2'-deoxyuridine (BrdU) immunohistochemistry is a nonradioactive alternative method. This experiment compared the two methods using the nuclear volume model for osteoblast histogenesis in two different embedding media. Twenty Sprague-Dawley rats were used, with half receiving 3HT (1 micro Ci/g) and the other half BrdU (50 microgram/g). Condyies were embedded (one side in paraffin, the other in plastic) and S-phase nuclei were identified using either autoradiography or immunohistochemistry. The fractional distribution of preosteoblast cell types and the percentage of labeled cells (within each cell fraction and label index) were calculated and expressed as mean q standard error. Chi-Square analysis showed only a minor difference in the fractional distribution of cell types. However, there were significant differences (p less than 0.05) by ANOVA, in the nuclear labeling of specific cell types. With the exception of the less-differentiated A+A'cells, more BrdU label was consistently detected in paraffin than in plastic-embedded sections. In general, more nuclei were labeled with 3H-thymidine than with BrdU in both types of embedding media. Labeling index data (labeled cells/total cells sampled x 100) indicated that BrdU in paraffin, but not plastic gave the same results as 3HT in either embedding method. Thus, we conclude that the two labeling methods do not yield the same results for the nuclear volume model and that embedding media is an important factor whenusing BrdU. As a result of this work, 3HT was chosen for used in the PARE.03 flight experiments.
Oliphant, Christopher J.; Hwang, You Yi; Walker, Jennifer A.; Salimi, Maryam; Wong, See Heng; Brewer, James M.; Englezakis, Alexandros; Barlow, Jillian L.; Hams, Emily; Scanlon, Seth T.; Ogg, Graham S.; Fallon, Padraic G.; McKenzie, Andrew N.J.
2014-01-01
Summary Group 2 innate lymphoid cells (ILC2s) release interleukin-13 (IL-13) during protective immunity to helminth infection and detrimentally during allergy and asthma. Using two mouse models to deplete ILC2s in vivo, we demonstrate that T helper 2 (Th2) cell responses are impaired in the absence of ILC2s. We show that MHCII-expressing ILC2s interact with antigen-specific T cells to instigate a dialog in which IL-2 production from T cells promotes ILC2 proliferation and IL-13 production. Deletion of MHCII renders IL-13-expressing ILC2s incapable of efficiently inducing Nippostrongylus brasiliensis expulsion. Thus, during transition to adaptive T cell-mediated immunity, the ILC2 and T cell crosstalk contributes to their mutual maintenance, expansion and cytokine production. This interaction appears to augment dendritic-cell-induced T cell activation and identifies a previously unappreciated pathway in the regulation of type-2 immunity. PMID:25088770
Thompson, Kenneth W.; Joshi, Pradeep; Dymond, Jessica S.; Gorrepati, Lakshmi; Smith, Harold; Krause, Michael; Eisenmann, David M.
2016-01-01
The development of the single cell layer skin or hypodermis of Caenorhabditis elegans is an excellent model for understanding cell fate specification and differentiation. Early in C. elegans embryogenesis, six rows of hypodermal cells adopt dorsal, lateral or ventral fates that go on to display distinct behaviors during larval life. Several transcription factors are known that function in specifying these major hypodermal cell fates, but our knowledge of the specification of these cell types is sparse, particularly in the case of the ventral hypodermal cells, which become Vulval Precursor Cells and form the vulval opening in response to extracellular signals. Previously, the gene pvl-4 was identified in a screen for mutants with defects in vulval development. We found by whole genome sequencing that pvl-4 is the Paired-box gene pax-3, which encodes the sole PAX-3 transcription factor homolog in C. elegans. pax-3 mutants show embryonic and larval lethality, and body morphology abnormalities indicative of hypodermal cell defects. We report that pax-3 is expressed in ventral P cells and their descendants during embryogenesis and early larval stages, and that in pax-3 reduction-of-function animals the ventral P cells undergo a cell fate transformation and express several markers of the lateral seam cell fate. Furthermore, forced expression of pax-3 in the lateral hypodermal cells causes them to lose expression of seam cell markers. We propose that pax-3 functions in the ventral hypodermal cells to prevent these cells from adopting the lateral seam cell fate. pax-3 represents the first gene required for specification solely of the ventral hypodermal fate in C. elegans providing insights into cell type diversification. PMID:26953187
Thompson, Kenneth W; Joshi, Pradeep; Dymond, Jessica S; Gorrepati, Lakshmi; Smith, Harold E; Krause, Michael W; Eisenmann, David M
2016-04-15
The development of the single cell layer skin or hypodermis of Caenorhabditis elegans is an excellent model for understanding cell fate specification and differentiation. Early in C. elegans embryogenesis, six rows of hypodermal cells adopt dorsal, lateral or ventral fates that go on to display distinct behaviors during larval life. Several transcription factors are known that function in specifying these major hypodermal cell fates, but our knowledge of the specification of these cell types is sparse, particularly in the case of the ventral hypodermal cells, which become Vulval Precursor Cells and form the vulval opening in response to extracellular signals. Previously, the gene pvl-4 was identified in a screen for mutants with defects in vulval development. We found by whole genome sequencing that pvl-4 is the Paired-box gene pax-3, which encodes the sole PAX-3 transcription factor homolog in C. elegans. pax-3 mutants show embryonic and larval lethality, and body morphology abnormalities indicative of hypodermal cell defects. We report that pax-3 is expressed in ventral P cells and their descendants during embryogenesis and early larval stages, and that in pax-3 reduction-of-function animals the ventral P cells undergo a cell fate transformation and express several markers of the lateral seam cell fate. Furthermore, forced expression of pax-3 in the lateral hypodermal cells causes them to lose expression of seam cell markers. We propose that pax-3 functions in the ventral hypodermal cells to prevent these cells from adopting the lateral seam cell fate. pax-3 represents the first gene required for specification solely of the ventral hypodermal fate in C. elegans providing insights into cell type diversification. Copyright © 2016 Elsevier Inc. All rights reserved.
Wojtyniak, Martin; Brear, Andrea G.; O'Halloran, Damien M.; Sengupta, Piali
2013-01-01
Summary Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions. PMID:23886944
Wojtyniak, Martin; Brear, Andrea G; O'Halloran, Damien M; Sengupta, Piali
2013-10-01
Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.
MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation.
Wang, Shenqi; Lau, On Sun
2018-01-01
In multicellular organisms, the initiation and maintenance of specific cell types often require the activity of cell type-specific transcriptional regulators. Understanding their roles in gene regulation is crucial but probing their DNA targets in vivo, especially in a genome-wide manner, remains a technical challenge with their limited expression. To improve the sensitivity of chromatin immunoprecipitation (ChIP) for detecting the cell type-specific signals, we have developed the Maximized Objects for Better Enrichment (MOBE)-ChIP, where ChIP is performed at a substantially larger experimental scale and under low background conditions. Here, we describe the procedure in the study of transcription factors in the model plant Arabidopsis. However, with some modifications, the technique should also be implemented in other systems. Besides cell type-specific studies, MOBE-ChIP can also be used as a general strategy to improve ChIP signals.
Balder, Rachel; Lipski, Serena; Lazarus, John J; Grose, William; Wooten, Ronald M; Hogan, Robert J; Woods, Donald E; Lafontaine, Eric R
2010-09-28
Burkholderia pseudomallei and Burkholderia mallei cause the diseases melioidosis and glanders, respectively. A well-studied aspect of pathogenesis by these closely-related bacteria is their ability to invade and multiply within eukaryotic cells. In contrast, the means by which B. pseudomallei and B. mallei adhere to cells are poorly defined. The purpose of this study was to identify adherence factors expressed by these organisms. Comparative sequence analyses identified a gene product in the published genome of B. mallei strain ATCC23344 (locus # BMAA0649) that resembles the well-characterized Yersinia enterocolitica autotransporter adhesin YadA. The gene encoding this B. mallei protein, designated boaA, was expressed in Escherichia coli and shown to significantly increase adherence to human epithelial cell lines, specifically HEp2 (laryngeal cells) and A549 (type II pneumocytes), as well as to cultures of normal human bronchial epithelium (NHBE). Consistent with these findings, disruption of the boaA gene in B. mallei ATCC23344 reduced adherence to all three cell types by ~50%. The genomes of the B. pseudomallei strains K96243 and DD503 were also found to contain boaA and inactivation of the gene in DD503 considerably decreased binding to monolayers of HEp2 and A549 cells and to NHBE cultures.A second YadA-like gene product highly similar to BoaA (65% identity) was identified in the published genomic sequence of B. pseudomallei strain K96243 (locus # BPSL1705). The gene specifying this protein, termed boaB, appears to be B. pseudomallei-specific. Quantitative attachment assays demonstrated that recombinant E. coli expressing BoaB displayed greater binding to A549 pneumocytes, HEp2 cells and NHBE cultures. Moreover, a boaB mutant of B. pseudomallei DD503 showed decreased adherence to these respiratory cells. Additionally, a B. pseudomallei strain lacking expression of both boaA and boaB was impaired in its ability to thrive inside J774A.1 murine macrophages, suggesting a possible role for these proteins in survival within professional phagocytic cells. The boaA and boaB genes specify adhesins that mediate adherence to epithelial cells of the human respiratory tract. The boaA gene product is shared by B. pseudomallei and B. mallei whereas BoaB appears to be a B. pseudomallei-specific adherence factor.
Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis
Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin
2012-01-01
The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960
Type I Interferons as Stimulators of DC-Mediated Cross-Priming: Impact on Anti-Tumor Response
Schiavoni, Giovanna; Mattei, Fabrizio; Gabriele, Lucia
2013-01-01
Induction of potent tumor-specific cytotoxic T-cell responses is a fundamental objective in anticancer therapeutic strategies. This event requires that antigen-presenting cells present tumor-associated antigens (Ag) on their MHC class-I molecule, in a process termed cross-presentation. Dendritic cells (DC) are particularly keen on this task and can induce the cross-priming of CD8+ T cells, when exposed to danger or inflammatory signals that stimulate their activation. Type I interferons (IFN-I), a family of long-known immunostimulatory cytokines, have been proven to produce optimal activation signal for DC-induced cross-priming. Recent in vitro and in vivo evidences have suggested that IFN-I-stimulated cross-priming by DC against tumor-associated Ag is a key mechanism for cancer immunosurveillance and may be usefully exploited to boost anti-tumor CD8+ T-cell responses. Here, we will review the cross-presentation properties of different DC subsets, with special focus on cell-associated and tumor Ag, and discuss how IFN-I can modify this function, with the aim of identifying more specific and effective strategies for improving anticancer responses. PMID:24400008
Coffin, S E; Clark, S L; Bos, N A; Brubaker, J O; Offit, P A
1999-09-15
Parenterally administered immunizations have long been used to induce protection from mucosal pathogens such as Bordetella pertussis and influenza virus. We previously found that i.m. inoculation of mice with the intestinal pathogen, rotavirus, induced virus-specific Ab production by intestinal lymphocytes. We have now used adoptive transfer studies to identify the cell types responsible for the generation of virus-specific Ab production by gut-associated lymphoid tissue (GALT) after i.m. immunization. Three days after i.m. immunization with rotavirus, cells obtained from the draining peripheral lymph nodes of donor mice were transferred into naive recipient mice. We found that intestinal lymphocytes produced rotavirus-specific Igs (IgM, IgA, and IgG) 2 wk after transfer of either unfractionated cells, or unfractionated cells rendered incapable of cellular division by mitomycin C treatment. Additional studies demonstrated that rotavirus-specific IgA, but not IgG, was produced by intestinal lymphocytes after transfer of purified B cells. Ig allotype analysis revealed that rotavirus-specific IgA was produced by intestinal B cells of recipient origin, suggesting that migration of Ag-presenting B cells from peripheral lymphoid tissues to GALT may contribute to the generation of mucosal IgA responses after parenteral immunization. Strategies that promote Ag uptake and presentation by B cells may enhance mucosal IgA production following parenteral immunization.
Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex
Narayanan, Rajeevan T.; Udvary, Daniel; Oberlaender, Marcel
2017-01-01
The cytoarchitectonic subdivision of the neocortex into six layers is often used to describe the organization of the cortical circuitry, sensory-evoked signal flow or cortical functions. However, each layer comprises neuronal cell types that have different genetic, functional and/or structural properties. Here, we reanalyze structural data from some of our recent work in the posterior-medial barrel-subfield of the vibrissal part of rat primary somatosensory cortex (vS1). We quantify the degree to which somata, dendrites and axons of the 10 major excitatory cell types of the cortex are distributed with respect to the cytoarchitectonic organization of vS1. We show that within each layer, somata of multiple cell types intermingle, but that each cell type displays dendrite and axon distributions that are aligned to specific cytoarchitectonic landmarks. The resultant quantification of the structural composition of each layer in terms of the cell type-specific number of somata, dendritic and axonal path lengths will aid future studies to bridge between layer- and cell type-specific analyses. PMID:29081739
Aravindhan, Vivekanandhan; Anand, Gowrishankar
2017-12-01
Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4 + ] cells, cytotoxic T [CD8 + ] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.
Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael; Keefe, Damian; Liu, Zheng; London, Darin; McDaniell, Ryan M.; Shibata, Yoichiro; Showers, Kimberly A.; Simon, Jeremy M.; Vales, Teresa; Wang, Tianyuan; Winter, Deborah; Zhang, Zhuzhu; Clarke, Neil D.; Birney, Ewan; Iyer, Vishwanath R.; Crawford, Gregory E.; Lieb, Jason D.; Furey, Terrence S.
2011-01-01
The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) to map “open chromatin.” Over 870,000 DNaseI or FAIRE sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly 9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells. Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity. This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants that are causally linked to human disease. PMID:21750106
Varn, Frederick S.; Tafe, Laura J.; Amos, Christopher I.; Cheng, Chao
2018-01-01
ABSTRACT Non-small cell lung cancer is one of the leading causes of cancer-related death in the world. Lung adenocarcinoma, the most common type of non-small cell lung cancer, has been well characterized as having a dense lymphocytic infiltrate, suggesting that the immune system plays an active role in shaping this cancer's growth and development. Despite these findings, our understanding of how this infiltrate affects patient prognosis and its association with lung adenocarcinoma-specific clinical factors remains limited. To address these questions, we inferred the infiltration level of six distinct immune cell types from a series of four lung adenocarcinoma gene expression datasets. We found that naive B cell, CD8+ T cell, and myeloid cell-derived expression signals of immune infiltration were significantly predictive of patient survival in multiple independent datasets, with B cell and CD8+ T cell infiltration associated with prolonged prognosis and myeloid cell infiltration associated with shorter survival. These associations remained significant even after accounting for additional clinical variables. Patients stratified by smoking status exhibited decreased CD8+ T cell infiltration and altered prognostic associations, suggesting potential immunosuppressive mechanisms in smokers. Survival analyses accounting for immune checkpoint gene expression and cellular immune infiltrate indicated checkpoint protein-specific modulatory effects on CD8+ T cell and B cell function that may be associated with patient sensitivity to immunotherapy. Together, these analyses identified reproducible associations that can be used to better characterize the role of immune infiltration in lung adenocarcinoma and demonstrate the utility in using computational approaches to systematically characterize tissue-specific tumor-immune interactions. PMID:29872556
2014-01-01
Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272
USDA-ARS?s Scientific Manuscript database
Abundance was assessed by utilizing a panel of cross-reactive monoclonal antibodies (mAbs) tested in this study. Characterization of multichannel autofluorescence of eosinophils permitted cell-type specific gating of granulocytes for quantification of LDMs on neutrophils and eosinophils by indirect,...
Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration.
Bonar, Nicolle A; Petersen, Christian P
2017-03-01
Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema. © 2017. Published by The Company of Biologists Ltd.
Homeostatic plasticity shapes cell-type-specific wiring in the retina
Tien, Nai-Wen; Soto, Florentina; Kerschensteiner, Daniel
2017-01-01
SUMMARY Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently, or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar cells (B6) dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch clamp recordings revealed that anatomical rewiring precisely preserved contrast- and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain. PMID:28457596
Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F
2016-01-01
Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719
Status and Perspectives of Ion Track Electronics for Advanced Biosensing
NASA Astrophysics Data System (ADS)
Fink, D.; Muñoz, H. Gerardo; Alfonta, L.; Mandabi, Y.; Dias, J. F.; de Souza, C. T.; Bacakova, L. E.; Vacík, J.; Hnatowicz, V.; Kiv, A. E.; Fuks, D.; Papaleo, R. M.
New multifunctional ion irradiation-based three-dimensional electronic structures are developed for biotechnological applications, specifically for sensing of biomaterials, bacteria and mammalian cells. This is accomplished by combined micrometric surface and nanometric bulk microstructuring of insulators (specifically of polymer foils and SiO2/Si hybride structures) by adequate ion beams. Our main goal is the production of a cheap small universal generic working platform with multifunctional properties for biomedical analysis. Surface engineering of this platform enables cell bonding and its bulk engineering enables the extraction of cell secrets, for the sake of intercepting and analyzing the biomolecules used in cell communication. The exact knowledge of the spectrum of these cell-secreted signalling molecules should enable one to identify unambiguously the cell type. This knowledge will help developing strategies for preventive quorum sensing of bacteria, with the aim of fighting bacterial infections in an ecologically secure way.
Barron, Martin; Zhang, Siyuan
2018-01-01
Abstract Cell types in cell populations change as the condition changes: some cell types die out, new cell types may emerge and surviving cell types evolve to adapt to the new condition. Using single-cell RNA-sequencing data that measure the gene expression of cells before and after the condition change, we propose an algorithm, SparseDC, which identifies cell types, traces their changes across conditions and identifies genes which are marker genes for these changes. By solving a unified optimization problem, SparseDC completes all three tasks simultaneously. SparseDC is highly computationally efficient and demonstrates its accuracy on both simulated and real data. PMID:29140455
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Identification of cancer genes that are independent of dominant proliferation and lineage programs
Selfors, Laura M.; Stover, Daniel G.; Harris, Isaac S.; Brugge, Joan S.; Coloff, Jonathan L.
2017-01-01
Large, multidimensional cancer datasets provide a resource that can be mined to identify candidate therapeutic targets for specific subgroups of tumors. Here, we analyzed human breast cancer data to identify transcriptional programs associated with tumors bearing specific genetic driver alterations. Using an unbiased approach, we identified thousands of genes whose expression was enriched in tumors with specific genetic alterations. However, expression of the vast majority of these genes was not enriched if associations were analyzed within individual breast tumor molecular subtypes, across multiple tumor types, or after gene expression was normalized to account for differences in proliferation or tumor lineage. Together with linear modeling results, these findings suggest that most transcriptional programs associated with specific genetic alterations in oncogenes and tumor suppressors are highly context-dependent and are predominantly linked to differences in proliferation programs between distinct breast cancer subtypes. We demonstrate that such proliferation-dependent gene expression dominates tumor transcriptional programs relative to matched normal tissues. However, we also identified a relatively small group of cancer-associated genes that are both proliferation- and lineage-independent. A subset of these genes are attractive candidate targets for combination therapy because they are essential in breast cancer cell lines, druggable, enriched in stem-like breast cancer cells, and resistant to chemotherapy-induced down-regulation. PMID:29229826
Malm, Maria; Tamminen, Kirsi; Vesikari, Timo; Blazevic, Vesna
2016-10-01
Norovirus (NoV)-specific antibodies, which block binding of the virus-like particles (VLPs) to the cell receptors are conformation dependent and directed towards the most exposed domain of the NoV capsid VP1 protein, the P2 domain. Limited data are available on the antibodies directed to other domains of the VP1, and even less on the NoV VP1-specific T cell epitopes. In here, BALB/c mice were immunized with six VLPs derived from NoV GII.4-1999, GII.4-2009 (New Orleans), GII.4-2012 (Sydney), GII.12, GI.1, and G1.3. Serum immunoglobulin G binding antibodies, histo-blood group antigen blocking antibodies and T cell responses using type-specific and heterologous NoV VLPs, P-dimers and 76 overlapping synthetic peptides, spanning the entire 539 amino acid sequence of GII.4 VP1, were determined. The results showed that at least half of the total antibody content is directed towards conserved S domain of the VP1. Only a small fraction (<1%) of the VP1 binding antibodies were blocking/neutralizing. With the use of matrix peptide pools and individual peptides, seven CD4 + and CD8 + T cell restricted epitopes were mapped, two located in S domain, four in P2 domain and one in P1 domain of NoV VP1. The epitopes were GII.4 strain-specific but also common GII.4 genotype-specific T cell epitopes were identified. More importantly, the results suggest a 9-amino acids long sequence ( 318 PAPLGTPDF 326 ) in P2 domain of VP1 as a universal NoV genogroup II-specific CD8 + T cell epitope. Distribution of the T cell epitopes alongside the capsid VP1 indicates the need of the complete protein for high immunogenicity. Copyright © 2016 Elsevier Ltd. All rights reserved.
de Bruijne-Admiraal, L G; Modderman, P W; Von dem Borne, A E; Sonnenberg, A
1992-07-01
Previous studies have shown that thrombin-activated platelets interact through the P-selectin with neutrophils and monocytes. To identify other types of leukocytes capable of such an interaction, eosinophils, basophils, and lymphocytes were isolated from whole blood. Binding of these cells to activated platelets was examined in a double immunofluorescence assay and the results show that activated platelets not only bind to neutrophils and monocytes, but also to eosinophils, basophils, and subpopulations of T lymphocytes. Using monoclonal antibodies (MoAbs) specific for subsets of T cells, we could further demonstrate that the T cells which bind activated platelets are natural killer (NK) cells and an undefined subpopulation of CD4+ and CD8+ cells. All these interactions were dependent on divalent cations and were completely inhibited by an MoAb against P-selectin. Thus, P-selectin mediates the binding of activated platelets to many different types of leukocytes. Studies with leukocytes treated with proteases or neuraminidase have shown that the structures recognized by P-selectin are glycoproteins carrying sialic acid residues. Because the loss of binding of activated platelets to neuraminidase-treated neutrophils was almost complete, but only partial to treated eosinophils, basophils, and monocytes, the latter cell types may have different P-selectin ligands in addition to those present on neutrophils. We found that two previously identified ligands for P-selectin, the oligosaccharides Le(x) and sialyl-Le(x), had little or no inhibitory effect on adhesion of activated platelets to leukocytes and that binding was not inhibited by MoAbs against these oligosaccharides. In addition, there was no correlation between the expression of Le(x) on several cell types and their capacity to bind activated platelets. In contrast, the expression of sialyl-Le(x) on cells was almost perfectly correlated with their ability to bind activated platelets. Thus, while Le(x) cannot be a major ligand for P-selectin, a possible role for sialyl-Le(x) in P-selectin-mediated adhesion processes cannot be dismissed. Finally, activated platelets were found to bind normally to monocytes and neutrophils of patients with paroxysmal nocturnal hemoglobulinuria (PNH) and to neutrophils from which phosphatidyl inositol (PI)-linked proteins had been removed by glycosylphosphatidyl inositol-specific phospholipase C (GPI-PLC) digestion. This suggests that at least part of the P-selectin ligands on these cells are not GPI-anchored.
Lectin binding profiles of SSEA-4 enriched, pluripotent human embryonic stem cell surfaces
Venable, Alison; Mitalipova, Maisam; Lyons, Ian; Jones, Karen; Shin, Soojung; Pierce, Michael; Stice, Steven
2005-01-01
Background Pluripotent human embryonic stem cells (hESCs) have the potential to form every cell type in the body. These cells must be appropriately characterized prior to differentiation studies or when defining characteristics of the pluripotent state. Some developmentally regulated cell surface antigens identified by monoclonal antibodies in a variety of species and stem cell types have proven to be side chains of membrane glycolipids and glycoproteins. Therefore, to examine hESC surfaces for other potential pluripotent markers, we used a panel of 14 lectins, which were chosen based on their specificity for a variety of carbohydrates and carbohydrate linkages, along with stage specific embryonic antigen-4 (SSEA-4), to determine binding quantitation by flow cytometry and binding localization in adherent colonies by immunocytochemistry. Results Enriching cells for SSEA-4 expression increased the percentage of SSEA-4 positive cells to 98–99%. Using enriched high SSEA-4-expressing hESCs, we then analyzed the binding percentages of selected lectins and found a large variation in binding percentages ranging from 4% to 99% binding. Lycopersicon (tomato)esculetum lectin (TL), Ricinus communis agglutinin (RCA), and Concanavalin A (Con A) bound to SSEA-4 positive regions of hESCs and with similar binding percentages as SSEA-4. In contrast, we found Dolichos biflorus agglutinin (DBA) and Lotus tetragonolobus lectin (LTL) did not bind to hESCs while Phaseolus vulgaris leuco-agglutinin (PHA-L), Vicia villosa agglutinin (VVA), Ulex europaeus agglutinin (UEA), Phaseolus vulgaris erythro-agglutinin (PHA-E), and Maackia amurensis agglutinin (MAA) bound partially to hESCs. These binding percentages correlated well with immunocytochemistry results. Conclusion Our results provide information about types of carbohydrates and carbohydrate linkages found on pluripotent hESC surfaces. We propose that TL, RCA and Con A may be used as markers that are associated with the pluripotent state of hESCs because binding percentages and binding localization of these lectins are similar to those of SSEA-4. Non-binding lectins, DBA and LTL, may identify differentiated cell types; however, we did not find these lectins to bind to pluripotent SSEA-4 positive hESCs. This work represents a fundamental base to systematically classify pluripotent hESCs, and in future studies these lectins may be used to distinguish differentiated hESC types based on glycan presentation that accompanies differentiation. PMID:16033656
Bagati, Archis; Koch, Zethan; Bofinger, Diane; Goli, Haneesha; Weiss, Laura S; Dau, Rosie; Thomas, Megha; Zucker, Shoshanna N
2015-04-24
Blood serum serves as a chemoattractant towards which cancer cells migrate and invade, facilitating their intravasation into microvessels. However, the actual molecules towards which the cells migrate remain elusive. This modified invasion assay has been developed to identify targets which drive cell migration and invasion. This technique compares the invasion index under three conditions to determine whether a specific hormone, growth factor, or cytokine plays a role in mediating the invasive potential of a cancer cell. These conditions include i) normal fetal bovine serum (FBS), ii) charcoal-stripped FBS (CS-FBS), which removes hormones, growth factors, and cytokines and iii) CS-FBS + molecule (denoted "X"). A significant change in cell invasion with CS-FBS as compared to FBS, indicates the involvement of hormones, cytokines or growth factors in mediating the change. Individual molecules can then be added back to CS-FBS to assay their ability to reverse or rescue the invasion phenotype. Furthermore, two or more factors can be combined to evaluate the additive or synergistic effects of multiple molecules in driving or inhibiting invasion. Overall, this method enables the investigator to determine whether hormones, cytokines, and/or growth factors play a role in cell invasion by serving as chemoattractants or inhibitors of invasion for a particular type of cancer cell or a specific mutant. By identifying specific chemoattractants and inhibitors, this modified invasion assay may help to elucidate signaling pathways that direct cancer cell invasion.
Cusick, Matthew F; Libbey, Jane E; Cox Gill, Joan; Fujinami, Robert S; Eckels, David D
2013-01-01
Aim To determine whether modulation of T-cell responses by naturally occurring viral variants caused an increase in numbers of Tregs in HCV-infected patients. Patients, materials & methods Human peripheral blood mononuclear cells, having proliferative responses to a wild-type HCV-specific CD4+ T-cell epitope, were used to quantify, via proliferative assays, flow cytometry and class II tetramers, the effects of naturally occurring viral variants arising in the immunodominant epitope. Results In combination, the wild-type and variant peptides led to enhanced suppression of an anti-HCV T-cell response. The variant had a lower avidity for the wild-type-specific CD4+ T cell. Variant-stimulated CD4+ T cells had increased Foxp3, compared with wild-type-stimulated cells. Conclusion A stable viral variant from a chronic HCV subject was able to induce Tregs in multiple individuals that responded to the wild-type HCV-specific CD4+ T-cell epitope. PMID:24421862
Cell-type specific roles for PTEN in establishing a functional retinal architecture.
Cantrup, Robert; Dixit, Rajiv; Palmesino, Elena; Bonfield, Stephan; Shaker, Tarek; Tachibana, Nobuhiko; Zinyk, Dawn; Dalesman, Sarah; Yamakawa, Kazuhiro; Stell, William K; Wong, Rachel O; Reese, Benjamin E; Kania, Artur; Sauvé, Yves; Schuurmans, Carol
2012-01-01
The retina has a unique three-dimensional architecture, the precise organization of which allows for complete sampling of the visual field. Along the radial or apicobasal axis, retinal neurons and their dendritic and axonal arbors are segregated into layers, while perpendicular to this axis, in the tangential plane, four of the six neuronal types form patterned cellular arrays, or mosaics. Currently, the molecular cues that control retinal cell positioning are not well-understood, especially those that operate in the tangential plane. Here we investigated the role of the PTEN phosphatase in establishing a functional retinal architecture. In the developing retina, PTEN was localized preferentially to ganglion, amacrine and horizontal cells, whose somata are distributed in mosaic patterns in the tangential plane. Generation of a retina-specific Pten knock-out resulted in retinal ganglion, amacrine and horizontal cell hypertrophy, and expansion of the inner plexiform layer. The spacing of Pten mutant mosaic populations was also aberrant, as were the arborization and fasciculation patterns of their processes, displaying cell type-specific defects in the radial and tangential dimensions. Irregular oscillatory potentials were also observed in Pten mutant electroretinograms, indicative of asynchronous amacrine cell firing. Furthermore, while Pten mutant RGC axons targeted appropriate brain regions, optokinetic spatial acuity was reduced in Pten mutant animals. Finally, while some features of the Pten mutant retina appeared similar to those reported in Dscam-mutant mice, PTEN expression and activity were normal in the absence of Dscam. We conclude that Pten regulates somal positioning and neurite arborization patterns of a subset of retinal cells that form mosaics, likely functioning independently of Dscam, at least during the embryonic period. Our findings thus reveal an unexpected level of cellular specificity for the multi-purpose phosphatase, and identify Pten as an integral component of a novel cell positioning pathway in the retina.
Necroptosis, necrostatins and tissue injury
Smith, Christopher CT; Yellon, Derek M
2011-01-01
Abstract Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of ‘programmed necrosis’. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions. PMID:21564515
2013-01-01
Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816
Single-Cell Detection of Secreted Aβ and sAPPα from Human IPSC-Derived Neurons and Astrocytes.
Liao, Mei-Chen; Muratore, Christina R; Gierahn, Todd M; Sullivan, Sarah E; Srikanth, Priya; De Jager, Philip L; Love, J Christopher; Young-Pearse, Tracy L
2016-02-03
Secreted factors play a central role in normal and pathological processes in every tissue in the body. The brain is composed of a highly complex milieu of different cell types and few methods exist that can identify which individual cells in a complex mixture are secreting specific analytes. By identifying which cells are responsible, we can better understand neural physiology and pathophysiology, more readily identify the underlying pathways responsible for analyte production, and ultimately use this information to guide the development of novel therapeutic strategies that target the cell types of relevance. We present here a method for detecting analytes secreted from single human induced pluripotent stem cell (iPSC)-derived neural cells and have applied the method to measure amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα), analytes central to Alzheimer's disease pathogenesis. Through these studies, we have uncovered the dynamic range of secretion profiles of these analytes from single iPSC-derived neuronal and glial cells and have molecularly characterized subpopulations of these cells through immunostaining and gene expression analyses. In examining Aβ and sAPPα secretion from single cells, we were able to identify previously unappreciated complexities in the biology of APP cleavage that could not otherwise have been found by studying averaged responses over pools of cells. This technique can be readily adapted to the detection of other analytes secreted by neural cells, which would have the potential to open new perspectives into human CNS development and dysfunction. We have established a technology that, for the first time, detects secreted analytes from single human neurons and astrocytes. We examine secretion of the Alzheimer's disease-relevant factors amyloid β (Aβ) and soluble amyloid precursor protein-alpha (sAPPα) and present novel findings that could not have been observed without a single-cell analytical platform. First, we identify a previously unappreciated subpopulation that secretes high levels of Aβ in the absence of detectable sAPPα. Further, we show that multiple cell types secrete high levels of Aβ and sAPPα, but cells expressing GABAergic neuronal markers are overrepresented. Finally, we show that astrocytes are competent to secrete high levels of Aβ and therefore may be a significant contributor to Aβ accumulation in the brain. Copyright © 2016 the authors 0270-6474/16/361730-17$15.00/0.
Genome organization and long-range regulation of gene expression by enhancers.
Smallwood, Andrea; Ren, Bing
2013-06-01
It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. Copyright © 2013. Published by Elsevier Ltd.
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.
2015-01-01
ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543
Yu, Da-Hai; Ware, Carol; Waterland, Robert A.; Zhang, Jiexin; Chen, Miao-Hsueh; Gadkari, Manasi; Kunde-Ramamoorthy, Govindarajan; Nosavanh, Lagina M.
2013-01-01
During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation. PMID:23459939
Javierre, Biola M; Burren, Oliver S; Wilder, Steven P; Kreuzhuber, Roman; Hill, Steven M; Sewitz, Sven; Cairns, Jonathan; Wingett, Steven W; Várnai, Csilla; Thiecke, Michiel J; Burden, Frances; Farrow, Samantha; Cutler, Antony J; Rehnström, Karola; Downes, Kate; Grassi, Luigi; Kostadima, Myrto; Freire-Pritchett, Paula; Wang, Fan; Stunnenberg, Hendrik G; Todd, John A; Zerbino, Daniel R; Stegle, Oliver; Ouwehand, Willem H; Frontini, Mattia; Wallace, Chris; Spivakov, Mikhail; Fraser, Peter
2016-11-17
Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
A dual-color marker system for in vivo visualization of cell cycle progression in Arabidopsis.
Yin, Ke; Ueda, Minako; Takagi, Hitomi; Kajihara, Takehiro; Sugamata Aki, Shiori; Nobusawa, Takashi; Umeda-Hara, Chikage; Umeda, Masaaki
2014-11-01
Visualization of the spatiotemporal pattern of cell division is crucial to understand how multicellular organisms develop and how they modify their growth in response to varying environmental conditions. The mitotic cell cycle consists of four phases: S (DNA replication), M (mitosis and cytokinesis), and the intervening G1 and G2 phases; however, only G2/M-specific markers are currently available in plants, making it difficult to measure cell cycle duration and to analyze changes in cell cycle progression in living tissues. Here, we developed another cell cycle marker that labels S-phase cells by manipulating Arabidopsis CDT1a, which functions in DNA replication origin licensing. Truncations of the CDT1a coding sequence revealed that its carboxy-terminal region is responsible for proteasome-mediated degradation at late G2 or in early mitosis. We therefore expressed this region as a red fluorescent protein fusion protein under the S-specific promoter of a histone 3.1-type gene, HISTONE THREE RELATED2 (HTR2), to generate an S/G2 marker. Combining this marker with the G2/M-specific CYCB1-GFP marker enabled us to visualize both S to G2 and G2 to M cell cycle stages, and thus yielded an essential tool for time-lapse imaging of cell cycle progression. The resultant dual-color marker system, Cell Cycle Tracking in Plant Cells (Cytrap), also allowed us to identify root cells in the last mitotic cell cycle before they entered the endocycle. Our results demonstrate that Cytrap is a powerful tool for in vivo monitoring of the plant cell cycle, and thus for deepening our understanding of cell cycle regulation in particular cell types during organ development. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer.
Inoue, Kimiko; Kohda, Takashi; Sugimoto, Michihiko; Sado, Takashi; Ogonuki, Narumi; Matoba, Shogo; Shiura, Hirosuke; Ikeda, Rieko; Mochida, Keiji; Fujii, Takashi; Sawai, Ken; Otte, Arie P; Tian, X Cindy; Yang, Xiangzhong; Ishino, Fumitoshi; Abe, Kuniya; Ogura, Atsuo
2010-10-22
Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.
Pathogenesis of chronic pancreatitis: a comprehensive update and a look into the future.
Andersson, Roland; Tingstedt, Bobby; Xia, Jinglin
2009-01-01
Chronic pancreatitis is a relatively frequent condition usually caused by alcoholic abuse but also due to recurrent gallstone disease, metabolic endocrine disorders and haemochromatosis, among others. Specific types such as hereditary and autoimmune pancreatitis should be particularly kept in mind and emphasized, as they require specific treatment and attention. The possibility to identify gene mutations has also increased and this is likely to decrease the overall total number of "idiopathic" chronic pancreatitis cases. Pancreatic stellate cells have been identified as potential key players in the progression of chronic pancreatitis and the development of fibrogenesis, which are activated either during repeated attacks of necro-inflammation or directly by toxic factors. The inhibition or modulation of pancreatic stellate cells could represent a way of potential intervention in patients with chronic pancreatitis in the future.
Gruis, Darren (Fred); Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne
2006-01-01
Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions. PMID:16698897
Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.
Xin, Yurong; Kim, Jinrang; Ni, Min; Wei, Yi; Okamoto, Haruka; Lee, Joseph; Adler, Christina; Cavino, Katie; Murphy, Andrew J; Yancopoulos, George D; Lin, Hsin Chieh; Gromada, Jesper
2016-03-22
This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), β-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system.
P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins.
Hostettler, Nina; Naggi, Annamaria; Torri, Giangiacomo; Ishai-Michaeli, Riva; Casu, Benito; Vlodavsky, Israel; Borsig, Lubor
2007-11-01
Vascular cell adhesion molecules, P- and L-selectins, facilitate metastasis of cancer cells in mice by mediating interactions with platelets, endothelium, and leukocytes. Heparanase is an endoglycosidase that degrades heparan sulfate of extracellular matrix, thereby promoting tumor invasion and metastasis. Heparin is known to efficiently attenuate metastasis in different tumor models. Here we identified modified, nonanticoagulant species of heparin that specifically inhibit selectin-mediated cell-cell interactions, heparanase enzymatic activity, or both. We show that selective inhibition of selectin interactions or heparanase with specific heparin derivatives in mouse models of MC-38 colon carcinoma and B16-BL6 melanoma attenuates metastasis. Selectin-specific heparin derivatives attenuated metastasis of MC-38 carcinoma, but heparanase-specific derivatives had no effect, in accordance with the virtual absence of heparanase activity in these cells. Heparin derivatives had no further effect on metastasis in mice deficient in P- and L-selectin, indicating that selectins are the primary targets of heparin antimetastatic activity. Selectin-specific and heparanase-specific derivatives attenuated metastasis of B16-BL6 melanomas to a similar extent. When mice were injected with a derivative containing both heparanase and selectin inhibitory activity, no additional attenuation of metastasis could be observed. Thus, selectin-specific heparin derivatives efficiently attenuated metastasis of both tumor cell types whereas inhibition of heparanase led to reduction of metastasis only in tumor cells producing heparanase.
Horiguchi, Kotaro; Fujiwara, Ken; Kouki, Tom; Kikuchi, Motoshi; Yashiro, Takashi
2008-12-01
Folliculo-stellate (FS) cells in the anterior pituitary gland have been speculated to possess multifunctional properties. Because gap junctions (GJ) have been identified between FS cells, FS cells may be interconnected electrophysiologically by GJ and serve as signal transmission networks to modulate hormone release in the anterior pituitary gland. But whether GJ are localized among FS cells from the pars tuberalis through the pars distalis is unclear. The S100b-GFP transgenic rat has recently been generated, which expresses green fluorescent protein (GFP) specifically in FS cells in the anterior pituitary. This model is expected to be a powerful tool for studies of FS cells. The purpose of the present paper was therefore to examine the localization of GJ on connexin 43 immunohistochemistry throughout the anterior pituitary gland of S100b-GFP rats under confocal laser microscopy. The localization patterns of FS cells was also observed in primary culture of anterior pituitary cells and the question of whether GJ between FS cells are reconstructed in vitro was investigated. In vivo studies showed that GJ were present specifically between FS cells from the pars tuberalis to the pars distalis in the anterior pituitary gland. The appearance of FS cells was distinguished into two types, with localization of GJ differing between types. In vitro, it was observed for the first time that FS cells in primary culture could be categorized into two types. In vivo localization of GJ between FS cells was reconstructed in vitro. These morphological observations are consistent with the hypothesis that FS cells form an electrophysiological network throughout the anterior pituitary for signal transmission.
Woodham, Andrew W; Skeate, Joseph G; Sanna, Adriana M; Taylor, Julia R; Da Silva, Diane M; Cannon, Paula M; Kast, W Martin
2016-07-01
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Woodham, Andrew W.; Skeate, Joseph G.; Sanna, Adriana M.; Taylor, Julia R.; Da Silva, Diane M.; Cannon, Paula M.
2016-01-01
Abstract In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4+ T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection. PMID:27410493
Bell, Diana; Bell, Achim H; Bondaruk, Jolanta; Hanna, Ehab Y; Weber, Randall S
2016-05-15
Adenoid cystic carcinoma (ACC), 1 of the most common salivary gland malignancies, arises from the intercalated ducts, which are composed of inner ductal epithelial cells and outer myoepithelial cells. The objective of this study was to determine the genomic subtypes of ACC with emphasis on dominant cell type to identify potential specific biomarkers for each subtype and to improve the understanding of this disease. A whole-genome expression study was performed based on 42 primary salivary ACCs and 5 normal salivary glands. RNA from these specimens was subjected to expression profiling with RNA sequencing, and results were analyzed to identify transcripts in epithelial-dominant ACC (E-ACC), myoepithelial-dominant ACC (M-ACC), and all ACC that were expressed differentially compared with the transcripts in normal salivary tissue. In total, the authors identified 430 differentially expressed transcripts that were unique to E-ACC, 392 that were unique to M-ACC, and 424 that were common to both M-ACC and E-ACC. The sets of E-ACC-specific and M-ACC-specific transcripts were sufficiently large to define and differentiate E-ACC from M-ACC. Ingenuity pathway analysis identified known cancer-related genes for 60% of the E-ACC transcripts, 69% of the M-ACC transcripts, and 68% of the transcripts that were common in both E-ACC and M-ACC. Three sets of highly expressed candidate genes-distal-less homeobox 6 (DLX6) for E-ACC; protein keratin 16 (KRT16), SRY box 11 (SOX11), and v-myb avian myeloblastosis viral oncogene homolog (MYB) for M-ACC; and engrailed 1 (EN1) and statherin (STATH), which are common to both E-ACC and M-ACC)-were further validated at the protein level. The current results enabled the authors to identify novel potential therapeutic targets and biomarkers in E-ACC and M-ACC individually, with the implication that EN1, DLX6, and OTX1 (orthodenticle homeobox 1) are potential drivers of these cancers. Cancer 2016;122:1513-22. © 2016 American Cancer Society. © 2016 American Cancer Society.
Luce, Sandrine; Lemonnier, François; Briand, Jean-Paul; Coste, Joel; Lahlou, Najiba; Muller, Sylviane; Larger, Etienne; Rocha, Benedita; Mallone, Roberto; Boitard, Christian
2011-01-01
OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8+ T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I–restricted autoreactive CD8+ T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8+ T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8+ T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI6–14, whereas CD8+ T cells in long-standing patients recognize the B-chain peptide PPI33–42 (B9–18). Both CD8+ T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8+ T cells. PPI6–14–specific CD8+ T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8+ T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8+ T cells in the long term. PMID:21998398
Cerebellar Development and Disease
Gleeson, Joseph G.
2008-01-01
Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948
Global Phosphoproteomic Analysis of Insulin/Akt/mTORC1/S6K Signaling in Rat Hepatocytes.
Zhang, Yuanyuan; Zhang, Yajie; Yu, Yonghao
2017-08-04
Insulin resistance is a hallmark of type 2 diabetes. Although multiple genetic and physiological factors interact to cause insulin resistance, deregulated signaling by phosphorylation is a common underlying mechanism. In particular, the specific phosphorylation-dependent regulatory mechanisms and signaling outputs of insulin are poorly understood in hepatocytes, which represents one of the most important insulin-responsive cell types. Using primary rat hepatocytes as a model system, we performed reductive dimethylation (ReDi)-based quantitative mass spectrometric analysis and characterized the phosphoproteome that is regulated by insulin as well as its key downstream kinases including Akt, mTORC1, and S6K. We identified a total of 12 294 unique, confidently localized phosphorylation sites and 3805 phosphorylated proteins in this single cell type. Detailed bioinformatic analysis on each individual data set identified both known and previously unrecognized targets of this key insulin downstream effector pathway. Furthermore, integrated analysis of the hepatic Akt/mTORC1/S6K signaling axis allowed the delineation of the substrate specificity of several close-related kinases within the insulin signaling pathway. We expect that the data sets will serve as an invaluable resource, providing the foundation for future hypothesis-driven research that helps delineate the molecular mechanisms that underlie the pathogenesis of type 2 diabetes and related metabolic syndrome.
Xu, Ruilian; Tang, Jun; Deng, Quantong; He, Wan; Sun, Xiujie; Xia, Ligang; Cheng, Zhiqiang; He, Lisheng; You, Shuyuan; Hu, Jintao; Fu, Yuxiang; Zhu, Jian; Chen, Yixin; Gao, Weina; He, An; Guo, Zhengyu; Lin, Lin; Li, Hua; Hu, Chaofeng; Tian, Ruijun
2018-05-01
Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm 2 and 10 μm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm 2 and 10 μm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.
[Value of immunologic phenotyping of acute leukemias in children].
Vannier, J P; Bene, M C
1989-10-01
Immunologic typing has demonstrated considerable heterogeneity among the acute leukemias. The most significant recent advance has been development of monoclonal antibody techniques. Some markers identified using these techniques seem to be specific for a given stage of maturation of one lymphoid or myeloid cell line. Most acute lymphoblastic leukemias (ALLs) are malignant proliferations whose differentiation appears to have become 'stuck' at one stage of maturation. Results of immunologic typing correlate well with the other clinical and biological data. For prognostic purposes, several patterns can be identified. Among B line ALLs, four varieties have been differentiated, i.e., CD10 negative ALLs, common ALLs, pre-B ALLs, and B ALLs. T ALLs include a broad spectrum of heterogeneous proliferations whose immunologic classification is made difficult by the large number of phenotypes encountered. Among acute myeloblastic leukemias (AMLs), some highly undifferentiated forms have been recognized, by means of immunologic typing, as originating in one of the myeloid cell lines. However, the nosologic and prognostic significance of these studies is less obvious than in ALLs.
Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui
2014-10-01
The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.
Mucorales-Specific T Cells in Patients with Hematologic Malignancies.
Potenza, Leonardo; Vallerini, Daniela; Barozzi, Patrizia; Riva, Giovanni; Gilioli, Andrea; Forghieri, Fabio; Candoni, Anna; Cesaro, Simone; Quadrelli, Chiara; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Codeluppi, Mauro; Mussini, Cristina; Colaci, Elisabetta; Messerotti, Andrea; Paolini, Ambra; Maccaferri, Monica; Fantuzzi, Valeria; Del Giovane, Cinzia; Stefani, Alessandro; Morandi, Uliano; Maffei, Rossana; Marasca, Roberto; Narni, Franco; Fanin, Renato; Comoli, Patrizia; Romani, Luigina; Beauvais, Anne; Viale, Pier Luigi; Latgè, Jean Paul; Lewis, Russell E; Luppi, Mario
2016-01-01
Invasive mucormycosis (IM) is an emerging life-threatening fungal infection. It is difficult to obtain a definite diagnosis and to initiate timely intervention. Mucorales-specific T cells occur during the course of IM and are involved in the clearance of the infection. We have evaluated the feasibility of detecting Mucorales-specific T cells in hematological patients at risk for IM, and have correlated the detection of such cells with the clinical conditions of the patients. By using an enzyme linked immunospot assay, the presence of Mucorales-specific T cells in peripheral blood (PB) samples has been investigated at three time points during high-dose chemotherapy for hematologic malignancies. Mucorales-specific T cells producing interferon-γ, interleukin-10 and interleukin-4 were analysed in order to detect a correlation between the immune response and the clinical picture. Twenty-one (10.3%) of 204 patients, accounting for 32 (5.3%) of 598 PB samples, tested positive for Mucorales-specific T cells. Two groups could be identified. Group 1, including 15 patients without signs or symptoms of invasive fungal diseases (IFD), showed a predominance of Mucorales-specific T cells producing interferon-gamma. Group 2 included 6 patients with a clinical picture consistent with invasive fungal disease (IFD): 2 cases of proven IM and 4 cases of possible IFD. The proven patients had significantly higher number of Mucorales-specific T cells producing interleukin-10 and interleukin-4 and higher rates of positive samples by using derived diagnostic cut-offs when compared with the 15 patients without IFD. Mucorales-specific T cells can be detected and monitored in patients with hematologic malignancies at risk for IM. Mucorales-specific T cells polarized to the production of T helper type 2 cytokines are associated with proven IM and may be evaluated as a surrogate diagnostic marker for IM.
Bradford, James R; Wappett, Mark; Beran, Garry; Logie, Armelle; Delpuech, Oona; Brown, Henry; Boros, Joanna; Camp, Nicola J; McEwen, Robert; Mazzola, Anne Marie; D'Cruz, Celina; Barry, Simon T
2016-04-12
The tumor microenvironment is emerging as a key regulator of cancer growth and progression, however the exact mechanisms of interaction with the tumor are poorly understood. Whilst the majority of genomic profiling efforts thus far have focused on the tumor, here we investigate RNA-Seq as a hypothesis-free tool to generate independent tumor and stromal biomarkers, and explore tumor-stroma interactions by exploiting the human-murine compartment specificity of patient-derived xenografts (PDX).Across a pan-cancer cohort of 79 PDX models, we determine that mouse stroma can be separated into distinct clusters, each corresponding to a specific stromal cell type. This implies heterogeneous recruitment of mouse stroma to the xenograft independent of tumor type. We then generate cross-species expression networks to recapitulate a known association between tumor epithelial cells and fibroblast activation, and propose a potentially novel relationship between two hypoxia-associated genes, human MIF and mouse Ddx6. Assessment of disease subtype also reveals MMP12 as a putative stromal marker of triple-negative breast cancer. Finally, we establish that our ability to dissect recruited stroma from trans-differentiated tumor cells is crucial to identifying stem-like poor-prognosis signatures in the tumor compartment.In conclusion, RNA-Seq is a powerful, cost-effective solution to global analysis of human tumor and mouse stroma simultaneously, providing new insights into mouse stromal heterogeneity and compartment-specific disease markers that are otherwise overlooked by alternative technologies. The study represents the first comprehensive analysis of its kind across multiple PDX models, and supports adoption of the approach in pre-clinical drug efficacy studies, and compartment-specific biomarker discovery.
Nagao, Yusuke; Takada, Hiroyuki; Miyadai, Motohiro; Adachi, Tomoko; Kamei, Yasuhiro; Hara, Ikuyo; Naruse, Kiyoshi; Hibi, Masahiko
2018-01-01
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. PMID:29621239
Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics
Keeley, Patrick W.; Zhou, Cuiqi; Lu, Lu; Williams, Robert W.; Melmed, Shlomo; Reese, Benjamin E.
2014-01-01
Neurons are commonly organized as regular arrays within a structure, and their patterning is achieved by minimizing the proximity between like-type cells, but molecular mechanisms regulating this process have, until recently, been unexplored. We performed a forward genetic screen using recombinant inbred (RI) strains derived from two parental A/J and C57BL/6J mouse strains to identify genomic loci controlling spacing of cholinergic amacrine cells, which is a subclass of retinal interneuron. We found conspicuous variation in mosaic regularity across these strains and mapped a sizeable proportion of that variation to a locus on chromosome 11 that was subsequently validated with a chromosome substitution strain. Using a bioinformatics approach to narrow the list of potential candidate genes, we identified pituitary tumor-transforming gene 1 (Pttg1) as the most promising. Expression of Pttg1 was significantly different between the two parental strains and correlated with mosaic regularity across the RI strains. We identified a seven-nucleotide deletion in the Pttg1 promoter in the C57BL/6J mouse strain and confirmed a direct role for this motif in modulating Pttg1 expression. Analysis of Pttg1 KO mice revealed a reduction in the mosaic regularity of cholinergic amacrine cells, as well as horizontal cells, but not in two other retinal cell types. Together, these results implicate Pttg1 in the regulation of homotypic spacing between specific types of retinal neurons. The genetic variant identified creates a binding motif for the transcriptional activator protein 1 complex, which may be instrumental in driving differential expression of downstream processes that participate in neuronal spacing. PMID:24927528
Behavior-dependent specialization of identified hippocampal interneurons
Lapray, Damien; Lasztoczi, Balint; Lagler, Michael; Viney, Tim James; Katona, Linda; Valenti, Ornella; Hartwich, Katja; Borhegyi, Zsolt; Somogyi, Peter; Klausberger, Thomas
2012-01-01
A large variety of GABAergic interneurons control information processing in hippocampal circuits governing the formation of neuronal representations. Whether distinct hippocampal interneuron types contribute differentially to information-processing during behavior is not known. We employed a novel technique for recording and labeling interneurons and pyramidal cells in drug-free, freely-moving rats. Recorded parvalbumin-expressing basket interneurons innervate somata and proximal pyramidal cell dendrites, whereas nitric-oxide-synthase- and neuropeptide-Y-expressing ivy cells provide synaptic and extrasynaptic dendritic modulation. Basket and ivy cells showed distinct spike timing dynamics, firing at different rates and times during theta and ripple oscillations. Basket but not ivy cells changed their firing rates during movement, sleep and quiet wakefulness, suggesting that basket cells coordinate cell assemblies in a behavioral state-contingent manner, whereas persistently-firing ivy cells might control network excitability and homeostasis. Different interneuron types provide GABA to specific subcellular domains at defined times and rates, thus differentially controlling network activity during behavior. PMID:22864613
Hepatic progenitor populations in embryonic, neonatal, and adult liver.
Brill, S; Holst, P; Sigal, S; Zvibel, I; Fiorino, A; Ochs, A; Somasundaran, U; Reid, L M
1993-12-01
Oval cells, small cells with oval-shaped nuclei, are induced to proliferate in the livers of animals treated with carcinogens and are thought to be related to liver stem cells and/or committed liver progenitor cell populations. We have developed protocols for identifying and isolating antigenically related cell populations present in normal tissues using monoclonal antibodies to oval cell antigens and fluorescence-activated cell sorting. We have isolated oval cell-antigen-positive (OCAP) cells from embryonic, neonatal, and adult rat livers and have identified culture conditions permitting their growth in culture. The requirements for growth of the OCAP cells included substrata of type IV collagen mixed with laminin, basal medium with complex lipids and low calcium, specific growth factors (most potently, insulin-like growth factor II and granulocyte-macrophage colony-stimulating factor), and co-cultures of embryonic, liver-specific stroma, strongly suggesting paracrine signaling between hepatic and hemopoietic precursor cells. The growing OCAP cultures proved to be uniformly expressing oval cell markers but were nevertheless a mixture of hepatic and hemopoietic precursor cells. To separate the hepatic and hemopoietic subpopulations of OCAP cells, we surveyed known antibodies and found ones that uniquely identify either hepatic or hemopoietic cells. Several of these antibodies were used in panning procedures and fluorescence-activated cell sorting to eliminate contaminant cell populations, particularly hemopoietic and endothelial cells. Using specific flow cytometric parameters, three cellular subpopulations could be isolated separately that were identified by immunochemistry and molecular hybridization assays as probable: (i) committed progenitors to hepatocytes; (ii) committed progenitors to bile ducts; or (iii) a mixed population of hemopoietic cells that contained a small percentage of hepatic blasts that are possibly pluripotent. The hepatic precursor cells have been characterized using immunochemistry, flow cytometry, and molecular hybridization assays. The hepatic blasts are small (7-10 microns) cells with high nuclear to cytoplasmic ratios and with minimal complexity of the cytoplasm. Cultures of the committed progenitors were found to differentiate into cells with recognizable parenchymal cell fates. We discuss our studies in the context of our model of the liver as stem cell and lineage system and suggest that a slow, unidirectional, terminal differentiation process, paralleling more rapid ones in the skin or gut, occurs at all times in the liver and is thought to vary primarily in kinetics during quiescent versus regenerative states.(ABSTRACT TRUNCATED AT 400 WORDS)
Selective targeting of mutant adenomatous polyposis coli (APC) in colorectal cancer.
Zhang, Lu; Theodoropoulos, Panayotis C; Eskiocak, Ugur; Wang, Wentian; Moon, Young-Ah; Posner, Bruce; Williams, Noelle S; Wright, Woodring E; Kim, Sang Bum; Nijhawan, Deepak; De Brabander, Jef K; Shay, Jerry W
2016-10-19
Mutations in the adenomatous polyposis coli (APC) gene are common in colorectal cancer (CRC), and more than 90% of those mutations generate stable truncated gene products. We describe a chemical screen using normal human colonic epithelial cells (HCECs) and a series of oncogenically progressed HCECs containing a truncated APC protein. With this screen, we identified a small molecule, TASIN-1 (truncated APC selective inhibitor-1), that specifically kills cells with APC truncations but spares normal and cancer cells with wild-type APC. TASIN-1 exerts its cytotoxic effects through inhibition of cholesterol biosynthesis. In vivo administration of TASIN-1 inhibits tumor growth of CRC cells with truncated APC but not APC wild-type CRC cells in xenograft models and in a genetically engineered CRC mouse model with minimal toxicity. TASIN-1 represents a potential therapeutic strategy for prevention and intervention in CRC with mutant APC. Copyright © 2016, American Association for the Advancement of Science.
Discrimination of taste qualities among mouse fungiform taste bud cells.
Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo
2009-09-15
Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.
Voigt, Oliver; Adamska, Maja; Adamski, Marcin; Kittelmann, André; Wencker, Lukardis; Wörheide, Gert
2017-01-01
The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes in Sycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule-type specific for triactines and tetractines (ARP1 or SciTriactinin) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. PMID:28406140
A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.
Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria
2018-03-22
Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.
Ontology based molecular signatures for immune cell types via gene expression analysis
2013-01-01
Background New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity. Results We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights. PMID:24004649
Agustí, Javier; Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R; Talón, Manuel
2009-01-01
Background Abscission is the cell separation process by which plants are able to shed organs. It has a great impact on the yield of most crop plants. At the same time, the process itself also constitutes an excellent model to study cell separation processes, since it occurs in concrete areas known as abscission zones (AZs) which are composed of a specific cell type. However, molecular approaches are generally hampered by the limited area and cell number constituting the AZ. Therefore, detailed studies at the resolution of cell type are of great relevance in order to accurately describe the process and to identify potential candidate genes for biotechnological applications. Results Efficient protocols for the isolation of specific citrus cell types, namely laminar abscission zone (LAZ) and petiolar cortical (Pet) cells based on laser capture microdissection (LCM) and for RNA microextraction and amplification have been developed. A comparative transcriptome analysis between LAZ and Pet from citrus leaf explants subjected to an in-vitro 24 h ethylene treatment was performed utilising microarray hybridization and analysis. Our analyses of gene functional classes differentially represented in ethylene-treated LAZ revealed an activation program dominated by the expression of genes associated with protein synthesis, protein fate, cell type differentiation, development and transcription. The extensive repertoire of genes associated with cell wall biosynthesis and metabolism strongly suggests that LAZ layers activate both catabolic and anabolic wall modification pathways during the abscission program. In addition, over-representation of particular members of different transcription factor families suggests important roles for these genes in the differentiation of the effective cell separation layer within the many layers contained in the citrus LAZ. Preferential expression of stress-related and defensive genes in Pet reveals that this tissue is likely to be reprogrammed to prevent pathogen attacks and general abiotic stresses after organ shedding. Conclusion The LCM-based data generated in this survey represent the most accurate description of the main biological processes and genes involved in organ abscission in citrus. This study provides novel molecular insight into ethylene-promoted leaf abscission and identifies new putative target genes for characterization and manipulation of organ abscission in citrus. PMID:19852773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culbert, A.A.; Wallis, G.A.; Kadler, K.E.
The brittleness of bone in people with lethal (type II) osteogenesis imperfecta, a heritable disorder caused by mutations in the type I collagen genes, arises from the deposition of abnormal collagen in the bone matrix. The inability of the abnormal collagen to participate in mineralization may be caused by its failure to interact with other bone proteins. Here, we have designed a strategy to isolate the genes important for mineralization of collagen during bone formation. Cells isolated from 16-day embryonic chick calvaria and seeded post-confluence in culture deposited a mineralized matrix over a period of 2 weeks. Chick skin fibroblastsmore » seeded and cultured under the same conditions did not mineralize. Using RT-PCR, we prepared short cDNAs ({approximately}300 bp) corresponding to the 3{prime} ends of mRNA from fibroblasts and separately from the mineralizing calvarial cells. Subtractive cDNA hybridization generated a pool of cDNAs that were specific to mineralizing calvarial cells but not to fibroblasts. Screening of 100,000 plaques of a chick bone ZAP Express cDNA library with this pool of mineralizing-specific cDNAs identified ten clones which comprised full-length cDNAs for the bone proteins osteopontin (eight of the ten positives), bone sialoprotein II (one of the ten positives), and cystatin (one of the ten positives). cDNAs for type I collagen, fibronectin, alkaline phosphatase, house-keeping genes, and other genes expressed in fibroblasts were not identified in this preliminary screen. The pool of short cDNAs is likely to comprise cDNAs for further bone-specific genes and will be used to screen the entire bone cDNA library of 4.2 million clones. 30 refs., 4 figs.« less
A golgi study of the optic tectum of the tegu lizard, Tupinambis nigropunctatus.
Butler, A B; Ebbesson, O E
1975-06-01
The dendritic patterns of cells in the optic tectum of the tegu lizard, Tupinambis nigropunctatus, were analyzed with the Ramon-Moliner modification of the Golgi-Cox technique. Cell types were compared with those described by other authors in the tectum of other reptiles; particular comparisons of our results were made with the description of cell types in the chameleon (Ramń, 1896), as the latter is the most complete analysis in the literature. The periventricular gray layers 3 and 5 consist primarily of two cell types--piriform or pyramidal shaped cells and horizontal cells. Cells in the medial portion of the tectum, in an area coextensive with the bilateral spinal projection zone, possess dendrites that extend across the midline. The latter cells have either fusiform or pyramidal shaped somas. The central white zone, layer 6, contains fibers, large fusiform or pyramidal shaped cells, fusiform cells, and small horizontal cells. The central gray zone, layer 7, is composed predominately of fusiform cells which have dendrites extending to the superficial optic layers, large polygonal cells, and horizontal cells. The superficial gray and white layers, layers 8-13, contain polygonal, fusiform, stellate, and horizontal elements. Layer 14 is composed solely of afferent optic tract fibers. Several differences in the occurrence and distribution of cell types between the tegu and the other reptiles studied are noted. Additionally, the laminar distribution of retinal, tectotectal, telencephalic, and spinal projections in the tegutectum can be related to the distribution of cell types, and those cells which may be postsynaptic to specific inputs can be identified. The highly differentiated laminar structure of the reptilian optic tectum, both in regard to cell type and to afferent and efferent connections, may serve as a model for studying some functional properties of lamination common to cortical structures.
Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc
2011-08-01
To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.
Kim, Sangsung; Park, Hun-Jun; Byun, Jaemin; Cho, Kyu-Won; Saafir, Talib; Song, Ming-Ke; Yu, Shan Ping; Wagner, Mary; Bao, Gang; Yoon, Young-Sup
2013-01-01
Background While methods for generating cardiomyocytes (CMs) from pluripotent stem cells (PSCs) have been reported, current methods produce heterogeneous mixtures of CMs and non-CM cells. Here, we report an entirely novel system in which PSC-derived CMs are purified by CM-specific molecular beacons (MBs). MBs are nano-scale probes that emit a fluorescence signal when hybridized to target mRNAs. Method and Results Five MBs targeting mRNAs of either cardiac troponin T or myosin heavy chain 6/7 were generated. Among five MBs, a MB targeting myosin heavy chain 6/7 mRNA (MHC1-MB) identified up to 99% of HL-1 CMs, a mouse CM cell line, but < 3% of four non-CM cell types in flow cytometry analysis, indicating that MHC1-MB is specific for identifying CMs. We delivered MHC1-MB into cardiomyogenically differentiated PSCs through nucleofection. The detection rate of CMs was similar to the percentages of cardiac troponin T (TNNT2) or cardiac troponin I (TNNI3)-positive CMs, supporting the specificity of MBs. Finally, MHC1-MB-positive cells were FACS-sorted from mouse and human PSC differentiating cultures and ~97% cells expressed TNNT2- or TNNI3 determined by flow cytometry. These MB-based sorted cells maintained their CM characteristics verified by spontaneous beating, electrophysiologic studies, and expression of cardiac proteins. When transplanted in a myocardial infarction model, MB-based purified CMs improved cardiac function and demonstrated significant engraftment for 4 weeks without forming tumors. Conclusions We developed a novel CM selection system that allows production of highly purified CMs. These purified CMs and this system can be valuable for cell therapy and drug discovery. PMID:23995537
Identification of a set of genes showing regionally enriched expression in the mouse brain
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM
2008-01-01
Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066
Identification of a set of genes showing regionally enriched expression in the mouse brain.
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa L C; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven J M
2008-07-14
The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.
B7-H4 as a protective shield for pancreatic islet beta cells.
Sun, Annika C; Ou, Dawei; Luciani, Dan S; Warnock, Garth L
2014-12-15
Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes (T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell co-signaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin co-localization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1D. Future studies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1D.
Shah, Ashish K; Kreibich, Claus D; Amdam, Gro V; Münch, Daniel
2018-01-01
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Moreira, Étori Aguiar; Locher, Samira; Kolesnikova, Larissa; Bolte, Hardin; Aydillo, Teresa; García-Sastre, Adolfo; Schwemmle, Martin; Zimmer, Gert
2016-10-24
Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated "HL17NL10" and "HL18NL11." All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin-Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses.
Moreira, Étori Aguiar; Locher, Samira; Kolesnikova, Larissa; Bolte, Hardin; Aydillo, Teresa; García-Sastre, Adolfo; Schwemmle, Martin; Zimmer, Gert
2016-01-01
Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated “HL17NL10” and “HL18NL11.” All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin–Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses. PMID:27791106
Telocytes in meninges and choroid plexus.
Popescu, B O; Gherghiceanu, M; Kostin, S; Ceafalan, L; Popescu, L M
2012-05-16
Telocytes (TCs) are a recently identified type of interstitial cells present in a wide variety of organs in humans and mammals (www.telocytes.com). They are characterized by a small cell body, but extremely long cell processes - telopodes (Tp), and a specific phenotype. TCs establish close contacts with blood capillaries, nerve fibers and stem cells. We report here identification of TCs by electron microscopy and immunofluorescence in rat meninges and choroid plexus/subventricular zone, in the vicinity of putative stem cells. The presence of TCs in brain areas involved in adult neurogenesis might indicate that they have a role in modulation of neural stem cell fate. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fortin, Patricia M; Madgwick, Karen V; Trivella, Marialena; Hopewell, Sally; Doree, Carolyn; Estcourt, Lise J
2016-01-01
This is the protocol for a review and there is no abstract. The objectives are as follows: To identify and assess the effectiveness of interventions to improve adherence to iron chelation therapy compared to standard care in people with SCD or thalassaemia including: identifying and assessing the effectiveness of different types of interventions (psychological and psychosocial, educational, medication interventions, or multi-component interventions);identifying and assessing the effectiveness of interventions specific to different age groups (children, adolescents, adults). PMID:27713668
Identification of Cell Surface Molecules Involved in Dystroglycan-Independent Lassa Virus Cell Entry
Ströher, Ute; Ebihara, Hideki; Feldmann, Heinz
2012-01-01
Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry. PMID:22156524
Cancer Stem Cell Hierarchy in Glioblastoma Multiforme
Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte
2016-01-01
Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537
Designing Peptide-Based HIV Vaccine for Chinese
Fan, Xiaojuan
2014-01-01
CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese. PMID:25136573
Designing peptide-based HIV vaccine for Chinese.
Shu, Jiayi; Fan, Xiaojuan; Ping, Jie; Jin, Xia; Hao, Pei
2014-01-01
CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese.
Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas.
Menguy, Sarah; Frison, Eric; Prochazkova-Carlotti, Martina; Dalle, Stephane; Dereure, Olivier; Boulinguez, Serge; Dalac, Sophie; Machet, Laurent; Ram-Wolff, Caroline; Verneuil, Laurence; Gros, Audrey; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Pham-Ledard, Anne
2018-03-26
In nodal diffuse large B-cell lymphoma, the search for double-hit with MYC and BCL2 and/or BCL6 rearrangements or for dual expression of BCL2 and MYC defines subgroups of patients with altered prognosis that has not been evaluated in primary cutaneous large B-cell lymphoma. Our objectives were to assess the double-hit and dual expressor status in a cohort of 44 patients with primary cutaneous large B-cell lymphoma according to the histological subtype and to evaluate their prognosis relevance. The 44 cases defined by the presence of more than 80% of large B-cells in the dermis corresponded to 21 primary cutaneous follicle centre lymphoma with large cell morphology and 23 primary cutaneous diffuse large B-cell lymphoma, leg type. Thirty-one cases (70%) expressed BCL2 and 29 (66%) expressed MYC. Dual expressor profile was observed in 25 cases (57%) of either subtypes (n = 6 or n = 19, respectively). Only one primary cutaneous follicle centre lymphoma, large-cell case had a double-hit status (2%). Specific survival was significantly worse in primary cutaneous diffuse large B-cell lymphoma, leg type than in primary cutaneous follicle centre lymphoma, large cell (p = 0.021) and for the dual expressor primary cutaneous large B-cell lymphoma group (p = 0.030). Both overall survival and specific survival were worse for patients belonging to the dual expressor primary cutaneous diffuse large B-cell lymphoma, leg type subgroup (p = 0.001 and p = 0.046, respectively). Expression of either MYC and/or BCL2 negatively impacted overall survival (p = 0.017 and p = 0.018 respectively). As the differential diagnosis between primary cutaneous follicle centre lymphoma, large cell and primary cutaneous diffuse large B-cell lymphoma, leg type has a major impact on prognosis, dual-expression of BCL2 and MYC may represent a new diagnostic criterion for primary cutaneous diffuse large B-cell lymphoma, leg type subtype and further identifies patients with impaired survival. Finally, the double-hit assessment does not appear clinically relevant in primary cutaneous large B-cell lymphoma.
Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression.
Aleyasin, Hossein; Flanigan, Meghan E; Golden, Sam A; Takahashi, Aki; Menard, Caroline; Pfau, Madeline L; Multer, Jacob; Pina, Jacqueline; McCabe, Kathryn A; Bhatti, Naemal; Hodes, Georgia E; Heshmati, Mitra; Neve, Rachael L; Nestler, Eric J; Heller, Elizabeth A; Russo, Scott J
2018-06-11
A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc)-a key reward region-in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1) expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior, without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward. Significance Statement: Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for the individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens (NAc) in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses. Copyright © 2018 the authors.
Identification of Cell Cycle-regulated Genes in Fission YeastD⃞
Peng, Xu; Karuturi, R. Krishna Murthy; Miller, Lance D.; Lin, Kui; Jia, Yonghui; Kondu, Pinar; Wang, Long; Wong, Lim-Soon; Liu, Edison T.; Balasubramanian, Mohan K.; Liu, Jianhua
2005-01-01
Cell cycle progression is both regulated and accompanied by periodic changes in the expression levels of a large number of genes. To investigate cell cycle-regulated transcriptional programs in the fission yeast Schizosaccharomyces pombe, we developed a whole-genome oligonucleotide-based DNA microarray. Microarray analysis of both wild-type and cdc25 mutant cell cultures was performed to identify transcripts whose levels oscillated during the cell cycle. Using an unsupervised algorithm, we identified 747 genes that met the criteria for cell cycle-regulated expression. Peaks of gene expression were found to be distributed throughout the entire cell cycle. Furthermore, we found that four promoter motifs exhibited strong association with cell cycle phase-specific expression. Examination of the regulation of MCB motif-containing genes through the perturbation of DNA synthesis control/MCB-binding factor (DSC/MBF)-mediated transcription in arrested synchronous cdc10 mutant cell cultures revealed a subset of functional targets of the DSC/MBF transcription factor complex, as well as certain gene promoter requirements. Finally, we compared our data with those for the budding yeast Saccharomyces cerevisiae and found ∼140 genes that are cell cycle regulated in both yeasts, suggesting that these genes may play an evolutionarily conserved role in regulation of cell cycle-specific processes. Our complete data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/CDC. PMID:15616197
Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor.
Sedaghat, Nafiseh; Fathy, Mahmood; Modarressi, Mohammad Hossein; Shojaie, Ali
2016-09-07
Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf
2014-08-08
Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing signaling pathways, to counter the host anti-viral response and to promote proliferation and survival of infected cells. The targeted GRNs are more reproducible and informative than target gene identification, and our approach can be applied to other regulatory factors of interest.
Bram, Yaron; Frydman-Marom, Anat; Yanai, Inbal; Gilead, Sharon; Shaltiel-Karyo, Ronit; Amdursky, Nadav; Gazit, Ehud
2014-01-01
Soluble oligomeric assemblies of amyloidal proteins appear to act as major pathological agents in several degenerative disorders. Isolation and characterization of these oligomers is a pivotal step towards determination of their pathological relevance. Here we describe the isolation of Type 2 diabetes-associated islet amyloid polypeptide soluble cytotoxic oligomers; these oligomers induced apoptosis in cultured pancreatic cells, permeated model lipid vesicles and interacted with cell membranes following complete internalization. Moreover, antibodies which specifically recognized these assemblies, but not monomers or amyloid fibrils, were exclusively identified in diabetic patients and were shown to neutralize the apoptotic effect induced by these oligomers. Our findings support the notion that human IAPP peptide can form highly toxic oligomers. The presence of antibodies identified in the serum of diabetic patients confirms the pathological relevance of the oligomers. In addition, the newly identified structural epitopes may also provide new mechanistic insights and a molecular target for future therapy. PMID:24589570
Clonal expansion of T-cell receptor beta gene segment in the retrocochlear lesions of EAE mice.
Cheng, K C; Lee, K M; Yoo, T J
1998-01-01
It has been reported that the T cell receptor V beta 8.2 (TcrbV8.2) gene segment is predominantly expressed in encephalomyelitic T cells responding to myelin basic protein (MBP) in experimental allergic encephalomyelitis (EAE) mice. We have demonstrated retrocochlear hearing loss in EAE mice in previous studies. Administration of a monoclonal antibody specific to the T cell receptor V beta 8 (TcrbV8) subfamily prevented both this type of hearing loss and the central nerve disease. In this study, we examined the role of the TcrbV8.2 gene segment in the retrocochlear lesions of EAE mice. A clonal expression of T cell receptor beta chain gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) was identified in the retrocochlear lesions. The TcrbV8.2 gene segment appears to recombine only with TcrbJ2.1 (32.1%) and TcrbJ2.7 (67.9%) gene segments. The TcrbJ2.7 gene segment has also been previously identified as the dominant TcrbJ gene in the lymph nodes of EAE mice. Only TcrbD2, with a length of 4 amino acids, was observed recombining with these TcrbV8.2 sequences. G and C nucleotides are predominantly expressed at the N regions between the V-D and D-J junctions. This dominant TcrbV gene segment (TcrbV8.2-TcrbD2-TcrbJ2.7) observed in the retrocochlear lesions has been identified in the MBP-specific T cells from the lymph nodes of EAE mice. These results suggest that a small subset of antigen-specific T cells migrate to, and expand at, the retrocochlear lesions, which leads to hearing loss.
Piaseczny, Matthew M; Pio, Graciella M; Chu, Jenny E; Xia, Ying; Nguyen, Kim; Goodale, David; Allan, Alison
2016-06-13
Breast cancer preferentially metastasizes to the lymph node, bone, lung, brain and liver in breast cancer patients. Previous research efforts have focused on identifying factors inherent to breast cancer cells that are responsible for this observed metastatic pattern (termed organ tropism), however much less is known about factors present within specific organs that contribute to this process. This is in part because of a lack of in vitro model systems that accurately recapitulate the organ microenvironment. To address this, an ex vivo model system has been established that allows for the study of soluble factors present within different organ microenvironments. This model consists of generating conditioned media from organs (lymph node, bone, lung, and brain) isolated from normal athymic nude mice. The model system has been validated by demonstrating that different breast cancer cell lines display cell-line specific and organ-specific malignant behavior in response to organ-conditioned media that corresponds to their in vivo metastatic potential. This model system can be used to identify and evaluate specific organ-derived soluble factors that may play a role in the metastatic behavior of breast and other types of cancer cells, including influences on growth, migration, stem-like behavior, and gene expression, as well as the identification of potential new therapeutic targets for cancer. This is the first ex vivo model system that can be used to study organ-specific metastatic behavior in detail and evaluate the role of specific organ-derived soluble factors in driving the process of cancer metastasis.
Lefeuvre, Anabelle; Contamin, Hugues; Decelle, Thierry; Fournier, Christophe; Lang, Jean; Deubel, Vincent; Marianneau, Philippe
2006-05-01
Yellow fever (YF) virus is currently found in tropical Africa and South America, and is responsible for a febrile to severe illness characterized by organ failure and shock. The attenuated YF 17D strain, used in YF vaccine, was derived from the wild-type strain Asibi. Although studies have been done on genetic markers of YF virulence, differentiation of the two strains in terms of host-cell interaction during infection remains elusive. As YF wild-type strains are hepatotropic, we chose a hepatic cell line (HepG2) to study YF virus-host cell interaction. HepG2 cells rapidly produced high titres of infectious viral particles for 17D and Asibi YF strains. However, HepG2 cells were more susceptible to the attenuated 17D virus infection, and only this virus strain induced early apoptosis in these cells. Molecular markers specific for the 17D virus were identified by microarray analysis and confirmed by quantitative RT-PCR analysis. As early as 1h postinfection, three genes, (IEX-1, IRF-1, DEC-1) all implicated in apoptosis pathways, were upregulated. Later in infection (48 h) two other genes (HSP70-1A and 1B), expressed in cases of cellular stress, were highly upregulated in 17D-infected HepG2 cells. The early specific upregulation of these cellular genes in HepG2 cells may be considered markers of the 17D virus. This study on the YF attenuated strain gives a new approach to the analysis of the factors involved in virus attenuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Londei, M.; Savill, C.M.; Verhoef, A.
Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovialmore » tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis.« less
USDA-ARS?s Scientific Manuscript database
The spike (S) protein is a key structural protein of coronaviruses including, the porcine transmissible gastroenteritis virus (TGEV). The S protein is a type I membrane glycoprotein located in the viral envelope and is responsible for mediating the binding of viral particles to specific cell recepto...
USDA-ARS?s Scientific Manuscript database
Sirtinol, a purported specific inhibitor of the nicotinamide adenine dinucleotide (NAD)-dependent type III histone deacetylase (also known as sirtuin), has been used extensively to identify chemopreventive/chemotherapeutic agents that modulate the activity of this group of enzymes. However, the mole...
Murach, Kevin A; Englund, Davis A; Dupont-Versteegden, Esther E; McCarthy, John J; Peterson, Charlotte A
2018-01-01
Satellite cell-mediated myonuclear accretion is thought to be required for skeletal muscle fiber hypertrophy, and even drive hypertrophy by preceding growth. Recent studies in humans and rodents provide evidence that challenge this axiom. Specifically, Type 2 muscle fibers reliably demonstrate a substantial capacity to hypertrophy in the absence of myonuclear accretion, challenging the notion of a tightly regulated myonuclear domain (i.e., area that each myonucleus transcriptionally governs). In fact, a "myonuclear domain ceiling", or upper limit of transcriptional output per nucleus to support hypertrophy, has yet to be identified. Satellite cells respond to muscle damage, and also play an important role in extracellular matrix remodeling during loading-induced hypertrophy. We postulate that robust satellite cell activation and proliferation in response to mechanical loading is largely for these purposes. Future work will aim to elucidate the mechanisms by which Type 2 fibers can hypertrophy without additional myonuclei, the extent to which Type 1 fibers can grow without myonuclear accretion, and whether a true myonuclear domain ceiling exists.
Podholová, Kristýna; Plocek, Vítězslav; Rešetárová, Stanislava; Kučerová, Helena; Hlaváček, Otakar; Váchová, Libuše; Palková, Zdena
2016-03-29
Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.
Siebers, Tyche; Catarino, Bruno; Agusti, Javier
2017-03-01
We have identified new potential regulators of xylem cell-type determination and cellular proliferation in cassava and studied their expression in roots. Results are highly relevant for cassava biotechnology. Cassava's root system is composed of two types of root that coexist in every individual: the fibrous and the storage roots. Whether a root becomes fibrous or storage depends on the xylem cell types that it develops: fibrous roots develop xylem fibres and vessels while storage roots develop parenchyma xylem, the starch-storing tissue. A crucial question in cassava root development is how the specific xylem cell types differentiate and proliferate in the fibrous and storage roots. Using phylogenetic, protein sequence and synteny analyses we identified (1) MeVND6, MeVND7.1, MeVND7.2, MeNST3.1 and MeNST3.2 as the potential cassava orthologues of the Arabidopsis regulators of xylem cell type determination AtVND6, AtVND7 and AtNST3; and (2) MeWOX4.1 and MeWOX4.2 as the potential cassava orthologues of the Arabidopsis cambium regulator AtWOX4. Fibrous and storage roots were anatomically characterised and tested for the expression of the identified genes. Results revealed that (1) MeVND7.1 and MeVND7.2 are expressed in the fibrous but not in the storage roots; (2) MeVND6 shows low expression in both root types; (3) MeNST3.1 is not expressed in the fibrous or storage roots, while MeNST3.2 is highly expressed in both root-types and (4) MeWOX4.1 and, to a higher level, MeWOX4.2 are expressed in both the fibrous and storage roots. Results open new avenues for research in cassava root development and for food security-oriented biotechnology programmes.
Cytoprotective signaling by activated protein C requires protease-activated receptor-3 in podocytes
Madhusudhan, Thati; Wang, Hongjie; Straub, Beate K.; Gröne, Elisabeth; Zhou, Qianxing; Shahzad, Khurrum; Müller-Krebs, Sandra; Schwenger, Vedat; Gerlitz, Bruce; Grinnell, Brian W.; Griffin, John H.; Reiser, Jochen; Gröne, Hermann-Josef; Esmon, Charles T.; Nawroth, Peter P.
2012-01-01
The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPCinduced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies. PMID:22117049
Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1
Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette
2015-01-01
Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450
McClanahan, Fabienne; Riches, John C; Miller, Shaun; Day, William P; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M; Capasso, Melania; Gribben, John G
2015-07-09
T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3(+)CD8(+) T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1(+) T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8(+) T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. © 2015 by The American Society of Hematology.
McClanahan, Fabienne; Riches, John C.; Miller, Shaun; Day, William P.; Kotsiou, Eleni; Neuberg, Donna; Croce, Carlo M.; Capasso, Melania
2015-01-01
T-cell defects, immune suppression, and poor antitumor immune responses are hallmarks of chronic lymphocytic leukemia (CLL), and PD-1/PD-L1 inhibitory signaling has emerged as a major immunosuppressive mechanism. However, the effect of different microenvironments and the confounding influence of aging are poorly understood. The current study uses the Eμ-TCL1 mouse model, which replicates human T-cell defects, as a preclinical platform to longitudinally examine patterns of T-cell dysfunction alongside developing CLL and in different microenvironments, with a focus on PD-1/PD-L1 interactions. The development of CLL was significantly associated with changes in T-cell phenotype across all organs and function. Although partly mirrored in aging wild-type mice, CLL-specific T-cell changes were identified. Murine CLL cells highly expressed PD-L1 and PD-L2 in all organs, with high PD-L1 expression in the spleen. CD3+CD8+ T cells from leukemic and aging healthy mice highly expressed PD-1, identifying aging as a confounder, but adoptive transfer experiments demonstrated CLL-specific PD-1 induction. Direct comparisons of PD-1 expression and function between aging CLL mice and controls identified PD-1+ T cells in CLL as a heterogeneous population with variable effector function. This is highly relevant for therapeutic targeting of CD8+ T cells, showing the potential of reprogramming and selective subset expansion to restore antitumor immunity. PMID:25979947
Steens, Jennifer; Zuk, Melanie; Benchellal, Mohamed; Bornemann, Lea; Teichweyde, Nadine; Hess, Julia; Unger, Kristian; Görgens, André; Klump, Hannes; Klein, Diana
2017-04-11
The vascular wall (VW) serves as a niche for mesenchymal stem cells (MSCs). In general, tissue-specific stem cells differentiate mainly to the tissue type from which they derive, indicating that there is a certain code or priming within the cells as determined by the tissue of origin. Here we report the in vitro generation of VW-typical MSCs from induced pluripotent stem cells (iPSCs), based on a VW-MSC-specific gene code. Using a lentiviral vector expressing the so-called Yamanaka factors, we reprogrammed tail dermal fibroblasts from transgenic mice containing the GFP gene integrated into the Nestin-locus (NEST-iPSCs) to facilitate lineage tracing after subsequent MSC differentiation. A lentiviral vector expressing a small set of recently identified human VW-MSC-specific HOX genes then induced MSC differentiation. This direct programming approach successfully mediated the generation of VW-typical MSCs with classical MSC characteristics, both in vitro and in vivo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Wan, Ma; Bennett, Brian D; Pittman, Gary S; Campbell, Michelle R; Reynolds, Lindsay M; Porter, Devin K; Crowl, Christopher L; Wang, Xuting; Su, Dan; Englert, Neal A; Thompson, Isabel J; Liu, Yongmei; Bell, Douglas A
2018-04-27
Cigarette smoke is a causal factor in cancers and cardiovascular disease. Smoking-associated differentially methylated regions (SM-DMRs) have been observed in disease studies, but the causal link between altered DNA methylation and transcriptional change is obscure. Our objectives were to finely resolve SM-DMRs and to interrogate the mechanistic link between SM-DMRs and altered transcription of enhancer noncoding RNA (eRNA) and mRNA in human circulating monocytes. We integrated SM-DMRs identified by reduced representation bisulfite sequencing (RRBS) of circulating CD14+ monocyte DNA collected from two independent human studies [ n =38 from Clinical Research Unit (CRU) and n =55 from the Multi-Ethnic Study of Atherosclerosis (MESA), about half of whom were active smokers] with gene expression for protein-coding genes and noncoding RNAs measured by RT-PCR or RNA sequencing. Candidate SM-DMRs were compared with RRBS of purified CD4+ T cells, CD8+ T cells, CD15+ granulocytes, CD19+ B cells, and CD56+ NK cells ( n =19 females, CRU). DMRs were validated using pyrosequencing or bisulfite amplicon sequencing in up to 85 CRU volunteers, who also provided saliva DNA. RRBS identified monocyte SM-DMRs frequently located in putative gene regulatory regions. The most significant monocyte DMR occurred at a poised enhancer in the aryl-hydrocarbon receptor repressor gene ( AHRR ) and it was also detected in both granulocytes and saliva DNA. To our knowledge, we identify for the first time that SM-DMRs in or near AHRR , C5orf55-EXOC-AS , and SASH1 were associated with increased noncoding eRNA as well as mRNA in monocytes. Functionally, the AHRR SM-DMR appeared to up-regulate AHRR mRNA through activating the AHRR enhancer, as suggested by increased eRNA in the monocytes, but not granulocytes, from smokers compared with nonsmokers. Our findings suggest that AHRR SM-DMR up-regulates AHRR mRNA in a monocyte-specific manner by activating the AHRR enhancer. Cell type-specific activation of enhancers at SM-DMRs may represent a mechanism driving smoking-related disease. https://doi.org/10.1289/EHP2395.
Stem Cell Therapy to Treat Diabetes Mellitus
Liew, Chee Gee; Andrews, Peter W.
2008-01-01
Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these cells to treat diabetes. Various successful experiments using β-cells in animal models have generated extensive interest in using human embryonic stem cells to restore normoglycemia in diabetic patients. While new techniques are continually unveiled, the success of β-cell generation rests upon successful manipulation of culture conditions and the induction of key regulatory genes implicated in pancreas development. In this review, we compare successfully conducted protocols, highlight essential steps and identify some of the remarkable shortfalls common to these methods. In addition, we discuss recent advancements in the derivation of patient-specific pluripotent stem cells that may facilitate the use of autologous β-cells in stem cell therapy. PMID:19290381
Hashemi, Seirana; Nowzari Dalini, Abbas; Jalali, Adrin; Banaei-Moghaddam, Ali Mohammad; Razaghi-Moghadam, Zahra
2017-08-16
Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying mutations at domain level may point researchers to more accurate assessment of the functional impact of the mutations. This article presents a comprehensive study to map mutations from 29 cancer types to both sequence- and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined via further analysis. This study has provided researchers with a publicly available data repository for studying both CATH and Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir .
Non-invasive prenatal diagnosis.
Meaney, Cathy; Norbury, Gail
2011-01-01
The discovery of cell-free fetal DNA in the maternal plasma of pregnant women has facilitated the development of non-invasive prenatal diagnosis (NIPD). This has been successfully implemented in diagnostic laboratories for Rhesus typing and fetal sex determination for X-linked disorders and congenital adrenal hyperplasia (CAH) from 7 weeks gestation. Using real-time PCR, fluorescently labelled target gene specific probes can identify and quantify low copy number fetal-specific sequences in a high background of maternal DNA in the cell-free DNA extracted from maternal plasma.NIPD to detect specific fetal mutations in single gene disorders, currently by standard PCR techniques, can only be undertaken for paternally derived or de novo mutations because of the background maternal DNA. For routine use, this testing is limited by the large amounts of cell-free maternal DNA in the sample, the lack of universal fetal markers, and appropriate reference materials.
SHANK3 controls maturation of social reward circuits in the VTA
Glangetas, Christelle; Prévost-Solié, Clément; Pucci, Luca; Viguié, Joanna; Bezzi, Paola; O’Connor, Eoin C.; Georges, François; Lüscher, Christian; Bellone, Camilla
2016-01-01
Summary Haploinsufficiency of SHANK3, encoding the synapse scaffolding protein SHANK3, leads to a highly penetrant form of Autism Spectrum Disorder (ASD). How SHANK3 insufficiency affects specific neural circuits and this is related to specific ASD symptoms remains elusive. Here we used shRNA to model Shank3 insufficiency in the Ventral Tegmental Area (VTA) of mice. We identified dopamine (DA) and GABA cell-type specific changes in excitatory synapse transmission that converge to reduce DA neuron activity and generate behavioral deficits, including impaired social preference. Administration of a positive allosteric modulator of the type 1 metabotropic glutamate receptors (mGluR1) during the first postnatal week restored DA neuron excitatory synapse transmission and rescued the social preference defects, while optogenetic DA neuron stimulation was sufficient to enhance social preference. Collectively, these data reveal the contribution of impaired VTA function to social behaviors and identify mGluR1 modulation during postnatal development as a potential treatment strategy. PMID:27273769
Murray, Andrew J.; Woloszynowska-Fraser, Marta U.; Ansel-Bollepalli, Laura; Cole, Katy L. H.; Foggetti, Angelica; Crouch, Barry; Riedel, Gernot; Wulff, Peer
2015-01-01
Dysfunction of parvalbumin (PV)-positive GABAergic interneurons (PVIs) within the prefrontal cortex (PFC) has been implicated in schizophrenia pathology. It is however unclear, how impaired signaling of these neurons may contribute to PFC dysfunction. To identify how PVIs contribute to PFC-dependent behaviors we inactivated PVIs in the PFC in mice using region- and cell-type-selective expression of tetanus toxin light chain (TeLC) and compared the functional consequences of this manipulation with non-cell-type-selective perturbations of the same circuitry. By sampling for behavioral alterations that map onto distinct symptom categories in schizophrenia, we show that dysfunction of PVI signaling in the PFC specifically produces deficits in the cognitive domain, but does not give rise to PFC-dependent correlates of negative or positive symptoms. Our results suggest that distinct aspects of the complex symptomatology of PFC dysfunction in schizophrenia can be attributed to specific prefrontal circuit elements. PMID:26608841
Enhancer scanning to locate regulatory regions in genomic loci
Buckley, Melissa; Gjyshi, Anxhela; Mendoza-Fandiño, Gustavo; Baskin, Rebekah; Carvalho, Renato S.; Carvalho, Marcelo A.; Woods, Nicholas T.; Monteiro, Alvaro N.A.
2016-01-01
The present protocol provides a rapid, streamlined and scalable strategy to systematically scan genomic regions for the presence of transcriptional regulatory regions active in a specific cell type. It creates genomic tiles spanning a region of interest that are subsequently cloned by recombination into a luciferase reporter vector containing the Simian Virus 40 promoter. Tiling clones are transfected into specific cell types to test for the presence of transcriptional regulatory regions. The protocol includes testing of different SNP (single nucleotide polymorphism) alleles to determine their effect on regulatory activity. This procedure provides a systematic framework to identify candidate functional SNPs within a locus during functional analysis of genome-wide association studies. This protocol adapts and combines previous well-established molecular biology methods to provide a streamlined strategy, based on automated primer design and recombinational cloning to rapidly go from a genomic locus to a set of candidate functional SNPs in eight weeks. PMID:26658467
Biomarkers for non-human primate type-I hypersensitivity: antigen-specific immunoglobulin E assays.
Clark, Darcey; Shiota, Faith; Forte, Carla; Narayanan, Padma; Mytych, Daniel T; Hock, M Benjamin
2013-06-28
Immunoglobulin E (IgE) is the least abundant immunoglobulin in serum. However, development of an IgE immune response can induce IgE receptor-expressing cells to carry out potent effector functions. A reliable antigen-specific IgE biomarker method for use in non-human primate studies would facilitate (i) confirmation of Type-I hypersensitivity reactions during safety toxicology testing, and (ii) a better understanding of non-human primate models of allergic disease. We cloned and expressed a recombinant cynomolgus monkey IgE molecule in order to screen a panel of commercially available detection reagents raised against human IgE for cross-reactivity. The reagent most reactive to cynomolgus IgE was confirmed to be specific for IgE and did not bind recombinant cynomolgus monkey IgG1-4. A drug-specific IgE assay was developed on the MSD electrochemiluminescent (ECL) platform. The assay is capable of detecting 10 ng/mL drug-specific IgE. Importantly, the assay is able to detect IgE in the presence of excess IgG, the scenario likely to be present in a safety toxicology study. Using our ECL assay, we were able to confirm that serum from cynomolgus monkeys that had experienced clinical symptoms consistent with hypersensitivity responses contained IgE specific for a candidate therapeutic antibody. In addition, a bioassay for mast cell activation was developed using CD34(+)-derived cynomolgus monkey mast cells. This assay confirmed that plasma from animals identified as positive in the drug-specific IgE immunoassay contained biologically active IgE (i.e. could sensitize cultured mast cells), resulting in histamine release after exposure to the therapeutic antibody. These sensitive assays for Type-I hypersensitivity in the NHP can confirm that secondary events are downstream of immunogenicity. Copyright © 2013 Elsevier B.V. All rights reserved.
RNAi screen for rapid therapeutic target identification in leukemia patients
Tyner, Jeffrey W.; Deininger, Michael W.; Loriaux, Marc M.; Chang, Bill H.; Gotlib, Jason R.; Willis, Stephanie G.; Erickson, Heidi; Kovacsovics, Tibor; O'Hare, Thomas; Heinrich, Michael C.; Druker, Brian J.
2009-01-01
Targeted therapy has vastly improved outcomes in certain types of cancer. Extension of this paradigm across a broad spectrum of malignancies will require an efficient method to determine the molecular vulnerabilities of cancerous cells. Improvements in sequencing technology will soon enable high-throughput sequencing of entire genomes of cancer patients; however, determining the relevance of identified sequence variants will require complementary functional analyses. Here, we report an RNAi-assisted protein target identification (RAPID) technology that individually assesses targeting of each member of the tyrosine kinase gene family. We demonstrate that RAPID screening of primary leukemia cells from 30 patients identifies targets that are critical to survival of the malignant cells from 10 of these individuals. We identify known, activating mutations in JAK2 and K-RAS, as well as patient-specific sensitivity to down-regulation of FLT1, CSF1R, PDGFR, ROR1, EPHA4/5, JAK1/3, LMTK3, LYN, FYN, PTK2B, and N-RAS. We also describe a previously undescribed, somatic, activating mutation in the thrombopoietin receptor that is sensitive to down-stream pharmacologic inhibition. Hence, the RAPID technique can quickly identify molecular vulnerabilities in malignant cells. Combination of this technique with whole-genome sequencing will represent an ideal tool for oncogenic target identification such that specific therapies can be matched with individual patients. PMID:19433805
Chang, Chawnshang; Yeh, Shuyuan; Lee, Soo Ok; Chang, Ta-min
2013-01-01
The androgen receptor (AR) is expressed ubiquitously and plays a variety of roles in a vast number of physiological and pathophysiological processes. Recent studies of AR knockout (ARKO) mouse models, particularly the cell type- or tissue-specific ARKO models, have uncovered many AR cell type- or tissue-specific pathophysiological roles in mice, which otherwise would not be delineated from conventional castration and androgen insensitivity syndrome studies. Thus, the AR in various specific cell types plays pivotal roles in production and maturation of immune cells, bone mineralization, and muscle growth. In metabolism, the ARs in brain, particularly in the hypothalamus, and the liver appear to participate in regulation of insulin sensitivity and glucose homeostasis. The AR also plays key roles in cutaneous wound healing and cardiovascular diseases, including atherosclerosis and abdominal aortic aneurysm. This article will discuss the results obtained from the total, cell type-, or tissue-specific ARKO models. The understanding of AR cell type- or tissue-specific physiological and pathophysiological roles using these in vivo mouse models will provide useful information in uncovering AR roles in humans and eventually help us to develop better therapies via targeting the AR or its downstream signaling molecules to combat androgen/AR-related diseases. PMID:24653668
Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation.
Swindell, William R; Johnston, Andrew; Xing, Xianying; Little, Andrew; Robichaud, Patrick; Voorhees, John J; Fisher, Gary; Gudjonsson, Johann E
2013-01-01
The S100a8 and S100a9 genes encode a pro-inflammatory protein (calgranulin) that has been implicated in multiple diseases. However, involvement of S100a8/a9 in the basic mechanisms of intrinsic aging has not been established. In this study, we show that shifts in the abundance of S100a8 and S100a9 mRNA are a robust feature of aging in mammalian tissues, involving a range of cell types including the central nervous system. To identify transcription factors that control S100a9 expression, we performed a large-scale transcriptome analysis of 62 mouse and human cell types. We identified cell type-specific trends, as well as robust associations linking S100a9 coexpression to elevated frequency of ETS family motifs, and in particular, to motifs recognized by the transcription factor SPI/PU.1. Sparse occurrence of SATB1 motifs was also a strong predictor of S100a9 coexpression. These findings offer support for a novel mechanism by which a SPI1/PU.1-S100a9 axis sustains chronic inflammation during aging.
Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.
Letessier, Anne; Millot, Gaël A; Koundrioukoff, Stéphane; Lachagès, Anne-Marie; Vogt, Nicolas; Hansen, R Scott; Malfoy, Bernard; Brison, Olivier; Debatisse, Michelle
2011-02-03
Common fragile sites have long been identified by cytogeneticists as chromosomal regions prone to breakage upon replication stress. They are increasingly recognized to be preferential targets for oncogene-induced DNA damage in pre-neoplastic lesions and hotspots for chromosomal rearrangements in various cancers. Common fragile site instability was attributed to the fact that they contain sequences prone to form secondary structures that may impair replication fork movement, possibly leading to fork collapse resulting in DNA breaks. Here we show, in contrast to this view, that the fragility of FRA3B--the most active common fragile site in human lymphocytes--does not rely on fork slowing or stalling but on a paucity of initiation events. Indeed, in lymphoblastoid cells, but not in fibroblasts, initiation events are excluded from a FRA3B core extending approximately 700 kilobases, which forces forks coming from flanking regions to cover long distances in order to complete replication. We also show that origins of the flanking regions fire in mid-S phase, leaving the site incompletely replicated upon fork slowing. Notably, FRA3B instability is specific to cells showing this particular initiation pattern. The fact that both origin setting and replication timing are highly plastic in mammalian cells explains the tissue specificity of common fragile site instability we observed. Thus, we propose that common fragile sites correspond to the latest initiation-poor regions to complete replication in a given cell type. For historical reasons, common fragile sites have been essentially mapped in lymphocytes. Therefore, common fragile site contribution to chromosomal rearrangements in tumours should be reassessed after mapping fragile sites in the cell type from which each tumour originates.
Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.
Renthal, William
2018-01-01
Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.
Developing defined substrates for stem cell culture and differentiation.
Hagbard, Louise; Cameron, Katherine; August, Paul; Penton, Christopher; Parmar, Malin; Hay, David C; Kallur, Therése
2018-07-05
Over the past few decades, a variety of different reagents for stem cell maintenance and differentiation have been commercialized. These reagents share a common goal in facilitating the manufacture of products suitable for cell therapy while reducing the amount of non-defined components. Lessons from developmental biology have identified signalling molecules that can guide the differentiation process in vitro , but less attention has been paid to the extracellular matrix used. With the introduction of more biologically relevant and defined matrices, that better mimic specific cell niches, researchers now have powerful resources to fine-tune their in vitro differentiation systems, which may allow the manufacture of therapeutically relevant cell types. In this review article, we revisit the basics of the extracellular matrix, and explore the important role of the cell-matrix interaction. We focus on laminin proteins because they help to maintain pluripotency and drive cell fate specification.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.
Participation of Xenopus Elr-type Proteins in Vegetal mRNA Localization during Oogenesis*
Arthur, Patrick K.; Claussen, Maike; Koch, Susanne; Tarbashevich, Katsiaryna; Jahn, Olaf; Pieler, Tomas
2009-01-01
Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes. PMID:19458392
Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Wu, Ming-Ru; Cook, W. James; Zhang, Tong; Sentman, Charles L.
2014-11-01
Iron oxide nanoparticles (IONPs) hold great potential for cancer therapy. Actively targeting IONPs to tumor cells can further increase therapeutic efficacy and decrease off-target side effects. To target tumor cells, a natural killer (NK) cell activating receptor, NKG2D, was utilized to develop pan-tumor targeting IONPs. NKG2D ligands are expressed on many tumor types and its ligands are not found on most normal tissues under steady state conditions. The data showed that mouse and human fragment crystallizable (Fc)-fusion NKG2D (Fc-NKG2D) coated IONPs (NKG2D/NPs) can target multiple NKG2D ligand positive tumor types in vitro in a dose dependent manner by magnetic cell sorting. Tumor targeting effect was robust even under a very low tumor cell to normal cell ratio and targeting efficiency correlated with NKG2D ligand expression level on tumor cells. Furthermore, the magnetic separation platform utilized to test NKG2D/NP specificity has the potential to be developed into high throughput screening strategies to identify ideal fusion proteins or antibodies for targeting IONPs. In conclusion, NKG2D/NPs can be used to target multiple tumor types and magnetic separation platform can facilitate the proof-of-concept phase of tumor targeting IONP development.
McArthur, Monica A; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2015-05-01
Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential of circulating regulatory T cells (Treg) by flow and mass cytometry using specimens obtained from a human challenge study. Peripheral blood mononuclear cells were obtained from volunteers pre- and at multiple time-points post-challenge with wild-type S. Typhi. We identified differing patterns of S. Typhi-specific modulation of the homing potential of circulating Treg between volunteers diagnosed with typhoid (TD) and those who were not (No TD). TD volunteers demonstrated up-regulation of the gut homing molecule integrin α4ß7 pre-challenge, followed by a significant down-regulation post-challenge consistent with Treg homing to the gut. Additionally, S. Typhi-specific Treg from TD volunteers exhibited up-regulation of activation molecules post-challenge (e.g., HLA-DR, LFA-1). We further demonstrate that depletion of Treg results in increased S. Typhi-specific cytokine production by CD8+ TEM in vitro. These results suggest that the tissue distribution of activated Treg, their characteristics and activation status may play a pivotal role in typhoid fever, possibly through suppression of S. Typhi-specific effector T cell responses. These studies provide important novel insights into the regulation of immune responses that are likely to be critical in protection against typhoid and other enteric infectious diseases.
Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I
2015-01-01
A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964
Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; ...
2015-07-20
One central question is how specificity in cellular responses to the eukaryotic second messenger Ca 2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca 2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca 2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca 2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruplemore » mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca 2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca 2+-dependent and Ca 2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca 2+-signaling on a cellular, genetic, and biochemical level.« less
Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; ...
2015-07-29
A central question is how specificity in cellular responses to the eukaryotic second messenger Ca 2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca 2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca 2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca 2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruplemore » mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca 2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca 2+-dependent and Ca 2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca 2+-signaling on a cellular, genetic, and biochemical level.« less
Bodmer, J; Bodmer, W; Heyes, J; So, A; Tonks, S; Trowsdale, J; Young, J
1987-01-01
Thirty-four lymphoblastoid cell lines that had been previously typed for HLA-DP antigens by primed lymphocyte typing (PLT) were tested by Southern blotting and by ELISA. Using two DP beta probes and a DP alpha probe with a series of enzymes, it is possible to identify restriction fragment length polymorphism (RFLP) patterns characteristic of DPw1, -2, -3, -4, and possibly -5. ELISA typing results, based on two polymorphic DP antibodies DP11.1 and ILR1, were compared with PLT-defined and RFLP-defined types. Thus, using a range of probes and enzymes it is possible to identify DP polymorphism. The value of monoclonal antibodies for such studies is demonstrated, and the molecular data can, in some cases, pinpoint the amino acids responsible for the specificity of the monoclonal antibodies. Images PMID:2885841
Analysis of gene expression as relevant to cancer cells and circulating tumour cells.
Friel, Anne M; Crown, John; O'Driscoll, Lorraine
2011-01-01
Current literature provides significant evidence to support the concept that there are limited subpopulations of cells within a solid tumour that have increased tumour-initiating potential relative to the total tumour population. Such tumour-initiating cells have been identified in leukaemia and in a variety of solid tumours using different combinations of cell surface markers, suggesting that a tumour-initiating cell heterogeneity exists for each specific tumour. These studies have been extended to endometrial cancer; and herein we present several experimental approaches, both in vitro and in vivo, that can be used to determine whether such populations exist, and if so, to characterize them. These methods are adaptable to the investigation of tumour-initiating cells from other tumour types.
Veldman, Christian; Pahl, Andreas; Hertl, Michael
2009-01-01
Pemphigus vulgaris (PV) is an autoimmune bullous skin disorder associated with autoantibodies against desmoglein (Dsg) 3. An imbalance of type 1 regulatory T (Tr1) cells and T helper type 2 (Th2) cells specific for Dsg3 may be critical for the loss of tolerance against Dsg3 in PV. Within the population of Dsg3-responsive, interleukin (IL)-10-secreting Tr1 cell clones, two major subpopulations were identified and sorted by fluorescence-activated cell sorting (FACS) based on their size and granularity. Upon in vitro culture, the larger subpopulation differentiated back into the two former subpopulations of the Tr1 cell clones, while the smaller subpopulation died within 2 weeks. The smaller subpopulation of the Tr1 cell clones was characterized by the expression of Foxp3, the secretion of IL-10, transforming growth factor (TGF)-β and IL-5 upon stimulation with Dsg3, a proliferative response to IL-2 but not to Dsg3 or mitogenic stimuli, and an inhibitory effect on the proliferative response of Dsg3-responsive Th clones in a Dsg3-specific manner. In contrast, the larger subpopulation showed a Th-like phenotype, lacking Foxp3, cytotoxic T-lymphocyte antigen 4 (CTLA4) and glucocorticoid-induced tumour necrosis factor receptor (GITR) expression and IL-2 secretion, and did not mount a proliferative response to Dsg3 and mitogenic stimuli. The two Tr1 subpopulations showed expression of identical T-cell receptor (TCR) Vβ chains which varied among the PV patients studied. Upon inhibition of Foxp3, the smaller Tr1 subpopulation developed a proliferate response to Dsg3 and mitogenic stimuli, no longer suppressed Dsg3-specific Th cells, lost expression of GITR and CTLA4 and secreted IL-2. Thus, our observations suggest a distinct relationship between Dsg3-specific Tr1 and Th-like cells which may be critical for the continuous generation and survival of Dsg3-specific Tr1 cells. PMID:18800988
Cell-specific occupancy of an extended repertoire of CREM and CREB binding loci in male germ cells
2010-01-01
Background CREB and CREM are closely related factors that regulate transcription in response to various stress, metabolic and developmental signals. The CREMτ activator isoform is selectively expressed in haploid spermatids and plays an essential role in murine spermiogenesis. Results We have used chromatin immunoprecipitation coupled to sequencing (ChIP-seq) to map CREM and CREB target loci in round spermatids from adult mouse testis and spermatogonia derived GC1-spg cells respectively. We identify more than 9000 genomic loci most of which are cell-specifically occupied. Despite the fact that round spermatids correspond to a highly specialised differentiated state, our results show that they have a remarkably accessible chromatin environment as CREM occupies more than 6700 target loci corresponding not only to the promoters of genes selectively expressed in spermiogenesis, but also of genes involved in functions specific to other cell types. The expression of only a small subset of these target genes are affected in the round spermatids of CREM knockout animals. We also identify a set of intergenic binding loci some of which are associated with H3K4 trimethylation and elongating RNA polymerase II suggesting the existence of novel CREB and CREM regulated transcripts. Conclusions We demonstrate that CREM and CREB occupy a large number of promoters in highly cell specific manner. This is the first study of CREM target promoters directly in a physiologically relevant tissue in vivo and represents the most comprehensive experimental analysis of CREB/CREM regulatory potential to date. PMID:20920259