Sample records for identified compound heterozygous

  1. Homozygous and compound heterozygous mutations in the FBN1 gene: unexpected findings in molecular diagnosis of Marfan syndrome.

    PubMed

    Arnaud, Pauline; Hanna, Nadine; Aubart, Mélodie; Leheup, Bruno; Dupuis-Girod, Sophie; Naudion, Sophie; Lacombe, Didier; Milleron, Olivier; Odent, Sylvie; Faivre, Laurence; Bal, Laurence; Edouard, Thomas; Collod-Beroud, Gwenaëlle; Langeois, Maud; Spentchian, Myrtille; Gouya, Laurent; Jondeau, Guillaume; Boileau, Catherine

    2017-02-01

    Marfan syndrome (MFS) is an autosomal-dominant connective tissue disorder usually associated with heterozygous mutations in the gene encoding fibrillin-1 (FBN1). Homozygous and compound heterozygous cases are rare events and have been associated with a clinical severe presentation. Report unexpected findings of homozygosity and compound heterozygosity in the course of molecular diagnosis of heterozygous MFS and compare the findings with published cases. In the context of molecular diagnosis of heterozygous MFS, systematic sequencing of the FBN1 gene was performed in 2500 probands referred nationwide. 1400 probands carried a heterozygous mutation in this gene. Unexpectedly, among them four homozygous cases (0.29%) and five compound heterozygous cases (0.36%) were identified (total: 0.64%). Interestingly, none of these cases carried two premature termination codon mutations in the FBN1 gene. Clinical features for these carriers and their families were gathered and compared. There was a large spectrum of severity of the disease in probands carrying two mutated FBN1 alleles, but none of them presented extremely severe manifestations of MFS in any system compared with carriers of only one mutated FBN1 allele. This observation is not in line with the severe clinical features reported in the literature for four homozygous and three compound heterozygous probands. Homozygotes and compound heterozygotes were unexpectedly identified in the course of molecular diagnosis of MFS. Contrary to previous reports, the presence of two mutated alleles was not associated with severe forms of MFS. Although homozygosity and compound heterozygosity are rarely found in molecular diagnosis, they should not be overlooked, especially among consanguineous families. However, no predictive evaluation of severity should be provided. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  2. Whole-exome sequencing and digital PCR identified a novel compound heterozygous mutation in the NPHP1 gene in a case of Joubert syndrome and related disorders.

    PubMed

    Koyama, Shingo; Sato, Hidenori; Wada, Manabu; Kawanami, Toru; Emi, Mitsuru; Kato, Takeo

    2017-03-27

    Joubert syndrome and related disorders (JSRD) is a clinically and genetically heterogeneous condition with autosomal recessive or X-linked inheritance, which share a distinctive neuroradiological hallmark, the so-called molar tooth sign. JSRD is classified into six clinical subtypes based on associated variable multiorgan involvement. To date, 21 causative genes have been identified in JSRD, which makes genetic diagnosis difficult. We report here a case of a 28-year-old Japanese woman diagnosed with JS with oculorenal defects with a novel compound heterozygous mutation (p.Ser219*/deletion) in the NPHP1 gene. Whole-exome sequencing (WES) of the patient identified the novel nonsense mutation in an apparently homozygous state. However, it was absent in her mother and heterozygous in her father. A read depth-based copy number variation (CNV) detection algorithm using WES data of the family predicted a large heterozygous deletion mutation in the patient and her mother, which was validated by digital polymerase chain reaction, indicating that the patient was compound heterozygous for the paternal nonsense mutation and the maternal deletion mutation spanning the site of the single nucleotide change. It should be noted that analytical pipelines that focus purely on sequence information cannot distinguish homozygosity from hemizygosity because of its inability to detect large deletions. The ability to detect CNVs in addition to single nucleotide variants and small insertion/deletions makes WES an attractive diagnostic tool for genetically heterogeneous disorders.

  3. Novel compound heterozygous mutations identified by whole exome sequencing in a Japanese patient with geroderma osteodysplastica.

    PubMed

    Takeda, Ryojun; Takagi, Masaki; Shinohara, Hiroyuki; Futagawa, Hiroshi; Narumi, Satoshi; Hasegawa, Tomonobu; Nishimura, Gen; Yoshihashi, Hiroshi

    2017-12-01

    Geroderma osteodysplastica (GO) is a subtype of cutis laxa syndrome characterized by congenital wrinkly skin, a prematurely aged face, extremely short stature, and osteoporosis leading to recurrent fractures. GO exhibits an autosomal recessive inheritance pattern and is caused by loss-of-function mutations in GORAB, which encodes a protein important for Golgi-related transport. Using whole exome sequencing, we identified novel compound heterozygous nonsense mutations in the GORAB in a GO patient. The patient was a 14-year-old Japanese boy. Wrinkled skin and joint laxity were present at birth. At 1 year of age, he was clinically diagnosed with cutis laxa syndrome based on recurrent long bone fractures and clinical features, including wrinkled skin, joint laxity, and a distinctive face. He did not show retarded gross motor and cognitive development. At 11 years of age, he was treated with oral bisphosphonate and vitamin D owing to recurrent multiple spontaneous fractures of the vertebral and extremity bones associated with a low bone mineral density (BMD). Bisphosphonate treatment improved his BMD and fracture rate. Whole exome sequencing revealed two novel compound heterozygous nonsense mutations in the GORAB gene (p.Arg60* and p.Gln124*), and the diagnosis of GO was established. GO is a rare connective tissue disorder. Approximately 60 cases have been described to date, and this is the first report of a patient from Japan. Few studies have reported the effects of bisphosphonate treatment in GO patients with recurrent spontaneous fractures. Based on this case study, we hypothesize that oral bisphosphonate and vitamin D are effective and safe treatment options for the management of recurrent fractures in GO patients. It is important to establish a precise diagnosis of GO to prevent recurrent fractures and optimize treatment plans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII.

    PubMed

    Huang, Yanru; Mei, Libin; Lv, Weigang; Li, Haoxian; Zhang, Rui; Pan, Qian; Tan, Hu; Guo, Jing; Luo, Xiaomei; Chen, Chen; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Osteogenesis imperfecta (OI) is a highly clinically and genetically heterogeneous group of disorders. It is difficult to identify severe OI in the perinatal period. Here, a Chinese woman with a suspected history of fetal OI was referred to our institution at 19weeks of gestation, due to ultrasound inspection during antenatal screening, which revealed bulbous metaphyses, short humeri, and short thick bent femora in the fetus. Using targeted exome sequencing of 248 genes known to be involved in skeletal system diseases, we identified novel compound heterozygous mutation in the P3H1 gene in the fetus with OI type VIII: c.105_120del (p.D36Rfs*16) and c.2164C>T (p.Q722*). These two mutations were inherited from the father and mother, respectively. The mRNA level of P3H1 wasn't changed suggested that mRNA with this mutation escaped from nonsense-mediated RNA decay. Besides, the level of P3H1 was absence while the CRTAP was mildly decreased. In conclusion, our findings imply this novel compound heterozygous mutation as the molecular pathogenetic in a Chinese fetus with OI type VIII, and demonstrate that targeted next-generation sequencing (NGS) is an accurate, rapid, and cost-effective method in the genetic diagnosis of fetal skeletal dysplasia with genetic and clinical heterogeneity, especially for autosomal recessive skeletal disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis.

    PubMed

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis.

  6. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis

    PubMed Central

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis. PMID:28819563

  7. Primary microcephaly caused by novel compound heterozygous mutations in ASPM

    PubMed Central

    Okamoto, Nobuhiko; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Imoto, Issei

    2018-01-01

    Autosomal recessive primary microcephaly (microcephaly primary hereditary, MCPH) is a genetically heterogeneous rare developmental disorder that is characterized by prenatal onset of abnormal brain growth, which leads to intellectual disability of variable severity. We report a 5-year-old male who presented with a severe form of primary microcephaly. Targeted panel sequencing revealed compound heterozygous truncating mutations of the abnormal spindle-like microcephaly-associated (ASPM) gene, which confirmed the MCPH5 diagnosis. A novel NM_018136.4: c.9742_9745del (p.Lys3248Serfs*13) deletion mutation was identified. PMID:29644084

  8. Primary microcephaly caused by novel compound heterozygous mutations in ASPM.

    PubMed

    Okamoto, Nobuhiko; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Imoto, Issei

    2018-01-01

    Autosomal recessive primary microcephaly (microcephaly primary hereditary, MCPH) is a genetically heterogeneous rare developmental disorder that is characterized by prenatal onset of abnormal brain growth, which leads to intellectual disability of variable severity. We report a 5-year-old male who presented with a severe form of primary microcephaly. Targeted panel sequencing revealed compound heterozygous truncating mutations of the abnormal spindle-like microcephaly-associated ( ASPM ) gene, which confirmed the MCPH5 diagnosis. A novel NM_018136.4: c.9742_9745del (p.Lys3248Serfs*13) deletion mutation was identified.

  9. Novel compound heterozygous mutations in SERPINH1 cause rare autosomal recessive osteogenesis imperfecta type X.

    PubMed

    Song, Y; Zhao, D; Xu, X; Lv, F; Li, L; Jiang, Y; Wang, O; Xia, W; Xing, X; Li, M

    2018-03-09

    We identified novel compound heterozygous mutations in SERPINH1 in a Chinese boy suffering from recurrent fractures, femoral deformities, and growth retardation, which resulted in extremely rare autosomal recessive OI type X. Long-term treatment of BPs was effective in increasing BMD Z-score, reducing fracture incidence and reshaping vertebrae compression. Osteogenesis imperfecta (OI) is a heritable bone disorder characterized by low bone mineral density, recurrent fractures, and progressive bone deformities. Mutation in serpin peptidase inhibitor clade H, member 1 (SERPINH1), which encodes heat shock protein 47 (HSP47), leads to rare autosomal recessive OI type X. We aimed to detect the phenotype and the pathogenic mutation of OI type X in a boy from a non-consanguineous Chinese family. We investigated the pathogenic mutations and analyzed their relationship with the phenotype in the patient using next-generation sequencing (NGS) and Sanger sequencing. Moreover, the efficacy of long-term bisphosphonate treatment in this patient was evaluated. The patient suffered from multiple fractures, low bone mass, and bone deformities in the femur, without dentinogenesis imperfecta or hearing loss. Compound heterozygous variants were found in SERPINH1 as follows: c.149 T>G in exon 2 and c.1214G>A in exon 5. His parents were heterozygous carriers of each of these mutations, respectively. Bisphosphonates could be helpful in increasing BMD Z-score, reducing bone fracture risk and reshaping the compressed vertebral bodies of this patient. We reported novel compound heterozygous mutations in SERPINH1 in a Chinese OI patient for the first time, which expanded the spectrum of phenotype and genotype of extremely rare OI type X.

  10. Novel compound heterozygous mutations in MYO7A gene associated with autosomal recessive sensorineural hearing loss in a Chinese family.

    PubMed

    Ma, Yalin; Xiao, Yun; Zhang, Fengguo; Han, Yuechen; Li, Jianfeng; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-04-01

    Mutations in MYO7A gene have been reported to be associated with Usher Syndrome type 1B (USH1B) and nonsyndromic hearing loss (DFNB2, DFNA11). Most mutations in MYO7A gene caused USH1B, whereas only a few reported mutations led to DFNB2 and DFNA11. The current study was designed to investigate the mutations among a Chinese family with autosomal recessive hearing loss. In this study, we present the clinical, genetic and molecular characteristics of a Chinese family. Targeted capture of 127 known deafness genes and next-generation sequencing were employed to study the genetic causes of two siblings in the Chinese family. Sanger sequencing was employed to examine those variant mutations in the members of this family and other ethnicity-matched controls. We identified the novel compound heterozygous mutant alleles of MYO7A gene: a novel missense mutation c.3671C>A (p.A1224D) and a reported insert mutation c.390_391insC (p.P131PfsX9). Variants were further confirmed by Sanger sequencing. These two compound heterozygous variants were co-segregated with autosomal recessive hearing loss phenotype. The gene mutation analysis and protein sequence alignment further supported that the novel compound heterozygous mutations were pathogenic. The novel compound heterozygous mutations (c.3671C>A and c.390_391insC) in MYO7A gene identified in this study were responsible for the autosomal recessive sensorineural hearing loss of this Chinese family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects

    PubMed Central

    Ellard, Sian ; Flanagan, Sarah E. ; Girard, Christophe A. ; Patch, Ann-Marie ; Harries, Lorna W. ; Parrish, Andrew ; Edghill, Emma L. ; Mackay, Deborah J. G. ; Proks, Peter ; Shimomura, Kenju ; Haberland, Holger ; Carson, Dennis J. ; Shield, Julian P. H. ; Hattersley, Andrew T. ; Ashcroft, Frances M. 

    2007-01-01

    Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell KATP channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the KATP channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present. PMID:17668386

  12. Novel compound heterozygous mutations in MYO7A Associated with Usher syndrome 1 in a Chinese family.

    PubMed

    Gao, Xue; Wang, Guo-Jian; Yuan, Yong-Yi; Xin, Feng; Han, Ming-Yu; Lu, Jing-Qiao; Zhao, Hui; Yu, Fei; Xu, Jin-Cao; Zhang, Mei-Guang; Dong, Jiang; Lin, Xi; Dai, Pu

    2014-01-01

    Usher syndrome is an autosomal recessive disease characterized by sensorineural hearing loss, age-dependent retinitis pigmentosa (RP), and occasionally vestibular dysfunction. The most severe form is Usher syndrome type 1 (USH1). Mutations in the MYO7A gene are responsible for USH1 and account for 29-55% of USH1 cases. Here, we characterized a Chinese family (no. 7162) with USH1. Combining the targeted capture of 131 known deafness genes, next-generation sequencing, and bioinformatic analysis, we identified two deleterious compound heterozygous mutations in the MYO7A gene: a reported missense mutation c.73G>A (p.G25R) and a novel nonsense mutation c.462C>A (p.C154X). The two compound variants are absent in 219 ethnicity-matched controls, co-segregates with the USH clinical phenotypes, including hearing loss, vestibular dysfunction, and age-dependent penetrance of progressive RP, in family 7162. Therefore, we concluded that the USH1 in this family was caused by compound heterozygous mutations in MYO7A.

  13. [A novel compound heterozygous mutation in ABCA3 gene in a child with diffuse parenchymal lung disease].

    PubMed

    Bao, Y M; Liu, X L; Liu, X L; Chen, J H; Zheng, Y J

    2017-11-02

    Objective: To summarize the clinical characteristics of the diffuse parenchymal lung diseases in a child caused by a novel compound heterozygous ABCA3 mutation and explore the association between the phenotype and ABCA3 mutation. Method: The clinical material of a patient diagnosed with diffuse parenchymal lung disease with ABCA3 mutation in December 2016 in Shenzhen Children's Hospital was analyzed. The information about ABCA3 gene mutation updated before April, 2017 was searched and collected from the gene databases (including 1000Genomes, HGMD, EXAC) and the literatures (including Wanfang Chinese database and Pubmed). Result: The girl was one year and nine months old. She presented with chronic cough, tachypnea, cyanosis and failure to thrive since she was one year and three months old. Her condition gradually deteriorated after she was empirically treated. Physical examination showed malnutrition, tachypnea and clubbed-fingers. Her high resolution computed tomography (HRCT) revealed diffused ground-glass opacities, thickened interlobular septum, and multiple subpleural small air-filled lung cysts. The second generation sequencing study identified a novel compound heterozygous mutation (c.1755delC+c.2890G>A) in her ABCA3 gene, which derived respectively from her parents and has not been reported in the database and the literatures mentioned above. Conclusion: c.1755delC+c.2890G>A is a new kind of compound heterozygous mutation in ABCA3, which can cause children's diffuse parenchymal lung disease. Its phenotype is related to its genotype.

  14. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa.

    PubMed

    Méndez-Vidal, Cristina; González-Del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud; Antiñolo, Guillermo

    2013-01-01

    Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with commonly used techniques. Our data

  15. Whole-exome sequencing identifies novel compound heterozygous mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa

    PubMed Central

    Méndez-Vidal, Cristina; González-del Pozo, María; Vela-Boza, Alicia; Santoyo-López, Javier; López-Domingo, Francisco J.; Vázquez-Marouschek, Carmen; Dopazo, Joaquin; Borrego, Salud

    2013-01-01

    Purpose Retinitis pigmentosa (RP) is an inherited retinal dystrophy characterized by extreme genetic and clinical heterogeneity. Thus, the diagnosis is not always easily performed due to phenotypic and genetic overlap. Current clinical practices have focused on the systematic evaluation of a set of known genes for each phenotype, but this approach may fail in patients with inaccurate diagnosis or infrequent genetic cause. In the present study, we investigated the genetic cause of autosomal recessive RP (arRP) in a Spanish family in which the causal mutation has not yet been identified with primer extension technology and resequencing. Methods We designed a whole-exome sequencing (WES)-based approach using NimbleGen SeqCap EZ Exome V3 sample preparation kit and the SOLiD 5500×l next-generation sequencing platform. We sequenced the exomes of both unaffected parents and two affected siblings. Exome analysis resulted in the identification of 43,204 variants in the index patient. All variants passing filter criteria were validated with Sanger sequencing to confirm familial segregation and absence in the control population. In silico prediction tools were used to determine mutational impact on protein function and the structure of the identified variants. Results Novel Usher syndrome type 2A (USH2A) compound heterozygous mutations, c.4325T>C (p.F1442S) and c.15188T>G (p.L5063R), located in exons 20 and 70, respectively, were identified as probable causative mutations for RP in this family. Family segregation of the variants showed the presence of both mutations in all affected members and in two siblings who were apparently asymptomatic at the time of family ascertainment. Clinical reassessment confirmed the diagnosis of RP in these patients. Conclusions Using WES, we identified two heterozygous novel mutations in USH2A as the most likely disease-causing variants in a Spanish family diagnosed with arRP in which the cause of the disease had not yet been identified with

  16. Identification of compound heterozygous patients with primary hyperoxaluria type 1: clinical evaluations and in silico investigations.

    PubMed

    Kanoun, Houda; Jarraya, Faiçal; Maalej, Bayen; Lahiani, Amina; Mahfoudh, Hichem; Makni, Fatma; Hachicha, Jamil; Fakhfakh, Faiza

    2017-10-02

    Primary hyperoxaluria type 1 (PH1) is an autosomal recessive inherited disorder of glyoxylate metabolism in which excessive oxalates are formed by the liver and excreted by the kidneys. Calcium oxalate crystallizes in the urine, leading to urolithiasis, nephrocalcinosis, and consequent renal failure if treatment is not initiated promptly. Mutations in the AGXT gene which encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase are responsible of PH1. In the present work, we aimed to analyze AGXT gene and in silico investigations performed in four patients with PH1 among two non consanguineous families. Exhaustive gene sequencing was performed after PCR amplification of coding exons and introns boundaries. Bioinformatic tools were used to predict the impact of AGXT variants on gene expression as well as on the protein structure and function. Direct sequencing of all exons of AGXT gene revealed the emergence of multiple mutations in compound heterozygous state in the two studied families. Two patients were compound heterozygous for the c.731 T > C, c.32C > T, c.1020A > G and c.33_34insC and presented clinically with recurrent urinary tract infection, multiple urolithiasis and nephrocalcinosis under the age of 1 year and a persistent hyperoxaluria at the age of diagnosis. The two other patients presenting a less severe phenotypes were heterozygous for c.731 T > C and homozygous for the c.32C > T and c.1020A > G or compound heterozygous for c.26C > A and c.65A > G variants. In Summary, we provided relevance regarding the compound heterozygous mutations in non consanguineous PH1 families with variable severity.

  17. Novel compound heterozygous mutations in the OTOF Gene identified by whole-exome sequencing in auditory neuropathy spectrum disorder.

    PubMed

    Tang, Fengzhu; Ma, Dengke; Wang, Yulan; Qiu, Yuecai; Liu, Fei; Wang, Qingqing; Lu, Qiutian; Shi, Min; Xu, Liang; Liu, Min; Liang, Jianping

    2017-03-23

    Many hearing-loss diseases are demonstrated to have Mendelian inheritance caused by mutations in single gene. However, many deaf individuals have diseases that remain genetically unexplained. Auditory neuropathy is a sensorineural deafness in which sounds are able to be transferred into the inner ear normally but the transmission of the signals from inner ear to auditory nerve and brain is injured, also known as auditory neuropathy spectrum disorder (ANSD). The pathogenic mutations of the genes responsible for the Chinese ANSD population remain poorly understood. A total of 127 patients with non-syndromic hearing loss (NSHL) were enrolled in Guangxi Zhuang Autonomous Region. A hereditary deafness gene mutation screening was performed to identify the mutation sites in four deafness-related genes (GJB2, GJB3, 12S rRNA, and SLC26A4). In addition, whole-exome sequencing (WES) was applied to explore unappreciated mutation sites in the cases with the singularity of its phenotype. Well-characterized mutations were found in only 8.7% (11/127) of the patients. Interestingly, two mutations in the OTOF gene were identified in two affected siblings with ANSD from a Chinese family, including one nonsense mutation c.1273C > T (p.R425X) and one missense mutation c.4994 T > C (p.L1665P). Furthermore, we employed Sanger sequencing to confirm the mutations in each subject. Two compound heterozygous mutations in the OTOF gene were observed in the two affected siblings, whereas the two parents and unaffected sister were heterozygous carriers of c.1273C > T (father and sister) and c.4994 T > C (mother). The nonsense mutation p.R425X, contributes to a premature stop codon, may result in a truncated polypeptide, which strongly suggests its pathogenicity for ANSD. The missense mutation p.L1665P results in a single amino acid substitution in a highly conserved region. Two mutations in the OTOF gene in the Chinese deaf population were recognized for the first time. These

  18. Rare Compound Heterozygous Frameshift Mutations in ALMS1 Gene Identified Through Exome Sequencing in a Taiwanese Patient With Alström Syndrome.

    PubMed

    Tsai, Meng-Che; Yu, Hui-Wen; Liu, Tsunglin; Chou, Yen-Yin; Chiou, Yuan-Yow; Chen, Peng-Chieh

    2018-01-01

    Alström syndrome (AS) is a rare autosomal recessive disorder that shares clinical features with other ciliopathy-related diseases. Genetic mutation analysis is often required in making differential diagnosis but usually costly in time and effort using conventional Sanger sequencing. Herein we describe a Taiwanese patient presenting cone-rod dystrophy and early-onset obesity that progressed to diabetes mellitus with marked insulin resistance during adolescence. Whole exome sequencing of the patient's genomic DNA identified a novel frameshift mutation in exons 15 (c.10290_10291delTA, p.Lys3431Serfs * 10) and a rare mutation in 16 (c.10823_10824delAG, p.Arg3609Alafs * 6) of ALMS1 gene. The compound heterozygous mutations were predicted to render truncated proteins. This report highlighted the clinical utility of exome sequencing and extended the knowledge of mutation spectrum in AS patients.

  19. Clinical and functional characterization of a patient carrying a compound heterozygous pericentrin mutation and a heterozygous IGF1 receptor mutation.

    PubMed

    Müller, Eva; Dunstheimer, Desiree; Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration.

  20. Clinical and Functional Characterization of a Patient Carrying a Compound Heterozygous Pericentrin Mutation and a Heterozygous IGF1 Receptor Mutation

    PubMed Central

    Klammt, Jürgen; Friebe, Daniela; Kiess, Wieland; Kratzsch, Jürgen; Kruis, Tassilo; Laue, Sandy; Pfäffle, Roland; Wallborn, Tillmann; Heidemann, Peter H.

    2012-01-01

    Intrauterine and postnatal longitudinal growth is controlled by a strong genetic component that regulates a complex network of endocrine factors integrating them with cellular proliferation, differentiation and apoptotic processes in target tissues, particularly the growth centers of the long bones. Here we report on a patient born small for gestational age (SGA) with severe, proportionate postnatal growth retardation, discreet signs of skeletal dysplasia, microcephaly and moyamoya disease. Initial genetic evaluation revealed a novel heterozygous IGF1R p.Leu1361Arg mutation affecting a highly conserved residue with the insulin-like growth factor type 1 receptor suggestive for a disturbance within the somatotropic axis. However, because the mutation did not co-segregate with the phenotype and functional characterization did not reveal an obvious impairment of the ligand depending major IGF1R signaling capabilities a second-site mutation was assumed. Mutational screening of components of the somatotropic axis, constituents of the IGF signaling system and factors involved in cellular proliferation, which are described or suggested to provoke syndromic dwarfism phenotypes, was performed. Two compound heterozygous PCNT mutations (p.[Arg585X];[Glu1774X]) were identified leading to the specification of the diagnosis to MOPD II. These investigations underline the need for careful assessment of all available information to derive a firm diagnosis from a sequence aberration. PMID:22693602

  1. A new compound heterozygous CFTR mutation in a Chinese family with cystic fibrosis.

    PubMed

    Xie, Yingjun; Huang, Xueqiong; Liang, Yujian; Xu, Lingling; Pei, Yuxin; Cheng, Yucai; Zhang, Lidan; Tang, Wen

    2017-11-01

    Cystic fibrosis (CF) is the most common autosomal recessive disease among Caucasians but is rarer in the Chinese population, because mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To elucidate the causative role of a novel compound heterozygous mutation of CF. In this study, clinical samples were obtained from two siblings with recurrent airway infections, clubbed fingers, salt-sweat and failure to gain weight in a non-consanguineous Chinese family. Next-generation sequencing was performed on the 27 coding exons of CFTR in both children, with confirmation by Sanger sequencing. Next-generation sequencing showed the same compound heterozygous CFTR mutation (c.865A>T p.Arg289X and c.3651_3652insAAAT p.Tyr1219X) in both children. As this mutation is consistent with the clinical manifestations of CF and no other mutations were detected after scanning the gene sequence, we suggest that the CF phenotype is caused by compound heterozygosity for c.865A>T and c.3651_3652insAAAT. As c865A>T is not currently listed in the "Cystic Fibrosis Mutation Database", this information about CF in a Chinese population is of interest. © 2015 John Wiley & Sons Ltd.

  2. Prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous mutations in GCDH gene.

    PubMed

    Peng, Hsiu-Huei; Shaw, Sheng-Wen; Huang, Kuan-Gen

    2018-02-01

    Glutaric aciduria type 1 is a rare disease, with the estimated prevalence about 1 in 100,000 newborns. GCDH gene mutation can lead to glutaric acid and 3- OH glutaric acid accumulation, with clinical manifestation of neuronal damage, brain atrophy, microencephalic macrocephaly, decreased coordination of swallowing, poor muscle coordination, spasticity, and severe dystonic movement disorder. A 22-year-old female, Gravida 4 Para 2, is pregnancy at 13 weeks of gestational age. Her first child is normal, however, the second child was diagnosed as glutaric aciduria type I after birth. She came to our hospital for prenatal genetic counselling of her fetus at 13 weeks of gestational age. We performed GCDH gene mutation analysis of maternal blood showed IVS 3 + 1 G > A heterozygous mutation, GCDH gene mutation analysis of paternal blood showed c. 1240 G > A heterozygous mutation, and the second child has compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. Later, we performed amniocentesis at 16 weeks of gestational age for chromosome study and GCDH gene mutation analysis for the fetus. The fetal chromosome study showed normal karyotype, however, GCDH gene mutation analysis showed compound heterozygous IVS 3 + 1 G > A and c. 1240 G > A mutations. The couple decided to termination of pregnancy thereafter. Glutaric acidemia type 1 is an autosomal recessive disorder because of pathogenic mutations in the GCDH gene. Early diagnosis and therapy of glutaric acidemia type 1 can reduce the risk of neuronal damage and acute dystonia. We report a case of prenatal diagnosis of fetal glutaric aciduria type 1 with rare compound heterozygous GCDH gene mutation at IVS 3 + 1 G > A and c. 1240 G > A mutations, which provide better genetic counselling for the couples. Copyright © 2018. Published by Elsevier B.V.

  3. Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome)

    PubMed Central

    Monroe, Glen R; Kappen, Isabelle FPM; Stokman, Marijn F; Terhal, Paulien A; van den Boogaard, Marie-José H; Savelberg, Sanne MC; van der Veken, Lars T; van Es, Robert JJ; Lens, Susanne M; Hengeveld, Rutger C; Creton, Marijn A; Janssen, Nard G; Mink van der Molen, Aebele B; Ebbeling, Michelle B; Giles, Rachel H; Knoers, Nine V; van Haaften, Gijs

    2016-01-01

    The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C][1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD. PMID:27530628

  4. Compound heterozygous NEK1 variants in two siblings with oral-facial-digital syndrome type II (Mohr syndrome).

    PubMed

    Monroe, Glen R; Kappen, Isabelle Fpm; Stokman, Marijn F; Terhal, Paulien A; van den Boogaard, Marie-José H; Savelberg, Sanne Mc; van der Veken, Lars T; van Es, Robert Jj; Lens, Susanne M; Hengeveld, Rutger C; Creton, Marijn A; Janssen, Nard G; Mink van der Molen, Aebele B; Ebbeling, Michelle B; Giles, Rachel H; Knoers, Nine V; van Haaften, Gijs

    2016-12-01

    The oral-facial-digital (OFD) syndromes comprise a group of related disorders with a combination of oral, facial and digital anomalies. Variants in several ciliary genes have been associated with subtypes of OFD syndrome, yet in most OFD patients the underlying cause remains unknown. We investigated the molecular basis of disease in two brothers with OFD type II, Mohr syndrome, by performing single-nucleotide polymorphism (SNP)-array analysis on the brothers and their healthy parents to identify homozygous regions and candidate genes. Subsequently, we performed whole-exome sequencing (WES) on the family. Using WES, we identified compound heterozygous variants c.[464G>C];[1226G>A] in NIMA (Never in Mitosis Gene A)-Related Kinase 1 (NEK1). The novel variant c.464G>C disturbs normal splicing in an essential region of the kinase domain. The nonsense variant c.1226G>A, p.(Trp409*), results in nonsense-associated alternative splicing, removing the first coiled-coil domain of NEK1. Candidate variants were confirmed with Sanger sequencing and alternative splicing assessed with cDNA analysis. Immunocytochemistry was used to assess cilia number and length. Patient-derived fibroblasts showed severely reduced ciliation compared with control fibroblasts (18.0 vs 48.9%, P<0.0001), but showed no significant difference in cilia length. In conclusion, we identified compound heterozygous deleterious variants in NEK1 in two brothers with Mohr syndrome. Ciliation in patient fibroblasts is drastically reduced, consistent with a ciliary defect pathogenesis. Our results establish NEK1 variants involved in the etiology of a subset of patients with OFD syndrome type II and support the consideration of including (routine) NEK1 analysis in patients suspected of OFD.

  5. Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.

    PubMed

    Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L

    2016-08-01

    Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. © The Author(s) 2016.

  6. Compound heterozygous TYK2 mutations underlie primary immunodeficiency with T-cell lymphopenia.

    PubMed

    Nemoto, Michiko; Hattori, Hiroyoshi; Maeda, Naoko; Akita, Nobuhiro; Muramatsu, Hideki; Moritani, Suzuko; Kawasaki, Tomonori; Maejima, Masami; Ode, Hirotaka; Hachiya, Atsuko; Sugiura, Wataru; Yokomaku, Yoshiyuki; Horibe, Keizo; Iwatani, Yasumasa

    2018-05-03

    Complete tyrosine kinase 2 (TYK2) deficiency has been previously described in patients with primary immunodeficiency diseases. The patients were infected with various pathogens, including mycobacteria and/or viruses, and one of the patients developed hyper-IgE syndrome. A detailed immunological investigation of these patients revealed impaired responses to type I IFN, IL-10, IL-12 and IL-23, which are associated with increased susceptibility to mycobacterial and/or viral infections. Herein, we report a recessive partial TYK2 deficiency in two siblings who presented with T-cell lymphopenia characterized by low naïve CD4 + T-cell counts and who developed Epstein-Barr virus (EBV)-associated B-cell lymphoma. Targeted exome-sequencing of the siblings' genomes demonstrated that both patients carried novel compound heterozygous mutations (c.209_212delGCTT/c.691C > T, p.Cys70Serfs*21/p.Arg231Trp) in the TYK2. The TYK2 protein levels were reduced by 35% in the T cells of the patient. Unlike the response under complete TYK2 deficiency, the patient's T cells responded normally to type I IFN, IL-6, IL-10 and IL-12, whereas the cells displayed an impaired response to IL-23. Furthermore, the level of STAT1 was low in the cells of the patient. These studies reveal a new clinical entity of a primary immunodeficiency with T-cell lymphopenia that is associated with compound heterozygous TYK2 mutations in the patients.

  7. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1

    PubMed Central

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui

    2013-01-01

    Purpose To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). Methods An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Results Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. Conclusions In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A. PMID:23559863

  8. Novel compound heterozygous mutations in MYO7A in a Chinese family with Usher syndrome type 1.

    PubMed

    Liu, Fei; Li, Pengcheng; Liu, Ying; Li, Weirong; Wong, Fulton; Du, Rong; Wang, Lei; Li, Chang; Jiang, Fagang; Tang, Zhaohui; Liu, Mugen

    2013-01-01

    To identify the disease-causing mutation(s) in a Chinese family with autosomal recessive Usher syndrome type 1 (USH1). An ophthalmic examination and an audiometric test were conducted to ascertain the phenotype of two affected siblings. The microsatellite marker D11S937, which is close to the candidate gene MYO7A (USH1B locus), was selected for genotyping. From the DNA of the proband, all coding exons and exon-intron boundaries of MYO7A were sequenced to identify the disease-causing mutation(s). Restriction fragment length polymorphism (RFLP) analysis was performed to exclude the alternative conclusion that the mutations are non-pathogenic rare polymorphisms. Based on severe hearing impairment, unintelligible speech, and retinitis pigmentosa, a clinical diagnosis of Usher syndrome type 1 was made. The genotyping results did not exclude the USH1B locus, which suggested that the MYO7A gene was likely the gene associated with the disease-causing mutation(s) in the family. With direct DNA sequencing of MYO7A, two novel compound heterozygous mutations (c.3742G>A and c.6051+1G>A) of MYO7A were identified in the proband. DNA sequence analysis and RFLP analysis of other family members showed that the mutations cosegregated with the disease. Unaffected members, including the parents, uncle, and sister of the proband, carry only one of the two mutations. The mutations were not present in the controls (100 normal Chinese subjects=200 chromosomes) according to the RFLP analysis. In this study, we identified two novel mutations, c.3742G>A (p.E1248K) and c.6051+1G>A (donor splice site mutation in intron 44), of MYO7A in a Chinese non-consanguineous family with USH1. The mutations cosegregated with the disease and most likely cause the phenotype in the two affected siblings who carry these mutations compound heterozygously. Our finding expands the mutational spectrum of MYO7A.

  9. Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygous CSTB point and indel mutations.

    PubMed

    Canafoglia, Laura; Gennaro, Elena; Capovilla, Giuseppe; Gobbi, Giuseppe; Boni, Antonella; Beccaria, Francesca; Viri, Maurizio; Michelucci, Roberto; Agazzi, Pamela; Assereto, Stefania; Coviello, Domenico A; Di Stefano, Maria; Rossi Sebastiano, Davide; Franceschetti, Silvana; Zara, Federico

    2012-12-01

    Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships. We screened CSTB mutations by means of Southern blotting and the sequencing of the genomic DNA of each proband. CSTB messenger RNA (mRNA) aberrations were characterized by sequencing the complementary DNA (cDNA) of lymphoblastoid cells, and assessing the protein concentrations in the lymphoblasts. The patient evaluations included the use of a simplified myoclonus severity rating scale, multiple neurophysiologic tests, and electroencephalography (EEG)-polygraphic recordings. To highlight the particular clinical features and disease time-course in compound heterozygous patients, we compared some of their characteristics with those observed in a series of 40 patients carrying the common homozygous expansion mutation observed at the C. Besta Foundation, Milan, Italy. The eight compound heterozygous patients belong to six EPM1A families (out of 52; 11.5%) diagnosed at the Laboratory of Genetics of the Galliera Hospitals in Genoa, Italy. They segregated five different heterozygous point or indel mutations in association with the common dodecamer expansion. Four patients from three families had previously reported CSTB mutations (c.67-1G>C and c.168+1_18del); one had a novel nonsense mutation at the first exon (c.133C>T) leading to a premature stop codon predicting a short peptide; the other three patients from two families had a complex novel indel mutation involving the donor splice site of intron 2 (c.168+2_169+21delinsAA) and leading to an aberrant transcript with a partially retained intron

  10. [Novel CHST6 compound heterozygous mutations cause macular corneal dystrophy in a Chinese family].

    PubMed

    Qi, Yan-hua; Dang, Xiu-hong; Su, Hong; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shang-zhi

    2010-02-01

    The aim of this study was to identify mutations of CHST6 gene in a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes of MCD. Corneal button of the proband was obtained from penetrating keratoplasty for the treatment of severe corneal dystrophy. The sections and ultrathin sections of this specimen were examined under light microscope and transmission electron microscope (TEM). Genomic DNA was extracted from leukocytes in peripheral blood from the family members. The coding region of CHST6 was amplified by polymerase chain reaction (PCR). The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Histochemical study revealed positive results of colloidal iron stain. TEM revealed enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. Two mutations, Q298X Y358H, were identified in exon 3 of CHST6. Three patients were compound heterozygotes of these two mutations. The C892T transversion occurred at codon 298 turned the codon of glutamine to a stop codon; the T1072C transversion occurred at codon 358 caused a missense mutation, tyrosine to histidine. All six unaffected family members were heterozygotes. These two mutations were not detected in any of the 100 control subjects. The novel compound heterozygous mutation results in loss of CHST6 function and causes the occurrence of MCD. This is the first report of this gene mutation.

  11. Compound heterozygous PNPLA6 mutations cause Boucher-Neuhäuser syndrome with late-onset ataxia.

    PubMed

    Deik, A; Johannes, B; Rucker, J C; Sánchez, E; Brodie, S E; Deegan, E; Landy, K; Kajiwara, Y; Scelsa, S; Saunders-Pullman, R; Paisán-Ruiz, C

    2014-12-01

    PNPLA6 mutations, known to be associated with the development of motor neuron phenotypes, have recently been identified in families with Boucher-Neuhäuser syndrome. Boucher-Neuhäuser is a rare autosomal recessive syndrome characterized by the co-occurrence of cerebellar ataxia, hypogonadotropic hypogonadism, and chorioretinal dystrophy. Gait ataxia in Boucher-Neuhäuser usually manifests before early adulthood, although onset in the third or fourth decade has also been reported. However, given the recent identification of PNPLA6 mutations as the cause of this condition, the determining factors of age of symptom onset still need to be established. Here, we have identified a sporadic Boucher-Neuhäuser case with late-onset gait ataxia and relatively milder retinal changes due to compound heterozygous PNPLA6 mutations. Compound heterozygosity was confirmed by cloning and sequencing the patient's genomic DNA from coding exons 26-29. Furthermore, both mutations (one novel and one known) fell in the phospholipase esterase domain, where most pathogenic mutations seem to cluster. Taken together, we herein confirm PNPLA6 mutations as the leading cause of Boucher-Neuhäuser syndrome and suggest inquiring about a history of hypogonadism or visual changes in patients presenting with late-onset gait ataxia. We also advocate for neuroophthalmologic evaluation in suspected cases.

  12. Compound heterozygous HAX1 mutations in a Swedish patient with severe congenital neutropenia and no neurodevelopmental abnormalities.

    PubMed

    Carlsson, Göran; Elinder, Göran; Malmgren, Helena; Trebinska, Alicja; Grzybowska, Ewa; Dahl, Niklas; Nordenskjöld, Magnus; Fadeel, Bengt

    2009-12-01

    Kostmann disease or severe congenital neutropenia (SCN) is an autosomal recessive disorder of neutrophil production. Homozygous HAX1 mutations were recently identified in SCN patients belonging to the original family in northern Sweden described by Kostmann. Moreover, recent studies have suggested an association between neurological dysfunction and HAX1 deficiency. Here we describe a patient with a compound heterozygous HAX1 mutation consisting of a nonsense mutation (c.568C > T, p.Glu190X) and a frame-shift mutation (c.91delG, p.Glu31LysfsX54) resulting in a premature stop codon. The patient has a history of neutropenia and a propensity for infections, but has shown no signs of neurodevelopmental abnormalities.

  13. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family.

    PubMed

    Zhang, Shanshan; Li, Jie; Li, Shujin; Yang, Yeming; Yang, Mu; Yang, Zhenglin; Zhu, Xianjun; Zhang, Lin

    2018-04-25

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease with over 70 causative genes identified to date. However, approximately 40% of RP cases remain genetically unsolved, suggesting that many novel disease-causing mutations are yet to be identified. The purpose of this study is to identify the causative mutations of a Chinese RP family. Targeted next-generation sequencing (NGS) for a total of 163 genes which involved in inherited retinal disorders were used to screen the possible causative mutations. Sanger sequencing was used to verify the mutations. As results, we identified two heterozygous mutations: a splicing site mutation c.1407 + 1G>C and a nonsense mutation c. 1957C>T (p.R653X) in phosphodiesterase 6A (PDE6A) gene in the RP patient. These two mutations are inherited from his father and mother, respectively. Furthermore, these mutations are unique in our in-house database and are rare in human genome databases, implicating that these two mutations are pathological. By using targeted NGS method, we identified a compound heterozygous mutation in PDE6A gene that is associated with RP in a Chinese family.

  14. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  15. Exome sequencing identifies novel compound heterozygous IFNA4 and IFNA10 mutations as a cause of impaired function in Crohn’s disease patients

    PubMed Central

    Xiao, Chuan-Xing; Xiao, Jing-Jing; Xu, Hong-Zhi; Wang, Huan-Huan; Chen, Xu; Liu, Yuan-Sheng; Li, Ping; Shi, Ying; Nie, Yong-Zhan; Li, Shao; Wu, Kai-Chun; Liu, Zhan-Ju; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Previous studies have highlighted the role of genetic predispositions in disease, and several genes had been identified as important in Crohn’s disease (CD). However, many of these genes are likely rare and not associated with susceptibility in Chinese CD patients. We found 294 shared identical variants in the CD patients of which 26 were validated by Sanger sequencing. Two heterozygous IFN variants (IFNA10 c.60 T > A; IFNA4 c.60 A > T) were identified as significantly associated with CD susceptibility. The single-nucleotide changes alter a cysteine situated before the signal peptide cleavage site to a stop code (TGA) in IFNA10 result in the serum levels of IFNA10 were significantly decreased in the CD patients compared to the controls. Furthermore, the IFNA10 and IFNA4 mutants resulted in an impairment of the suppression of HCV RNA replication in HuH7 cells, and the administration of the recombinant IFN subtypes restored DSS-induced colonic inflammation through the upregulation of CD4+ Treg cells. We identified heterozygous IFNA10 and IFNA4 variants as a cause of impaired function and CD susceptibility genes in Chinese patients from multiple center based study. These findings might provide clues in the understanding of the genetic heterogeneity of CD and lead to better screening and improved treatment. PMID:26000985

  16. Novel Compound Heterozygous Spatacsin Mutations in a Greek Kindred with Hereditary Spastic Paraplegia SPG11 and Dementia.

    PubMed

    Fraidakis, Matthew J; Brunetti, Maura; Blackstone, Craig; Filippi, Massimo; Chiò, Adriano

    2016-01-01

    SPG11 belongs to the autosomal recessive hereditary spastic paraplegias (HSP) and presents during childhood or puberty with a complex clinical phenotype encompassing learning difficulties, ataxia, peripheral neuropathy, amyotrophy, and mental retardation. We hereby present the case of a 30-year-old female patient with complex autosomal recessive HSP with thinning of the corpus callosum (TCC) and dementia that was compound heterozygous with two novel mutations in the SPG11 gene. Sequence analysis of the SPG11 gene revealed two novel mutations in a compound heterozygous state in the index patient (c.2431C>T/p.Gln811Ter and c.6755_6756insT/p.Glu2252Aspfs*88). MRI showed abnormal TCC, white matter (WM) hyperintensities periventricularly, and the 'ears of the lynx' sign. Diffusion tensor imaging showed a mild-to-moderate decrease in fractional anisotropy and an increase in mean diffusivity in WM compared to age-matched controls, while magnetic resonance spectroscopy showed abnormal findings in affected WM with a decrease in N-acetyl-aspartate in WM regions of interest. This is the first SPG11 kindred from the Greek population to be reported in the medical literature. © 2016 S. Karger AG, Basel.

  17. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    PubMed

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  18. Determination of optimal cutoff value to accurately identify glucose-6-phosphate dehydrogenase-deficient heterozygous female neonates.

    PubMed

    Miao, Jing-Kun; Chen, Qi-Xiong; Bao, Li-Ming; Huang, Yi; Zhang, Juan; Wan, Ke-Xing; Yi, Jing; Wang, Shi-Yi; Zou, Lin; Li, Ting-Yu

    2013-09-23

    Conventional screening tests to assess G6PD deficiency use a low cutoff value of 2.10 U/gHb which may not be adequate for detecting females with heterozygous deficiency. The aim of present study was to determine an appropriate cutoff value with increased sensitivity in identifying G6PD-deficient heterozygous females. G6PD activity analysis was performed on 51,747 neonates using semi-quantitative fluorescent spot test. Neonates suspected with G6PD deficiency were further analyzed using quantitatively enzymatic assay and for common G6PD mutations. The cutoff values of G6PD activity were estimated using the receiver operating characteristic curve. Our results demonstrated that using 2.10 U/g Hb as a cutoff, the sensitivity of the assay to detect female neonates with G6PD heterozygous deficiency was 83.3%, as compared with 97.6% using 2.55 U/g Hb as a cutoff. The high cutoff identified 21% (8/38) of the female neonates with partial G6PD deficiency which were not detected with 2.10 U/g Hb. Our study found that high cutoffs, 2.35 and 2.55 U/g Hb, would increase assay's sensitivity to identify male and female G6PD deficiency neonates, respectively. We established a reliable cutoff value of G6PD activity with increased sensitivity in identifying female newborns with partial G6PD deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Identification of novel compound heterozygous mutations of USH2A gene in a family with Usher syndrome type II].

    PubMed

    Jiang, Haiou; Ge, Chuanqin; Wang, Yiwang; Tang, Genyun; Quan, Qingli

    2015-06-01

    To identify potential mutations in a Chinese family with Usher syndrome type II. Genomic DNA was obtained from two affected and four unaffected members of the family and subjected to amplification of the entire coding sequence and splicing sites of USH2A gene. Mutation detection was conducted by direct sequencing of the PCR products. A total of 100 normal unrelated individuals were used as controls. The patients were identified to be a compound heterozygote for two mutations: c.8272G>T (p.E2758X) in exon 42 from his mother and c.12376-12378ACT>TAA(p.T4126X) in exon 63 of the USH2A gene from his father. Both mutations were not found in either of the two unaffected family members or 100 unrelated controls, and had completely co-segregated with the disease phenotype in the family. Neither mutation has been reported in the HGMD database. The novel compound heterozygous mutations c.8272G>T and c.12376-12378ACT>TAA within the USH2A gene may be responsible for the disease. This result may provide new clues for molecular diagnosis of this disease.

  20. Low-density lipoprotein receptor-negative compound heterozygous familial hypercholesterolemia: Two lifetime journeys of lipid-lowering therapy.

    PubMed

    Yahya, Reyhana; Mulder, Monique T; Sijbrands, Eric J G; Williams, Monique; Roeters van Lennep, Jeanine E

    We present the case history of 2 patients with low-density lipoprotein receptor-negative compound heterozygous familial hypercholesterolemia who did not receive lipoprotein apheresis. We describe the subsequent effect of all lipid-lowering medications during their life course including resins, statins, ezetimibe, nicotinic acid/laropiprant, mipomersen, and lomitapide. These cases tell the story of siblings affected with this rare disease, who are free of symptoms but still are at a very high cardiovascular disease risk, and their treatment from childhood. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. Characterization of Heterozygous HTRA1 Mutations in Taiwanese Patients With Cerebral Small Vessel Disease.

    PubMed

    Lee, Yi-Chung; Chung, Chih-Ping; Chao, Nai-Chen; Fuh, Jong-Ling; Chang, Feng-Chi; Soong, Bing-Wing; Liao, Yi-Chu

    2018-07-01

    Homozygous and compound heterozygous mutations in the high temperature requirement serine peptidase A1 gene ( HTRA1 ) cause cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. However, heterozygous HTRA1 mutations were recently identified to be associated with autosomal dominant cerebral small vessel disease (SVD). The present study aims at investigating the clinical features, frequency, and spectrum of HTRA1 mutations in a Taiwanese cohort with SVD. Mutational analyses of HTRA1 were performed by Sanger sequencing in 222 subjects, selected from a cohort of 337 unrelated patients with SVD after excluding those harboring a NOTCH3 mutation. The influence of these mutations on HTRA1 protease activities was characterized. Seven novel heterozygous mutations in HTRA1 were identified, including p.Gly120Asp, p.Ile179Asn, p.Ala182Profs*33, p.Ile256Thr, p.Gly276Ala, p.Gln289Ter, and p.Asn324Thr, and each was identified in 1 single index patient. All mutations significantly compromise the HTRA1 protease activities. For the 7 index cases and another 2 affected siblings carrying a heterozygous HTRA1 mutation, the common clinical presentations include lacunar infarction, intracerebral hemorrhage, cognitive decline, and spondylosis at the fifth to sixth decade of life. Among the 9 patients, 4 have psychiatric symptoms as delusion, depression, and compulsive behavior, 3 have leukoencephalopathy in anterior temporal poles, and 2 patients have alopecia. Heterozygous HTRA1 mutations account for 2.08% (7 of 337) of SVD in Taiwan. The clinical and neuroradiological features of HTRA1 -related SVD and sporadic SVD are similar. These findings broaden the mutational spectrum of HTRA1 and highlight the pathogenic role of heterozygous HTRA1 mutations in SVD. © 2018 American Heart Association, Inc.

  2. Novel compound heterozygous mutations in CNGA1in a Chinese family affected with autosomal recessive retinitis pigmentosa by targeted sequencing.

    PubMed

    Wang, Min; Gan, Dekang; Huang, Xin; Xu, Gezhi

    2016-07-08

    About 37 genes have been reported to be involved in autosomal recessive retinitis pigmentosa, a hereditary retinal disease. However, causative genes remain unclear in a lot of cases. Two sibs of a Chinese family with ocular disease were diagnosed in Eye and ENT Hospital of Fudan University. Targeted sequencing performed on proband to screen pathogenic mutations. PCR combined Sanger sequencing then performed on eight family members including two affected and six unaffected individuals to determine whether mutations cosegregate with disease. Two affected members exhibited clinical features that fit the criteria of autosomal recessive retinitis pigmentosa. Two heterozygous mutations (NM000087, p.Y82X and p.L89fs) in CNGA1 were revealed on proband. Affected members were compound heterozygotes for the two mutations whereas unaffected members either had no mutation or were heterozygote carriers for only one of the two mutations. That is, these mutations cosegregate with autosomal recessive retinitis pigmentosa. Compound heterozygous mutations (NM000087, p.Y82X and p.L89fs) in exon 6 of CNGA1are pathogenic mutations in this Chinese family. Of which, p.Y82X is firstly reported in patient with autosomal recessive retinitis pigmentosa.

  3. [A clinical and hereditary analysis of novel complex heterozygous KCNJ1 mutation in a Bartter syndrome type Ⅱ patient].

    PubMed

    Li, X Y; Jiang, Y; Xu, L J; Duan, L; Peng, X Y; Chen, L M; Xia, W B; Xing, X P

    2017-10-01

    Bartter syndrome (BS) is a hereditary condition transmitted as an autosomal recessive (Bartter type 1 to 4) or dominant trait (Bartter type 5). The disease associates hypokalemic alkalosis with varying degrees of hypercalciuria. Here we presented a case (BS type Ⅱ) of a 17 years old female presented with polyhydramnios, polyuria, nephrocalcinosis and hypokalemia, which was alleviated after treatment with celecoxib and vitamin D(3). DNA sequencing identified compound heterozygous KCNJ 1 gene mutations, c. 931C >T (p.R311W) and c. 445-446insCCTGAACAC (p.V149Afs, 150X), with the latter a novel mutation. Her father and mother were heterozygous carriers of c. 931C >T (p.R311W) and c. 445-446insCCTGAACAC (p.V149Afs, 150X), respectively. In conclusion, this case of BS type Ⅱ is caused by a novel compound heterozygous KCNJ 1 mutation. Further studies are needed to verify the effect of celecoxib in BS patients.

  4. Novel Compound Heterozygous CLCNKB Gene Mutations (c.1755A>G/ c.848_850delTCT) Cause Classic Bartter Syndrome.

    PubMed

    Wang, Chunli; Chen, Ying; Zheng, Bixia; Zhu, Mengshu; Fan, Jia; Wang, Juejin; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2018-02-14

    Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2bp from the 5' splice donor site in exon 15, further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (TCT) and exon 15 deletion(E15)mutation in vitro. The E15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55kD) trapping in the endoplasmic reticulum, while the TCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole-cell patch clamp and found that E15 or TCT mutation decreased the current of ClC-Kb/barttin channel. These results suggested that the compound defective mutations of CLCNKB gene are the molecular mechanism of the two cBS siblings.

  5. Lifetime exercise intolerance with lactic acidosis as key manifestation of novel compound heterozygous ACAD9 mutations causing complex I deficiency.

    PubMed

    Schrank, Bertold; Schoser, Benedikt; Klopstock, Thomas; Schneiderat, Peter; Horvath, Rita; Abicht, Angela; Holinski-Feder, Elke; Augustis, Sarunas

    2017-05-01

    We report a 36-year-old female having lifetime exercise intolerance and lactic acidosis with nausea associated with novel compound heterozygous Acyl-CoA dehydrogenase 9 gene (ACAD9) mutations (p.Ala390Thr and p.Arg518Cys). ACAD9 is an assembly factor for the mitochondrial respiratory chain complex I. ACAD9 mutations are recognized as frequent causes of complex I deficiency. Our patient presented with exercise intolerance, rapid fatigue, and nausea since early childhood. Mild physical workload provoked the occurrence of nausea and vomiting repeatedly. Her neurological examination, laboratory findings and muscle biopsy demonstrated no abnormalities. A bicycle spiroergometry provoked significant lactic acidosis during and following exercise pointing towards a mitochondrial disorder. Subsequently, the analysis of respiratory chain enzyme activities in muscle revealed severe isolated complex I deficiency. Candidate gene sequencing revealed two novel heterozygous ACAD9 mutations. This patient report expands the mutational and phenotypic spectrum of diseases associated with mutations in ACAD9. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant.

    PubMed

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant.

  7. Compound Heterozygous Mutations in SLC30A2/ZnT2 Results in Low Milk Zinc Concentrations: A Novel Mechanism for Zinc Deficiency in a Breast-Fed Infant

    PubMed Central

    Itsumura, Naoya; Inamo, Yasuji; Okazaki, Fumiko; Teranishi, Fumie; Narita, Hiroshi; Kambe, Taiho; Kodama, Hiroko

    2013-01-01

    Zinc concentrations in breast milk are considerably higher than those of the maternal serum, to meet the infant's requirements for normal growth and development. Thus, effective mechanisms ensuring secretion of large amounts of zinc into the milk operate in mammary epithelial cells during lactation. ZnT2 was recently found to play an essential role in the secretion of zinc into milk. Heterozygous mutations of human ZnT2 (hZnT2), including H54R and G87R, in mothers result in low (>75% reduction) secretion of zinc into the breast milk, and infants fed on the milk develop transient neonatal zinc deficiency. We identified two novel missense mutations in the SLC30A2/ZnT2 gene in a Japanese mother with low milk zinc concentrations (>90% reduction) whose infant developed severe zinc deficiency; a T to C transition (c.454T>C) at exon 4, which substitutes a tryptophan residue with an arginine residue (W152R), and a C to T transition (c.887C>T) at exon 7, which substitutes a serine residue with a leucine residue (S296L). Biochemical characterization using zinc-sensitive DT40 cells indicated that the W152R mutation abolished the abilities to transport zinc and to form a dimer complex, indicating a loss-of-function mutation. The S296L mutation retained both abilities but was extremely destabilized. The two mutations were found on different alleles, indicating that the genotype of the mother with low milk zinc was compound heterozygous. These results show novel compound heterozygous mutations in the SLC30A2/ZnT2 gene causing zinc deficiency in a breast-fed infant. PMID:23741301

  8. Identification of FASTKD2 compound heterozygous mutations as the underlying cause of autosomal recessive MELAS-like syndrome.

    PubMed

    Yoo, Da Hye; Choi, Young-Chul; Nam, Da Eun; Choi, Sun Seong; Kim, Ji Won; Choi, Byung-Ok; Chung, Ki Wha

    2017-07-01

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a condition that affects many parts of the body, particularly the brain and muscles. This study examined a Korean MELAS-like syndrome patient with seizure, stroke-like episode, and optic atrophy. Target sequencing of whole mtDNA and 73 nuclear genes identified compound heterozygous mutations p.R205X and p.L255P in the FASTKD2. Each of his unaffected parents has one of the two mutations, and both mutations were not found in 302 controls. FASTKD2 encodes a FAS-activated serine-threonine (FAST) kinase domain 2 which locates in the mitochondrial inner compartment. A FASTKD2 nonsense mutation was once reported as the cause of a recessive infantile mitochondrial encephalomyopathy. The present case showed relatively mild symptoms with a late onset age, compared to a previous patient with FASTKD2 mutation, implicating an inter-allelic clinical heterogeneity. Because this study is the second report of an autosomal recessive mitochondrial encephalomyopathy patient with a FASTKD2 mutation, it will extend the phenotypic spectrum of the FASTKD2 mutation. Copyright © 2017. Published by Elsevier B.V.

  9. Thiamine responsive megaloblastic anemia: a novel SLC19A2 compound heterozygous mutation in two siblings.

    PubMed

    Mozzillo, Enza; Melis, Daniela; Falco, Mariateresa; Fattorusso, Valentina; Taurisano, Roberta; Flanagan, Sarah E; Ellard, Sian; Franzese, Adriana

    2013-08-01

    Thiamine responsive megaloblastic anemia (TRMA) is an autosomal recessive disease caused by loss of function mutations in the SLC19A2 gene. TRMA is characterized by anemia, deafness, and diabetes. In some cases, optic atrophy or more rarely retinitis pigmentosa is noted. We now report two sisters, the eldest of which presented to a different hospital during childhood with sensorineural deafness, which was treated with a hearing prosthesis, insulin requiring diabetes, retinitis pigmentosa, optic atrophy, and macrocytic anemia. These features initially suggested a clinical diagnosis of Wolfram syndrome (WS). Therapy with thiamine was initiated which resulted in the resolution of the anemia. The younger sister, who was affected with sensorineural deafness, was referred to our hospital for non-autoimmune diabetes. She was found to have macrocytosis and ocular abnormalities. Because a diagnosis of TRMA was suspected, therapy with insulin and thiamine was started. Sequencing analysis of the SLC19A2 gene identified a compound heterozygous mutation p.Y81X/p.L457X (c.242insA/c.1370delT) in both sisters. Non-autoimmune diabetes associated with deafness and macrocytosis, without anemia, suggests a diagnosis of TRMA. Patients clinically diagnosed with WS with anemia and/or macrocytosis should be reevaluated for TRMA. © 2012 John Wiley & Sons A/S.

  10. G6PD/PK ratio: a reliable parameter to identify glucose-6-phosphate dehydrogenase deficiency associated with microcytic anemia in heterozygous subjects.

    PubMed

    Tagarelli, Antonio; Piro, Anna; Tagarelli, Giuseppe; Bastone, Loredana; Paleari, Renata; Mosca, Andrea

    2004-10-01

    To determine if measuring the ratio of glucose-6-phosphate dehydrogenase (G6PD) to pyruvate kinase (PK) is more reliable than only measuring G6PD activity to identify heterozygous G6PD- individuals with associated microcytic anemia in the Calabrian population, which shows high frequencies of both the thalassaemia (thal) trait and G6PD deficiency. Measurement of G6PD and PK activities was carried out on 205 samples of whole blood from Calabrian subjects of both sexes (age range 10-50 years) using a double starter differential pH-metry technique. The G6PD/PK ratio is able to differentiate G6PD- heterozygous individuals from the normal population. G6PD/PK values also allowed us to easily identify the G6PD- heterozygous subjects with microcytic anaemia. Student's t test shows that G6PD/PK ratio is more reliable in both sample groups, relative to G6PD activity in normal subjects. G6PD/PK ratio is a reliable diagnostic parameter for mass screening for G6PD deficiency.

  11. Compound heterozygous mutations in electron transfer flavoprotein dehydrogenase identified in a young Chinese woman with late-onset glutaric aciduria type II.

    PubMed

    Xue, Ying; Zhou, Yun; Zhang, Keqin; Li, Ling; Kayoumu, Abudurexiti; Chen, Liye; Wang, Yuhui; Lu, Zhiqiang

    2017-09-26

    Glutaric aciduria type II (GA II) is an autosomal recessive disorder affecting fatty acid and amino acid metabolism. The late-onset form of GA II disorder is almost exclusively associated with mutations in the electron transfer flavoprotein dehydrogenase (ETFDH) gene. Till now, the clinical features of late-onset GA II vary widely and pose a great challenge for diagnosis. The aim of the current study is to characterize the clinical phenotypes and genetic basis of a late-onset GAII patient. In this study, we described the clinical and biochemical manifestations of a 23-year-old female Chinese patient with late-onset GA II, and performed genomic DNA-based PCR amplifications and sequence analysis of ETFDH gene of the whole pedigree. We also used in-silicon tools to analyze the mutation and evaluated the pathogenicity of the mutation according to the criteria proposed by American College of Medical Genetics and Genomics (ACMG). The muscle biopsy of this patient revealed lipid storage myopathy. Blood biochemical test and urine organic acid analyses were consistent with GA II. Direct sequence analysis of the ETFDH gene (NM_004453) revealed compound heterozygous mutations: c.250G > A (p.A84T) on exon 3 and c.920C > G (p.S307C) on exon 8. Both mutations were classified as "pathogenic" according to ACMG criteria. In conclusion, our study described the phenotype and genotype of a late-onset GA II patient, reiterating the importance of ETFDH gene screening in these patients.

  12. Parieto-occipital lobe epilepsy caused by a POLG1 compound heterozygous A467T/W748S genotype.

    PubMed

    Roshal, David; Glosser, David; Zangaladze, Andro

    2011-06-01

    We describe a 16-year-old woman with a rare POLG1 A467T/W748S genotype, with a wide range of neurological manifestations, including focal parieto-occipital lobe seizures, migraine headaches, cerebellar ataxia, sensory-motor axonal neuropathy, and impairment of visual perception and cognitive function. Treatment of epilepsy in patients with a POLG1 compound heterozygous A467T/W748S genotype is very challenging; the epilepsy may preferentially respond to sodium channel blockers. The POLG1-related syndrome has a variable clinical course, and disease morbidity and mortality may be correlated with the genotype. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    PubMed

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  14. Dental Abnormalities Caused by Novel Compound Heterozygous CTSK Mutations.

    PubMed

    Xue, Y; Wang, L; Xia, D; Li, Q; Gao, S; Dong, M; Cai, T; Shi, S; He, L; Hu, K; Mao, T; Duan, X

    2015-05-01

    Cathepsin K (CTSK) is an important protease responsible for degrading type I collagen, osteopontin, and other bone matrix proteins. The mutations in the CTSK gene can cause pycnodysostosis (OMIM 265800), a rare autosomal recessive bone dysplasia. Patients with pycnodysostosis have been reported to present specific dental abnormalities; however, whether these dental abnormalities are related to dysfunctional CTSK has never been reported. Here we investigated the histologic changes of cementum and alveolar bone in a pycnodysostosis patient, caused by novel compound heterozygous mutations in the CTSK gene (c.87 G>A p.W29X and c.848 A>G p.Y283C). The most impressive manifestations in tooth were extensive periradicular high-density clumps with unclear periodontal space by orthopantomography examination and micro-computed tomography scanning analysis. Hematoxylin/eosin and toluidine blue staining and atomic force microscopy analysis showed that the cementum became significantly thickened, softened, and full of cementocytes. The disorganized bone structure was the main character of alveolar bone. The p.W29X mutation may represent the loss-of-function allele with an earlier termination codon in the precursor CTSK polypeptide. Residue Y283 is highly conserved among papain-like cysteine proteases. Three-dimensional structure modeling analysis found that the loss of the hydroxybenzene residue in the Y283C mutation would interrupt the hydrogen network and possibly affect the self-cleavage of the CTSK enzyme. Furthermore, p.Y283C mutation did not affect the mRNA and protein levels of overexpressed CTSK in COS-7 system but did reduce CTSK enzyme activity. In conclusion, the histologic and ultrastructural changes of cementum and alveolar bone might be affected by CTSK mutation via reduction of its enzyme activity (clinical trial registration: ChiCTR-TNC-10000876). © International & American Associations for Dental Research 2015.

  15. A compound heterozygous mutation in SLC34A3 causes hereditary hypophosphatemic rickets with hypercalciuria in a Chinese patient.

    PubMed

    Chi, Yue; Zhao, Zhen; He, Xiaodong; Sun, Yue; Jiang, Yan; Li, Mei; Wang, Ou; Xing, Xiaoping; Sun, Andrew Y; Zhou, Xueying; Meng, Xunwu; Xia, Weibo

    2014-02-01

    Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare metabolic disorder inherited in an autosomal recessive fashion and characterized by hypophosphatemia, short stature, rickets and/or osteomalacia, and secondary absorptive hypercalciuria. HHRH was recently mapped to chromosome 9q34, which contains the gene SLC34A3 which encodes the renal proximal tubular sodium-phosphate cotransporter NaPi-IIc. Here we describe a 29-year-old man with a history of childhood rickets who presented with increased renal phosphate clearance leading to hypophosphatemia, hypercalciuria, low serum parathyroid hormone (PTH), elevated serum 1,25-dihydroxyvitamin D (1,25(OH)2D) and recurrent nephrolithiasis. We performed a mutation analysis of SLC34A3 (exons and adjacent introns) of the proband and his parents to determine if there was a genetic contribution. The proband proved to be compound heterozygous for two missense mutations in SLC34A3: one novel mutation in exon 7 c.571G>C (p.G191R) and one previously identified mutation in exon 13 c.1402C>T (p.R468W). His parents were both asymptomatic heterozygous carriers of one of these two mutations. We also performed an oral phosphate loading test and compared serum phosphate, intact PTH, and intact fibroblast growth factor 23 (iFGF23) in this patient versus patients with other forms of hypophosphatemic rickets, the results of which further revealed that the mechanism of hypophosphatemia in HHRH is independent of FGF23. This is the first report of HHRH in the Chinese population. Our findings of the novel mutation in exon 7 add to the list of more than 20 reported mutations of SLC34A3. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Compound heterozygous deletions in pseudoautosomal region 1 in an infant with mild manifestations of langer mesomelic dysplasia.

    PubMed

    Tsuchiya, Takayoshi; Shibata, Minoru; Numabe, Hironao; Jinno, Tomoko; Nakabayashi, Kazuhiko; Nishimura, Gen; Nagai, Toshiro; Ogata, Tsutomu; Fukami, Maki

    2014-02-01

    Haploinsufficiency of SHOX on the short arm pseudoautosomal region (PAR1) leads to Leri-Weill dyschondrosteosis (LWD), and nullizygosity of SHOX results in Langer mesomelic dysplasia (LMD). Molecular defects of LWD/LMD include various microdeletions in PAR1 that involve exons and/or the putative upstream or downstream enhancer regions of SHOX, as well as several intragenic mutations. Here, we report on a Japanese male infant with mild manifestations of LMD and hitherto unreported microdeletions in PAR1. Clinical analysis revealed mesomelic short stature with various radiological findings indicative of LMD. Molecular analyses identified compound heterozygous deletions, that is, a maternally inherited ∼46 kb deletion involving the upstream region and exons 1-5 of SHOX, and a paternally inherited ∼500 kb deletion started from a position ∼300 kb downstream from SHOX. In silico analysis revealed that the downstream deletion did not affect the known putative enhancer regions of SHOX, although it encompassed several non-coding elements which were well conserved among various species with SHOX orthologs. These results provide the possibility of the presence of a novel enhancer for SHOX in the genomic region ∼300 to ∼800 kb downstream of the start codon. © 2013 Wiley Periodicals, Inc.

  17. Next-generation sequencing identifies a novel compound heterozygous mutation in MYO7A in a Chinese patient with Usher Syndrome 1B.

    PubMed

    Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin

    2012-11-20

    Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Two middle-age-onset hemochromatosis patients with heterozygous mutations in the hemojuvelin gene in a Chinese family.

    PubMed

    Li, Shufeng; Xue, Jun; Chen, Baojun; Wang, Qiwei; Shi, Minke; Xie, Xiaojing; Zhang, Liang

    2014-04-01

    Hereditary hemochromatosis is a disorder characterized by enhanced intestinal absorption of dietary iron. Here, we report a heterozygous genotype at two mutation sites in hemojuvelin (HJV) present in two brothers with middle-age-onset hemochromatosis in a Chinese family. To date, only homozygous or compound heterozygous states of HJV gene have been reported as associated with iron overload. However, the patients here were heterozygous for two mutations in one HJV allele in cis: a premature termination mutation (962G>A and 963C>A; C321X) and a mutation in the signal peptide (18G>C; Q6H). Previously unrecognized environmental or other genetic factors may have interacted with the heterozygous genotype in these patients.

  19. Identification of two novel compound heterozygous mutations of ADGRV1 in a Chinese family with Usher syndrome type IIC.

    PubMed

    Zhang, Nian; Wang, Juan; Liu, Shuting; Liu, Mugen; Jiang, Fagang

    2018-08-01

    To describe the clinical and genetic findings in a Chinese family with three sibs diagnosed with Usher syndrome type IIC. Four members received ophthalmic and otologic tests to ascertain the clinical characteristics. According to the clinical phenotype, we focused attention on a total of 658 genes associated with them. We screened the possible pathogenic mutation sites, used Sanger to exclude the false positive and verified whether there were co-segregated among the family members. Typical fundus features found in the proband supported the diagnosis of retinitis pigmentosa (RP). Audiometric test indicated moderate to severe sensorineural hearing impairment while the vestibular function was normal. Whole-exome sequencing identified the presence of two novel compound heterozygous mutations in ADGRV1, a known gene responsible for Usher syndrome type IIC. Mutationc.15008delG/p.Gly5003AlafsTer13 was inherited from the mother while c.18383_18386dupACAG/p.His6130GlnfsTer84 was inherited from the father, and they were co-segregated with the disease phenotype in the family. The mutations found in our study not only broaden the mutation spectrum of ADGRV1, but also provide assistances for future genetic diagnosis and treatment for Usher syndrome patients.

  20. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy.

    PubMed

    Rafael, Julianny Freitas; Cruz, Fernando Eugênio Dos Santos; Carvalho, Antônio Carlos Campos de; Gottlieb, Ilan; Cazelli, José Guilherme; Siciliano, Ana Paula; Dias, Glauber Monteiro

    2017-04-01

    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband. Resumo A cardiomiopatia hipertrófica (CMH) é uma doença autossômica dominante causada por mutações em genes que codificam as proteínas dos sarcômeros. É a principal causa de morte súbita cardíaca em atletas jovens de alto nível. Estudos têm demonstrado um pior prognóstico associado a mutações específicas. A associação entre genótipo e fenótipo em CMH tem sido objeto de diversos estudos desde a descoberta da origem genética dessa doença. Este trabalho apresenta o efeito de uma mutação composta em MYBPC3 na expressão fenotípica da CMH. Uma família na qual um jovem tem o diagnóstico clínico de CMH foi

  1. PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity

    PubMed Central

    Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.

    2014-01-01

    Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038

  2. Heterozygous defects in PAX6 gene and congenital hypopituitarism.

    PubMed

    Takagi, Masaki; Nagasaki, Keisuke; Fujiwara, Ikuma; Ishii, Tomohiro; Amano, Naoko; Asakura, Yumi; Muroya, Koji; Hasegawa, Yukihiro; Adachi, Masanori; Hasegawa, Tomonobu

    2015-01-01

    The prevalence of congenital hypopituitarism (CH) attributable to known transcription factor mutations appears to be rare and other causative genes for CH remain to be identified. Due to the sporadic occurrence of CH, de novo chromosomal rearrangements could be one of the molecular mechanisms participating in its etiology, especially in syndromic cases. To identify the role of copy number variations (CNVs) in the etiology of CH and to identify novel genes implicated in CH. We enrolled 88 (syndromic: 30; non-syndromic: 58) Japanese CH patients. We performed an array comparative genomic hybridization screening in the 30 syndromic CH patients. For all the 88 patients, we analyzed PAX6 by PCR-based sequencing. We identified one heterozygous 310-kb deletion of the PAX6 enhancer region in one patient showing isolated GH deficiency (IGHD), cleft palate, and optic disc cupping. We also identified one heterozygous 6.5-Mb deletion encompassing OTX2 in a patient with bilateral anophthalmia and multiple pituitary hormone deficiency. We identified a novel PAX6 mutation, namely p.N116S in one non-syndromic CH patient showing IGHD. The p.N116S PAX6 was associated with an impairment of the transactivation capacities of the PAX6-binding elements. This study showed that heterozygous PAX6 mutations are associated with CH patients. PAX6 mutations may be associated with diverse clinical features ranging from severely impaired ocular and pituitary development to apparently normal phenotype. Overall, this study identified causative CNVs with a possible role in the etiology of CH in <10% of syndromic CH patients. © 2015 European Society of Endocrinology.

  3. Hypogonadism in a patient with two novel mutations of the luteinizing hormone β-subunit gene expressed in a compound heterozygous form.

    PubMed

    Basciani, Sabrina; Watanabe, Mikiko; Mariani, Stefania; Passeri, Marina; Persichetti, Agnese; Fiore, Daniela; Scotto d'Abusco, Anna; Caprio, Massimiliano; Lenzi, Andrea; Fabbri, Andrea; Gnessi, Lucio

    2012-09-01

    LH gene mutations are rare; only four mutations have been described. The affected individuals are hypogonadal. We describe the clinical features of a 31-yr-old man who presented with delayed puberty and azoospermia and was found to have hypogonadism associated with an absence of circulating LH. The patient had a 12-bp deletion in exon 2 in the LH β-subunit gene and a mutation of the 5' splice site IVS2+1G→T in the same gene present in a compound heterozygous state. The first mutation predicts a deletion of four leucines of the hydrophobic core of the signal peptide. The second mutation disrupts the splicing of mRNA, generating a gross abnormality in the processing. The patient's heterozygous parents were clinically normal. The phenotype of a 16-yr-old sister of the proband, carrying the same mutations, was characterized by normal pubertal development and oligomenorrhea. This report unravels two novel mutations of the LH gene critical for synthesis and activity of the LH molecule. The insight gained from the study is that normal pubertal maturation in women can occur in a state of LH deficiency, whereas LH is essential for maturation of Leydig cells and thus steroidogenesis, puberty, and spermatogenesis in man. These mutations should be considered in girls and boys with selective deficiency of LH.

  4. Novel compound heterozygous DPH1 mutations in a patient with the unique clinical features of airway obstruction and external genital abnormalities.

    PubMed

    Nakajima, Junya; Oana, Shingo; Sakaguchi, Tomohiro; Nakashima, Mitsuko; Numabe, Hironao; Kawashima, Hisashi; Matsumoto, Naomichi; Miyake, Noriko

    2018-04-01

    The diphthamide biosynthesis 1 (DPH1) gene encodes one of the essential components of the enzyme catalyzing the first step of diphthamide formation on eukaryotic elongation factor 2 (EEF2). Diphthamide is the posttranslationally modified histidine residue on EEF2 that promotes protein chain elongation in the ribosome. DPH1 defects result in a failure of protein synthesis involving EEF2, leading to growth defects, embryonic lethality, and cell death. In humans, DPH1 mutations cause developmental delay with a short stature, dysmorphic features, and sparse hair, and are inherited in an autosomal recessive manner (MIM#616901). To date, only two homozygous missense mutations in DPH1 (c.17T>A, p.Met6Lys and c.701T>C, p.Leu234Pro) have been reported. We used WES to identify novel compound heterozygous mutations in DPH1 (c.289delG, p.Glu97Lysfs*8 and c.491T>C, p.Leu164Pro) in a patient from a nonconsanguineous family presenting with intellectual disability, a short stature, craniofacial abnormalities, and external genital abnormalities. The clinical phenotype of all patients with DPH1 mutations, including the current patient, revealed core features, although the external genital anomaly was newly recognized in our case.

  5. Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency.

    PubMed

    Jamsheer, Aleksander; Olech, Ewelina M; Kozłowski, Kazimierz; Niedziela, Marek; Sowińska-Seidler, Anna; Obara-Moszyńska, Monika; Latos-Bieleńska, Anna; Karczewski, Marek; Zemojtel, Tomasz

    2016-07-01

    Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autosomal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency.

  6. [Infantile hypophosphatasia caused by a novel compound heterozygous mutation: a case report and pedigree analysis].

    PubMed

    Li, Deng-Feng; Lan, Dan; Zhong, Jing-Zi; Dewan, Roma Kajal; Xie, Yan-Shu; Yang, Ying

    2017-05-01

    This article reported the clinical features of one child with infantile hypophosphatasia (HPP) and his pedigree information. The proband was a 5-month-old boy with multiple skeletal dysplasia (koilosternia, bending deformity of both radii, and knock-knee deformity of both knees), feeding difficulty, reduction in body weight, developmental delay, recurrent pneumonia and respiratory failure, and a significant reduction in blood alkaline phosphatase. Among his parents, sister, uncle, and aunt (other family members did not cooperate with us in the examination), his parents and aunt had a slight reduction in alkaline phosphatase and his aunt had scoliosis; there were no other clinical phenotypes or abnormal laboratory testing results. His ALPL gene mutation came from c.228delG mutation in his mother and c.407G>A compound heterozygous mutation in his father. His aunt carried c.228delG mutation. The c.407G>A mutation had been reported as the pathogenic mutation of HPP, and c.228delG mutation was a novel pathogenic mutation. Hypophosphatasia is caused by ALPL gene mutation, and ALPL gene detection is an effective diagnostic method. This study expands the mutation spectrum of ALPL gene and provides a theoretical basis for genetic diagnosis of this disease.

  7. Thyroid function in mice with compound heterozygous and homozygous disruptions of SRC-1 and TIF-2 coactivators: evidence for haploinsufficiency.

    PubMed

    Weiss, Roy E; Gehin, Martine; Xu, Jianming; Sadow, Peter M; O'Malley, Bert W; Chambon, Pierre; Refetoff, Samuel

    2002-04-01

    Steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)-2 are homologous nuclear receptor coactivators. We have investigated their possible redundancy as thyroid hormone (TH) coactivators by measuring thyroid function in compound SRC-1 and TIF-2 knock out (KO) mice. Whereas SRC-1 KO (SRC-1(-/-)) mice are resistant to TH and SRC-1(+/-) are not, we now demonstrate that TIF-2 KO (TIF-2(-/-)) mice have normal thyroid function. Yet double heterozygous, SRC-1(+/-)/TIF-2(+/-) mice manifested resistance to TH of a similar degree as that in mice completely deficient in SRC-1. KO of both SRC-1 and TIF-2 resulted in marked increases of serum TH and thyrotropin concentrations. This work demonstrates gene dosage effect in nuclear coactivators manifesting as haploinsufficiency and functional redundancy of SRC-1 and TIF-2.

  8. Novel mutations in CRB1 gene identified in a chinese pedigree with retinitis pigmentosa by targeted capture and next generation sequencing

    PubMed Central

    Lo, David; Weng, Jingning; Liu, xiaohong; Yang, Juhua; He, Fen; Wang, Yun; Liu, Xuyang

    2016-01-01

    PURPOSE To detect the disease-causing gene in a Chinese pedigree with autosomal-recessive retinitis pigmentosa (ARRP). METHODS All subjects in this family underwent a complete ophthalmic examination. Targeted-capture next generation sequencing (NGS) was performed on the proband to detect variants. All variants were verified in the remaining family members by PCR amplification and Sanger sequencing. RESULTS All the affected subjects in this pedigree were diagnosed with retinitis pigmentosa (RP). The compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations in the Crumbs homolog 1 (CRB1) gene were identified in all the affected patients but not in the unaffected individuals in this family. These mutations were inherited from their parents, respectively. CONCLUSION The novel compound heterozygous mutations in CRB1 were identified in a Chinese pedigree with ARRP using targeted-capture next generation sequencing. After evaluating the significant heredity and impaired protein function, the compound heterozygous c.138delA (p.Asp47IlefsX24) and c.1841G>T (p.Gly614Val) mutations are the causal genes of early onset ARRP in this pedigree. To the best of our knowledge, there is no previous report regarding the compound mutations. PMID:27806333

  9. Utility of whole exome sequencing in the diagnosis of Usher syndrome: Report of novel compound heterozygous MYO7A mutations.

    PubMed

    Ramzan, Khushnooda; Al-Owain, Mohammed; Huma, Rozeena; Al-Hazzaa, Selwa A F; Al-Ageel, Sarah; Imtiaz, Faiqa; Al-Sayed, Moeenaldeen

    2018-05-01

    Next generation sequencing (NGS), such as targeted panel sequencing, whole-exome sequencing and whole-genome sequencing has led to an exponential increase of elucidated genetic causes in both rare diseases, and common but heterogeneous disorders. NGS is applied in both research and clinical settings, and the clinical exome sequencing (CES), which provides not only the sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to a genetic diagnosis. Usher syndrome is a group of disorders, characterized by bilateral sensorineural hearing loss, with or without vestibular dysfunction and retinitis pigmentosa. The index patient, a 2-year-old child was initially diagnosed with nonsyndromic hearing impairment. Homozygosity mapping followed by CES was utilized as a diagnostic tool to identify the genetic basis of his hearing loss. A paternally inherited novel insertion, c.198_199insA (p.Val67Serfs*73) and a maternally inherited novel deletion, c.1219_1226del (p.Phe407Aspfs*33) in gene MYO7A were found in compound heterozygous state in the index patient. The result expands the mutational spectrum of MYO7A. In addition it helped in early diagnosis of the syndrome, for planning and adjustments for the patient, and as well as for future family planning. This study highlights the clinical effectiveness of CES for Usher syndrome diagnosis in a child presented with congenital hearing loss. Copyright © 2018. Published by Elsevier B.V.

  10. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    PubMed

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. Copyright ©ERS 2015.

  11. Newborn screening of glucose-6-phosphate dehydrogenase deficiency in Guangxi, China: determination of optimal cutoff value to identify heterozygous female neonates.

    PubMed

    Fu, Chunyun; Luo, Shiyu; Li, Qifei; Xie, Bobo; Yang, Qi; Geng, Guoxing; Lin, Caijuan; Su, Jiasun; Zhang, Yue; Wang, Jin; Qin, Zailong; Luo, Jingsi; Chen, Shaoke; Fan, Xin

    2018-01-16

    The aim of this study is to assess the disease incidence and mutation spectrum of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Guangxi, China, and to determine an optimal cutoff value to identify heterozygous female neonates. A total of 130, 635 neonates were screened from the year of 2013 to 2017. Neonates suspected for G6PD deficiency were further analyzed by quantitatively enzymatic assay and G6PD mutation analysis. The overall incidence of G6PD deficiency was 7.28%. A total of 14 G6PD mutations were identified, and different mutations lead to varying levels of G6PD enzymatic activities. The best cut-off value of G6PD activity in male subjects is 2.2 U/g Hb, same as conventional setting. In female population, however, the cut-off value is found to be 2.8 U/g Hb (sensitivity: 97.5%, specificity: 87.7%, AUC: 0.964) to best discriminate between normal and heterozygotes, and 1.6 U/g Hb (sensitivity: 82.2%, specificity: 85.9%, AUC: 0.871) between heterozygotes and deficient subjects. In conclusion, we have conducted a comprehensive newborn screening of G6PD deficiency in a large cohort of population from Guangxi, China, and first established a reliable cut-off value of G6PD activity to distinguish heterozygous females from either normal or deficient subjects.

  12. Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling

    PubMed Central

    Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien

    2012-01-01

    The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697

  13. FAK-heterozygous mice display enhanced tumour angiogenesis.

    PubMed

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E; Lees, Delphine M; Baker, Marianne; Jones, Dylan T; Tavora, Bernardo; Ramjaun, Antoine R; Birdsey, Graeme M; Robinson, Stephen D; Parsons, Maddy; Randi, Anna M; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial focal adhesion kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularization. Here we show that reduced stromal FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumour growth in vivo. Our results highlight a potential novel role for FAK as a nonlinear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis.

  14. FAK-heterozygous mice display enhanced tumour angiogenesis

    PubMed Central

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E.; Lees, Delphine M.; Baker, Marianne; Jones, Dylan T.; Tavora, Bernardo; Ramjaun, Antoine R.; Birdsey, Graeme M.; Robinson, Stephen D.; Parsons, Maddy; Randi, Anna M.; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis. PMID:23799510

  15. Characterization of a Case of Pigmentary Retinopathy in Sanfilippo Syndrome Type IIIA Associated with Compound Heterozygous Mutations in the SGSH Gene.

    PubMed

    Wilkin, Justin; Kerr, Natalie C; Byrd, Kathryn W; Ward, Jewell C; Iannaccone, Alessandro

    2016-06-01

    To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.

  16. Classical phenotype of Laron syndrome in a girl with a heterozygous mutation and heterozygous polymorphism of the growth hormone receptor gene.

    PubMed

    Shevah, Orit; Galli-Tsinopoulou, Assimina; Rubinstein, Menachem; Nousia-Arvanitakis, Sanda; Laron, Zvi

    2004-03-01

    We describe here a 19 month-old girl with classical Laron syndrome (LS). Molecular analysis of the GH receptor gene in the patient and her parents was performed. The patient was found to be heterozygous for a mutation in exon 4 (R43X) and heterozygous for a polymorphism in exon 6 (Gly168Gly). Her mother was also heterozygous for R43X but homozygous for the polymorphism. In the father, a heterozygous polymorphism was found. Contrary to previous assumptions that only homozygous patients express the typical phenotype, this patient shows all the classical features of LS, despite being a heterozygote for a pathological defect.

  17. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state.

    PubMed

    Issa, Sarah; Bondurand, Nadege; Faubert, Emmanuelle; Poisson, Sylvain; Lecerf, Laure; Nitschke, Patrick; Deggouj, Naima; Loundon, Natalie; Jonard, Laurence; David, Albert; Sznajer, Yves; Blanchet, Patricia; Marlin, Sandrine; Pingault, Veronique

    2017-05-01

    Waardenburg syndrome (WS) is a genetic disorder characterized by sensorineural hearing loss and pigmentation anomalies. The clinical definition of four WS types is based on additional features due to defects in structures mostly arising from the neural crest, with type I and type II being the most frequent. While type I is tightly associated to PAX3 mutations, WS type II (WS2) remains partly enigmatic with mutations in known genes (MITF, SOX10) accounting for only 30% of the cases. We performed exome sequencing in a WS2 index case and identified a heterozygous missense variation in EDNRB. Interestingly, homozygous (and very rare heterozygous) EDNRB mutations are already described in type IV WS (i.e., in association with Hirschsprung disease [HD]) and heterozygous mutations in isolated HD. Screening of a WS2 cohort led to the identification of an overall of six heterozygous EDNRB variations. Clinical phenotypes, pedigrees and molecular segregation investigations unraveled a dominant mode of inheritance with incomplete penetrance. In parallel, cellular and functional studies showed that each of the mutations impairs the subcellular localization of the receptor or induces a defective downstream signaling pathway. Based on our results, we now estimate EDNRB mutations to be responsible for 5%-6% of WS2. © 2017 Wiley Periodicals, Inc.

  18. Heterozygous inactivation of tsc2 enhances tumorigenesis in p53 mutant zebrafish

    PubMed Central

    Kim, Seok-Hyung; Kowalski, Marie L.; Carson, Robert P.; Bridges, L. Richard; Ess, Kevin C.

    2013-01-01

    SUMMARY Tuberous sclerosis complex (TSC) is a multi-organ disorder caused by mutations of the TSC1 or TSC2 genes. A key function of these genes is to inhibit mTORC1 (mechanistic target of rapamycin complex 1) kinase signaling. Cells deficient for TSC1 or TSC2 have increased mTORC1 signaling and give rise to benign tumors, although, as a rule, true malignancies are rarely seen. In contrast, other disorders with increased mTOR signaling typically have overt malignancies. A better understanding of genetic mechanisms that govern the transformation of benign cells to malignant ones is crucial to understand cancer pathogenesis. We generated a zebrafish model of TSC and cancer progression by placing a heterozygous mutation of the tsc2 gene in a p53 mutant background. Unlike tsc2 heterozygous mutant zebrafish, which never exhibited cancers, compound tsc2;p53 mutants had malignant tumors in multiple organs. Tumorigenesis was enhanced compared with p53 mutant zebrafish. p53 mutants also had increased mTORC1 signaling that was further enhanced in tsc2;p53 compound mutants. We found increased expression of Hif1-α, Hif2-α and Vegf-c in tsc2;p53 compound mutant zebrafish compared with p53 mutant zebrafish. Expression of these proteins probably underlies the increased angiogenesis seen in compound mutant zebrafish compared with p53 mutants and might further drive cancer progression. Treatment of p53 and compound mutant zebrafish with the mTORC1 inhibitor rapamycin caused rapid shrinkage of tumor size and decreased caliber of tumor-associated blood vessels. This is the first report using an animal model to show interactions between tsc2, mTORC1 and p53 during tumorigenesis. These results might explain why individuals with TSC rarely have malignant tumors, but also suggest that cancer arising in individuals without TSC might be influenced by the status of TSC1 and/or TSC2 mutations and be potentially treatable with mTORC1 inhibitors. PMID:23580196

  19. Clinical Phenotype in a Toddler with a Novel Heterozygous Mutation of the Vitamin D Receptor.

    PubMed

    Brar, Preneet Cheema; Dingle, Elena; Pappas, John; Raisingani, Manish

    2017-01-01

    We present the clinical phenotype of a toddler who presented with vitamin D-resistant rickets, with one of the highest initial levels of alkaline phosphatase and parathyroid hormone (PTH) levels reported in the literature. The toddler had novel compound heterozygous mutations in the ligand-binding site of the vitamin D receptor and had an excellent response to calcitriol (1,25(OH)2D).

  20. Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms

    PubMed Central

    Marsh, Judith C. W.; Gutierrez-Rodrigues, Fernanda; Cooper, James; Jiang, Jie; Gandhi, Shreyans; Kajigaya, Sachiko; Feng, Xingmin; Ibanez, Maria del Pilar F.; Donaires, Flávia S.; Lopes da Silva, João P.; Li, Zejuan; Das, Soma; Ibanez, Maria; Smith, Alexander E.; Lea, Nicholas; Best, Steven; Ireland, Robin; Kulasekararaj, Austin G.; McLornan, Donal P.; Pagliuca, Anthony; Callebaut, Isabelle; Young, Neal S.; Calado, Rodrigo T.; Townsley, Danielle M.

    2018-01-01

    Biallelic germline mutations in RTEL1 (regulator of telomere elongation helicase 1) result in pathologic telomere erosion and cause dyskeratosis congenita. However, the role of RTEL1 mutations in other bone marrow failure (BMF) syndromes and myeloid neoplasms, and the contribution of monoallelic RTEL1 mutations to disease development are not well defined. We screened 516 patients for germline mutations in telomere-associated genes by next-generation sequencing in 2 independent cohorts; one constituting unselected patients with idiopathic BMF, unexplained cytopenia, or myeloid neoplasms (n = 457) and a second cohort comprising selected patients on the basis of the suspicion of constitutional/familial BMF (n = 59). Twenty-three RTEL1 variants were identified in 27 unrelated patients from both cohorts: 7 variants were likely pathogenic, 13 were of uncertain significance, and 3 were likely benign. Likely pathogenic RTEL1 variants were identified in 9 unrelated patients (7 heterozygous and 2 biallelic). Most patients were suspected to have constitutional BMF, which included aplastic anemia (AA), unexplained cytopenia, hypoplastic myelodysplastic syndrome, and macrocytosis with hypocellular bone marrow. In the other 18 patients, RTEL1 variants were likely benign or of uncertain significance. Telomeres were short in 21 patients (78%), and 3′ telomeric overhangs were significantly eroded in 4. In summary, heterozygous RTEL1 variants were associated with marrow failure, and telomere length measurement alone may not identify patients with telomere dysfunction carrying RTEL1 variants. Pathogenicity assessment of heterozygous RTEL1 variants relied on a combination of clinical, computational, and functional data required to avoid misinterpretation of common variants. PMID:29344583

  1. Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms.

    PubMed

    Marsh, Judith C W; Gutierrez-Rodrigues, Fernanda; Cooper, James; Jiang, Jie; Gandhi, Shreyans; Kajigaya, Sachiko; Feng, Xingmin; Ibanez, Maria Del Pilar F; Donaires, Flávia S; Lopes da Silva, João P; Li, Zejuan; Das, Soma; Ibanez, Maria; Smith, Alexander E; Lea, Nicholas; Best, Steven; Ireland, Robin; Kulasekararaj, Austin G; McLornan, Donal P; Pagliuca, Anthony; Callebaut, Isabelle; Young, Neal S; Calado, Rodrigo T; Townsley, Danielle M; Mufti, Ghulam J

    2018-01-09

    Biallelic germline mutations in RTEL1 (regulator of telomere elongation helicase 1) result in pathologic telomere erosion and cause dyskeratosis congenita. However, the role of RTEL1 mutations in other bone marrow failure (BMF) syndromes and myeloid neoplasms, and the contribution of monoallelic RTEL1 mutations to disease development are not well defined. We screened 516 patients for germline mutations in telomere-associated genes by next-generation sequencing in 2 independent cohorts; one constituting unselected patients with idiopathic BMF, unexplained cytopenia, or myeloid neoplasms (n = 457) and a second cohort comprising selected patients on the basis of the suspicion of constitutional/familial BMF (n = 59). Twenty-three RTEL1 variants were identified in 27 unrelated patients from both cohorts: 7 variants were likely pathogenic, 13 were of uncertain significance, and 3 were likely benign. Likely pathogenic RTEL1 variants were identified in 9 unrelated patients (7 heterozygous and 2 biallelic). Most patients were suspected to have constitutional BMF, which included aplastic anemia (AA), unexplained cytopenia, hypoplastic myelodysplastic syndrome, and macrocytosis with hypocellular bone marrow. In the other 18 patients, RTEL1 variants were likely benign or of uncertain significance. Telomeres were short in 21 patients (78%), and 3' telomeric overhangs were significantly eroded in 4. In summary, heterozygous RTEL1 variants were associated with marrow failure, and telomere length measurement alone may not identify patients with telomere dysfunction carrying RTEL1 variants. Pathogenicity assessment of heterozygous RTEL1 variants relied on a combination of clinical, computational, and functional data required to avoid misinterpretation of common variants.

  2. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    PubMed

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  3. Clinical Phenotype in a Toddler with a Novel Heterozygous Mutation of the Vitamin D Receptor

    PubMed Central

    Dingle, Elena

    2017-01-01

    We present the clinical phenotype of a toddler who presented with vitamin D-resistant rickets, with one of the highest initial levels of alkaline phosphatase and parathyroid hormone (PTH) levels reported in the literature. The toddler had novel compound heterozygous mutations in the ligand-binding site of the vitamin D receptor and had an excellent response to calcitriol (1,25(OH)2D). PMID:28620554

  4. Andermann syndrome can be a phenocopy of hereditary motor and sensory neuropathy--report of a discordant sibship with a compound heterozygous mutation of the KCC3 gene.

    PubMed

    Rudnik-Schöneborn, S; Hehr, U; von Kalle, T; Bornemann, A; Winkler, J; Zerres, K

    2009-06-01

    Andermann syndrome is a rare autosomal recessive disorder characterized by agenesis of the corpus callosum (ACC), progressive motor-sensory neuropathy, mental retardation and facial features. We report on two siblings with the clinical picture of a demyelinating hereditary motor and sensory neuropathy (HMSN), where only the presence of ACC in the younger brother pointed to the diagnosis of Andermann syndrome. Mutation analysis of the KCC3 (SLC12A6) gene showed a compound heterozygous mutation; a maternal missense mutation c.1616G>A (p.G539D) and a paternal splice mutation c.1118+1G>A in both siblings. We hypothesize that mutations of the KCC3 gene may result in non-syndromic childhood onset HMSN.

  5. Newly Identified DDT-Related Compounds Accumulating in Southern California Bottlenose Dolphins.

    PubMed

    Mackintosh, Susan A; Dodder, Nathan G; Shaul, Nellie J; Aluwihare, Lihini I; Maruya, Keith A; Chivers, Susan J; Danil, Kerri; Weller, David W; Hoh, Eunha

    2016-11-15

    Nontargeted GC×GC-TOF/MS analysis of blubber from 8 common bottlenose dolphins (Tursiops truncatus) inhabiting the Southern California Bight was performed to identify novel, bioaccumulative DDT-related compounds and to determine their abundance relative to the commonly studied DDT-related compounds. We identified 45 bioaccumulative DDT-related compounds of which the majority (80%) is not typically monitored in environmental media. Identified compounds include transformation products, technical mixture impurities such as tris(chlorophenyl)methane (TCPM), the presumed TCPM metabolite tris(chlorophenyl)methanol (TCPMOH), and structurally related compounds with unknown sources, such as hexa- to octachlorinated diphenylethene. To investigate impurities in pesticide mixtures as possible sources of these compounds, we analyzed technical DDT, the primary source of historical contamination in the region, and technical Dicofol, a current use pesticide that contains DDT-related compounds. The technical mixtures contained only 33% of the compounds identified in the blubber, suggesting that transformation products contribute to the majority of the load of DDT-related contaminants in these sentinels of ocean health. Quantitative analysis revealed that TCPM was the second most abundant compound class detected in the blubber, following DDE, and TCPMOH loads were greater than DDT. QSPR estimates verified 4,4',4″-TCPM and 4,4'4,″-TCPMOH are persistent and bioaccumulative.

  6. Eight Mutations of Three Genes (EDA, EDAR, and WNT10A) Identified in Seven Hypohidrotic Ectodermal Dysplasia Patients.

    PubMed

    Zeng, Binghui; Xiao, Xue; Li, Sijie; Lu, Hui; Lu, Jiaxuan; Zhu, Ling; Yu, Dongsheng; Zhao, Wei

    2016-09-19

    Hypohidrotic ectodermal dysplasia (HED) is characterized by abnormal development of the teeth, hair, and sweat glands. Ectodysplasin A (EDA), Ectodysplasin A receptor (EDAR), and EDAR-associated death domain (EDARADD) are candidate genes for HED, but the relationship between WNT10A and HED has not yet been validated. In this study, we included patients who presented at least two of the three ectodermal dysplasia features. The four genes were analyzed in seven HED patients by PCR and Sanger sequencing. Five EDA and one EDAR heterozygous mutations were identified in families 1-6. Two WNT10A heterozygous mutations were identified in family 7 as a compound heterozygote. c.662G>A (p.Gly221Asp) in EDA and c.354T>G (p.Tyr118*) in WNT10A are novel mutations. Bioinformatics analyses results confirmed the pathogenicity of the two novel mutations. In family 7, we also identified two single-nucleotide polymorphisms (SNPs) that were predicted to affect the splicing of EDAR. Analysis of the patient's total RNA revealed normal splicing of EDAR. This ascertained that the compound heterozygous WNT10A mutations are the genetic defects that led to the onset of HED. Our data revealed the genetic basis of seven HED patients and expended the mutational spectrum. Interestingly, we confirmed WNT10A as a candidate gene of HED and we propose WNT10A to be tested in EDA-negative HED patients.

  7. Compound heterozygous mutations (p.Leu13Pro and p.Tyr294*) associated with factor VII deficiency cause impaired secretion through ineffective translocation and extensive intracellular degradation of factor VII.

    PubMed

    Suzuki, Keijiro; Sugawara, Takeshi; Ishida, Yoji; Suwabe, Akira

    2013-02-01

    Congenital coagulation factor VII (FVII) deficiency is a rare coagulation disease. We investigated the molecular mechanisms of this FVII deficiency in a patient with compound heterozygous mutations. A 22-year-old Japanese female was diagnosed with asymptomatic FVII deficiency. The FVII activity and antigen were greatly reduced (activity, 13.0%; antigen, 10.8%). We analyzed the F7 gene of this patient and characterized mutant FVII proteins using in vitro expression studies. Sequence analysis revealed that the patient was compound heterozygous with a point mutation (p.Leu13Pro) in the central hydrophobic core of the signal peptides and a novel non-sense mutation (p.Tyr294*) in the catalytic domain. Expression studies revealed that mutant FVII with p.Leu13Pro (FVII13P) showed less accumulation in the cells (17.5%) and less secretion into the medium (64.8%) than wild type showed. Truncated FVII resulting from p.Tyr294* (FVII294X) was also decreased in the cells (32.0%), but was not secreted into the medium. Pulse-chase experiments revealed that both mutants were extensively degraded intracellularly compared to wild type. The majority of FVII13P cannot translocate into endoplasmic reticulum (ER). However, a small amount of FVII13P was processed normally with post-translational modifications and was secreted into the medium. The fact that FVII294X was observed only in ER suggests that it is retained in ER. Proteasome apparently plays a central role in these degradations. These findings demonstrate that both mutant FVIIs impaired secretion through ineffective translocation to and retention in ER with extensive intracellular degradation, resulting in an insufficient phenotype. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Homozygous/Compound Heterozygous Triadin Mutations Associated With Autosomal-Recessive Long-QT Syndrome and Pediatric Sudden Cardiac Arrest: Elucidation of the Triadin Knockout Syndrome.

    PubMed

    Altmann, Helene M; Tester, David J; Will, Melissa L; Middha, Sumit; Evans, Jared M; Eckloff, Bruce W; Ackerman, Michael J

    2015-06-09

    Long-QT syndrome (LQTS) may result in syncope, seizures, or sudden cardiac arrest. Although 16 LQTS-susceptibility genes have been discovered, 20% to 25% of LQTS remains genetically elusive. We performed whole-exome sequencing child-parent trio analysis followed by recessive and sporadic inheritance modeling and disease-network candidate analysis gene ranking to identify a novel underlying genetic mechanism for LQTS. Subsequent mutational analysis of the candidate gene was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing on a cohort of 33 additional unrelated patients with genetically elusive LQTS. After whole-exome sequencing and variant filtration, a homozygous p.D18fs*13 TRDN-encoded triadin frameshift mutation was discovered in a 10-year-old female patient with LQTS with a QTc of 500 milliseconds who experienced recurrent exertion-induced syncope/cardiac arrest beginning at 1 year of age. Subsequent mutational analysis of TRDN revealed either homozygous or compound heterozygous frameshift mutations in 4 of 33 unrelated cases of LQTS (12%). All 5 TRDN-null patients displayed extensive T-wave inversions in precordial leads V1 through V4, with either persistent or transient QT prolongation and severe disease expression of exercise-induced cardiac arrest in early childhood (≤3 years of age) and required aggressive therapy. The overall yield of TRDN mutations was significantly greater in patients ≤10 years of age (5 of 10, 50%) compared with older patients (0 of 24, 0%; P=0.0009). We identified TRDN as a novel underlying genetic basis for recessively inherited LQTS. All TRDN-null patients had strikingly similar phenotypes. Given the recurrent nature of potential lethal arrhythmias, patients fitting this phenotypic profile should undergo cardiac TRDN genetic testing. © 2015 American Heart Association, Inc.

  9. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD genemore » region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.« less

  10. Screening of chemical compound libraries identified new anti-Toxoplasma gondii agents.

    PubMed

    Adeyemi, Oluyomi Stephen; Sugi, Tatsuki; Han, Yongmei; Kato, Kentaro

    2018-02-01

    Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease that affects nearly one-third of the human population. The primary infection can be asymptomatic in healthy individuals but may prove fatal in immunocompromised individuals. Available treatment options for toxoplasmosis patients are limited, underscoring the urgent need to identify and develop new therapies. Non-biased screening of libraries of chemical compounds including the repurposing of well-characterized compounds is emerging as viable approach to achieving this goal. In the present investigation, we screened libraries of natural product and FDA-approved compounds to identify those that inhibited T. gondii growth. We identified 32 new compounds that potently inhibit T. gondii growth. Our findings are new and promising, and further strengthen the prospects of drug repurposing as well as the screening of a wide range of chemical compounds as a viable source of alternative anti-parasitic therapeutic agents.

  11. Probing the Effect of Two Heterozygous Mutations in Codon 723 of SLC26A4 on Deafness Phenotype Based on Molecular Dynamics Simulations.

    PubMed

    Yao, Jun; Qian, Xuli; Bao, Jingxiao; Wei, Qinjun; Lu, Yajie; Zheng, Heng; Cao, Xin; Xing, Guangqian

    2015-06-02

    A Chinese family was identified with clinical features of enlarged vestibular aqueduct syndrome (EVAS). The mutational analysis showed that the proband (III-2) had EVAS with bilateral sensorineural hearing loss and carried a rare compound heterozygous mutation of SLC26A4 (IVS7-2A>G, c.2167C>G), which was inherited from the same mutant alleles of IVS7-2A>G heterozygous father and c.2167C>G heterozygous mother. Compared with another confirmed pathogenic biallelic mutation in SLC26A4 (IVS7-2A>G, c.2168A>G), these two biallelic mutations shared one common mutant allele and the same codon of the other mutant allele, but led to different changes of amino acid (p.H723D, p.H723R) and both resulted in the deafness phenotype. Structure-modeling indicated that these two mutant alleles changed the shape of pendrin protein encoded by SLC26A4 with increasing randomness in conformation, and might impair pendrin's ability as an anion transporter. The molecular dynamics simulations also revealed that the stability of mutant pendrins was reduced with increased flexibility of backbone atoms, which was consistent with the structure-modeling results. These evidences indicated that codon 723 was a hot-spot region in SLC26A4 with a significant impact on the structure and function of pendrin, and acted as one of the genetic factors responsible for the development of hearing loss.

  12. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4

    PubMed Central

    Deenick, Elissa K.; Niemela, Julie E.; Avery, Danielle T.; Schickel, Jean-Nicolas; Tran, Dat Q.; Stoddard, Jennifer; Zhang, Yu; Frucht, David M.; Dumitriu, Bogdan; Scheinberg, Phillip; Folio, Les R.; Frein, Cathleen A.; Price, Susan; Koh, Christopher; Heller, Theo; Seroogy, Christine M.; Huttenlocher, Anna; Rao, V. Koneti; Su, Helen C.; Kleiner, David; Notarangelo, Luigi D.; Rampertaap, Yajesh; Olivier, Kenneth N.; McElwee, Joshua; Hughes, Jason; Pittaluga, Stefania; Oliveira, Joao B.; Meffre, Eric; Fleisher, Thomas A.; Holland, Steven M.; Lenardo, Michael J.; Tangye, Stuart G.; Uzel, Gulbu

    2015-01-01

    Cytotoxic T lymphocyte antigen–4 (CTLA-4) is an inhibitory receptor found on immune cells. The consequences of mutations in CTLA4 in humans are unknown. We identified germline heterozygous mutations in CTLA4 in subjects with severe immune dysregulation from four unrelated families. Whereas Ctla4 heterozygous mice have no obvious phenotype, human CTLA4 haploinsufficiency caused dysregulation of FoxP3+ regulatory T (Treg) cells, hyperactivation of effector T cells, and lymphocytic infiltration of target organs. Patients also exhibited progressive loss of circulating B cells, associated with an increase of predominantly autoreactive CD21lo B cells and accumulation of B cells in nonlymphoid organs. Inherited human CTLA4 haploinsufficiency demonstrates a critical quantitative role for CTLA-4 in governing T and B lymphocyte homeostasis. PMID:25213377

  13. X-linked adrenoleukodystrophy in heterozygous female patients: women are not just carriers.

    PubMed

    Lourenço, Charles Marques; Simão, Gustavo Novelino; Santos, Antonio Carlos; Marques, Wilson

    2012-07-01

    X-linked adrenoleukodystrophy (X-ALD) is a recessive X-linked disorder associated with marked phenotypic variability. Female carriers are commonly thought to be normal or only mildly affected, but their disease still needs to be better described and systematized. To review and systematize the clinical features of heterozygous women followed in a Neurogenetics Clinic. We reviewed the clinical, biochemical, and neuroradiological data of all women known to have X-ADL. The nine women identified were classified into three groups: with severe and aggressive diseases; with slowly progressive, spastic paraplegia; and with mildly decreased vibratory sensation, brisk reflexes, and no complaints. Many of these women did not have a known family history of X-ALD. Heterozygous women with X-ADL have a wide spectrum of clinical manifestations, ranging from mild to severe phenotypes.

  14. HbA1c levels in individuals heterozygous for hemoglobin variants.

    PubMed

    Tavares, Ricardo Silva; Souza, Fábio Oliveira de; Francescantonio, Isabel Cristina Carvalho Medeiros; Soares, Weslley Carvalho; Mesquita, Mauro Meira

    2017-04-01

    To evaluate the levels of glycated hemoglobin (HbA1c) in patients heterozygous for hemoglobin variants and compare the results of this test with those of a control group. This was an experimental study based on the comparison of HbA1c tests in two different populations, with a test group represented by individuals heterozygous for hemoglobin variants (AS and AC) and a control group consisting of people with electrophoretic profile AA. The two populations were required to meet the following inclusion criteria: Normal levels of fasting glucose, hemoglobin, urea and triglycerides, bilirubin > 20 mg/dL and non-use of acetylsalicylic acid. 50 heterozygous subjects and 50 controls were evaluated between August 2013 and May 2014. The comparison of HbA1c levels between heterozygous individuals and control subjects was performed based on standard deviation, mean and G-Test. The study assessed a test group and a control group, both with 39 adults and 11 children. The mean among heterozygous adults for HbA1c was 5.0%, while the control group showed a rate of 5.74%. Heterozygous children presented mean HbA1c at 5.11%, while the controls were at 5.78%. G-Test yielded p=0.93 for children and p=0.89 for adults. Our study evaluated HbA1c using ion exchange chromatography resins, and the patients heterozygous for hemoglobin variants showed no significant difference from the control group.

  15. Heterozygous deletion at the SOX10 gene locus in two patients from a Chinese family with Waardenburg syndrome type II.

    PubMed

    Wenzhi, He; Ruijin, Wen; Jieliang, Li; Xiaoyan, Ma; Haibo, Liu; Xiaoman, Wang; Jiajia, Xian; Shaoying, Li; Shuanglin, Li; Qing, Li

    2015-10-01

    Waardenburg syndrome (WS) is a rare disease characterized by sensorineural deafness and pigment disturbance. To date, almost 100 mutations have been reported, but few reports on cases with SOX10 gene deletion. The inheritance pattern of SOX10 gene deletion is still unclear. Our objective was to identify the genetic causes of Waardenburg syndrome type II in a two-generation Chinese family. Clinical evaluations were conducted in both of the patients. Microarray analysis and multiplex ligation-dependent probe amplification (MLPA) were performed to identify disease-related copy number variants (CNVs). DNA sequencing of the SOX10, MITF and SNAI2 genes was performed to identify the pathogenic mutation responsible for WS2. A 280kb heterozygous deletion at the 22q13.1 chromosome region (including SOX10) was detected in both of the patients. No mutation was found in the patients, unaffected family members and 30 unrelated healthy controls. This report is the first to describe SOX10 heterozygous deletions in Chinese WS2 patients. Our result conform the thesis that heterozygous deletions at SOX10 is an important pathogenicity for WS, and present as autosomal dominant inheritance. Nevertheless, heterozygous deletion of the SOX10 gene would be worth investigating to understand their functions and contributions to neurologic phenotypes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Oxygen transfer rate identifies priming compounds in parsley cells.

    PubMed

    Schilling, Jana Viola; Schillheim, Britta; Mahr, Stefan; Reufer, Yannik; Sanjoyo, Sandi; Conrath, Uwe; Büchs, Jochen

    2015-11-25

    In modern agriculture, the call for an alternative crop protection strategy increases because of the desired reduction of fungicide and pesticide use and the continuously evolving resistance of pathogens and pests to agrochemicals. The direct activation of the plant immune system does not provide a promising plant protection measure because of high fitness costs. However, upon treatment with certain natural or synthetic compounds, plant cells can promote to a fitness cost-saving, primed state of enhanced defense. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often associated with immunity and abiotic stress tolerance. Until now, the identification of chemical compounds with priming-inducing activity (so-called plant activators) relied on tedious and invasive approaches, or required the late detection of secreted furanocoumarin phytoalexins in parsley cell cultures. Thus, simple, fast, straightforward, and noninvasive techniques for identifying priming-inducing compounds for plant protection are very welcome. This report demonstrates that a respiration activity-monitoring system (RAMOS) can identify compounds with defense priming-inducing activity in parsley cell suspension in culture. RAMOS relies on the quasi-continuous, noninvasive online determination of the oxygen transfer rate (OTR). Treatment of parsley culture cells with the known plant activator salicylic acid (SA), a natural plant defense signal, resulted in an OTR increase. Addition of the defense elicitor Pep13, a cell wall peptide of Phythophthora sojae, induced two distinctive OTR peaks that were higher in SA-primed cells than in unprimed cells upon Pep13 challenge. Both, the OTR increase after priming with SA and the Pep13 challenge were dose-dependent. Furthermore, there was a close correlation of a compound's activity to enhance the oxygen consumption in parsley cells and its capacity to prime Pep13-induced furanocoumarin

  17. Behavioral and Electrophysiological Characterization of Dyt1 Heterozygous Knockout Mice

    PubMed Central

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C.; Campbell, Susan L.; Roper, Steven N.; Sweatt, J. David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinAΔE). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinAΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia. PMID:25799505

  18. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    PubMed

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  19. A staining protocol for identifying secondary compounds in Myrtaceae1

    PubMed Central

    Retamales, Hernan A.; Scharaschkin, Tanya

    2014-01-01

    • Premise of the study: Here we propose a staining protocol using toluidine blue (TBO) and ruthenium red to reliably identify secondary compounds in the leaves of some species of Myrtaceae. • Methods and Results: Leaves of 10 species representing 10 different genera of Myrtaceae were processed and stained using five different combinations of ruthenium red and TBO. Optimal staining conditions were determined as 1 min of ruthenium red (0.05% aqueous) and 45 s of TBO (0.1% aqueous). Secondary compounds clearly identified under this treatment include mucilage in the mesophyll, polyphenols in the cuticle, lignin in fibers and xylem, tannins and carboxylated polysaccharides in the epidermis, and pectic substances in the primary cell walls. • Conclusions: Potential applications of this protocol include systematic, phytochemical, and ecological investigations in Myrtaceae. It might be applicable to other plant families rich in secondary compounds and could be used as a preliminary screening method for extraction of these elements. PMID:25309840

  20. A heterozygous putative null mutation in ROM1 without a mutation in peripherin/RDS in a family with retinitis pigmentosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Hitoshi; Inana, G.; Murakami, Akira

    1995-05-20

    ROM1 is a 351-amino-acid, 37-kDa outer segment membrane protein of rod photoreceptors. ROM1 is related to peripherin/RDS, another outer segment membrane protein found in both rods and cones. The precise function of ROM1 or peripherin/RDS is not known, but they have been suggested to play important roles in the function and/or structure of the rod photoreceptor outer segment disks. A recent report implicated ROM1 in disease by suggesting that RP can be caused by a heterozygous null mutation in ROM1 but only in combination with another heterozygous mutation in peripherin/RDS. Screening of the ROM1 gene using polymerase chain reaction amplification,more » denaturing gradient gel electrophoresis, and direct DNA sequencing identified the same heterozygous putative null mutation in a family with RP.« less

  1. Two novel compound heterozygous mutations in the BCKDHB gene that cause the intermittent form of maple syrup urine disease.

    PubMed

    Guo, Yi; Liming, Liu; Jiang, Li

    2015-12-01

    Intermittent maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by a deficiency of branched chain α-ketoacid dehydrogenase (BCKD) complex. In contrast to classic MSUD, children with the intermittent form usually have an atypical clinical manifestation. Here, we describe the presenting symptoms and clinical course of a Chinese boy with intermittent MSUD. Mutation analysis identified two previously unreported mutations in exon 7 of the BCKDHB gene: c.767A > G (p.Y256C) and c.768C > G (p.Y256X); the parents were each heterozygous for one of these mutations. In silico analysis predicted Y256C probably affects protein structure; Y256X leads to a premature stop codon. This case demonstrates intermittent MSUD should be suspected in cases with symptoms of recurrent encephalopathy, especially ataxia or marked drowsiness, which usually present after the neonatal period and in conjunction with infection. symmetrical basal ganglia damage but normal myelination in the posterior limb will assist differential diagnosis; alloisoleucine is a useful diagnostic marker and mutation analysis may be of prognostic value. These novel mutations Y256C and Y256X result in the clinical manifestation of a variant form of MSUD, expanding the mutation spectrum of this disease.

  2. Heterozygous Mutations Causing Partial Prohormone Convertase 1 Deficiency Contribute to Human Obesity

    PubMed Central

    Creemers, John W.M.; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E.; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David

    2012-01-01

    Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes. PMID:22210313

  3. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity.

    PubMed

    Creemers, John W M; Choquet, Hélène; Stijnen, Pieter; Vatin, Vincent; Pigeyre, Marie; Beckers, Sigri; Meulemans, Sandra; Than, Manuel E; Yengo, Loïc; Tauber, Maithé; Balkau, Beverley; Elliott, Paul; Jarvelin, Marjo-Riitta; Van Hul, Wim; Van Gaal, Luc; Horber, Fritz; Pattou, François; Froguel, Philippe; Meyre, David

    2012-02-01

    Null mutations in the PCSK1 gene, encoding the proprotein convertase 1/3 (PC1/3), cause recessive monogenic early onset obesity. Frequent coding variants that modestly impair PC1/3 function mildly increase the risk for common obesity. The aim of this study was to determine the contribution of rare functional PCSK1 mutations to obesity. PCSK1 exons were sequenced in 845 nonconsanguineous extremely obese Europeans. Eight novel nonsynonymous PCSK1 mutations were identified, all heterozygous. Seven mutations had a deleterious effect on either the maturation or the enzymatic activity of PC1/3 in cell lines. Of interest, five of these novel mutations, one of the previously described frequent variants (N221D), and the mutation found in an obese mouse model (N222D), affect residues at or near the structural calcium binding site Ca-1. The prevalence of the newly identified mutations was assessed in 6,233 obese and 6,274 lean European adults and children, which showed that carriers of any of these mutations causing partial PCSK1 deficiency had an 8.7-fold higher risk to be obese than wild-type carriers. These results provide the first evidence of an increased risk of obesity in heterozygous carriers of mutations in the PCSK1 gene. Furthermore, mutations causing partial PCSK1 deficiency are present in 0.83% of extreme obesity phenotypes.

  4. Idiopathic Short Stature due to Novel Heterozygous Mutation of the Aggrecan Gene

    PubMed Central

    Quintos, Jose Bernardo; Guo, Michael H.; Dauber, Andrew

    2015-01-01

    Background Recently, whole exome sequencing identified heterozygous defects in the Aggrecan gene (ACAN) in three families with short stature and advanced bone age. Objective We report a novel frameshift mutation in ACAN in a family with dominantly inherited short stature, advanced bone age, and premature growth cessation. This is the first case of targeted sequencing of ACAN in this phenotype and confirms that ACAN sequencing is warranted in patients with this rare constellation of findings. Results We present a 5 1/2 year old male with a family history of short stature in 3 generations. The maternal grandfather stands 144.5 cm (Ht SDS -4.7), mother 147.7 cm (Ht SDS -2.6), and index case 99.2 cm (Ht SDS -2.7). Our prepubertal patient has significant bone age advancement (bone age 8 years at chronologic age 5 1/2 years) resulting in a poor predicted adult height of 142 cm (Ht SDS -5.1). DNA sequencing identified a novel heterozygous variant in ACAN, which encodes aggrecan, a proteoglycan in the extracellular matrix of growth plate and other cartilaginous tissues. The mutation (p.Gly1797Glyfs*52) results in premature truncation and presumed loss of protein function. Conclusion Mutations in aggrecan gene should be included in the differential diagnosis of the child with idiopathic short stature or familial short stature and bone age advancement. PMID:25741789

  5. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.

    PubMed

    Patel, Kashyap A; Kettunen, Jarno; Laakso, Markku; Stančáková, Alena; Laver, Thomas W; Colclough, Kevin; Johnson, Matthew B; Abramowicz, Marc; Groop, Leif; Miettinen, Päivi J; Shepherd, Maggie H; Flanagan, Sarah E; Ellard, Sian; Inagaki, Nobuya; Hattersley, Andrew T; Tuomi, Tiinamaija; Cnop, Miriam; Weedon, Michael N

    2017-10-12

    Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10 -4 ). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10 -5 ) and Finnish (n = 80, odds ratio = 22, P = 1 × 10 -6 ) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.

  6. A phenotypic screening approach to identify anticancer compounds derived from marine fungi.

    PubMed

    Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

    2014-04-01

    This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.

  7. A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication.

    PubMed

    Luthra, Priya; Liang, Jue; Pietzsch, Colette A; Khadka, Sudip; Edwards, Megan R; Wei, Shuguang; De, Sampriti; Posner, Bruce; Bukreyev, Alexander; Ready, Joseph M; Basler, Christopher F

    2018-02-01

    Ebola virus (EBOV) is an enveloped negative-sense, single-stranded RNA virus of the filovirus family that causes severe disease in humans. Approved therapies for EBOV disease are lacking. EBOV RNA synthesis is carried out by a virus-encoded complex with RNA-dependent RNA polymerase activity that is required for viral propagation. This complex and its activities are therefore potential antiviral targets. To identify potential lead inhibitors of EBOV RNA synthesis, a library of small molecule compounds was screened against a previously established assay of EBOV RNA synthesis, the EBOV minigenome assay (MGA), in 384 well microplate format. The screen identified 56 hits that inhibited EBOV MGA activity by more than 70% while exhibiting less than 20% cell cytotoxicity. Inhibitory chemical scaffolds included angelicin derivatives, derivatives of the antiviral compound GSK983 and benzoquinolines. Structure-activity relationship (SAR) studies of the benzoquinoline scaffold produced ∼50 analogs and led to identification of an optimized compound, SW456, with a submicromolar IC 50 in the EBOV MGA and antiviral activity against infectious EBOV in cell culture. The compound was also active against a MGA for another deadly filovirus, Marburg virus. It also exhibited antiviral activity towards a negative-sense RNA virus from the rhabdovirus family, vesicular stomatitis virus, and a positive-sense RNA virus, Zika virus. Overall, these data demonstrate the potential of the EBOV MGA to identify anti-EBOV compounds and identifies the benzoquinoline series as a broad-spectrum antiviral lead. Copyright © 2017. Published by Elsevier B.V.

  8. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  9. Using C. elegans Forward and Reverse Genetics to Identify New Compounds with Anthelmintic Activity

    PubMed Central

    Mathew, Mark D.; Mathew, Neal D.; Miller, Angela; Simpson, Mike; Au, Vinci; Garland, Stephanie; Gestin, Marie; Edgley, Mark L.; Flibotte, Stephane; Balgi, Aruna; Chiang, Jennifer; Giaever, Guri; Dean, Pamela; Tung, Audrey; Roberge, Michel; Roskelley, Calvin; Forge, Tom; Nislow, Corey; Moerman, Donald

    2016-01-01

    Background The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. Methods/Principal findings Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. Conclusions/Significance The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus

  10. Olfaction in Parkin single and compound heterozygotes in a cohort of young onset Parkinson's disease patients.

    PubMed

    Malek, N; Swallow, D M A; Grosset, K A; Lawton, M A; Smith, C R; Bajaj, N P; Barker, R A; Ben-Shlomo, Y; Bresner, C; Burn, D J; Foltynie, T; Morris, H R; Williams, N; Wood, N W; Grosset, D G

    2016-10-01

    Parkin related Parkinson's disease (PD) is differentiated from idiopathic PD by absent or sparse Lewy bodies, and preserved olfaction. The significance of single Parkin mutations in the pathogenesis of PD is debated. To assess olfaction results according to Parkin mutation status. To compare the prevalence of Parkin single heterozygous mutations in patients diagnosed with PD to the rate in healthy controls in order to establish whether these single mutations could be a risk factor for developing PD. Parkin gene mutation testing was performed in young onset PD (diagnosed <50 years old) to identify three groups: Parkin homozygous or compound heterozygote mutation carriers, Parkin single heterozygote mutation carriers, and non-carriers of Parkin mutations. Olfaction was tested using the 40-item British version of the University of Pennsylvania smell identification test (UPSIT). Of 344 young onset PD cases tested, 8 (2.3%) were Parkin compound heterozygotes and 13 (3.8%) were Parkin single heterozygotes. Olfaction results were available in 282 cases (eight compound heterozygotes, nine single heterozygotes, and 265 non-carriers). In Parkin compound heterozygotes, the median UPSIT score was 33, interquartile range (IQR) 28.5-36.5, which was significantly better than in single Parkin heterozygotes (median 19, IQR 18-28) and non-carriers (median score 22, IQR 16-28) (ANOVA P < 0.001). These differences persisted after adjusting for age, disease duration, gender, and smoking (P < 0.001). There was no significant difference in UPSIT scores between single heterozygotes and non-carriers (P = 0.90). Patients with Parkin compound heterozygous mutations have relatively preserved olfaction compared to Parkin single heterozygotes and non-carriers. The prevalence of Parkin single heterozygosity is similar to the 3.7% rate reported in healthy controls. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    PubMed

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  12. Effects of varying Notch1 signal strength on embryogenesis and vasculogenesis in compound mutant heterozygotes

    PubMed Central

    2010-01-01

    Background Identifying developmental processes regulated by Notch1 can be addressed in part by characterizing mice with graded levels of Notch1 signaling strength. Here we examine development in embryos expressing various combinations of Notch1 mutant alleles. Mice homozygous for the hypomorphic Notch112f allele, which removes the single O-fucose glycan in epidermal growth factor-like repeat 12 (EGF12) of the Notch1 ligand binding domain (lbd), exhibit reduced growth after weaning and defective T cell development. Mice homozygous for the inactive Notch1lbd allele express Notch1 missing an ~20 kDa internal segment including the canonical Notch1 ligand binding domain, and die at embryonic day ~E9.5. The embryonic and vascular phenotypes of compound heterozygous Notch112f/lbd embryos were compared with Notch1+/12f, Notch112f/12f, and Notch1lbd/lbd embryos. Embryonic stem (ES) cells derived from these embryos were also examined in Notch signaling assays. While Notch1 signaling was stronger in Notch112f/lbd compound heterozygotes compared to Notch1lbd/lbd embryos and ES cells, Notch1 signaling was even stronger in embryos carrying Notch112f and a null Notch1 allele. Results Mouse embryos expressing the hypomorphic Notch112f allele, in combination with the inactive Notch1lbd allele which lacks the Notch1 ligand binding domain, died at ~E11.5-12.5. Notch112f/lbd ES cells signaled less well than Notch112f/12f ES cells but more strongly than Notch1lbd/lbd ES cells. However, vascular defects in Notch112f/lbd yolk sac were severe and similar to Notch1lbd/lbd yolk sac. By contrast, vascular disorganization was milder in Notch112f/lbd compared to Notch1lbd/lbd embryos. The expression of Notch1 target genes was low in Notch112f/lbd yolk sac and embryo head, whereas Vegf and Vegfr2 transcripts were increased. The severity of the compound heterozygous Notch112f/lbd yolk sac phenotype suggested that the allelic products may functionally interact. By contrast, compound heterozygotes

  13. Impaired fear extinction learning in adult heterozygous BDNF knock-out mice.

    PubMed

    Psotta, Laura; Lessmann, Volkmar; Endres, Thomas

    2013-07-01

    Brain-derived neurotrophic factor (BDNF) is a crucial regulator of neuroplasticity, which underlies learning and memory processes in different brain areas. To investigate the role of BDNF in the extinction of amygdala-dependent cued fear memories, we analyzed fear extinction learning in heterozygous BDNF knock-out mice, which possess a reduction of endogenous BDNF protein levels to ~50% of wild-type animals. Since BDNF expression has been shown to decline with aging of animals, we tested the performance in extinction learning of these mice at 2 months (young adults) and 7 months (older adults) of age. The present study shows that older adult heterozygous BDNF knock-out mice, which have a chronic 50% lack of BDNF, also possess a deficit in the acquisition of extinction memory, while extinction learning remains unaffected in young adult heterozygous BDNF knock-out mice. This deficit in extinction learning is accompanied by a reduction of BDNF protein in the hippocampus, amygdala and the prefrontal cortex. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  15. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    PubMed Central

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of <5 µM. A significant number of these compounds are established inhibitors of dopamine or estrogen signaling. Follow-up experiments with the dopamine receptor inhibitor pimozide revealed that the drug impacted both parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several

  16. Waardenburg syndrome type 3 (Klein-Waardenburg syndrome) segregating with a heterozygous deletion in the paired box domain of PAX3: a simple variant or a true syndrome?

    PubMed

    Tekin, M; Bodurtha, J N; Nance, W E; Pandya, A

    2001-10-01

    Klein-Waardenburg syndrome or Waardenburg syndrome type 3 (WS-III; MIM 148820) is characterized by the presence of musculoskeletal abnormalities in association with clinical features of Waardenburg syndrome type 1 (WS-I). Since the description of the first patient in 1947 (D. Klein, Arch Klaus Stift Vererb Forsch 1947: 22: 336-342), a few cases have been reported. Only occasional families have demonstrated autosomal-dominant inheritance of WS-III. In a previous report, a missense mutation in the paired domain of the PAX3 gene has been described in a family with dominant segregation of WS-III. In this report, we present a second family (mother and son) with typical clinical findings of WS-III segregating with a heterozygous 13-bp deletion in the paired domain of the PAX3 gene. Although homozygosity or compound heterozygosity has also been documented in patients with severe limb involvement, a consistent genotype-phenotype correlation for limb abnormalities associated with heterozygous PAX3 mutations has not previously been apparent. Heterozygous mutations could either reflect a unique dominant-negative effect or possibly the contribution of other unlinked genetic modifiers in determining the phenotype.

  17. Identifying relationships between unrelated pharmaceutical target proteins on the basis of shared active compounds.

    PubMed

    Miljković, Filip; Kunimoto, Ryo; Bajorath, Jürgen

    2017-08-01

    Computational exploration of small-molecule-based relationships between target proteins from different families. Target annotations of drugs and other bioactive compounds were systematically analyzed on the basis of high-confidence activity data. A total of 286 novel chemical links were established between distantly related or unrelated target proteins. These relationships involved a total of 1859 bioactive compounds including 147 drugs and 141 targets. Computational analysis of large amounts of compounds and activity data has revealed unexpected relationships between diverse target proteins on the basis of compounds they share. These relationships are relevant for drug discovery efforts. Target pairs that we have identified and associated compound information are made freely available.

  18. Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin?

    PubMed

    Camats, Núria; Fernández-Cancio, Mónica; Audí, Laura; Schaller, André; Flück, Christa E

    2018-06-11

    SF-1/NR5A1 is a transcriptional regulator of adrenal and gonadal development. NR5A1 disease-causing variants cause disorders of sex development (DSD) and adrenal failure, but most affected individuals show a broad DSD/reproductive phenotype only. Most NR5A1 variants show in vitro pathogenic effects, but not when tested in heterozygote state together with wild-type NR5A1 as usually seen in patients. Thus, the genotype-phenotype correlation for NR5A1 variants remains an unsolved question. We analyzed heterozygous 46,XY SF-1/NR5A1 patients by whole exome sequencing and used an algorithm for data analysis based on selected project-specific DSD- and SF-1-related genes. The variants detected were evaluated for their significance in literature, databases and checked in silico using webtools. We identified 19 potentially deleterious variants (one to seven per patient) in 18 genes in four 46,XY DSD subjects carrying heterozygous NR5A1 disease-causing variants. We constructed a scheme of all these hits within the landscape of currently known genes involved in male sex determination and differentiation. Our results suggest that the broad phenotype in these heterozygous NR5A1 46,XY DSD subjects may well be explained by an oligogenic mode of inheritance, in which multiple hits, individually non-deleterious, may contribute to a DSD phenotype unique to each heterozygous SF-1/NR5A1 individual.

  19. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.

  20. G6PD deficiency from lyonization after hematopoietic stem cell transplantation from female heterozygous donors.

    PubMed

    Au, W-Y; Pang, A; Lam, K K Y; Song, Y-Q; Lee, W-M; So, J C C; Kwong, Y-L

    2007-10-01

    To determine whether during hematopoietic stem cell transplantation (HSCT), X-chromosome inactivation (lyonization) of donor HSC might change after engraftment in recipients, the glucose-6-phosphate dehydrogenase (G6PD) gene of 180 female donors was genotyped by PCR/allele-specific primer extension, and MALDI-TOF mass spectrometry/Sequenom MassARRAY analysis. X-inactivation was determined by semiquantitative PCR for the HUMARA gene before/after HpaII digestion. X-inactivation was preserved in most cases post-HSCT, although altered skewing of lyonization might occur to either of the X-chromosomes. Among pre-HSCT clinicopathologic parameters analyzed, only recipient gender significantly affected skewing. Seven donors with normal G6PD biochemically but heterozygous for G6PD mutants were identified. Owing to lyonization changes, some donor-recipient pairs showed significantly different G6PD levels. In one donor-recipient pair, extreme lyonization affecting the wild-type G6PD allele occurred, causing biochemical G6PD deficiency in the recipient. In HSCT from asymptomatic female donors heterozygous for X-linked recessive disorders, altered lyonization might cause clinical diseases in the recipients.

  1. Loss of MSH2 and MSH6 due to heterozygous germline defects in MSH3 and MSH6.

    PubMed

    Morak, Monika; Käsbauer, Sarah; Kerscher, Martina; Laner, Andreas; Nissen, Anke M; Benet-Pagès, Anna; Schackert, Hans K; Keller, Gisela; Massdorf, Trisari; Holinski-Feder, Elke

    2017-10-01

    Lynch Syndrome (LS) is the most common dominantly inherited colorectal cancer (CRC) predisposition and is caused by a heterozygous germline defect in one of the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2. High microsatellite instability (MSI-H) and loss of MMR protein expression in tumours reflecting a defective MMR are indicators for LS, as well as a positive family history of early onset CRC. MSH2 and MSH6 form a major functional heterodimer, and MSH3 is an alternative binding partner for MSH2. So far, the role of germline MSH3 variants remains unclear, as to our knowledge heterozygous truncating variants are not regarded causative for LS, but were detected in patients with CRC, and recently biallelic MSH3 defects have been identified in two patients with adenomatous polyposis. By gene screening we investigated the role of MSH3 in 11 LS patients with truncating MSH6 germline variants and an unexplained MSH2 protein loss in their corresponding MSI-H tumours. We report the first two LS patients harbouring heterozygous germline variants c.1035del and c.2732T>G in MSH3 coincidentally with truncating variants in MSH6. In the patient with truncating germline variants in MSH3 and MSH6, two additional somatic second hits in both genes abrogate all binding partners for the MSH2 protein which might subsequently be degraded. The clinical relevance of MSH3 germline variants is currently under re-evaluation, and heterozygous MSH3 defects alone do not seem to induce a LS phenotype, but might aggravate the MSH6 phenotype in affected family members.

  2. Heterozygous Hb Hope [beta136(H14)Gly --> Asp] in association with heterozygous beta0-thalassemia with apparent homozygous expression, in a Spanish patient.

    PubMed

    Beneitez, David; Carrera, Alícia; Duran-Suárez, Joan Ramón; Paz, Victoria; León, Antonio; García Talavera, Juan

    2006-01-01

    Hb Hope [beta136(H14)Gly --> Asp (GGT --> GAT)] has been found alone or in combination with other globin gene mutations in several African-American families, as well as in Japanese, Thai, Laotian, Cuban and Mauritanian families. We report the hematological and molecular characteristics of a heterozygous association of Hb Hope with beta0-thalassemia (thal) in a Spanish patient, in whom the level of expression of abnormal hemoglobin (Hb) by cation exchange high performance liquid chromatography (HPLC) and electrophoresis suggested initially a homozygous expression of the abnormal Hb, although sequencing of the polymerase chain reaction (PCR)-amplified beta-globin gene demonstrated a heterozygous genotype for Hb Hope. To the best of our knowledge, this is the first description of a case of Hb Hope in a Spanish family.

  3. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of microtus voles.

    PubMed

    Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald

    2014-04-01

    Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

  4. Confirmation and refinement of the heterozygous deletion of the small leucine-rich proteoglycans associated with posterior amorphous corneal dystrophy.

    PubMed

    Cervantes, Aleck E; Gee, Katherine M; Whiting, Martha F; Frausto, Ricardo F; Aldave, Anthony J

    2018-04-19

    To present the clinical and cytogenetic features of a previously unreported family with posterior amorphous corneal dystrophy (PACD) associated with a heterozygous deletion of the small leucine-rich proteoglycan (SRLP) genes on chromosome 12. Clinical characterization was performed using slit lamp biomicroscopic and optical coherence tomography (OCT) imaging. Genomic DNA was collected from affected and unaffected family members, and a cytogenomic array was used to identify copy number variations (CNV) present in the PACD locus. Three members of a Guatemalan family presented with clinical characteristics consistent with PACD: bilateral posterior stromal lamellar opacification, decreased corneal curvature, and iridocorneal adhesions. OCT imaging demonstrated decreased corneal thickness and hyperreflectivity of the posterior third of the corneal stroma. CNV analysis confirmed the presumed clinical diagnosis of PACD by revealing a 0.304 Mb heterozygous deletion in the PACD locus on chromosome 12 that included the four SLRP genes (KERA, LUM, DCN, and EPYC) deleted in each of the PACD families in which CNV analysis has been reported. This is the first report of the OCT appearance of PACD and the second confirmation of a heterozygous deletion of chromosome 12q21.33 as the cause of PACD, highlighting the utility of array-based cytogenomics to confirm the suspected clinical diagnosis of PACD. As the smallest previously reported pathogenic deletion was 0.701 Mb, the 0.304-Mb deletion we report is the smallest identified to date and reduces the size of the PACD locus to 0.275 Mb.

  5. Early-Onset X-Linked Retinitis Pigmentosa in a Heterozygous Female Harboring an Intronic Donor Splice Site Mutation in the Retinitis Pigmentosa GTPase Regulator Gene.

    PubMed

    Shifera, Amde Selassie; Kay, Christine Nichols

    2015-01-01

    To report a heterozygous female presenting with an early-onset and severe form of X-linked retinitis pigmentosa (XLRP). This is a case series presenting the clinical findings in a heterozygous female with XLRP and two of her family members. Fundus photography, fundus autofluorescence, ocular coherence tomography, and visual perimetry are presented. The proband reported here is a heterozygous female who presented at the age of 8 years with an early onset and aggressive form of XLRP. The patient belongs to a four-generation family with a total of three affected females and four affected males. The patient was initially diagnosed with retinitis pigmentosa (RP) at the age of 4 years. Genetic testing identified a heterozygous donor splice site mutation in intron 1 (IVS1 + 1G > A) of the retinitis pigmentosa GTPase regulator gene. The father of the proband was diagnosed with RP when he was a young child. The sister of the proband, evaluated at the age of 6 years, showed macular pigmentary changes. Although carriers of XLRP are usually asymptomatic or have a mild disease of late onset, the proband presented here exhibited an early-onset, aggressive form of the disease. It is not clear why some carrier females manifest a severe phenotype. A better understanding of the genetic processes involved in the penetrance and expressivity of XLRP in heterozygous females could assist in providing the appropriate counseling to affected families.

  6. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  7. Novel Polyfluorinated Compounds Identified Using High ...

    EPA Pesticide Factsheets

    Concern over persistence, bioaccumulation, and toxicity has led to international regulation and phase-outs of certain perfluorinated compounds and little is known about their replacement products. High resolution mass spectrometry was used to investigate the occurrence and identity of replacement fluorinated compounds in surface water and sediment of the Tennessee River near Decatur, Alabama. Analysis of legacy Per- and polyfluoroalkyl substances (PFASs) revealed a marked increase in concentrations downstream of manufacturing facilities, with the most abundant compounds being perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), and perfluorooctanoic acid (PFOA) as high as 220 ng L–1, 160 ng L–1, and 120 ng L–1, respectively. A series of nine polyfluorinated carboxylic acids was discovered, each differing by CF2CH2. These acids are likely products or byproducts of a manufacturing process that uses 1,1-difluoroethene, which is registered to a manufacturing facility in the area. Two other predominant compounds discovered have structures consistent with perfluorobutanesulfonate and perfluoroheptanoic acid but have a single hydrogen substituted for a fluorine someplace in their structure. A polyfluoroalkyl sulfate with differing mixes of hydrogen and fluorine substitution was also observed. N-methyl perfluorobutane sulfonamidoacetic acid (MeFBSAA) was observed at high concentrations and several other perfluorobutane sulfonamido substances were pres

  8. Risk of asthma in heterozygous carriers for cystic fibrosis: A meta-analysis.

    PubMed

    Nielsen, Anne Orholm; Qayum, Sadaf; Bouchelouche, Pierre Nourdine; Laursen, Lars Christian; Dahl, Ronald; Dahl, Morten

    2016-09-01

    Patients with cystic fibrosis (CF) have a higher prevalence of asthma than the background population, however, it is unclear whether heterozygous CF carriers are susceptible to asthma. Given this, a meta-analysis is necessary to determine the veracity of the association of CF heterozygosity with asthma. We screened the medical literature from 1966 to 2015 and performed a meta-analysis to determine the risk of asthma in CF heterozygotes vs. non-carriers. Aggregating data from 15 studies, the odds ratio for asthma in CF heterozygotes compared with non-carriers was significantly elevated at 1.61 (95% CI: 1.18-2.21). When analyzing the studies considered of high quality in which asthma was diagnosed by a physician, the patients were >18years, or study size was ≥500, the trend remained the same, that heterozygous carriers of CF had elevated risk for asthma. The results show that heterozygous carriers for CF have a higher risk of asthma than non-carriers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Neurochemical and behavioral characterization of neuronal glutamate transporter EAAT3 heterozygous mice.

    PubMed

    González, Luis F; Henríquez-Belmar, Francisca; Delgado-Acevedo, Claudia; Cisternas-Olmedo, Marisol; Arriagada, Gloria; Sotomayor-Zárate, Ramón; Murphy, Dennis L; Moya, Pablo R

    2017-09-19

    Obsessive-compulsive disorder (OCD) is a severe neuropsychiatric condition affecting 1-3% of the worldwide population. OCD has a strong genetic component, and the SLC1A1 gene that encodes neuronal glutamate transporter EAAT3 is a strong candidate for this disorder. To evaluate the impact of reduced EAAT3 expression in vivo, we studied male EAAT3 heterozygous and wild-type littermate mice using a battery of behavioral paradigms relevant to anxiety (open field test, elevated plus maze) and compulsivity (marble burying), as well as locomotor activity induced by amphetamine. Using high-performance liquid chromatography, we also determined tissue neurotransmitter levels in cortex, striatum and thalamus-brain areas that are relevant to OCD. Compared to wild-type littermates, EAAT3 heterozygous male mice have unaltered baseline anxiety-like, compulsive-like behavior and locomotor activity. Administration of acute amphetamine (5 mg/kg intraperitoneally) increased locomotion with no differences across genotypes. Tissue levels of glutamate, GABA, dopamine and serotonin did not vary between EAAT3 heterozygous and wild-type mice. Our results indicate that reduced EAAT3 expression does not impact neurotransmitter content in the corticostriatal circuit nor alter anxiety or compulsive-like behaviors.

  10. Effectively identifying compound-protein interactions by learning from positive and unlabeled examples.

    PubMed

    Cheng, Zhanzhan; Zhou, Shuigeng; Wang, Yang; Liu, Hui; Guan, Jihong; Chen, Yi-Ping Phoebe

    2016-05-18

    Prediction of compound-protein interactions (CPIs) is to find new compound-protein pairs where a protein is targeted by at least a compound, which is a crucial step in new drug design. Currently, a number of machine learning based methods have been developed to predict new CPIs in the literature. However, as there is not yet any publicly available set of validated negative CPIs, most existing machine learning based approaches use the unknown interactions (not validated CPIs) selected randomly as the negative examples to train classifiers for predicting new CPIs. Obviously, this is not quite reasonable and unavoidably impacts the CPI prediction performance. In this paper, we simply take the unknown CPIs as unlabeled examples, and propose a new method called PUCPI (the abbreviation of PU learning for Compound-Protein Interaction identification) that employs biased-SVM (Support Vector Machine) to predict CPIs using only positive and unlabeled examples. PU learning is a class of learning methods that leans from positive and unlabeled (PU) samples. To the best of our knowledge, this is the first work that identifies CPIs using only positive and unlabeled examples. We first collect known CPIs as positive examples and then randomly select compound-protein pairs not in the positive set as unlabeled examples. For each CPI/compound-protein pair, we extract protein domains as protein features and compound substructures as chemical features, then take the tensor product of the corresponding compound features and protein features as the feature vector of the CPI/compound-protein pair. After that, biased-SVM is employed to train classifiers on different datasets of CPIs and compound-protein pairs. Experiments over various datasets show that our method outperforms six typical classifiers, including random forest, L1- and L2-regularized logistic regression, naive Bayes, SVM and k-nearest neighbor (kNN), and three types of existing CPI prediction models. Source code, datasets and

  11. Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models

    EPA Science Inventory

    Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

  12. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  13. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less

  14. Compound deficiencies in multiple fibroblast growth factor signalling components differentially impact the murine gonadotrophin-releasing hormone system.

    PubMed

    Chung, W C J; Matthews, T A; Tata, B K; Tsai, P-S

    2010-08-01

    Gonadotrophin-releasing hormone (GnRH) neurones control the onset and maintenance of fertility. Aberrant development of the GnRH system underlies infertility in Kallmann syndrome [KS; idiopathic hypogonadotropic hypogonadism (IHH) and anosmia]. Some KS patients harbour mutations in the fibroblast growth factor receptor 1 (Fgfr1) and Fgf8 genes. The biological significance of these two genes in GnRH neuronal development was corroborated by the observation that GnRH neurones were severely reduced in newborn transgenic mice deficient in either gene. In the present study, we hypothesised that the compound deficiency of Fgf8 and its cognate receptors, Fgfr1 and Fgfr3, may lead to more deleterious effects on the GnRH system, thereby resulting in a more severe reproductive phenotype in patients harbouring these mutations. This hypothesis was tested by counting the number of GnRH neurones in adult transgenic mice with digenic heterozygous mutations in Fgfr1/Fgf8, Fgfr3/Fgf8 or Fgfr1/Fgfr3. Monogenic heterozygous mutations in Fgfr1, Fgf8 or Fgfr3 caused a 30-50% decrease in the total number of GnRH neurones. Interestingly, mice with digenic mutations in Fgfr1/Fgf8 showed a greater decrease in GnRH neurones compared to mice with a heterozygous defect in the Fgfr1 or Fgf8 alone. This compounding effect was not detected in mice with digenic heterozygous mutations in Fgfr3/Fgf8 or Fgfr1/Fgfr3. These results support the hypothesis that IHH/KS patients with digenic mutations in Fgfr1/Fgf8 may have a further reduction in the GnRH neuronal population compared to patients harbouring monogenic haploid mutations in Fgfr1 or Fgf8. Because only Fgfr1/Fgf8 compound deficiency leads to greater GnRH system defect, this also suggests that these fibroblast growth factor signalling components interact in a highly specific fashion to support GnRH neuronal development.

  15. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds.

    PubMed

    Lema, Carolina; Varela-Ramirez, Armando; Aguilera, Renato J

    As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z' factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC 50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity.

  16. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds

    PubMed Central

    LEMA, Carolina; VARELA-RAMIREZ, Armando; AGUILERA, Renato J.

    2016-01-01

    As large quantities of novel synthetic molecules continue to be generated there is a challenge to identify therapeutic agents with cytotoxic activity. Here we introduce a Differential Nuclear Staining (DNS) assay adapted to live-cell imaging for high throughput screening (HTS) that utilizes two fluorescent DNA intercalators, Hoechst 33342 and Propidium iodide (PI). Since Hoechst can readily cross cell membranes to stain DNA of living and dead cells, it was used to label the total number of cells. In contrast, PI only enters cells with compromised plasma membranes, thus selectively labeling dead cells. The DNS assay was successfully validated by utilizing well known cytotoxic agents with fast or slow cytotoxic activities. The assay was found to be suitable for HTS with Z′ factors ranging from 0.86 to 0.60 for 96 and 384-well formats, respectively. Furthermore, besides plate-to-plate reproducibility, assay quality performance was evaluated by determining ratios of signal-to-noise and signal-to-background, as well as coefficient of variation, which resulted in adequate values and validated the assay for HTS initiatives. As proof of concept, eighty structurally diverse compounds from a small molecule library were screened in a 96-well plate format using the DNS assay. Using this DNS assay, six hits with cytotoxic properties were identified and all of them were also successfully identified by using the commercially available MTS assay (CellTiter 96® Cell Proliferation Assay). In addition, the DNS and a flow cytometry assay were used to validate the activity of the cytotoxic compounds. The DNS assay was also used to generate dose-response curves and to obtain CC50 values. The results indicate that the DNS assay is reliable and robust and suitable for primary and secondary screens of compounds with potential cytotoxic activity. PMID:27042697

  17. High-Throughput Phenotypic Screening of Human Astrocytes to Identify Compounds That Protect Against Oxidative Stress.

    PubMed

    Thorne, Natasha; Malik, Nasir; Shah, Sonia; Zhao, Jean; Class, Bradley; Aguisanda, Francis; Southall, Noel; Xia, Menghang; McKew, John C; Rao, Mahendra; Zheng, Wei

    2016-05-01

    Astrocytes are the predominant cell type in the nervous system and play a significant role in maintaining neuronal health and homeostasis. Recently, astrocyte dysfunction has been implicated in the pathogenesis of many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Astrocytes are thus an attractive new target for drug discovery for neurological disorders. Using astrocytes differentiated from human embryonic stem cells, we have developed an assay to identify compounds that protect against oxidative stress, a condition associated with many neurodegenerative diseases. This phenotypic oxidative stress assay has been optimized for high-throughput screening in a 1,536-well plate format. From a screen of approximately 4,100 bioactive tool compounds and approved drugs, we identified a set of 22 that acutely protect human astrocytes from the consequences of hydrogen peroxide-induced oxidative stress. Nine of these compounds were also found to be protective of induced pluripotent stem cell-differentiated astrocytes in a related assay. These compounds are thought to confer protection through hormesis, activating stress-response pathways and preconditioning astrocytes to handle subsequent exposure to hydrogen peroxide. In fact, four of these compounds were found to activate the antioxidant response element/nuclear factor-E2-related factor 2 pathway, a protective pathway induced by toxic insults. Our results demonstrate the relevancy and utility of using astrocytes differentiated from human stem cells as a disease model for drug discovery and development. Astrocytes play a key role in neurological diseases. Drug discovery efforts that target astrocytes can identify novel therapeutics. Human astrocytes are difficult to obtain and thus are challenging to use for high-throughput screening, which requires large numbers of cells. Using human embryonic stem cell-derived astrocytes and an

  18. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  19. Heterozygous familial hypercholesterolemia: an underrecognized cause of early cardiovascular disease.

    PubMed

    Yuan, George; Wang, Jian; Hegele, Robert A

    2006-04-11

    Heterozygous familial hypercholesterolemia (HeFH) is a monogenic disorder that affects about 1 in 500 people, with a higher prevalence in certain subpopulations such as people of Quebecois, Christian Lebanese and Dutch South Afrikaner extraction. HeFH is characterized by cholesterol deposits affecting the corneas, eyelids and extensor tendons; elevated plasma concentrations of low-density lipoprotein (LDL) cholesterol; and accelerated vascular disease, especially coronary artery disease (CAD). Although HeFH is genetically heterogeneous, it is most often caused by heterozygous mutations in the LDLR gene encoding the LDL receptor. We describe a man who was diagnosed with HeFH after he had a myocardial infarction at 33 years of age. By DNA sequence analysis, he was found to have a heterozygous splicing mutation in his LDLR gene. This discovery expanded the growing mutational spectrum in patients with HeFH in Ontario. Given that HeFH is a treatable cause of early vascular disease, it is important that this condition be recognized, diagnosed and treated in affected patients; but as yet, there is no consensus on the best approach. Diagnostic criteria based on family history and clinical presentation have been proposed for patients with suspected HeFH. Biochemical or molecular screening might be considered to detect new cases of HeFH in populations with a relatively high HeFH prevalence and a relatively small number of possible causative mutations. So far, however, the most cost-effective and efficient systematic strategy to detect previously undiagnosed cases of HeFH is still cascade testing: clinical and biochemical screening of close relatives of the proband patient diagnosed with HeFH. Pharmacologic treatment of HeFH is cost-effective.

  20. Heterozygous familial hypercholesterolemia: an underrecognized cause of early cardiovascular disease

    PubMed Central

    Yuan, George; Wang, Jian; Hegele, Robert A.

    2006-01-01

    Heterozygous familial hypercholesterolemia (HeFH) is a monogenic disorder that affects about 1 in 500 people, with a higher prevalence in certain subpopulations such as people of Quebecois, Christian Lebanese and Dutch South Afrikaner extraction. HeFH is characterized by cholesterol deposits affecting the corneas, eyelids and extensor tendons; elevated plasma concentrations of low-density lipoprotein (LDL) cholesterol; and accelerated vascular disease, especially coronary artery disease (CAD). Although HeFH is genetically heterogeneous, it is most often caused by heterozygous mutations in the LDLR gene encoding the LDL receptor. We describe a man who was diagnosed with HeFH after he had a myocardial infarction at 33 years of age. By DNA sequence analysis, he was found to have a heterozygous splicing mutation in his LDLR gene. This discovery expanded the growing mutational spectrum in patients with HeFH in Ontario. Given that HeFH is a treatable cause of early vascular disease, it is important that this condition be recognized, diagnosed and treated in affected patients; but as yet, there is no consensus on the best approach. Diagnostic criteria based on family history and clinical presentation have been proposed for patients with suspected HeFH. Biochemical or molecular screening might be considered to detect new cases of HeFH in populations with a relatively high HeFH prevalence and a relatively small number of possible causative mutations. So far, however, the most cost-effective and efficient systematic strategy to detect previously undiagnosed cases of HeFH is still cascade testing: clinical and biochemical screening of close relatives of the proband patient diagnosed with HeFH. Pharmacologic treatment of HeFH is cost-effective. PMID:16606962

  1. Halogenated Organic Compounds Identified in Hydraulic Fracturing Wastewaters Using Ultrahigh Resolution Mass Spectrometry.

    PubMed

    Luek, Jenna L; Schmitt-Kopplin, Philippe; Mouser, Paula J; Petty, William Tyler; Richardson, Susan D; Gonsior, Michael

    2017-05-16

    Large volumes of water return to the surface following hydraulic fracturing of deep shale formations to retrieve oil and natural gas. Current understanding of the specific organic constituents in these hydraulic fracturing wastewaters is limited to hydrocarbons and a fraction of known chemical additives. In this study, we analyzed hydraulic fracturing wastewater samples using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) as a nontargeted technique to assign unambiguous molecular formulas to singly charged molecular ions. Halogenated molecular formulas were identified and confirmed using isotopic simulation and MS-MS fragmentation spectra. The abundance of halogenated organic compounds in flowback fluids rather than older wastewaters suggested that the observed molecular ions might have been related to hydraulic fracturing additives and related subsurface reactions, such as through the reaction of shale-extracted chloride, bromide, and iodide with strong oxidant additives (e.g., hypochlorite, persulfate, hydrogen peroxide) and subsequently with diverse dissolved organic matter. Some molecular ions matched the exact masses of known disinfection byproducts including diiodoacetic acid, dibromobenzoic acid, and diiodobenzoic acid. The identified halogenated organic compounds, particularly iodinated organic molecules, are absent from inland natural systems and these compounds could therefore play an important role as environmental tracers.

  2. Phenotype of Usher syndrome type II assosiated with compound missense mutations of c.721 C>T and c.1969 C>T in MYO7A in a Chinese Usher syndrome family.

    PubMed

    Zhai, Wei; Jin, Xin; Gong, Yan; Qu, Ling-Hui; Zhao, Chen; Li, Zhao-Hui

    2015-01-01

    To identify the pathogenic mutations in a Chinese pedigree affected with Usher syndrome type II (USH2). The ophthalmic examinations and audiometric tests were performed to ascertain the phenotype of the family. To detect the genetic defect, exons of 103 known RDs -associated genes including 12 Usher syndrome (USH) genes of the proband were captured and sequencing analysis was performed to exclude known genetic defects and find potential pathogenic mutations. Subsequently, candidate mutations were validated in his pedigree and 100 normal controls using polymerase chain reaction (PCR) and Sanger sequencing. The patient in the family occurred hearing loss (HL) and retinitis pigmentosa (RP) without vestibular dysfunction, which were consistent with standards of classification for USH2. He carried the compound heterozygous mutations, c.721 C>T and c.1969 C>T, in the MYO7A gene and the unaffected members carried only one of the two mutations. The mutations were not present in the 100 normal controls. We suggested that the compound heterozygous mutations of the MYO7A could lead to USH2, which had revealed distinguished clinical phenotypes associated with MYO7A and expanded the spectrum of clinical phenotypes of the MYO7A mutations.

  3. Short Stature, Accelerated Bone Maturation, and Early Growth Cessation Due to Heterozygous Aggrecan Mutations

    PubMed Central

    Nilsson, Ola; Guo, Michael H.; Dunbar, Nancy; Popovic, Jadranka; Flynn, Daniel; Jacobsen, Christina; Lui, Julian C.; Hirschhorn, Joel N.; Baron, Jeffrey

    2014-01-01

    Context: Many children with idiopathic short stature have a delayed bone age. Idiopathic short stature with advanced bone age is far less common. Objective: The aim was to identify underlying genetic causes of short stature with advanced bone age. Setting and Design: We used whole-exome sequencing to study three families with autosomal-dominant short stature, advanced bone age, and premature growth cessation. Results: Affected individuals presented with short stature [adult heights −2.3 to −4.2 standard deviation scores (SDS)] with histories of early growth cessation or childhood short stature (height SDS −1.9 to −3.5 SDS), advancement of bone age, and normal endocrine evaluations. Whole-exome sequencing identified novel heterozygous variants in ACAN, which encodes aggrecan, a proteoglycan in the extracellular matrix of growth plate and other cartilaginous tissues. The variants were present in all affected, but in no unaffected, family members. In Family 1, a novel frameshift mutation in exon 3 (c.272delA) was identified, which is predicted to cause early truncation of the aggrecan protein. In Family 2, a base-pair substitution was found in a highly conserved location within a splice donor site (c.2026+1G>A), which is also likely to alter the amino acid sequence of a large portion of the protein. In Family 3, a missense variant (c.7064T>C) in exon 14 affects a highly conserved residue (L2355P) and is strongly predicted to perturb protein function. Conclusions: Our study demonstrates that heterozygous mutations in ACAN can cause a mild skeletal dysplasia, which presents clinically as short stature with advanced bone age. The accelerating effect on skeletal maturation has not previously been noted in the few prior reports of human ACAN mutations. Our findings thus expand the spectrum of ACAN defects and provide a new molecular genetic etiology for the unusual child who presents with short stature and accelerated skeletal maturation. PMID:24762113

  4. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q10 Deficiency in a Female Sib-Pair.

    PubMed

    Jacobsen, Jessie C; Whitford, Whitney; Swan, Brendan; Taylor, Juliet; Love, Donald R; Hill, Rosamund; Molyneux, Sarah; George, Peter M; Mackay, Richard; Robertson, Stephen P; Snell, Russell G; Lehnert, Klaus

    2017-11-21

    Autosomal recessive ataxias are characterised by a fundamental loss in coordination of gait with associated atrophy of the cerebellum. There is significant clinical and genetic heterogeneity amongst inherited ataxias; however, an early molecular diagnosis is essential with low-risk treatments available for some of these conditions. We describe two female siblings who presented early in life with unsteady gait and cerebellar atrophy. Whole exome sequencing revealed compound heterozygous inheritance of two pathogenic mutations (p.Leu277Pro, c.1506+1G>A) in the coenzyme Q8A gene (COQ8A), a gene central to biosynthesis of coenzyme Q (CoQ). The paternally derived p.Leu277Pro mutation is predicted to disrupt a conserved motif in the substrate-binding pocket of the protein, resulting in inhibition of CoQ 10 production. The maternal c.1506+1G>A mutation destroys a canonical splice donor site in exon 12 affecting transcript processing and subsequent protein translation. Mutations in this gene can result in primary coenzyme Q 10 deficiency type 4, which is characterized by childhood onset of cerebellar ataxia and exercise intolerance, both of which were observed in this sib-pair. Muscle biopsies revealed unequivocally low levels of CoQ 10, and the siblings were subsequently established on a therapeutic dose of CoQ 10 with distinct clinical evidence of improvement after 1 year of treatment. This case emphasises the importance of an early and accurate molecular diagnosis for suspected inherited ataxias, particularly given the availability of approved treatments for some subtypes.

  5. Identifying organic nitrogen compounds in Rocky Mountain National Park aerosols

    NASA Astrophysics Data System (ADS)

    Beem, K. B.; Desyaterik, Y.; Ozel, M. Z.; Hamilton, J. F.; Collett, J. L.

    2010-12-01

    Nitrogen deposition is an important issue in Rocky Mountain National Park (RMNP). While inorganic nitrogen contributions to the ecosystems in this area have been studied, the sources of organic nitrogen are still largely unknown. To better understand the potential sources of organic nitrogen, filter samples were collected and analyzed for organic nitrogen species. Samples were collected in RMNP using a Thermo Fisher Scientific TSP (total suspended particulate) high-volume sampler with a PM2.5 impactor plate from April - November of 2008. The samples presented the opportunity to compare two different methods for identification of individual organic nitrogen species. The first type of analysis was performed with a comprehensive two dimensional gas chromatography (GCxGC) system using a nitrogen chemiluminescence detector (NCD). The filter samples were spiked with propanil in dichloromethane to use as an internal standard and were then extracted in water followed by solid phase extraction. The GCxGC system was comprised of a volatility based separation (DB5 column) followed by a polarity based separation (RXI-17 column). A NCD was used to specifically detect nitrogen compounds and remove the complex background matrix. Individual standards were used to identify peaks by comparing retention times. This method has the added benefit of an equimolar response for nitrogen so only a single calibration is needed for all species. In the second analysis, a portion of the same filter samples were extracted in DI water and analyzed with liquid chromatography coupled with mass spectroscopy (LC/MS). The separation was performed using a C18 column and a water-methanol gradient elution. Electrospray ionization into a time of flight mass spectrometer was used for detection. High accuracy mass measurement allowed unambiguous assignments of elemental composition of resulting ions. Positive and negative polarities were used since amines tend to show up in positive mode and nitrates in

  6. Personalized Stem Cell Therapy to Correct Corneal Defects Due to a Unique Homozygous-Heterozygous Mosaicism of Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome.

    PubMed

    Barbaro, Vanessa; Nasti, Annamaria Assunta; Raffa, Paolo; Migliorati, Angelo; Nespeca, Patrizia; Ferrari, Stefano; Palumbo, Elisa; Bertolin, Marina; Breda, Claudia; Miceli, Francesco; Russo, Antonella; Caenazzo, Luciana; Ponzin, Diego; Palù, Giorgio; Parolin, Cristina; Di Iorio, Enzo

    2016-08-01

    : Ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome is a rare autosomal dominant disease caused by mutations in the p63 gene. To date, approximately 40 different p63 mutations have been identified, all heterozygous. No definitive treatments are available to counteract and resolve the progressive corneal degeneration due to a premature aging of limbal epithelial stem cells. Here, we describe a unique case of a young female patient, aged 18 years, with EEC and corneal dysfunction, who was, surprisingly, homozygous for a novel and de novo R311K missense mutation in the p63 gene. A detailed analysis of the degree of somatic mosaicism in leukocytes from peripheral blood and oral mucosal epithelial stem cells (OMESCs) from biopsies of buccal mucosa showed that approximately 80% were homozygous mutant cells and 20% were heterozygous. Cytogenetic and molecular analyses excluded genomic alterations, thus suggesting a de novo mutation followed by an allelic gene conversion of the wild-type allele by de novo mutant allele as a possible mechanism to explain the homozygous condition. R311K-p63 OMESCs were expanded in vitro and heterozygous holoclones selected following clonal analysis. These R311K-p63 OMESCs were able to generate well-organized and stratified epithelia in vitro, resembling the features of healthy tissues. This study supports the rationale for the development of cultured autologous oral mucosal epithelial stem cell sheets obtained by selected heterozygous R311K-p63 stem cells, as an effective and personalized therapy for reconstructing the ocular surface of this unique case of EEC syndrome, thus bypassing gene therapy approaches. This case demonstrates that in a somatic mosaicism context, a novel homozygous mutation in the p63 gene can arise as a consequence of an allelic gene conversion event, subsequent to a de novo mutation. The heterozygous mutant R311K-p63 stem cells can be isolated by means of clonal analysis and given their good regenerative

  7. Combined pituitary hormone deficiency with unique pituitary dysplasia and morning glory syndrome related to a heterozygous PROKR2 mutation

    PubMed Central

    Asakura, Yumi; Muroya, Koji; Hanakawa, Junko; Sato, Takeshi; Aida, Noriko; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori

    2015-01-01

    Abstract Recent reports have indicated the role of the prokineticin receptor 2 gene (PROKR2) in the etiology of congenital hypopituitarism, including septo-optic dysplasia and Kallmann syndrome. In the present study, using next-generation targeted sequencing, we identified a novel heterozygous PROKR2 variant (c.742C>T; p.R248W) in a female patient who had combined pituitary hormone deficiency (CPHD), morning glory syndrome and a severely malformed pituitary gland. No other mutation was present in 27 genes related to hypogonadotropic hypogonadism, pituitary hormone deficiency and optic nerve malformation. The substituted amino acid was located on the third intracellular loop of the PROKR2 protein, which is a G protein-coupled receptor. Computational analyses with two programs (SIFT and PolyPhen-2) showed that the substitution was deleterious to PROKR2 function. The p.R248W mutation was transmitted from the patient’s mother, who had a slightly delayed menarche. Collectively, we provide further genetic evidence linking heterozygous PROKR2 mutations and the development of CPHD. PMID:25678757

  8. Combined pituitary hormone deficiency with unique pituitary dysplasia and morning glory syndrome related to a heterozygous PROKR2 mutation.

    PubMed

    Asakura, Yumi; Muroya, Koji; Hanakawa, Junko; Sato, Takeshi; Aida, Noriko; Narumi, Satoshi; Hasegawa, Tomonobu; Adachi, Masanori

    2015-01-01

    Recent reports have indicated the role of the prokineticin receptor 2 gene (PROKR2) in the etiology of congenital hypopituitarism, including septo-optic dysplasia and Kallmann syndrome. In the present study, using next-generation targeted sequencing, we identified a novel heterozygous PROKR2 variant (c.742C>T; p.R248W) in a female patient who had combined pituitary hormone deficiency (CPHD), morning glory syndrome and a severely malformed pituitary gland. No other mutation was present in 27 genes related to hypogonadotropic hypogonadism, pituitary hormone deficiency and optic nerve malformation. The substituted amino acid was located on the third intracellular loop of the PROKR2 protein, which is a G protein-coupled receptor. Computational analyses with two programs (SIFT and PolyPhen-2) showed that the substitution was deleterious to PROKR2 function. The p.R248W mutation was transmitted from the patient's mother, who had a slightly delayed menarche. Collectively, we provide further genetic evidence linking heterozygous PROKR2 mutations and the development of CPHD.

  9. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome

    PubMed Central

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; İncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strømme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI: http://dx.doi.org/10.7554/eLife.06602.001 PMID:26026149

  10. [Molecular characterization of heterozygous beta-thalassemia in Lanzarote, Spain].

    PubMed

    Calvo-Villas, José Manuel; de la Iglesia Iñigo, Silvia; Ropero Gradilla, Paloma; Zapata Ramos, María Francisca; Cuesta Tovar, Jorge; Sicilia Guillén, Francisco

    2008-04-05

    The aim of this study was to determine the molecular defects of heterozygous beta thalassaemia and to ascertain their distribution in Lanzarote. Molecular characterization was achieved by real time polymerase chain reaction (RT-PCR LightCycler, Roche), PCR-ARMS (PCR-amplification reaction mutations system) and DNA sequencing on an automated DNA sequencer. Two hundred forty-three heterozygous beta thalassaemia carriers were included between July 1991 and February 2007. RT-PCR detected the molecular defect in 81% of the beta thalassaemia chromosomes analyzed [113 codon CD 39 (C --> T); 41 IVS-1-nt-110 (G --> A), 25 IVS 1-nt-1 (G --> A) and 19 IVS 1-nt-6 (T --> C)]. The remaining 12 molecular defects included the deletion 619 bp (7.8%) and the mutations -28 (A --> G), IVS1-nt-2 (T --> G), CD 41/42 (-TTCT), CD 8/9 (+G), CD 51 (-C), CD 22 (G --> T) and CD 24 (T --> A), CD 67 (-TG) and the novel mutation CD 20/21-TGGA. The distribution of the mutations is similar to that found in the Mediterranean area. The increasing migratory flow received in the Canary Islands may explain the emergence of new mutations not reported before in our area.

  11. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing.

    PubMed

    Li, Haonan; Jin, Peng; Hao, Qian; Zhu, Wei; Chen, Xia; Wang, Ping

    2017-11-01

    Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.

  12. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy.

    PubMed

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo; Xu, Ge-Zhi

    2017-01-01

    Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. We identified two novel heterozygous deletion mutations [ LRP5 , c.4053 DelC (p.Ile1351IlefsX88); TSPAN12 , EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype-phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling.

  13. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    PubMed Central

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  14. IDENTIFYING COMPOUNDS USING SOURCE CID ON AN ORTHOGONAL ACCELERATION TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    Exact mass libraries of ESI and APCI mass spectra are not commercially available In-house libraries are dependent on CID parameters and are instrument specific. The ability to identify compounds without reliance on mass spectral libraries is therefore more crucial for liquid sam...

  15. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  16. A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome

    PubMed Central

    2011-01-01

    Background Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH). Results First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. Conclusions The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic

  17. A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory



    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

  18. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  19. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes.

    PubMed

    Sykes, Melissa L; Avery, Vicky M

    2015-12-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family.

    PubMed

    Zheng, Sui-Lian; Zhang, Hong-Liang; Lin, Zhen-Lang; Kang, Qian-Yan

    2015-10-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant‑like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole‑exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step‑wise filtering. Direct Sanger sequencing and co‑segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co‑segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole‑exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity.

  1. Long-term behavioral and NMDA receptor effects of young-adult corticosterone treatment in BDNF heterozygous mice.

    PubMed

    Klug, Maren; Hill, Rachel A; Choy, Kwok Ho Christopher; Kyrios, Michael; Hannan, Anthony J; van den Buuse, Maarten

    2012-06-01

    Psychiatric illnesses, such as schizophrenia, are most likely caused by an interaction between genetic predisposition and environmental factors, including stress during development. The neurotrophin, brain-derived neurotrophic factor (BDNF) has been implicated in this illness as BDNF levels are decreased in the brain of patients with schizophrenia. The aim of the present study was to assess the combined effect of reduced BDNF levels and postnatal stress, simulated by chronic young-adult treatment with the stress hormone, corticosterone. From 6 weeks of age, female and male BDNF heterozygous mice and their wild-type controls were chronically treated with corticosterone in their drinking water for 3 weeks. At 11 weeks of age, male, but not female BDNF heterozygous mice treated with corticosterone exhibited a profound memory deficit in the Y-maze. There were no differences between the groups in baseline prepulse inhibition (PPI), a measure of sensorimotor gating, or its disruption by treatment with MK-801. However, an increase in startle caused by MK-801 treatment was absent in male, but not female BDNF heterozygous mice, irrespective of corticosterone treatment. Analysis of protein levels of the NMDA receptor subunits NR1, NR2A, NR2B and NR2C, showed a marked increase of NR2B levels in the dorsal hippocampus of male BDNF heterozygous mice treated with corticosterone. In the ventral hippocampus, significantly reduced levels of NR2A, NR2B and NR2C were observed in male BDNF heterozygous mice. The NMDA receptor effects in hippocampal sub-regions could be related to the spatial memory deficits and the loss of the effect of MK-801 on startle in these mice, respectively. No significant changes in NMDA receptor subunit levels were observed in any of the female groups. Similarly, no significant changes in levels of BDNF or its receptor, TrkB, were found other than the expected reduced levels of BDNF in heterozygous mice. In conclusion, the data show differential interactive

  2. Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

    2014-01-01

    Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox

  3. The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers.

    PubMed

    Laitman, Yael; Boker-Keinan, Lital; Berkenstadt, Michal; Liphsitz, Irena; Weissglas-Volkov, Daphna; Ries-Levavi, Liat; Sarouk, Ifat; Pras, Elon; Friedman, Eitan

    2016-03-01

    Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Two Novel HOGA1 Splicing Mutations Identified in a Chinese Patient with Primary Hyperoxaluria Type 3.

    PubMed

    Wang, Xinsheng; Zhao, Xiangzhong; Wang, Xiaoling; Yao, Jian; Zhang, Feifei; Lang, Yanhua; Tuffery-Giraud, Sylvie; Bottillo, Irene; Shao, Leping

    2015-01-01

    Twenty-six HOGA1 mutations have been reported in primary hyperoxaluria (PH) type 3 (PH3) patients with c.700 + 5G>T accounting for about 50% of the total alleles. However, PH3 has never been described in Asians. A Chinese child with early-onset nephrolithiasis was suspected of having PH. We searched for AGXT, GRHPR and HOGA1 gene mutations in this patient and his parents. All coding regions, including intron-exon boundaries, were analyzed using PCR followed by direct sequence analysis. Two heterozygous mutations not previously described in the literature about HOGA1 were identified (compound heterozygous). One mutation was a successive 2 bp substitution at the last nucleotide of exon 6 and at the first nucleotide of intron 6, respectively (c.834_834 + 1GG>TT), while the other one was a guanine to adenine substitution of the last nucleotide of exon 6 (c.834G>A). Direct sequencing analysis failed to find these mutations in 100 unrelated healthy subjects and the functional role on splicing of both variants found in this study was confirmed by a minigene assay based on the pSPL3 exon trapping vector. In addition, we found a SNP in this family (c.715G>A, p.V239I). There were no mutations detected in AGXT and GRHPR. Two novel HOGA1 mutations were identified in association with PH3. This is the first description and investigation on mutant gene analysis of PH3 in an Asian. © 2015 S. Karger AG, Basel

  5. The Nance-Horan syndrome: a rare X-linked ocular-dental trait with expression in heterozygous females.

    PubMed

    Bixler, D; Higgins, M; Hartsfield, J

    1984-07-01

    This report describes two families with the Nance-Horan syndrome, an X-linked trait featuring lenticular cataracts and anomalies of tooth shape and number. Previous reports have described blindness in affected males but posterior sutural cataracts with normal vision as the primary ocular expression in heterozygous females. In one of these two families, the affected female is not only blind in one eye but reportedly had supernumerary central incisors (mesiodens) removed. This constitutes the most severe ocular and dental expression of this gene in heterozygous females yet reported.

  6. Primaquine-induced haemolysis in females heterozygous for G6PD deficiency.

    PubMed

    Chu, Cindy S; Bancone, Germana; Nosten, François; White, Nicholas J; Luzzatto, Lucio

    2018-03-02

    Oxidative agents can cause acute haemolytic anaemia in persons with G6PD deficiency. Understanding the relationship between G6PD genotype and the phenotypic expression of the enzyme deficiency is necessary so that severe haemolysis can be avoided. The patterns of oxidative haemolysis have been well described in G6PD deficient hemizygous males and homozygous females; and haemolysis in the proportionally more numerous heterozygous females has been documented mainly following consumption of fava beans and more recently dapsone. It has long been known that 8-aminoquinolines, notably primaquine and tafenoquine, cause acute haemolysis in G6PD deficiency. To support wider use of primaquine in Plasmodium vivax elimination, more data are needed on the haemolytic consequences of 8-aminoquinolines in G6PD heterozygous females. Two recent studies (in 2017) have provided precisely such data; and the need has emerged for the development of point of care quantitative testing of G6PD activity. Another priority is exploring alternative 8-aminoquinoline dosing regimens that are practical and improve safety in G6PD deficient individuals.

  7. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection.

    PubMed

    Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus

    2016-04-01

    Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.

  8. Altered social cognition in male BDNF heterozygous mice and following chronic methamphetamine exposure.

    PubMed

    Manning, Elizabeth E; van den Buuse, Maarten

    2016-05-15

    Growing clinical evidence suggests that persistent psychosis which occurs in methamphetamine users is closely related to schizophrenia. However, preclinical studies in animal models have focussed on psychosis-related behaviours following methamphetamine, and less work has been done to assess endophenotypes relevant to other deficits observed in schizophrenia. Altered social behaviour is a feature of both the negative symptoms and cognitive deficits in schizophrenia, and significantly impacts patient functioning. We recently found that brain-derived neurotrophic factor (BDNF) heterozygous mice show disrupted sensitization to methamphetamine, supporting other work suggesting an important role of this neurotrophin in the pathophysiology of psychosis and the neuronal response to stimulant drugs. In the current study, we assessed social and cognitive behaviours in methamphetamine-treated BDNF heterozygous mice and wildtype littermate controls. Following chronic methamphetamine exposure male wildtype mice showed a 50% reduction in social novelty preference. Vehicle-treated male BDNF heterozygous mice showed a similar impairment in social novelty preference, with a trend for no further disruption by methamphetamine exposure. Female mice were unaffected in this task, and no groups showed any changes in sociability or short-term spatial memory. These findings suggest that chronic methamphetamine alters behaviour relevant to disruption of social cognition in schizophrenia, supporting other studies which demonstrate a close resemblance between persistent methamphetamine psychosis and schizophrenia. Together these findings suggest that dynamic regulation of BDNF signalling is necessary to mediate the effects of methamphetamine on behaviours relevant to schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Novel heterozygous NOTCH3 pathogenic variant found in two Chinese patients with CADASIL.

    PubMed

    Li, Shufeng; Chen, Yifan; Shan, Haitao; Ma, Fang; Shi, Minke; Xue, Jun

    2017-12-01

    NOTCH3 mutations have been described to cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Here, we report 2 CADASIL patients from a Chinese family. Whole genome sequencing was performed on the two CADASIL patients. The novel variant c.128G>C in exon 2 of NOTCH3 was identified and confirmed through PCR-Sanger sequencing (Human Genome Variation Society nomenclature: HGVS: NOTCH3 c.128G>C; p.Cys43Ser). The heterozygous NOTCH3 variant cause a cysteine to serine substitution at codon 43. According to the variant interpretation guideline of American College of Medical Genetics and Genomics (ACMG), this variant was classified as "pathogenic". Other variants in HTRA1, COL4A1 and COL4A2 were also found, they were classified as "benign". Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Age-Dependent Deficits in Fear Learning in Heterozygous BDNF Knock-Out Mice

    ERIC Educational Resources Information Center

    Endres, Thomas; Lessmann, Volkmar

    2012-01-01

    Beyond its trophic function, the neurotrophin BDNF (brain-derived neurotrophic factor) is well known to crucially mediate synaptic plasticity and memory formation. Whereas recent studies suggested that acute BDNF/TrkB signaling regulates amygdala-dependent fear learning, no impairments of cued fear learning were reported in heterozygous BDNF…

  11. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  12. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Mipomersen: evidence-based review of its potential in the treatment of homozygous and severe heterozygous familial hypercholesterolemia.

    PubMed

    Parhofer, Klaus G

    2012-01-01

    Familial hypercholesterolemia (FH) is an autosomal-dominant inherited disease with a prevalence of one in 500 (heterozygous) to one in 1,000,000 (homozygous). Mutations of the low-density lipoprotein (LDL) receptor gene, the apolipoprotein B100 gene, or the PCSK9 gene may be responsible for the disease. The resulting LDL hypercholesterolemia results in premature atherosclerosis as early as childhood (homozygous FH) or in adulthood (heterozygous FH). Current treatment modalities include lifestyle modification, combination drug therapy (statin-based), and apheresis. Mipomersen is an antisense oligonucleotide which inhibits apolipoprotein B production independent of LDL receptor function and thus works in homozygous FH, heterozygous FH, and other forms of hypercholesterolemia. Mipomersen is given 200 mg/week subcutaneously. Phase III studies indicate that the LDL cholesterol concentration can be reduced by 25%-47%, lipoprotein(a) levels by 20%-40%, and triglyceride concentrations by approximately 10%. In general, mipomersen has no effect on high-density lipoprotein cholesterol concentrations. Although there is considerable interindividual variability, the observed lipid effects are largely independent of age, gender, concomitant statin therapy, and underlying dyslipoproteinemia. The most common side effects are injection site reactions (70%-100%), flu-like symptoms (29%-46%), and elevated transaminases associated with an increased liver fat content (6%-15%). Mipomersen may be an interesting addon drug in patients with heterozygous or homozygous FH not reaching treatment goals, either because baseline values are very high or because high-dose statins are not tolerated.

  14. Mipomersen: evidence-based review of its potential in the treatment of homozygous and severe heterozygous familial hypercholesterolemia

    PubMed Central

    Parhofer, Klaus G

    2012-01-01

    Familial hypercholesterolemia (FH) is an autosomal-dominant inherited disease with a prevalence of one in 500 (heterozygous) to one in 1,000,000 (homozygous). Mutations of the low-density lipoprotein (LDL) receptor gene, the apolipoprotein B100 gene, or the PCSK9 gene may be responsible for the disease. The resulting LDL hypercholesterolemia results in premature atherosclerosis as early as childhood (homozygous FH) or in adulthood (heterozygous FH). Current treatment modalities include lifestyle modification, combination drug therapy (statin-based), and apheresis. Mipomersen is an antisense oligonucleotide which inhibits apolipoprotein B production independent of LDL receptor function and thus works in homozygous FH, heterozygous FH, and other forms of hypercholesterolemia. Mipomersen is given 200 mg/week subcutaneously. Phase III studies indicate that the LDL cholesterol concentration can be reduced by 25%–47%, lipoprotein(a) levels by 20%–40%, and triglyceride concentrations by approximately 10%. In general, mipomersen has no effect on high-density lipoprotein cholesterol concentrations. Although there is considerable interindividual variability, the observed lipid effects are largely independent of age, gender, concomitant statin therapy, and underlying dyslipoproteinemia. The most common side effects are injection site reactions (70%–100%), flu-like symptoms (29%–46%), and elevated transaminases associated with an increased liver fat content (6%–15%). Mipomersen may be an interesting addon drug in patients with heterozygous or homozygous FH not reaching treatment goals, either because baseline values are very high or because high-dose statins are not tolerated. PMID:22701100

  15. Irradiated HMEC from A-T Heterozygous Breast Tissue

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Bors, Karen; Cruz, Angela; Pettengil, Olive; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Women who are heterozygous for ataxia-telangiectasia (A-T) carry a single defective ATM gene in chromosome 11 q22-23, and have been statistically determined with high significance within a defined database to be approximately 5-fold more susceptible for developing breast cancer than their noma1 counterpart. Breast cancer susceptibility of these A-T heterozygotes has been hypothesized to include consequence of response to damage caused by low levels of ionizing radiation. Prophylactic mastectomy specimens were donated by a 41 year-old obligate A-T heterozygote who was located prior to her elective surgery through an existing pedigree. Harvest of that breast tissue provided an isolate of long-term growth human mammary epithelial cells (HMEC), designated WH612/3. An isolate of presumed normal long-term growth HMEC, designated 48R, was obtained from Dr. Martha Stampfer (Lawrence Berkeley Laboratory, University of California), and the A-T heterozygous HMEC were transformed with E6 and E7 oncogenes of human papilloma virus Type-16 in the laboratory of Dr. Ray White (Hunt- Cancer Institute, University of Utah) for use in this study. The objective of this study is to study the expression of end points that may bear on cancer outcome following irradiation of HMEC. Specific end points are cell survival, cell cycle, p53 expression, and apoptosis. Survival curves, immunostaining, and flow cytometery are used to examine these end points. Radiation-induced cell killing shows less shoulder development in the survival curve for WH61U3 compared to 48R HMEC, suggesting less repair of damage in the former HMEC. Additional information is included in the original extended abstract.

  16. Yeast as a tool to identify anti-aging compounds

    PubMed Central

    Zimmermann, Andreas; Hofer, Sebastian; Pendl, Tobias; Kainz, Katharina; Madeo, Frank; Carmona-Gutierrez, Didac

    2018-01-01

    Abstract In the search for interventions against aging and age-related diseases, biological screening platforms are indispensable tools to identify anti-aging compounds among large substance libraries. The budding yeast, Saccharomyces cerevisiae, has emerged as a powerful chemical and genetic screening platform, as it combines a rapid workflow with experimental amenability and the availability of a wide range of genetic mutant libraries. Given the amount of conserved genes and aging mechanisms between yeast and human, testing candidate anti-aging substances in yeast gene-deletion or overexpression collections, or de novo derived mutants, has proven highly successful in finding potential molecular targets. Yeast-based studies, for example, have led to the discovery of the polyphenol resveratrol and the natural polyamine spermidine as potential anti-aging agents. Here, we present strategies for pharmacological anti-aging screens in yeast, discuss common pitfalls and summarize studies that have used yeast for drug discovery and target identification. PMID:29905792

  17. HetMappsS: Heterozygous mapping strategy for high resolution Genotyping-by-Sequencing Markers

    USDA-ARS?s Scientific Manuscript database

    Reduced representation genotyping approaches, such as genotyping-by-sequencing (GBS), provide opportunities to generate high-resolution genetic maps at a low per-sample cost. However, missing data and non-uniform sequence coverage can complicate map creation in highly heterozygous species. To facili...

  18. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    PubMed Central

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM+/−) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM+/− cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage. PMID:12119422

  19. Identification of a Heterozygous SPG11 Mutation by Clinical Exome Sequencing in a Patient With Hereditary Spastic Paraplegia: A Case Report.

    PubMed

    Oh, Ja-Young; Do, Hyun Jung; Lee, Seungok; Jang, Ja-Hyun; Cho, Eun-Hae; Jang, Dae-Hyun

    2016-12-01

    Next-generation sequencing, such as whole-genome sequencing, whole-exome sequencing, and targeted panel sequencing have been applied for diagnosis of many genetic diseases, and are in the process of replacing the traditional methods of genetic analysis. Clinical exome sequencing (CES), which provides not only sequence variation data but also clinical interpretation, aids in reaching a final conclusion with regards to genetic diagnosis. Sequencing of genes with clinical relevance rather than whole exome sequencing might be more suitable for the diagnosis of known hereditary disease with genetic heterogeneity. Here, we present the clinical usefulness of CES for the diagnosis of hereditary spastic paraplegia (HSP). We report a case of patient who was strongly suspected of having HSP based on her clinical manifestations. HSP is one of the diseases with high genetic heterogeneity, the 72 different loci and 59 discovered genes identified so far. Therefore, traditional approach for diagnosis of HSP with genetic analysis is very challenging and time-consuming. CES with TruSight One Sequencing Panel, which enriches about 4,800 genes with clinical relevance, revealed compound heterozygous mutations in SPG11 . One workflow and one procedure can provide the results of genetic analysis, and CES with enrichment of clinically relevant genes is a cost-effective and time-saving diagnostic tool for diseases with genetic heterogeneity, including HSP.

  20. Long-term response to growth hormone therapy in a patient with short stature caused by a novel heterozygous mutation in NPR2.

    PubMed

    Vasques, Gabriela A; Hisado-Oliva, Alfonso; Funari, Mariana F A; Lerario, Antonio M; Quedas, Elisangela P S; Solberg, Paulo; Heath, Karen E; Jorge, Alexander A L

    2017-01-01

    Heterozygous loss-of-function mutations in the natriuretic peptide receptor B gene (NPR2) are responsible for short stature in patients without a distinct phenotype. Some of these patients have been treated with recombinant human growth hormone (rhGH) therapy with a variable response. The proband was a healthy boy who presented at the age of 5.1 years with familial short stature (height SDS of -3.1). He had a prominent forehead, a depressed nasal bridge, centripetal fat distribution and a high-pitched voice resembling that of children with GH deficiency. His hormonal evaluation showed low insulin-like growth factor-1 (IGF-1) but a normal GH peak at a stimulation test. During the first year of rhGH treatment, his growth velocity increased from 3.4 to 10.4 cm/year (height SDS change of +1.1). At the last visit, he was 8.8 years old and still on treatment, his growth velocity was 6.4 cm/year and height SDS was -1.8. We identified through exome sequencing a novel heterozygous loss-of-function NPR2 mutation (c.2905G>C; p.Val969Leu). Cells cotransfected with the p.Val969Leu mutant showed a significant decrease in cyclic guanosine monophosphate (cGMP) production compared to the wild type (WT), suggesting a dominant negative effect. This case reveals a novel heterozygous loss-of-function NPR2 mutation responsible for familial short stature and the good response of rhGH therapy in this patient.

  1. Screening of a library of traditional Chinese medicines to identify anti-malarial compounds and extracts.

    PubMed

    Nonaka, Motohiro; Murata, Yuho; Takano, Ryo; Han, Yongmei; Bin Kabir, Md Hazzaz; Kato, Kentaro

    2018-06-25

    Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC 50 ) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) showed strong anti-malarial effects (IC 50  < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC 50  < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC 50 values of the compounds were comparable to that of chloroquine

  2. A high throughput drug screening assay to identify compounds that promote oligodendrocyte differentiation using acutely dissociated and purified oligodendrocyte precursor cells.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-09-05

    Multiple sclerosis is caused by an autoimmune response resulting in demyelination and neural degeneration. The adult central nervous system has the capacity to remyelinate axons in part through the generation of new oligodendrocytes (OLs). To identify clinical candidate compounds that may promote remyelination, we have developed a high throughput screening (HTS) assay to identify compounds that promote the differentiation of oligodendrocyte precursor cells (OPCs) into OLs. Using acutely dissociated and purified rat OPCs coupled with immunofluorescent image quantification, we have developed an OL differentiation assay. We have validated this assay with a known promoter of differentiation, thyroid hormone, and subsequently used the assay to screen the NIH clinical collection library. We have identified twenty-seven hit compounds which were validated by dose response analysis and the generation of half maximal effective concentration (EC50) values allowed for the ranking of efficacy. The assay identified novel promoters of OL differentiation which we attribute to (1) the incorporation of an OL toxicity pre-screen to allow lowering the concentrations of toxic compounds and (2) the utilization of freshly purified, non-passaged OPCs. These features set our assay apart from other OL differentiation assays used for drug discovery efforts. This acute primary OL-based differentiation assay should be of use to those interested in screening large compound libraries for the identification of drugs for the treatment of MS and other demyelinating diseases.

  3. [Hereditary heterozygous factor VII deficiency in patients undergoing surgery : Clinical relevance].

    PubMed

    Woehrle, D; Martinez, M; Bolliger, D

    2016-10-01

    A hereditary deficiency in coagulation factor VII (FVII) may affect the international normalized ratio (INR) value. However, FVII deficiency is occasionally associated with a tendency to bleed spontaneously. We hypothesized that perioperative substitution with coagulation factor concentrates might not be indicated in most patients. In this retrospective data analysis, we included all patients with hereditary heterozygous FVII deficiency who underwent surgical procedures at the University Hospital Basel between December 2010 and November 2015. In addition, by searching the literature, we identified publications reporting patients with FVII deficiency undergoing surgical procedures without perioperative substitution. We identified 22 patients undergoing 46 surgical procedures, resulting in a prevalence of 1:1500-2000. Coagulation factor concentrates were administered during the perioperative period in 15 procedures (33 %), whereas in the other 31 procedures (66 %), FVII deficiency was not substituted. No postoperative bleeding or thromboembolic events were reported. In addition, we found no differences in pre- and postoperative hemoglobin and coagulation parameters, with the exception of an improved postoperative INR value in the substituted group. In the literature review, we identified five publications, including 125 patients with FVII deficiency, undergoing 213 surgical procedures with no perioperative substitution. Preoperative substitution using coagulation factor concentrates does not seem to be mandatory in patients with an FVII level ≥15 %. For decision-making on preoperative substitution, patient history of an increased tendency to bleed may be more important than the FVII level or increased INR value.

  4. Compound heterozygous MYO7A mutations segregating Usher syndrome type 2 in a Han family.

    PubMed

    Zong, Ling; Chen, Kaitian; Wu, Xuan; Liu, Min; Jiang, Hongyan

    2016-11-01

    Identification of rare deafness genes for inherited congenital sensorineural hearing impairment remains difficult, because a large variety of genes are implicated. In this study we applied targeted capture and next-generation sequencing to uncover the underlying gene in a three-generation Han family segregating recessive inherited hearing loss and retinitis pigmentosa. After excluding mutations in common deafness genes GJB2, SLC26A4 and the mitochondrial gene, genomic DNA of the proband of a Han family was subjected to targeted next-generation sequencing. The candidate mutations were confirmed by Sanger sequencing and subsequently analyzed with in silico tools. An unreported splice site mutation c.3924+1G > C compound with c.6028G > A in the MYO7A gene were detected to cosegregate with the phenotype in this pedigree. Both mutations, located in the evolutionarily conserved FERM domain in myosin VIIA, were predicted to be pathogenic. In this family, profound sensorineural hearing impairment and retinitis pigmentosa without vestibular disorder, constituted the typical Usher syndrome type 2. Identification of novel mutation in compound heterozygosity in MYO7A gene revealed the genetic origin of Usher syndrome type 2 in this Han family. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. USE OF BIOASSAY-DIRECTED CHEMICAL ANALYSIS FOR IDENTIFYING MUTAGENIC COMPOUNDS IN URBAN AIR AND COMBUSTION EMISSIONS

    EPA Science Inventory

    Bioassay-directed chemical analysis fractionation has been used for 30 years to identify mutagenic classes of compounds in complex mixtures. Most studies have used the Salmonella (Ames) mutagenicity assay, and we have recently applied this methodology to two standard reference sa...

  6. G20210A prothrombin gene mutation identified in patients with venous leg ulcers.

    PubMed

    Jebeleanu, G; Procopciuc, L

    2001-01-01

    The G20210A mutation variant of prothrombin gene is the second most frequent mutation identified in patients with deep venous thrombosis, after factor V Leiden. The risk for developing deep venous thrombosis is high in patients identified as heterozygous for G20210A mutation. In order to identify this polymorphism in the gene coding prothrombin, the 345bp fragment in the 3'- untranslated region of the prothrombin gene was amplified using amplification by polymerase chain reaction and enzymatic digestion by HindIII (restriction endonuclease enzyme). The products of amplification and enzymatic's digestion were analized using agarose gel electrophoresis. We investigated 20 patients with venous leg ulcers and we found 2 heterozygous (10%) for G20210A mutation. None of the patients in the control group had G20210A mutation. Our study confirms the presence of G20210A mutation in the Romanian population. Our study also shows the link between venous leg ulcers and this polymorphism in the prothrombin gene.

  7. Further delineation of COG8-CDG: A case with novel compound heterozygous mutations diagnosed by targeted exome sequencing.

    PubMed

    Yang, Aram; Cho, Sung Yoon; Jang, Ja-Hyun; Kim, Jinsup; Kim, Sook Za; Lee, Beom Hee; Yoo, Han-Wook; Jin, Dong-Kyu

    2017-08-01

    Congenital disorders of glycosylation (CDG) are a rapidly expanding group of inherited metabolic disorders with highly variable clinical presentations caused by deficient glycosylation of proteins and/or lipids. CDG-IIh is a very rare subgroup of CDG caused by mutations in the conserved oligomeric Golgi (COG) complex gene, COG8, and so far, only two cases have been reported in the medical literature. Here, we describe an 8-year-old Korean boy with psychomotor retardation, hypotonia, failure to thrive, elevated serum liver enzymes, microcephaly, and talipes equinovarus. A liver biopsy of the patient showed only interface hepatitis with mild lobular activity, and brain magnetic resonance imaging revealed cerebellar atrophy. Compared with the previous two reported cases, our patient showed relatively mild psychomotor retardation without a seizure history. The transferrin isoelectric focusing profiles in the patient showed a CDG type II pattern with increased disialo- and trisialo-transferrin. Targeted exome sequencing was performed to screen all CDG type II-related genes, and two novel frameshift mutations were found: c.171dupG (p.Leu58Alafs*29) and c.1656dupC (p.Ala553Argfs*15) in COG8. The parents were heterozygous carriers of each variant. CDG should be included in the initial differential diagnosis for children with a suspected unknown syndrome or unclassified inherited metabolic disorder or children with diverse clinical presentations, such as psychomotor retardation, hypotonia, skeletal deformity, microcephaly, cerebellar atrophy, and unexplained transient elevated liver enzyme. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Assay for identification of heterozygous single-nucleotide polymorphism (Ala67Thr) in human poliovirus receptor gene.

    PubMed

    Nandi, Shyam Sundar; Sharma, Deepa Kailash; Deshpande, Jagadish M

    2016-07-01

    It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.

  9. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  10. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety

    PubMed Central

    Cartwright, Dustin A.; Cestaro, Alessandro; Pruss, Dmitry; Pindo, Massimo; FitzGerald, Lisa M.; Vezzulli, Silvia; Reid, Julia; Malacarne, Giulia; Iliev, Diana; Coppola, Giuseppina; Wardell, Bryan; Micheletti, Diego; Macalma, Teresita; Facci, Marco; Mitchell, Jeff T.; Perazzolli, Michele; Eldredge, Glenn; Gatto, Pamela; Oyzerski, Rozan; Moretto, Marco; Gutin, Natalia; Stefanini, Marco; Chen, Yang; Segala, Cinzia; Davenport, Christine; Demattè, Lorenzo; Mraz, Amy; Battilana, Juri; Stormo, Keith; Costa, Fabrizio; Tao, Quanzhou; Si-Ammour, Azeddine; Harkins, Tim; Lackey, Angie; Perbost, Clotilde; Taillon, Bruce; Stella, Alessandra; Solovyev, Victor; Fawcett, Jeffrey A.; Sterck, Lieven; Vandepoele, Klaas; Grando, Stella M.; Toppo, Stefano; Moser, Claudio; Lanchbury, Jerry; Bogden, Robert; Skolnick, Mark; Sgaramella, Vittorio; Bhatnagar, Satish K.; Fontana, Paolo; Gutin, Alexander; Van de Peer, Yves; Salamini, Francesco; Viola, Roberto

    2007-01-01

    Background Worldwide, grapes and their derived products have a large market. The cultivated grape species Vitis vinifera has potential to become a model for fruit trees genetics. Like many plant species, it is highly heterozygous, which is an additional challenge to modern whole genome shotgun sequencing. In this paper a high quality draft genome sequence of a cultivated clone of V. vinifera Pinot Noir is presented. Principal Findings We estimate the genome size of V. vinifera to be 504.6 Mb. Genomic sequences corresponding to 477.1 Mb were assembled in 2,093 metacontigs and 435.1 Mb were anchored to the 19 linkage groups (LGs). The number of predicted genes is 29,585, of which 96.1% were assigned to LGs. This assembly of the grape genome provides candidate genes implicated in traits relevant to grapevine cultivation, such as those influencing wine quality, via secondary metabolites, and those connected with the extreme susceptibility of grape to pathogens. Single nucleotide polymorphism (SNP) distribution was consistent with a diffuse haplotype structure across the genome. Of around 2,000,000 SNPs, 1,751,176 were mapped to chromosomes and one or more of them were identified in 86.7% of anchored genes. The relative age of grape duplicated genes was estimated and this made possible to reveal a relatively recent Vitis-specific large scale duplication event concerning at least 10 chromosomes (duplication not reported before). Conclusions Sanger shotgun sequencing and highly efficient sequencing by synthesis (SBS), together with dedicated assembly programs, resolved a complex heterozygous genome. A consensus sequence of the genome and a set of mapped marker loci were generated. Homologous chromosomes of Pinot Noir differ by 11.2% of their DNA (hemizygous DNA plus chromosomal gaps). SNP markers are offered as a tool with the potential of introducing a new era in the molecular breeding of grape. PMID:18094749

  11. Late-onset nonketotic hyperglycinemia with a heterozygous novel point mutation of the GLDC gene.

    PubMed

    Brenton, J Nicholas; Rust, Robert S

    2014-05-01

    Atypical nonketotic hyperglycinemia is characterized by heterogeneous phenotypes that often include nonspecific behavioral problems, cognitive deficits, and developmental delays. We describe a girl with late-onset nonketotic hyperglycinemia presenting at 5 years of age with hypotonia, chorea, ataxia, and alterations in consciousness in the setting of febrile illness. Serum amino acid analysis was mildly elevated; however, urine amino acid analysis was instrumental in demonstrating marked hyperglycinuria. Mutation testing showed a heterozygous novel sequence change/point mutation in the glycine decarboxylase gene. This patient illustrates the importance of obtaining urine amino acids in individuals whose clinical manifestations are suspicious for any form of nonketotic hyperglycinemia, because this testing may provide more prominent evidence of elevations in glycine. She also illustrates the potential for a heterozygous mutation to result in manifestations of an atypical form of nonketotic hyperglycinemia. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Viable phenotype of ILNEB syndrome without nephrotic impairment in siblings heterozygous for unreported integrin alpha3 mutations.

    PubMed

    Colombo, Elisa Adele; Spaccini, Luigina; Volpi, Ludovica; Negri, Gloria; Cittaro, Davide; Lazarevic, Dejan; Zirpoli, Salvatore; Farolfi, Andrea; Gervasini, Cristina; Cubellis, Maria Vittoria; Larizza, Lidia

    2016-10-07

    Integrin α3 (ITGA3) gene mutations are associated with Interstitial Lung disease, Nephrotic syndrome and Epidermolysis bullosa (ILNEB syndrome). To date only six patients are reported: all carried homozygous ITGA3 mutations and presented a dramatically severe phenotype leading to death before age 2 years, from multi-organ failure due to interstitial lung disease and congenital nephrotic syndrome. The involvement of skin and cutaneous adnexa was variable with sparse hair and nail dysplasia combined or not to skin lesions ranging from skin fragility to epidermolysis bullosa-like blistering. We report on two siblings of 13 and 9 years born to non-consanguineous healthy parents, who display growth delay, severe pulmonary fibrosis with fatigue, dyspnea on exertion and wheezing, atrophic skin with erythematosus lesions, rare eyelashes/eyebrows and pachyonychia. By exome sequencing, we identified two unreported ITGA3 missense mutations, c.373G>A (p.(G125R)) in exon 3 and c.821G>A (p.(R274Q)) in exon 6, affecting highly conserved residues in the integrin α3 extracellular N-terminal β-propeller domain. Homology modelling of α3β1 heterodimer fragment, encompassing the mutation sites, showed that G125 plays a pivotal structural role in the β-propeller, while R274 might prevent the interaction between integrin and urokinase complex. We report a variant of ILNEB syndrome in two siblings differing from the previously reported patients in the lack of nephrotic impairment and survival beyond childhood. Our siblings are the first reported compound heterozygous for ITGA3 mutations; this state as well as the hypomorphic nature of their p.(R274Q) mutation likely account for their survival.

  13. Atypical Progeroid Syndrome due to Heterozygous Missense LMNA Mutations

    PubMed Central

    Garg, Abhimanyu; Subramanyam, Lalitha; Agarwal, Anil K.; Simha, Vinaya; Levine, Benjamin; D'Apice, Maria Rosaria; Novelli, Giuseppe; Crow, Yanick

    2009-01-01

    Context: Hutchinson-Gilford progeria syndrome (HGPS) and mandibuloacral dysplasia are well-recognized allelic autosomal dominant and recessive progeroid disorders, respectively, due to mutations in lamin A/C (LMNA) gene. Heterozygous LMNA mutations have also been reported in a small number of patients with a less well-characterized atypical progeroid syndrome (APS). Objective: The objective of the study was to investigate the underlying genetic and molecular basis of the phenotype of patients presenting with APS. Results: We report 11 patients with APS from nine families, many with novel heterozygous missense LMNA mutations, such as, P4R, E111K, D136H, E159K, and C588R. These and previously reported patients now reveal a spectrum of clinical features including progeroid manifestations such as short stature, beaked nose, premature graying, partial alopecia, high-pitched voice, skin atrophy over the hands and feet, partial and generalized lipodystrophy with metabolic complications, and skeletal anomalies such as mandibular hypoplasia and mild acroosteolysis. Skin fibroblasts from these patients when assessed for lamin A/C expression using epifluorescence microscopy revealed variable nuclear morphological abnormalities similar to those observed in patients with HGPS. However, these nuclear abnormalities in APS patients could not be rescued with 48 h treatment with farnesyl transferase inhibitors, geranylgeranyl transferase inhibitors or trichostatin-A, a histone deacetylase inhibitor. Immunoblots of cell lysates from fibroblasts did not reveal prelamin A accumulation in any of these patients. Conclusions: APS patients have a few overlapping but some distinct clinical features as compared with HGPS and mandibuloacral dysplasia. The pathogenesis of clinical manifestations in APS patients seems not to be related to accumulation of mutant farnesylated prelamin A. PMID:19875478

  14. High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the Phytophthora agathidicida and Phytophthora cinnamomi Life Cycles.

    PubMed

    Lawrence, Scott A; Armstrong, Charlotte B; Patrick, Wayne M; Gerth, Monica L

    2017-01-01

    Oomycetes in the genus Phytophthora are among the most damaging plant pathogens worldwide. Two important species are Phytophthora cinnamomi , which causes root rot in thousands of native and agricultural plants, and Phytophthora agathidicida , which causes kauri dieback disease in New Zealand. As is the case for other Phytophthora species, management options for these two pathogens are limited. Here, we have screened over 100 compounds for their anti-oomycete activity, as a potential first step toward identifying new control strategies. Our screening identified eight compounds that showed activity against both Phytophthora species. These included five antibiotics, two copper compounds and a quaternary ammonium cation. These compounds were tested for their inhibitory action against three stages of the Phytophthora life cycle: mycelial growth, zoospore germination, and zoospore motility. The inhibitory effects of the compounds were broadly similar between the two Phytophthora species, but their effectiveness varied widely among life cycle stages. Mycelial growth was most successfully inhibited by the antibiotics chlortetracycline and paromomycin, and the quaternary ammonium salt benzethonium chloride. Copper chloride and copper sulfate were most effective at inhibiting zoospore germination and motility, whereas the five antibiotics showed relatively poor zoospore inhibition. Benzethonium chloride was identified as a promising antimicrobial, as it is effective across all three life cycle stages. While further testing is required to determine their efficacy and potential phytotoxicity in planta , we have provided new data on those agents that are, and those that are not, effective against P. agathidicida and P. cinnamomi . Additionally, we present here the first published protocol for producing zoospores from P. agathidicida , which will aid in the further study of this emerging pathogen.

  15. A novel heterozygous RIT1 mutation in a patient with Noonan syndrome, leukopenia, and transient myeloproliferation-a review of the literature.

    PubMed

    Nemcikova, Michaela; Vejvalkova, Sarka; Fencl, Filip; Sukova, Martina; Krepelova, Anna

    2016-04-01

    Noonan syndrome (NS) is a genetic condition presenting with typical facies, cardiac defects, short stature, variable developmental deficit, cryptorchidism, skeletal, and other abnormalities. Germline mutations in genes involved in the RAS/MAPK signaling have been discovered to underlie NS. Recently, missense mutations in RIT1 have been reported as causative for individuals with clinical signs of NS. We report on a 2.5-year-old boy with NS phenotype with a novel heterozygous change in the RIT1 gene. The patient was born prematurely from pregnancy monitored for polyhydramnios. At 7 months of age, non-immune neutropenia and splenomegaly have been observed. During the severe pneumonia at 10 months, significant progression of hepatosplenomegaly, leukopenia with monocytosis (15-29 %), and thrombocytopenia occurred. Bone marrow evaluation showed myeloid hyperplasia and monocytosis, suggestive of myeloproliferative syndrome. Clinical phenotype (facial dysmorphism, soft hair, short neck, broad chest, widely spaced nipples, mild pectus carinatum, deep palmar creases, unilateral cryptorchidism), and moderate pulmonary valve stenosis with mild psychomotor delay were indicative of NS. DNA analysis identified a de novo heterozygous variant c.69A >T, p.(Lys23Asn) in exon 2 of the RIT1 gene, presumed to be causative. We present a patient with a clinical suspicion of NS carrying a novel substitution in RIT1 and hematologic findings not being observed in RIT1 positive patients to date. Thus, the case broadens variability of hematologic symptoms in RIT1 positive NS individuals. • Noonan syndrome is a common genetically heterogeneous disorder of autosomal dominant inheritance characterized by craniofacial dysmorphism, short stature, congenital heart defects, variable cognitive deficit, and other anomalies. What is new: • We report on a 2.5-year-old male patient with clinical signs of NS and hematologic abnormalities, in whom a novel heterozygous substitution in RIT1 with probable

  16. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    PubMed

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  17. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene.

    PubMed

    Middleton, Steven J; Kneller, Emily M; Chen, Shuo; Ogiwara, Ikuo; Montal, Mauricio; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-06-04

    An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.

  18. Production of heterozygous alpha 1,3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39.

    PubMed

    Choi, Kimyung; Shim, Joohyun; Ko, Nayoung; Eom, Heejong; Kim, Jiho; Lee, Jeong-Woong; Jin, Dong-Il; Kim, Hyunil

    2017-04-01

    Production of transgenic pigs for use as xenotransplant donors is a solution to the severe shortage of human organs for transplantation. The first barrier to successful xenotransplantation is hyperacute rejection, a rapid, massive humoral immune response directed against the pig carbohydrate GGTA1 epitope. Platelet activation, adherence, and clumping, all major features of thrombotic microangiopathy, are inevitable results of immune-mediated transplant rejection. Human CD39 rapidly hydrolyzes ATP and ADP to AMP; AMP is hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine, an anti-thrombotic and cardiovascular protective mediator. In this study, we developed a vector-based strategy for ablation of GGTA1 function and concurrent expression of human CD39 (hCD39). An hCD39 expression cassette was constructed to target exon 4 of GGTA1. We established heterozygous GGTA1 knock-out cell lines expressing hCD39 from pig ear fibroblasts for somatic cell nuclear transfer (SCNT). We also described production of heterozygous GGTA1 knock-out piglets expressing hCD39 and analyzed expression and function of the transgene. Human CD39 was expressed in heart, kidney and aorta. Human CD39 knock-in heterozygous ear fibroblast from transgenic cloned pigs, but not in non-transgenic pig's cells. Expression of GGTA1 gene was lower in the knock-in heterozygous ear fibroblast from transgenic pigs compared to the non-transgenic pig's cell. The peripheral blood mononuclear cells (PBMC) from the transgenic pigs were more resistant to lysis by pooled complement-preserved normal human serum than that from wild type (WT) pig. Accordingly, GGTA1 mutated piglets expressing hCD39 will provide a new organ source for xenotransplantation research.

  19. A novel heterozygous SOX2 mutation causing congenital bilateral anophthalmia, hypogonadotropic hypogonadism and growth hormone deficiency.

    PubMed

    Macchiaroli, Annamaria; Kelberman, Daniel; Auriemma, Renata Simona; Drury, Suzanne; Islam, Lily; Giangiobbe, Sara; Ironi, Gabriele; Lench, Nicholas; Sowden, Jane C; Colao, Annamaria; Pivonello, Rosario; Cavallo, Luciano; Gasperi, Maurizio; Faienza, Maria Felicia

    2014-01-25

    Heterozygous de novo mutations in SOX2 have been reported in approximately 10-20% of patients with unilateral or bilateral anophthalmia or microphthalmia. An additional phenotype of hypopituitarism, with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, has been reported in patients carrying SOX2 alterations. We report a novel heterozygous mutation in the SOX2 gene in a male affected with congenital bilateral anophthalmia, hypogonadotrophic hypogonadism and growth hormone deficiency. The mutation we describe is a cytosine deletion in position 905 (c905delC) which causes frameshift and an aberrant C-terminal domain. Our report highlights the fact that subjects affected with eye anomalies and harboring SOX2 mutations are at high risk for gonadotropin deficiency, which has important implications for their clinical management. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Heterozygous Monocarboxylate Transporter 1 (MCT1, SLC16A1) Deficiency as a Cause of Recurrent Ketoacidosis.

    PubMed

    Balasubramaniam, Shanti; Lewis, Barry; Greed, Lawrence; Meili, David; Flier, Annegret; Yamamoto, Raina; Bilić, Karmen; Till, Claudia; Sass, Jörn Oliver

    2016-01-01

    We describe two half-siblings with monocarboxylate transporter 1 (MCT1, SLC16A1) deficiency, a defect on ketone body utilization, that has only recently been identified (van Hasselt et al., N Engl J Med, 371:1900-1907, 2014) as a cause for recurrent ketoacidoses. Our index patient is a boy with non-consanguineous parents who had presented acutely with impaired consciousness and severe metabolic ketoacidosis following a 3-day history of gastroenteritis at age 5 years. A 12.5-year-old half-brother who shared the proband's mother also had a previous history of recurrent ketoacidoses. Results of mutation and enzyme activity analyses in proband samples advocated against methylacetoacetyl-coenzyme A thiolase ("beta-ketothiolase") and succinyl-coenzyme A: 3-oxoacyl coenzyme A transferase (SCOT) deficiencies. A single heterozygous c.982C>T transition in the SLC16A1 gene resulting in a stop mutation (p.Arg328Ter) was detected in both boys. It was shared by their healthy mother and by the proband's half-sister, but was absent in the proband's father. MCT1 deficiency may be more prevalent than is apparent, as clinical manifestations can occur both in individuals with bi- and monoallelic mutations. It may be an important differential diagnosis in recurrent ketoacidosis with or without hypoglycemia, particularly in the absence of any specific metabolic profiles in blood and urine. Early diagnosis may enable improved disease management. Careful identification of potential triggers of metabolic decompensations in individuals even with single heterozygous mutations in the SLC16A1 gene is indicated.

  1. Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction.

    PubMed

    Wesdorp, Mieke; de Koning Gans, Pia A M; Schraders, Margit; Oostrik, Jaap; Huynen, Martijn A; Venselaar, Hanka; Beynon, Andy J; van Gaalen, Judith; Piai, Vitória; Voermans, Nicol; van Rossum, Michelle M; Hartel, Bas P; Lelieveld, Stefan H; Wiel, Laurens; Verbist, Berit; Rotteveel, Liselotte J; van Dooren, Marieke F; Lichtner, Peter; Kunst, Henricus P M; Feenstra, Ilse; Admiraal, Ronald J C; Yntema, Helger G; Hoefsloot, Lies H; Pennings, Ronald J E; Kremer, Hannie

    2018-05-12

    Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.

  2. A Japanese family with nonautoimmune hyperthyroidism caused by a novel heterozygous thyrotropin receptor gene mutation.

    PubMed

    Nakamura, Akie; Morikawa, Shuntaro; Aoyagi, Hayato; Ishizu, Katsura; Tajima, Toshihiro

    2014-06-01

    Hyperthyroidism caused by activating mutations of the thyrotropin receptor gene (TSHR) is rare in the pediatric population. We found a Japanese family with hyperthyroidism without autoantibody. DNA sequence analysis of TSHR was undertaken in this family. The functional consequences for the Gs-adenylyl cyclase and Gq/11-phospholipase C signaling pathways and cell surface expression of receptors were determined in vitro using transiently transfected human embryonic kidney 293 cells. We identified a heterozygous mutation (M453R) in exon 10 of TSHR. In this family, this mutation was found in all individuals who exhibited hyperthyroidism. The results showed that this mutation resulted in constitutive activation of the Gs-adenylyl cyclase system. However, this mutation also caused a reduction in the activation capacity of the Gq/11-phospholipase C pathway, compared with the wild type. We demonstrate that the M453R mutation is the cause of nonautoimmune hyperthyroidism.

  3. Is scaffold hopping a reliable indicator for the ability of computational methods to identify structurally diverse active compounds?

    NASA Astrophysics Data System (ADS)

    Dimova, Dilyana; Bajorath, Jürgen

    2017-07-01

    Computational scaffold hopping aims to identify core structure replacements in active compounds. To evaluate scaffold hopping potential from a principal point of view, regardless of the computational methods that are applied, a global analysis of conventional scaffolds in analog series from compound activity classes was carried out. The majority of analog series was found to contain multiple scaffolds, thus enabling the detection of intra-series scaffold hops among closely related compounds. More than 1000 activity classes were found to contain increasing proportions of multi-scaffold analog series. Thus, using such activity classes for scaffold hopping analysis is likely to overestimate the scaffold hopping (core structure replacement) potential of computational methods, due to an abundance of artificial scaffold hops that are possible within analog series.

  4. mRNA Expression Signatures of Human Skeletal Muscle Atrophy Identify a Natural Compound that Increases Muscle Mass

    PubMed Central

    Kunkel, Steven D.; Suneja, Manish; Ebert, Scott M.; Bongers, Kale S.; Fox, Daniel K.; Malmberg, Sharon E.; Alipour, Fariborz; Shields, Richard K.; Adams, Christopher M.

    2011-01-01

    SUMMARY Skeletal muscle atrophy is a common and debilitating condition that lacks a pharmacologic therapy. To develop a potential therapy, we identified 63 mRNAs that were regulated by fasting in both human and mouse muscle, and 29 mRNAs that were regulated by both fasting and spinal cord injury in human muscle. We used these two unbiased mRNA expression signatures of muscle atrophy to query the Connectivity Map, which singled out ursolic acid as a compound whose signature was opposite to those of atrophy-inducing stresses. A natural compound enriched in apples, ursolic acid reduced muscle atrophy and stimulated muscle hypertrophy in mice. It did so by enhancing skeletal muscle insulin/IGF-I signaling, and inhibiting atrophy-associated skeletal muscle mRNA expression. Importantly, ursolic acid’s effects on muscle were accompanied by reductions in adiposity, fasting blood glucose and plasma cholesterol and triglycerides. These findings identify a potential therapy for muscle atrophy and perhaps other metabolic diseases. PMID:21641545

  5. Next-generation sequencing identifies three novel missense variants in ILDR1 and MYO6 genes in an Iranian family with hearing loss with review of the literature.

    PubMed

    Talebi, Farah; Mardasi, Farideh Ghanbari; Asl, Javad Mohammadi; Sayahi, Masoomeh

    2017-12-01

    Hearing impairment is the most common sensorineural disorder and is genetically heterogeneous. Identification of the pathogenic mutations underlying hearing impairment is difficult, since causative mutations in 127 different genes have so far been reported. In this study, we performed Next-generation sequencing (NGS) in 2 individuals from a consanguineous family with hearing loss. Three novel mutations in known deafness genes were identified in the family; MYO6-p.R928C and -p.D1223N in heterozygous state and ILDR1-p.Y143C in homozygous state. Sanger sequencing confirmed co-segregation of the three mutations with deafness in the family. The identified mutation in ILDR1 gene is located in the immunoglobulin-type domain of the ILDR1 protein and the detected mutations in MY06 are located in the tail domain of the MYO6 protein. The mutations are predicted to be pathogenic by SIFT, PolyPhen and Mutation Taster. Our results suggest that either the homozygous ILDR1-p.Y143C mutation might be the pathogenic variant for ARNSHL or heterozygous MYO6- p.R928C, -p.D1223N might be involved in these patient's disorder due to compound heterozygousity. To our knowledge, this is the first ILDR1 and MYO6 mutations recognized in the southwest Iran. Our data expands the spectrum of mutations in ILDR1 and MYO6 genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of endoplasmic reticulum stressors on maturation and signaling of hemizygous and heterozygous wild-type and mutant forms of KIT.

    PubMed

    Brahimi-Adouane, Sabrina; Bachet, Jean-Baptiste; Tabone-Eglinger, Séverine; Subra, Frédéric; Capron, Claude; Blay, Jean-Yves; Emile, Jean-François

    2013-06-01

    Gain of function mutations of KIT are frequent in some human tumors, and are sensible to tyrosine kinase inhibitors. In most tumors, oncogenic mutations are heterozygous, however most in vitro data of KIT activation have been obtained with hemizygous mutation. This study aimed to investigate the maturation and activation of wild-type (WT) and mutant (M) forms of KIT in hemizygous and heterozygous conditions. WT and two types of exon 11 deletions M forms of human KIT were expressed in NIH3T3 cell lines. Membrane expression of KIT was quantified by flow cytometry. Quantification of glycosylated forms of KIT and phosphorylated forms of AKT and ERK were performed by western blot. Simultaneous activation of WT KIT and treatment with endoplasmic reticulum (ER) inhibitors, tunicamycin or brefeldin A induced a complete inhibition of membrane expression of the 145 kDa form of KIT. By contrast activation or ER inhibitors alone, only partly inhibited this form. ER inhibitors also inhibited KIT activation-dependent phosphorylation of AKT and ERK1/2. Brefeldin A induced a complete down regulation of the 145 kDa form in hemizygous M, and induced an intra-cellular accumulation of the 125 kDa form in WT but not in hemizygous M. Heterozygous cells had glycosylation and response to ER inhibitors patterns more similar to WT than to hemizygous M. Phosphorylated AKT was reduced in hemizygous cells in comparison to WT KIT cells and heterozygous cells, and in the presence of brefeldin A in all cell lines. Effects of ER inhibitors are significantly different in hemizygous and heterozygous mutants. Differences in intra-cellular trafficking of KIT forms result in differences in downstream signaling pathways, and activation of PI3K/AKT pathway appears to be tied to the presence of the mature 145 kDa form of KIT at the membrane surface. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Phenotypic comparison of individuals with homozygous or heterozygous mutation of NOTCH3 in a large CADASIL family.

    PubMed

    Abou Al-Shaar, Hussam; Qadi, Najeeb; Al-Hamed, Mohamed H; Meyer, Brian F; Bohlega, Saeed

    2016-08-15

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary microangiopathy caused by mutations in NOTCH3, very rarely homoallelic. To describe the clinical, radiological, and neuropsychological features in an extended CADASIL family including members with either a homozygous or heterozygous NOTCH3 R1231C mutation. The pedigree included 3 generations of a family with 13 affected individuals. The patients were examined clinically and radiologically. Neuropsychological testing was performed on the proband. Sequencing of the entire coding DNA sequence (CDS) and flanking regions of NOTCH3 was undertaken using PCR amplification and direct Sanger sequencing. Homozygous C3769T mutation, predicting R1231C in exon 22 of NOTCH3 was found in 7 family members. Six other family members harbored the same in the heterozygous state. Homozygous individuals showed a slightly more severe clinical and radiological phenotype of earlier onset compared to their heterozygous counterparts. This study reports the largest number of patients with homozygous NOTCH3 mutation. The phenotype and imaging features of homozygous individuals is within the spectrum of CADASIL, although slightly at the severe end when compared to heterozygotes carrying the same mutation. Both genetic modifiers and environmental factors may play an essential role in modification and alteration of the clinical phenotype and white matter changes among CADASIL patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Radiation Dose-effects on Cell Cycle, Apoptosis, and Marker Expression of Ataxia Telangiectasia-Heterozygous Human Breast Epithelial Cells

    NASA Technical Reports Server (NTRS)

    Cruz, A.; Bors, K.; Jansen, H.; Richmond, R.

    2003-01-01

    Ataxia-telangiectasia (A-T) is a radiation-sensitive genetic condition. AT-heterozygous human mammary epithelial cells (HMEC) were irradiated using a Cs137 source in order to compare cell cycle, apoptosis, and marker expression responses across 3 radiation doses. No differences in cell cycle and apoptosis were found with any of the radiation doses used (30, 60, and 90 rads) compared with the unirradiated control (0 rad). At the same doses, however, differences were found in marker expression, such as keratin 18 (kl8), keratin 14 (k14), insulin-like growth factor I receptor (IGF-IR), and connexin 43 (cx43). This may indicate that radiation sensitivity in the heterozygous state may be initiated through signal transduction responses.

  9. A post-transcriptional compensatory pathway in heterozygous ventricular myosin light chain 2-deficient mice results in lack of gene dosage effect during normal cardiac growth or hypertrophy.

    PubMed

    Minamisawa, S; Gu, Y; Ross, J; Chien, K R; Chen, J

    1999-04-09

    Our previous study of homozygous mutants of the ventricular specific isoform of myosin light chain 2 (mlc-2v) demonstrated that mlc-2v plays an essential role in murine heart development (Chen, J., Kubalak, S. W., Minamisawa, S., Price, R. L., Becker, K. D., Hickey, R., Ross, J., Jr., and Chien, K. R. (1998) J. Biol. Chem. 273, 1252-1256). As gene dosage of some myofibrillar proteins can affect muscle function, we have analyzed heterozygous mutants in depth. Ventricles of heterozygous mutants displayed a 50% reduction in mlc-2v mRNA, yet expressed normal levels of protein both under basal conditions and following induction of cardiac hypertrophy by aortic constriction. Heterozygous mutants exhibited cardiac function comparable to that of wild-type littermate controls both prior to and following aortic constriction. There were no significant differences in contractility and responses to calcium between wild-type and heterozygous unloaded cardiomyocytes. We conclude that heterozygous mutants show neither a molecular nor a physiological cardiac phenotype either at base line or following hypertrophic stimuli. These results suggest that post-transcriptional compensatory mechanisms play a major role in maintaining the level of MLC-2v protein in murine hearts. In addition, as our mlc-2v knockout mutants were created by a knock-in of Cre recombinase into the endogenous mlc-2v locus, this study demonstrates that heterozygous mlc-2v cre knock-in mice are appropriate for ventricular specific gene targeting.

  10. Identifying 2 prenylflavanones as potential hepatotoxic compounds in the ethanol extract of Sophora flavescens.

    PubMed

    Yu, Qianqian; Cheng, Nengneng; Ni, Xiaojun

    2013-11-01

    Zhixue capsule is a prescription for hemorrhoid commonly used in traditional Chinese medicine. This drug was recalled by the State Food and Drug Administration in 2008 because of severe adverse hepatic reactions. Zhixue capsule is composed of ethanol extracts of Cortex Dictamni (ECD) and Sophora flavescens (ESF). In our preliminary study, we observed the hepatotoxic effects of ESF on rat primary hepatocytes. However, ECD did not exhibit hepatotoxicity at the same concentration range. In this study, ESF was evaluated for its potential hepatotoxic effects on rats. Bioassay-guided isolation was used to identify the material basis for hepatotoxicity. Treatment with 1.25 g/kg and 2.5 g/kg ESF significantly elevated the alanine aminotransferase and aspartate aminotransferase levels in the serum. The changes in the levels of transaminases were supported by the remarkable fatty degeneration of liver histopathology. Further investigations using bioassay-guided isolation and analysis indicated that prenylated flavanones accounted for the positive hepatotoxic results. Two isolated compounds were identified, kurarinone and sophoraflavanone G, using nuclear magnetic resonance and mass spectrometry techniques. These compounds have potent toxic effects on primary rat hepatocytes (with IC50 values of 29.9 μM and 16.5 μM) and human HL-7702 liver cells (with IC50 values of 48.2 μM and 40.3 μM), respectively. Consequently, the hepatotoxic constituents of S. flavescens were determined to be prenylated flavanones, kurarinone, and sophoraflavanone G. © 2013 Institute of Food Technologists®

  11. Novel treatment options for the management of heterozygous familial hypercholesterolemia.

    PubMed

    Polychronopoulos, Georgios; Tziomalos, Konstantinos

    2017-12-01

    Even though statins represent the mainstay of treatment of heterozygous familial hypercholesterolemia (FH), their low-density lipoprotein cholesterol (LDL-C) lowering efficacy is finite and most patients with FH will not achieve LDL-C targets with statin monotherapy. Addition of ezetimibe with or without bile acid sequestrants will also not lead to treatment goals in many of these patients, particularly in those with established cardiovascular disease. In this selected subgroup of the FH population, proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors provide substantial reductions in LDL-C levels, reduce cardiovascular morbidity and appear to be safe. Mipomersen, an antisense single-strand oligonucleotide that inhibits the production of apoB by binding to the mRNA that encodes the synthesis of apoB, and lomitapide, an inhibitor of microsomal triglyceride transfer protein, also reduce LDL-C levels but are currently indicated only for the management of homozygous FH. Areas covered: In the present review, the role of PCSK9 inhibitors, mipomersen and lomitapide in the management of FH is briefly discussed. Other LDL-C-lowering agents under evaluation include inclisiran, a small interference RNA molecule that induces long-term inhibition of PSCK9 synthesis, anacetrapib, a cholesterol ester-transfer protein inhibitor, ETC-1002 (bempedoic acid), an inhibitor of adenosine triphosphate citrate lyase, and gemcabene, which reduces hepatic apolipoprotein C-III mRNA. The safety and efficacy of these agents are also reviewed. Expert Commentary: Even though several novel treatment options for heterozygous FH are under development, it remains to be shown whether these treatments will also reduce cardiovascular morbidity in these high-risk patients.

  12. Prospective study on the potential of RAAS blockade to halt renal disease in Alport syndrome patients with heterozygous mutations.

    PubMed

    Stock, Johanna; Kuenanz, Johannes; Glonke, Niklas; Sonntag, Joseph; Frese, Jenny; Tönshoff, Burkhard; Höcker, Britta; Hoppe, Bernd; Feldkötter, Markus; Pape, Lars; Lerch, Christian; Wygoda, Simone; Weber, Manfred; Müller, Gerhard-Anton; Gross, Oliver

    2017-01-01

    Patients with autosomal or X-linked Alport syndrome (AS) with heterozygous mutations in type IV collagen genes have a 1-20 % risk of progressing to end-stage renal disease during their lifetime. We evaluated the long-term renal outcome of patients at risk of progressive disease (chronic kidney disease stages 1-4) with/without nephroprotective therapy. This was a prospective, non-interventional, observational study which included data from a 4-year follow-up of AS patients with heterozygous mutations whose datasets had been included in an analysis of the 2010 database of the European Alport Registry. Using Kaplan-Meier estimates and logrank tests, we prospectively analyzed the updated datasets of 52 of these patients and 13 new datasets (patients added to the Registry after 2011). The effects of therapy, extrarenal symptoms and inheritance pattern on renal outcome were analyzed. The mean prospective follow-up was 46 ± 10 months, and the mean time on therapy was 8.4 ± 4.4 (median 7; range 2-18) years. The time from the appearance of the first symptom to diagnosis was 8.1 ± 14.2 (range 0-52) years. At the time of starting therapy, 5.4 % of patients had an estimated glomerular filtration rate of <60 ml/min, 67.6 % had proteinuria and 27.0 % had microalbuminuria. Therapeutic strategies included angiotensin-converting enzymer inhibitors (97.1 %), angiotensin receptor antagonists (1 patient), dual therapy (11.8 %) and statins (8.8 %). Among patients included in the prospective dataset, prevented the need for dialysis. Among new patients, no patient at risk for renal failure progressed to the next disease stage after 4 years follow-up; three patients even regressed to a lower stage during therapy. Treatment with blockers of the renin-angiotensin-aldosterone system prevents progressive renal failure in AS patients with heterozygous mutations in the genes causing AS. Considerable numbers of aging AS patients on dialysis may have heterozygous mutations in these

  13. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  14. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria.

    PubMed

    Guindo, Aldiouma; Fairhurst, Rick M; Doumbo, Ogobara K; Wellems, Thomas E; Diallo, Dapa A

    2007-03-01

    Glucose-6-phosphate dehydrogenase (G6PD) is important in the control of oxidant stress in erythrocytes, the host cells for Plasmodium falciparum. Mutations in this enzyme produce X-linked deficiency states associated with protection against malaria, notably in Africa where the A- form of G6PD deficiency is widespread. Some reports have proposed that heterozygous females with mosaic populations of normal and deficient erythrocytes (due to random X chromosome inactivation) have malaria resistance similar to or greater than hemizygous males with populations of uniformly deficient erythrocytes. These proposals are paradoxical, and they are not consistent with currently hypothesized mechanisms of protection. We conducted large case-control studies of the A- form of G6PD deficiency in cases of severe or uncomplicated malaria among two ethnic populations of rural Mali, West Africa, where malaria is hyperendemic. Our results indicate that the uniform state of G6PD deficiency in hemizygous male children conferred significant protection against severe, life-threatening malaria, and that it may have likewise protected homozygous female children. No such protection was evident from the mosaic state of G6PD deficiency in heterozygous females. We also found no significant differences in the parasite densities of males and females with differences in G6PD status. Pooled odds ratios from meta-analysis of our data and data from a previous study confirmed highly significant protection against severe malaria in hemizygous males but not in heterozygous females. Among the different forms of severe malaria, protection was principally evident against cerebral malaria, the most frequent form of life-threatening malaria in these studies. The A- form of G6PD deficiency in Africa is under strong natural selection from the preferential protection it provides to hemizygous males against life-threatening malaria. Little or no such protection is present among heterozygous females. Although these

  15. X-Linked G6PD Deficiency Protects Hemizygous Males but Not Heterozygous Females against Severe Malaria

    PubMed Central

    Doumbo, Ogobara K; Wellems, Thomas E; Diallo, Dapa A

    2007-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) is important in the control of oxidant stress in erythrocytes, the host cells for Plasmodium falciparum. Mutations in this enzyme produce X-linked deficiency states associated with protection against malaria, notably in Africa where the A− form of G6PD deficiency is widespread. Some reports have proposed that heterozygous females with mosaic populations of normal and deficient erythrocytes (due to random X chromosome inactivation) have malaria resistance similar to or greater than hemizygous males with populations of uniformly deficient erythrocytes. These proposals are paradoxical, and they are not consistent with currently hypothesized mechanisms of protection. Methods and Findings We conducted large case-control studies of the A− form of G6PD deficiency in cases of severe or uncomplicated malaria among two ethnic populations of rural Mali, West Africa, where malaria is hyperendemic. Our results indicate that the uniform state of G6PD deficiency in hemizygous male children conferred significant protection against severe, life-threatening malaria, and that it may have likewise protected homozygous female children. No such protection was evident from the mosaic state of G6PD deficiency in heterozygous females. We also found no significant differences in the parasite densities of males and females with differences in G6PD status. Pooled odds ratios from meta-analysis of our data and data from a previous study confirmed highly significant protection against severe malaria in hemizygous males but not in heterozygous females. Among the different forms of severe malaria, protection was principally evident against cerebral malaria, the most frequent form of life-threatening malaria in these studies. Conclusions The A− form of G6PD deficiency in Africa is under strong natural selection from the preferential protection it provides to hemizygous males against life-threatening malaria. Little or no such protection is

  16. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    PubMed

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Comparison of Spectrophotometry, Chromate Inhibition, and Cytofluorometry Versus Gene Sequencing for Detection of Heterozygously Glucose-6-Phosphate Dehydrogenase-Deficient Females.

    PubMed

    Peters, Anna L; Veldthuis, Martijn; van Leeuwen, Karin; Bossuyt, Patrick M M; Vlaar, Alexander P J; van Bruggen, Robin; de Korte, Dirk; Van Noorden, Cornelis J F; van Zwieten, Rob

    2017-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide. Detection of heterozygously deficient females can be difficult as residual activity in G6PD-sufficient red blood cells (RBCs) can mask deficiency. In this study, we compared accuracy of 4 methods for detection of G6PD deficiency in females. Blood samples from females more than 3 months of age were used for spectrophotometric measurement of G6PD activity and for determination of the percentage G6PD-negative RBCs by cytofluorometry. An additional sample from females suspected to have G6PD deficiency based on the spectrophotometric G6PD activity was used for measuring chromate inhibition and sequencing of the G6PD gene. Of 165 included females, 114 were suspected to have heterozygous deficiency. From 75 females, an extra sample was obtained. In this group, mutation analysis detected 27 heterozygously deficient females. The sensitivity of spectrophotometry, cytofluorometry, and chromate inhibition was calculated to be 0.52 (confidence interval [CI]: 0.32-0.71), 0.85 (CI: 0.66-0.96), and 0.96 (CI: 0.71-1.00, respectively, and the specificity was 1.00 (CI: 0.93-1.00), 0.88 (CI: 0.75-0.95), and 0.98 (CI: 0.89-1.00), respectively. Heterozygously G6PD-deficient females with a larger percentage of G6PD-sufficient RBCs are missed by routine methods measuring total G6PD activity. However, the majority of these females can be detected with both chromate inhibition and cytofluorometry.

  18. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: a case report.

    PubMed

    Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia

    2017-10-12

    Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.

  19. Web server to identify similarity of amino acid motifs to compounds (SAAMCO).

    PubMed

    Casey, Fergal P; Davey, Norman E; Baran, Ivan; Varekova, Radka Svobodova; Shields, Denis C

    2008-07-01

    Protein-protein interactions are fundamental in mediating biological processes including metabolism, cell growth, and signaling. To be able to selectively inhibit or induce protein activity or complex formation is a key feature in controlling disease. For those situations in which protein-protein interactions derive substantial affinity from short linear peptide sequences, or motifs, we can develop search algorithms for peptidomimetic compounds that resemble the short peptide's structure but are not compromised by poor pharmacological properties. SAAMCO is a Web service ( http://bioware.ucd.ie/ approximately saamco) that facilitates the screening of motifs with known structures against bioactive compound databases. It is built on an algorithm that defines compound similarity based on the presence of appropriate amino acid side chain fragments and a favorable Root Mean Squared Deviation (RMSD) between compound and motif structure. The methodology is efficient as the available compound databases are preprocessed and fast regular expression searches filter potential matches before time-intensive 3D superposition is performed. The required input information is minimal, and the compound databases have been selected to maximize the availability of information on biological activity. "Hits" are accompanied with a visualization window and links to source database entries. Motif matching can be defined on partial or full similarity which will increase or reduce respectively the number of potential mimetic compounds. The Web server provides the functionality for rapid screening of known or putative interaction motifs against prepared compound libraries using a novel search algorithm. The tabulated results can be analyzed by linking to appropriate databases and by visualization.

  20. Combining functional genomics and chemical biology to identify targets of bioactive compounds.

    PubMed

    Ho, Cheuk Hei; Piotrowski, Jeff; Dixon, Scott J; Baryshnikova, Anastasia; Costanzo, Michael; Boone, Charles

    2011-02-01

    Genome sequencing projects have revealed thousands of suspected genes, challenging researchers to develop efficient large-scale functional analysis methodologies. Determining the function of a gene product generally requires a means to alter its function. Genetically tractable model organisms have been widely exploited for the isolation and characterization of activating and inactivating mutations in genes encoding proteins of interest. Chemical genetics represents a complementary approach involving the use of small molecules capable of either inactivating or activating their targets. Saccharomyces cerevisiae has been an important test bed for the development and application of chemical genomic assays aimed at identifying targets and modes of action of known and uncharacterized compounds. Here we review yeast chemical genomic assays strategies for drug target identification. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The relationship between the enzyme activity, lipid peroxidation and red blood cells deformability in hemizygous and heterozygous glucose-6-phosphate dehydrogenase deficient individuals.

    PubMed

    Gurbuz, N; Yalcin, O; Aksu, T A; Baskurt, O K

    2004-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) activity, red blood cell (RBC) lipid peroxidation and deformability were investigated in hemizygous and heterozygous G6PD deficient subjects and compared with normal individuals. None of the subjects were in acute hemolytic crises. G6PD activity was assessed based on the spectrophotometric determination of generated NADPH. Lipid peroxidation was measured as thiobarbutiric acid reactive substances (TBARS). RBC deformability was analyzed by ektacytometry. RBC lipid peroxidation was found to be significantly higher in hemizygous subjects compared to control and heterozygous subjects, while RBC deformability was found to be significantly impaired. However, although lipid peroxidation was higher than control, RBC deformability was not significantly different from control in heterozygous individuals, characterized by significantly lower RBC G6PD activity. There were no significant correlations between these three parameters when the three groups were analyzed separately, but a significant negative correlation was found to exist between G6PD activity and TBARS when the pooled data from the three groups were used for the analysis. This was also true for the relationship between RBC deformability and G6PD activity. It has been concluded that G6PD activity is not a good predictor of oxidative damage resulting in mechanical impairment in heterozygous individuals.

  2. Mutations in Alström protein impair terminal differentiation of cardiomyocytes.

    PubMed

    Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P

    2014-03-04

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.

  3. Mutations in Alström Protein Impair Terminal Differentiation of Cardiomyocytes

    PubMed Central

    Shenje, Lincoln T.; Andersen, Peter; Halushka, Marc K.; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B.; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A. S.; Chen, Yan; Chelko, Stephen; Crosson, Jane E.; Scheel, Janet; Vricella, Luca; Craig, Brian D.; Marosy, Beth A.; Mohr, David W.; Hetrick, Kurt N.; Romm, Jane M.; Scott, Alan F.; Valle, David; Naggert, Jürgen K.; Kwon, Chulan; Doheny, Kimberly F.; Judge, Daniel P.

    2014-01-01

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognise homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at two weeks postnatal compared to wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest. PMID:24595103

  4. Heterozygous TGFBR2 mutations in Marfan syndrome

    PubMed Central

    Mizuguchi, Takeshi; Collod-Beroud, Gwenaëlle; Akiyama, Takushi; Abifadel, Marianne; Harada, Naoki; Morisaki, Takayuki; Allard, Delphine; Varret, Mathilde; Claustres, Mireille; Morisaki, Hiroko; Ihara, Makoto; Kinoshita, Akira; Yoshiura, Koh-ichiro; Junien, Claudine; Kajii, Tadashi; Jondeau, Guillaume; Ohta, Tohru; Kishino, Tatsuya; Furukawa, Yoichi; Nakamura, Yusuke; Niikawa, Norio; Boileau, Catherine; Matsumoto, Naomichi

    2004-01-01

    Marfan syndrome (MFS) is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton, and cardiovascular systems and associated with defects in the fibrillin gene (FBN1) at 15q21.1 1. We previously mapped the second locus for MFS (MFS type 2, MFS2, OMIM *154705), at 3p24.2-p25 in a large French family (MS1)2. Identification of a 3p24.1 chromosomal breakpoint disrupting the TGF-beta receptor 2 gene (TGFBR2) in a Japanese MFS patient led us to consider TGFBR2 as the MSF2 gene. We found a Q508Q mutation of TGFBR2 that resulted in abnormal splicing and segregated with MFS2 in MS1. Three other missense mutations were found in four unrelated probands and were shown by luciferase-assays to lead to loss of function of the TGF-β signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders. PMID:15235604

  5. Novel compound heterozygous SPTA1 mutations in a patient with hereditary elliptocytosis

    PubMed Central

    Ma, Shiyue; Qin, Jinqiu; Wei, Aiqiu; Li, Xiaohong; Qin, Yuanyuan; Liao, Lin; Lin, Faquan

    2018-01-01

    Hereditaryelliptocytosis (HE) is a hereditary hemolytic disease, characterized by the presence of many elliptical erythrocytes in the peripheral blood that is caused by abnormal cytoskeletal proteins in the erythrocyte membrane. In the present study, a novel, causal HE mutation was reported. Routine blood examinations were performed on the proband and their family, and the fluorescence intensity of eosin-5-maleimide (EMA)-labeled erythrocytes was determined via flow cytometry. Subsequently, DNA was extracted from the peripheral blood of the proband and their family members, and amplified by quantitative polymerase chain reaction. The Sanger sequencing approach was used to determine and identify gene mutations, which were verified by matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry. To exclude genetic polymorphisms, newly identified mutations were subjected to large-scale gene screening using high-resolution melt analysis. Protein expression levels in the erythrocyte membrane of the proband were determined via SDS-PAGE, which demonstrated that, compared with healthy controls, the proband exhibited a reduction in EMA-labeled erythrocytes. In addition, DNA analysis demonstrated that the proband carried three mutations in the spectrin α chain erythrocytic 1 (SPTA1) gene: c.161A>C, c.5572C>G and 6531-12C>T. The corresponding mutant polypeptides were also analyzed by MALDI-TOF mass spectroscopy. SDS-PAGE analysis indicated that the proband exhibited normal levels of erythrocyte membrane proteins. In the present study, a novel HE case with a His54Pro mutation in the SPTA1 gene was reported. The results suggested that the His54Pro mutation influenced the role of erythrocyte membrane proteins without reducing its level of expression. PMID:29484404

  6. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.

    PubMed

    Armstrong, Laura C; Westlake, Grant; Snow, John P; Cawthon, Bryan; Armour, Eric; Bowman, Aaron B; Ess, Kevin C

    2017-12-01

    Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. PANRETINAL DEGENERATION ASSOCIATED WITH LONG-TERM HYDROXYCHLOROQUINE USE AND HETEROZYGOUS USH2A MUTATION.

    PubMed

    Katsman, Diana; Sanfilippo, Christian; Sarraf, David

    2017-01-01

    To report a case of bilateral panretinal degeneration in a patient with long-term hydroxychloroquine exposure and positive for a heterozygous mutation in the USH2A gene. Retrospective case report. Multimodal imaging including spectral-domain optical coherence tomography, fundus autofluorescence, and fluorescein angiography was performed and the results are presented. Electroretinography findings are also described. The authors report a 39-year-old patient with a history of hydroxychloroquine therapy for 20 years (cumulative dose of 2,774 g). Multimodal retinal imaging demonstrated bilateral paracentral outer retinal atrophy with spectral-domain optical coherence tomography and characteristic of hydroxychloroquine toxicity. Full-field electroretinography showed bilateral panretinal depression of the rod and cone responses. Mutational analysis revealed that the patient was a carrier for an autosomal recessive mutation in the USH2A gene. We report a case of panretinal degeneration but with features characteristic of hydroxychloroquine retinopathy in a patient who was found to be a heterozygous carrier of the USH2A gene, a cause of recessive retinitis pigmentosa without hearing loss. Carrier status for a retinal degenerative mutation may have rendered this patient more susceptible to the retinotoxic effects of long-term hydroxychloroquine therapy.

  8. IDENTIFYING COMPOUNDS DESPITE CHROMATOGRAPHY LIMITATIONS: ORGANOPHOSPHATES IN TREATED SEWAGE

    EPA Science Inventory

    Highly concentrated extracts of sewage treatment plant (STP) effluents contain detectable
    levels of dozens of compounds resulting from human activities. Recent concern over use and
    disposal of Pharmaceuticals and Personal Care Products (PPCPS) (1) has stimulated interest ...

  9. Identifying mutations in Tunisian families with retinal dystrophy.

    PubMed

    Habibi, Imen; Chebil, Ahmed; Falfoul, Yosra; Allaman-Pillet, Nathalie; Kort, Fedra; Schorderet, Daniel F; El Matri, Leila

    2016-11-22

    Retinal dystrophies (RD) are a rare genetic disorder with high genetic heterogeneity. This study aimed at identifying disease-causing variants in fifteen consanguineous Tunisian families. Full ophthalmic examination was performed. Index patients were subjected to IROme analysis or whole exome sequencing followed by homozygosity mapping. All detected variations were confirmed by direct Sanger sequencing. Mutation analysis in our patients revealed two compound heterozygous mutations p.(R91W);(V172D) in RPE65, and five novel homozygous mutations: p.R765C in CNGB1, p.H337R in PDE6B, splice site variant c.1129-2A > G and c.678_681delGAAG in FAM161A and c.1133 + 3_1133 + 6delAAGT in CERKL. The latter mutation impacts pre-mRNA splicing of CERKL. The other changes detected were six previously reported mutations in CNGB3 (p.R203*), ABCA4 (p.W782*), NR2E3 (p.R311Q), RPE65 (p.H182Y), PROM1 (c.1354dupT) and EYS (c.5928-2A > G). Segregation analysis in each family showed that all affected individuals were homozygotes and unaffected individuals were either heterozygote carriers or homozygous wild type allele. These results confirm the involvement of a large number of genes in RD in the Tunisian population.

  10. Compound heterozygous mutation of aquaporin 2 gene in woman patient with congenital nephrogenic diabetes insipidus.

    PubMed

    Tsutsumi, Zenta; Inokuchi, Taku; Tamada, Daisuke; Moriwaki, Yuji; Ka, Tsuneyoshi; Takahashi, Sumio; Yamamoto, Tetsuya

    2009-01-01

    We performed mutational analyses of a woman patient with congenital nephrogenic diabetes insipidus referred to us during pregnancy. The diagnosis was made during the neonatal period, after which she was treated with spironolactone and hydrochlorothiazide. Our examination showed the patient to be apparently in good health without definite evidence of dehydration. Serum and urine osmolality were 220 mOsm/L and 50 mOsm/L, respectively, and the serum concentration of AVP was 2.7 pg/mL. Results of a water-deprivation test performed after delivery were compatible with nephrogenic diabetes insipidus. Mutational analyses showed that the patient was a compound heterozygote with point mutations at nucleotide position 298 (G to A; G100R) in exon 1 and nucleotide position 374 (C to T; T125M) in exon 2 of the aquaporin 2 gene, which have been previously described.

  11. Lower metabolic rate in individuals heterozygous for either a frameshift or a functional missense MC4R variant.

    PubMed

    Krakoff, Jonathan; Ma, Lijun; Kobes, Sayuko; Knowler, William C; Hanson, Robert L; Bogardus, Clifton; Baier, Leslie J

    2008-12-01

    Humans with functional variants in the melanocortin 4 receptor (MC4R) are obese, hyperphagic, and hyperinsulinemic but have been reported to have no difference in energy expenditure. We investigated the association of two MC4R variants, Arg165Gln (R165Q) and A insertion at nucleotide 100 (NT100), with adiposity in 3,074 full-heritage Pima Indians, a subset of whom had metabolic measures including 24-h energy expenditure (n = 252) and resting metabolic rate (RMR) (n = 364). Among the 3,074 subjects, 43 were heterozygous for R165Q and 14 for NT100 (frequency = 0.007 and 0.002). Mean (+/- SD) BMI was higher among subjects with R165Q (39.3 +/- 8.6 kg/m(2)) or NT100 (41.2 +/- 7.8) than subjects without either variant (37.1 +/- 8.4) (P = 0.04 and 0.02, adjusted for age, sex, and birth year and accounting for family membership). The 24-h energy expenditure (four with NT100; three with R165Q) or RMR (six with NT100; two with R165Q) was lower in heterozygous subjects but only met statistical significance when heterozygous subjects were combined and compared with subjects without either variant: least-squares means, 2,163 kcal/24 h (95% CI 2,035-2,291) vs. 2,307 kcal/24 h (2,285-2,328), P = 0.03 for 24-h energy expenditure, and 1,617 kcal/24 h (1,499-1,734) vs. 1,754 kcal/24 h (1,736-1,772), P = 0.02 for RMR; adjusted for age, sex, fat-free mass, and fat mass). For RMR, this difference persisted, even after accounting for family membership. Pima Indians heterozygous for R165Q or NT100 in MC4R have higher BMIs and lower energy expenditure (by approximately 140 kcal/day), indicating that lower energy expenditure was a component of the increased adiposity.

  12. A novel mutation in PAX3 associated with Waardenburg syndrome type I in a Chinese family.

    PubMed

    Xiao, Yun; Luo, Jianfen; Zhang, Fengguo; Li, Jianfeng; Han, Yuechen; Zhang, Daogong; Wang, Mingming; Ma, Yalin; Xu, Lei; Bai, Xiaohui; Wang, Haibo

    2016-01-01

    The novel compound heterozygous mutation in PAX3 was the key genetic reason for WS1 in this family, which was useful to the molecular diagnosis of WS1. Screening the pathogenic mutations in a four generation Chinese family with Waardenburg syndrome type I (WS1). WS1 was diagnosed in a 4-year-old boy according to the Waardenburg syndrome Consortium criteria. The detailed family history revealed four affected members in the family. Routine clinical, audiological examination, and ophthalmologic evaluation were performed on four affected and 10 healthy members in this family. The genetic analysis was conducted, including the targeted next-generation sequencing of 127 known deafness genes combined with Sanger sequencing, TA clone and bioinformatic analysis. A novel compound heterozygous mutation c.[169_170insC;172_174delAAG] (p.His57ProfsX55) was identified in PAX3, which was co-segregated with WS1 in the Chinese family. This mutation was absent in the unaffected family members and 200 ethnicity-matched controls. The phylogenetic analysis and three-dimensional (3D) modeling of Pax3 protein further confirmed that the novel compound heterozygous mutation was pathogenic.

  13. Identification of novel mutations of the CHST6 gene in Vietnamese families affected with macular corneal dystrophy in two generations.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Hasegawa, Nobuko; Kanai, Atsushi

    2003-08-01

    To report the clinical and genetic findings of Vietnamese families affected with macular corneal dystrophy (MCD) in 2 generations. Two families, including 7 patients and 3 unaffected members, were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals were used as controls. Genomic DNA was extracted from leukocytes. Analysis of the carbohydrate sulfotransferase (CHST6) gene was performed using polymerase chain reaction and direct sequencing. The typical form of MCD was recognized in family B, in which sequencing of CHST6 gene revealed an nt 1067-1068ins(GGCCGTG) mutation (frameshift after 125V) homozygously in MCD patients and heterozygously in the unaffected members. Family N also showed clinical features of MCD, moderate in the mother but severe in the affected son. Sequencing revealed a single heterozygous Arg211Gln in the mother, compound heterozygous Arg211Gln+ Gln82Stop in the affected son, and heterozygous Arg211Gln mutation in the unaffected members. The identified mutations in these pedigrees were excluded from normal controls. The novel frameshift and compound heterozygous mutations might be responsible for MCD in the families studied. The phenotypic variation between affected parents and offspring was unclear. In family N, severe MCD phenotype seen in the affected son may be due the fact that he had an early stop codon mutation (Gln82Stop).

  14. Heterozygous variants in ACTL6A, encoding a component of the BAF complex, are associated with intellectual disability.

    PubMed

    Marom, Ronit; Jain, Mahim; Burrage, Lindsay C; Song, I-Wen; Graham, Brett H; Brown, Chester W; Stevens, Servi J C; Stegmann, Alexander P A; Gunter, Andrew T; Kaplan, Julie D; Gavrilova, Ralitza H; Shinawi, Marwan; Rosenfeld, Jill A; Bae, Yangjin; Tran, Alyssa A; Chen, Yuqing; Lu, James T; Gibbs, Richard A; Eng, Christine; Yang, Yaping; Rousseau, Justine; de Vries, Bert B A; Campeau, Philippe M; Lee, Brendan

    2017-10-01

    Pathogenic variants in genes encoding components of the BRG1-associated factor (BAF) chromatin remodeling complex have been associated with intellectual disability syndromes. We identified heterozygous, novel variants in ACTL6A, a gene encoding a component of the BAF complex, in three subjects with varying degrees of intellectual disability. Two subjects have missense variants affecting highly conserved amino acid residues within the actin-like domain. Missense mutations in the homologous region in yeast actin were previously reported to be dominant lethal and were associated with impaired binding of the human ACTL6A to β-actin and BRG1. A third subject has a splicing variant that creates an in-frame deletion. Our findings suggest that the variants identified in our subjects may have a deleterious effect on the function of the protein by disturbing the integrity of the BAF complex. Thus, ACTL6A gene mutation analysis should be considered in patients with intellectual disability, learning disabilities, or developmental language disorder. © 2017 Wiley Periodicals, Inc.

  15. A novel heterozygous germline deletion in MSH2 gene in a five generation Chinese family with Lynch syndrome

    PubMed Central

    Liang, Shengran; Ling, Chao; You, Yan; Xu, Lai; Zhong, Min-Er; Xiao, Yi; Qiu, Hui-Zhong; Lu, Jun-Yang; Banerjee, Santasree

    2017-01-01

    Lynch syndrome (LS) is one of the most common familial forms of colorectal cancer predisposing syndrome with an autosomal dominant mode of inheritance. LS is caused by the germline mutations in DNA mismatch repair (MMR) genes including MSH2, MLH1, MSH6 and PMS2. Clinically, LS is characterized by high incidence of early-onset colorectal cancer as well as endometrial, small intestinal and urinary tract cancers, usually occur in the third to fourth decade of the life. Here we describe a five generation Chinese family with LS clinically diagnosed according to the Amsterdam II criteria. Immuno-histochemical staining of MSH2 and MSH6 shows only foci nuclear positive on the surface of the tumor with strong expression of MLH1 and PMS2 with diffuse immunoreactivity. In order to dig into the molecular basis of this LS pedigree, we collected the proband's blood sample, extracted the genomic DNA and applied the genetic screening. As a result, we identified a novel heterozygous deletion in MSH2 gene by targeted next generation sequencing, which is also proved to be co-segregated among other affected family members by following validation. To our knowledge, this novel heterozygous deletion (c.1676_1679 delTAAA) in MSH2 gene causes frameshift mutation (p.Asn560Lysfs*29) and leads to the formation of a truncated MSH2 protein which is confirmed to be a deleterious mutation according to the variant interpretation guidelines of American College of Medical Genetics and Genomics (ACMG). Identification of novel DNA mismatch repair (MMR) gene mutations can definitely benefit to the clinical diagnosis and management. PMID:28903413

  16. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    PubMed

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. A Case of Beta-propeller Protein-associated Neurodegeneration due to a Heterozygous Deletion of WDR45.

    PubMed

    Hermann, Andreas; Kitzler, Hagen H; Pollack, Tobias; Biskup, Saskia; Krüger, Stefanie; Funke, Claudia; Terrile, Caterina; Haack, Tobias B

    2017-01-01

    Static encephalopathy of childhood with neurodegeneration in adulthood is a phenotypically distinctive, X-linked dominant subtype of neurodegeneration with brain iron accumulation (NBIA). WDR45 mutations were recently identified as causal. WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, and the disease has been renamed beta-propeller protein-associated neurodegeneration (BPAN). Here we describe a female patient suffering from a classical BPAN phenotype due to a novel heterozygous deletion of WDR45 . An initial gene panel and Sanger sequencing approach failed to uncover the molecular defect. Based on the typical clinical and neuroimaging phenotype, quantitative polymerase chain reaction of the WDR45 coding regions was undertaken, and this showed a reduction of the gene dosage by 50% compared with controls. An extended search for deletions should be performed in apparently WDR45- negative cases presenting with features of NBIA and should also be considered in young patients with predominant intellectual disabilities and hypertonia/parkinsonism/dystonia.

  18. Identification of a novel heterozygous missense mutation in the CACNA1F gene in a chinese family with retinitis pigmentosa by next generation sequencing.

    PubMed

    Zhou, Qi; Cheng, Jingliang; Yang, Weichan; Tania, Mousumi; Wang, Hui; Khan, Md Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin; Fu, Junjiang

    2015-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  19. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    PubMed Central

    Tania, Mousumi; Wang, Hui; Khan, Md. Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin

    2015-01-01

    Background. Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family. PMID:26075273

  20. Heterozygous mapping strategy (HetMapps)for high resolution genotyping-by-sequencing markers: a case study in grapevine

    USDA-ARS?s Scientific Manuscript database

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low per-sample genotyping cost, but missing data and under-calling of heterozygotes complicate the creation of GBS linkage maps for highly heterozygous species. To overcome these issues, we developed ...

  1. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra

    PubMed Central

    Glauber, Kristine M.; Dana, Catherine E.; Park, Steve S.; Colby, David A.; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A. Richard; Steele, Robert E.

    2013-01-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes. PMID:24255098

  2. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra.

    PubMed

    Glauber, Kristine M; Dana, Catherine E; Park, Steve S; Colby, David A; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A Richard; Steele, Robert E

    2013-12-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes.

  3. A metabolomics-based approach identifies changes in the small molecular weight compound composition of the peanut as a result of dry-roasting.

    PubMed

    Klevorn, Claire M; Dean, Lisa L

    2018-02-01

    Raw peanuts in the USA are subjected to thermal processing, such as dry-roasting, prior to consumption. A multi-instrument metabolomics-based platform along with targeted analyses was used to determine changes in the low-molecular-weight compound composition of peanuts due to dry-roasting. Runner and virginia-type peanut seeds were characterized using several analytical platforms including (RP)/UPLC-MS/MS (positive and negative ion mode ESI) and HILIC/UPLC-MS/MS with negative ion mode ESI. Of the 383 compounds identified, 16 compounds were unique to the roasted peanuts. Using pathway analysis, compounds associated with arginine and proline metabolism were found to be the most changed. Products of chemical degradation and compounds contained within the vesicular bodies of the peanut increased after roasting. Dry-roasting had a significant impact on the levels and types of low-molecular-weight compounds present. These findings provide useful information about composition changes due to roasting. Published by Elsevier Ltd.

  4. High density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis

    PubMed Central

    Goyette, Philippe; Boucher, Gabrielle; Mallon, Dermot; Ellinghaus, Eva; Jostins, Luke; Huang, Hailiang; Ripke, Stephan; Gusareva, Elena S; Annese, Vito; Hauser, Stephen L; Oksenberg, Jorge R; Thomsen, Ingo; Leslie, Stephen; Daly, Mark J; Van Steen, Kristel; Duerr, Richard H; Barrett, Jeffrey C; McGovern, Dermot PB; Schumm, L Philip; Traherne, James A; Carrington, Mary N; Kosmoliaptsis, Vasilis; Karlsen, Tom H; Franke, Andre; Rioux, John D

    2014-01-01

    Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn’s disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical HLA molecules1. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but lacked the statistical power to define the architecture of association and causal alleles2,3. To address this, we performed high-density SNP typing of the MHC in >32,000 patients with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn’s disease and ulcerative colitis. Significant differences were observed between these diseases, including a predominant role of class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response to the colonic environment in the pathogenesis of IBD. PMID:25559196

  5. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis.

    PubMed

    Goyette, Philippe; Boucher, Gabrielle; Mallon, Dermot; Ellinghaus, Eva; Jostins, Luke; Huang, Hailiang; Ripke, Stephan; Gusareva, Elena S; Annese, Vito; Hauser, Stephen L; Oksenberg, Jorge R; Thomsen, Ingo; Leslie, Stephen; Daly, Mark J; Van Steen, Kristel; Duerr, Richard H; Barrett, Jeffrey C; McGovern, Dermot P B; Schumm, L Philip; Traherne, James A; Carrington, Mary N; Kosmoliaptsis, Vasilis; Karlsen, Tom H; Franke, Andre; Rioux, John D

    2015-02-01

    Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohn's disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohn's disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.

  6. Targeted and Untargeted Metabolic Profiling of Wild Grassland Plants identifies Antibiotic and Anthelmintic Compounds Targeting Pathogen Physiology, Metabolism and Reproduction.

    PubMed

    French, Katherine E; Harvey, Joe; McCullagh, James S O

    2018-01-26

    Plants traditionally used by farmers to manage livestock ailments could reduce reliance on synthetic antibiotics and anthelmintics but in many cases their chemical composition is unknown. As a case study, we analyzed the metabolite profiles of 17 plant species and 45 biomass samples from agricultural grasslands in England using targeted and untargeted metabolite profiling by liquid-chromatography mass spectrometry. We identified a range of plant secondary metabolites, including 32 compounds with known antimicrobial/anthelmintic properties which varied considerably across the different plant samples. These compounds have been shown previously to target multiple aspects of pathogen physiology and metabolism in vitro and in vivo, including inhibition of quorum sensing in bacteria and egg viability in nematodes. The most abundant bioactive compounds were benzoic acid, myricetin, p-coumaric acid, rhamnetin, and rosmarinic acid. Four wild plants (Filipendula ulmaria (L.) Maxim., Prunella vulgaris L., Centuarea nigra L., and Rhinanthus minor L.) and two forage legumes (Medicago sativa L., Trifolium hybridium L.) contained high levels of these compounds. Forage samples from native high-diversity grasslands had a greater abundance of medicinal compounds than samples from agriculturally improved grasslands. Incorporating plants with antibiotic/anthelmintic compounds into livestock feeds may reduce global drug-resistance and preserve the efficacy of last-resort drugs.

  7. The heterozygous N291S mutation in the lipoprotein lipase gene impairs whole-body insulin sensitivity and affects a distinct set of plasma metabolites in humans.

    PubMed

    Berg, Sofia Mikkelsen; Havelund, Jesper; Hasler-Sheetal, Harald; Kruse, Vibeke; Pedersen, Andreas James Thestrup; Hansen, Aleksander Bill; Nybo, Mads; Beck-Nielsen, Henning; Højlund, Kurt; Færgeman, Nils Joakim

    Mutations in the lipoprotein lipase gene causing decreased lipoprotein lipase activity are associated with surrogate markers of insulin resistance and the metabolic syndrome in humans. We investigated the hypothesis that a heterozygous lipoprotein lipase mutation (N291S) induces whole-body insulin resistance and alterations in the plasma metabolome. In 6 carriers of a heterozygous lipoprotein lipase mutation (N291S) and 11 age-matched and weight-matched healthy controls, we examined insulin sensitivity and substrate metabolism by euglycemic-hyperinsulinemic clamps combined with indirect calorimetry. Plasma samples were taken before and after the clamp (4 hours of physiological hyperinsulinemia), and metabolites were measured enzymatically or by gas chromatography-mass spectrometry. Compared with healthy controls, heterozygous carriers of a defective lipoprotein lipase allele had elevated fasting plasma levels triglycerides (P < .006), and markedly impaired insulin-stimulated glucose disposal rates (P < .024) and nonoxidative glucose metabolism (P < .015). Plasma metabolite profiling demonstrated lower circulating levels of pyruvic acid and α-tocopherol in the N291S carriers than in controls both before and after stimulation with insulin (all >1.5-fold change and P < .05). Heterozygous carriers with a defective lipoprotein lipase allele are less insulin sensitive and have increased plasma levels of nonesterified fatty acids and triglycerides. The heterozygous N291S carriers also have a distinct plasma metabolomic signature, which may serve as a diagnostic tool for deficient lipoprotein lipase activity and as a marker of lipid-induced insulin resistance. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  9. Cell-Based Small-Molecule Compound Screen Identifies Fenretinide as Potential Therapeutic for Translocation-Positive Rhabdomyosarcoma

    PubMed Central

    Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W.

    2013-01-01

    A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

  10. Multiplex primer extension reaction screening and oxidative challenge of glucose-6-phosphate dehydrogenase mutants in hemizygous and heterozygous subjects.

    PubMed

    Ko, Chun Hay; Yung, Edmund; Li, Karen; Li, Chung Leung; Ng, Pak Cheung; Fung, Kwok Pui; Wong, Raymond Pui-On; Chui, Kit Man; Gu, Goldie Jia-Shi; Fok, Tai Fai

    2006-01-01

    The primary objective of our study was to provide a simple and reliable assay for identifying the majority of G6PD genetic variants in the Chinese population. We optimized the multiplex primer extension reaction (MPER) assay for simultaneous screening of 14-point mutations in 98 G6PD-deficient subjects. Our data demonstrated that this method is precise, cost-effective and has successfully identified mutations in 97 out of 98 subjects, including all heterozygous mutants. We also detected a relatively high incidence (12.3%) of c.871G > A, and all of them harbored the silent mutation c.1311C > T. Apart from the screening program, the pharmacogenetic relationship between G6PD level and residual reduced glutathione (GSH) level was studied upon oxidative challenge by alpha-naphthol. The GSH levels were correlated with their status of G6PD deficiency, but no significant difference was observed between individual G6PD-deficient groups. Our data demonstrated the potentials of the MPER assay for characterization of G6PD deficiency and other genetic diseases.

  11. Known and Newly Identified Semi-Volatile Organic Compounds from Biomass Burning in Amazonia: Variability and Relationship to Aerosol Physical Properties

    NASA Astrophysics Data System (ADS)

    Wernis, R. A.; Yee, L.; Isaacman-VanWertz, G. A.; Kreisberg, N. M.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Alexander, M. L. L.; Palm, B. B.; Hu, W.; Campuzano-Jost, P.; Day, D. A.; Jimenez, J. L.; Artaxo, P.; Viegas, J.; Manzi, A. O.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2016-12-01

    Aerosols are a source of great uncertainty in radiative forcing predictions and have poorly understood impacts on human health. In many environments, biomass burning contributes a significant source of primary aerosol as well as reactive gas-phase precursors that can form secondary organic aerosol (SOA). One class of these precursors, semi-volatile organic compounds (SVOCs), has been shown to have a large contribution to the amount of SOA formed from fire emissions. At present, SVOC emissions from biomass burning are poorly constrained and understanding their contributions to SOA formation is an important research challenge. In the Amazonian dry season, biomass burning is a major source of gases and aerosols reducing regional air quality. As part of the GoAmazon 2014/5 field campaign, we deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) instrument at the rural T3 site, 60 km to the west of Manaus, Brazil to measure hourly concentrations of SVOCs in the gas and particle phases. This comprehensive technique detects thousands of compounds, enabling the discovery of previously unidentified compounds. In this work we explore compounds for which a correlation with well-known biomass burning tracers is observed to discover the identities of new markers. We discuss contributions to the total organic aerosol from over 30 well-known, rarely reported and newly identified biomass burning markers. We examine the relationship between biomass burning aerosol composition and aerosol physical properties as measured at the T3 site. Additionally, we report gas-particle partitioning of all identified compounds with comparison to theoretical predictions. We find that the commonly used biomass burning tracer levoglucosan existed entirely in the particle phase and contributed 0.6% and 0.3% of total organic aerosol mass in the dry and wet seasons, respectively.

  12. Human retinoblastoma susceptibility gene: genomic organization and analysis of heterozygous intragenic deletion mutants.

    PubMed Central

    Bookstein, R; Lee, E Y; To, H; Young, L J; Sery, T W; Hayes, R C; Friedmann, T; Lee, W H

    1988-01-01

    A gene in chromosome region 13q14 has been identified as the human retinoblastoma susceptibility (RB) gene on the basis of altered gene expression found in virtually all retinoblastomas. In order to further characterize the RB gene and its structural alterations, we examined genomic clones of the RB gene isolated from both a normal human genomic library and a library made from DNA of the retinoblastoma cell line Y79. First, a restriction and exon map of the RB gene was constructed by aligning overlapping genomic clones, yielding three contiguous regions ("contigs") of 150 kilobases total length separated by two gaps. At least 20 exons were identified in genomic clones, and these were provisionally numbered. Second, two overlapping genomic clones that demonstrated a DNA deletion of exons 2 through 6 from one RB allele were isolated from the Y79 library. To confirm and extend this result, a unique sequence probe from intron 1 was used to detect similar and possibly identical heterozygous deletions in genomic DNA from three retinoblastoma cell lines, thereby explaining the origins of their shortened RB mRNA transcripts. The same probe detected genomic rearrangements in fibroblasts from two hereditary retinoblastoma patients, indicating that intron 1 includes a frequent site for mutations conferring predisposition to retinoblastoma. Third, this probe also detected a polymorphic site for BamHI with allele frequencies near 0.5/0.5. Identification of commonly mutated regions will contribute significantly to genetic diagnosis in retinoblastoma patients and families. Images PMID:2895471

  13. Heterozygous ABCC8 mutations are a cause of MODY.

    PubMed

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  14. Heterozygous Mutations in BMP6 Pro-peptide Lead to Inappropriate Hepcidin Synthesis and Moderate Iron Overload in Humans.

    PubMed

    Daher, Raed; Kannengiesser, Caroline; Houamel, Dounia; Lefebvre, Thibaud; Bardou-Jacquet, Edouard; Ducrot, Nicolas; de Kerguenec, Caroline; Jouanolle, Anne-Marie; Robreau, Anne-Marie; Oudin, Claire; Le Gac, Gerald; Moulouel, Boualem; Loustaud-Ratti, Veronique; Bedossa, Pierre; Valla, Dominique; Gouya, Laurent; Beaumont, Carole; Brissot, Pierre; Puy, Hervé; Karim, Zoubida; Tchernitchko, Dimitri

    2016-03-01

    Hereditary hemochromatosis is a heterogeneous group of genetic disorders characterized by parenchymal iron overload. It is caused by defective expression of liver hepcidin, the main regulator of iron homeostasis. Iron stimulates the gene encoding hepcidin (HAMP) via the bone morphogenetic protein (BMP)6 signaling to SMAD. Although several genetic factors have been found to cause late-onset hemochromatosis, many patients have unexplained signs of iron overload. We investigated BMP6 function in these individuals. We sequenced the BMP6 gene in 70 consecutive patients with a moderate increase in serum ferritin and liver iron levels who did not carry genetic variants associated with hemochromatosis. We searched for BMP6 mutations in relatives of 5 probands and in 200 healthy individuals (controls), as well as in 2 other independent cohorts of hyperferritinemia patients. We measured serum levels of hepcidin by liquid chromatography-tandem mass spectrometry and analyzed BMP6 in liver biopsy specimens from patients by immunohistochemistry. The functions of mutant and normal BMP6 were assessed in transfected cells using immunofluorescence, real-time quantitative polymerase chain reaction, and immunoblot analyses. We identified 3 heterozygous missense mutations in BMP6 (p.Pro95Ser, p.Leu96Pro, and p.Gln113Glu) in 6 unrelated patients with unexplained iron overload (9% of our cohort). These mutations were detected in less than 1% of controls. p.Leu96Pro also was found in 2 patients from the additional cohorts. Family studies indicated dominant transmission. Serum levels of hepcidin were inappropriately low in patients. A low level of BMP6, compared with controls, was found in a biopsy specimen from 1 patient. In cell lines, the mutated residues in the BMP6 propeptide resulted in defective secretion of BMP6; reduced signaling via SMAD1, SMAD5, and SMAD8; and loss of hepcidin production. We identified 3 heterozygous missense mutations in BMP6 in patients with unexplained iron

  15. Cost-effectiveness of PCSK9 Inhibitor Therapy in Patients With Heterozygous Familial Hypercholesterolemia or Atherosclerotic Cardiovascular Disease.

    PubMed

    Kazi, Dhruv S; Moran, Andrew E; Coxson, Pamela G; Penko, Joanne; Ollendorf, Daniel A; Pearson, Steven D; Tice, Jeffrey A; Guzman, David; Bibbins-Domingo, Kirsten

    2016-08-16

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors were recently approved for lowering low-density lipoprotein cholesterol in heterozygous familial hypercholesterolemia (FH) or atherosclerotic cardiovascular disease (ASCVD) and have potential for broad ASCVD prevention. Their long-term cost-effectiveness and effect on total health care spending are uncertain. To estimate the cost-effectiveness of PCSK9 inhibitors and their potential effect on US health care spending. The Cardiovascular Disease Policy Model, a simulation model of US adults aged 35 to 94 years, was used to evaluate cost-effectiveness of PCSK9 inhibitors or ezetimibe in heterozygous FH or ASCVD. The model incorporated 2015 annual PCSK9 inhibitor costs of $14,350 (based on mean wholesale acquisition costs of evolocumab and alirocumab); adopted a health-system perspective, lifetime horizon; and included probabilistic sensitivity analyses to explore uncertainty. Statin therapy compared with addition of ezetimibe or PCSK9 inhibitors. Lifetime major adverse cardiovascular events (MACE: cardiovascular death, nonfatal myocardial infarction, or stroke), incremental cost per quality-adjusted life-year (QALY), and total effect on US health care spending over 5 years. Adding PCSK9 inhibitors to statins in heterozygous FH was estimated to prevent 316,300 MACE at a cost of $503,000 per QALY gained compared with adding ezetimibe to statins (80% uncertainty interval [UI], $493,000-$1,737,000). In ASCVD, adding PCSK9 inhibitors to statins was estimated to prevent 4.3 million MACE compared with adding ezetimibe at $414,000 per QALY (80% UI, $277,000-$1,539,000). Reducing annual drug costs to $4536 per patient or less would be needed for PCSK9 inhibitors to be cost-effective at less than $100,000 per QALY. At 2015 prices, PCSK9 inhibitor use in all eligible patients was estimated to reduce cardiovascular care costs by $29 billion over 5 years, but drug costs increased by an estimated $592 billion (a 38

  16. Compound Heterozygosity for Null Mutations and a Common Hypomorphic Risk Haplotype in TBX6 Causes Congenital Scoliosis.

    PubMed

    Takeda, Kazuki; Kou, Ikuyo; Kawakami, Noriaki; Iida, Aritoshi; Nakajima, Masahiro; Ogura, Yoji; Imagawa, Eri; Miyake, Noriko; Matsumoto, Naomichi; Yasuhiko, Yukuto; Sudo, Hideki; Kotani, Toshiaki; Nakamura, Masaya; Matsumoto, Morio; Watanabe, Kota; Ikegawa, Shiro

    2017-03-01

    Congenital scoliosis (CS) occurs as a result of vertebral malformations and has an incidence of 0.5-1/1,000 births. Recently, TBX6 on chromosome 16p11.2 was reported as a disease gene for CS; about 10% of Chinese CS patients were compound heterozygotes for rare null mutations and a common haplotype defined by three SNPs in TBX6. All patients had hemivertebrae. We recruited 94 Japanese CS patients, investigated the TBX6 locus for both mutations and the risk haplotype, examined transcriptional activities of mutant TBX6 in vitro, and evaluated clinical and radiographic features. We identified TBX6 null mutations in nine patients, including a missense mutation that had a loss of function in vitro. All had the risk haplotype in the opposite allele. One of the mutations showed dominant negative effect. Although all Chinese patients had one or more hemivertebrae, two Japanese patients did not have hemivertebra. The compound heterozygosity of null mutations and the common risk haplotype in TBX6 also causes CS in Japanese patients with similar incidence. Hemivertebra was not a specific type of spinal malformation in TBX6-associated CS (TACS). A heterozygous TBX6 loss-of-function mutation has been reported in a family with autosomal-dominant spondylocostal dysostosis, but it may represent a spectrum of the same disease with TACS. © 2017 WILEY PERIODICALS, INC.

  17. Atypical generalized lipoatrophy and severe insulin resistance due to a heterozygous LMNA p.T10I mutation.

    PubMed

    Mory, Patricia B; Crispim, Felipe; Kasamatsu, Teresa; Gabbay, Monica A L; Dib, Sergio A; Moisés, Regina S

    2008-11-01

    Lipodystrophies are a group of heterogeneous disorders characterized by the loss of adipose tissue and metabolic complications. The main familial forms of lipodystrophy are Congenital Generalized Lipodystrophy and Familial Partial Lipodystrophy (FPLD). FPLD may result from mutations in the LMNA gene. Besides FPLD, mutations in LMNA have been shown to be responsible for other inherited diseases called laminopathies. Here we describe the case of a 15-year-old girl who was referred to our service due to diabetes mellitus and severe hypertriglyceridemia. Physical examination revealed generalized loss of subcutaneous fat, confirmed by DEXA (total body fat 8.6%). As the patient presented with pubertal-onset of generalized lipodystrophy and insulin resistance, molecular analysis of the LMNA gene was performed. We identified a heterozygous substitution in exon 1 (c.29C>T) predicting a p.T10I mutation. In summary, we describe an atypical phenotype of lipodistrophy associated with a de novo appearance of the p.T10I mutation in LMNA gene.

  18. A pharmacological screen for compounds that rescue the developmental lethality of a Drosophila ATM mutant.

    PubMed

    Rimkus, Stacey A; Wassarman, David A

    2018-01-01

    Ataxia-telangiectasia (A-T) is a neurodegenerative disease caused by mutation of the A-T mutated (ATM) gene. ATM encodes a protein kinase that is activated by DNA damage and phosphorylates many proteins, including those involved in DNA repair, cell cycle control, and apoptosis. Characteristic biological and molecular functions of ATM observed in mammals are conserved in Drosophila melanogaster. As an example, conditional loss-of-function ATM alleles in flies cause progressive neurodegeneration through activation of the innate immune response. However, unlike in mammals, null alleles of ATM in flies cause lethality during development. With the goals of understanding biological and molecular roles of ATM in a whole animal and identifying candidate therapeutics for A-T, we performed a screen of 2400 compounds, including FDA-approved drugs, natural products, and bioactive compounds, for modifiers of the developmental lethality caused by a temperature-sensitive ATM allele (ATM8) that has reduced kinase activity at non-permissive temperatures. Ten compounds reproducibly suppressed the developmental lethality of ATM8 flies, including Ronnel, which is an organophosphate. Ronnel and other suppressor compounds are known to cause mitochondrial dysfunction or to inhibit the enzyme acetylcholinesterase, which controls the levels of the neurotransmitter acetylcholine, suggesting that detrimental consequences of reduced ATM kinase activity can be rescued by inhibiting the function of mitochondria or increasing acetylcholine levels. We carried out further studies of Ronnel because, unlike the other compounds that suppressed the developmental lethality of homozygous ATM8 flies, Ronnel was toxic to the development of heterozygous ATM8 flies. Ronnel did not affect the innate immune response of ATM8 flies, and it further increased the already high levels of DNA damage in brains of ATM8 flies, but its effects were not harmful to the lifespan of rescued ATM8 flies. These results provide

  19. Clinical and molecular characterization of a novel INS mutation identified in patients with MODY phenotype.

    PubMed

    Piccini, Barbara; Artuso, Rosangela; Lenzi, Lorenzo; Guasti, Monica; Braccesi, Giulia; Barni, Federica; Casalini, Emilio; Giglio, Sabrina; Toni, Sonia

    2016-11-01

    Correct diagnosis of Maturity-Onset Diabetes of the Young (MODY) is based on genetic tests requiring an appropriate subject selection by clinicians. Mutations in the insulin (INS) gene rarely occur in patients with MODY. This study is aimed at determining the genetic background and clinical phenotype in patients with suspected MODY. 34 patients with suspected MODY, negative for mutations in the GCK, HNF1α, HNF4α, HNF1β and PDX1 genes, were screened by next generation sequencing (NGS). A heterozygous INS mutation was identified in 4 members of the same family. First genetic tests performed identified two heterozygous silent nucleotide substitutions in MODY3/HNF1α gene. An ineffective attempt to suspend insulin therapy, administering repaglinide and sulphonylureas, was made. DNA was re-sequenced by NGS investigating a set of 102 genes. Genes implicated in the pathway of pancreatic β-cells, candidate genes for type 2 diabetes mellitus and genes causative of diabetes in mice were selected. A novel heterozygous variant in human preproinsulin INS gene (c.125T > C) was found in the affected family members. The new INS mutation broadens the spectrum of possible INS phenotypes. Screening for INS mutations is warranted not only in neonatal diabetes but also in MODYx patients and in selected patients with type 1 diabetes mellitus negative for autoantibodies. Subjects with complex diseases without a specific phenotype should be studied by NGS because Sanger sequencing is ineffective and time consuming in detecting rare variants. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. A novel XPD mutation in a compound heterozygote; the mutation in the second allele is present in three homozygous patients with mild sun sensitivity.

    PubMed

    Falik-Zaccai, Tzipora C; Erel-Segal, Reut; Horev, Liran; Bitterman-Deutsch, Ora; Koka, Sivan; Chaim, Sara; Keren, Zohar; Kalfon, Limor; Gross, Bella; Segal, Zvi; Orgal, Shlomi; Shoval, Yishay; Slor, Hanoch; Spivak, Graciela; Hanawalt, Philip C

    2012-08-01

    The XPD protein plays a pivotal role in basal transcription and in nucleotide excision repair (NER) as one of the ten known components of the transcription factor TFIIH. Mutations in XPD can result in the DNA repair-deficient diseases xeroderma pigmentosum (XP), trichothiodystrophy (TTD), cerebro-oculo-facial-skeletal syndrome, and in combined phenotypes such as XP/Cockayne syndrome and XP/TTD. We describe here an 18-year-old individual with mild sun sensitivity, no neurological abnormalities and no tumors, who carries a p.R683Q mutation in one allele, and the novel p.R616Q mutation in the other allele of the XPD gene. We also describe four patients from one family, homozygous for the identical p.R683Q mutation in XPD, who exhibit mild skin pigmentation and loss of tendon reflexes. Three homozygous patients presented with late-onset skin tumors, and two with features of premature aging and moderate cognitive decline. Cells from the compound heterozygous individual and from one of the patients homozygous for p.R683Q exhibited similar responses to UV irradiation: reduced viability and defective overall removal of UV-induced cyclobutane pyrimidine dimers, implying deficient global genomic NER. Cells from the compound heterozygous subject also failed to recover RNA synthesis after UV, indicating defective transcription-coupled NER. Mutations affecting codon 616 in XPD generally result in functionally null proteins; we hypothesize that the phenotype of the heterozygous patient results solely from expression of the p.R683Q allele. This study illustrates the importance of detailed follow up with sun sensitive individuals, to ensure appropriate prophylaxis and to understand the mechanistic basis of the implicated hereditary disease. Copyright © 2012 Wiley Periodicals, Inc.

  1. High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations.

    PubMed

    Out, Astrid A; van Minderhout, Ivonne J H M; van der Stoep, Nienke; van Bommel, Lysette S R; Kluijt, Irma; Aalfs, Cora; Voorendt, Marsha; Vossen, Rolf H A M; Nielsen, Maartje; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Tops, Carli M J; Hes, Frederik J

    2015-06-01

    Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6% for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6%) of the patients and pathogenic mosaic variants in 2 (1%). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7% of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.

  2. Aneuploidy in the embryonic progeny of females heterozygous for the Robertsonian chromosome (9.12) in genetically wild Peru-Coppock mice (Mus musculus).

    PubMed

    Harris, M J; Wallace, M E; Evans, E P

    1986-01-01

    The spontaneous appearance of a Robertsonian translocation in a laboratory colony of genetically wild Peru-Coppock mice gave the opportunity to study potential meiotic nondisjunction soon after the formation of the new chromosome and also in a hitherto untested combination of genotype and environment Metaphase II scores from the progenitor male had indicated a nondisjunction rate of approximately 10%, a figure that was confirmed by the finding of an estimated 12-16% total trisomic and probable monosomic zygotes in chromosomal studies of Day 9 embryos from heterozygous females. The chromosome studies also showed the presence of a significant excess of normal embryos that were heterozygous for the Robertsonian chromosome.

  3. Clinical expression of patients with the D1152H CFTR mutation.

    PubMed

    Terlizzi, Vito; Carnovale, Vincenzo; Castaldo, Giuseppe; Castellani, Carlo; Cirilli, Natalia; Colombo, Carla; Corti, Fabiola; Cresta, Federico; D'Adda, Alice; Lucarelli, Marco; Lucidi, Vincenzina; Macchiaroli, Annamaria; Madarena, Elisa; Padoan, Rita; Quattrucci, Serena; Salvatore, Donatello; Zarrilli, Federica; Raia, Valeria

    2015-07-01

    Discordant results were reported on the clinical expression of subjects bearing the D1152H CFTR mutation, and also for the small number of cases reported so far. A retrospective review of clinical, genetic and biochemical data was performed from individuals homozygous or compound heterozygous for the D1152H mutation followed in 12 Italian cystic fibrosis (CF) centers. 89 subjects carrying at least D1152H on one allele were identified. 7 homozygous patients had very mild clinical expression. Over half of the 74 subjects compound heterozygous for D1152H and a I-II-III class mutation had borderline or pathological sweat test and respiratory or gastrointestinal symptoms; one third had pulmonary bacteria colonization and 10/74 cases had complications (i.e. diabetes, allergic bronchopulmonary aspergillosis, and hemoptysis). However, their clinical expression was less severe as compared to a group of CF patients homozygous for the F508del mutation. Finally, 8 subjects compound heterozygous for D1152H and a IV-V class mutation showed very mild disease. The natural history of subjects bearing the D1152H mutation is widely heterogeneous and is influenced by the mutation in trans. Copyright © 2014 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  4. Mosaic synaptopathy and functional defects in Cav1.4 heterozygous mice and human carriers of CSNB2

    PubMed Central

    Michalakis, Stylianos; Shaltiel, Lior; Sothilingam, Vithiyanjali; Koch, Susanne; Schludi, Verena; Krause, Stefanie; Zeitz, Christina; Audo, Isabelle; Lancelot, Marie-Elise; Hamel, Christian; Meunier, Isabelle; Preising, Markus N.; Friedburg, Christoph; Lorenz, Birgit; Zabouri, Nawal; Haverkamp, Silke; Garrido, Marina Garcia; Tanimoto, Naoyuki; Seeliger, Mathias W.; Biel, Martin; Wahl-Schott, Christian A.

    2014-01-01

    Mutations in CACNA1F encoding the α1-subunit of the retinal Cav1.4 L-type calcium channel have been linked to Cav1.4 channelopathies including incomplete congenital stationary night blindness type 2A (CSNB2), Åland Island eye disease (AIED) and cone-rod dystrophy type 3 (CORDX3). Since CACNA1F is located on the X chromosome, Cav1.4 channelopathies are typically affecting male patients via X-chromosomal recessive inheritance. Occasionally, clinical symptoms have been observed in female carriers, too. It is currently unknown how these mutations lead to symptoms in carriers and how the retinal network in these females is affected. To investigate these clinically important issues, we compared retinal phenotypes in Cav1.4-deficient and Cav1.4 heterozygous mice and in human female carrier patients. Heterozygous Cacna1f carrier mice have a retinal mosaic consistent with differential X-chromosomal inactivation, characterized by adjacent vertical columns of affected and non-affected wild-type-like retinal network. Vertical columns in heterozygous mice are well comparable to either the wild-type retinal network of normal mice or to the retina of homozygous mice. Affected retinal columns display pronounced rod and cone photoreceptor synaptopathy and cone degeneration. These changes lead to vastly impaired vision-guided navigation under dark and normal light conditions and reduced retinal electroretinography (ERG) responses in Cacna1f carrier mice. Similar abnormal ERG responses were found in five human CACNA1F carriers, four of which had novel mutations. In conclusion, our data on Cav1.4 deficient mice and human female carriers of mutations in CACNA1F are consistent with a phenotype of mosaic CSNB2. PMID:24163243

  5. A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis.

    PubMed

    Olson, Heather E; Jean-Marçais, Nolwenn; Yang, Edward; Heron, Delphine; Tatton-Brown, Katrina; van der Zwaag, Paul A; Bijlsma, Emilia K; Krock, Bryan L; Backer, E; Kamsteeg, Erik-Jan; Sinnema, Margje; Reijnders, Margot R F; Bearden, David; Begtrup, Amber; Telegrafi, Aida; Lunsing, Roelineke J; Burglen, Lydie; Lesca, Gaetan; Cho, Megan T; Smith, Lacey A; Sheidley, Beth R; Moufawad El Achkar, Christelle; Pearl, Phillip L; Poduri, Annapurna; Skraban, Cara M; Tarpinian, Jennifer; Nesbitt, Addie I; Fransen van de Putte, Dietje E; Ruivenkamp, Claudia A L; Rump, Patrick; Chatron, Nicolas; Sabatier, Isabelle; De Bellescize, Julitta; Guibaud, Laurent; Sweetser, David A; Waxler, Jessica L; Wierenga, Klaas J; Donadieu, Jean; Narayanan, Vinodh; Ramsey, Keri M; Nava, Caroline; Rivière, Jean-Baptiste; Vitobello, Antonio; Tran Mau-Them, Frédéric; Philippe, Christophe; Bruel, Ange-Line; Duffourd, Yannis; Thomas, Laurel; Lelieveld, Stefan H; Schuurs-Hoeijmakers, Janneke; Brunner, Han G; Keren, Boris; Thevenon, Julien; Faivre, Laurence; Thomas, Gary; Thauvin-Robinet, Christel

    2018-05-03

    Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  6. The use of high resolution melting analysis to detect Fabry mutations in heterozygous females via dry bloodspots.

    PubMed

    Tai, Chang-Long; Liu, Mei-Ying; Yu, Hsiao-Chi; Chiang, Chiang-Chuan; Chiang, Hung; Suen, Jeng-Hung; Kao, Shu-Min; Huang, Yu-Hsiu; Wu, Tina Jui-Ting; Yang, Chia-Feng; Tsai, Fang-Chih; Lin, Ching-Yuang; Chang, Jan-Gowth; Chen, Hong-Duo; Niu, Dau-Ming

    2012-02-18

    As an X-linked genetic disorder, Fabry disease was first thought to affect males only, and females were generally considered to be asymptomatic carriers. However, recent research suggests that female carriers of Fabry disease may still develop vital organ damage causing severe morbidity and mortality. In the previous newborn screening, from 299,007 newborns, we identified a total of 20 different Fabry mutations and 121 newborns with Fabry mutations. However, we found that most female carriers are not detected by enzyme assays. A streamlined method for high resolution melting (HRM) analysis was designed to screen for GLA gene mutations using a same PCR and melting program. Primer sets were designed to cover the 7 exons and the Chinese common intronic mutation, IVS4+919G>A of GLA gene. The HRM analysis was successful in identifying heterozygous and hemizygous patients with the 20 surveyed mutations. We were also successful in using this method to test dry blood spots of newborns afflicted with Fabry mutations without having to determine DNA concentration before PCR amplification. The results of this study show that HRM could be a reliable and sensitive method for use in the rapid screening of females for GLA mutations. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli.

    PubMed

    Sanhueza, Loreto; Melo, Ricardo; Montero, Ruth; Maisey, Kevin; Mendoza, Leonora; Wilkens, Marcela

    2017-01-01

    Synergy could be an effective strategy to potentiate and recover antibiotics nowadays useless in clinical treatments against multi-resistant bacteria. In this study, synergic interactions between antibiotics and grape pomace extract that contains high concentration of phenolic compounds were evaluated by the checkerboard method in clinical isolates of Staphylococcus aureus and Escherichia coli. To define which component of the extract is responsible for the synergic effect, phenolic compounds were identified by RP-HPLC and their relative abundance was determined. Combinations of extract with pure compounds identified there in were also evaluated. Results showed that the grape pomace extract combined with representatives of different classes of antibiotics as β-lactam, quinolone, fluoroquinolone, tetracycline and amphenicol act in synergy in all S. aureus and E. coli strains tested with FICI values varying from 0.031 to 0.155. The minimal inhibitory concentration (MIC) was reduced 4 to 75 times. The most abundant phenolic compounds identified in the extract were quercetin, gallic acid, protocatechuic acid and luteolin with relative abundance of 26.3, 24.4, 16.7 and 11.4%, respectively. All combinations of the extract with the components also showed synergy with FICI values varying from 0.031 to 0.5 and MIC reductions of 4 to 125 times with both bacteria strains. The relative abundance of phenolic compounds has no correlation with the obtained synergic effect, suggesting that the mechanism by which the synergic effect occurs is by a multi-objective action. It was also shown that combinations of grape pomace extract with antibiotics are not toxic for the HeLa cell line at concentrations in which the synergistic effect was observed (47 μg/mL of extract and 0.6-375 μg/mL antibiotics). Therefore, these combinations are good candidates for testing in animal models in order to enhance the effect of antibiotics of different classes and thus restore the currently unused

  8. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    PubMed

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-01-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. PMID:22391119

  10. Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice

    PubMed Central

    Kutiyanawalla, Ammar; Promsote, Wanwisa; Terry, Alvin; Pillai, Anilkumar

    2011-01-01

    Brain derived neurotrophic factor (BDNF) signaling through its receptor, TrkB is known to regulate GABAergic function and glutamic acid decarboxylase (GAD) 67 expression in neurons. Alterations in BDNF signaling have been implicated in the pathophysiology of schizophrenia and as a result, they are a potential therapeutic target. Interestingly, heterozygous reeler mice (HRM) have decreased GAD67 expression in the frontal cortex and hippocampus and they exhibit many behavioral and neurochemical abnormalities similar to schizophrenia. In the present study, we evaluated the potential of cysteamine, a neuroprotective compound to improve the deficits in GAD67 expression and cognitive function in HRM. We found that cysteamine administration (150 mg/kg/day, through drinking water) for 30 days significantly ameliorated the decreases in GAD67, mature BDNF and full-length TrkB protein levels found in frontal cortex and hippocampus of HRM. A significant attenuation of the increased levels of truncated BDNF in frontal cortex and hippocampus, as well as truncated TrkB in frontal cortex of HRM was also observed following cysteamine treatment. In behavioral studies, HRM were impaired in a Y-maze spatial recognition memory task, but not in a spontaneous alternation task or a sensorimotor, prepulse inhibition (PPI) procedure. Cysteamine improved Y-maze spatial recognition in HRM to the level of wide-type controls and it improved PPI in both wild-type and HRM. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in GAD67 expression suggesting that TrkB signaling plays an important role in GAD67 regulation by cysteamine. PMID:21777509

  11. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    PubMed

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  12. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    PubMed Central

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  13. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair.

    PubMed

    Hodel, Karl P; de Borja, Richard; Henninger, Erin E; Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam; Pursell, Zachary F

    2018-02-28

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. © 2018, Hodel et al.

  14. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNELmore » staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.« less

  15. Comparative Inhibition Study of Compounds Identified in the Methanolic Extract of Apamarga Kshara Against Trichomonas vaginalis Carbamate Kinase (TvCK): An Enzoinformatics Approach.

    PubMed

    Shaikh, Sibhghatulla; Aaqil, Hamida; Rizvi, Syed Mohd Danish; Shakil, Shazi; Abuzenadah, Adel M; Gupta, Pragya; Saxena, Soumya; Tiwari, Rohit Kr; Kumar, Ajai

    2016-12-01

    In the present study, we have identified ten compounds, namely dodecanol acid, myristic acid, neophytadiene, palmitic acid, heptadecanoic acid, linoleic acid, elaidic acid, 3-7-dimethyl acid, stearic acid and methyl eicos acid, of the methanolic extract of Apamarga Kshara by GC-MS analysis. Apamarga Kshara has been reported to be active against cervical erosion. Major causal organism for cervical erosion is Trichomonas vaginalis. However, there is a paucity of information about the mechanism of action and inhibitory effect of the biologically active natural compounds presented in A. Kshara against this organism (T. vaginalis). Therefore, present investigation was conducted to observe possible interactions of these compounds on T. vaginalis carbamate kinase using molecular docking software 'AutoDock 4.2.' Identification of the amino acid residues crucial for the interaction between T. vaginalis carbamate kinase and these natural compounds is of due scientific interest. The study will aid in efficacious and safe clinical use of the above-mentioned compounds.

  16. Mutation screening of the USH2A gene in retinitis pigmentosa and USHER patients in a Han Chinese population.

    PubMed

    Huang, Lulin; Mao, Yao; Yang, Jiyun; Li, Yuanfeng; Li, Yang; Yang, Zhenglin

    2018-06-13

    USH2A encodes for usherin, a basement membrane protein in the inner ear and retina. USH2A can cause retinitis pigmentosa (RP) with or without hearing loss. The aim of this study was to detect USH2A mutations in a Chinese cohort of 75 small RP families and 10 Usher syndrome families. We performed a direct Sanger sequencing analysis of the USH2A gene to identify mutations for this cohort. We identified a total of eight mutations in four of the 75 small RP families (5.3%) and two mutations in one of the 10 Usher families (10%); all families were detected to have compound heterozygous mutations. In families with nonsyndromic RP, we identified the compound heterozygous mutations p.Pro4818Leuand p.Leu2395Hisfs*19 in family No. 19114, p.Arg4493His and p.His1677Glnfs*15 in family No.19162, c.8559-2A > G and p.Arg1549* in family No.19123 and p.Ser5060Pro and p.Arg34Leufs*41 in family No.19178. We also identified the heterozygous mutations p.Arg3719His and p.Cys934Trp in family No.19124, which was the Usher syndrome family. These mutations were predicted to be harmful by SIFT, PROVEAN, Mutation Taster or PolyPhen-2. Our results revealed six novel mutations in the USH2A gene in a Chinese population, which is beneficial for the clinical use of genetic testing of USH2A in patients with autosomal-recessive or sporadic RP and Usher syndrome.

  17. GeneCOST: a novel scoring-based prioritization framework for identifying disease causing genes.

    PubMed

    Ozer, Bugra; Sağıroğlu, Mahmut; Demirci, Hüseyin

    2015-11-15

    Due to the big data produced by next-generation sequencing studies, there is an evident need for methods to extract the valuable information gathered from these experiments. In this work, we propose GeneCOST, a novel scoring-based method to evaluate every gene for their disease association. Without any prior filtering and any prior knowledge, we assign a disease likelihood score to each gene in correspondence with their variations. Then, we rank all genes based on frequency, conservation, pedigree and detailed variation information to find out the causative reason of the disease state. We demonstrate the usage of GeneCOST with public and real life Mendelian disease cases including recessive, dominant, compound heterozygous and sporadic models. As a result, we were able to identify causative reason behind the disease state in top rankings of our list, proving that this novel prioritization framework provides a powerful environment for the analysis in genetic disease studies alternative to filtering-based approaches. GeneCOST software is freely available at www.igbam.bilgem.tubitak.gov.tr/en/softwares/genecost-en/index.html. buozer@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Mutations in CTC1, Encoding the CTS Telomere Maintenance Complex Component 1, Cause Cerebroretinal Microangiopathy with Calcifications and Cysts

    PubMed Central

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-01-01

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016

  19. Metabolomic approach to identifying bioactive compounds in berries: advances toward fruit nutritional enhancement.

    PubMed

    Stewart, Derek; McDougall, Gordon J; Sungurtas, Julie; Verrall, Susan; Graham, Julie; Martinussen, Inger

    2007-06-01

    Plant polyphenolics continue to be the focus of attention with regard to their putative impact on human health. An increasing and ageing human population means that the focus on nutrition and nutritional enhancement or optimisation of our foodstuffs is paramount. Using the raspberry as a model, we have shown how modern metabolic profiling approaches can be used to identify the changes in the level of beneficial polyphenolics in fruit breeding segregating populations and how the level of these components is determined by genetic and/or environmental control. Interestingly, the vitamin C content appeared to be significantly influenced by environment (growth conditions) whilst the content of the polyphenols such as cyanidin, pelargonidin and quercetin glycosides appeared much more tightly regulated, suggesting a rigorous genetic control. Preliminary metabolic profiling showed that the fruit polyphenolic profiles divided into two gross groups segregating on the basis of relative levels of cyanidin-3-sophoroside and cyanidin-3-rutinoside, compounds implicated as conferring human health benefits.

  20. A novel heterozygous SOX2 mutation causing anophthalmia/microphthalmia with genital anomalies.

    PubMed

    Pedace, Lucia; Castori, Marco; Binni, Francesco; Pingi, Alberto; Grammatico, Barbara; Scommegna, Salvatore; Majore, Silvia; Grammatico, Paola

    2009-01-01

    Anophthalmia/microphthalmia is a rare developmental craniofacial defect, which recognizes a wide range of causes, including chromosomal abnormalities, single-gene mutations as well as environmental factors. Heterozygous mutations in the SOX2 gene are the most common monogenic form of anophthalmia/microphthalmia, as they are reported in up to 10-15% cases. Here, we describe a sporadic patient showing bilateral anophthalmia/microphthalmia and micropenis caused by a novel mutation (c.59_60insGG) in the SOX2 gene. Morphological and endocrinological evaluations excluded any anomaly of the hypothalamus-pituitary axis. Our finding supports the hypothesis that SOX2 is particularly prone to slipped-strand mispairing, which results in a high frequency of point deletions/insertions.

  1. Disruption of hippocampus-regulated behavioural and cognitive processes by heterozygous constitutive deletion of SynGAP.

    PubMed

    Muhia, Mary; Yee, Benjamin K; Feldon, Joram; Markopoulos, Foivos; Knuesel, Irene

    2010-02-01

    The brain-specific Ras/Rap-GTPase activating protein (SynGAP) is a prime candidate linking N-methyl-d-aspartate receptors to the regulation of the ERK/MAP kinase signalling cascade, suggested to be essential for experience-dependent synaptic plasticity. Here, we evaluated the behavioural phenotype of SynGAP heterozygous knockout mice (SG(+/-)), expressing roughly half the normal levels of SynGAP. In the cognitive domain, SG(+/-) mice demonstrated severe working and reference memory deficits in the radial arm maze task, a mild impairment early in the transfer test of the water maze task, and a deficiency in spontaneous alternation in an elevated T-maze. In the non-cognitive domain, SG(+/-) mice were hyperactive in the open field and appeared less anxious in the elevated plus maze test. In contrast, object recognition memory performance was not impaired in SG(+/-) mice. The reduction in SynGAP thus resulted in multiple behavioural traits suggestive of aberrant cognitive and non-cognitive processes normally mediated by the hippocampus. Immunohistochemical evaluation further revealed a significant reduction in calbindin-positive interneurons in the hippocampus and doublecortin-positive neurons in the dentate gyrus of adult SG(+/-) mice. Heterozygous constitutive deletion of SynGAP is therefore associated with notable behavioural as well as morphological phenotypes indicative of hippocampal dysfunction. Any suggestion of a possible causal link between them however remains a matter for further investigation.

  2. Identification of two novel mutations in the SLC45A2 gene in a Hungarian pedigree affected by unusual OCA type 4.

    PubMed

    Tóth, Lola; Fábos, Beáta; Farkas, Katalin; Sulák, Adrienn; Tripolszki, Kornélia; Széll, Márta; Nagy, Nikoletta

    2017-03-15

    Oculocutaneous albinism (OCA) is a clinically and genetically heterogenic group of pigmentation abnormalities. OCA type IV (OCA4, OMIM 606574) develops due to homozygous or compound heterozygous mutations in the solute carrier family 45, member 2 (SLC45A2) gene. This gene encodes a membrane-associated transport protein, which regulates tyrosinase activity and, thus, melanin content by changing melanosomal pH and disrupting the incorporation of copper into tyrosinase. Here we report two Hungarian siblings affected by an unusual OCA4 phenotype. After genomic DNA was isolated from peripheral blood of the patients, the coding regions of the SLC45A2 gene were sequenced. In silico tools were applied to identify the functional impact of the newly detected mutations. Direct sequencing of the SLC45A2 gene revealed two novel, heterozygous mutations, one missense (c.1226G > A, p.Gly409Asp) and one nonsense (c.1459C > T, p.Gln437*), which were present in both patients, suggesting the mutations were compound heterozygous. In silico tools suggest that these variations are disease causing mutations. The newly identified mutations may affect the transmembrane domains of the protein, and could impair transport function, resulting in decreases in both melanosomal pH and tyrosinase activity. Our study provides expands on the mutation spectrum of the SLC45A2 gene and the genetic background of OCA4.

  3. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    PubMed

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  4. Volatile profiles of Italian monovarietal extra virgin olive oils via HS-SPME-GC-MS: newly identified compounds, flavors molecular markers, and terpenic profile.

    PubMed

    Cecchi, Teresa; Alfei, Barbara

    2013-12-01

    This study aims to contribute to the knowledge of the commercial, sensory, and analytical characteristics of extra virgin olive oil (EVOO) from Italy (Marche region), renowned since ancient times. Headspace solid-phase micro-extraction (HS-SPME) was applied for the very first time to the sampling of volatile compounds of eleven typical Italian monocultivar EVOOs. Forty-eight compounds were characterised by GC-MS, some of them were only occasionally found in other EVOOs and some other were never detected before in any EVOO. Compounds belonging mainly to alcohols, esters, aldehydes, ketones and hydrocarbons chemical classes characterised the volatile profiles. The main volatile compounds detected in the EVOOs were the C6 compounds derived from polyunsaturated fatty acids, through the lipoxygenase pathway, in different proportion according to the specific cultivar. The results suggest that genetic factors strongly influence volatile formation and terpene hydrocarbons are claimed to be suitable markers of the geographic origin and genotype of the EVOO. Correlations among sensory attributes evaluated by a panel test and the presence of specific volatile compounds were highlighted for the very first time. The significance of the presence of some newly identified volatile compounds was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes–Brocks Syndrome

    PubMed Central

    Webb, Bryn D.; Metikala, Sanjeeva; Wheeler, Patricia G.; Sherpa, Mingma D.; Houten, Sander M.; Horb, Marko E.; Schadt, Eric E.

    2017-01-01

    A heterozygous nonsense variant was identified in dapper, antagonist of beta-catenin, 1 (DACT1) via whole-exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419* variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt-signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind-ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419* protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes–Brocks syndrome. PMID:28054444

  6. Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes-Brocks Syndrome.

    PubMed

    Webb, Bryn D; Metikala, Sanjeeva; Wheeler, Patricia G; Sherpa, Mingma D; Houten, Sander M; Horb, Marko E; Schadt, Eric E

    2017-04-01

    A heterozygous nonsense variant was identified in dapper, antagonist of beta-catenin, 1 (DACT1) via whole-exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419 * variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt-signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind-ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419 * protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes-Brocks syndrome. © 2017 WILEY PERIODICALS, INC.

  7. A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity.

    PubMed

    Frattaruolo, Luca; Lacret, Rodney; Cappello, Anna Rita; Truman, Andrew W

    2017-11-17

    Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

  8. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice.

    PubMed

    Sen, Partha; Dharmadhikari, Avinash V; Majewski, Tadeusz; Mohammad, Mahmoud A; Kalin, Tanya V; Zabielska, Joanna; Ren, Xiaomeng; Bray, Molly; Brown, Hannah M; Welty, Stephen; Thevananther, Sundararajah; Langston, Claire; Szafranski, Przemyslaw; Justice, Monica J; Kalinichenko, Vladimir V; Gambin, Anna; Belmont, John; Stankiewicz, Pawel

    2014-01-01

    Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority of mice with heterozygous loss-of-function of Foxf1 exhibit neonatal lethality with evidence of pulmonary hemorrhage in some of them. By comparing transcriptomes of human ACDMPV lungs with control lungs using expression arrays, we found that several genes and pathways involved in lung development, angiogenesis, and in pulmonary hypertension development, were deregulated. Similar transcriptional changes were found in lungs of the postnatal day 0.5 Foxf1+/- mice when compared to their wildtype littermate controls; 14 genes, COL15A1, COL18A1, COL6A2, ESM1, FSCN1, GRINA, IGFBP3, IL1B, MALL, NOS3, RASL11B, MATN2, PRKCDBP, and SIRPA, were found common to both ACDMPV and Foxf1 heterozygous lungs. Our results advance knowledge toward understanding of the molecular mechanism of ACDMPV, lung development, and its vasculature pathology. These data may also be useful for understanding etiologies of other lung disorders, e.g. pulmonary hypertension, bronchopulmonary dysplasia, or cancer.

  9. Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine

    PubMed Central

    Wang, Minghui; Londo, Jason P.; Acharya, Charlotte B.; Mitchell, Sharon E.; Sun, Qi; Reisch, Bruce; Cadle-Davidson, Lance

    2015-01-01

    Genotyping by sequencing (GBS) provides opportunities to generate high-resolution genetic maps at a low genotyping cost, but for highly heterozygous species, missing data and heterozygote undercalling complicate the creation of GBS genetic maps. To overcome these issues, we developed a publicly available, modular approach called HetMappS, which functions independently of parental genotypes and corrects for genotyping errors associated with heterozygosity. For linkage group formation, HetMappS includes both a reference-guided synteny pipeline and a reference-independent de novo pipeline. The de novo pipeline can be utilized for under-characterized or high diversity families that lack an appropriate reference. We applied both HetMappS pipelines in five half-sib F1 families involving genetically diverse Vitis spp. Starting with at least 116,466 putative SNPs per family, the HetMappS pipelines identified 10,440 to 17,267 phased pseudo-testcross (Pt) markers and generated high-confidence maps. Pt marker density exceeded crossover resolution in all cases; up to 5,560 non-redundant markers were used to generate parental maps ranging from 1,047 cM to 1,696 cM. The number of markers used was strongly correlated with family size in both de novo and synteny maps (r = 0.92 and 0.91, respectively). Comparisons between allele and tag frequencies suggested that many markers were in tandem repeats and mapped as single loci, while markers in regions of more than two repeats were removed during map curation. Both pipelines generated similar genetic maps, and genetic order was strongly correlated with the reference genome physical order in all cases. Independently created genetic maps from shared parents exhibited nearly identical results. Flower sex was mapped in three families and correctly localized to the known sex locus in all cases. The HetMappS pipeline could have wide application for genetic mapping in highly heterozygous species, and its modularity provides opportunities to

  10. Putative Digenic Inheritance of Heterozygous RP1L1 and C2orf71 Null Mutations in Syndromic Retinal Dystrophy

    PubMed Central

    Liu, Yangfan P.; Bosch, Daniëlle G.M.; Siemiatkowska, Anna M.; Rendtorff, Nanna Dahl; Boonstra, F. Nienke; Möller, Claes; Tranebjærg, Lisbeth; Katsanis, Nicholas; Cremers, Frans P.M.

    2018-01-01

    Background Retinitis pigmentosa (RP) is the most common cause of inherited retinal degeneration and can occur in non-syndromic and syndromic forms. Syndromic RP is accompanied by other symptoms such as intellectual disability, hearing loss, or congenital abnormalities. Both forms are known to exhibit complex genetic interactions that can modulate the penetrance and expressivity of the phenotype. Materials and methods In an individual with atypical RP, hearing loss, ataxia and cerebellar atrophy whole exome sequencing was performed. The candidate pathogenic variants were tested by developing an in vivo zebrafish model and assaying for retinal and cerebellar integrity. Results Exome sequencing revealed a complex heterozygous protein-truncating mutation in RP1L1, p.[(Lys111Glnfs*27; Q2373*)], and a heterozygous nonsense mutation in C2orf71, p.(Ser512*). Mutations in both genes have previously been implicated in autosomal recessive non-syndromic RP, raising the possibility of a digenic model in this family. Functional testing in a zebrafish model for two key phenotypes of the affected person showed that the combinatorial suppression of rp1l1 and c2orf71l induced discrete pathology in terms of reduction of eye size with concomitant loss of rhodopsin in the photoreceptors, and disorganization of the cerebellum. Conclusions We propose that the combination of heterozygous loss-of-function mutations in these genes drives syndromic retinal dystrophy, likely through the genetic interaction of at least two loci. Haploinsufficiency at each of these loci is insufficient to induce overt pathology. PMID:27029556

  11. A Genomic DNA Reporter Screen Identifies Squalene Synthase Inhibitors That Act Cooperatively with Statins to Upregulate the Low-Density Lipoprotein Receptor

    PubMed Central

    Kerr, Alastair G.; Tam, Lawrence C. S.; Hale, Ashley B.; Cioroch, Milena; Douglas, Gillian; Agkatsev, Sarina; Hibbitt, Olivia; Mason, Joseph; Holt-Martyn, James; Bataille, Carole J. R.; Wynne, Graham M.; Channon, Keith M.; Russell, Angela J.

    2017-01-01

    Hypercholesterolemia remains one of the leading risk factors for the development of cardiovascular disease. Many large double-blind studies have demonstrated that lowering low-density lipoprotein (LDL) cholesterol using a statin can reduce the risk of having a cardiovascular event by approximately 30%. However, despite the success of statins, some patient populations are unable to lower their LDL cholesterol to meet the targeted lipid levels, due to compliance or potency issues. This is especially true for patients with heterozygous familial hypercholesterolemia who may require additional upregulation of the low-density lipoprotein receptor (LDLR) to reduce LDL cholesterol levels below those achievable with maximal dosing of statins. Here we identify a series of small molecules from a genomic DNA reporter screen that upregulate the LDLR in mouse and human liver cell lines at nanomolar potencies (EC50 = 39 nM). Structure-activity relationship studies carried out on the lead compound, OX03771 [(E)-N,N-dimethyl-3-(4-styrylphenoxy)propan-1-amine], led to the identification of compound OX03050 [(E)-3-(4-styrylphenoxy)propan-1-ol], which had similar potency (EC50 = 26 nM) but a much-improved pharmacokinetic profile and showed in vivo efficacy. Compounds OX03050 and OX03771 were found to inhibit squalene synthase, the first committed step in cholesterol biosynthesis. These squalene synthase inhibitors were shown to act cooperatively with statins to increase LDLR expression in vitro. Overall, we demonstrated here a novel series of small molecules with the potential to be further developed to treat patients either alone or in combination with statins. PMID:28360334

  12. Hemolytic Potential of Tafenoquine in Female Volunteers Heterozygous for Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency (G6PD Mahidol Variant) versus G6PD-Normal Volunteers.

    PubMed

    Rueangweerayut, Ronnatrai; Bancone, Germana; Harrell, Emma J; Beelen, Andrew P; Kongpatanakul, Supornchai; Möhrle, Jörg J; Rousell, Vicki; Mohamed, Khadeeja; Qureshi, Ammar; Narayan, Sushma; Yubon, Nushara; Miller, Ann; Nosten, François H; Luzzatto, Lucio; Duparc, Stephan; Kleim, Jörg-Peter; Green, Justin A

    2017-09-01

    Tafenoquine is an 8-aminoquinoline under investigation for the prevention of relapse in Plasmodium vivax malaria. This open-label, dose-escalation study assessed quantitatively the hemolytic risk with tafenoquine in female healthy volunteers heterozygous for the Mahidol 487A glucose-6-phosphate dehydrogenase (G6PD)-deficient variant versus G6PD-normal females, and with reference to primaquine. Six G6PD-heterozygous subjects (G6PD enzyme activity 40-60% of normal) and six G6PD-normal subjects per treatment group received single-dose tafenoquine (100, 200, or 300 mg) or primaquine (15 mg × 14 days). All participants had pretreatment hemoglobin levels ≥ 12.0 g/dL. Tafenoquine dose escalation stopped when hemoglobin decreased by ≥ 2.5 g/dL (or hematocrit decline ≥ 7.5%) versus pretreatment values in ≥ 3/6 subjects. A dose-response was evident in G6PD-heterozygous subjects ( N = 15) receiving tafenoquine for the maximum decrease in hemoglobin versus pretreatment values. Hemoglobin declines were similar for tafenoquine 300 mg (-2.65 to -2.95 g/dL [ N = 3]) and primaquine (-1.25 to -3.0 g/dL [ N = 5]). Two further cohorts of G6PD-heterozygous subjects with G6PD enzyme levels 61-80% ( N = 2) and > 80% ( N = 5) of the site median normal received tafenoquine 200 mg; hemolysis was less pronounced at higher G6PD enzyme activities. Tafenoquine hemolytic potential was dose dependent, and hemolysis was greater in G6PD-heterozygous females with lower G6PD enzyme activity levels. Single-dose tafenoquine 300 mg did not appear to increase the severity of hemolysis versus primaquine 15 mg × 14 days.

  13. Hemolytic Potential of Tafenoquine in Female Volunteers Heterozygous for Glucose-6-Phosphate Dehydrogenase (G6PD) Deficiency (G6PD Mahidol Variant) versus G6PD-Normal Volunteers

    PubMed Central

    Rueangweerayut, Ronnatrai; Bancone, Germana; Harrell, Emma J.; Beelen, Andrew P.; Kongpatanakul, Supornchai; Möhrle, Jörg J.; Rousell, Vicki; Mohamed, Khadeeja; Qureshi, Ammar; Narayan, Sushma; Yubon, Nushara; Miller, Ann; Nosten, François H.; Luzzatto, Lucio; Duparc, Stephan; Kleim, Jörg-Peter; Green, Justin A.

    2017-01-01

    Abstract. Tafenoquine is an 8-aminoquinoline under investigation for the prevention of relapse in Plasmodium vivax malaria. This open-label, dose-escalation study assessed quantitatively the hemolytic risk with tafenoquine in female healthy volunteers heterozygous for the Mahidol487A glucose-6-phosphate dehydrogenase (G6PD)-deficient variant versus G6PD-normal females, and with reference to primaquine. Six G6PD-heterozygous subjects (G6PD enzyme activity 40–60% of normal) and six G6PD-normal subjects per treatment group received single-dose tafenoquine (100, 200, or 300 mg) or primaquine (15 mg × 14 days). All participants had pretreatment hemoglobin levels ≥ 12.0 g/dL. Tafenoquine dose escalation stopped when hemoglobin decreased by ≥ 2.5 g/dL (or hematocrit decline ≥ 7.5%) versus pretreatment values in ≥ 3/6 subjects. A dose–response was evident in G6PD-heterozygous subjects (N = 15) receiving tafenoquine for the maximum decrease in hemoglobin versus pretreatment values. Hemoglobin declines were similar for tafenoquine 300 mg (−2.65 to −2.95 g/dL [N = 3]) and primaquine (−1.25 to −3.0 g/dL [N = 5]). Two further cohorts of G6PD-heterozygous subjects with G6PD enzyme levels 61–80% (N = 2) and > 80% (N = 5) of the site median normal received tafenoquine 200 mg; hemolysis was less pronounced at higher G6PD enzyme activities. Tafenoquine hemolytic potential was dose dependent, and hemolysis was greater in G6PD-heterozygous females with lower G6PD enzyme activity levels. Single-dose tafenoquine 300 mg did not appear to increase the severity of hemolysis versus primaquine 15 mg × 14 days. PMID:28749773

  14. Compound heterozygosity for Hb S [beta6(A3)GluVal, GAG-->GTG] and a new thalassemic mutation [beta132(H10)Lys-->term, AAA-->TAA] detected in a family from West Africa.

    PubMed

    Frischknecht, Hannes; Troxler, Heinz; Greiner, Jeanette; Hengartner, Heinz; Dutly, Fabrizio

    2008-01-01

    We describe a Hb S/beta-thalassemia (beta-thal) mutation involving an AT transition at codon 132 of the beta-globin gene. The mutation, in the heterozygous state, unlike several other mutations in exon 3, shows no signs of dominant thalassemia but those of a typical beta(0) carrier. Compound heterozygosity with Hb S [beta6(A3)GluVal, GAGGTG] showed a severe clinical picture.

  15. Type II Gaucher disease: compound heterozygote with RecNciI and L444P mutations.

    PubMed

    Lee, Y S; Poh, L K; Ida, H; Loke, K Y

    2001-04-01

    We report the phenotype and genotype of an Indonesian Chinese boy with type II Gaucher disease. He had a unique presentation of recurrent cyanosis from laryngospasm. He was compound heterozygous for L444P/L444P + A456P + V460V. There have been few reports of this heterozygosity and its phenoptype. This genotype-phenotype correlation will be important for physicians in genetic counselling. Type II Gaucher disease in Southeast Asia may not be as rare as was perceived, but may be a condition that is under-reported. The success of our technique together with the results have made it possible for us to perform prenatal diagnosis and carrier detection for the family.

  16. Investigating the effect of emetic compounds on chemotaxis in Dictyostelium identifies a non-sentient model for bitter and hot tastant research.

    PubMed

    Robery, Steven; Mukanowa, Janina; Percie du Sert, Nathalie; Andrews, Paul L R; Williams, Robin S B

    2011-01-01

    Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds--denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers--capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC(50) = 11.9 ± 4.0 µM) > quinine hydrochloride (IC(50) = 44.3 ± 6.8 µM) > denatonium benzoate (IC(50) = 129 ± 4 µM) > phenylthiourea (IC(50) = 366 ± 5 µM) > copper sulphate (IC(50) = 1433 ± 3 µM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate

  17. Investigating the Effect of Emetic Compounds on Chemotaxis in Dictyostelium Identifies a Non-Sentient Model for Bitter and Hot Tastant Research

    PubMed Central

    Robery, Steven; Mukanowa, Janina; Percie du Sert, Nathalie; Andrews, Paul L. R.; Williams, Robin S. B.

    2011-01-01

    Novel chemical entities (NCEs) may be investigated for emetic liability in a range of unpleasant experiments involving retching, vomiting or conditioned taste aversion/food avoidance in sentient animals. We have used a range of compounds with known emetic /aversive properties to examine the possibility of using the social amoeba, Dictyostelium discoideum, for research into identifying and understanding emetic liability, and hence reduce adverse animal experimentation in this area. Twenty eight emetic or taste aversive compounds were employed to investigate the acute (10 min) effect of compounds on Dictyostelium cell behaviour (shape, speed and direction of movement) in a shallow chemotaxic gradient (Dunn chamber). Compound concentrations were chosen based on those previously reported to be emetic or aversive in in vivo studies and results were recorded and quantified by automated image analysis. Dictyostelium cell motility was rapidly and strongly inhibited by four structurally distinct tastants (three bitter tasting compounds - denatonium benzoate, quinine hydrochloride, phenylthiourea, and the pungent constituent of chilli peppers - capsaicin). In addition, stomach irritants (copper chloride and copper sulphate), and a phosphodiesterase IV inhibitor also rapidly blocked movement. A concentration-dependant relationship was established for five of these compounds, showing potency of inhibition as capsaicin (IC50 = 11.9±4.0 µM) > quinine hydrochloride (IC50 = 44.3±6.8 µM) > denatonium benzoate (IC50 = 129±4 µM) > phenylthiourea (IC50 = 366±5 µM) > copper sulphate (IC50 = 1433±3 µM). In contrast, 21 compounds within the cytotoxic and receptor agonist/antagonist classes did not affect cell behaviour. Further analysis of bitter and pungent compounds showed that the effect on cell behaviour was reversible and not cytotoxic, suggesting an uncharacterised molecular mechanism of action for these compounds. These results therefore demonstrate

  18. Autosomal Dominant Mutation in the Signal Peptide of Renin in a Kindred with Anemia, Hyperuricemia, and CKD

    PubMed Central

    Beck, Bodo B.; Trachtman, Howard; Gitman, Michael; Miller, Ilene; Sayer, John A.; Pannes, Andrea; Baasner, Anne; Hildebrandt, Friedhelm; Wolf, Matthias T.F.

    2012-01-01

    Homozygous or compound heterozygous Renin (REN) mutations cause renal tubular dysgenesis (RTD), which is characterized by death in utero due to renal failure and pulmonary hypoplasia. The phenotype resembles the fetopathy caused by angiotensin-converting enzyme inhibitor or angiotensin receptor blocker intake during pregnancy. Recently, heterozygous REN mutations were shown to result in early-onset hyperuricemia, anemia and chronic renal failure. So far, only three different heterozygous REN mutations were reported. We performed mutation analysis of the REN gene in 39 kindreds with hyperuricemia and chronic kidney disease (CKD) previously tested negative for mutations in the UMOD and HNF1β genes. We identified one kindred with a novel c.28T>C (p.W10R) REN mutation in the signal sequence, concluding that REN mutations are rare events in CKD patients. Affected individuals over four generations were identified carrying the novel REN mutation and were characterized by significant anemia, hyperuricemia and CKD. Anemia was severe and disproportional to the degree of renal impairment. Moreover all heterozygous REN mutations are localized in the signal sequence. Therefore, screening of the REN gene for CKD patients with hyperuricemia and anemia may be focusing on exon 1 sequencing, which encodes the signal peptide. PMID:21903317

  19. Data on pigments and long-chain fatty compounds identified in Dietzia sp. A14101 grown on simple and complex hydrocarbons

    PubMed Central

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-01-01

    This data article provides: 1. An overview of tentatively identified long chain compounds in Dietzia sp. A14101 grown on simple and complex hydrocarbons; 2. Preliminary Identification of pigments in bacterial material obtained from incubation with a hydrocarbon (dodecane, n-C12) as the only carbon and energy source; 3. Some pictures to illustrate the cell surface charge test. PMID:26442286

  20. Heterozygous Germline Mutations in the CBL Tumor-Suppressor Gene Cause a Noonan Syndrome-like Phenotype

    PubMed Central

    Martinelli, Simone; De Luca, Alessandro; Stellacci, Emilia; Rossi, Cesare; Checquolo, Saula; Lepri, Francesca; Caputo, Viviana; Silvano, Marianna; Buscherini, Francesco; Consoli, Federica; Ferrara, Grazia; Digilio, Maria C.; Cavaliere, Maria L.; van Hagen, Johanna M.; Zampino, Giuseppe; van der Burgt, Ineke; Ferrero, Giovanni B.; Mazzanti, Laura; Screpanti, Isabella; Yntema, Helger G.; Nillesen, Willy M.; Savarirayan, Ravi; Zenker, Martin; Dallapiccola, Bruno; Gelb, Bruce D.; Tartaglia, Marco

    2010-01-01

    RAS signaling plays a key role in controlling appropriate cell responses to extracellular stimuli and participates in early and late developmental processes. Although enhanced flow through this pathway has been established as a major contributor to oncogenesis, recent discoveries have revealed that aberrant RAS activation causes a group of clinically related developmental disorders characterized by facial dysmorphism, a wide spectrum of cardiac disease, reduced growth, variable cognitive deficits, ectodermal and musculoskeletal anomalies, and increased risk for certain malignancies. Here, we report that heterozygous germline mutations in CBL, a tumor-suppressor gene that is mutated in myeloid malignancies and encodes a multivalent adaptor protein with E3 ubiquitin ligase activity, can underlie a phenotype with clinical features fitting or partially overlapping Noonan syndrome (NS), the most common condition of this disease family. Independent CBL mutations were identified in two sporadic cases and two families from among 365 unrelated subjects who had NS or suggestive features and were negative for mutations in previously identified disease genes. Phenotypic heterogeneity and variable expressivity were documented. Mutations were missense changes altering evolutionarily conserved residues located in the RING finger domain or the linker connecting this domain to the N-terminal tyrosine kinase binding domain, a known mutational hot spot in myeloid malignancies. Mutations were shown to affect CBL-mediated receptor ubiquitylation and dysregulate signal flow through RAS. These findings document that germline mutations in CBL alter development to cause a clinically variable condition that resembles NS and that possibly predisposes to malignancies. PMID:20619386

  1. LAMM syndrome with middle ear dysplasia associated with compound heterozygosity for FGF3 mutations.

    PubMed

    Sensi, Alberto; Ceruti, Stefano; Trevisi, Patrizia; Gualandi, Francesca; Busi, Micol; Donati, Ilaria; Neri, Marcella; Ferlini, Alessandra; Martini, Alessandro

    2011-05-01

    We report on the first cases of FGF3 compound heterozygotes in two European families from non-consanguineous marriages, affected with labyrinthine aplasia, microtia, and microdontia (LAMM) Syndrome. Three not previously described mutations (p.W153VfsX51, p.Y106C, and p.Y49C) and a recurrent one (p.R104X) were found. Analysis of 50 unrelated control subjects (100 chromosomes) of the same European background did not show any of the two newly reported missense variations. We confirm the absence of otodental syndrome in heterozygous carriers, but report unilateral microtia in one of them. We also report on the involvement of the middle ear structures in LAMM Syndrome. Copyright © 2011 Wiley-Liss, Inc.

  2. Heterozygous Submicroscopic Inversions Involving Olfactory Receptor–Gene Clusters Mediate the Recurrent t(4;8)(p16;p23) Translocation

    PubMed Central

    Giglio, Sabrina; Calvari, Vladimiro; Gregato, Giuliana; Gimelli, Giorgio; Camanini, Silvia; Giorda, Roberto; Ragusa, Angela; Guerneri, Silvana; Selicorni, Angelo; Stumm, Marcus; Tonnies, Holger; Ventura, Mario; Zollino, Marcella; Neri, Giovanni; Barber, John; Wieczorek, Dagmar; Rocchi, Mariano; Zuffardi, Orsetta

    2002-01-01

    The t(4;8)(p16;p23) translocation, in either the balanced form or the unbalanced form, has been reported several times. Taking into consideration the fact that this translocation may be undetected in routine cytogenetics, we find that it may be the most frequent translocation after t(11q;22q), which is the most common reciprocal translocation in humans. Case subjects with der(4) have the Wolf-Hirschhorn syndrome, whereas case subjects with der(8) show a milder spectrum of dysmorphic features. Two pairs of the many olfactory receptor (OR)–gene clusters are located close to each other, on both 4p16 and 8p23. Previously, we demonstrated that an inversion polymorphism of the OR region at 8p23 plays a crucial role in the generation of chromosomal imbalances through unusual meiotic exchanges. These findings prompted us to investigate whether OR-related inversion polymorphisms at 4p16 and 8p23 might also be involved in the origin of the t(4;8)(p16;p23) translocation. In seven case subjects (five of whom both represented de novo cases and were of maternal origin), including individuals with unbalanced and balanced translocations, we demonstrated that the breakpoints fell within the 4p and 8p OR-gene clusters. FISH experiments with appropriate bacterial-artificial-chromosome probes detected heterozygous submicroscopic inversions of both 4p and 8p regions in all the five mothers of the de novo case subjects. Heterozygous inversions on 4p16 and 8p23 were detected in 12.5% and 26% of control subjects, respectively, whereas 2.5% of them were scored as doubly heterozygous. These novel data emphasize the importance of segmental duplications and large-scale genomic polymorphisms in the evolution and pathology of the human genome. PMID:12058347

  3. Comprehensive behavioral analysis of RNG105 (Caprin1) heterozygous mice: Reduced social interaction and attenuated response to novelty

    PubMed Central

    Ohashi, Rie; Takao, Keizo; Miyakawa, Tsuyoshi; Shiina, Nobuyuki

    2016-01-01

    RNG105 (also known as Caprin1) is a major RNA-binding protein in neuronal RNA granules, and is responsible for mRNA transport to dendrites and neuronal network formation. A recent study reported that a heterozygous mutation in the Rng105 gene was found in an autism spectrum disorder (ASD) patient, but it remains unclear whether there is a causal relation between RNG105 deficiency and ASD. Here, we subjected Rng105+/− mice to a comprehensive behavioral test battery, and revealed the influence of RNG105 deficiency on mouse behavior. Rng105+/− mice exhibited a reduced sociality in a home cage and a weak preference for social novelty. Consistently, the Rng105+/− mice also showed a weak preference for novel objects and novel place patterns. Furthermore, although the Rng105+/− mice exhibited normal memory acquisition, they tended to have relative difficulty in reversal learning in the spatial reference tasks. These findings suggest that the RNG105 heterozygous knockout leads to a reduction in sociality, response to novelty and flexibility in learning, which are implicated in ASD-like behavior. PMID:26865403

  4. Glucose-6-phosphate dehydrogenase deficiency and malaria: cytochemical detection of heterozygous G6PD deficiency in women.

    PubMed

    Peters, Anna L; Van Noorden, Cornelis J F

    2009-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a X-chromosomally transmitted disorder of the erythrocyte that affects 400 million people worldwide. Diagnosis of heterozygously-deficient women is complicated: as a result of lyonization, these women have a normal and a G6PD-deficient population of erythrocytes. The cytochemical assay is the only reliable assay to discriminate between heterozygously-deficient women and non-deficient women or homozygously-deficient women. G6PD deficiency is mainly found in areas where malaria is or has been endemic. In these areas, malaria is treated with drugs that can cause (severe) hemolysis in G6PD-deficient individuals. A cheap and reliable test is necessary for diagnosing the deficiency to prevent hemolytic disorders when treating malaria. In this review, it is concluded that the use of two different tests for diagnosing men and women is the ideal approach to detect G6PD deficiency. The fluorescent spot test is inexpensive and easy to perform but only reliable for discriminating hemizygous G6PD-deficient men from non-deficient men. For women, the cytochemical assay is recommended. However, this assay is more expensive and difficult to perform and should be simplified into a kit for use in developing countries.

  5. Structure Based Virtual Screening Studies to Identify Novel Potential Compounds for GPR142 and Their Relative Dynamic Analysis for Study of Type 2 Diabetes

    NASA Astrophysics Data System (ADS)

    Kaushik, Aman C.; Kumar, Sanjay; Wei, Dong Q.; Sahi, Shakti

    2018-02-01

    GPR142 (G protein receptor 142) is a novel orphan GPCR (G protein coupled receptor) belonging to ‘Class A’ of GPCR family and expressed in beta cells of pancreas. In this study, we reported the structure based virtual screening to identify the hit compounds which can be developed as leads for potential agonists. The results were validated through induced fit docking, pharmacophore modeling and system biology approaches. Since, there is no solved crystal structure of GPR142, we attempted to predict the 3D structure followed by validation and then identification of active site using threading and ab initio methods. Also, structure based virtual screening was performed against a total of 1171519 compounds from different libraries and only top 20 best hit compounds were screened and analyzed. Moreover, the biochemical pathway of GPR142 complex with screened compound2 was also designed and compared with experimental data. Interestingly, compound2 showed an increase in insulin production via Gq mediated signaling pathway suggesting the possible role of novel GPR142 agonists in therapy against type 2 diabetes.

  6. Myocardial layer-specific analysis in patients with heterozygous familial hypercholesterolemia using speckle tracking echocardiography.

    PubMed

    Leng, Zhaoting; Li, Rongjuan; Li, Yijia; Wang, Lvya; Wang, Yueli; Yang, Ya

    2017-03-01

    Familial hypercholesterolemia (FH) is the most common and serious monogenic disorder of lipid metabolism, causing premature coronary heart disease (CHD) due to accelerated atherosclerosis from birth, and the study of left ventricular (LV) function of this disease is seldom. The purpose of this study was to explore the value of layer-specific strain on assessing the early damage of LV function in asymptomatic and left ventricular ejection fraction (LVEF) well-preserved patients with heterozygous FH (HeFH). A total of 49 patients aged 38.7±8.7 diagnosed with heterozygous familial hypercholesterolemia and who had undergone transthoracic echocardiography from 2010 to 2016 were included in this study. A total 32 healthy volunteers aged 35.6±10.3 were included as control group. Longitudinal and circumferential strains of the endocardium, myocardium, and epicardium (LSendo, LSmyo, and LSepi and CSendo, CSmyo, and CSepi) were obtained by a software enabling the analysis of strains in three myocardial layers. In longitudinal strain (LS), the LS of endocardium (LSendo) and the LS of myocardium (LSmyo) are significantly reduced in patients with HeFH (P<.001 in both). In circumferential strain (CS), only the CS of endocardium (CSendo) is significantly reduced (P<.001). The degree of reduction in strain is positively correlated with the TC and LDLC. Layer-specific evaluation of the left ventricle has great value in evaluating early impairment of LV in patients with FH. And this relatively novel technique may made it possible to help us understand the process of LV impairment in patients with FH better, thus preventing further damage. © 2017, Wiley Periodicals, Inc.

  7. Eight further individuals with intellectual disability and epilepsy carrying bi-allelic CNTNAP2 aberrations allow delineation of the mutational and phenotypic spectrum.

    PubMed

    Smogavec, Mateja; Cleall, Alison; Hoyer, Juliane; Lederer, Damien; Nassogne, Marie-Cécile; Palmer, Elizabeth E; Deprez, Marie; Benoit, Valérie; Maystadt, Isabelle; Noakes, Charlotte; Leal, Alejandro; Shaw, Marie; Gecz, Jozef; Raymond, Lucy; Reis, André; Shears, Deborah; Brockmann, Knut; Zweier, Christiane

    2016-12-01

    Heterozygous copy number variants (CNVs) or sequence variants in the contactin-associated protein 2 gene CNTNAP2 have been discussed as risk factors for a wide spectrum of neurodevelopmental and neuropsychiatric disorders. Bi-allelic aberrations in this gene are causative for an autosomal-recessive disorder with epilepsy, severe intellectual disability (ID) and cortical dysplasia (CDFES). As the number of reported individuals is still limited, we aimed at a further characterisation of the full mutational and clinical spectrum. Targeted sequencing, chromosomal microarray analysis or multigene panel sequencing was performed in individuals with severe ID and epilepsy. We identified homozygous mutations, compound heterozygous CNVs or CNVs and mutations in CNTNAP2 in eight individuals from six unrelated families. All aberrations were inherited from healthy, heterozygous parents and are predicted to be deleterious for protein function. Epilepsy occurred in all affected individuals with onset in the first 3.5 years of life. Further common aspects were ID (severe in 6/8), regression of speech development (5/8) and behavioural anomalies (7/8). Interestingly, cognitive impairment in one of two affected brothers was, in comparison, relatively mild with good speech and simple writing abilities. Cortical dysplasia that was previously reported in CDFES was not present in MRIs of six individuals and only suspected in one. By identifying novel homozygous or compound heterozygous, deleterious CNVs and mutations in eight individuals from six unrelated families with moderate-to-severe ID, early onset epilepsy and behavioural anomalies, we considerably broaden the mutational and clinical spectrum associated with bi-allelic aberrations in CNTNAP2. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. A novel loss-of-function heterozygous BRCA2 c.8946_8947delAG mutation found in a Chinese woman with family history of breast cancer.

    PubMed

    Ma, Jing; Yang, Jichun; Jian, Wenjing; Wang, Xianming; Xiao, Deyong; Xia, Wenjun; Xiong, Likuan; Ma, Duan

    2017-04-01

    Breast cancer is the most frequent female malignancy worldwide. Among them, some cases have hereditary susceptibility in two leading genes, BRCA1 and BRCA2. Heterozygous germ line mutations in them are related with increased risk of breast, ovarian and other cancer, following autosomal dominant inheritance mode. For purpose of early finding, early diagnosis and early treatment, mutation detecting of BRCA1/2 genes was performed in unselected 300 breast or ovarian patients and unaffected women using next-generation sequencing and then confirmed by Sanger sequencing. A non-previously reported heterozygous mutation c.8946_8947delAG (p.D2983FfsX34) of BRCA2 gene was identified in an unaffected Chinese woman with family history of breast cancer (her breast cancer mother, also carrying this mutation). The BRCA2-truncated protein resulted from the frame shift mutation was found to lose two putative nuclear localization signals and a Rad51-binding motif in the extreme C-terminal region by bioinformatic prediction. And then in vitro experiments showed that nearly all the mutant protein was unable to translocate to the nucleus to perform DNA repair activity. This novel mutant BRCA2 protein is dysfunction. We classify the mutation into disease causing and conclude that it is the risk factor for breast cancer in this family. So, conducting the same mutation test and providing genetic counseling for this family is practically meaningful and significant. Meanwhile, the identification of this new mutation enriches the Breast Cancer Information Core database, especially in China.

  9. A novel heterozygous mutation in the Birt-Hogg-Dubé Syndrome.

    PubMed

    Gómez Rivas, Juan; Carrión, Diego M; Alonso Y Gregorio, Sergio; Álvarez-Maestro, Mario; Tabernero Gómez, Ángel; Cisneros Ledo, Jesus

    2017-09-01

    Our aim is to present a novel mutation of the Birt-Hogg-Dubé Syndrome. We present a case report of a 70-year-old male with three solid nodulary lesions of 4, 2.6, and 3 cm each in the right kidney, and two lesions of 1.5 and 1.3 cm in the left kidney. Needle biopsy was performed. The pathological analysis of right kidney lesions revealed a renal tumor suggestive of chromophobe renal cell carcinoma and medullar tumor with zones that suggested oncocytosis. Genetic test results were positive for a novel heterozygous mutation c.1198G>A; p.V400I in exon 11 of the FLCN gene. In patients presenting with bilateral multifocal renal tumors of oncocytic hybrid histology, Birt- Hogg-Dubé syndrome should be the first diagnosis in mind. The mutation found in this patient has not been previously described in the literature in the context of BHD.

  10. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    PubMed

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  11. Identifying natural compounds as multi-target-directed ligands against Alzheimer's disease: an in silico approach.

    PubMed

    Ambure, Pravin; Bhat, Jyotsna; Puzyn, Tomasz; Roy, Kunal

    2018-04-23

    Alzheimer's disease (AD) is a multi-factorial disease, which can be simply outlined as an irreversible and progressive neurodegenerative disorder with an unclear root cause. It is a major cause of dementia in old aged people. In the present study, utilizing the structural and biological activity information of ligands for five important and mostly studied vital targets (i.e. cyclin-dependant kinase 5, β-secretase, monoamine oxidase B, glycogen synthase kinase 3β, acetylcholinesterase) that are believed to be effective against AD, we have developed five classification models using linear discriminant analysis (LDA) technique. Considering the importance of data curation, we have given more attention towards the chemical and biological data curation, which is a difficult task especially in case of big data-sets. Thus, to ease the curation process we have designed Konstanz Information Miner (KNIME) workflows, which are made available at http://teqip.jdvu.ac.in/QSAR_Tools/ . The developed models were appropriately validated based on the predictions for experiment derived data from test sets, as well as true external set compounds including known multi-target compounds. The domain of applicability for each classification model was checked based on a confidence estimation approach. Further, these validated models were employed for screening of natural compounds collected from the InterBioScreen natural database ( https://www.ibscreen.com/natural-compounds ). Further, the natural compounds that were categorized as 'actives' in at least two classification models out of five developed models were considered as multi-target leads, and these compounds were further screened using the drug-like filter, molecular docking technique and then thoroughly analyzed using molecular dynamics studies. Finally, the most potential multi-target natural compounds against AD are suggested.

  12. Antisense Oligonucleotide-Based Splicing Correction in Individuals with Leber Congenital Amaurosis due to Compound Heterozygosity for the c.2991+1655A>G Mutation in CEP290.

    PubMed

    Duijkers, Lonneke; van den Born, L Ingeborgh; Neidhardt, John; Bax, Nathalie M; Pierrache, Laurence H M; Klevering, B Jeroen; Collin, Rob W J; Garanto, Alejandro

    2018-03-07

    Leber congenital amaurosis (LCA) is a rare inherited retinal disorder affecting approximately 1:50,000 people worldwide. So far, mutations in 25 genes have been associated with LCA, with CEP290 (encoding the Centrosomal protein of 290 kDa) being the most frequently mutated gene. The most recurrent LCA-causing CEP290 mutation, c.2991+1655A>G, causes the insertion of a pseudoexon into a variable proportion of CEP290 transcripts. We previously demonstrated that antisense oligonucleotides (AONs) have a high therapeutic potential for patients homozygously harbouring this mutation, although to date, it is unclear whether rescuing one single allele is enough to restore CEP290 function. Here, we assessed the AON efficacy at RNA, protein and cellular levels in samples that are compound heterozygous for this mutation, together with a protein-truncating mutation in CEP290 . We demonstrate that AONs can efficiently restore splicing and increase protein levels. However, due to a high variability in ciliation among the patient-derived cell lines, the efficacy of the AONs was more difficult to assess at the cellular level. This observation points towards the importance of the severity of the second allele and possibly other genetic variants present in each individual. Overall, AONs seem to be a promising tool to treat CEP290 -associated LCA, not only in homozygous but also in compound heterozygous carriers of the c.2991+1655A>G variant.

  13. Evidence for Mitotic Recombination in W(ei)/+ Heterozygous Mice

    PubMed Central

    Panthier, J. J.; Guenet, J. L.; Condamine, H.; Jacob, F.

    1990-01-01

    A number of alleles at coat color loci of the house mouse give rise to areas of wild-type pigmentation on the coats of otherwise mutant animals. Such unstable alleles include both recessive and dominant mutations. Among the latter are several alleles at the W locus. In this report, phenotypic reversions of the W(ei) allele at the W locus were studied Mice heterozygous in repulsion for both W(ei) and buff (bf) [i.e. W(ei)+/+bf] were examined for the occurrence of phenotypic reversion events. Buff (bf) is a recessive mutation, which lies 21 cM from W on the telomeric side of chromosome 5 and is responsible for the khaki colored coat of nonagouti buff homozygotes (a/a; bf/bf). Two kinds of fully pigmented reversion spots were recovered on the coats of a/a; W(ei)+/+bf mice: either solid black or khaki colored. Furthermore phenotypic reversions of W(ei)/+ were enhanced significantly following X-irradiation of 9.25-day-old W(ei)/+ embryos (P < 0.04). These observations are consistent with the suggestion of a role for mitotic recombination in the origin of these phenotypic reversions. In addition these results rise the intriguing possibility that some W mutations may enhance mitotic recombination in the house mouse. PMID:2341029

  14. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome

    PubMed Central

    Dinwiddie, Darrell L.; Smith, Laurie D.; Miller, Neil A.; Atherton, Andrea M.; Farrow, Emily G.; Strenk, Meghan E.; Soden, Sarah E.; Saunders, Carol J.; Kingsmore, Stephen F.

    2015-01-01

    Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations. PMID:23631824

  15. Comparative analyses of lung transcriptomes in patients with alveolar capillary dysplasia with misalignment of pulmonary veins and in foxf1 heterozygous knockout mice

    USDA-ARS?s Scientific Manuscript database

    Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins (ACDMPV) is a developmental disorder of the lungs, primarily affecting their vasculature. FOXF1 haploinsufficiency due to heterozygous genomic deletions and point mutations have been reported in most patients with ACDMPV. The majority...

  16. Modest increased sensitivity to radiation oncogenesis in ATM heterozygous versus wild-type mammalian cells

    NASA Technical Reports Server (NTRS)

    Smilenov, L. B.; Brenner, D. J.; Hall, E. J.

    2001-01-01

    Subpopulations that are genetically predisposed to radiation-induced cancer could have significant public health consequences. Individuals homozygous for null mutations at the ataxia telangiectasia gene are indeed highly radiosensitive, but their numbers are very small. Ataxia Telangiectasia heterozygotes (1-2% of the population) have been associated with somewhat increased radiosensitivity for some end points, but none directly related to carcinogenesis. Here, intralitter comparisons between wild-type mouse embryo fibroblasts and mouse embryo fibroblasts carrying ataxia telangiectasia mutated (ATM) null mutation indicate that the heterozygous cells are more sensitive to radiation oncogenesis than their normal, litter-matched, counterparts. From these data we suggest that Ataxia Telangiectasia heterozygotes could indeed represent a societally-significant radiosensitive human subpopulation.

  17. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies.

    PubMed

    McInerney-Leo, A M; Harris, J E; Leo, P J; Marshall, M S; Gardiner, B; Kinning, E; Leong, H Y; McKenzie, F; Ong, W P; Vodopiutz, J; Wicking, C; Brown, M A; Zankl, A; Duncan, E L

    2015-12-01

    Short-rib thoracic dystrophies (SRTDs) are congenital disorders due to defects in primary cilium function. SRTDs are recessively inherited with mutations identified in 14 genes to date (comprising 398 exons). Conventional mutation detection (usually by iterative Sanger sequencing) is inefficient and expensive, and often not undertaken. Whole exome massive parallel sequencing has been used to identify new genes for SRTD (WDR34, WDR60 and IFT172); however, the clinical utility of whole exome sequencing (WES) has not been established. WES was performed in 11 individuals with SRTDs. Compound heterozygous or homozygous mutations were identified in six confirmed SRTD genes in 10 individuals (IFT172, DYNC2H1, TTC21B, WDR60, WDR34 and NEK1), giving overall sensitivity of 90.9%. WES data from 993 unaffected individuals sequenced using similar technology showed two individuals with rare (minor allele frequency <0.005) compound heterozygous variants of unknown significance in SRTD genes (specificity >99%). Costs for consumables, laboratory processing and bioinformatic analysis were

  18. In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses.

    PubMed

    Kampmann, Thorsten; Yennamalli, Ragothaman; Campbell, Phillipa; Stoermer, Martin J; Fairlie, David P; Kobe, Bostjan; Young, Paul R

    2009-12-01

    The flaviviruses comprise a large group of related viruses, many of which pose a significant global human health threat, most notably the dengue viruses (DENV), West Nile virus (WNV) and yellow fever virus (YFV). Flaviviruses enter host cells via fusion of the viral and cellular membranes, a process mediated by the major viral envelope protein E as it undergoes a low pH induced conformational change in the endosomal compartment of the host cell. This essential entry stage in the flavivirus life cycle provides an attractive target for the development of antiviral agents. We performed an in silico docking screen of the Maybridge chemical database within a previously described ligand binding pocket in the dengue E protein structure that is thought to play a key role in the conformational transitions that lead to membrane fusion. The biological activity of selected compounds identified from this screen revealed low micromolar antiviral potency against dengue virus for two of the compounds. Our results also provide the first evidence that compounds selected to bind to this ligand binding site on the flavivirus E protein abrogate fusion activity. Interestingly, one of these compounds also has antiviral activity against both WNV (kunjin strain) and YFV.

  19. Recent Trends in WRN Gene Mutation Patterns in Individuals with Werner Syndrome.

    PubMed

    Yamaga, Masaya; Takemoto, Minoru; Takada-Watanabe, Aki; Koizumi, Naoko; Kitamoto, Takumi; Sakamoto, Kenichi; Ishikawa, Takahiro; Koshizaka, Masaya; Maezawa, Yoshiro; Yokote, Koutaro

    2017-08-01

    To determine recent trends in mutation patterns in the WRN gene, which cause Werner syndrome (WS), a rare, inheritable progeroid syndrome in Japan. Retrospective cohort. Longitudinal survey of WS and literature search for case reports. Individuals whose genetic testing their facilities had requested between 2009 and October 2016 (N = 67). A nationwide epidemiological study was conducted from 2009 to 2011 to improve understanding of the pathology of WS and develop therapeutic guidelines. Since 2009, Chiba University Hospital consecutively evaluated the WRN gene in 67 individuals throughout Japan who had requested genetic testing. A literature search was also conducted for case reports on Japanese WS reported since 1997. A definitive diagnosis of WS was confirmed genetically in 50 of 67 participants. Through the literature search, 16 individuals diagnosed genetically with WS were identified. Of these 66 individuals with WS, 42 were homozygous for a WRN mutation, and 21 were compound heterozygotes. One novel mutant allele was identified in an individual with the compound heterozygous genotype. The proportion of compound heterozygotes (31.8%) was significantly greater than reported previously (14.2%), indicating that the incidence of consanguineous marriage of parents has decreased. The increased frequency of individuals with WS with the compound heterozygous genotype is a recent trend in Japan. A long-term follow-up study on WRN homozygotes and compound heterozygotes will allow the relationship between WRN genotype and clinical severity of WS to be evaluated in the future. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  20. Juvenile Paget’s Disease With Heterozygous Duplication In TNFRSF11A Encoding RANK

    PubMed Central

    Whyte, Michael P.; Tau, Cristina; McAlister, William H.; Zhang, Xiafang; Novack, Deborah V.; Preliasco, Virginia; Santini-Araujo, Eduardo; Mumm, Steven

    2014-01-01

    Mendelian disorders of RANKL/OPG/RANK signaling feature the extremes of aberrant osteoclastogenesis and cause either osteopetrosis or rapid turnover skeletal disease. The patients with autosomal dominant accelerated bone remodeling have familial expansile osteolysis, early-onset Paget’s disease of bone, expansile skeletal hyperphosphatasia, or panostotic expansile bone disease due to heterozygous 18-, 27-, 15-, and 12-bp insertional duplications, respectively, within exon 1 of TNFRSF11A that encodes the signal peptide of RANK. Juvenile Paget’s disease (JPD), an autosomal recessive disorder, manifests extremely fast skeletal remodeling, and is usually caused by loss-of-function mutations within TNFRSF11B that encodes OPG. These disorders are ultra-rare. A 13-year-old Bolivian girl was referred at age 3 years. One femur was congenitally short and curved. Then, both bowed. Deafness at age 2 years involved missing ossicles and eroded cochleas. Teeth often had absorbed roots, broke, and were lost. Radiographs had revealed acquired tubular bone widening, cortical thickening, and coarse trabeculation. Biochemical markers indicated rapid skeletal turnover. Histopathology showed accelerated remodeling with abundant osteoclasts. JPD was diagnosed. Immobilization from a femur fracture caused severe hypercalcemia that responded rapidly to pamidronate treatment followed by bone turnover marker and radiographic improvement. No TNFRSF11B mutation was found. Instead, a unique heterozygous 15-bp insertional tandem duplication (87dup15) within exon 1 of TNFRSF11A predicted the same pentapeptide extension of RANK that causes expansile skeletal hyperphosphatasia (84dup15). Single nucleotide polymorphisms in TNFRSF11A and TNFRSF11B possibly impacted her phenotype. Our findings: i) reveal that JPD can be associated with an activating mutation within TNFRSF11A, ii) expand the range and overlap of phenotypes among the mendelian disorders of RANK activation, and iii) call for mutation

  1. Exome sequencing identifies complex I NDUFV2 mutations as a novel cause of Leigh syndrome.

    PubMed

    Cameron, Jessie M; MacKay, Nevena; Feigenbaum, Annette; Tarnopolsky, Mark; Blaser, Susan; Robinson, Brian H; Schulze, Andreas

    2015-09-01

    Two siblings with hypertrophic cardiomyopathy and brain atrophy were diagnosed with Complex I deficiency based on low enzyme activity in muscle and high lactate/pyruvate ratio in fibroblasts. Whole exome sequencing results of fibroblast gDNA from one sibling was narrowed down to 190 SNPs or In/Dels in 185 candidate genes by selecting non-synonymous coding sequence base pair changes that were not present in the SNP database. Two compound heterozygous mutations were identified in both siblings in NDUFV2, encoding the 24 kDa subunit of Complex I. The intronic mutation (c.IVS2 + 1delGTAA) is disease causing and has been reported before. The other mutation is novel (c.669_670insG, p.Ser224Valfs*3) and predicted to cause a pathogenic frameshift in the protein. Subsequent investigation of 10 probands with complex I deficiency from different families revealed homozygosity for the intronic c.IVS2 + 1delGTAA mutation in a second, consanguineous family. In this family three of five siblings were affected. Interestingly, they presented with Leigh syndrome but no cardiac involvement. The same genotype had been reported previously in a two families but presenting with hypertrophic cardiomyopathy, trunk hypotonia and encephalopathy. We have identified NDUFV2 mutations in two families with Complex I deficiency, including a novel mutation. The diagnosis of Leigh syndrome expands the clinical phenotypes associated with the c.IVS2 + 1delGTAA mutation in this gene. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  2. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis.

    PubMed

    Adam, Ronja; Spier, Isabel; Zhao, Bixiao; Kloth, Michael; Marquez, Jonathan; Hinrichsen, Inga; Kirfel, Jutta; Tafazzoli, Aylar; Horpaopan, Sukanya; Uhlhaas, Siegfried; Stienen, Dietlinde; Friedrichs, Nicolaus; Altmüller, Janine; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Kayser, Katrin; Thiele, Holger; Holinski-Feder, Elke; Marra, Giancarlo; Kristiansen, Glen; Nöthen, Markus M; Büttner, Reinhard; Möslein, Gabriela; Betz, Regina C; Brieger, Angela; Lifton, Richard P; Aretz, Stefan

    2016-08-04

    In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  4. Heterozygous Null Bone Morphogenetic Protein Receptor Type 2 Mutations Promote SRC Kinase-dependent Caveolar Trafficking Defects and Endothelial Dysfunction in Pulmonary Arterial Hypertension*

    PubMed Central

    Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.

    2015-01-01

    Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245

  5. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  6. Follow-up Findings in a Turkish Girl with Pseudohypoparathyroidism Type Ia Caused by a Novel Heterozygous Mutation in the GNAS Gene.

    PubMed

    Şahin, Sezgin; Hiort, Olaf; Thiele, Susanne; Evliyaoğlu, Olcay; Tüysüz, Beyhan

    2017-03-01

    Pseudohypoparathyroidism type Ia (PHP-Ia) is characterized by multihormone resistance and an Albright hereditary osteodystrophy (AHO) phenotype. It is caused by heterozygous mutations in GNAS gene. Clinical and biochemical findings of a female PHP-Ia patient were evaluated from age of diagnosis (6.5 years) to 14.5 years of age. The patient had short stature, brachydactyly, and subcutaneous heterotopic ossifications. Serum calcium and phosphorus levels were normal, but parathyroid hormone levels were high. Based on the typical clinical findings of AHO phenotype and biochemical findings, she was diagnosed as having PHP-Ia. A novel heterozygous mutation (c.128T>C) was found in the GNAS gene. Follow-up examinations revealed resistance to thyroid-stimulating hormone and a bioinactive growth hormone. Clinicians should take into consideration PHP-Ia in patients referred with short stature, and patients with an AHO phenotype must be further evaluated for hormone resistance, GNAS gene mutation, Gsα activity. To our knowledge, this is the first case report describing bioinactive growth hormone in PHP-Ia.

  7. Heterozygous Deletion of FOXA2 Segregates with Disease in a Family with Heterotaxy, Panhypopituitarism, and Biliary Atresia

    PubMed Central

    Tsai, Ellen A.; Grochowski, Christopher M.; Falsey, Alexandra M.; Rajagopalan, Ramakrishnan; Wendel, Danielle; Devoto, Marcella; Krantz, Ian D.; Loomes, Kathleen M.; Spinner, Nancy B.

    2015-01-01

    Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277kb heterozygous deletion on chromosome 20 which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband. PMID:25765999

  8. Component Selection for Sterile Compounding.

    PubMed

    Dilzer, Richard H

    2017-01-01

    This article describes the factors to consider, as well as the process of proper component selection, for use in preparing compounded sterile preparations. Special emphasis is placed on individual chemical factors that may impact a preparation's accuracy and potency. Values reported in a typical certificate of analysis are discussed, including methods of identifying any required adjustments to a master formulation or compounding record during the compounding of sterile preparations. Proper screening of the certificate of analysis, the Safety Data Sheet, procedural documentation, and the filing of all certificates of conformance are crucial to the operation of a sterile compounding facility. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  9. Early onset of colorectal cancer in a 13-year-old girl with Lynch syndrome.

    PubMed

    Ahn, Do Hee; Rho, Jung Hee; Tchah, Hann; Jeon, In-Sang

    2016-01-01

    Lynch syndrome is the most common inherited colon cancer syndrome. Patients with Lynch syndrome develop a range of cancers including colorectal cancer (CRC) and carry a mutation on one of the mismatched repair (MMR) genes. Although CRC usually occurs after the fourth decade in patients with Lynch syndrome harboring a heterozygous MMR gene mutation, it can occur in children with Lynch syndrome who have a compound heterozygous or homozygous MMR gene mutation. We report a case of CRC in a 13-year-old patient with Lynch syndrome and congenital heart disease. This patient had a heterozygous mutation in MLH1 (an MMR gene), but no compound MMR gene defects, and a K-RAS somatic mutation in the cancer cells.

  10. [Acute abdominal pain due to splenic infarction in a patient with heterozygous sickle cell disease exposed to high altitude].

    PubMed

    Ruiz Semba, Edgar; Garavito Rentería, Jorge; Jiménez Bustamante, Jorge; Arteaga Caro, Ronal; García Del Aguila, José Luis; Chávez Gil, Vannya

    2006-01-01

    Hemoglobinopathy S, Depranocytosis or Sickle Cell Disease is the most common hemoglobinopathy in the world. In its heterozygous form (Sickle Cell Trait), it affects 8% of the black population in the U.S. and 25% of the black population in Africa, and is found less frequently in the Mediterranean area, India, Middle East and Latin America. The basic alteration is a substitution of glutamic acid by valin in the sixth position of the beta globin chain, which causes polymerization at low oxygen tension thereby distorting the structure of erythrocytes and increasing blood viscosity, which, in turn, generates obstructions of the capillary arterial blood flow to different areas of the body thus causing microinfarctions. Although Splenic Infarction is rare, it is recognized as a serious complication of Heterozygous Sickle Cell Disease (Sickle Cell Trait). We present the case of a 21 year-old mestizo male patient who came in with an acute case of abdominal pain after arriving to work in the Casapalca mining city (located in the Peruvian Andes at 4200 m.a.s.l.) and was referred to our Hospital in Lima for exams. We present the case because it is an unusual cause of acute abdominal pain, and because this condition is rare in Peru and there are few publications about it.

  11. Significant prevalence of sickle cell disease in Southwest Germany: results from a birth cohort study indicate the necessity for newborn screening.

    PubMed

    Kunz, Joachim B; Awad, Saida; Happich, Margit; Muckenthaler, Lena; Lindner, Martin; Gramer, Gwendolyn; Okun, Jürgen G; Hoffmann, Georg F; Bruckner, Thomas; Muckenthaler, Martina U; Kulozik, Andreas E

    2016-02-01

    Children with sickle cell disease (SCD) benefit from newborn screening, because life-threatening complications can be prevented by pre-symptomatic diagnosis. In Germany, the immigration of people from endemic countries is steadily growing. Comprehensive data about the epidemiology and prevalence of SCD in Germany are however lacking, and SCD is not included in the national newborn screening program. We provide data on the prevalence of SCD in a population from both urban and rural areas in Southwest Germany. Anonymized dried blood spots from 37,838 unselected newborns were analyzed by allele-specific PCR for the HbS mutation. Samples tested positive were subjected to Sanger sequencing of the entire β-globin coding sequence firstly to validate the screening and secondly to identify compound heterozygous SCD patients with other mutations of the β-globin gene. We identified 83 carriers of the sickle cell trait, three compound heterozygous SCD patients (two with sickle cell-β-thalassemia, one with sickle cell-Hb Tianshui) but no homozygous SCD patients. The novel molecular method and strategy for newborn screening for SCD presented here compares favorably in terms of sensitivity (1.0 for homozygous HbS, 0.996 for heterozygous HbS), specificity (0.996), practicability, and costs with conventional biochemical screening. Our results demonstrate a significant prevalence of SCD of approximately 1:12,000 in an unselected urban and rural population in Southwest Germany. Together with previously published even higher results from exclusively urban populations in Berlin and Hamburg, our data provide the basis for the decision on a newborn screening program for SCD in Germany.

  12. Stress testing response in women heterozygous for familial hypercholesterolemia.

    PubMed

    Kolovou, Genovefa D; Damaskos, Dimitris S; Anagnostopoulou, Katherine K; Salpea, Klelia D; Dritsas, Athanasios; Giannakopoulou, Vasiliki; Vasiliadis, Ioannis K; Cokkinos, Dennis V

    2007-10-31

    We evaluated 62 exercise treadmill tests (ETTs) in equal numbers of heterozygous for familial hypercholesterolemia (hFH) and healthy (HLY) women, matched for age, baseline systolic and diastolic blood pressure (BP) and baseline heart rate (HR), using the Bruce protocol. Both groups had similar rate pressure product (RPP) and workload in metabolic equivalents (METs) (27,563+/-3124 vs. 29,090+/-4077, p=0.103 and 11.2+/-1.7 vs. 11.5+/-1.8, p=0.473, respectively). Women with hFH had lower delta (difference of peak to baseline) and peak exercise systolic and diastolic BP (systolic: 48+/-12 vs. 58+/-17 mmHg, p=0.010 and 167+/-19 vs. 177+/-17 mmHg, p=0.042, respectively; diastolic: 11+/-7 vs. 15+/-7 mmHg, p=0.028 and 85+/-7 vs. 91+/-7 mmHg, p<0.001, respectively). Furthermore, women with hFH had higher delta percentage (%) of HR, compared to HLY; (106+/-25 vs. 95+/-20, p=0.047). In conclusion, hFH women possibly have an inadequate rise in systolic BP during ETT. Diastolic BP increased more in the HLY than in the hFH group, but still remained within normal limits. These findings may reflect preclinical changes of atherosclerosis in hFH women, however further research should be undertaken.

  13. Anti-inflammatory activity of aqueous extract and bioactive compounds identified from the fruits of Hancornia speciosa Gomes (Apocynaceae).

    PubMed

    Torres-Rêgo, Manoela; Furtado, Allanny Alves; Bitencourt, Mariana Angélica Oliveira; Lima, Maira Conceição Jerônimo de Souza; Andrade, Rafael Caetano Lisbôa Castro de; Azevedo, Eduardo Pereira de; Soares, Thaciane da Cunha; Tomaz, José Carlos; Lopes, Norberto Peporine; da Silva-Júnior, Arnóbio Antônio; Zucolotto, Silvana Maria; Fernandes-Pedrosa, Matheus de Freitas

    2016-08-05

    Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1β, IL-6, IL-12 and TNF-α were determined using ELISA. Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.

  14. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia

    DOE PAGES

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A.; ...

    2016-11-22

    Fibroblast growth factor–23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. In this paper, using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23–induced activation of the FGFR/α-KL complex. Additional modeling andmore » functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL–dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. Finally, these chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.« less

  15. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia.

    PubMed

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A; Chin, Ai L; Yates, Charles R; Carrick, Jesse D; Smith, Jeremy C; Baudry, Jerome; Quarles, L Darryl

    2016-11-22

    Fibroblast growth factor-23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. Using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23-induced activation of the FGFR/α-KL complex. Additional modeling and functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL-dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. These chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23. Copyright © 2016, American Association for the Advancement of Science.

  16. A computationally identified compound antagonizes excess FGF-23 signaling in renal tubules and a mouse model of hypophosphatemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Zhousheng; Riccardi, Demian; Velazquez, Hector A.

    Fibroblast growth factor–23 (FGF-23) interacts with a binary receptor complex composed of α-Klotho (α-KL) and FGF receptors (FGFRs) to regulate phosphate and vitamin D metabolism in the kidney. Excess FGF-23 production, which causes hypophosphatemia, is genetically inherited or occurs with chronic kidney disease. Among other symptoms, hypophosphatemia causes vitamin D deficiency and the bone-softening disorder rickets. Current therapeutics that target the receptor complex have limited utility clinically. In this paper, using a computationally driven, structure-based, ensemble docking and virtual high-throughput screening approach, we identified four novel compounds predicted to selectively inhibit FGF-23–induced activation of the FGFR/α-KL complex. Additional modeling andmore » functional analysis found that Zinc13407541 bound to FGF-23 and disrupted its interaction with the FGFR1/α-KL complex; experiments in a heterologous cell expression system showed that Zinc13407541 selectivity inhibited α-KL–dependent FGF-23 signaling. Zinc13407541 also inhibited FGF-23 signaling in isolated renal tubules ex vivo and partially reversed the hypophosphatemic effects of excess FGF-23 in a mouse model. Finally, these chemical probes provide a platform to develop lead compounds to treat disorders caused by excess FGF-23.« less

  17. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes

    USGS Publications Warehouse

    Baker, Beth H.; Martinovic-Weigelt, Dalma; Ferrey, Mark L.; Barber, Larry B.; Writer, Jeffrey H.; Rosenberry, Donald O.; Kiesling, Richard L.; Lundy, James R.; Schoenfuss, Heiko L.

    2014-01-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted.

  18. Bilayer Effects of Antimalarial Compounds

    PubMed Central

    Ramsey, Nicole B.; Andersen, Olaf S.

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613

  19. Bilayer Effects of Antimalarial Compounds.

    PubMed

    Ramsey, Nicole B; Andersen, Olaf S

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  20. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado

    NASA Astrophysics Data System (ADS)

    Fathoni, A.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J.

    2017-07-01

    Syzygium aromaticum (clove) are native to Indonesia and have been widely used in food industry due to their flavor. Nonvolatile compounds contribute to flavor, mainly in their taste. Currently, there is very little information available about nonvolatile compounds in clove. Identification of nonvolatile compounds is important to improve clove's value. Compound extraction was conducted by maceration in ethanol. Fractionations of the extract were performed by using gravity column chromatography on silica gel and Sephadex LH-20 as stationary phase. Nonvolatile compounds were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). LC-MS/MS was operated in negative mode with 0.1 % formic acid in water and acetonitrile as mobile phase. Nonvolatile compounds were identified by fragment analysis and compared to references. Several compounds had been identified and characterized asquinic acid, monogalloylglucose, gallic acid, digalloylglucose, isobiflorin, biflorin, ellagic acid, hydroxygallic acid, luteolin, quercetin, naringenin, kaempferol, isorhamnetin, dimethoxyluteolin, and rhamnetin. These compounds had two main flavor perceptions, i.e. astringent, and bitter.

  1. A frameshift variant of CYP2C8 was identified in a patient who suffered from rhabdomyolysis after administration of cerivastatin.

    PubMed

    Ishikawa, Chikako; Ozaki, Hiroshi; Nakajima, Toshiaki; Ishii, Toshihiro; Kanai, Saburo; Anjo, Saeko; Shirai, Kohji; Inoue, Ituro

    2004-01-01

    A hypercholesterolemic patient medicated with cerivastatin for 22 days resulted in acute rhabdomyolysis. CYP2C8 and CYP3A4 are the major enzymes responsible for the metabolism of cerivastatin, and a transporter, OATP2, contributes to uptake of cerivastatin to the liver. In this study, the patient's DNA was sequenced in order to identify a variant that would lead to the adverse effect of cerivastatin. Three nucleotide variants, 475delA, G874C, and T1551C, were found in the exons of CYP2C8. The patient was homozygous for 475delA variant that leads to frameshift and premature termination. Accordingly, the patient is most likely lacking the enzyme activity. The patient's children were both heterozygous for the mutation. The patient had three nucleotide variants in exon 4 (A388G) and exon 5 (C571T and C597T) of OATP2 that were all heterozygous. No nucleotide variation in the exons of CYP3A4 was identified. To our knowledge, this is the first report showing that the adverse effect of cerivastatin might be caused by the genetic variant of CYP2C8.

  2. Volatile organic compounds from fungi isolated after hurricane katrina induce developmental defects and apoptosis in a Drosophila melanogaster model.

    PubMed

    Inamdar, Arati A; Bennett, Joan W

    2015-05-01

    In previous work, our laboratory developed a Drosophila model for studying the adverse effects of fungal volatile organic compounds (VOCs) emitted by growing cultures of molds. In this report, we have extended these studies and compared the toxic effects of fungal VOCs emitted from living cultures of four molds isolated after Hurricane Katrina from a flooded home in New Orleans. Strains of Aspergillus, Mucor, Penicillium, and Trichoderma were grown with wild-type larvae and the toxic effects of volatile products on the developmental stages of Drosophila larvae were evaluated. Furthermore, heterozygous mutants of Drosophila carrying the apoptotic genes, reaper and dronc, were used to assess the role of apoptosis in fungal VOCs mediated toxicity. Third-instar larvae of Drosophila carrying these apoptotic genes were exposed to fungal VOCs emitted from growing mold cultures for 10 days. The larval strains carrying apoptopic genes survived longer than the control wild type larvae; moreover, of those that survived, heterozygous reaper and dronc strains progressed to pupae and adult phases more rapidly, suggesting that fungal VOCs may induce apoptotic changes in flies. These data lend support to the use of Drosophila as an inexpensive and genetically versatile toxicological model to investigate the mechanistic basis for some of the human illnesses/symptoms associated with exposure to mold-contaminated indoor air, especially after hurricanes. © 2013 Wiley Periodicals, Inc.

  3. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    PubMed

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  4. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  5. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  6. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  7. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  8. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN P-93-1119...

  9. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  10. Expanded clinical spectrum of spondylocarpotarsal synostosis syndrome and possible manifestation in a heterozygous father.

    PubMed

    Mitter, Diana; Krakow, Deborah; Farrington-Rock, Claire; Meinecke, Peter

    2008-03-15

    We report on a 5-year-old boy with spondylocarpotarsal synostosis (SCT) syndrome who presents with disproportionate short stature, thoracic scoliosis, pes planus, dental enamel hypoplasia, unilateral conductive hearing loss and mild facial dysmorphisms. Radiographs showed abnormal segmentation of the spine with block vertebrae and carpal synostosis. In addition to the typical phenotype of SCT syndrome, he showed pronounced delay of carpal bone age and bilateral epiphyseal dysplasia of the proximal femora. The patient's father has mild short stature and unilateral hip dysplasia. Molecular studies of the filamin B gene (FLNB) revealed a homozygous mutation in the index patient while both parents were heterozygous for the mutation. In this report we expand the phenotype of SCT syndrome in a patient with a causal FLNB mutation. (c) 2008 Wiley-Liss, Inc.

  11. Mutation analysis of the carbohydrate sulfotransferase gene in Vietnamese with macular corneal dystrophy.

    PubMed

    Ha, Nguyen Thanh; Chau, Hoang Minh; Cung, Le Xuan; Thanh, Ton Kim; Fujiki, Keiko; Murakami, Akira; Hiratsuka, Yoshimune; Kanai, Atsushi

    2003-08-01

    Mutations in a new carbohydrate sulfotransferase gene (CHST6) encoding corneal N-acetylglucosamine-6-sulfotransferase (C-GlcNac-6-ST) have been identified as the cause of macular corneal dystrophy (MCD) in various ethnicities. This study was conducted to examine the CHST6 gene in Vietnamese with MCD. Nineteen unrelated families, including 35 patients and 38 unaffected relatives were examined clinically. Blood samples were collected. Fifty normal Vietnamese individuals served as control subjects. Genomic DNA was extracted from leukocytes. Analysis of the CHST6 gene was performed with polymerase chain reaction and direct sequencing. Corneal buttons were studied histopathologically. A slit lamp examination revealed clinical features of MCD with gray-white opacities and stromal haze between. On histopathology, corneal sections showed positive staining with colloidal iron. Sequencing of the CHST6 gene revealed six homozygous and three compound heterozygous mutations. The homozygous mutations, including L59P, V66L, R211Q, W232X, Y268C, and 1067-1068ins(GGCCGTG) were detected, respectively, in two, one, eight, one, one, and two families. Compound heterozygous mutations R211Q/Q82X, S51L/Y268C, and Y268C/1067-1068ins(GGCCGTG) were identified, each in one family. A single heterozygous change at codon 76 (GTG-->ATG) was detected in family L, resulting in a valine-to-methionine substitution (V76M). None of these mutations was detected in the control group. Mutations identified in the CHST6 gene cosegregated with the disease phenotype in all but one family studied and thus caused MCD. Among these, the R211Q detected in 9 of 19 families may be the most common mutation in Vietnamese. These data also indicate that significant allelic heterogeneity exists for MCD.

  12. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells.

    PubMed

    Kumari, Daman; Swaroop, Manju; Southall, Noel; Huang, Wenwei; Zheng, Wei; Usdin, Karen

    2015-07-01

    : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings. ©AlphaMed Press.

  13. Deferasirox pharmacokinetics evaluation in a woman with hereditary haemochromatosis and heterozygous β-thalassaemia.

    PubMed

    Allegra, Sarah; De Francia, Silvia; Longo, Filomena; Massano, Davide; Cusato, Jessica; Arduino, Arianna; Pirro, Elisa; Piga, Antonio; D'Avolio, Antonio

    2016-12-01

    We present the deferasirox pharmacokinetics evaluation of a female patient on iron chelation, for the interesting findings from her genetic background (hereditary haemochromatosis and heterozygous β-thalassaemia) and clinical history (ileostomy; iron overload from transfusions). Drug plasma concentrations were measured by an HPLC-UV validated method, before and after ileum resection. Area under deferasirox concentration curve over 24h (AUC) values were determined by the mixed log-linear rule, using Kinetica software. AUC was low also with high deferasirox dose as well as tolerability. Non invasive tissue iron quantification by magnetic resonance imaging or superconducting quantum interference device were prevented by a metal hip replacement. Good efficacy and normalisation of iron markers was obtained on long term. Therapeutic drug monitoring in patient in critical conditions may help to understand reasons for non response and set individualised treatment. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. A heterozygous microdeletion of 20p12.2-3 encompassing PROKR2 and BMP2 in a patient with congenital hypopituitarism and growth hormone deficiency.

    PubMed

    Parsons, Samuel J H; Wright, Neville B; Burkitt-Wright, Emma; Skae, Mars S; Murray, Phillip G

    2017-08-01

    Congenital growth hormone deficiency is a rare disorder with an incidence of approximately 1 in 4,000 live births. Pituitary development is under the control of a multitude of spatiotemporally regulated signaling molecules and transcription factors. Mutations in the genes encoding these molecules can result in hypopituitarism but for the majority of children with congenital hypopituitarism, the aetiology of their disease remains unknown. The proband is a 5-year-old girl who presented with neonatal hypoglycaemia and prolonged jaundice. No definitive endocrine cause of hypoglycaemia was identified in the neonatal period. She was born of normal size at 42 weeks but demonstrated growth failure with a progressive reduction in height to -3.2 SD by age 4.5 years and failed a growth hormone stimulation test with a peak growth hormone of 4.2 mcg/L. MRI of the pituitary gland demonstrated a hypoplastic anterior lobe and ectopic posterior lobe. Array CGH demonstrated an inherited 0.2 Mb gain at 1q21.1 and a de novo 4.8 Mb heterozygous deletion at 20p12.2-3. The deletion contained 17 protein coding genes including PROKR2 and BMP2, both of which are expressed during embryological development of the pituitary gland. PROKR2 mutations have been associated with hypopituitarism but a heterozygous deletion of this gene with hypopituitarism is a novel observation. In conclusion, congenital hypopituitarism can be present in individuals with a 20p12.3 deletion, observed with incomplete penetrance. Array CGH may be a useful investigation in select cases of early onset growth hormone deficiency, and patients with deletions within this region should be evaluated for pituitary hormone deficiencies. © 2017 Wiley Periodicals, Inc.

  15. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    PubMed Central

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  16. Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly.

    PubMed

    Patel, Sagar; Lu, Zhixiu; Jin, Xiaozhu; Swaminathan, Padmapriya; Zeng, Erliang; Fennell, Anne Y

    2018-01-17

    De novo heterozygous assembly is an ongoing challenge requiring improved assembly approaches. In this study, three strategies were used to develop de novo Vitis vinifera 'Sultanina' genome assemblies for comparison with the inbred V. vinifera (PN40024 12X.v2) reference genome and a published Sultanina ALLPATHS-LG assembly (AP). The strategies were: 1) a default PLATANUS assembly (PLAT_d) for direct comparison with AP assembly, 2) an iterative merging strategy using METASSEMBLER to combine PLAT_d and AP assemblies (MERGE) and 3) PLATANUS parameter modifications plus GapCloser (PLAT*_GC). The three new assemblies were greater in size than the AP assembly. PLAT*_GC had the greatest number of scaffolds aligning with a minimum of 95% identity and ≥1000 bp alignment length to V. vinifera (PN40024 12X.v2) reference genome. SNP analysis also identified additional high quality SNPs. A greater number of sequence reads mapped back with zero-mismatch to the PLAT_d, MERGE, and PLAT*_GC (>94%) than was found in the AP assembly (87%) indicating a greater fidelity to the original sequence data in the new assemblies than in AP assembly. A de novo gene prediction conducted using seedless RNA-seq data predicted > 30,000 coding sequences for the three new de novo assemblies, with the greatest number (30,544) in PLAT*_GC and only 26,515 for the AP assembly. Transcription factor analysis indicated good family coverage, but some genes found in the VCOST.v3 annotation were not identified in any of the de novo assemblies, particularly some from  the MYB and ERF families. The PLAT_d and PLAT*_GC had a greater number of synteny blocks with the V. vinifera (PN40024 12X.v2) reference genome than AP or MERGE. PLAT*_GC provided the most contiguous assembly with only 1.2% scaffold N, in contrast to AP (10.7% N), PLAT_d (6.6% N) and Merge (6.4% N). A PLAT*_GC pseudo-chromosome assembly with chromosome alignment to the reference genome V. vinifera, (PN40024 12X.v2) provides new information

  17. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  18. A novel heterozygous intronic mutation in POU1F1 is associated with combined pituitary hormone deficiency.

    PubMed

    Takagi, Masaki; Kamasaki, Hotaka; Yagi, Hiroko; Fukuzawa, Ryuji; Narumi, Satoshi; Hasegawa, Tomonobu

    2017-02-27

    POU class 1 homeobox 1 (POU1F1) regulates pituitary cell-specific gene expression of somatotropes, lactotropes, and thyrotropes. In humans, two POU1F1 isoforms (long and short isoform), which are generated by the alternative use of the splice acceptor site for exon 2, have been identified. To date, more than 30 POU1F1 mutations in patients with combined pituitary hormone deficiency (CPHD) have been described. All POU1F1 variants reported to date affect both the short and long isoforms of the POU1F1 protein; therefore, it is unclear at present whether a decrease in the function of only one of these two isoforms is sufficient for disease onset in humans. Here, we described a sibling case of CPHD carrying a heterozygous mutation in intron 1 of POU1F1. In vitro experiments showed that this mutation resulted in exon 2-skipping of only in the short isoform of POU1F1, while the long isoform remained intact. This result strongly suggests the possibility, for the first time, that isolated mutations in the short isoform of POU1F1 could be sufficient for induction of POU1F1-related CPHD. This finding improves our understanding of the molecular mechanisms, and developmental course associated with mutations in POU1F1.

  19. Heterozygous deletion of FOXA2 segregates with disease in a family with heterotaxy, panhypopituitarism, and biliary atresia.

    PubMed

    Tsai, Ellen A; Grochowski, Christopher M; Falsey, Alexandra M; Rajagopalan, Ramakrishnan; Wendel, Danielle; Devoto, Marcella; Krantz, Ian D; Loomes, Kathleen M; Spinner, Nancy B

    2015-06-01

    Biliary atresia (BA) is a pediatric cholangiopathy with unknown etiology occurring in isolated and syndromic forms. Laterality defects affecting the cardiovascular and gastrointestinal systems are the most common features present in syndromic BA. Most cases are sporadic, although reports of familial cases have led to the hypothesis of genetic susceptibility in some patients. We identified a child with BA, malrotation, and interrupted inferior vena cava whose father presented with situs inversus, polysplenia, panhypopituitarism, and mildly dysmorphic facial features. Chromosomal microarray analysis demonstrated a 277 kb heterozygous deletion on chromosome 20, which included a single gene, FOXA2, in the proband and her father. This deletion was confirmed to be de novo in the father. The proband and her father share a common diagnosis of heterotaxy, but they also each presented with a variety of other issues. Further genetic screening revealed that the proband carried an additional protein-altering polymorphism (rs1904589; p.His165Arg) in the NODAL gene that is not present in the father, and this variant has been shown to decrease expression of the gene. As FOXA2 can be a regulator of NODAL expression, we propose that haploinsufficiency for FOXA2 combined with a decreased expression of NODAL is the likely cause for syndromic BA in this proband. © 2015 WILEY PERIODICALS, INC.

  20. Cytomorphologic signs of severe pernicious anemia obscured in a patient with heterozygous hemoglobin Stanleyville II.

    PubMed

    Draube, Andreas; Chemnitz, Jens M; Wickenhauser, Claudia; Staib, Peter; Hallek, Michael; Kreuzer, Karl-Anton

    2007-10-01

    Here, we report a rare coincidence of heterozygous hemoglobinopathy (Hb) Stanleyville II and severe pernicious anemia due to autoimmune gastritis. Hb Stanleyville II is characterized by a single base exchange (AAC-->AAA) resulting in a substitution Asn --> Lys at position 78 of hemoglobin alpha2-chain. Under normal conditions this hemoglobinopathy does not cause any symptoms even if present as homozygous variant. However, in our case diagnosis of pernicious anemia was hampered by the absence of typical erythrocytic macrocytosis and hyperchromasia. In addition, interpretation of bone marrow smears was difficult as characteristic findings for pernicious anemia were little pronounced. All known reasons for the absence of typical cytomorphologic signs in pernicious anemia as underlying iron deficiency and thalassemia could be excluded.

  1. Independent Community Pharmacists' Perspectives on Compounding in Contemporary Pharmacy Education

    PubMed Central

    McPherson, Timothy B.; Fontane, Patrick E.; Berry, Tricia; Chereson, Rasma; Bilger, Rhonda

    2009-01-01

    Objectives To identify compounding practices of independent community pharmacy practitioners in order to make recommendations for the development of curricular objectives for doctor of pharmacy (PharmD) programs. Methods Independent community practitioners were asked about compounding regarding their motivations, common activities, educational exposures, and recommendations for PharmD education. Results Most respondents (69%) accepted compounding as a component of pharmaceutical care and compounded dermatological preparations for local effects, oral solutions, and suspensions at least once a week. Ninety-five percent were exposed to compounding in required pharmacy school courses and most (98%) who identified compounding as a professional service offered in their pharmacy sought additional postgraduate compounding education. Regardless of the extent of compounding emphasis in the practices surveyed, 84% stated that PharmD curricula should include compounding. Conclusions Pharmacy schools should define compounding curricular objectives and develop compounding abilities in a required laboratory course to prepare graduates for pharmaceutical care practice. PMID:19564997

  2. Whole-exome sequencing revealed two novel mutations in Usher syndrome.

    PubMed

    Koparir, Asuman; Karatas, Omer Faruk; Atayoglu, Ali Timucin; Yuksel, Bayram; Sagiroglu, Mahmut Samil; Seven, Mehmet; Ulucan, Hakan; Yuksel, Adnan; Ozen, Mustafa

    2015-06-01

    Usher syndrome is a clinically and genetically heterogeneous autosomal recessive inherited disorder accompanied by hearing loss and retinitis pigmentosa (RP). Since the associated genes are various and quite large, we utilized whole-exome sequencing (WES) as a diagnostic tool to identify the molecular basis of Usher syndrome. DNA from a 12-year-old male diagnosed with Usher syndrome was analyzed by WES. Mutations detected were confirmed by Sanger sequencing. The pathogenicity of these mutations was determined by in silico analysis. A maternally inherited deleterious frameshift mutation, c.14439_14454del in exon 66 and a paternally inherited non-sense c.10830G>A stop-gain SNV in exon 55 of USH2A were found as two novel compound heterozygous mutations. Both of these mutations disrupt the C terminal of USH2A protein. As a result, WES revealed two novel compound heterozygous mutations in a Turkish USH2A patient. This approach gave us an opportunity to have an appropriate diagnosis and provide genetic counseling to the family within a reasonable time. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Discovery of Novel Anti-prion Compounds Using In Silico and In Vitro Approaches

    PubMed Central

    Hyeon, Jae Wook; Choi, Jiwon; Kim, Su Yeon; Govindaraj, Rajiv Gandhi; Jam Hwang, Kyu; Lee, Yeong Seon; An, Seong Soo A.; Lee, Myung Koo; Joung, Jong Young; No, Kyoung Tai; Lee, Jeongmin

    2015-01-01

    Prion diseases are associated with the conformational conversion of the physiological form of cellular prion protein (PrPC) to the pathogenic form, PrPSc. Compounds that inhibit this process by blocking conversion to the PrPSc could provide useful anti-prion therapies. However, no suitable drugs have been identified to date. To identify novel anti-prion compounds, we developed a combined structure- and ligand-based virtual screening system in silico. Virtual screening of a 700,000-compound database, followed by cluster analysis, identified 37 compounds with strong interactions with essential hotspot PrP residues identified in a previous study of PrPC interaction with a known anti-prion compound (GN8). These compounds were tested in vitro using a multimer detection system, cell-based assays, and surface plasmon resonance. Some compounds effectively reduced PrPSc levels and one of these compounds also showed a high binding affinity for PrPC. These results provide a promising starting point for the development of anti-prion compounds. PMID:26449325

  4. Mutation in the nuclear-encoded mitochondrial isoleucyl-tRNA synthetase IARS2 in patients with cataracts, growth hormone deficiency with short stature, partial sensorineural deafness, and peripheral neuropathy or with Leigh syndrome.

    PubMed

    Schwartzentruber, Jeremy; Buhas, Daniela; Majewski, Jacek; Sasarman, Florin; Papillon-Cavanagh, Simon; Thiffault, Isabelle; Thiffaut, Isabelle; Sheldon, Katherine M; Massicotte, Christine; Patry, Lysanne; Simon, Mariella; Zare, Amir S; McKernan, Kevin J; Michaud, Jacques; Boles, Richard G; Deal, Cheri L; Desilets, Valerie; Shoubridge, Eric A; Samuels, Mark E

    2014-11-01

    Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations. © 2014 WILEY PERIODICALS, INC.

  5. A novel DARS2 mutation in a Japanese patient with leukoencephalopathy with brainstem and spinal cord involvement but no lactate elevation

    PubMed Central

    Shimojima, Keiko; Higashiguchi, Takafumi; Kishimoto, Kanako; Miyatake, Satoko; Miyake, Noriko; Takanashi, Jun-ichi; Matsumoto, Naomichi; Yamamoto, Toshiyuki

    2017-01-01

    The mitochondrial aspartyl-tRNA synthetase 2 gene (DARS2) is responsible for leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL). A Japanese patient with LBSL showed compound heterozygous DARS2 mutations c.358_359delinsTC (p.Gly120Ser) and c.228-15C>G (splicing error). This provides further evidence that most patients with LBSL show compound heterozygous mutations in DARS2 in association with a common splicing mutation in the splicing acceptor site of intron 2. PMID:29138691

  6. A heterozygous mutation in RPGR associated with X-linked retinitis pigmentosa in a patient with Turner syndrome mosaicism (45,X/46,XX).

    PubMed

    Zhou, Qi; Yao, Fengxia; Wang, Feng; Li, Hui; Chen, Rui; Sui, Ruifang

    2018-01-01

    Turner syndrome with retinitis pigmentosa (RP) is rare, with only three cases reported based on clinical examination alone. We summarized the 4-year follow-up and molecular findings in a 28-year-old patient with Turner syndrome and the typical features of short stature and neck webbing, who also had X-linked RP. Her main complaints were night blindness and progressive loss of vision since the age of 9 years. Ophthalmologic examination, optical coherent tomographic imaging, and visual electrophysiology tests showed classic manifestations of RP. The karyotype of peripheral blood showed mosaicism (45,X [72%]/46,XX[28%]). A novel heterozygous frameshift mutation (c.2403_2406delAGAG, p.T801fsX812) in the RP GTPase regulator (RPGR) gene was detected using next generation sequencing and validated by Sanger sequencing. We believe that this is the first report of X-linked RP in a patient with Turner syndrome associated with mosaicism, and an RPGR heterozygous mutation. We hypothesize that X-linked RP in this woman is not related to Turner syndrome, but may be a manifestation of the lack of a normal paternal X chromosome with intact but mutated RPGR. © 2017 Wiley Periodicals, Inc.

  7. Identification of two novel pathogenic compound heterozygous MYO7A mutations in Usher syndrome by whole exome sequencing.

    PubMed

    Jia, Ying; Li, Xiaoge; Yang, Dong; Xu, Yi; Guo, Ying; Li, Xin

    2018-01-01

    The current study aims to identify the pathogenic sites in a core pedigree of Usher syndrome (USH). A core pedigree of USH was analyzed by whole exome sequencing (WES). Mutations were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing. Two pathogenic variations (c.849+2T>C and c.5994G>A) in MYO7A were successfully identified and individually separated from parents. One variant (c.849+2T>C) was nonsense mutation, causing the protein terminated in advance, and the other one (c.5994G>A) located near the boundary of exon could cause aberrant splicing. This study provides a meaningful exploration for identification of clinical core genetic pedigrees. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (Citrus unshiu Marc.) Using a Hybrid Assembly Approach

    PubMed Central

    Shimizu, Tokurou; Tanizawa, Yasuhiro; Mochizuki, Takako; Nagasaki, Hideki; Yoshioka, Terutaka; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu

    2017-01-01

    Satsuma (Citrus unshiu Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma (“Miyagawa Wase”) was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome. PMID:29259619

  9. Draft Sequencing of the Heterozygous Diploid Genome of Satsuma (Citrus unshiu Marc.) Using a Hybrid Assembly Approach.

    PubMed

    Shimizu, Tokurou; Tanizawa, Yasuhiro; Mochizuki, Takako; Nagasaki, Hideki; Yoshioka, Terutaka; Toyoda, Atsushi; Fujiyama, Asao; Kaminuma, Eli; Nakamura, Yasukazu

    2017-01-01

    Satsuma ( Citrus unshiu Marc.) is one of the most abundantly produced mandarin varieties of citrus, known for its seedless fruit production and as a breeding parent of citrus. De novo assembly of the heterozygous diploid genome of Satsuma ("Miyagawa Wase") was conducted by a hybrid assembly approach using short-read sequences, three mate-pair libraries, and a long-read sequence of PacBio by the PLATANUS assembler. The assembled sequence, with a total size of 359.7 Mb at the N 50 length of 386,404 bp, consisted of 20,876 scaffolds. Pseudomolecules of Satsuma constructed by aligning the scaffolds to three genetic maps showed genome-wide synteny to the genomes of Clementine, pummelo, and sweet orange. Gene prediction by modeling with MAKER-P proposed 29,024 genes and 37,970 mRNA; additionally, gene prediction analysis found candidates for novel genes in several biosynthesis pathways for gibberellin and violaxanthin catabolism. BUSCO scores for the assembled scaffold and predicted transcripts, and another analysis by BAC end sequence mapping indicated the assembled genome consistency was close to those of the haploid Clementine, pummel, and sweet orange genomes. The number of repeat elements and long terminal repeat retrotransposon were comparable to those of the seven citrus genomes; this suggested no significant failure in the assembly at the repeat region. A resequencing application using the assembled sequence confirmed that both kunenbo-A and Satsuma are offsprings of Kishu, and Satsuma is a back-crossed offspring of Kishu. These results illustrated the performance of the hybrid assembly approach and its ability to construct an accurate heterozygous diploid genome.

  10. The Compositional HJ-Biplot—A New Approach to Identifying the Links among Bioactive Compounds of Tomatoes

    PubMed Central

    Hernández Suárez, Marcos; Molina Pérez, Daniel; Rodríguez-Rodríguez, Elena M.; Díaz Romero, Carlos; Espinosa Borreguero, Francisco; Galindo-Villardón, Purificación

    2016-01-01

    Tomatoes have been described as a functional food because of their particular composition of different bioactive compounds. In this study, the proximate composition, minerals and trace elements, and antioxidant compounds were determined in two tomato cultivars (Mariana and Dunkan) that were grown in Gran Canaria (Spain) either conventionally or hydroponically. Although compositional data of this type require being subjected to the specific statistical techniques of compositional analysis, this approach has not usually been considered in this context. In the present case, a compositional Mann–Whitney U test of the data showed significant differences for each factor (cultivar and cultivation system) in several of the compositional variables studied. For the differences between cultivars, these parameters were the protein, Mg, lycopene, ascorbic acid, citric acid, and fumaric acid contents. For the differences between cultivation systems, they were mainly those of the mineral and trace elements group. Although one-year data are insufficient to make clear relationship among compounds because more repetitions in several localities and years are necessary, the compositional HJ-biplot (in which the links provide estimates of the linear relationship among variables) results agreed with other scientific results about linear relationship among some compounds analyzed. PMID:27827839

  11. Late-onset severe chronic active EBV in a patient for five years with mutations in STXBP2 (MUNC18-2) and PRF1 (perforin 1).

    PubMed

    Cohen, Jeffrey I; Niemela, Julie E; Stoddard, Jennifer L; Pittaluga, Stefania; Heslop, Helen; Jaffe, Elaine S; Dowdell, Kennichi

    2015-07-01

    Severe chronic active Epstein-Barr virus (CAEBV) disease is defined as a severe progressive illness lasting 6 months or longer with infiltration of tissues with EBV-positive lymphocytes, markedly elevated levels of EBV DNA in the blood, and no known immunodeficiency such as HIV. These patients usually have fever, splenomegaly, lymphadenopathy, and may have markedly elevated EBV antibody titers to viral capsid antigen. Although the cause of most cases of severe CAEBV is unknown, one well-documented case was associated with compound heterozygous mutations in PRF1 (perforin 1). Here we report a patient with prolonged severe CAEBV who underwent bone marrow transplant for his disease and subsequently was found to have compound heterozygous mutations in STXBP2 (MUNC18-2) as well as a heterozygous mutation in PRF1 (perforin 1).

  12. Late-onset Severe Chronic Active EBV in a Patient for Five Years with Mutations in STXBP2 (MUNC18-2) and PRF1 (Perforin 1)

    PubMed Central

    Cohen, Jeffrey I.; Niemela, Julie E.; Stoddard, Jennifer L.; Pittaluga, Stefania; Heslop, Helen; Jaffe, Elaine S.; Dowdell, Kennichi

    2015-01-01

    Severe chronic active Epstein-Barr virus (CAEBV) disease is defined as a severe progressive illness lasting 6 months or longer with infiltration of tissues with EBV-positive lymphocytes, markedly elevated levels of EBV DNA in the blood, and no known immunodeficiency such as HIV. These patients usually have fever, splenomegaly, lymphadenopathy, and may have markedly elevated EBV antibody titers to viral capsid antigen. Although the cause of most cases of severe CAEBV is unknown, one well-documented case was associated with compound heterozygous mutations in PRF1 (perforin 1). Here we report a patient with prolonged severe CAEBV who underwent bone marrow transplant for his disease and subsequently was found to have compound heterozygous mutations in STXBP2 (MUNC18-2) as well as a heterozygous mutation in PRF1 (perforin 1). PMID:25947952

  13. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure.

    PubMed

    McClay, Joseph L; Adkins, Daniel E; Vunck, Sarah A; Batman, Angela M; Vann, Robert E; Clark, Shaunna L; Beardsley, Patrick M; van den Oord, Edwin J C G

    2013-04-01

    Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate ( p = 4.4 × 10 -5 , q = 0.013), tryptophan ( p = 7.0 × 10 -4 , q = 0.035) and 2-hydroxyglutarate ( p = 1.1 × 10 -4 , q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate ( p = 3.8 × 10 -7 ). Associations specific to repeated (5 day) MA exposure included phosphocholine ( p = 4.0 × 10 -4 , q = 0.087) and ergothioneine ( p = 3.0 × 10 -4 , q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects.

  14. Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure

    PubMed Central

    Adkins, Daniel E.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Beardsley, Patrick M.; van den Oord, Edwin J. C. G.

    2012-01-01

    Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate (p = 4.4 × 10−5, q = 0.013), tryptophan (p = 7.0 × 10−4, q = 0.035) and 2-hydroxyglutarate (p = 1.1 × 10−4, q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate (p = 3.8 × 10−7). Associations specific to repeated (5 day) MA exposure included phosphocholine (p = 4.0 × 10−4, q = 0.087) and ergothioneine (p = 3.0 × 10−4, q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects. PMID:23554582

  15. Chemical compounds from Chenopodium album Linn.

    NASA Astrophysics Data System (ADS)

    Zheng, Wei

    2017-06-01

    Bioactive components from Chenopodium album Linn. were isolated and identified in this research. Light petroleum, dichloromethane and n-BuOH were firstly applied to partition the 75% EtOH extract of Chenopodium album Linn. which were then subjected to normal-phase silica, ODS silica gel column chromatography and semi-preparative HPLC chromatography. By the employment of NMR method in this study, chemical structures of the compounds were elucidated. Three known compounds were isolated from Chenopodium album Linn., and identified as Isolariciresinol 4-O-β-D-glucopyranoside (1), (7’S, 8R, 8’R)-Isolariciresinol (2) and (7’S, 8R, 8’S)-Isolariciresinol (3) by comparison of their spectral data with references. This is the first time that isolation of the compounds mentioned above from Chenopodium album Linn. was achieved.

  16. Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene

    PubMed Central

    Barrett, Timothy; Stals, Karen; Shield, Julian P; Ellard, Sian; Ferrer, Jorge; Hattersley, Andrew T

    2007-01-01

    Background Macrosomia is associated with considerable neonatal and maternal morbidity. Factors that predict macrosomia are poorly understood. The increased rate of macrosomia in the offspring of pregnant women with diabetes and in congenital hyperinsulinaemia is mediated by increased foetal insulin secretion. We assessed the in utero and neonatal role of two key regulators of pancreatic insulin secretion by studying birthweight and the incidence of neonatal hypoglycaemia in patients with heterozygous mutations in the maturity-onset diabetes of the young (MODY) genes HNF4A (encoding HNF-4α) and HNF1A/TCF1 (encoding HNF-1α), and the effect of pancreatic deletion of Hnf4a on foetal and neonatal insulin secretion in mice. Methods and Findings We examined birthweight and hypoglycaemia in 108 patients from families with diabetes due to HNF4A mutations, and 134 patients from families with HNF1A mutations. Birthweight was increased by a median of 790 g in HNF4A-mutation carriers compared to non-mutation family members (p < 0.001); 56% (30/54) of HNF4A-mutation carriers were macrosomic compared with 13% (7/54) of non-mutation family members (p < 0.001). Transient hypoglycaemia was reported in 8/54 infants with heterozygous HNF4A mutations, but was reported in none of 54 non-mutation carriers (p = 0.003). There was documented hyperinsulinaemia in three cases. Birthweight and prevalence of neonatal hypoglycaemia were not increased in HNF1A-mutation carriers. Mice with pancreatic β-cell deletion of Hnf4a had hyperinsulinaemia in utero and hyperinsulinaemic hypoglycaemia at birth. Conclusions HNF4A mutations are associated with a considerable increase in birthweight and macrosomia, and are a novel cause of neonatal hypoglycaemia. This study establishes a key role for HNF4A in determining foetal birthweight, and uncovers an unanticipated feature of the natural history of HNF4A-deficient diabetes, with hyperinsulinaemia at birth evolving to decreased insulin secretion and

  17. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD.

    PubMed

    Tian, Guoling; Huang, Melissa C; Parvari, Ruti; Diaz, George A; Cowan, Nicholas J

    2006-09-05

    Microtubules are indispensable dynamic structures that contribute to many essential biological functions. Assembly of the native alpha/beta tubulin heterodimer, the subunit that polymerizes to form microtubules, requires the participation of several molecular chaperones, namely prefoldin, the cytosolic chaperonin CCT, and a series of five tubulin-specific chaperones termed cofactors A-E (TBCA-E). Among these, TBCC, TBCD, and TBCE are essential in higher eukaryotes; they function together as a multimolecular machine that assembles quasinative CCT-generated alpha- and beta-tubulin polypeptides into new heterodimers. Deletion and truncation mutations in the gene encoding TBCE have been shown to cause the rare autosomal recessive syndrome known as HRD, a devastating disorder characterized by congenital hypoparathyroidism, mental retardation, facial dysmorphism, and extreme growth failure. Here we identify cryptic translational initiation at each of three out-of-frame AUG codons upstream of the genetic lesion as a unique mechanism that rescues a mutant HRD allele by producing a functional TBCE protein. Our data explain how afflicted individuals, who would otherwise lack the capacity to make functional TBCE, can survive and point to a limiting capacity to fold tubulin heterodimers de novo as a contributing factor to disease pathogenesis.

  18. Cryptic out-of-frame translational initiation of TBCE rescues tubulin formation in compound heterozygous HRD

    PubMed Central

    Tian, Guoling; Huang, Melissa C.; Parvari, Ruti; Diaz, George A.; Cowan, Nicholas J.

    2006-01-01

    Microtubules are indispensable dynamic structures that contribute to many essential biological functions. Assembly of the native α/β tubulin heterodimer, the subunit that polymerizes to form microtubules, requires the participation of several molecular chaperones, namely prefoldin, the cytosolic chaperonin CCT, and a series of five tubulin-specific chaperones termed cofactors A–E (TBCA–E). Among these, TBCC, TBCD, and TBCE are essential in higher eukaryotes; they function together as a multimolecular machine that assembles quasinative CCT-generated α- and β-tubulin polypeptides into new heterodimers. Deletion and truncation mutations in the gene encoding TBCE have been shown to cause the rare autosomal recessive syndrome known as HRD, a devastating disorder characterized by congenital hypoparathyroidism, mental retardation, facial dysmorphism, and extreme growth failure. Here we identify cryptic translational initiation at each of three out-of-frame AUG codons upstream of the genetic lesion as a unique mechanism that rescues a mutant HRD allele by producing a functional TBCE protein. Our data explain how afflicted individuals, who would otherwise lack the capacity to make functional TBCE, can survive and point to a limiting capacity to fold tubulin heterodimers de novo as a contributing factor to disease pathogenesis. PMID:16938882

  19. Workers make the queens in melipona bees: identification of geraniol as a caste determining compound from labial glands of nurse bees.

    PubMed

    Jarau, Stefan; van Veen, Johan W; Twele, Robert; Reichle, Christian; Gonzales, Eduardo Herrera; Aguilar, Ingrid; Francke, Wittko; Ayasse, Manfred

    2010-06-01

    Reproductive division of labor in advanced eusocial honey bees and stingless bees is based on the ability of totipotent female larvae to develop into either workers or queens. In nearly all species, caste is determined by larval nutrition. However, the mechanism that triggers queen development in Melipona bees is still unresolved. Several hypotheses have been proposed, ranging from the proximate (a genetic determination of caste development) to the ultimate (a model in which larvae have complete control over their own caste fate). Here, we showed that the addition of geraniol, the main compound in labial gland secretions of nurse workers, to the larval food significantly increases the number of larvae that develop into queens. Interestingly, the proportion of queens in treated brood exactly matched the value (25%) predicted by the two-locus, two-allele model of genetic queen determination, in which only females that are heterozygous at both loci are capable of developing into queens. We conclude that labial gland secretions, added to the food of some cells by nurse bees, trigger queen development, provided that the larvae are genetically predisposed towards this developmental pathway. In Melipona beecheii, geraniol acts as a primer pheromone representing the first caste determination substance identified to date.

  20. Could Heterozygous Beta Thalassemia Provide Protection Against Multiple Sclerosis?

    PubMed Central

    Cikrikcioglu, Mehmet Ali; Ozcan, Muhammed Emin; Halac, Gulistan; Gultepe, Ilhami; Celik, Kenan; Sekin, Yahya; Eser, Elif Ece; Burhan, Sebnem; Cetin, Guven; Uysal, Omer

    2016-01-01

    Background Heterozygous beta thalassemia (HBT) has been proposed to increase the risk of developing autoimmune disease. Our aim in this study was to examine the prevalence of HBT among multiple sclerosis (MS) patients. Material/Methods HBT frequency was investigated in our MS group (243 patients with MS). Hemoglobin electrophoresis (HE) was carried out if MS patients had a mean corpuscular volume of (MCV) <80 fL and a mean corpuscular hemoglobin level of (MCH) <27 pg/L according to a complete blood count (CBC). If MCV was lower than 80 fL, MCH was lower than 27 pg/L, and Hemoglobin A2 equal to or higher than 3.5%, a diagnosis of HBT was established. The frequency of patients with HBT in our MS patient group was statistically compared with the prevalence of HBT in the city of Istanbul, where our MS patients lived. Results The HBT prevalence was 0.823% (2 patients) in the MS patient group. The prevalence of HBT in Istanbul has been reported to be 4.5%. According to the z-test, the HBT prevalence in our MS patient group was significantly lower than that in Istanbul (Z=6.3611, two-sided p value <0.0001, 95% confidence interval of prevalence of HBT in our MS patient group: 0.000998–0.029413). Conclusions Contrary to our hypothesis at the outset of study, the reduced HBT prevalence in the MS group compared to HBT frequency in the city of Istanbul might indicate that HBT is protective against MS. PMID:27941710

  1. Meier–Gorlin syndrome genotype–phenotype studies: 35 individuals with pre-replication complex gene mutations and 10 without molecular diagnosis

    PubMed Central

    de Munnik, Sonja A; Bicknell, Louise S; Aftimos, Salim; Al-Aama, Jumana Y; van Bever, Yolande; Bober, Michael B; Clayton-Smith, Jill; Edrees, Alaa Y; Feingold, Murray; Fryer, Alan; van Hagen, Johanna M; Hennekam, Raoul C; Jansweijer, Maaike C E; Johnson, Diana; Kant, Sarina G; Opitz, John M; Ramadevi, A Radha; Reardon, Willie; Ross, Alison; Sarda, Pierre; Schrander-Stumpel, Constance T R M; Schoots, Jeroen; Temple, I Karen; Terhal, Paulien A; Toutain, Annick; Wise, Carol A; Wright, Michael; Skidmore, David L; Samuels, Mark E; Hoefsloot, Lies H; Knoers, Nine V A M; Brunner, Han G; Jackson, Andrew P; Bongers, Ernie M H F

    2012-01-01

    Meier–Gorlin syndrome (MGS) is an autosomal recessive disorder characterized by microtia, patellar aplasia/hypoplasia, and short stature. Recently, mutations in five genes from the pre-replication complex (ORC1, ORC4, ORC6, CDT1, and CDC6), crucial in cell-cycle progression and growth, were identified in individuals with MGS. Here, we report on genotype–phenotype studies in 45 individuals with MGS (27 females, 18 males; age 3 months–47 years). Thirty-five individuals had biallelic mutations in one of the five causative pre-replication genes. No homozygous or compound heterozygous null mutations were detected. In 10 individuals, no definitive molecular diagnosis was made. The triad of microtia, absent/hypoplastic patellae, and short stature was observed in 82% of individuals with MGS. Additional frequent clinical features were mammary hypoplasia (100%) and abnormal genitalia (42% predominantly cryptorchidism and hypoplastic labia minora/majora). One individual with ORC1 mutations only had short stature, emphasizing the highly variable clinical spectrum of MGS. Individuals with ORC1 mutations had significantly shorter stature and smaller head circumferences than individuals from other gene categories. Furthermore, compared with homozygous missense mutations, compound heterozygous mutations appeared to have a more severe effect on phenotype, causing more severe growth retardation in ORC4 and more frequently pulmonary emphysema in CDT1. A lethal phenotype was seen in four individuals with compound heterozygous ORC1 and CDT1 mutations. No other clear genotype–phenotype association was observed. Growth hormone and estrogen treatment may be of some benefit, respectively, to growth retardation and breast hypoplasia, though further studies in this patient group are needed. PMID:22333897

  2. Interleukin 2 production in a family with systemic lupus erythematosus and a C4Q0 heterozygous inheritance.

    PubMed Central

    Gutierrez, C; Cabrero, E; Vicario, J L; Martín Villa, M; Rengel, M A; Gomez Campdera, F J; Yebra, M; Fernández-Cruz, E; Arnaiz Villena, A

    1991-01-01

    Interleukin 2 production was studied in a family with systemic lupus erythematosus (SLE) and a C4Q0 heterozygous inheritance. Autoimmune manifestations seemed to be associated with the HLA haplotype containing the C4Q0 allele, which was shared by all four ill family members. Concentrations of interleukin 2, however, did not associate either with the haplotype or with the clinical or serological manifestations, as diminished concentrations of interleukin 2 were found in only two subjects with SLE. Thus the defect in this family seemed to be acquired rather than genetically conditioned. PMID:1888202

  3. Sickle cell disease caused by Hb S/Québec-CHORI: treatment with hydroxyurea and response.

    PubMed

    Tubman, Venée N; Bennett, Carolyn M; Luo, Hong-yuan; Chui, David H K; Heeney, Matthew M

    2007-08-01

    Sickle hemoglobin (Hb S;betaGlu 6 Val) is due to an A>T transversion in codon 6 of the beta-globin gene. Other variant hemoglobins mimic Hb A, S, or C on newborn screening and clinical laboratory diagnostic tools, thus making their correct identification potentially difficult. Sickling disorders can result in individuals who are compound heterozygous for beta-globin mutations (e.g., Hb SC, HbSO(Arab)). The authors report a second case of HbS/Québec-CHORI, a severe compound heterozygous sickling disorder and their experience managing this patient with hydroxyurea.

  4. Nonaminoglycoside compounds induce readthrough of nonsense mutations

    PubMed Central

    Damoiseaux, Robert; Nahas, Shareef; Gao, Kun; Hu, Hailiang; Pollard, Julianne M.; Goldstine, Jimena; Jung, Michael E.; Henning, Susanne M.; Bertoni, Carmen

    2009-01-01

    Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ∼34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein. PMID:19770270

  5. Identification of low-molecular-weight compounds inhibiting growth of corynebacteria: potential lead compounds for antibiotics.

    PubMed

    Stark, Jaime L; Copeland, Jennifer C; Eletsky, Alexander; Somerville, Greg A; Szyperski, Thomas; Powers, Robert

    2014-02-01

    The bacterial genus Corynebacteria contains several pathogenic species that cause diseases such as diphtheria in humans and "cheesy gland" in goats and sheep. Thus, identifying new therapeutic targets to treat Corynebacteria infections is both medically and economically important. CG2496, a functionally uncharacterized protein from Corynebacterium glutamicum, was evaluated using an NMR ligand-affinity screen. A total of 11 compounds from a library of 460 biologically active compounds were shown to selectively bind CG2496 in a highly conserved region of the protein. The best binder was identified to be methiothepin (KD =54 ± 19 µM), an FDA-approved serotonin receptor antagonist. Methiothepin was also shown to inhibit the growth of C. glutamicum, but not bacteria that lack CG2496 homologs. Our results suggest that CG2496 is a novel therapeutic target and methiothepin is a potential lead compound or structural scaffold for developing new antibiotics specifically targeting Corynebacteria. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt–Jakob disease

    PubMed Central

    Bishop, Matthew T.; Diack, Abigail B.; Ritchie, Diane L.; Ironside, James W.; Will, Robert G.

    2013-01-01

    Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and

  7. Dent Disease in Chinese Children and Findings from Heterozygous Mothers: Phenotypic Heterogeneity, Fetal Growth, and 10 Novel Mutations.

    PubMed

    Li, Fucheng; Yue, Zhihui; Xu, Tingting; Chen, Minghui; Zhong, Liangying; Liu, Ting; Jing, Xiangyi; Deng, Jia; Hu, Bin; Liu, Yuling; Wang, Haiyan; Lai, Kar N; Sun, Liangzhong; Liu, Jinsong; Maxwell, Patrick H; Wang, Yiming

    2016-07-01

    To characterize the phenotypes of Dent disease in Chinese children and their heterozygous mothers and to establish genetic diagnoses. Using a modified protocol, we screened 1288 individuals with proteinuria. A diagnosis of Dent disease was established in 19 boys from 16 families by the presence of loss of function/deleterious mutations in CLCN5 or OCRL1. We also analyzed 16 available patients' mothers and examined their pregnancy records. We detected 14 loss of function/deleterious mutations of CLCN5 in 15 boys and 2 mutations of OCRL1 in 4 boys. Of the patients, 16 of 19 had been wrongly diagnosed with other diseases and 11 of 19 had incorrect or unnecessary treatment. None of the patients, but 6 of 14 mothers, had nephrocalcinosis or nephrolithiasis at diagnosis. Of the patients, 8 of 14 with Dent disease 1 were large for gestational age (>90th percentile); 8 of 15 (53.3%) had rickets. We also present predicted structural changes for 4 mutant proteins. Pediatric Dent disease often is misdiagnosed; genetic testing achieves a correct diagnosis. Nephrocalcinosis or nephrolithiasis may not be sensitive diagnostic criteria. We identified 10 novel mutations in CLCN5 and OCRL1. The possibility that altered CLCN5 function could affect fetal growth and a possible link between a high rate of rickets and low calcium intake are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Two Variants in SLC24A5 Are Associated with “Tiger-Eye” Iris Pigmentation in Puerto Rican Paso Fino Horses

    PubMed Central

    Mack, Maura; Kowalski, Elizabeth; Grahn, Robert; Bras, Dineli; Penedo, Maria Cecilia T.; Bellone, Rebecca

    2017-01-01

    A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10−5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse. PMID:28655738

  9. Cdc25B Dual-Specificity Phosphatase Inhibitors Identified in a High-Throughput Screen of the NIH Compound Library

    PubMed Central

    Foster, Caleb A.; Tierno, Marni Brisson; Shun, Tong Ying; Shinde, Sunita N.; Paquette, William D.; Brummond, Kay M.; Wipf, Peter; Lazo, John S.

    2009-01-01

    Abstract The University of Pittsburgh Molecular Library Screening Center (Pittsburgh, PA) conducted a screen with the National Institutes of Health compound library for inhibitors of in vitro cell division cycle 25 protein (Cdc25) B activity during the pilot phase of the Molecular Library Screening Center Network. Seventy-nine (0.12%) of the 65,239 compounds screened at 10 μM met the active criterion of ≥50% inhibition of Cdc25B activity, and 25 (31.6%) of these were confirmed as Cdc25B inhibitors with 50% inhibitory concentration (IC50) values <50 μM. Thirteen of the Cdc25B inhibitors were represented by singleton chemical structures, and 12 were divided among four clusters of related structures. Thirteen (52%) of the Cdc25B inhibitor hits were quinone-based structures. The Cdc25B inhibitors were further characterized in a series of in vitro secondary assays to confirm their activity, to determine their phosphatase selectivity against two other dual-specificity phosphatases, mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-3, and to examine if the mechanism of Cdc25B inhibition involved oxidation and inactivation. Nine Cdc25B inhibitors did not appear to affect Cdc25B through a mechanism involving oxidation because they did not generate detectable amounts of H2O2 in the presence of dithiothreitol, and their Cdc25B IC50 values were not significantly affected by exchanging the dithiothreitol for β-mercaptoethanol or reduced glutathione or by adding catalase to the assay. Six of the nonoxidative hits were selective for Cdc25B inhibition versus MKP-1 and MKP-3, but only the two bisfuran-containing hits, PubChem substance identifiers 4258795 and 4260465, significantly inhibited the growth of human MBA-MD-435 breast and PC-3 prostate cancer cell lines. To confirm the structure and biological activity of 4260465, the compound was resynthesized along with two analogs. Neither of the substitutions to the two analogs was tolerated, and only the

  10. Variable haematological and clinical presentation of β-thalassaemia carriers and homozygotes with the Poly A (T→C) mutation in the Indian population.

    PubMed

    Italia, Khushnooma; Sawant, Pratibha; Surve, Reema; Wadia, Marukh; Nadkarni, Anita; Ghosh, Kanjaksha; Colah, Roshan

    2012-08-01

    To study the varied clinical and haematological profile of β-thalassaemia homozygotes, compound heterozygotes and heterozygotes with the Poly A (T→C) mutation and its implication in prenatal diagnosis. Forty individuals were included in the study. Peripheral smear examination, complete blood count and haemoglobin analysis were carried out. β-thalassaemia mutation analysis was carried out by reverse-dot-blot hybridization, amplification refractory mutation system and DNA sequencing of the β-globin gene. Five of the six β-thalassaemia homozygotes with the Poly A (T→C) mutation and five individuals who were compound heterozygous for the Poly A (T→C) mutation along with another common Indian β-thalassaemia mutation showed a severe β-thalassaemia major phenotype, while one individual presented as a thalassaemia intermedia. Majority of the 28 heterozygous individuals with this mutation showed borderline HbA₂ (mean HbA₂ = 3.7 ± 0.4%) levels as compared to individuals with common β-thalassaemia mutations (mean HbA₂ = 5.2 ± 1.4%). The Mean Corpuscular Volume (MCV) levels in individuals heterozygous for the Poly A (T→C) mutation (mean MCV 70.0 ± 5.2 fl) were significantly higher than in individuals with other common β-thalassaemia mutations (mean MCV 60.7 ± 7.7 fl) (P < 0.001). It is important to identify these often silent carriers of β-thalassaemia for prenatal diagnosis as homozygotes have a severe disease. © 2012 John Wiley & Sons A/S.

  11. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putativemore » sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox.

  12. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis.

    PubMed

    Dinckan, N; Du, R; Petty, L E; Coban-Akdemir, Z; Jhangiani, S N; Paine, I; Baugh, E H; Erdem, A P; Kayserili, H; Doddapaneni, H; Hu, J; Muzny, D M; Boerwinkle, E; Gibbs, R A; Lupski, J R; Uyguner, Z O; Below, J E; Letra, A

    2018-01-01

    Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.

  13. Norepinephrine Transporter Heterozygous Knockout Mice Exhibit Altered Transport and Behavior

    PubMed Central

    Fentress, HM; Klar, R; Krueger, JK; Sabb, T; Redmon, SN; Wallace, NM; Shirey-Rice, JK; Hahn, MK

    2013-01-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically-driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/−), demonstrating that they display an ~50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity, assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/− mouse establishes an activated state of existing, surface NET proteins. NET+/− mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris Water Maze. These data suggest recovery of near basal activity in NET+/− mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/− mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. PMID:24102798

  14. Determination of volatile marker compounds of common coffee roast defects.

    PubMed

    Yang, Ni; Liu, Chujiao; Liu, Xingkun; Degn, Tina Kreuzfeldt; Munchow, Morten; Fisk, Ian

    2016-11-15

    Coffee beans from the same origin were roasted using six time-temperature profiles, in order to identify volatile aroma compounds associated with five common roast coffee defects (light, scorched, dark, baked and underdeveloped). Thirty-seven volatile aroma compounds were selected on the basis that they had previously been identified as potent odorants of coffee and were also identified in all coffee brew preparations; the relative abundance of these aroma compounds was then evaluated using gas chromatography mass spectrometry (GC-MS) with headspace solid phase micro extraction. Some of the 37 key aroma compounds were significantly changed in each coffee roast defect and changes in one marker compound was chosen for each defect type, that is, indole for light defect, 4-ethyl-2-methoxyphenol for scorched defect, phenol for dark defect, maltol for baked defect and 2,5-dimethylfuran for underdeveloped defect. The association of specific changes in aroma profiles for different roast defects has not been shown previously and could be incorporated into screening tools to enable the coffee industry quickly identify if roast defects occur during production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Clinical Features and Long-Term Outcome of Nephrotic Syndrome Associated with Heterozygous NPHS1 and NPHS2 Mutations

    PubMed Central

    Caridi, Gianluca; Gigante, Maddalena; Ravani, Pietro; Trivelli, Antonella; Barbano, Giancarlo; Scolari, Francesco; Dagnino, Monica; Murer, Luisa; Murtas, Corrado; Edefonti, Alberto; Allegri, Landino; Amore, Alessandro; Coppo, Rosanna; Emma, Francesco; De Palo, Tommaso; Penza, Rosa; Gesualdo, Loreto; Ghiggeri, Gian Marco

    2009-01-01

    Background and objectives: Mutations in nephrin (NPHS1) and podocin (NPHS2) genes represent a major cause of idiopathic nephrotic syndrome (NS) in children. It is not yet clear whether the presence of a single mutation acts as a modifier of the clinical course of NS. Design, setting, participants, & measurements: We reviewed the clinical features of 40 patients with NS associated with heterozygous mutations or variants in NPHS1 (n = 7) or NPHS2 (n = 33). Long-term renal survival probabilities were compared with those of a concurrent cohort with idiopathic NS. Results: Patients with a single mutation in NPHS1 received a diagnosis before those with potentially nongenetic NS and had a good response to therapies. Renal function was normal in all cases. For NPHS2, six patients had single heterozygous mutations, six had a p.P20L variant, and 21 had a p.R229Q variant. Age at diagnosis and the response to drugs were comparable in all NS subgroups. Overall, they had similar renal survival probabilities as non-NPHS1/NPHS2 cases (log-rank χ2 0.84, P = 0.656) that decreased in presence of resistance to therapy (P < 0.001) and in cases with renal lesions of glomerulosclerosis and IgM deposition (P < 0.001). Cox regression confirmed that the only significant predictor of dialysis was resistance to therapy. Conclusions: Our data indicate that single mutation or variant in NPHS1 and NPHS2 does not modify the outcome of primary NS. These patients should be treated following consolidated schemes and have good chances for a good long-term outcome. PMID:19406966

  16. Application of bicyclic and cage compounds

    NASA Technical Reports Server (NTRS)

    Clark, R. D.; Archuleta, B. S.

    1976-01-01

    The results of a literature survey of the field of bicyclic and cage compounds were presented, with the objective of identifying those types of compounds with unusual physical and chemical stability, and determining what practical applications have been found for these compounds. Major applications have been as polymers, polymer additives, medicinals, and pesticides. Lesser applications have included fuels, fuel additives, lubricants, lubricant additives, and perfumes. Several areas where further work might be useful were also outlined; these are primarily in the areas of polymers, polymer additives, medicinals, and synthetic lubricants.

  17. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/--IRS-1+/- Double Heterozygous (IR-IRS1dh) Mice.

    PubMed

    Franko, Andras; Kunze, Alexander; Böse, Marlen; von Kleist-Retzow, Jürgen-Christoph; Paulsson, Mats; Hartmann, Ursula; Wiesner, Rudolf J

    2017-05-30

    Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR) +/- -insulin receptor substrate-1 (IRS-1) +/- double heterozygous (IR-IRS1dh) mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  18. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene.

    PubMed

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S

    2017-09-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis.

  19. Pancreatic Agenesis due to Compound Heterozygosity for a Novel Enhancer and Truncating Mutation in the PTF1A Gene

    PubMed Central

    Gabbay, Monica; Ellard, Sian; De Franco, Elisa; Moisés, Regina S.

    2017-01-01

    Neonatal diabetes, defined as the onset of diabetes within the first six months of life, is very rarely caused by pancreatic agenesis. Homozygous truncating mutations in the PTF1A gene, which encodes a transcriptional factor, have been reported in patients with pancreatic and cerebellar agenesis, whilst mutations located in a distal pancreatic-specific enhancer cause isolated pancreatic agenesis. We report an infant, born to healthy non-consanguineous parents, with neonatal diabetes due to pancreatic agenesis. Initial genetic investigation included sequencing of KCNJ11, ABCC8 and INS genes, but no mutations were found. Following this, 22 neonatal diabetes associated genes were analyzed by a next generation sequencing assay. We found compound heterozygous mutations in the PTF1A gene: A frameshift mutation in exon 1 (c.437_462 del, p.Ala146Glyfs*116) and a mutation affecting a highly conserved nucleotide within the distal pancreatic enhancer (g.23508442A>G). Both mutations were confirmed by Sanger sequencing. Isolated pancreatic agenesis resulting from compound heterozygosity for truncating and enhancer mutations in the PTF1A gene has not been previously reported. This report broadens the spectrum of mutations causing pancreatic agenesis. PMID:28663161

  20. A case report of heterozygous TINF2 gene mutation associated with pulmonary fibrosis in a patient with dyskeratosis congenita.

    PubMed

    Du, Hongchun; Guo, Yubiao; Ma, Di; Tang, Kejing; Cai, Decheng; Luo, Yifeng; Xie, Canmao

    2018-05-01

    Dyskeratosis congenita (DC) is a rare inherited disease characterized by the classical mucocutaneous triad. Pulmonary fibrosis, bone marrow failure, and solid tumors are the main causes of mortality in DC. Pathogenic variants in TERT, TERC, and DKC1 have been identified in individuals with familial pulmonary fibrosis. Mutations in TINF2 gene have been reported to be associated with bone marrow failure in most cases. However, the relationship between TINF2 mutation and pulmonary fibrosis is not yet clear. Here, we report the case of a 32-year-old woman presented with irritating cough for 2 years and progressive breathlessness for 6 months. The patient was diagnosed with DC based on the following clinical evidences. Along with some family members, she had the typical mucocutaneous triad and pulmonary fibrosis. A heterozygous mutation (c.844C>T), located in exon 6 of TINF2 gene, that changed arginine to cysteine (Arg282Cys) was identified in this proband by whole exome sequencing. The patient received corticosteroid therapy but refused to receive lung transplantation. The proband died of respiratory failure 4 months after the diagnosis. The missense mutation was located in the conserved region of TINF2 gene and predicted to be deleterious by altering the protein structure. Lung transplantation should be considered for improved survival of patients with DC, and pulmonary fibrosis. Whole exome and whole genome sequencing should be widely used in the identification of such rare genetic variants for clinical diagnosis. The study of DC with pulmonary fibrosis can provide a more appropriate means of clinical research and therapy to the unfortunate patients who suffer from this rare disorder.

  1. Myocardial 123I-metaiodobenzylguanidine scintigraphy in patients with homozygous and heterozygous parkin mutations.

    PubMed

    De Rosa, Anna; Pellegrino, Teresa; Pappatà, Sabina; Pellecchia, Maria Teresa; Peluso, Silvio; Saccà, Francesco; Barone, Paolo; Cuocolo, Alberto; De Michele, Giuseppe

    2017-02-01

    PARK2 is an autosomal recessive parkinsonism caused by parkin gene mutations. Several Parkinson's Disease (PD) cases harbor single parkin mutations, raising a debate about the pathogenic meaning of heterozygous mutations. Here, we evaluate cardiac autonomic innervation in patients with either two or one parkin mutations compared to patients with idiopathic PD (IPD). Myocardial 123 I-metaiodobenzylguanidine (MIBG) scintigraphy was performed in six PD patients with single parkin mutations (HET), four with two mutations (PARK2), and eight with IPD. In comparison to control group, IPD patients showed lower early and late heart-to-mediastinum (H/M) ratios and higher washout rates, whereas HET patients had only lower early H/M ratio, and PARK2 patients were not different for any parameter. At individual level, MIBG findings were abnormal in 7/8 IPD, in 4/6 HET and in 1/4 PARK2 patients. Preserved cardiac 123 I-MIBG uptake confirms that PARK2 pathogenic mechanism, at least partially, differs from that responsible for IPD. HET subjects show intermediate findings, suggesting possible heterogeneity.

  2. Nature vs. nurture: can enrichment rescue the behavioural phenotype of BDNF heterozygous mice?

    PubMed

    Chourbaji, Sabine; Brandwein, Christiane; Vogt, Miriam A; Dormann, Christof; Hellweg, Rainer; Gass, Peter

    2008-10-10

    In earlier experiments we have demonstrated that group-housing in a rather impoverished "standard" environment can be a crucial stress factor in male C57Bl/6 mice. The present study aimed at investigating the effect of combining a probable genetic vulnerability--postulated by the "Neurotrophin Hypothesis of Depression"--with the potentially modulating influence of a stressful environment such as "impoverished" standard housing conditions. For that purpose mice with a partial deletion of brain-derived neurotrophic factor (BDNF) were group-housed under standard and enriched housing conditions and analysed in a well-established test battery for emotional behaviours. Standard group-housing affected emotional behaviour in male and female BDNF heterozygous mice, causing an increase in anxiety, changes in exploration as well as nociception. Providing the animals' cages with supplementary enrichment, however, led to a rescue of emotional alterations, which emphasises the significance of external factors and their relevance for a valid investigation of genetic aspects in these mutants as well as others, which may be examined in terms of stress-responsiveness or emotionality.

  3. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns.

    PubMed

    Riera, Marina; Wert, Ana; Nieto, Isabel; Pomares, Esther

    2017-11-01

    Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single-gene analyses failed to identify the molecular cause. A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeq TM Exome technology and the Ion Proton TM platform. A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal-dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. This study highlights that panel-based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2, PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  4. DNA hypermethylation and X chromosome inactivation are major determinants of phenotypic variation in women heterozygous for G6PD mutations.

    PubMed

    Wang, Jin; Xiao, Qi-Zhi; Chen, You-Ming; Yi, Sheng; Liu, Dun; Liu, Yan-Hui; Zhang, Cui-Mei; Wei, Xiao-Feng; Zhou, Yu-Qiu; Zhong, Xing-Ming; Zhao, Cun-You; Xiong, Fu; Wei, Xiang-Cai; Xu, Xiang-Min

    2014-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked incompletely dominant enzyme deficiency that results from G6PD gene mutations. Women heterozygous for G6PD mutations exhibit variation in the loss of enzyme activity but the cause of this phenotypic variation is unclear. We determined DNA methylation and X-inactivation patterns in 71 G6PD-deficient female heterozygotes and 68 G6PD non-deficient controls with the same missense mutations (G6PD Canton c.1376G>T or Kaiping c.1388G>A) to correlate determinants with variable phenotypes. Specific CpG methylations within the G6PD promoter were significantly higher in G6PD-deficient heterozygotes than in controls. Preferential X-inactivation of the G6PD wild-type allele was determined in heterozygotes. The incidence of preferential X-inactivation was 86.2% in the deficient heterozygote group and 31.7% in the non-deficient heterozygote group. A significant negative correlation was observed between X-inactivation ratios of the wild-type allele and G6PD/6-phosphogluconate dehydrogenase (6PGD) ratios in heterozygous G6PD Canton (r=-0.657, p<0.001) or Kaiping (r=-0.668, p<0.001). Multivariate logistic regression indicated that heterozygotes with hypermethylation of specific CpG sites in the G6PD promoter and preferential X-inactivation of the wild-type allele were at risk of enzyme deficiency. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mice heterozygous for the ATM gene are more sensitive to both X-ray and heavy ion exposure than are wildtypes

    NASA Astrophysics Data System (ADS)

    Worgul, B. V.; Smilenov, L.; Brenner, D. J.; Vazquez, M.; Hall, E. J.

    Previous studies have shown that the eyes of ATM heterozygous mice exposed to low-LET radiation (X-rays) are significantly more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to high-LET radiation damage. Mice haplodeficient for the ATM gene and wildtypes were exposed to 325 mGy of 1 GeV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per lens epithelial cell nuclear area. Controls consisted of irradiated wildtype as well as unirradiated wildtype and heterozygous mice. Prevalence analyses for stage 0.5-3.0 cataracts indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the ATM gene. The data show that heterozygosity for the ATM gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that ATM heterozygotes in the human population may also be radiosensitive. This may have to be considered in the selection of individuals who will be exposed to both HZE particles and low-LET radiation as they may be predisposed to increased late normal tissue damage.

  6. 40 CFR 721.9970 - o-Xylene compound (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false o-Xylene compound (generic name). 721... Substances § 721.9970 o-Xylene compound (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an o-xylene compound (PMN P-95...

  7. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds

    USDA-ARS?s Scientific Manuscript database

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungal spores in nutrient solution or bacteria in liquefied agar), allowing time for the microbes to gr...

  8. Disruption of ion homeostasis by verrucosin and a related compound.

    PubMed

    Akiyama, Koichi; Tone, Junichi; Yamauchi, Satoshi; Sugahara, Takuya; Maruyama, Masafumi; Kakinuma, Yoshimi

    2011-01-01

    We have found that (-)-virgatusin and related compounds have antimicrobial and antifungal activity. To identify further biological activities of these compounds, we tested the activity of acridine orange efflux, which shows ionophore-like disruption of cellular ion homeostasis activity. After testing 31 compounds, we found that verrucosin and a related compound had disruption activity.

  9. A simple and predictive phenotypic High Content Imaging assay for Plasmodium falciparum mature gametocytes to identify malaria transmission blocking compounds

    PubMed Central

    Lucantoni, Leonardo; Silvestrini, Francesco; Signore, Michele; Siciliano, Giulia; Eldering, Maarten; Dechering, Koen J.; Avery, Vicky M.; Alano, Pietro

    2015-01-01

    Plasmodium falciparum gametocytes, specifically the mature stages, are the only malaria parasite stage in humans transmissible to the mosquito vector. Anti-malarial drugs capable of killing these forms are considered essential for the eradication of malaria and tools allowing the screening of large compound libraries with high predictive power are needed to identify new candidates. As gametocytes are not a replicative stage it is difficult to apply the same drug screening methods used for asexual stages. Here we propose an assay, based on high content imaging, combining “classic” gametocyte viability readout based on gametocyte counts with a functional viability readout, based on gametocyte activation and the discrimination of the typical gamete spherical morphology. This simple and rapid assay has been miniaturized to a 384-well format using acridine orange staining of wild type P. falciparum 3D7A sexual forms, and was validated by screening reference antimalarial drugs and the MMV Malaria Box. The assay demonstrated excellent robustness and ability to identify quality hits with high likelihood of confirmation of transmission reducing activity in subsequent mosquito membrane feeding assays. PMID:26553647

  10. Macular corneal dystrophy in a Chinese family related with novel mutations of CHST6

    PubMed Central

    Dang, Xiuhong; Zhu, Qingguo; Wang, Li; Su, Hong; Lin, Hui; Zhou, Nan; Liang, Ting; Wang, Zheng; Huang, Shangzhi; Ren, Qiushi

    2009-01-01

    Purpose To identify mutations in the carbohydrate sulfotransferase gene (CHST6) for a Chinese family with macular corneal dystrophy (MCD) and to investigate the histopathological changes in the affected cornea. Methods A corneal button of the proband was obtained by penetrating keratoplasty. The half button and ultrathin sections from the other half button were examined with special stains under a light microscope (LM) and an electron microscope (EM) separately. Genomic DNA was extracted from peripheral blood of 11 family members, and the coding region of CHST6 was amplified by the polymerase chain reaction (PCR) method. The PCR products were analyzed by direct sequencing and restriction enzyme digestion. Results The positive reaction to colloidal iron stain (extracellular blue accumulations in the stroma) was detected under light microscopy. Transmission electron microscopy revealed the enlargement of smooth endoplasmic reticulum and the presence of intracytoplasmic vacuoles. The compound heterozygous mutations, c.892C>T and c.1072T>C, were identified in exon 3 of CHST6 in three patients. The two transversions resulted in the substitution of a stop codon for glutamine at codon 298 (p.Q298X) and a missense mutation at codon 358, tyrosine to histidine (p.Y358H). The six unaffected family individuals carried alternative heterozygous mutations. These two mutations were not detected in any of the 100 control subjects. Conclusions Those novel compound heterozygous mutations were thought to contribute to the loss of CHST6 function, which induced the abnormal metabolism of keratan sulfate (KS) that deposited in the corneal stroma. It could be proved by the observation of a positive stain reaction and the enlarged collagen fibers as well as hyperplastic fibroblasts under microscopes. PMID:19365571

  11. Autosomal-dominant Leber Congenital Amaurosis Caused by a Heterozygous CRX Mutation in a Father and Son.

    PubMed

    Arcot Sadagopan, Karthikeyan; Battista, Robert; Keep, Rosanne B; Capasso, Jenina E; Levin, Alex V

    2015-06-01

    Leber congenital amaurosis (LCA) is most often an autosomal recessive disorder. We report a father and son with autosomal dominant LCA due to a mutation in the CRX gene. DNA screening using an allele specific assay of 90 of the most common LCA-causing variations in the coding sequences of AIPL1, CEP290, CRB1, CRX, GUCY2D, RDH12 and RPE65 was performed on the father. Automated DNA sequencing of his son examining exon 3 of the CRX gene was subsequently performed. Both father and son have a heterozygous single base pair deletion of an adenine at codon 153 in the coding sequence of the CRX gene resulting in a frameshift mutation. Mutations involving the CRX gene may demonstrate an autosomal dominant inheritance pattern for LCA.

  12. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  13. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  14. Volatile flavor compounds in yogurt: a review.

    PubMed

    Cheng, Hefa

    2010-11-01

    Considerable knowledge has been accumulated on the volatile compounds contributing to the aroma and flavor of yogurt. This review outlines the production of the major flavor compounds in yogurt fermentation and the analysis techniques, both instrumental and sensory, for quantifying the volatile compounds in yogurt. The volatile compounds that have been identified in plain yogurt are summarized, with the few key aroma compounds described in detail. Most flavor compounds in yogurt are produced from lipolysis of milkfat and microbiological transformations of lactose and citrate. More than 100 volatiles, including carbonyl compounds, alcohols, acids, esters, hydrocarbons, aromatic compounds, sulfur-containing compounds, and heterocyclic compounds, are found in yogurt at low to trace concentrations. Besides lactic acid, acetaldehyde, diacetyl, acetoin, acetone, and 2-butanone contribute most to the typical aroma and flavor of yogurt. Extended storage of yogurt causes off-flavor development, which is mainly attributed to the production of undesired aldehydes and fatty acids during lipid oxidation. Further work on studying the volatile flavor compounds-matrix interactions, flavor release mechanisms, and the synergistic effect of flavor compounds, and on correlating the sensory properties of yogurt with the compositions of volatile flavor compounds are needed to fully elucidate yogurt aroma and flavor.

  15. Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species

    PubMed Central

    Wythe, Joshua D.; Liu, Jiandong; Cartry, Jerome; Vogler, Georg; Mohapatra, Bhagyalaxmi; Otway, Robyn T.; Huang, Yu; King, Isabelle N.; Maillet, Marjorie; Zheng, Yi; Crawley, Timothy; Taghli-Lamallem, Ouarda; Semsarian, Christopher; Dunwoodie, Sally; Winlaw, David; Harvey, Richard P.; Fatkin, Diane; Towbin, Jeffrey A.; Molkentin, Jeffery D.; Srivastava, Deepak; Ocorr, Karen; Bruneau, Benoit G.

    2011-01-01

    Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart–specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K+ channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42–Tinman interaction. To determine whether a Cdc42–Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1. PMID:21690310

  16. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability

    PubMed Central

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-01-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1–3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal–parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID. PMID:27457812

  17. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    PubMed

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  18. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation.

    PubMed

    Auclair, Jessie; Leroux, Dominique; Desseigne, Françoise; Lasset, Christine; Saurin, Jean Christophe; Joly, Marie Odile; Pinson, Stéphane; Xu, Xiao Li; Montmain, Gilles; Ruano, Eric; Navarro, Claudine; Puisieux, Alain; Wang, Qing

    2007-11-01

    Since the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion. Although gene conversion has been suggested to be a mutation mechanism underlying PMS2 inactivation, this is the first report of its involvement in a pathogenic mutation. The clinical features of biallelic mutation carriers were similar to other previously described patients, with the presence of café-au-lait spots (CALS), early onset of brain tumors, and colorectal neoplasia. Our data provide further evidence of the existence, although rare, of a distinct recessively inherited syndrome on the basis of MMR constitutional inactivation. The identification of this syndrome should be useful for genetic counseling, especially in families with atypical hereditary nonpolyposis colon cancer (HNPCC) associated with childhood cancers, and for the clinical surveillance of these mutation carriers. 2007 Wiley-Liss, Inc.

  19. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  20. S81L and G170R mutations causing Primary Hyperoxaluria type I in homozygosis and heterozygosis: an example of positive interallelic complementation

    PubMed Central

    Montioli, Riccardo; Roncador, Alessandro; Oppici, Elisa; Mandrile, Giorgia; Giachino, Daniela Francesca; Cellini, Barbara; Borri Voltattorni, Carla

    2014-01-01

    Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5′-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the pathogenesis of PH1 has been only studied by approaches mimicking homozygous patients, whereas the molecular aspects of the genotype-enzymatic-clinical phenotype relationship in compound heterozygous patients are completely unknown. Here, for the first time, we elucidate the enzymatic phenotype linked to the S81L mutation on AGT-Ma, relative to a PLP-binding residue, and how it changes when the most common mutation G170R on AGT-Mi, known to cause AGT mistargeting without affecting the enzyme functionality, is present in the second allele. By using a bicistronic eukaryotic expression vector, we demonstrate that (i) S81L-Ma is mainly in its apo-form and has a significant peroxisomal localization and (ii) S81L and G170R monomers interact giving rise to the G170R-Mi/S81L-Ma holo-form, which is imported into peroxisomes and exhibits an enhanced functionality with respect to the parental enzymes. These data, integrated with the biochemical features of the heterodimer and the homodimeric counterparts in their purified recombinant form, (i) highlight the molecular basis of the pathogenicity of S81L-Ma and (ii) provide evidence for a positive interallelic complementation between the S81L and G170R monomers. Our study represents a valid approach to investigate the molecular pathogenesis of PH1 in compound heterozygous patients. PMID:24990153

  1. SDE and SPME Analysis of Flavor Compounds in Jin Xuan Oolong Tea.

    PubMed

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; O'Keefe, Sean F

    2016-02-01

    Simultaneous distillation-extraction (SDE) and solid phase micro extraction (SPME) are procedures used for the isolation of flavor compounds in foods. The purpose of this study was to optimize SDE conditions (solvent and time) and to compare SDE with SPME for the isolation of flavor compounds in Jin Xuan oolong tea using GC-MS and GC-O. The concentration of volatile compounds isolated with diethyl ether was higher (P < 0.05) than for dichloromethane and concentration was higher at 40 min (P < 0.05) than 20 or 60 min extractions. For SDE, 128 volatiles were identified using GC-MS and 45 aroma active compounds using GC-O. Trans-nerolidol was the most abundant compound in oolong tea. The number of volatiles identified using GC-MS was lower in SPME than SDE. For SPME, 59 volatiles and 41 aroma active compounds were identified. The composition of the volatiles isolated by the 2 methods differed considerably but provided complementary information. © 2016 Institute of Food Technologists®

  2. Compound Heterozygosity of Dominant and Recessive COL7A Alleles in a Severely Affected Patient with a Family History of Dystrophic Epidermolysis Bullosa: Clinical Findings, Genetic Testing, and Treatment Implications.

    PubMed

    Watson, Kendra D; Schoch, Jennifer J; Beek, Geoffrey J; Hand, Jennifer L

    2017-03-01

    An 8-year-old girl born to a family with more than three generations of dominant dystrophic epidermolysis bullosa (DDEB) presented with life-threatening confluent skin erosions, mitten hand deformity, and failure to thrive. Reassessment of her family history and genetic testing showed compound heterozygous COL7A mutations, one inherited from her DDEB-affected mother and one from her unaffected, healthy father. This family illustrates the risk of unexpected, severe, autosomal recessive epidermolysis bullosa (EB) in a family with milder, multigenerational autosomal dominant EB. Clinicians should recognize the clinical spectrum of dystrophic EB and recommend genetic consultation when the phenotype conflicts with family history. © 2017 Wiley Periodicals, Inc.

  3. False HDAC Inhibition by Aurone Compound.

    PubMed

    Itoh, Yukihiro; Suzuki, Miki; Matsui, Taiji; Ota, Yosuke; Hui, Zi; Tsubaki, Kazunori; Suzuki, Takayoshi

    2016-01-01

    Fluorescence assays are useful tools for estimating enzymatic activity. Their simplicity and manageability make them suitable for screening enzyme inhibitors in drug discovery studies. However, researchers need to pay attention to compounds that show auto-fluorescence and quench fluorescence, because such compounds lower the accuracy of the fluorescence assay systems by producing false-positive or negative results. In this study, we found that aurone compound 7, which has been reported as a histone deacetylase (HDAC) inhibitor, gave false-positive results. Although compound 7 was identified by an in vitro HDAC fluorescence assay, it did not show HDAC inhibitory activity in a cell-based assay, leading us to suspect its in vitro HDAC inhibitory activity. As a result of verification experiments, we found that compound 7 interferes with the HDAC fluorescence assay by quenching the HDAC fluorescence signal. Our findings underscore the faults of fluorescence assays and call attention to careless interpretation.

  4. Haemolysis in G6PD Heterozygous Females Treated with Primaquine for Plasmodium vivax Malaria: A Nested Cohort in a Trial of Radical Curative Regimens.

    PubMed

    Chu, Cindy S; Bancone, Germana; Moore, Kerryn A; Win, Htun Htun; Thitipanawan, Niramon; Po, Christina; Chowwiwat, Nongnud; Raksapraidee, Rattanaporn; Wilairisak, Pornpimon; Phyo, Aung Pyae; Keereecharoen, Lily; Proux, Stéphane; Charunwatthana, Prakaykaew; Nosten, François; White, Nicholas J

    2017-02-01

    Radical cure of Plasmodium vivax malaria with 8-aminoquinolines (primaquine or tafenoquine) is complicated by haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. G6PD heterozygous females, because of individual variation in the pattern of X-chromosome inactivation (Lyonisation) in erythroid cells, may have low G6PD activity in the majority of their erythrocytes, yet are usually reported as G6PD "normal" by current phenotypic screening tests. Their haemolytic risk when treated with 8-aminoquinolines has not been well characterized. In a cohort study nested within a randomised clinical trial that compared different treatment regimens for P. vivax malaria, patients with a normal standard NADPH fluorescent spot test result (≳30%-40% of normal G6PD activity) were randomised to receive 3 d of chloroquine or dihydroartemisinin-piperaquine in combination with primaquine, either the standard high dose of 0.5 mg base/kg/day for 14 d or a higher dose of 1 mg base/kg/d for 7 d. Patterns of haemolysis were compared between G6PD wild-type and G6PD heterozygous female participants. Between 21 February 2012 and 04 July 2014, 241 female participants were enrolled, of whom 34 were heterozygous for the G6PD Mahidol variant. Haemolysis was substantially greater and a larger proportion of participants reached the threshold of clinically significant haemolysis (fractional haematocrit reduction >25%) in G6PD heterozygotes taking the higher (7 d) primaquine dose (9/17 [53%]) compared with G6PD heterozygotes taking the standard high (14 d) dose (2/16 [13%]; p = 0.022). In heterozygotes, the mean fractional haematocrit reductions were correspondingly greater with the higher primaquine dose (7-d regimen): -20.4% (95% CI -26.0% to -14.8%) (nadir on day 5) compared with the standard high (14 d) dose: -13.1% (95% CI -17.6% to -8.6%) (nadir day 6). Two heterozygotes taking the higher (7 d) primaquine dose required blood transfusion. In wild-type participants

  5. Norepinephrine transporter heterozygous knockout mice exhibit altered transport and behavior.

    PubMed

    Fentress, H M; Klar, R; Krueger, J J; Sabb, T; Redmon, S N; Wallace, N M; Shirey-Rice, J K; Hahn, M K

    2013-11-01

    The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET(+/-) ), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface-resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET(+/-) mouse establishes an activated state of existing surface NET proteins. The NET(+/-) mice exhibit increased anxiety in the open field and light-dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET(+/-) mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET(+/-) mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Organic compounds in radiation fogs in Davis (California)

    NASA Astrophysics Data System (ADS)

    Herckes, Pierre; Hannigan, Michael P.; Trenary, Laurie; Lee, Taehyoung; Collett, Jeffrey L.

    New stainless steel active fogwater collectors were designed and used in Davis (CA, USA) to collect fogwater for the speciation of organic matter. Organic compounds in fog samples were extracted by liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Numerous organic compounds, including various alkanes, polycyclic aromatic hydrocarbons (PAH) and alkanoic acids, have been identified in the fogwater samples. Higher molecular weight (MW) compounds are preferentially associated with an insoluble phase inside the fog drops, whereas lower molecular weight and more polar compounds are found predominantly in the dissolved phase. Concentrations in the dissolved phase were sometimes much higher than estimated by the compounds' aqueous solubilities.

  7. Compounds from the roots of Jasminum sambac.

    PubMed

    Zeng, Lin-Hong; Hu, Min; Yan, Yong-Ming; Lu, Qing; Cheng, Yong-Xian

    2012-01-01

    Four new compounds (+)-jasminoids A, B, C, and D, together with seven known compounds, were isolated from the roots of Jasminum sambac. Their structures were identified using spectroscopic methods. This study provides a better understanding to the chemical composition of J. sambac roots that have been thought to be one ingredient of an ancient prescription 'Ma-Fei-San'.

  8. Aroma Volatile Compounds from Two Fresh Pineapple Varieties in China

    PubMed Central

    Zheng, Liang-Yong; Sun, Guang-Ming; Liu, Yu-Ge; Lv, Ling-Ling; Yang, Wen-Xiu; Zhao, Wei-Feng; Wei, Chang-Bin

    2012-01-01

    Volatile compounds from two pineapples varieties (Tainong No.4 and No.6) were isolated by headspace solid phase microextraction (HS-SPME) and identified and quantified by gas chromatography-mass spectrometry (GC/MS). In the Tainong No. 4 and No. 6 pineapples, a total of 11 and 28 volatile compounds were identified according to their retention time on capillary columns and their mass spectra, and quantified with total concentrations of 1080.44 μg·kg−1 and 380.66 μg·kg−1 in the Tainong No.4 and No. 6 pineapples, respectively. The odor active values (OAVs) of volatile compounds from pineapples were also calculated. According to the OAVs, four compounds were defined as the characteristic aroma compounds for the Tainong No. 4 pineapple, including furaneol, 3-(methylthio)propanoic acid methyl ester, 3-(methylthio)propanoic acid ethyl ester and δ-octalactone. The OAVs of five compounds including ethyl-2-methylbutyrate, methyl-2-methylbutyrate, 3-(methylthio)propanoic acid ethyl ester, ethyl hexanoate and decanal were considered to be the characteristic aroma compounds for the Tainong No. 6 pineapple. PMID:22837701

  9. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia.

    PubMed

    Le Ber, Isabelle; De Septenville, Anne; Guerreiro, Rita; Bras, José; Camuzat, Agnès; Caroppo, Paola; Lattante, Serena; Couarch, Philippe; Kabashi, Edor; Bouya-Ahmed, Kawtar; Dubois, Bruno; Brice, Alexis

    2014-10-01

    TREM2 mutations were first identified in Nasu-Hakola disease, a rare autosomal recessive disease characterized by recurrent fractures because of bone cysts and presenile dementia. Recently, homozygous and compound heterozygous TREM2 mutations were identified in rare families with frontotemporal lobar degeneration (FTLD) but without bone involvement. We identified a p.Thr66Met heterozygous mutation in a new consanguineous Italian family. Two sibs had early onset autosomal recessive FTLD without severe bone disorders. Atypical signs were present in this family: early parietal and hippocampus involvement, parkinsonism, epilepsy, and corpus callosum thickness on brain magnetic resonance imaging. This study further demonstrates the implication of TREM2 mutations in FTLD phenotypes. It illustrates the variability of bone phenotype and underlines the frequency of atypical signs in TREM2 carriers. This and previous studies evidence that TREM2 mutation screening should be limited to autosomal recessive FTLD with atypical phenotypes characterized by: (1) a very young age at onset (20-50 years); (2) early parietal and hippocampal deficits; (3) the presence of seizures and parkinsonism; (4) suggestive extensive white matter lesions and corpus callosum thickness on brain magnetic resonance imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Homozygous TREM2 mutation in a family with atypical frontotemporal dementia

    PubMed Central

    Bras, José; Camuzat, Agnès; Caroppo, Paola; Lattante, Serena; Couarch, Philippe; Kabashi, Edor; Bouya-Ahmed, Kawtar; Dubois, Bruno; Brice, Alexis

    2014-01-01

    TREM2 mutations were first identified in Nasu-Hakola disease, a rare autosomal recessive disease characterized by recurrent fractures because of bone cysts and presenile dementia. Recently, homozygous and compound heterozygous TREM2 mutations were identified in rare families with frontotemporal lobar degeneration (FTLD) but without bone involvement. We identified a p.Thr66Met heterozygous mutation in a new consanguineous Italian family. Two sibs had early onset autosomal recessive FTLD without severe bone disorders. Atypical signs were present in this family: early parietal and hippocampus involvement, parkinsonism, epilepsy, and corpus callosum thickness on brain magnetic resonance imaging. This study further demonstrates the implication of TREM2 mutations in FTLD phenotypes. It illustrates the variability of bone phenotype and underlines the frequency of atypical signs in TREM2 carriers. This and previous studies evidence that TREM2 mutation screening should be limited to autosomal recessive FTLD with atypical phenotypes characterized by: (1) a very young age at onset (20–50 years); (2) early parietal and hippocampal deficits; (3) the presence of seizures and parkinsonism; (4) suggestive extensive white matter lesions and corpus callosum thickness on brain magnetic resonance imaging. PMID:24910390

  11. Heterozygous M1V variant of ELA-2 gene mutation associated with G-CSF refractory severe congenital neutropenia.

    PubMed

    Setty, Bhuvana A; Yeager, Nicholas D; Bajwa, Rajinder P

    2011-09-01

    Severe congenital neutropenia is an autosomal recessive disorder characterized by maturation arrest at the promyelocyte/myelocyte phase in the bone marrow, absolute neutrophil count <0.5 × 10(9) /L and recurrent bacterial infections. Homozygous mutations of either HAX-1 or ELA-2 have been described. We report the case of a premature male infant with congenital neutropenia, associated with multiple infections, refractory to treatment with granulocyte colony stimulating factor who subsequently underwent matched sibling donor stem-cell transplant. He was found to be heterozygous for the M1V variant of the ELA-2 gene that we postulate to be causative for his severe neutropenia Copyright © 2011 Wiley-Liss, Inc.

  12. Variable X-chromosome inactivation and enlargement of pericentral glutamine synthetase zones in the liver of heterozygous females with OTC deficiency.

    PubMed

    Musalkova, Dita; Sticova, Eva; Reboun, Martin; Sokolova, Jitka; Krijt, Jakub; Honzikova, Jitka; Gurka, Jiri; Neroldova, Magdalena; Honzik, Tomas; Zeman, Jiri; Jirsa, Milan; Dvorakova, Lenka; Hrebicek, Martin

    2018-06-01

    Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder that causes recurrent and life-threatening episodes of hyperammonemia. The clinical picture in heterozygous females is highly diverse and derives from the genotype and the degree of inactivation of the mutated X chromosome in hepatocytes. Here, we describe molecular genetic, biochemical, and histopathological findings in the livers explanted from two female patients with late-onset OTC deficiency. Analysis of X-inactivation ratios by DNA methylation-based assays showed remarkable intra-organ variation ranging from 46:54 to 82:18 (average 70:30, n = 37), in favor of the active X chromosome carrying the mutation c.583G>C (p.G195R), in the first patient and from 75:25 to 90:10 (average 82:18, n = 20) in favor of the active X chromosome carrying the splicing mutation c.663+1G>A in the second patient. The X-inactivation ratios in liver samples correlated highly with the proportions of OTC-positive hepatocytes calculated from high-resolution image analyses of the immunohistochemically detected OTC in frozen sections that was performed on total area > 5 cm 2 . X-inactivation ratios in blood in both female patients corresponded to the lower limit of the liver values. Our data indicate that the proportion of about 20-30% of hepatocytes expressing the functional OTC protein is not sufficient to maintain metabolic stability. X-inactivation ratios assessed in liver biopsies taken from heterozygous females with X-linked disorders should not be considered representative of the whole liver.

  13. Linking gene regulation and the exo-metabolome: A comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast

    PubMed Central

    Rossouw, Debra; Næs, Tormod; Bauer, Florian F

    2008-01-01

    Background 'Omics' tools provide novel opportunities for system-wide analysis of complex cellular functions. Secondary metabolism is an example of a complex network of biochemical pathways, which, although well mapped from a biochemical point of view, is not well understood with regards to its physiological roles and genetic and biochemical regulation. Many of the metabolites produced by this network such as higher alcohols and esters are significant aroma impact compounds in fermentation products, and different yeast strains are known to produce highly divergent aroma profiles. Here, we investigated whether we can predict the impact of specific genes of known or unknown function on this metabolic network by combining whole transcriptome and partial exo-metabolome analysis. Results For this purpose, the gene expression levels of five different industrial wine yeast strains that produce divergent aroma profiles were established at three different time points of alcoholic fermentation in synthetic wine must. A matrix of gene expression data was generated and integrated with the concentrations of volatile aroma compounds measured at the same time points. This relatively unbiased approach to the study of volatile aroma compounds enabled us to identify candidate genes for aroma profile modification. Five of these genes, namely YMR210W, BAT1, AAD10, AAD14 and ACS1 were selected for overexpression in commercial wine yeast, VIN13. Analysis of the data show a statistically significant correlation between the changes in the exo-metabome of the overexpressing strains and the changes that were predicted based on the unbiased alignment of transcriptomic and exo-metabolomic data. Conclusion The data suggest that a comparative transcriptomics and metabolomics approach can be used to identify the metabolic impacts of the expression of individual genes in complex systems, and the amenability of transcriptomic data to direct applications of biotechnological relevance. PMID:18990252

  14. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

    PubMed Central

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

  15. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    PubMed

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  16. Embryonal rhabdomyosarcoma in a patient with a heterozygous frameshift variant in the DICER1 gene and additional manifestations of the DICER1 syndrome.

    PubMed

    Fremerey, Julia; Balzer, Stefan; Brozou, Triantafyllia; Schaper, Joerg; Borkhardt, Arndt; Kuhlen, Michaela

    2017-07-01

    Germline mutations in the DICER1 gene are associated with an inherited cancer predisposition syndrome also known as the DICER1-syndrome, which is implicated in a broad range of tumors including pleuropulmonary blastoma, ovarian Sertoli-Leydig cell tumors, ciliary body medulloepithelioma (CBME), pituitary blastoma, embryonal rhabdomyosarcoma (eRMS), anaplastic renal sarcoma as well as ocular, sinonasal tumors ovarian sex-cord tumors, thyroid neoplasia and cystic nephroma. This study describes a novel, heterozygous frameshift DICER1 mutation in a patient, who is affected by different tumors of the DICER1-syndrome, including eRMS, CBME and suspected pleuropulmonary blastoma type I. By whole-exome sequencing of germline material using peripheral blood-derived DNA, we identified a single base pair duplication within the DICER1 gene (c.3405 dupA) that leads to a frameshift and results in a premature stop in exon 21 (p.Gly1136Arg). The metachronous occurrence of two unrelated tumor entities (eRMS and CBME) in a very young child within a short timeframe should have raised the suspicion of an underlying cancer susceptibility syndrome and should be prompt tested for DICER1.

  17. Three cases of congenital dysfibrinogenemia in unrelated Chinese families: heterozygous missense mutation in fibrinogen alpha chain Argl6His

    PubMed Central

    Luo, Meiling; Deng, Donghong; Xiang, Liqun; Cheng, Peng; Liao, Lin; Deng, Xuelian; Yan, Jie; Lin, Faquan

    2016-01-01

    Abstract Congenital dysfibrinogenemia (CD) is a qualitative fibrinogen disorder caused by an abnormal fibrinogen molecule structure, leading to dysfunctional blood coagulation. This study describes 3 cases of dysfibrinogenemia identified in the unrelated Chinese pedigrees. Routine coagulation screening tests were performed on the probands and their families. The antigens and functionality of fibrinogen was measured using an immunoturbidimetry assay and the Clauss method, respectively. To identify the genetic mutation responsible for these dysfibrinogens, genomic DNA extracted from the blood was analyzed using PCR amplification and direct sequencing. The presence of the mutant chains was determined using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy. Purified plasma fibrinogen of 3 probands was analyzed using SDS–PAGE, fibrinogen clottability, fibrin polymerization, fibrinopeptide release, and scanning electron microscopy (SEM). The 3 probands had a long thrombin time. Levels of functional fibrinogen were found to be very low, while the fibrinogen antigen was within the normal range. DNA sequencing revealed a heterozygous Arg16His substitution in the fibrinogen Aα chain (FGA). The mutant chains were found to be expressed using MALDI-TOF mass spectroscopy. SDS–PAGE did not reveal any difference in the molecular weights of 3 polypeptide chains between normal and abnormal fibrinogens. Fibrinogen clottability showed a slower fibrin clot formation than the healthy control. Fibrin polymerization, after addition of thrombin, showed a prolonged lag phase and decreased final turbidity. The kinetics of fibrinopeptides release revealed a decreased amount of the released fibrinopeptide A. SEM of the patient's fibrin clot was found to be abnormal. Results indicate that the 3 probands with dysfibrinogenemia were caused by mutations of Aα chain Arg16His. Mutation of this fibrinogen induced dysfunction of plasma fibrinogen. PMID

  18. Genetic screening of non-classic CAH females with hyperandrogenemia identifies a novel CYP11B1 gene mutation.

    PubMed

    Shammas, Christos; Byrou, Stefania; Phelan, Marie M; Toumba, Meropi; Stylianou, Charilaos; Skordis, Nicos; Neocleous, Vassos; Phylactou, Leonidas A

    2016-04-01

    Congenital adrenal hyperplasia (CAH) is an endocrine autosomal recessive disorder with various symptoms of diverse severity. Mild hyperandrogenemia is the most commonclinical feature in non-classic CAH patients and 95% of the cases are identified by mutations in the CYP21A2 gene. In the present study, the second most common cause for non-classic CAH (NC-CAH), 11β-hydroxylase deficiency due to mutations in the CYP11B1 gene, is investigated. Screening of the CYP21A2 and CYP11B1 genes by direct sequencing was carried out for the detection of possible genetic defects in patients with suspected CAH. It wasobserved that CYP11B1 variants co-exist only in rare cases along with mutations in CYP21A2 in patients clinically diagnosed with CAH. A total of 23 NC-CAH female patients out of 75 were identified with only one mutation in the CYP21A2 gene. The novel CYP11B1 gene mutation, p.Val484Asp, was identified in a patient with CAH in the heterozygous state. The structural characterization of the novel p.Val484Asp was found to likely cause distortion of the surrounding beta sheet and indirect destabilization of the cavity that occurs on the opposite face of the structural elements, leading to partial impairment of the enzymatic activity. CYP21A2 gene mutations are the most frequent genetic defects in cases of NC-CAH even when these patients are in the heterozygous state. These mutations have a diverse phenotype giving rise to a variable extent of cortisol synthesis impairment; it is also clear that CYP11B1 mutants are a rare type of defects causing CAH.

  19. A Multiplexed Assay That Monitors Effects of Multiple Compound Treatment Times Reveals Candidate Immune-Enhancing Compounds.

    PubMed

    Zhao, Ziyan; Henowitz, Liza; Zweifach, Adam

    2018-05-01

    We previously developed a flow cytometry assay that monitored lytic granule exocytosis in cytotoxic T lymphocytes stimulated by contacting beads coated with activating anti-CD3 antibodies. That assay was multiplexed in that responses of cells that did or did not receive the activating stimulus were distinguished via changes in light scatter accompanying binding of cells to beads, allowing us to discriminate compounds that activate responses on their own from compounds that enhance responses in cells that received the activating stimulus, all within a single sample. Here we add a second dimension of multiplexing by developing means to assess in a single sample the effects of treating cells with test compounds for different times. Bar-coding cells before adding them to test wells lets us determine compound treatment time while also monitoring activation status and response amplitude at the point of interrogation. This multiplexed assay is suitable for screening 96-well plates. We used it to screen compounds from the National Cancer Institute, identifying several compounds that enhance anti-LAMP1 responses. Multiple-treatment-time (MTT) screening enabled by bar-coding and read via high-throughput flow cytometry may be a generally useful method for facilitating the discovery of compounds of interest.

  20. [Analyze on volatile compounds of Antrodia camphorata using HS-SPME-GC-MS].

    PubMed

    He, Zhe; Lu, Zhen-Ming; Xu, Hong-Yu; Shi, Jing-Song; Xu, Zheng-Hong

    2011-11-01

    To analyze the volatile compounds of Antrodia camphorata in solid-state and submerged cultures. A headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry(GC-MS) were used to evaluate the profile of the volatile compounds. 49 volatile compounds were identified in A. camphorata mycelia in submerged culture, while 43 volatile compounds were identified in mycelia in solid-state culture. 1-octen-3-ol, 3-octanone, 1-octen-3-ylacetate, acetic acid octyl ester and ethanol were the main volatile compounds in A. camphorata mycelia in submerged culture, while 1-octen-3-ol, 3-octanone, 3-methyl-butyraldenhyde, gamma-podecalactone and methyl 2-furozte were the most potent key volatile compounds in mycelia in solid-state culture. The volatile compounds in the mycelia of A. camphorata in solid-state and submerged cultures are similar but their relative contents are different.

  1. Functional characterization of mutations in the myosin Vb gene associated with microvillus inclusion disease

    PubMed Central

    Szperl, Agata M.; Golachowska, Magdalena R.; Bruinenberg, Marcel; Prekeris, Rytis; Thunnissen, Andy-Mark W. H.; Karrenbeld, Arend; Dijkstra, Gerard; Hoekstra, Dick; Mercer, David; Ksiazyk, Janusz; Wijmenga, Cisca; Wapenaar, Martin C.; Rings, Edmond H. H. M.; van IJzendoorn, Sven C. D.

    2010-01-01

    Objectives Microvillus inclusion disease (MVID) is a rare autosomal recessive enteropathy characterized by intractable diarrhea and malabsorption. Recently, various MYO5B gene mutations have been identified in MVID patients. Interestingly, several MVID patients showed only a MYO5B mutation in one allele (heterozygous) or no mutations in the MYO5B gene, illustrating the need to further functionally characterize the cell biological effects of the MYO5B mutations. Methods The genomic DNA of nine patients diagnosed with microvillus inclusion disease was screened for MYO5B mutations, and qPCR and immunohistochemistry on the material of two patients was performed to investigate resultant cellular consequences. Results We demonstrate for the first time that MYO5B mutations can be correlated with altered myosin Vb mRNA expression and with an aberrant subcellular distribution of the myosin Vb protein. Moreover, we demonstrate that the typical and myosin Vb–controlled accumulation of rab11a-and FIP5-positive recycling endosomes in the apical cytoplasm of the cells is abolished in MVID enterocytes, which is indicative for altered myosin Vb function. Also, we report 8 novel MYO5B mutations in 9 MVID patients of various etnic backgrounds, including compound heterozygous mutations. Conclusions Our functional analysis indicate that MYO5B mutations can be correlated with an aberrant subcellular distribution of the myosin Vb protein and apical recycling endosomes which, together with the additional compound heterozygous mutations, significantly strengthen the link between MYO5B and MVID. PMID:21206382

  2. Key Aroma Compounds in Smoked Cooked Loin.

    PubMed

    Kosowska, Monika; Majcher, Małgorzata A; Jeleń, Henryk H; Fortuna, Teresa

    2018-04-11

    Smoked cooked loin is one of the most popular meat products in Poland. In this study, key volatile compounds in this traditional Polish meat product were determined using gas chromatography-olfactometry and aroma extract dilution analysis (AEDA). In total, 27 odor-active volatile compounds were identified, with flavor dilution (FD) factors ranging from 4 to 1024, with the highest FD factors noted for 2-methoxyphenol, 2-methoxy-4-(prop-2-enyl)phenol, and 2-methoxy-4-( E)-(prop-1-en-1-yl)phenol. Results of the quantitative analyses based on determinations with stable isotope dilution assays (SIDAs) and standard addition (SA), followed by calculations of the odor activity value (OAV), enabled identifying 24 of the volatile compounds responsible for flavor development in the analyzed smoked cooked loin. The highest OAVs were obtained for 2-methoxyphenol, 2-methyl-3-furanthiol, 1-octen-3-one, and 2-methyl-3-(methyldithio)furan.

  3. Cancer Risk-Assessment of Radiation Damage in Ataxia Telangiectasia Heterozygous Human Breast Epithelial Cell Cultures

    NASA Technical Reports Server (NTRS)

    Applewhite, Lisa C.

    2002-01-01

    This paper describes the study of the markers of cellular changes that are found during the onset of carcinogenesis. Several of the biological factors are markers of stress response, oncoprotein expression, and differentiation factors. Oxidative stress response agents such as heat shock proteins (HSPs) protect cells from oxidative stresses such as ionizing radiation. The onocoprotein HER-2/neu, a specific breast cancer marker, indicates early onset of cancer. Additional structural and morphogenetic markers of differentiation were considered in order to determine initial cellular changes at the initial onset of cancer. As an additional consideration, all-trans retinoic acid (RA), a differentiation agent, was considered because of its known role in regulating normal differentiation and inhibiting tumor proliferation via specific nuclear receptors. This paper discusses study and results of the preliminary analyses of gamma irradiation of AT heterozygous human breast epithelial cells (WH). Comparisons are also made of the effects various RA concentrations post-irradiation.

  4. English Nominal Compounds and the ESL/EFL Reader.

    ERIC Educational Resources Information Center

    Olshtain, Elite

    The interpretation of nonlexicalized compound words in English by speakers of English as a second language (ESL) was investigated. Three types of competence used in interpreting noun compounds are identified: pragmatic, linguistic, and textual. The use of these three types of competence by Hebrew speaking college students enrolled in ESL reading…

  5. vGLUT2 heterozygous mice show more susceptibility to clonic seizures induced by pentylenetetrazol.

    PubMed

    Schallier, Anneleen; Massie, Ann; Loyens, Ellen; Moechars, Diederik; Drinkenburg, Wilhelmus; Michotte, Yvette; Smolders, Ilse

    2009-01-01

    Glutamate, the most abundant excitatory neurotransmitter in the central nervous system, is well known to be implicated in epileptic seizures. Therefore, impairments in glutamate transport could have an involvement in the mechanism of epileptogenesis. The uptake of glutamate into synaptic vesicles is mediated by vesicular glutamate transporters (vGLUTs). There are three known vGLUT isoforms, vGLUT1-3. In this study, we are particularly interested in the vGLUT2 isoform. We investigated the possible role of vGLUT2 in pentylenetetrazol (PTZ)-induced seizure generation. Seizure threshold of PTZ was compared in vGLUT2 heterozygous knock out (HET) and wild type (WT) mice. In comparison with their WT littermates a lower dose of PTZ was needed in the vGLUT2 HET mice until the onset of the first myoclonic jerk. The threshold for PTZ-induced clonic seizure activity was also lower in the vGLUT2 HET mice. These results indicate, for the first time, that vGLUT2 is likely involved in the epileptogenesis of generalized seizures.

  6. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity

    PubMed Central

    Godoy, Luis D.; Lucas, Julianna E.; Bender, Abigail J.; Romanick, Samantha S.; Ferguson, Bradley S.

    2017-01-01

    Scope Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of HDACs, impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Methods and results Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. Conclusion This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. PMID:27981795

  7. Compound Heterozygosity for Hb Alperton (HBB: c.407C>T) and IVS-I-5 (G>C) (HBB: c.92+5G>C) Mutations Presenting as a Moderate Anemia in an Indian Family.

    PubMed

    Godbole, Koumudi G; Ramachandran, Angelina; Karkamkar, Ashwini S; Dalal, Ashwin B

    2018-04-13

    While knowledge of HBB gene mutations is necessary for offering prenatal diagnosis (PND) of β-thalassemia (β-thal), a genotype-phenotype correlation may not always be available for rare variants. We present for the first time, genotype-phenotype correlation for a compound heterozygous status with IVS-I-5 (G>C) (HBB: c.92+5G>C) and HBB: c.407C>T (Hb Alperton) mutations on the HBB gene in an Indian family. Hb Alperton is a very rare hemoglobin (Hb) variant with scant published information about its clinical presentation, especially when accompanied with another HBB gene mutation. Here we provide biochemical as well as clinical details of this variant.

  8. Charting Biologically Relevant Spirocyclic Compound Space.

    PubMed

    Müller, Gerhard; Berkenbosch, Tim; Benningshof, Jorg C J; Stumpfe, Dagmar; Bajorath, Jürgen

    2017-01-12

    Spirocycles frequently occur in natural products and experience increasing interest in drug discovery, given their richness in sp 3 centers and distinct three-dimensionality. We have systematically explored chemical space populated with currently available bioactive spirocycles. Compounds containing spiro systems were classified and their scaffolds and spirocyclic ring combinations analyzed. Nearly 47 000 compounds were identified that contained spirocycles in different structural contexts and were active against roughly 200 targets, among which several pharmaceutically relevant members of the G protein-coupled receptor (GPCR) family were identified. Spirocycles and corresponding compounds displayed notable scaffold diversity but contained only limited numbers of combinations of differently sized rings. These observations indicate that there should be significant potential to further expand spirocyclic chemical space for drug discovery, exploiting the privileged substructure concept. Inspired by those findings, we embarked on the design and chemical synthesis of three distinct novel spirocyclic scaffolds that qualify for downstream library synthesis, thus exploring principally new chemical space with high potential for pharmaceutical research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using Deep Learning for Compound Selectivity Prediction.

    PubMed

    Zhang, Ruisheng; Li, Juan; Lu, Jingjing; Hu, Rongjing; Yuan, Yongna; Zhao, Zhili

    2016-01-01

    Compound selectivity prediction plays an important role in identifying potential compounds that bind to the target of interest with high affinity. However, there is still short of efficient and accurate computational approaches to analyze and predict compound selectivity. In this paper, we propose two methods to improve the compound selectivity prediction. We employ an improved multitask learning method in Neural Networks (NNs), which not only incorporates both activity and selectivity for other targets, but also uses a probabilistic classifier with a logistic regression. We further improve the compound selectivity prediction by using the multitask learning method in Deep Belief Networks (DBNs) which can build a distributed representation model and improve the generalization of the shared tasks. In addition, we assign different weights to the auxiliary tasks that are related to the primary selectivity prediction task. In contrast to other related work, our methods greatly improve the accuracy of the compound selectivity prediction, in particular, using the multitask learning in DBNs with modified weights obtains the best performance.

  10. A strategy for molecular diagnostics of Fanconi anemia in Brazilian patients.

    PubMed

    Pilonetto, Daniela V; Pereira, Noemi F; Bonfim, Carmem M S; Ribeiro, Lisandro L; Bitencourt, Marco A; Kerkhoven, Lianne; Floor, Karijn; Ameziane, Najim; Joenje, Hans; Gille, Johan J P; Pasquini, Ricardo

    2017-07-01

    Fanconi anemia (FA) is a predominantly autosomal recessive disease with wide genetic heterogeneity resulting from mutations in several DNA repair pathway genes. To date, 21 genetic subtypes have been identified. We aimed to identify the FA genetic subtypes in the Brazilian population and to develop a strategy for molecular diagnosis applicable to routine clinical use. We screened 255 patients from Hospital de Clínicas, Universidade Federal do Paraná for 11 common FA gene mutations. Further analysis by multiplex ligation-dependent probe amplification (MLPA) for FANCA and Sanger sequencing of all coding exons of FANCA , -C , and - G was performed in cases who harbored a single gene mutation. We identified biallelic mutations in 128/255 patients (50.2%): 89, 11, and 28 carried FANCA , FANCC , and FANCG mutations, respectively. Of these, 71 harbored homozygous mutations, whereas 57 had compound heterozygous mutations. In 4/57 heterozygous patients, both mutations were identified by the initial screening, in 51/57 additional analyses was required for classification, and in 2/57 the second mutation remained unidentified. We found 52 different mutations of which 22 were novel. The proposed method allowed genetic subtyping of 126/255 (49.4%) patients at a significantly reduced time and cost, which makes molecular diagnosis of FA Brazilian patients feasible.

  11. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  12. Contribution of the TTC21B gene to glomerular and cystic kidney diseases.

    PubMed

    Bullich, Gemma; Vargas, Iván; Trujillano, Daniel; Mendizábal, Santiago; Piñero-Fernández, Juan Alberto; Fraga, Gloria; García-Solano, José; Ballarín, José; Estivill, Xavier; Torra, Roser; Ars, Elisabet

    2017-01-01

    The TTC21B gene was initially described as causative of nephronophthisis (NPHP). Recently, the homozygous TTC21B p.P209L mutation has been identified in families with focal segmental glomerulosclerosis (FSGS) and tubulointerstitial lesions. Heterozygous TTC21B variants have been proposed as genetic modifiers in ciliopathies. We aimed to study the causative and modifying role of the TTC21B gene in glomerular and cystic kidney diseases. Mutation analysis of the TTC21B gene was performed by massive parallel sequencing. We studied the causative role of the TTC21B gene in 17 patients with primary diagnosis of FSGS or NPHP and its modifying role in 184 patients with inherited glomerular or cystic kidney diseases. Disease-causing TTC21B mutations were identified in three families presenting nephrotic proteinuria with FSGS and tubulointerstitial lesions in which some family members presented hypertension and myopia. Two families carried the homozygous p.P209L and the third was compound heterozygous for the p.P209L and a novel p.H426D mutation. Rare heterozygous TTC21B variants predicted to be pathogenic were found in five patients. These TTC21B variants were significantly more frequent in renal patients compared with controls (P = 0.0349). Two patients with a heterozygous deleterious TTC21B variant in addition to the disease-causing mutation presented a more severe phenotype than expected. Our results confirm the causal role of the homozygous p.P209L TTC21B mutation in two new families with FSGS and tubulointerstitial disease. We identified a novel TTC21B mutation demonstrating that p.P209L is not the unique causative mutation of this nephropathy. Thus, TTC21B mutation analysis should be considered for the genetic diagnosis of families with FSGS and tubulointerstitial lesions. Finally, we provide evidence that heterozygous deleterious TTC21B variants may act as genetic modifiers of the severity of glomerular and cystic kidney diseases. © The Author 2016. Published by

  13. Urinary Compounds in Autism

    ERIC Educational Resources Information Center

    Alcorn, A.; Berney, T.; Bretherton, K.; Mills, M.; Savery, D.; Shattock, P.

    2004-01-01

    Although earlier claims to identify specific compounds in the urine of people with autism had been discredited, it was subsequently suggested that there might be biochemical characteristics that were specific to early childhood, particularly in those who also did not have a severe degree of intellectual disability This study was to establish…

  14. Nitroaromatic Compounds, from Synthesis to Biodegradation

    PubMed Central

    Ju, Kou-San; Parales, Rebecca E.

    2010-01-01

    Summary: Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed. PMID:20508249

  15. A Virtual Screening Approach For Identifying Plants with Anti H5N1 Neuraminidase Activity

    PubMed Central

    2016-01-01

    Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources. PMID:25555059

  16. Impaired bidirectional NMDA receptor dependent synaptic plasticity in the dentate gyrus of adult female Fmr1 heterozygous knockout mice.

    PubMed

    Yau, S Y; Bostrom, C A; Chiu, J; Fontaine, C J; Sawchuk, S; Meconi, A; Wortman, R C; Truesdell, E; Truesdell, A; Chiu, C; Hryciw, B N; Eadie, B D; Ghilan, M; Christie, B R

    2016-12-01

    Fragile-X syndrome (FXS) is caused by the transcriptional repression of the Fmr1 gene resulting in loss of the Fragile-X mental retardation protein (FMRP). This leads to cognitive impairment in both male and female patients, however few studies have focused on the impact of FXS in females. Significant cognitive impairment has been reported in approximately 35% of women who exhibit a heterozygous Fmr1 gene mutation, however to date there is a paucity of information regarding the mechanistic underpinnings of these deficits. We, and others, have recently reported that there is significant impairment in N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) and long-term depression (LTD) in the hippocampal dentate gyrus (DG) of male Fmr1 knock out mice. Here we examined if female mice displaying a heterozygous loss of the Fmr1 gene (Fmr1 +/- ) would exhibit similar impairments in DG-dependent spatial memory processing and NMDAR hypofunction. We found that Female Fmr1 +/- mice did not show impaired metabotropic glutamate receptor (mGluR)-LTD in the CA1 region, and could perform well on a temporal ordering task that is thought to involve this brain region. In contrast, female Fmr1 +/- mice showed impairments in a pattern separation task thought to involve the DG, and also displayed a significant impairment in both NMDAR-dependent LTD and LTP in this region. The LTP impairment could be rescued by administering the NMDAR co-agonist, glycine. Our data suggests that NMDAR hypofunction in the DG may partly contribute to learning and memory impairment in female Fmr1 +/- mice. Targeting NMDAR-dependent mechanisms may offer hope as a new therapeutic approach for treating female FXS patients with learning and memory impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. [Haplotype Analysis of Coagulation Factor VII Gene in a Patient with Congenital Coagulation Factor VII Deficiency with Heterozygous p.Arg337Cys Mutation and o.Aro413Gin Polymorphism..

    PubMed

    Suzuki, Keijiro; Yoshioka, Tomoko; Obara, Takehiro; Suwabe, Akira

    2016-05-01

    Congenital coagulation factor VII (FVII) deficiency is a rare hemorrhagic disease with an autosomal reces- sive inheritance pattern. We analyzed coagulation factor VII gene (F7) of a patient with FVII deficiency and used expression studies to investigate the effect of a missense mutation on FVII secretion. The proband, a 69-year-old Japanese woman, had a history of postpartum bleeding and excessive bleeding after dental extrac- tion. She was found to have mildly increased PT-INR (1.17) before an ophthalmic operation. FVII activity and antigen were reduced (29.0% and 32.8%). Suspecting that the proband was FVII deficient, we analyzed F7 of the patient. Sequence analysis revealed that the patient was heterozygous for a point mutation (p.Arg337Cys) in the catalytic domain and polymorphisms: the decanucleotide insertion at the promoter re- gion, dimorphism (c.525C >T) in exon 5, and p.Arg413Gln in exon 8. Haplotype analysis clarified that p.Arg337Cys was located on the p.Arg413 allele (Ml allele). The other allele had the p.Arg413Gln polymor- phism(M2 allele) which is known to produce less FVII. Expression studies revealed that p.Arg337Cys causes impairment of FVII secretion. Insufficient secretion of FVII arising from both the p.Arg337Cys/M1 allele and the p.Arg337/M2 allele might lower the FVII level of this patient(<50%). The FVII level in a heterozygous FVII deficient patient might be influenced by F7 polymorphisms on the normal allele. There- fore, genetic analyses are important for the diagnosis of heterozygous FVII deficiency.

  18. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could removemore » some residue.« less

  19. ABCC6 Gene Analysis in 20 Japanese Patients with Angioid Streaks Revealing Four Frequent and Two Novel Variants and Pseudodominant Inheritance

    PubMed Central

    Negishi, Yuya; Mizobuchi, Kei; Urashima, Mitsuyoshi; Nakano, Tadashi

    2017-01-01

    Purpose To report the spectrum of ABCC6 variants in Japanese patients with angioid streaks (AS). Patients and Methods This was a single-center cohort study. The medical records of 20 patients with AS from 18 unrelated Japanese families were retrospectively reviewed. Screening of the ABCC6 gene (exons 1 to 31) was performed using PCR-based Sanger sequencing. Results Eight ABCC6 variants were identified as candidate disease-causing variants. These eight variants included five known variants (p.Q378X, p.R419Q, p.V848CfsX83, p.R1114C, and p.R1357W), one previously reported variant (p.N428S) of unknown significance, and two novel variants (c.1939C>T [p.H647Y] and c.3374C>T [p.S1125F]); the three latter variants were determined to be variants of significance. The following four variants were frequently identified: p.V848CfsX83 (14/40 alleles, 35.0%), p.Q378X (7/40 alleles, 17.5%), p.R1357W (6/40 alleles, 15.0%), and p.R419Q (4/40 alleles, 10.0%). The ABCC6 variants were identified in compound heterozygous or homozygous states in 13 of 18 probands. Two families showed a pseudodominant inheritance pattern. Pseudoxanthoma elasticum was seen in 15 of 17 patients (88.2%) who underwent dermatological examination. Conclusions We identified disease-causing ABCC6 variants that were in homozygous or compound heterozygous states in 13 of 18 families (72.2%). Our results indicated that ABCC6 variants play a significant role in patients with AS in the Japanese population. PMID:28912966

  20. Clinical evaluation of R202Q alteration of MEFV genes in Turkish children.

    PubMed

    Comak, Elif; Akman, Sema; Koyun, Mustafa; Dogan, Cagla Serpil; Gokceoglu, Arife Uslu; Arikan, Yunus; Keser, Ibrahim

    2014-12-01

    To date, over 200 alterations have been reported in Mediterranean fever (MEFV) genes, but it is not clear whether all these alterations are disease-causing mutations. This study aims to evaluate the clinical features of the children with R202Q alteration. The medical records of children with R202Q alteration were reviewed retrospectively. A total of 225 children, with 113 males, were included. Fifty-five patients were heterozygous, 30 patients were homozygous for R202Q, and 140 patients were compound heterozygous. Classical familial Mediterranean fever (FMF) phenotype was present in 113 patients: 2 heterozygous and 7 homozygous R202Q, 46 double homozygous R202Q and M694V, and 58 compound heterozygous. The main clinical characteristics of the patients were abdominal pain in 71.5 %, fever in 37.7 %, arthralgia/myalgia in 30.2 %, arthritis in 10.2 %, chest pain in 14.6 % and erysipelas-like erythema in 13.3 %. The frequency of abdominal pain was significantly lower in patients with homozygous R202Q alteration (p = 0.021), whereas patients with heterozygous R202Q mutations, though not statistically significant, had a higher frequency of arthralgia/myalgia (40.0 %, p = 0.05). R202Q alteration of the MEFV gene leads to symptoms consistent with FMF in some cases. This alteration may be associated with a mild phenotype and shows phenotypic differences other than the common MEFV mutations.

  1. Heterozygous Inverdale ewes show increased ovulation rate sensitivity to pre-mating nutrition.

    PubMed

    Demmers, K J; Smaill, B; Davis, G H; Dodds, K G; Juengel, J L

    2011-01-01

    This study aimed to determine whether ewes heterozygous (I+) for the Inverdale mutation of the bone morphogenetic protein-15 (BMP15) gene with high natural ovulation rate (OR) show similar sensitivity to nutritional manipulation as non-carriers (++). Increasing pre-mating nutrition results in OR increases in sheep, but whether this effect occurs in ewes with naturally high OR is unknown. Over 2 years, I+ or ++ ewes were given high (ad libitum) or control (maintenance) pasture allowances for 6 weeks prior to mating at a synchronised oestrus, with OR measured 8 days later. The high group increased in weight compared with controls (+5.84kg; P<0.01), accompanied by increased OR (+19%; P<0.01). As well as having higher OR (+45%; P<0.01), I+ ewes responded to increased feed with a larger proportional increase in OR (+27%; P<0.01) compared with the response in ++ ewes (+11%; P<0.05), suggesting an interaction between BMP15 levels and nutritional signals in the follicle to control OR. Although litter size increases only tended to significance (+12%; P=0.06), extra feed resulted in over 50% of I+ ewes giving birth to more than three lambs, compared with 20-31% of I+ ewes on maintenance rations. This information can guide feed management of prolific Inverdale ewes prior to breeding.

  2. Targeting the epigenome: Screening bioactive compounds that regulate histone deacetylase activity.

    PubMed

    Godoy, Luis D; Lucas, Julianna E; Bender, Abigail J; Romanick, Samantha S; Ferguson, Bradley S

    2017-04-01

    Nutrigenomics is a rapidly expanding field that elucidates the link between diet-genome interactions. Recent evidence demonstrates that regulation of the epigenome, and in particular inhibition of histone deacetylases (HDACs), impact pathogenetic mechanisms involved in chronic disease. Few studies, to date, have screened libraries of bioactive compounds that act as epigenetic modifiers. This study screened a library of 131 natural compounds to determine bioactive compounds that inhibit Zn-dependent HDAC activity. Using class-specific HDAC substrates, we screened 131 natural compounds for HDAC activity in bovine cardiac tissue. From this screen, we identified 18 bioactive compound HDAC inhibitors. Using our class-specific HDAC substrates, we next screened these 18 bioactive compounds against recombinant HDAC proteins. Consistent with inhibition of HDAC activity, these compounds were capable of inhibiting activity of individual HDAC isoforms. Lastly, we report that treatment of H9c2 cardiac myoblasts with bioactive HDAC inhibitors was sufficient to increase lysine acetylation as assessed via immunoblot. This study provided the first step in identifying multiple bioactive compound HDAC inhibitors. Taken together, this report sets the stage for future exploration of these bioactive compounds as epigenetic regulators to potentially ameliorate chronic disease. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Identifying Novel Molecular Structures for Advanced Melanoma by Ligand-Based Virtual Screening

    PubMed Central

    Wang, Zhao; Lu, Yan; Seibel, William; Miller, Duane D.; Li, Wei

    2009-01-01

    We recently discovered a new class of thiazole analogs that are highly potent against melanoma cells. To expand the structure-activity relationship study and to explore potential new molecular scaffolds, we performed extensive ligand-based virtual screening against a compound library containing 342,910 small molecules. Two different approaches of virtual screening were carried out using the structure of our lead molecule: 1) connectivity-based search using Scitegic Pipeline Pilot from Accelerys and 2) molecular shape similarity search using Schrodinger software. Using a testing compound library, both approaches can rank similar compounds very high and rank dissimilar compounds very low, thus validating our screening methods. Structures identified from these searches were analyzed, and selected compounds were tested in vitro to assess their activity against melanoma cancer cell lines. Several molecules showed good anticancer activity. While none of the identified compounds showed better activity than our lead compound, they provided important insight into structural modifications for our lead compound and also provided novel platforms on which we can optimize new classes of anticancer compounds. One of the newly synthesized analogs based on this virtual screening has improved potency and selectivity against melanoma. PMID:19445498

  4. Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust.

    PubMed

    Peng, Hui; Saunders, David M V; Sun, Jianxian; Jones, Paul D; Wong, Chris K C; Liu, Hongling; Giesy, John P

    2016-12-06

    Characterization of toxicological profiles by use of traditional targeted strategies might underestimate the risk of environmental mixtures. Unbiased identification of prioritized compounds provides a promising strategy for meeting regulatory needs. In this study, untargeted screening of brominated compounds in house dust was conducted using a data-independent precursor isolation and characteristic fragment (DIPIC-Frag) approach, which used data-independent acquisition (DIA) and a chemometric strategy to detect peaks and align precursor ions. A total of 1008 brominated compound peaks were identified in 23 house dust samples. Precursor ions and formulas were identified for 738 (73%) of the brominated compounds. A correlation matrix was used to cluster brominated compounds; three large groups were found for the 140 high-abundance brominated compounds, and only 24 (17%) of these compounds were previously known flame retardants. The predominant class of unknown brominated compounds was predicted to consist of nitrogen-containing compounds. Following further validation by authentic standards, these compounds (56%) were determined to be novel brominated azo dyes. The mutagenicity of one major component was investigated, and mutagenicity was observed at environmentally relevant concentrations. Results of this study demonstrated the existence of numerous unknown brominated compounds in house dust, with mutagenic azo dyes unexpectedly being identified as the predominant compounds.

  5. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  6. Compound Libraries: Recent Advances and Their Applications in Drug Discovery.

    PubMed

    Gong, Zhen; Hu, Guoping; Li, Qiang; Liu, Zhiguo; Wang, Fei; Zhang, Xuejin; Xiong, Jian; Li, Peng; Xu, Yan; Ma, Rujian; Chen, Shuhui; Li, Jian

    2017-01-01

    Hit identification is the starting point of small-molecule drug discovery and is therefore very important to the pharmaceutical industry. One of the most important approaches to identify a new hit is to screen a compound library using an in vitro assay. High-throughput screening has made great contributions to drug discovery since the 1990s but requires expensive equipment and facilities, and its success depends on the size of the compound library. Recent progress in the development of compound libraries has provided more efficient ways to identify new hits for novel drug targets, thereby helping to promote the development of the pharmaceutical industry, especially for firstin- class drugs. A multistage and systematic research of articles published between 1986 and 2017 has been performed, which was organized into 5 sections and discussed in detail. In this review, the sources and classification of compound libraries are summarized. The progress made in combinatorial libraries and DNA-encoded libraries is reviewed. Library design methods, especially for focused libraries, are introduced in detail. In the final part, the status of the compound libraries at WuXi is reported. The progress related to compound libraries, especially drug template libraries, DELs, and focused libraries, will help to identify better hits for novel drug targets and promote the development of the pharmaceutical industry. Moreover, these libraries can facilitate hit identification, which benefits most research organizations, including academics and small companies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Synthesis of natural acylphloroglucinol-based antifungal compounds against Cryptococcus species

    USDA-ARS?s Scientific Manuscript database

    Thirty-five analogs of naturally occurring acylphloroglucinols were designed and synthesized to identify antifungal compounds against Cryptococcus spp. that causes the life-threatening disseminated cryptococcosis. In vitro antifungal testing showed that 17 compounds were active against C. neoformans...

  8. Practices of pharmacies that compound extemporaneous formulations.

    PubMed

    Treadway, Angela K; Craddock, Deeatra; Leff, Richard

    2007-07-01

    A survey was conducted to characterize the standard of practice for extemporaneous pharmaceutical compounding within community and institutional pharmacies. Extemporaneous compounding practices vary among pharmacies. Because of this, the survey inquired specifically about a single pharmaceutical product (caffeine citrate 20 mg/mL) to minimize variability among respondents. Survey questions were written to identify compounding practice variations with (1) policies and procedures, (2) process validation, (3) personnel education, training, and evaluation, (4) expiration dating, (5) storage and handling of compounded prescriptions within the pharmacy, (6) labeling, (7) facilities and equipment, (8) end-product evaluation, (9) handling of sterile products outside of the pharmacy, (10) aseptic technique and product preparation, and (11) documentation. A total of 522 surveys were mailed; 117 completed surveys were returned and included in the analyses. Over half of the pharmacies surveyed were large institutional pharmacies with daily prescriptions exceeding 300. Almost 71% of pharmacies reported having policies and procedures for compounding and providing compounding training for staff. Almost one third of the pharmacies that responded did not have compounding policies and procedures and did not provide staff training. For those pharmacies that provided training, the methods used were diverse (e.g., lectures and videotapes, external certificate programs). Formulations used to compound caffeine appeared to be diverse as evidenced by the varied addition of inactive ingredients. A survey of compounding pharmacies found variability in overall compounding practices and training and in practices specifically related to compounding preparations of caffeine citrate.

  9. A retention index calculator simplifies identification of plant volatile organic compounds.

    PubMed

    Lucero, Mary; Estell, Rick; Tellez, María; Fredrickson, Ed

    2009-01-01

    Plant volatiles (PVOCs) are important targets for studies in natural products, chemotaxonomy and biochemical ecology. The complexity of PVOC profiles often limits research to studies targeting only easily identified compounds. With the availability of mass spectral libraries and recent growth of retention index (RI) libraries, PVOC identification can be achieved using only gas chromatography coupled to mass spectrometry (GCMS). However, RI library searching is not typically automated, and until recently, RI libraries were both limited in scope and costly to obtain. To automate RI calculation and lookup functions commonly utilised in PVOC analysis. Formulae required for calculating retention indices from retention time data were placed in a spreadsheet along with lookup functions and a retention index library. Retention times obtained from GCMS analysis of alkane standards and Koeberlinia spinosa essential oil were entered into the spreadsheet to determine retention indices. Indices were used in combination with mass spectral analysis to identify compounds contained in Koeberlinia spinosa essential oil. Eighteen compounds were positively identified. Total oil yield was low, with only 5 ppm in purple berries. The most abundant compounds were octen-3-ol and methyl salicylate. The spreadsheet accurately calculated RIs of the detected compounds. The downloadable spreadsheet tool developed for this study provides a calculator and RI library that works in conjuction with GCMS or other analytical techniques to identify PVOCs in plant extracts.

  10. Genetic background has a major effect on the penetrance and severity of craniofacial defects in mice heterozygous for the gene encoding the nucleolar protein Treacle.

    PubMed

    Dixon, Jill; Dixon, Michael James

    2004-04-01

    Treacher Collins syndrome (TCS) is a craniofacial disorder that results from mutations in TCOF1, which encodes the nucleolar protein Treacle. The severity of the clinical features exhibits wide variation and includes hypoplasia of the mandible and maxilla, abnormalities of the external ears and middle ear ossicles, and cleft palate. To determine the in vivo function of Treacle, we previously generated Tcof1 heterozygous mice on a mixed C57BL/6 and 129 background. These mice exhibited a lethal phenotype, which included abnormal development of the maxilla, absence of the eyes and nasal passages, and neural tube defects. Here, we show that placing the mutation onto different genetic backgrounds has a major effect on the penetrance and severity of the craniofacial and other defects. The offspring exhibit markedly variable strain-dependent phenotypes that range from extremely severe and lethal in a mixed CBA/Ca and 129 background, to apparently normal and viable in a mixed BALB/c and 129 background. In the former case, in addition to a profoundly severe craniofacial phenotype, CBA-derived heterozygous mice also exhibited delayed ossification of the long bones, rib fusions, and digit anomalies. The results of our studies indicate that factors in the different genetic backgrounds contribute extensively to the Tcof1 phenotype. Copyright 2004 Wiley-Liss, Inc.

  11. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  12. Kv7.3 Compound Heterozygous Variants in Early Onset Encephalopathy Reveal Additive Contribution of C-Terminal Residues to PIP2-Dependent K+ Channel Gating.

    PubMed

    Ambrosino, Paolo; Freri, Elena; Castellotti, Barbara; Soldovieri, Maria Virginia; Mosca, Ilaria; Manocchio, Laura; Gellera, Cinzia; Canafoglia, Laura; Franceschetti, Silvana; Salis, Barbara; Iraci, Nunzio; Miceli, Francesco; Ragona, Francesca; Granata, Tiziana; DiFrancesco, Jacopo C; Taglialatela, Maurizio

    2018-01-30

    Over one hundred mutations in the Kv7.2 (KCNQ2) gene encoding for phosphatidylinositol 4,5-bisphosphate (PIP 2 )-sensitive voltage-gated K + channel subunits have been identified in early-onset epilepsies with wide phenotypic variability. By contrast, only few mutations in the closely related Kv7.3 (KCNQ3) gene have been reported, mostly associated with typical benign familial neonatal seizures (BFNS). We herein describe a patient affected by early onset epileptic encephalopathy (EOEE) carrying two Kv7.3 missense mutations (p.Val359Leu/V359L and p.Asp542Asn/D542N) in compound heterozygosis, each inherited from an asymptomatic parent. Patch-clamp recordings from transiently transfected CHO cells showed that, when incorporated in physiologically relevant Kv7.2 + Kv7.3 heteromeric channels, expression of Kv7.3 V359L or Kv7.3 D542N subunits failed to affect current density, whereas a significant decrease was instead observed when these mutant subunits were both simultaneously present. Modeling and functional experiments revealed that each variant decreased PIP 2 -dependent current regulation, with additive effects when the two were co-expressed. Moreover, expression of Kv7.2 subunits carrying the D535N variant previously described in three sporadic EOEE cases prompted functional changes more dramatic when compared to those of the corresponding D542N variant in Kv7.3, but similar to those observed when both Kv7.3 V359L and Kv7.3 D542N subunits were expressed together. Finally, the Kv7 activator retigabine restored channel dysfunction induced by each Kv7.2 or Kv7.3 variant(s). These results provide a plausible molecular explanation for the apparent recessive inheritance of the phenotype in the family investigated, and a rational basis for personalized therapy with Kv7 channel activators in EOEE patients carrying loss-of-function mutations in Kv7.2 or Kv7.3.

  13. Population genetic structure and disease in montane boreal toads: More heterozygous individuals are more likely to be infected with amphibian chytrid

    USGS Publications Warehouse

    Addis, Brett; Lowe, Winsor; Hossack, Blake R.; Allendorf, Fred

    2015-01-01

    Amphibians are more threatened than any other vertebrate group, with 41 % of species classified as threatened. The causes of most declines are not well understood, though many declines have been linked to disease. Additionally, amphibians are physiologically constrained to moist habitats and considered poor dispersers; thus, they may suffer genetic consequences of population isolation. To understand threats to the persistence of boreal toads (Bufo boreas) in Glacier National Park, USA, we genotyped 551 individuals at 11 microsatellite loci and used Bayesian clustering methods to describe population genetic structure and identify barriers to gene flow. We found evidence of two primary genetic groups that differed substantially in elevation and two secondary groups within the high elevation group. There was also evidence of further substructure within the southern high elevation group, suggesting mountain ridges are barriers to gene flow at local scales. Overall, genetic variation was high, but allelic richness declined with increasing elevation, reflecting greater isolation or smaller effective population sizes of high altitude populations. We tested for Batrachochytrium dendrobatidis (Bd), the fungal pathogen which causes chytridiomycosis, and we found that 35 of 199 toads were positive for Bd. Unexpectedly, more heterozygous individuals were more likely to be infected. This suggests that dispersal facilitates the spread of disease because heterozygosity may be highest where dispersal and gene flow are greatest.

  14. Drug nanoparticles: formulating poorly water-soluble compounds.

    PubMed

    Merisko-Liversidge, Elaine M; Liversidge, Gary G

    2008-01-01

    More than 40% of compounds identified through combinatorial screening programs are poorly soluble in water. These molecules are difficult to formulate using conventional approaches and are associated with innumerable formulation-related performance issues. Formulating these compounds as pure drug nanoparticles is one of the newer drug-delivery strategies applied to this class of molecules. Nanoparticle dispersions are stable and have a mean diameter of less than 1 micron. The formulations consist of water, drug, and one or more generally regarded as safe excipients. These liquid dispersions exhibit an acceptable shelf-life and can be postprocessed into various types of solid dosage forms. Drug nanoparticles have been shown to improve bioavailability and enhance drug exposure for oral and parenteral dosage forms. Suitable formulations for the most commonly used routes of administration can be identified with milligram quantities of drug substance, providing the discovery scientist with an alternate avenue for screening and identifying superior analogs. For the toxicologist, the approach provides a means for dose escalation using a formulation that is commercially viable. In the past few years, formulating poorly water-soluble compounds using a nanoparticulate approach has evolved from a conception to a realization whose versatility and applicability are just beginning to be realized.

  15. Rapid NMR method for the quantification of organic compounds in thin stillage.

    PubMed

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  16. Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy

    PubMed Central

    Saitsu, Hirotomo; Osaka, Hitoshi; Sasaki, Masayuki; Takanashi, Jun-ichi; Hamada, Keisuke; Yamashita, Akio; Shibayama, Hidehiro; Shiina, Masaaki; Kondo, Yukiko; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Miyake, Noriko; Doi, Hiroshi; Ogata, Kazuhiro; Inoue, Ken; Matsumoto, Naomichi

    2011-01-01

    Congenital hypomyelinating disorders are a heterogeneous group of inherited leukoencephalopathies characterized by abnormal myelin formation. We have recently reported a hypomyelinating syndrome characterized by diffuse cerebral hypomyelination with cerebellar atrophy and hypoplasia of the corpus callosum (HCAHC). We performed whole-exome sequencing of three unrelated individuals with HCAHC and identified compound heterozygous mutations in POLR3B in two individuals. The mutations include a nonsense mutation, a splice-site mutation, and two missense mutations at evolutionally conserved amino acids. Using reverse transcription-PCR and sequencing, we demonstrated that the splice-site mutation caused deletion of exon 18 from POLR3B mRNA and that the transcript harboring the nonsense mutation underwent nonsense-mediated mRNA decay. We also identified compound heterozygous missense mutations in POLR3A in the remaining individual. POLR3A and POLR3B encode the largest and second largest subunits of RNA Polymerase III (Pol III), RPC1 and RPC2, respectively. RPC1 and RPC2 together form the active center of the polymerase and contribute to the catalytic activity of the polymerase. Pol III is involved in the transcription of small noncoding RNAs, such as 5S ribosomal RNA and all transfer RNAs (tRNA). We hypothesize that perturbation of Pol III target transcription, especially of tRNAs, could be a common pathological mechanism underlying POLR3A and POLR3B mutations. PMID:22036171

  17. Virtual High-Throughput Screening To Identify Novel Activin Antagonists

    PubMed Central

    Zhu, Jie; Mishra, Rama K.; Schiltz, Gary E.; Makanji, Yogeshwar; Scheidt, Karl A.; Mazar, Andrew P.; Woodruff, Teresa K.

    2015-01-01

    Activin belongs to the TGFβ superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin βA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHβ transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex’s binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFβ superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFβ receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases. PMID:26098096

  18. Computationally identified novel agonists for GPRC6A

    PubMed Central

    Ye, Ruisong; Hwang, Dong-Jin; Miller, Duane D.; Smith, Jeremy C.; Baudry, Jerome; Quarles, L. Darryl

    2018-01-01

    New insights into G protein coupled receptor regulation of glucose metabolism by β-cells, skeletal muscle and liver hepatocytes identify GPRC6A as a potential therapeutic target for treating type 2 diabetes mellitus (T2D). Activating GPRC6A with a small molecule drug represents a potential paradigm-shifting opportunity to make significant strides in regulating glucose homeostasis by simultaneously correcting multiple metabolic derangements that underlie T2D, including abnormalities in β-cell proliferation and insulin secretion and peripheral insulin resistance. Using a computational, structure-based high-throughput screening approach, we identified novel tri-phenyl compounds predicted to bind to the venus fly trap (VFT) and 7-transmembrane (7-TM) domains of GPRC6A. Experimental testing found that these compounds dose-dependently stimulated GPRC6A signaling in a heterologous cell expression system. Additional chemical modifications and functional analysis identified one tri-phenyl lead compound, DJ-V-159 that demonstrated the greatest potency in stimulating insulin secretion in β-cells and lowering serum glucose in wild-type mice. Collectively, these studies show that GPRC6A is a “druggable” target for developing chemical probes to treat T2DM. PMID:29684031

  19. MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS

    EPA Science Inventory

    Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

  20. An In Ovo Model for Testing Insulin-mimetic Compounds.

    PubMed

    Haselgrübler, Renate; Stübl, Flora; Stadlbauer, Verena; Lanzerstorfer, Peter; Weghuber, Julian

    2018-04-23

    Elevated blood glucose levels in type 2 diabetes mellitus (T2DM), a complex and multifactorial metabolic disease, are caused by insulin resistance and β-cell failure. Various strategies, including the injection of insulin or the usage of insulin-sensitizing drugs, were pursued to treat T2DM or at least reduce the symptoms. In addition, the application of herbal compounds has attracted increasing attention. Thus, it is necessary to find efficient test systems to identify and characterize insulin-mimetic compounds. Here we developed a modified chick embryo model, which enables testing of synthetic compounds and herbal extracts with insulin-mimetic properties. Using a fluorescence microscopy-based primary screen, which quantifies the translocation of Glucose transporter 4 (Glut4) to the plasma membrane, we were able to identify compounds, mainly herbal extracts, which lead to an increase of intracellular glucose concentrations in adipocytes. However, the efficacy of these substances requires further verification in a living organism. Thus, we used an in-ovo approach to identify their blood glucose-reducing properties. The approval by an ethics committee is not needed since the use of chicken embryos during the first two-thirds of embryonic development is not considered an animal experiment. Here, the application of this model is described in detail.

  1. Use of gas chromatography-mass spectrometry-olfactometry and a conventional flask test to identify off-flavor compounds generated from phenylalanine during chlorination of drinking water.

    PubMed

    Matsushita, Taku; Sakuma, Miki; Tazawa, Shiori; Hatase, Taiki; Shirasaki, Nobutaka; Matsui, Yoshihiko

    2017-11-15

    Off-flavor in drinking water can be caused by transformation products (TPs) generated from organic compounds, such as amino acids, present during chlorination. However, the contributions of many of these TPs to overall off-flavor have not been quantified, mainly because the lack of appropriate chemical standards prevents sensory evaluation by means of a conventional flask test. In the present study, we used gas chromatography-mass spectrometry-olfactometry (GC-MS-O) to identify compounds responsible for the off-flavor generated by chlorination of an aqueous solution of the amino acid phenylalanine, and we propose a sensory evaluation procedure for quantification of the contributions of the identified TPs to the overall off-flavor, regardless of the availability of chemical standards of the TPs. GC-MS-O revealed that two TPs, N-chlorophenylacetaldimine and 2-chloro-2-phenylacetaldehyde, for which chemical standards are not commercially available, were the main components responsible for the off-flavor of the chlorinated solution. By using a sensory evaluation procedure involving a combination of GC-MS-O and a conventional flask test, we quantified the contributions of TPs to the overall off-flavor of the chlorinated solution. Approximately 60% of the off-flavor was attributable to free chlorine (13%), 2-chloro-2-phenylacetaldehyde (13%), trichloramine (12%) phenylacetaldehyde (11%) phenylacetonitrile (8%), and N-chlorophenylacetaldimine (2%). Treatment with powdered activated carbon (PAC) removed the off-flavor. Experiments with chlorination of 15 N-labeled phenylalanine suggested that PAC reductively decomposed trichloramine into N 2 gas and adsorbed all of the other identified TPs. Superfine PAC (median diameter, 0.7 μm) removed the off-flavor more rapidly than normal-size PAC (median diameter, 8.0 μm). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Airborne concentrations of volatile organic compounds in neonatal incubators.

    PubMed

    Prazad, P; Cortes, D R; Puppala, B L; Donovan, R; Kumar, S; Gulati, A

    2008-08-01

    To identify and quantify airborne volatile organic compounds (VOCs) inside neonatal incubators during various modes of operation within the neonatal intensive care unit (NICU) environment. Air samples were taken from 10 unoccupied incubators in four operational settings along with ambient air samples using air sampling canisters. The samples were analyzed following EPA TO-15 using a Tekmar AutoCan interfaced to Agilent 6890 Gas Chromatograph with a 5973 Mass Spectrometer calibrated for 60 EPA TO-15 method target compounds. Non-target compounds were tentatively identified using mass spectral interpretation and with a mass spectral library created by National Institute for Standards and Technology. Two non-target compounds, 2-heptanone and n-butyl acetate, were found at elevated concentrations inside the incubators compared with ambient room air samples. Increase in temperature and addition of humidity produced further increased concentrations of these compounds. Their identities were verified by mass spectra and relative retention times using authentic standards. They were quantified using vinyl acetate and 2-hexanone as surrogate standards. The emission pattern of these two compounds and background measurements indicate that they originate inside the incubator. There is evidence that exposure to some VOCs may adversely impact the fetal and developing infants' health. Currently, as there is no definitive information available on the effects of acute or chronic low-level exposure to these compounds in neonates, future studies evaluating the health effects of neonatal exposure to these VOCs are needed.

  3. Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms.

    PubMed

    Wan, Yi; Jones, Paul D; Wiseman, Steve; Chang, Hong; Chorney, Dave; Kannan, Kurunthachalam; Zhang, Kun; Hu, Jian-Ying; Khim, Jong Seong; Tanabe, Shinsuke; Lam, Michael H W; Giesy, John P

    2010-08-15

    An extraction, separation, and purification method was developed for the identification and quantification of total bromine (TBr), extractable organobromine (EOBr), and five classes of identified EOBrs. Instrumental neutron activation analysis (INAA) was utilized to quantify EOBr and TBr. The method was then applied to liver samples of tuna, albatross, and polar bear collected from remote marine locations. Polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bromophenols (BRPs), hydroxylated (OH-) and methoxylated (MeO-) PBDEs were analyzed as identified EOBr. The majority of the bromine in these marine organisms was nonextractable or inorganic, with EOBr accounting for 10-28% of the TBr. Of the identified EOBr, in tuna and albatross, naturally occurring compounds, including MeO-PBDEs, OH-PBDEs, and BPRs, were prevalent. However, the identifiable EOBr in polar bears consisted primarily of synthetic compounds, including PBDEs and PBBs. Overall, 0.08-0.11% and 0.008-0.012% of EOBr and TBr, respectively, were identified. The proportion of EOBr that was identified in marine organisms was relatively small compared to the proportions for organofluorine and organochlorine compounds. This could be related to the great diversity of naturally occurring organobromine compounds in the environment. Naturally occurring brominated fatty acids were estimated to be the predominant compounds in the EOBr fraction.

  4. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TOOL FOR IDENTIFYING ORGANIC COMPOUNDS IN COMPLEX EXTRACTS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory


    Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample ...

  5. Novel Polyfluorinated Compounds Identified Using High Resolution Mass Spectrometry Downstream of Manufacturing Facilities near Decatur, Alabama

    EPA Science Inventory

    Concern over persistence, bioaccumulation, and toxicity has led to international regulation and phase-outs of certain perfluorinated compounds and little is known about their replacement products. High resolution mass spectrometry was used to investigate the occurrence and identi...

  6. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing.

    PubMed

    Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-03-05

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.

  7. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing

    PubMed Central

    Gallistel, C. R.; Tucci, Valter; Nolan, Patrick M.; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-01-01

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability. PMID:24446498

  8. Genomic variants in the ASS1 gene, involved in the nitric oxide biosynthesis and signaling pathway, predict hydroxyurea treatment efficacy in compound sickle cell disease/β-thalassemia patients.

    PubMed

    Chalikiopoulou, Constantina; Tavianatou, Anastasia-Gerasimoula; Sgourou, Argyro; Kourakli, Alexandra; Kelepouri, Dimitra; Chrysanthakopoulou, Maria; Kanelaki, Vasiliki-Kaliopi; Mourdoukoutas, Evangelos; Siamoglou, Stavroula; John, Anne; Symeonidis, Argyris; Ali, Bassam R; Katsila, Theodora; Papachatzopoulou, Adamantia; Patrinos, George P

    2016-03-01

    Hemoglobinopathies exhibit a remarkable phenotypic diversity that restricts any safe association between molecular pathology and clinical outcomes. Herein, we explored the role of genes involved in the nitric oxide biosynthesis and signaling pathway, implicated in the increase of fetal hemoglobin levels and response to hydroxyurea treatment, in 119 Hellenic patients with β-type hemoglobinopathies. We show that two ASS1 genomic variants (namely, rs10901080 and rs10793902) can serve as pharmacogenomic biomarkers to predict hydroxyurea treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients. These markers may exert their effect by inducing nitric oxide biosynthesis, either via altering splicing and/or miRNA binding, as predicted by in silico analysis, and ultimately, increase γ-globin levels, via guanylyl cyclase targeting.

  9. Composition and major sources of organic compounds in urban aerosols

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.

  10. Mutation analysis of Leber congenital amaurosis‑associated genes in patients with retinitis pigmentosa.

    PubMed

    Shen, Tao; Guan, Liping; Li, Shiqiang; Zhang, Jianguo; Xiao, Xueshan; Jiang, Hui; Yang, Jianhua; Guo, Xiangming; Wang, Jun; Zhang, Qingjiong

    2015-03-01

    The genetic defects underlying approximately half of all retinitis pigmentosa (RP) cases are unknown. A number of genes responsible for Leber congenital amaurosis (LCA) may also cause RP when they are mutated. Our previous study revealed that variants in the most frequently mutated nine exons accounted for approximately half of the mutations detected in a cohort of patients with LCA. The aim of the present study was to detect mutations in LCA-associated genes in patients with RP using two different strategies. Sanger sequencing was used to screen mutations in the nine exons in 293 patients with RP and exome sequencing was used to detect variants in 12 LCA-associated genes in 157 of the 293 patients with RP and then to validate the variants by Sanger sequencing. Potential pathogenic mutations were identified in four patients with early onset RP, including homozygous CRB1 mutations in two patients, compound heterozygous CRB1 mutations in one patient and compound heterozygous CEP290 mutations in one patient. The present study indicated that mutations in CEP290 may also be associated with RP but not with LCA. With the exception of CEP290, the remaining 11 genes known to be associated with LCA but not with RP are unlikely to be a common cause of RP.

  11. FRET and BRET-based biosensors in live cell compound screens.

    PubMed

    Robinson, Katie Herbst; Yang, Jessica R; Zhang, Jin

    2014-01-01

    Live cell compound screening with genetically encoded fluorescence or bioluminescence-based biosensors offers a potentially powerful approach to identify novel regulators of a signaling event of interest. In particular, compound screening in living cells has the added benefit that the entire signaling network remains intact, and thus the screen is not just against a single molecule of interest but against any molecule within the signaling network that may modulate the distinct signaling event reported by the biosensor in use. Furthermore, only molecules that are cell permeable or act at cell surface receptors will be identified as "hits," thus reducing further optimization of the compound in terms of cell penetration. Here we discuss a detailed protocol for using genetically encoded biosensors in living cells in a 96-well format for the execution of high throughput compound screens and the identification of small molecules which modulate a signaling event of interest.

  12. Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367.

    PubMed

    Song, Ji Hoon; Lee, Changyeol; Lee, Dahae; Kim, Soonok; Bang, Sunghee; Shin, Myoung-Sook; Lee, Jun; Kang, Ki Sung; Shim, Sang Hee

    2018-05-23

    Colletotrichum sp. JS-0367 was isolated from Morus alba (mulberry), identified, and cultured on a large scale for chemical investigation. One new anthraquinone (1) and three known anthraquinones (2-4) were isolated and identified using spectroscopic methods including 1D/2D-NMR and HRESIMS. Although the neuroprotective effects of some anthraquinones have been reported, the biological activities of the four anthraquinones isolated in this study have not been reported. Therefore, the neuroprotective effects of these compounds were determined against murine hippocampal HT22 cell death induced by glutamate. Compound 4, evariquinone, showed strong protective effects against HT22 cell death induced by glutamate by the inhibition of intracellular ROS accumulation and Ca 2+ influx triggered by glutamate. Immunoblot analysis revealed that compound 4 reduced the phosphorylation of MAPKs (JNK, ERK1/2, and p38) induced by glutamate. Furthermore, compound 4 strongly attenuated glutamate-mediated apoptotic cell death.

  13. Photooxidation products of polycyclic aromatic compounds containing sulfur.

    PubMed

    Bobinger, Stefan; Andersson, Jan T

    2009-11-01

    Photooxidation of crude oil components is an important process that removes pollutants from the environment. Polycyclic aromatic compounds (PACs) are known to be toxic to many life forms, but little is known about their photooxidation products in the aqueous phase. We here identify a large number of photoproducts from 11 benzothiophenes, a polycyclic aromatic sulfur heterocycle that is a major representative of PACs in crude oil. The investigated compounds contain two to four methyl groups and an ethyl or an n-octyl group. In water, the products arise through oxidation of alkyl side chains to aldehydes and carboxylic acids or through an opening in one of the aromatic rings. The product analysis was performed using gas chromatography with mass spectrometric or atomic emission detection. The main product is always a sulfobenzoic acid, which strongly lowers the pH of the solution. With long alkyl substituents, surfactants are formed, which may possess solubilizing properties in water. The larger the number of alkyl groups, the faster is the photooxidation. Several of the identified acidic compounds were also found when whole crude oil was photooxidized, showing that simulation with individual compounds reflects the situation in whole crude.

  14. Mechanisms of action of phenolic compounds in olive.

    PubMed

    Rafehi, Haloom; Ververis, Katherine; Karagiannis, Tom C

    2012-06-01

    Olive oil, an oil rich in monounsaturated fatty acids (MUFCs) and minor constituents including phenolic compounds, is a major component of the Mediterranean diet. The potential health benefits of the Mediterranean diet were highlighted by the seminal Seven Countries Study, and more contemporary research has identified olive oil as a major element responsible for these effects. It is emerging that the phenolic compounds are the most likely candidates accounting for the cardioprotective and cancer preventative effects of extra virgin olive oil (EVOO). In particular, the phenolic compound, hydroxytyrosol has been identified as one of the most potent antioxidants found in olive oil. This review will briefly consider historical aspects of olive oil research and the biological properties of phenolic compounds in olive oil will be discussed. The focus of the discussion will be related to the mechanisms of action of hydroxytyrosol. Studies have demonstrated that hydroxytyrosol induces apoptosis and cell cycle arrest in cancer cells. Further, research has shown that hydroxytyrosol can prevent cardiovascular disease by reducing the expression of adhesion molecules on endothelial cells and preventing the oxidation of low-density lipoprotein (LDL). The molecular mechanisms accounting for these effects are reviewed.

  15. Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.

    PubMed

    Ao, Man; Liu, Baofeng; Wang, Li

    2013-01-01

    The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.

  16. R353Q polymorphism in the factor VII gene and cardiovascular risk in Heterozygous Familial Hypercholesterolemia: a case-control study.

    PubMed

    Criado-García, Juan; Fuentes, Francisco; Cruz-Teno, Cristina; García-Rios, Antonio; Jiménez-Morales, Anabel; Delgado-Lista, Javier; Mata, Pedro; Alonso, Rodrigo; López-Miranda, José; Pérez-Jiménez, Francisco

    2011-04-09

    Heterozygous Familial Hypercholesterolemia (FH) is a genetic disorder characterized by a high risk of cardiovascular disease. Certain polymorphisms of the factor VII gene have been associated with the development of coronary artery disease and there is a known association between factor VII levels and polymorphic variants in this gene. To date, no study has evaluated the association between factor VII and coronary artery disease in patients with FH. This case-control study comprised 720 patients (546 with FH and 174 controls). We determined the prevalence and allele frequencies of the R353Q polymorphism of factor VII, the plasma levels of factor VII antigen (FVII Ag) and whether they could be predictive factors for cardiovascular risk. 75% (410) of the patients with FH were RR, 23% (127) RQ and 1.6% (9) QQ; in the control group 75.3% (131) were RR, 21.3% (37) RQ and 3.4% (6) QQ (p = 0.32). No statistically significant associations were observed in the distribution of genotypes and allele frequencies between case (FH) and control groups. Nor did we find differences when we evaluated the relationship between the R353Q polymorphism and cardiovascular risk (including coronary disease, ischemic stroke and peripheral arterial disease), either in the univariate analysis or after adjustment for sex, age, arterial hypertension, body mass index, xanthomas, diabetes, smoking, HDLc and LDLc and lipid-lowering treatment. The FVII Ag concentrations behaved in a similar fashion, with no differences for the interaction between controls and those with FH (RR vs. RQ/QQ; p = 0.96). In the subgroup of patients with FH no association was found among cardiovascular disease, genotype and FVII Ag levels (RR vs. RQ/QQ; p = 0.97). Our study did not find a direct relationship between cardiovascular risk in patients with Heterozygous Familial Hypercholesterolemia, the R353Q polymorphism of factor VII and FVII Ag levels.

  17. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus.

    PubMed

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W; Noah, James W

    2014-04-01

    Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses.

  18. A BSL-4 High-Throughput Screen Identifies Sulfonamide Inhibitors of Nipah Virus

    PubMed Central

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E. Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.

    2014-01-01

    Abstract Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values <12 μM were further characterized for their point of intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses. PMID:24735442

  19. Phytochemical Compounds and Antioxidant Capacity of Tucum-Do-Cerrado (Bactris setosa Mart), Brazil's Native Fruit.

    PubMed

    Rosa, Fernanda R; Arruda, Andréa F; Siqueira, Egle M A; Arruda, Sandra F

    2016-02-23

    This study identified major phenolic compounds of the tucum-do-cerrado (Bactris setosa) peel, as well as antioxidant activity and total phytochemical compound concentration of different extracts of the peel and pulp of this fruit. Phenolic compounds of the different extracts of tucum-do-cerrado peel were identified and quantified using a high-performance liquid chromatography system coupled to a diode array detector (DAD). Total phytochemical compound content was determined by spectrophotometric assays and the antioxidant activity by ferric reducing antioxidant power and β-carotene/linoleic assays. Total phenolic, flavanols, total anthocyanins and yellow flavonoids concentration of tucum-do-cerrado were 122-, 14-, 264- and 61-fold higher in the peel than in the pulp, respectively. The aqueous, methanolic and ethanolic extracts of the tucum-do-cerrado peel exhibited higher antioxidant activity compared to its pulp. Flavanols, anthocyanins, flavones, phenolic acids and stilbenes were the main phenolic classes identified in the tucum-do-cerrado peel extracts. Results suggest that the antioxidant capacity and the phytochemical compound content of the tucum-do-cerrado are mainly associated with the peel. Although flavonoids are the main compounds identified in tucum-do-cerrado peel, other phenolics identified in minor amounts, such as phenolic acids and stilbenes, may be responsible for the high antioxidant capacity of the fruit.

  20. Compound heterozygous mutations in the SRD5A2 gene exon 4 in a male pseudohermaphrodite patient of Chinese origin.

    PubMed

    Fernández-Cancio, Mónica; Nistal, Manuel; Gracia, Ricardo; Molina, M Antonia; Tovar, Juan Antonio; Esteban, Cristina; Carrascosa, Antonio; Audí, Laura

    2004-01-01

    The goal of this study was to perform 5-alpha-reductase type 2 gene (SRD5A2) analysis in a male pseudohermaphrodite (MPH) patient with normal testosterone (T) production and normal androgen receptor (AR) gene coding sequences. A patient of Chinese origin with ambiguous genitalia at 14 months, a 46,XY karyotype, and normal T secretion under human chorionic gonadotropin (hCG) stimulation underwent a gonadectomy at 20 months. Exons 1-8 of the AR gene and exons 1-5 of the SRD5A2 gene were sequenced from peripheral blood DNA. AR gene coding sequences were normal. SRD5A2 gene analysis revealed 2 consecutive mutations in exon 4, each located in a different allele: 1) a T nucleotide deletion, which predicts a frameshift mutation from codon 219, and 2) a missense mutation at codon 227, where the substitution of guanine (CGA) by adenine (CAA) predicts a glutamine replacement of arginine (R227Q). Testes located in the inguinal canal showed a normal morphology for age. The patient was a compound heterozygote for SRD5A2 mutations, carrying 2 mutations in exon 4. The patient showed an R227Q mutation that has been described in an Asian population and MPH patients, along with a novel frameshift mutation, Tdel219. Testis morphology showed that, during early infancy, the 5-alpha-reductase enzyme deficiency may not have affected interstitial or tubular development.